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History of PME 
 
The International Group for the Psychology of Mathematics Education 
came into existence at the Third International Congress on Mathematical 
Education (ICME-3) in Karlsruhe, Germany in 1976. It is affiliated with 
the International Commission for Mathematical Instruction. 
 

Goals of PME-NA 
 
The major goals of the North American Chapter of the International 
Group for the Psychology of Mathematics Education are: 
1. To promote international contacts and the exchange of scientific 
information in the psychology of mathematics education. 
2. To promote and stimulate interdisciplinary research in the aforesaid 
area, with the cooperation of psychologists, mathematicians, and 
mathematics teachers. 
3. To further a deeper and better understanding of the psychological 
aspects of teaching and learning mathematics and the implications 
thereof. 
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Preface 
 

These Proceedings are the product of the 31st Annual Conference of the North 
American Chapter of the International Group for the Psychology of Mathematics 
Education held in Atlanta, Georgia, September 23-26, 2009.  They are a written 
record of the research presented at the conference.  

The theme for the conference was Embracing Diverse Perspectives, an 
appropriate one for Atlanta as a home to Dr. Martin Luther King, Jr. and the civil 
rights movement in the USA. This theme, which speaks to meeting the needs of all 
learners in mathematics education, is a worthy goal and researching issues around 
this goal is of critical importance.     

 
       Lynn C. Hart 
       Conference Co-Chair 
 
 
  

We are pleased to present the Proceedings for the 31st Annual Meeting of PME-
NA.  The Proceedings CD includes 2 plenary papers, 67 research reports, 113 brief 
research reports, 42 posters, and 9 working group papers.  Users can access these 
papers by selecting specific authors or particular topics.  Additionally, users can 
view all conference papers in a book format.   Editing the Proceedings has been a 
great opportunity, and I would like to thank my co-editors, David Stinson and 
Shonda Lemons-Smith, for their significant efforts in the editing process.   
  

       Susan L. Swars 
       Lead Editor, Proceedings 
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ALGEBRA IS SYMBOLIC1 
 

Jeremy Kilpatrick 
University of Georgia 

jkilpat@uga.edu 

The symbolic nature of algebra is addressed from three angles: branch of mathematics, object of 
curriculum, and theme of research.  As a branch of mathematics, algebra deals in symbols, and 
their manipulation poses sometimes daunting problems of learning and teaching.  As an object of 
the mathematics curriculum, algebra symbolizes barrier and stepping-stone among other things.  
As a topic of research in mathematics education, algebra poses many of the problems of meaning 
and interpretation that mathematics itself poses, while allowing some special characteristics to 
be explored.  Each angle has implications for researchers, and each touches on questions of 
diverse perspectives in our research. 

The title above as well as the paper that follows can be seen as a response to a doctoral 
student who a few months ago asked why algebra seems to be the only part of school 
mathematics that people are talking about these days.  Certainly, algebra is much in the news. 

Last year, for example, the California State Board of Education, by an 8 to 1 vote, approved a 
policy that as of 2011, all eighth graders in California public schools would be required to take 
the Algebra I course and the accompanying California Standards Test for Algebra I (Asimov, 
2008).  Algebra I has been a high school graduation requirement in California since 2004, but 
only about half of California students have been taking it in eighth grade.  The others have been 
taking a test in general mathematics.  Prompting the new policy was the ruling by the U.S. 
Department of Education in 2007 that the latter test was out of compliance with the No Child 
Left Behind Act because it measured no more than sixth- and seventh-grade mathematics 
content.  Last December, the California School Boards Association and the Association of 
California School Administrators, joined by the state Superintendent of Public Instruction and 
the California Teachers Association, got an injunction to prevent the state board from 
implementing the Algebra I requirement (Garrett, 2009).  Given California’s continuing budget 
woes, it is difficult to see the policy being implemented anytime soon, but it certainly got 
people’s attention. 

As another example, how did the American Diploma Project (2004) decide on Algebra II to 
anchor its expectations for readiness in mathematics for college and the workplace?  The Algebra 
II course was never intended to be a course for all students, let alone a requirement for high 
school graduation.  Did research showing a correlation between completion of Algebra II and 
both college completion and employment in high-paying professional jobs (Adelman, 2006; 
Carnevale & Desrochers, 2003; Pelavin & Kane, 1990) lead people to make the causal inference 
that requiring Algebra II for high school graduation would send everyone on to college or into 
those jobs? 

Finally, one has to wonder why the President’s executive order of April 18, 2006, 
establishing the National Mathematics Advisory Panel (2008) contained the following, as the 
first item on which the panel was to make recommendations:  

“(a)  The critical skills and skill progressions for students to acquire competence in 
algebra and readiness for higher levels of mathematics”  (p. 71). 
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Did George W. Bush, having decided that he needed to convene a panel to advise him on how 
the United States might implement the policy of fostering “greater knowledge of and improved 
performance in mathematics among American students” (p. 71), wake up one morning and say, 
“Competence in algebra ought to be the first order of business”?  As Danny Martin (2008) notes, 
the president’s choice of algebra was far from politically neutral, and one can raise questions 
about it: “Why algebra?  Who decides?  Algebra for whom and for what not-so-apparent 
purposes?  Whose interests are served by these choices?  Whose interests are not served?” (p. 
393). 

Algebra can be seen as symbolic in several ways.  In this paper, I discuss three of those ways 
in an effort not simply to suggest why algebra seems to have taken center stage but also to relate 
that prominence to some of the diverse perspectives to be embraced in our research. 

 
Algebra as a Branch of Mathematics 

Algebra is one of the main branches of mathematics, one that studies structure, relation, and 
quantity and in which symbols are used to represent numbers or members of a specified set.  In 
the elementary algebra of school mathematics, the most prominent symbols are letters of the 
alphabet that are used, along with symbols for numbers, operations, and relations, to express 
relationships among known and unknown quantities.  In fact, for many learners, algebra may 
appear to be entirely about symbolism.  Because of its heavy use of alphabetic symbols, x in 
particular, school algebra has been facetiously defined as “the study of the 24th letter of the 
alphabet” (Mason, Graham, Pimm, & Gowar, 1985, p. 38). 

The activities of school algebra have been characterized using various category schemes 
(e.g., Kilpatrick, Swafford, & Findell, 2001, pp. 294–295, note 4).  Carolyn Kieran’s (2004) 
recent formulation is as useful as any; she divides those activities into generational activity, 
transformational activity, and global/meta-level activity.  Generational activity concerns the 
formation of the expressions and equations that are the objects of algebra; transformational 
activity involves rule-based manipulations of equivalent expressions and equations, and 
global/meta-level activity uses algebra as a tool for mathematical processes such as problem 
solving and reasoning that are not exclusive to algebra but that make it useful.  Kieran devotes 
much of her discussion to the transformational activity of algebra, pointing out that technology is 
providing “a lens . . . for researching students’ emergent conceptualisations of algebraic 
transformations” (p. 31).  Two chapters in the 12th ICMI Study volume (Stacey, Chick, & 
Kendal, 2004, chs. 6 & 7) in which Kieran’s paper appears deal with the learning of algebra in 
technological environments. 

The increasing availability and use of computing technology in mathematics classes is 
complicating the role to be played by symbol manipulation in school algebra.  The very term 
symbol manipulation seems pejorative, suggesting a procedure carried out by hand or machine 
and not involving thinking (for a sophisticated, generous analysis of manipulation in school 
mathematics, see Pimm, 1995).  Because technology is now available to carry out algebraic 
symbol manipulation, questions are arising as to how much effort should be given to such 
manipulation when teaching algebra.  The release in May 2009 of the Web site Wolfram|Alpha, 
an online service built on Mathematica that makes a supercharged computer algebra system 
(CAS) free and easily available to the general public, has touched off discussion, and some 
consternation, among high school and college mathematics teachers.  They recognize that 
students will be able to use the system to solve any transformational problem of school or college 
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algebra (Young, 2009).  Given that potential, where is elementary algebra headed, or where 
should it be headed? 

One perspective one might take is that of the technology enthusiast, arguing that CASs, and 
Wolfram|Alpha in particular, can be powerful teaching tools, removing the drudgery and 
mindlessness from much of algebra learning.  Another perspective might be that of the 
technology skeptic, pointing out that we do not know very much about the potential cognitive 
benefits of symbol manipulation.  Even Tony Ralston (2009), an unabashed proponent of doing 
away with pencil-and-paper algorithms in the arithmetic curriculum, argues that the question of 
what value there might be to teaching symbol manipulation in secondary school and college is 
not as simple as it is for elementary school arithmetic.  It might also be pointed out that countries 
vary considerably in how much practice is given in symbol manipulation (Kendal & Stacey, 
2004, p. 337) and that, even though the situation is changing, Asian countries that have been 
high-achieving in mathematics have long refrained from much technology use in mathematics 
instruction (p. 342).  Perhaps there are benefits to manipulation by hand rather than by machine 
that are not so readily apparent. 

Lest I be misunderstood, let me immediately add that I applaud efforts to incorporate CASs 
into curriculum materials in mathematics.  But I also think it worthwhile to probe further and 
deeper into the effects of using CASs and other software.  An example would be the work by 
French researchers (Artigue, 2002, 2005; Guin & Trouche, 2002; Laborde, 2001), who have been 
studying some of the ways in which technological tools can be integrated into teaching practice.  
Particularly relevant to the example of CASs is the work of Michèle Artigue and her colleagues, 
“who have developed the construct of instrumental genesis: the way in which users shape the 
artifacts they use, and the artifacts shape the users, and that yields instruments” (Artigue & 
Kilpatrick, 2008, p. 6).  Artigue has noted that although one might expect a CAS to free students 
from the technical burden of symbol manipulation and thus allow them “to focus on conceptual 
thinking and understanding” (p. 8), she did not see that happening in the classrooms she 
observed in the early 1990s.  She came to realize that mathematical techniques have “both an 
epistemic and a pragmatic value.  A pragmatic value because they are operational; they produce 
results.  And an epistemic value because they contribute to our understanding of the objects they 
involve” (p. 8).  She could then see resistance to the use of technology in classrooms from a new 
perspective: 

The ordinary use of digital technology plays on the pragmatic power of technology, doing 
more things more quickly at the expense of its epistemic power.  But what makes a 
technique legitimate at school cannot be its pragmatic power only, which is an essential 
difference between school and the outside world.  Making technology legitimate and 
mathematically useful at school requires modes of integration that allow a reasonable 
balance between the pragmatic and the epistemic power of instrumented techniques.  This 
balance . . . requires tasks and situations that cannot be reduced to simple adaptations of 
paper-and-pencil tasks.  (p. 8) 

The construct of instrumental genesis appears to have considerable promise for researchers 
looking into the ways in which technology is and is not being used in mathematics teaching. 

My point in bringing technology into the discussion of symbol manipulation is to observe 
that every technology has both costs and benefits.  Because researchers who are technology 
advocates are likely to be looking primarily for benefits, it is important to have some researchers 
with a different perspective looking at costs.  This example illustrates the value for the research 
we do of promoting diversity in the perspectives we employ.  Seen as a branch of mathematics, 
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algebra may appear well defined, but research into its learning and teaching depends on the 
position from which the researcher views algebra and the symbols it uses. 

 
Algebra as an Object of Curriculum 

Algebra is symbolic not merely in its use of symbols but also in the way, as a course or 
curriculum strand, it symbolizes academic success.  School algebra is “higher” mathematics in a 
way that school arithmetic is not.  A simplified metaphor for the school mathematics curriculum 
that I am fond of using portrays its justification as arising from the collision of two tectonic 
plates (Kilpatrick, 2003, pp. 319–322).  The first plate developed within primary school 
education and treats mathematics as a tool for solving practical problems.  The second plate 
developed within secondary and tertiary education; it arises from the liberal arts tradition and 
treats mathematics as a means of achieving intellectual growth.  Over the centuries, the line 
separating the two curriculum plates has shifted considerably so that now it cuts across the 
grades, with mathematics in the primary grades taking on some of the intellectual character of 
higher mathematics, and secondary and tertiary mathematics becoming more oriented toward the 
solution of practical problems.  Nevertheless, algebra has long been seen as justified primarily 
for its intellectual rather than its practical value.  Recent efforts to teach algebra at all grades and 
to all students have run into stereotypic views of what the subject is and who should be learning 
it. 

As a symbol, school algebra has many different interpretations.  When Andrew Izsák and I 
wrote a history of algebra in the curriculum (Kilpatrick & Izsák, 2008), we took the following 
quotation as the epigraph because it captures so well how school algebra has been regarded for 
decades: 

If there is a heaven for school subjects, algebra will never go there.  It is the one subject 
in the curriculum that has kept children from finishing high school, from developing their 
special interests and from enjoying much of their home study work.  It has caused more 
family rows, more tears, more heartaches, and more sleepless nights than any other 
school subject.  (Anonymous editorial writer quoted by Reeve, 1936, p. 2) 

In this view, algebra is an evil force wreaking havoc across the land.  In contrast, Fran Lebowitz 
(1981) advises, “Stand firm in your refusal to remain conscious during algebra.  In real life, I 
assure you, there is no such thing as algebra” (p. 27).2  Algebra does not exist outside school. 

The title of the April 2000 issue of Mathematics Education Dialogues—“Algebra? A Gate! 
A Barrier! A Mystery!”—captures some of the varied symbolism attached to algebra.  It has long 
been seen as a principal gatekeeper to educational and career opportunities, which is one reason 
the teaching and learning of algebra from kindergarten through Grade 12 was chosen by the 
RAND Mathematics Study Panel (2003) as one of three focus areas (along with teachers’ 
mathematical knowledge for teaching and skills in teaching and learning mathematical thinking 
and problem solving) for a long-term research and development program, “three domains in 
which both proficiency and equity in proficiency present substantial challenges, and where past 
work would afford resources for some immediate progress” (p. xv).  In recent years, Bob Moses 
(1994), through his Algebra Project, has been instrumental in shifting the dominant metaphor 
from gatekeeper to a new civil right for all: 

Algebra, once solely in place as the gatekeeper for higher math and the priesthood who 
gained access to it, now is the gatekeeper for citizenship; and people who don’t have it 
are like the people who couldn’t read and write in the industrial age. . . . [Lack of access 
to algebra] has become not a barrier to college entrance, but a barrier to citizenship.  
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That’s the importance of algebra that has emerged with the new higher technology.  
(Moses & Cobb, 2001, p. 14) 
Politicians, however, have not ordinarily looked on algebra as a civil right.  For them, it is 

more likely to provide an opportunity for grandstanding.  What better or cheaper way to “raise 
standards” and “promote reform” in school mathematics, and get applause while doing it, than to 
require students to take “algebra” regardless of what that might entail?  The examples cited 
above from California, the American Diploma Project, and the executive order establishing the 
National Mathematics Advisory Panel all reflect political uses of algebra.  George W. Bush’s 
education advisor Tom Luce, who served on that panel while he was an Assistant Secretary of 
Education and currently heads up the National Math and Science Initiative, was one of the first 
to recommend that all students “take and pass algebra in eighth grade” (Luce & Thompson, 
2005, p. 170), which may help explain how algebra landed at the top of the panel’s agenda.  Luce 
and his coauthor Lee Thompson characterized algebra as “the principal gatekeeper for more 
advanced math and science studies in high school” (p. 170) 

In the public’s eye, studies in algebra, along with “more advanced” mathematics, symbolize 
not just a hurdle but also accomplishment and validation.  In L. Frank Baum’s (1900/1999) book, 
The Wonderful Wizard of Oz, when the Scarecrow asks the Wizard for brains, he gets bran mixed 
with pins and needles (“a lot of bran-new brains”).  In the movie version, in contrast, the Wizard 
hands out a diploma.3  (The Tin Woodman gets a testimonial, and the Cowardly Lion gets a 
medal.)  The writer Yip Harburg, who wrote the movie scene, said, “[I] devised the satiric and 
cynical idea of the Wizard handing out symbols because I was so aware of our lives being the 
images of things rather than the things themselves” (quoted in Harmetz, 1997, p. 58).  In other 
words, symbols are our reality. 

On receiving the diploma, the movie Scarecrow responds with a garbled version of the 
Pythagorean theorem: “The sum of the square roots of any two sides of an isosceles triangle is 
equal to the square root of the remaining side.”  Although the Scarecrow’s “theorem” is more 
geometry than algebra, it makes my point: The Scarecrow does not get brains; instead, he gets a 
piece of paper.  And rather than knowledge leading to certification, certification leads to 
knowledge.  In popular culture, the important thing is not the algebra you have learned but the 
presence of “Algebra II” on your transcript. 

As a curriculum object then, algebra, like the rest of school mathematics, has multiple 
symbolic meanings for learners, teachers, parents, politicians, and the public.  Researchers 
should do more to recognize, explore, and attempt to understand those meanings.  Research into 
the teaching and learning of mathematics that avoids attending to how the curriculum object is 
being interpreted by the participants in the educational encounter and the society in which they 
are situated is quite likely to yield useless or even invalid results. 

 
Algebra as a Topic of Research 

Algebra is also symbolic as a topic of research into the teaching and learning of mathematics.  
As a presumably well-defined curriculum entity, algebra is studied by researchers around the 
world.  Are they studying the same thing? 

Curriculum issues have apparently seemed relatively easy to discuss in international 
forums because they could be discussed in a manner that attended strongly to rather 
universal, mathematical characteristics and only weakly, if at all, to more local, 
sociopolitical characteristics.  It is not surprising, therefore that the resulting 
conversations often bypassed subtle, yet important, curriculum issues related to variations 
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in educational traditions and practices across countries. . . . To what extent can all 
important research questions be lifted out of the contextual details so that they can be 
considered within a broad international community of researchers?  (Silver & Kilpatrick, 
1994, pp. 249–250) 
One characteristic that distinguishes researchers in the community of mathematics education 

from those outside that community who “use mathematics as a vehicle for their research into 
learning and instruction” (Kilpatrick, 1996, p. 33) is that the latter take mathematics as 
unproblematic, a black box whose performance characteristics can be studied without asking 
what is inside.  In contrast, when mathematics education researchers study a topic like algebra, 
they do not—or should not—assume they know exactly what is being taught and how.  An 
excellent example can be found in the chapter by Margaret Kendal and Kaye Stacey (2004) that 
ends the 12th ICMI Study volume.  The chapter convincingly demonstrates that algebra is not the 
same school subject across educational jurisdictions.  There are striking differences in who takes 
it; whether it is integrated or layered across years; how much emphasis is put on matters of 
generality and pattern; how much attention is given to symbolism, formalism, and abstraction; 
whether it is approached through functions and multiple representations; and what role is played 
by technology.  Kendal and Stacey conclude, “Don’t take your country’s curriculum and 
approach to teaching algebra for granted and don’t assume all other educational jurisdictions 
operate in a similar way—they conspicuously do not” (p. 345).  Researchers interpreting national 
and international assessment studies involving algebra, therefore, should analyze how the term is 
being understood in the assessment items and how well that understanding applies to the issue in 
question (Kilpatrick, 2009; Kilpatrick, Mesa, & Sloane, 2007).  Of course, that admonition 
applies equally well to other branches of school mathematics. 

The National Mathematics Advisory Panel (2008) defined algebra in a conservative fashion 
with a list of what they deemed to be major topics of school algebra (Table 1, p. 16).  They 
developed that list by reviewing state standards, current textbooks, 12th-grade objectives of the 
2005 National Assessment of Educational Progress, the American Diploma Project’s 
benchmarks, and the Singapore standards.  Brian Greer (2008) characterizes the list of topics as 

a subset of what I learnt at grammar school in Northern Ireland nearly 50 years ago, with 
two exceptions, namely (a) fitting simple mathematical models to data, and (b) 
combinations and permutations, as applications of the binomial theorem and Pascal’s 
Triangle.  (p. 426) 

Roschelle, Singleton, Sabelli, Pea, and Bransford (2008) point out: 
The Panel chose not to broadly and critically examine the relevance of (lowercase) 
algebra to modern economic life, its role in scientific activities, and its function in a 
highly technological world.  Instead, the Panel defined Algebra I and Algebra II in the 
most conservative way (based on the intersection of the content of international curricula 
for such courses) and then further restricted its focus to “addressing the teaching and 
learning of mathematics from preschool to Grade 8 or so.”  (p. 610) 

Pat Thompson (2008) observes that “the vision of algebra reflected in the Panel’s content 
recommendations is a skills-based foundation for advanced symbolic manipulation and abstract 
algebra (especially the algebra of polynomial forms)” (p. 585). 

The National Mathematics Advisory Panel (2008) notes in a footnote that their list of major 
topics “is meant as a catalog for coverage, not as a template for how courses should be 
sequenced or texts should be written” (p. 15).  By cataloging topic coverage rather than 
suggesting approaches or offering interpretations, the panel assumed that school algebra is 
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school algebra now and forever here and everywhere.  Listing a topic such as “logarithmic 
functions” without considering how it might be introduced, understood, or used is equivalent to 
taking algebra itself as a black box.  Also, as Greer (2008) noted, by ignoring the work of 
researchers such as Carolyn Kieran and Jim Kaput, the panel missed the opportunity to 
recommend “a more productive approach to the teaching of school algebra” (p. 424). 

The draft mathematics standards from the Common Core Standards project of the National 
Governors Association and the Council of Chief State School Officers (Cavanagh & Gewertz, 
2009) that were unexpectedly released in July suggest that, so far, that project is providing some 
context for the treatment of topics and not just a list.  The argument can still be made, however, 
that the inclusion of more mathematics education researchers in the standards development 
process, as well as more attention to the work they do, would yield a better product.  Anyone 
who has taken school algebra as a research topic should understand its problematic quality. 

 
Diversity, Balance, and Quality 

By taking the symbolic nature of algebra as a focus, I have attempted to suggest how 
important it is to embrace diverse perspectives in conducting our research.  Diversity in 
background, preparation, outlook, and approach enriches the research community.  Diverse 
approaches, in particular, make our research useful for different purposes (National Council of 
Teachers of Mathematics Research Committee, 2009).  But diversity is not all we need. 

Diversity should be accompanied by balance.  Enthusiastic ideologues are important; they are 
the ones who push us to try new things.  Also important, however, are skeptical critics, and the 
latter always appear to be in short supply.  Speaking for myself, I tend to avoid bandwagons, 
whether they concern problem solving (Kilpatrick, 1981), constructivism (Kilpatrick, 1996), or 
“algebra for all.”  It is fine if some of us want to hop on the current bandwagon, but it would not 
be good if all of us were there.  To change the metaphor, there is little use in having a diverse set 
of passengers if all of them sit on the same side of the boat.  We need “a more balanced 
perspective on research and the variety of ways it can be conducted” (p. 41). 

Diversity and balance, of course, need to be accompanied by quality in what we do.  As 
Heather Hill and Jeff Shih (2009) point out, “high-quality research” in education is a contentious 
construct, one that people continue to debate.  Nonetheless, I think the community of 
mathematics education researchers has taken some important strides toward consensus regarding 
quality over the past several decades even if we continue to disagree regarding details. 

A heartening sign that we are achieving diversity in research method comes from a recent 
study by Lynn Hart and her colleagues (Hart, Smith, Swars, & Smith, 2009).  They examined 
710 articles published from 1995 to 2005 that reported research in mathematics education and 
found that although, not surprisingly to anyone acquainted with the recent literature, qualitative 
studies were the most common, studies using mixed methods were the next most common, and a 
nontrivial number were quantitative studies.  Hart et al. looked at six journals; Figure 1 shows 
the results for the Journal for Research in Mathematics Education (JRME), which are not too 
different from those for the journals taken together, although the JRME had by far the most 
articles that used mixed methods with inferential statistics.  The classification of research as 
qualitative, quantitative, or mixed turned out to present some serious problems of interpretation.  
In particular, studies using mixed methods were seldom identified as such in the report of the 
study.  Although they did not find clear trends in the fraction of studies using mixed methods, 
Hart et al. expect that more high-quality mixed methods research will be published in the coming 
years, seeing mixed methods as possibly “an appropriate response to calls for greater 
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generalizability of results while maintaining enough detail about the processes of teaching and 
learning to be valid and useful” (p. 39). 

Qualitative only
Quantitative only
Mixed

 
 
 

Before celebrating the diversity of methods to be found in the research literature in 
mathematics education, one should note that Hart et al. (2009) found much that could have been 
improved in the way researchers using mixed methods report their results.  Hill and Shih (2009), 
who looked at statistical and mixed method reports in the JRME from 1997 to 2006 and judged 
the adequacy of the statistical treatment of data, also found considerable room for improvement 
in the quality of both analytic techniques and reporting.  So we are not quite there yet. 

School algebra is receiving more than its usual share of attention these days for reasons that 
are largely beyond the control of the North American community of researchers in mathematics 
education.  As I have tried to suggest in this paper, they have some distinctive perspectives to 
contribute to the discussion.  Like all research, theirs has its flaws and shortcomings.  But to 
ignore both the research and the researchers is to limit the possibility of improving the teaching 
and learning of mathematics. 

 
Endnotes 

1 Plenary address at the annual meeting of the North American Chapter of the International 
Group for the Psychology of Mathematics Education, Atlanta, 24 September 2009. 

2 Thanks to David Pimm (1995, p. 106) for this reference. 
3 Thanks to Eileen Donoghue for reminding me of this scene. 
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Come round by my side and I'll sing you a song. 
I'll sing it so softly, it'll do no one wrong. 

On Birmingham Sunday the blood ran like wine, 
And the choirs kept singing of Freedom. 

That cold autumn morning no eyes saw the sun, 
And Addie Mae Collins, her number was one. 

At an old Baptist church there was no need to run. 
And the choirs kept singing of Freedom, 

The clouds they were grey and the autumn winds blew, 
And Denise McNair brought the number to two. 
The falcon of death was a creature they knew, 

And the choirs kept singing of Freedom, 
The church it was crowded, but no one could see 
That Cynthia Wesley's dark number was three. 

Her prayers and her feelings would shame you and me. 
And the choirs kept singing of Freedom. 
Young Carol Robertson entered the door 

And the number her killers had given was four. 
She asked for a blessing but asked for no more, 

And the choirs kept singing of Freedom...1 
 

Preamble 
The theme of this year’s conference is Embracing Diverse Perspectives. This theme clearly 

represents an invitation for scholars in the field to consider and appreciate a wide range of 
theoretical and methodological perspectives on mathematics learning and participation, including 
those perspectives that diverge from what might be called conventional or mainstream thinking.  

In my view, the conference theme also provides an opportunity to raise questions about how 
mathematics education research and policy have embraced and served the diversity of students 
who show up in mathematics classrooms, especially those students who must learn mathematics 
while simultaneously trying to negotiate the most difficult and oppressive life circumstances. 
These are often the same students who have been systematically and deliberately underserved in 
so many other societal and institutional contexts.  

In this paper, and my accompanying plenary address, I take advantage of the conference 
theme to do two things that rarely occur in mainstream mathematics education contexts. First, I 
put Black children and their experiences at the center of the discussion. I share my perspective 
on how I believe mathematics education has and has not served these students. In many ways, 

                                                 
1 Excerpted lyrics from the song Birmingham Sunday written by Richard Fariña and performed by Joan Baez. 
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Black children serve as canaries in the coal mine. If we have not, and cannot, do right by these 
children, it is extremely difficult for me to believe that we can accomplish the goals inherent in 
the conference theme.  

My focus on Black children is not an exclusionary move; taking a pro-Black-child stance 
should not be interpreted as a stance against any other group of children given my sincere 
interest in insuring that all children experience mathematics learning and teaching in relevant and 
meaningful ways. However, I do believe that, in the context of discussing diversity, we should 
never lose sight of particularity.  Similarly, when discussing particularity, we should never lose 
sight of diversity. Therefore, while it is important to discuss the needs of Black children as 
children, it is equally important to prioritize their needs as Black children (e.g., Hale, 2001; 
Lomotey, 1990; Martin, 2007; Perry, Steele, & Hilliard, 2003; Shujaa, 1994). 

Regarding these last points, we should not lose sight of the fact that there is great diversity 
among Black children in the United States (e.g., Waters, 2001). There is no singular, essential 
characterization. They come from varied socioeconomic and family backgrounds and respond to 
schooling and education in multiple ways. Yet, there is a collective history and collective 
condition of Blacks in the United States that is clearly distinguished from other social groups. It 
is this history that gives partial meaning to what it has meant, and what it currently means, to be 
Black in America.  

My focus on Black children in the United States does not deny that they are forever linked to 
other Blacks in the African diaspora, including Afro-Latins in the central and southern 
Americas, Afro-Carribeans in the West Indies, the Sidis in India, the Aboriginals in Australia, 
Afro-Arabs in the Middle East, and so on. These diasporic relations remind us that Black 
children in the United States are also children of the world. It is unfortunate that some policy 
makers and education researchers often lose sight of this fact by confining black children’s 
existence to poverty-ridden communities, broken families, and low-quality schools and easily 
dismissing the historical and structural forces that create and maintain those conditions 
(D’Souza, 1991; McWhorter, 2001; Steele, 1990; S. Thernstrom & A. Thernstrom, 1997; A. 
Thernstrom & S. Thernstrom, 2004). Moreover, there is a disturbing trend in society that 
attempts to strip Black children of their childlike qualities altogether by using such labels as 
thugs, urban terrorists, predators, threats to society, and endangered species. Ignoring structural 
considerations, we are asked to believe that genetic, cultural, and intellectual inferiority account 
for these conditions (D’Souza, 1991; McWhorter, 2001; Steele, 1990; S. Thernstrom & A. 
Thernstrom, 1997; A. Thernstrom & S. Thernstrom, 2004).  

While it is true that disproportionate numbers of Black children here and around the world 
continue to experience life conditions that not only limit their opportunities to learn but that also 
threaten their very lives, this is not the end of the story. It is equally true that, wherever they live 
and learn and no matter what their circumstances, Black children are also among the most 
resilient (Bowman & Howard, 1985; Gordon. 1995; McGee, 2009; Miller & MacIntosh, 1999; 
Sanders, 1997; Spencer, Cole, Dupree, Glymph, & Pierre, 1993). We need more studies of this 
resilience in mathematics education (e.g., Ellington, 2006; McGee, 2009). 

Moreover, Black children in the U.S. are growing up in a time when geopolitical boundaries 
are being blurred by technology and globalization. Social media such as YouTube and MySpace 
are not only responsible for exporting and importing culture, ideology, protest, and revolution 
but also for exposing the human condition and helping Black children to contextualize their lives 
vis-à-vis the conditions in which other children live and learn. Black children can see that the 
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struggle for a more humane existence is not confined to the boundaries of their own 
neighborhoods or cities. 

Within this global perspective, the implication for Black children’s mathematical education is 
clear:  

 
… meaningful mathematics education for African-American children should not only 
help them function in their local contexts in U.S. society but should also help them 
function as citizens of the globe, to function across boundaries of difference, and to 
recognize similarities in human conditions among people who wage the struggle against 
oppression” (Martin & McGee, 2009, p. 216).  
 
This view on the aims and goals of mathematics education stands in sharp contrast to policy 

discussions that frame mathematics participation for Black children in terms of workforce 
participation and the preservation of U.S. international competitiveness (Committee on Science, 
Engineering, and Public Policy, 2007; Domestic Policy Council, 2006; National Research 
Council, 1989; National Science Board, 2003; U.S. Department of Education, 1997, 2008). 
While these may be worthy goals, they still reflect crude commodifications and self-serving 
concerns for Black learners, concerns that are typically couched in the easy-to-swallow language 
of equity and diversity (Gutstein, 2008; Martin, 2003; Martin 2009a, 2009c; Martin & McGee, 
2009).  

My own view is that even if larger numbers of Black Americans were to find themselves in 
the mathematics and engineering pipeline, they would only be absorbed into the workforce up to 
the point of not threatening the status and well-being of white workers. Examination of the 
public debate reveals the angst, resistance, and cries of racial preference that are often associated 
with the introduction of just one qualified African American into a given context even when that 
context has been historically all-white (Bonilla-Silva, 2003, 2005).  

The second thing I do in this paper—in addition to centering the discussion on Black 
children—is to argue for racism and racialization (Miles, 1988) as central concerns in 
mathematics learning and participation and as lenses through which to critique mathematics 
education research and policy. I do so knowing that discussions of race2 and racism are likely to 
produce knee-jerk negative reactions from those who have adopted a color-blind ideology and 
who believe that we now live in a post-racial society in which race and racism are no longer 
relevant, despite great evidence to the contrary (Bonilla-Silva, 2003, 2005; Macedo & Gounari, 
2006; Omi & Winant, 1994; Winant, 2004). I do so also knowing that many discussions of race 
and racism are unproductive because they tend to aim for simplicity in framing and in solution. 

In this discussion, I acknowledge the complexities of race and move well beyond the causal-
factor approach utilized in mainstream research. For example, I agree with Essed (2002) who 
stated: 

 
“Race” is an ideological construction, and not just a social construction, because the idea 
of “race” has never existed outside a framework of group interest. As part of a nineteenth 
pseudoscientific theory, as well as in contemporary “popular” thinking, the notion of 
“race” is inherently part of a “model” of asymmetrically organized “races” in which 
Whites rank higher than “non-Whites.” Furthermore, racism is a structure because racial 

                                                 
2 Clearly, my focus on race does not diminish the importance of race, class, and gender intersections. 
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and ethnic dominance exists in and is reproduced by the system through the formulation 
and applications of rules, laws, and regulations and through access to and the allocation 
of resources. Finally, racism is a process because structures and ideologies do not exist 
outside the everyday practices through which they are created and confirmed. (p. 185) 
 
I draw on sociological theory in further characterizing racism as “the routinized outcome of 

practices that create or reproduce hierarchical social structures based on essentialized racial 
categories” (Winant, 2004, p. 126). As noted by Macedo and Gounari (2006), “Racism includes 
a set of ideologies, discourses, discursive practices, institutions, and vocabularies” (p. 4). These 
characterizations are important because they overcome the tendency to reduce racism to 
individual psychology (Omi & Winant, 1994). Instead, these characterizations acknowledge that 
racism operates at many levels—everyday, institutional, and structural—and involves all the 
actors, practices, and institutions in a given society.  

Acknowledging sociological findings that race and racial categories are politically contested 
in any given sociohistorical and geopolitical context—through a process called racial formation3 
(Omi & Winant, 1994)—and also recognizing that racism is a global phenomenon (Macedo & 
Gounari, 2006), my references to race and racism in this paper is to their everyday, institutional, 
and structural instantiations in the United States (Bonilla-Silva, 1997; Essed, 2002). These 
peculiar and particular manifestations have ranged from (a) native American extermination, 
chattel slavery, Jim Crow apartheid, Chinese exclusion, and Japanese internment to (b) post-civil 
rights color-blindness to (c) a so-called post-racial context that allows for the passage of the 
Secure Fence Act which calls for 700 miles of physical and virtual fencing along the U.S.-
Mexican border; a post-racial context that allows for the burning of Black churches and 
synagogues; a post-racial context that condones racial profiling of Arab Americans and Muslims; 
a post-racial context that allows a Republican activist to compare the First Lady of the United 
States to a gorilla and then issue a non-apology apology; a post-racial context that encourages a 
lunatic white supremacist to open fire in the Holocaust museum because of his hatred for Jews 
and Blacks (Macedo & Gounari, 2006).  

The history and ubiquity of race offer some evidence for law professor Derrick Bell’s 
haunting claim that racism is permanent (Bell, 1993). This ubiquity also begs the question of 
how, not if, (mis)understandings of race and racism influence the ideologies and epistemologies 
found in mathematics education. I push this point further by asking how do race and racism 
structure the very nature of the mathematics education enterprise?  

On one hand, there is the possibility that mathematics education is a race-neutral domain, 
free from racial contestation, stratification, and hierarchies, and different in character than all 
other racialized societal contexts. If so, how do we reconcile this neutral character with the 
racialized inequities faced outside of the domain by many of the students our work is intended to 
help?  

On the other hand, I suggest that a structural analysis would show that mathematics 
education research and policy not only help to produce racial representations and meanings but 
also are themselves informed by societal meanings and representations of race. Not only do 
research and scholarly interpretations of children’s mathematical behavior serve to inform 
societal beliefs about race and racial categories, but race-based beliefs about children also serve 

                                                 
3 Omi & Winant (2005, p. 16) define racial formation as the process by which social, economic, and political forces 
determine the content and importance of racial categories, and by which they are in turn shaped by racial meanings. 
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to inform mathematics education research and policy. Beliefs in so-called racial achievement 
gaps and attempts to close of such gaps by raising Black children to the level of white children 
exemplify these beliefs.  

Moreover, a structural analysis would reveal that the pervasiveness whiteness—represented 
numerically, ideologically, epistemologically, and in material power—which characterizes 
mathematics education research and policy contexts bears a strong family resemblance to the 
manifestations of whiteness found in other societal contexts. In my view, the enterprise of 
mathematics education is no different than other racialized spaces and should be subjected to the 
same anti-racist scrutiny, especially as it pertains to the well-being of Black children. 

It is in the ways just described that mathematics education research and policy can be 
implicated in New Right, conservative, liberal, and neoliberal racial projects (Omi & Winant, 
1994; Winant, 2004) that shape larger racial dynamics. According to the sociological literature, a 
racial project is “simultaneously an interpretation, representation, or explanation of racial 
dynamics and an effort to reorganize or redistribute resources along particular racial lines. Racial 
projects connect what race means in a particular discursive practice and the ways in which both 
social structures and everyday experiences are racially organized, based upon that meaning” 
(Omi & Winant, 1994, p. 56).  Consider this partial history of the neoliberal racial project: 

 
In order to win the [1992] election and reinvigorate the once-powerful Democratic 
coalition, Bill Clinton believed he needed to attract white working class voters—the 
“Reagan Democrats.” His appeal was based on lessons learned from the right, lessons 
about race. Pragmatic liberals in the Democratic camp proposed a more activist social 
policy emphasizing greater state investment in job creation, education, and infrastructure 
development. But they conspicuously avoided discussing racial matters such as 
residential segregation or discrimination. The Democrats’ approach, which harked back 
to Kennedy’s remark that “A rising tide lifts all boats,” aspired to “universalistic” rather 
than “group-specific” reforms. Thus the surprising shift in U.S. racial politics was not… 
the Republican analysis which placed blame on the racially defined minority poor and the 
welfare policies which has supposedly taught them irresponsibility and dependency. The 
“surprise” was rather the Democratic retreat from race and the party’s limited but real 
adoption of Republican racial politics, with their support for “universalism” and their 
rejection of “race-specific” policies.…. This developing neoliberal project seeks to 
rearticulate the neoconservative and new right racial projects of the Reagan-Bush years in 
a centrist framework of moderate redistribution and cultural universalism. Neoliberals 
deliberately try to avoid racial themes, both because they fear the divisiveness and 
polarization which characterized the racial reaction, and because they mistrust the 
“identity politics” whose origins lie in the 1960s….  In its signifying or representational 
dimension, the neoliberal project avoids (as far as possible) framing issues or identities 
racially. Neoliberals argue that addressing social policy or political discourse overtly to 
matters of race simply serves to distract, or even hinder, the kinds of reforms which could 
most directly benefit racially defined minorities. To focus too much attention on race 
tends to fuel demagogy and separatism, and this exacerbates the very difficulties which 
much racial discourse has ostensibly been intended to solve. To speak of race is to enter a 
terrain where racism is hard to avoid. Better to address racism by ignoring race, at least 
publicly (Omi & Winant, 1994, pp. 146-148) 

By way of example, recent reform movements and policy documents in mathematics 
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education can be analyzed for their contributions to these racial projects. Mathematics for All, as 
one of the most egalitarian movements in the field, seeks to reorganize and redistribute access to 
mathematics by appealing to liberalism. In the liberal project, there is an underlying appeal to 
white middle- and upper-class consciousness to convince them that others must now share in the 
opportunities that they have long enjoyed (Winant, 2004).  It also aligns well with the neoliberal 
racial project in that universal programs (i.e. Algebra for All) that work for all students are 
promoted in lieu of group-specific efforts and objectives (Winant, 2004). It is in this way that 
Mathematics for All rhetoric is about assimilation. In classical assimilation theory, assimilation is 
defined as “the decline, and at its endpoint the disappearance, of an ethnic/racial distinction and 
the cultural and social differences that express it” (Alba & Nee, 1997, p. 863).  

Viewed more critically, Mathematics for All is also about nationalism because it appeals to 
U.S. international competitiveness in relation to real and perceived foreign threats (Gutstein, 
2008; Martin, 2003, 2009c). Like assimilation, nationalism seeks to erase meaningful cultural 
differences among social groups and to silence internal racial identity politics in favor of 
collectivism.  

So, while Mathematics for All has an equity-oriented veneer, it is clear to me that there are 
other ideologies at play that are not based on moral and humanistic concern for those who are 
marginalized in mathematics. In a paper titled Hidden Assumptions and Unaddressed Questions 
in Mathematics for All Rhetoric (Martin, 2003), I offer additional critique of this movement. 

Similarly, a critical analysis of the Final Report of the National Mathematics Advisory Panel 
(U.S. Department of Education, 2008) report reveals how it, too, contributes to racial projects. In 
this report, the learning of mathematics in U.S. schools is linked directly to the preservation of 
national security. The third paragraph of the Panel’s Executive Summary is very clear in making 
this link:  

 
Much of the commentary on mathematics and science in the United States focuses on 
national economic competitiveness and the economic well-being of citizens and 
enterprises. There is reason enough for concern about these matters, but it is yet more 
fundamental to recognize that the safety of the nation and the quality of life—not just the 
prosperity of the nation—are at issue. (p. xi) 

 
Considering the political origins of the National Math Panel, these security concerns can be 

linked to conservative Republican ideology, Islamophobia, anti-Muslim sentiments, and the 
globalization of U.S. racism and white privilege (Macedo & Gounari, 2006; Winant, 2004).  

Beyond the policy arena, the frequent use of a race-comparative approach to examine 
mathematics achievement differences among U.S. students makes its own contribution to racial 
projects. This approach supports the normalization of whiteness and the subordination of poor, 
African American, Latino, and Native American students. Specifically, this approach has served 
to reify a racial hierarchy of mathematics ability that is now taken for granted by the general 
public and by many scholars and policy makers (Martin, 2009a, 2009c). Belief in this hierarchy 
contributes to the interpretation and representation of race and racial categories by supporting 
negative societal meanings for what it means to be poor, Black, Latino, and Native American. 
For example, in most of these studies, the resulting analyses often suggest that to be Black is to 
be mathematically illiterate and inferior relative to those who are identified as White and Asian. 
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Researcher Identity 
Having provided the extended preamble above, I do feel it is important to pause and provide 

a better sense of my motivation for raising these issues and where they fit into my life as a 
scholar. Readers who are familiar with my research and teaching know that my focus on Black 
children and issues of race and racialization is not a novelty for me. My efforts are not an attempt 
to jump on the equity and diversity bandwagons that have emerged in mathematics education 
over the last several years or an attempt to urbanize my research. Nor does my focus represent a 
sudden realization that it might be valuable to study the mathematical lives of Black children and 
to be explicit about attempts to construct them as less than ideal learners. 

My research and teaching over the last twenty years have focused exclusively on the life and 
mathematical experiences of Black children and adults in school contexts ranging from middle 
school to community college. In my work, I have detailed aspects of their racial and 
mathematical socializations and characterized the identities they co-construct in light of their 
experiences. Moreover, rather than studying only underachievement and failure in mathematics, I 
have devoted a great deal of attention to documenting success and agency among African 
American children and adults. Up until a few years ago, little attention was given to this success 
and little was known about how students defined, achieved, and maintained it. My own studies 
have revealed a number of sociohistorical, community, school, and intrapersonal forces 
contributing to resilience and success in mathematics (Martin, 2000, 2006a, 2006b). This work 
has consistently highlighted issues of racism, racial identity, and racialization not because I 
impose these issues but because the participants in my research cite them over and over again as 
being both central and salient (Martin 2000, 2006a, 2006b, 2007, 2009a, 2009c). 

So, although this paper has been composed to address the conference theme, it is clear that I 
also have a political agenda. This goes against the idea that research and scholarship should not 
drift towards advocacy. However, all research and scholarship are political. Moreover, the 
production of knowledge cannot be disconnected from who we are as people, what we have 
experienced, and what we believe. My multiple identities—racial, scholarly, mathematical, and 
otherwise—have informed, and continue to shape, my scholarly perspective. I am an African 
American through self and societal identification although these asserted and assigned identities 
do not always overlap. My own experiences with mathematics both mirror and diverge from 
those of other African Americans. Experiences with poverty and racism are not unfamiliar to me 
nor are experiences with academic and mathematics success. 

I am also a scholar. I do not hesitate in identifying myself as an African American scholar in 
a field numerically dominated by white scholars. Identifying in this way does not limit or 
essentialize my perspective or discount the perspectives and experiences of others. Paraphrasing 
Supreme Court nominee Sonia Sotomayor: 

 
I would hope that a wise [African American man] with the richness of [his] experiences 
would more often than not reach a better conclusion than a white male who hasn’t lived 
that life…. [However,] I… believe that we should not be so myopic as to believe that 
others of different experiences or backgrounds are incapable of understanding the values 
and needs of people from a different group. Many are so capable…. However, to 
understand takes time and effort, something that not all people are willing to give. For 
others, their experiences limit their ability to understand the experiences of others. Others 
simply do not care. Hence, one must accept the proposition that a difference there will be 
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by the presence of women and people of color. 
(http://feministlawprofessors.com/?p=10952) 
 
In the remainder of this paper, I discuss Black children and issues of racism and racialization 

by structuring my comments around four inter-related topics which, admittedly, will be devoid of 
mathematics content4 and may come across as sociological in nature, far afield of mathematics 
education.  

First, I explore the meaning and significance of the title of this paper.   
Second, I briefly discuss the representation of Black children in mainstream mathematics 

education research and policy so as to reveal the form and substance of these representations and 
to show how they have contributed to the construction of Black children as inferior to other 
children. Continued rhetoric around the so-called black-white or racial achievement gap is one 
example where Black children are told explicitly and matter of factly that they are inferior to 
white children.  

Third, I briefly outline my own research theoretical perspective that conceptualizes 
mathematics learning and participation as racialized forms of experience, not just for African 
American children but also for all children. Within this perspective, I characterize mathematics 
education research and policy as instantiations of white institutional space, where pervasive 
myths and stereotypes about African American children have their genesis and are allowed to 
persist as common sense. 

Finally, I present of a set of axioms for researching Black children and mathematics; these 
axioms have served as the foundation of my research and I believe they should inform all future 
work on Black children, helping to counter the masternarrative that has dominated discussions of 
these children. 
 

Little Black Boys and Little Black Girls? 
My focus on little Black boys and little Black girls is simultaneously historical, present-day 

literal, and metaphorical. First, it recognizes the historical significance of this conference taking 
place in Atlanta, a key city in the United States civil rights movement as well as being the 
birthplace of reverend Dr. Martin Luther King, Jr. and the final resting place of Dr. King and his 
wife, Coretta Scott King. In his famous I Have a Dream speech, delivered on August 23, 1963, 
Dr. King envisioned a day when little Black boys and little Black girls would be able to 
experience full and humane lives, free from racism and subjugation and all that accompanies 
those oppressions.  

Yet, on September 15, 1963, less than one month after that clarion call for social progress, 
four little Black girls—11-year-old Carole Denise McNair and 14-year-olds Addie Mae Collins, 
Cynthia Wesley, and Carole Robertson—were murdered by a bomb placed under the steps of the 
16th Street Baptist Church located in Birmingham, Alabama. The ground floor of the church 
collapsed, killing the girls and injuring some twenty others. The lyrics that opened this paper are 
taken from the song Birmingham Sunday, which was performed by Joan Baez to mourn the girls’ 
deaths. 

                                                 
4 Although studies of Black children learning specific mathematics content are critically important, I do not dwell on 
this topic because I do not wish to suggest that there is something peculiar about these children’s learning or that 
some content is especially problematic for them to learn. The fact is that normal, healthy Black children can learn 
whatever mathematics they are given the opportunity and necessary supports to learn.  
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Robert “Dynamite Bob” Chambliss, a member of the Ku Klux Klan, was identified by 
witnesses, arrested, and charged with murder and possession of dynamite without a permit. Other 
Klansmen were also identified but not initially charged. In his first trial on October 8, 1963, 
Chambliss was found not guilty of murder but received a small fine and sentenced to six months 
in jail for possessing dynamite. It was later revealed that FBI director J. Edgar Hoover interfered 
with prosecutions in the cases. In 1971, the case was re-opened by the Alabama attorney general. 
A grand jury indicted Chambliss for the murder of Denise McNair on September 24, 1977. In 
November 1977, Chambliss was retried, found guilty of murder, and sentenced to life in prison. 
It was not until 2001 and 2002 that two of the remaining suspects were convicted. 

Although the murders of four little black girls punctuated September 15, 1963, two other 
murders of black children occurred in Birmingham on that day: 

 
James Robinson, a black 16-year-old, became involved in a rock-throwing incident with a 
gang of white teenagers. As he fled from the scene, Robinson ran down an alley near the 
Sixteenth St. Church and was promptly shot in the back and killed by a white City of 
Birmingham police officer. A few hours later, on the outskirts of the city, 13-year-old 
Virgil Ware was riding on the handlebars of a bicycle with his older brother. From the 
opposite direction, a red moped, decorated with the Confederate flag, quickly approached 
the two boys. Without warning, the operator of the motorbike, a white 16-year-old, pulled 
out a gun and shot Virgil twice in the chest, killing him instantly. 
http://www.trutv.com/library/crime/terrorists_spies/terrorists/birmingham_church/5.html 
 
Why do I bring up civil rights history in a contemporary discussion of mathematics learning 

and participation?  I do so because history reminds us that society has always had a high 
threshold for Black pain. Moreover, the lives of Denise McNair, Addie Mae Collins, Cynthia 
Wesley, Carole Robertson, James Robinson, and Virgil Ware were taken not because they were 
just any children. Their lives were taken because they were Black children. As I stated earlier in 
this paper, when discussing diversity, we should not lose sight of particularity. Any analysis of 
Black children’s behavior in the world, including mathematics education, that fails to 
contextualize or appreciate what life was like, or is like, for these children is shortsighted and 
bound to be limited in its explanatory power.  

There will be some who read this paper and say, “Get over it. Stop whining. Stop playing the 
race card. That’s ancient history. Things have gotten better.” and so on. However, these 
dismissals and resistance only amount to a desire to maintain the status quo and to avoid the 
work of understanding how society’s laws, policies, and practices routinely continue to converge 
in subjugating Black children.5 
 

Representing and Constructing Black Children in Mathematics Education 
My focus on little Black boys and little Black girls is present-day literal because I contend 

that even in a post-civil rights, color-blind era highlighted by the election of a President with 
biracial African heritage and the identification of mathematics literacy as a 21st century civil 
right, there is little reason to believe that the well-being of little Black boys and little Black girls 
                                                 
5 As pointed out by educational anthropologist, studies of education for Black children should consider forces at 
many levels: societal, community, family, institutional, school, individual. I acknowledge that there are many 
internal, community- and family-based forces to consider. Those forces are not addressed in this paper. See Martin 
(2000). 
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is a priority in America or in mathematics education, in particular. We still live in a society 
where blackness and black life are denigrated. Just a few months ago, Bonnie Sweeten, a white 
woman from Philadelphia claimed that she and her 9-year-old daughter had been abducted by 
two Black men and thrown into the trunk of a Cadillac. In response to her 911 calls, massive 
local and national media attention was given to her abduction. Crisis intervention teams were 
sent to her daughter’s school. Only after more careful police work was it revealed that Sweeten 
had faked the abductions and had flown to Disneyworld after withdrawing more than 12,000 
dollars from her bank accounts. This is a repeat episode of earlier cases involving Susan Smith 
and Charles Stuart in which the villainous Black man was blamed for killing four white children 
and a white wife, respectively. In these two instances, Smith and Stuart were the guilty parties. 
Yet, in all these cases, society was quick to accept the accusations that were put forward. The 
media attention and concern for the well-being of white children, men, and women stands in 
stark contrast to the attention given to the alarming numbers of murders of Black children in my 
own city of Chicago. As of mid-May, 36 schoolchildren, most of them Black, had been killed, an 
average of more than one a week. National media attention was slow in coming.6 In the eyes of 
many, each time a Black child’s life is taken, it is just “another one gone.” 

A cursory examination of the ways Black children have been researched and represented in 
mainstream mathematics education research and policy further shows how Black children are 
devalued.  

The dominant story line, or masternarrative, in research and policy contexts is one that 
normalizes failure, ignores success, and uses white children’s mathematical behaviors and 
performance as the standard for all children. This masternarrative has helped to support negative 
social constructions of these children. Mathematics education policy reports dating back 25 years 
have explicitly labeled Black children as mathematically illiterate. More recently, African 
American 12th graders have been told, in a very public fashion, that they are only as skilled and 
demonstrate math abilities at the level of white 8th graders (Education Trust, 2003). After their 
comprehensive review of over 16,000 studies, the members of the National Mathematics 
Advisory Panel reduced their research recommendation for Black children to issues of 
motivation, task engagement, and self-efficacy. These areas are important but they focus 
attention on Black children as though they are unmotivated, inclined to disengagement, and 
lacking in agency. Institutional and structural barriers inside and outside of school, including 
racism, that affect student mathematics achievement, engagement, and motivation received little, 
if any, attention in the report (Martin, 2008). Resistance and disengagement among some 
students may, in fact, be rational responses to oppressive schooling practices. 

In other research contexts, it has been claimed that poor (Black) children enter school with 
only pre-mathematical knowledge and lack the ability to mathematize their experiences, engage 
in abstraction and elaboration, and use mathematical ideas and symbols to create models of their 
everyday lives (e.g., Clements & Sarama, 2007). Left unanswered is whether researchers who 
report these findings understand, even partially, the “everyday lives” of Black children. As I 
have stated in other writings (Martin, 2009c): 

 
Because the tasks, assessments, and standards for competence used to draw these 
conclusions are typically not normed on African American children’s cultural and life 

                                                 
6 For an interesting mathematical analysis of media coverage on crimes against Black and White children see the 
Appendix to this paper or go to: http://www.thedefendersonline.com/2009/05/14/36-children-of-color-dead-in-
chicago/ 
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experiences, one could also argue that … the preferred ways of abstracting, representing, 
an elaboration called for in these studies and reports are based on the normalized 
behavior of white, middle-class and upper-class children…. Very little consideration is 
giving to exploring patterns in the ways that [poor] African American children do engage 
in abstraction, representation, and elaboration to determine if these ways are mediated by 
their cultural experiences in out-of-school settings and whether the preferred ways of 
engaging in these processes serve useful functions relative to those experiences. (p. 15) 
 
Moreover, despite these claims about Black children’s mathematical knowledge, little seems 

to be known about their metacognitive and racial awareness during mathematical problem 
solving, particularly in contexts that are meaningful to them and where they are likely to 
demonstrate a range of mathematical behaviors. Research in these areas would not only provide 
insight into Black children’s reasoning processes and strategy choices (e.g., Malloy & Jones, 
1998) but also about their awareness of how they are socially constructed, and how they socially 
construct themselves, as mathematics learners. 

Finally, those who choose to study Black children in high-poverty contexts must first 
acknowledge, and understand, that ghettos are not natural or normative contexts for Black 
children but, like slavery and Jim Crow, they are “race making institutions” (Wacquant, 2006, p. 
103) designed to dehumanize and inflict material, structural, and symbolic violence (Bourdieu & 
Passeron, 1977) on those who are forced to live in them.  As noted by Wacquant (2006): 

 
The ghetto, in short, operates as an ethnoracial prison: it encages a dishonoured category 
and severely curtails the life chances of its members in support of the ‘monopolization of 
ideal and material goods or opportunities’ by the dominant status groups dwelling on its 
outskirts. (p. 101) 
 
Only recently have researchers begun to directly examine the mathematical experiences and 

identities of Black children versus a narrow focus on their achievement (Martin, 2007). 
Researchers doing this work have explored several important areas related to these students’ 
mathematics learning and development: (1) their beliefs about their ability to participate in 
mathematical contexts, (2) their motivations to learn or do mathematics, (3) the ways in which 
they define the importance and value of mathematics knowledge and success in mathematics, (4) 
their mathematics socialization experiences in school and non-school contexts, and (5) the co-
construction of mathematics identities and other social identities that are important to these 
students. Research in these areas supports the assertion made Theresa Perry, Claude Steele, and 
Asa Hilliard (2003) in their book Young, Gifted, and Black: Promoting High Achievement 
Among African American Students:  

 
African American students face challenges unique to them as students in American 
schools at all levels by virtue of their social identity as African Americans and of the way 
that identity can be a source of devaluation in contemporary American society…. Before 
we can theorize African-American school achievement, we need to have an 
understanding of what the nature of the task of achievement is for African Americans as 
African Americans. (pp. vi-9) 
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Readers are urged to consult the recent volumes Mathematics Success and Failure Among 
African American Youth (Martin, 2000), Mathematics Teaching, Learning, and Liberation in the 
Lives of Black Children (Martin, 2009b) and Culturally Specific Pedagogy in the Mathematics 
Classroom: Strategies for Teachers and Students (Leonard, 2008) for more details about some of 
this recent work. 
 

Racialized Forms of Experience and White Institutional Space 
One of the most defining feature of the masternarrative on Black children and mathematics is 

that it frequently cites or implicates race as a causal variable in their achievement but just as 
frequently fails to define this concept or acknowledge that racism, not race, should be the key 
area of focus. I have argued elsewhere (Martin, 2009a) that: 

 
Within mathematics education, race remains undertheorized in relation to mathematics 
learning and participation. While race is characterized in the sociological and critical 
theory literatures as socially and politically constructed and with structural expressions, 
most studies of differential outcomes in mathematics education begin and end their 
analyses with static racial categories and group labels for the sole purpose of 
disaggregating data. One consequence is a widely accepted, and largely uncontested, 
racial hierarchy of mathematical ability. Rather than challenging and deconstructing this 
hierarchy, many math educators take it as their natural starting point. Disparities in 
achievement and persistence are then inadequately framed as reflecting race effects rather 
than as consequences of the racialized nature of students’ mathematical experiences. (p. 
295) 
 
My own considerations of racism and racialization have led me to develop a 

conceptualization of mathematics learning and participation as racialized forms of experience for 
all children (Martin, 2006a, 2009a). I claim that these experiences are shaped and structured by 
the meanings and representations of race and racial groups that exist in the larger society. A 
summary of this perspective is provided in Figure 1. A more detailed discussion can be found in 
Martin (2009a). 

I argue that this conceptualization of mathematics learning and participation may be more 
relevant to the mathematical experiences of African American learners than the dominant 
perspectives which typically characterize learning and participation as cultural, situated, or 
cognitive because this conceptualization situates the realities of racism and racialization at the 
center of these experiences (Martin & McGee, 2009).  
 

 Conceptualizations of 
race 

Conceptualizations of 
learners 

Research, policy, and 
practice orientations 

to race 

 
Aims and goals of 

mathematics 
education 

research, policy, 
and practice 

 
Mainstream 
mathematics 

education 
research, 

policy, and 
practice 

Races as biologically 
determined. Race as a 

way to disaggregate data. 
Race as a causal variable 

for mathematics 
achievement. 

 
Those who know 

mathematics. Those who do 
not. Those who are 

mathematically literate. 
Those who are 

Resistance to realities 
of racism. Color-

blindness. 
Racial apathy. 

Solution on demand. 
Interest convergence. 

Close the racial 
achievement gap. 
Maintain white 
privilege and 
United States 
international 
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Students belong to a racial 
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nature of race. 
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instantiations of white 
institutional space. 

 

 
Empowerment and 

liberation from 
oppression for 
marginalized 

learners. 

Figure 1. Contrasting approaches to race in mathematics education research, policy, and practice 
 

I have utilized this race-critical perspective to address the production of knowledge about 
African American children and mathematics and to reframe the conversations about these 
children in several areas including mathematics teacher knowledge and teacher selection (Martin, 
2007) and assessment (Davis & Martin, 2008). I have addressed questions such as: What is the 
study of African American children the study of? What should the study of African American 
children be the study of? Why should African American children learn mathematics? Who 
should teach mathematics to African American children? What does it mean to be African 
American in the context of mathematics learning? and What does it mean to be a learner of 
mathematics in an African American context?  
White Institutional Space 

Returning to the masternarrative on Black children, I contend that it is only within certain 
kinds of ideological and material spaces—contexts that sociologists have called white 
institutional spaces—that so-called racial achievement gaps and the mathematical illiteracy of 
Black children can assume common-sense status. The term white institutional space comes from 
the work of sociologists Joe Feagin (1996) and Wendy Moore, who, in her book Reproducing 
Racism: White Space, Elite Law Schools, and Racial Inequality (2008), examined the white 
space of law schools and how the ideologies and practices in these schools serve to privilege 
white perspectives, white ideological frames, white power, and white dominance all the while 
purporting to represent law as neutral and objective.  

White institutional spaces are characterized by (1) numerical domination by whites and the 
exclusion of people of color from positions of power in institutional contexts, (2) the 
development of a white frame that organizes the logic of the institution or discipline, (3) the 
historical construction of curricular models based upon the thinking of white elites, and (4) the 
assertion of knowledge production as neutral and impartial unconnected to power relations.  

In Martin (2008), I provide a more detailed discussion of how mathematics education 
research and policy contexts represent instantiations of white institutional space. For example, I 
offered a critique of the composition of the National Mathematics Advisory Panel as well as its 
failure to draw on the most insightful recent research about Black children and mathematics. My 
critique was not only directed at the Math Panel but also at scholars in the field who, from 
recognized positions of power, failed to object to the absence of African American math 
education researchers on the Panel. This kind of inaction, despite progressive rhetoric about 
equity and diversity, was noted by Macedo and Gounari (2006) as being characteristic of liberal 
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approaches in white spaces: 
 
… many white liberals (and some black liberals as well) fail to understand how they can 
embody white supremacist values and beliefs, even though they may not embrace racism 
as prejudice or domination (especially domination that involves coercive control). They 
cannot recognize how their actions support and affirm the very structure of racist 
domination and oppression they profess to wish to see eradicated….By not understanding 
their complicity with white supremacist ideology, many white liberals reproduce a 
colonialist and assimilationist value system that gives rise to a form of tokenism parading 
under the rubric of diversity…. That is why many white liberals prefer to promote 
“diversity” to the extent that diversity as a cultural model not only fails to interrogate the 
white privilege extracted from a white supremacist ideology but also allows for white 
liberals to have blacks and other oppressed cultural groups as mascots in their Benetton 
color scheme of diversity. This form of diversity promoted through multicultural 
programs, for example, represents a mere reorganization of knowledge through which 
diversity is presented as a naturalization process whereby different ethnic and cultural 
groups (white groups are never associated with ethnicity, even though their ethnicity 
provides a yardstick against which all other groups are measured) are represented and 
their asymmetrical power relations with the dominant white group are never interrogated 
(p. 32) 
 
These sentiments were echoed by Liz Appel (2003) in her focused critique of liberal white 

participants in the movement against the prison industrial complex: 
 
… many well-intentioned white folks wish to incorporate an anti-racist approach in their 
work. Seeking a quick resolve, the problem of racism is often superficially addressed, 
however. Focusing on tangible and visible solutions, they tokenize individual people of 
color, perhaps by bringing in a few nonwhite people into public spaces and circles of 
power (as board members, speakers, etc.), in an attempt to demonstrate the “diverse” 
nature of the struggle and those that make up the fight. This is not to say that every 
attempt to incorporate people of color is inherently racist and self-serving…. [But does] 
not the fact that whites are able to select people of color for inclusion… reaffirm our 
power and privilege? (p. 84) 
 
It is through my analysis of mainstream mathematics education research and policy contexts 

as instantiations of white institutional space, and my understandings of other such spaces, that 
my focus on little Black boys and little Black girls in this paper becomes metaphorical. 
Sociologists tell us that when someone or something is socially blackened, it or they are 
relegated to marginalized status and thought of as inferior. Similarly, when something is 
whitened, it or they are elevated in social status or importance. In terms of racial dynamics of the 
United States, this has been documented in books with such provocative titles as How the Irish 
Became White (Ignatiev, 1996) and The Price of Whiteness: Jews, Race, and American Identity 
(Goldstein, 2006). This whitening has also been witnessed in the education arena where Asian 
Americans, collectively, have been given model-minority and honorary white status (Lee, 1996, 
2005; Martin, 2009). Blackening, on the other hand, has most recently happened to Arab 
Americans and Muslims who are now are subject to racial profiling and other forms of 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

36 

subjugation. Blackening also explains how the diversity among those from the African diaspora 
is muted so as to create a singular perception and construction of these groups. Blacks from 
Caribbean, West Indian, and African backgrounds are all labeled by the dominant society as 
Black when they come to the U.S.  

So, it is interesting to ask the following about the United States mathematics education 
enterprise: Who are the little Black boys and little Black girls in mathematics education and how 
are they, and their perspectives, embraced? Are they the scholars who take up race, racism, and 
power; issues that only occasionally find their way into mainstream mathematics education 
research and policy discussions? Are these scholars and their perspectives tolerated but also 
marginalized? Is it assumed that they are less-informed about mathematics content, teaching, 
learning, curriculum, and assessment to the degree that they are largely absent from key 
discussions in the field; called on only when issues of equity and diversity are considered? 

In a field that purports to be committed to equity for all children, why are there no explicit 
discussions of the pervasive whiteness in mathematics education research and policy contexts or 
of the fact that the norms and values of these white institutional spaces are increasingly being 
applied to populations of other people’s children? Why are there no discussions of how we 
continue to blacken some children by producing research that implies their inferiority? Is it that 
the characteristics of white institutional spaces are so strong that they lead us to believe this state 
of affairs is normal and acceptable? 
 

Where do we go From Here? Axioms for Researching Black Children and Mathematics 
In so far as Black children are concerned, I remain hopeful that mathematics education 

research and policy, if done right, can benefit these children. Clearly, what constitutes “right” is 
subject to much debate. Yet, little that constitutes right for these children will emerge from an 
enterprise that fails to understand its own complicity in these children’s subjugation and negative 
social construction. Moving forward, I want to propose adherence to a set of sociocritical 
“axioms” for addressing Black children, in particular. An axiom is defined as a self-evident or 
universally recognized truth that is accepted without proof as the basis for argument. In 
mathematics, proofs of various conjectures and claims are essentially a function of the axioms 
upon which the system is organized. If you change the axioms, you change the system, and you 
also change what constitutes valid proof and what is regarded as true. My own research, as well 
as the comments and analysis in this paper, are premised on these axioms7 and I believe they 
should undergird all future inquiry to the mathematical experiences of Black children: 
 
 Axiom I: Black children are brilliant; researchers should not overly concern 

themselves with documenting how Black children differ from white children and 
reifying racial achievement gaps but with how black children can best attain and 
maintain excellence in mathematics; 

 
 Axiom II: Black children possess the intellectual capacity to learn mathematics as 

well any other child; they do, however, often lack sufficient opportunities to engage 
in meaningful mathematical experiences; 

 

                                                 
7 It is true that these are not axioms in the strict mathematical sense. I am appropriating the term 
to serve sociological and political purposes. 
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 Axiom III: Race is not a causal variable in determining mathematical 
achievement among Black children or any other group of children; research and 
policy purporting to cite race effects should be dismissed as scientifically invalid; 

 
 Axiom IV: Racism, racial identity, and racialization are important considerations 

in mathematics learning and participation; Mathematics education research and policy 
are deeply involved in the production and reproduction of racial meanings; 

 
 Axiom V: Mathematics education research and policy are simultaneously sites of 

oppression and liberation for Black children. 
 
These statements are not meant to romanticize Black children nor do they ignore their 

struggles. However, they require attention to Black children’s social realities and how forces, 
discourses, and projects in the larger society influence those realities. They also require 
reconsideration of the assumptions about the competencies and capacities of Black children in 
ways that move us beyond default characterizations of mathematical illiteracy and inferiority 
with respect to other learners.  

As I stated earlier, Black children serve as canaries in the coal mine. If we cannot do right by 
these children, it is difficult to believe that we can accomplish the goal inherent in the theme of 
Embracing Diverse Perspectives.  

 
Conclusion 

The discussion in this paper hints that a more thorough structural analysis of mathematics 
education would reveal that the discipline is no different than other racialized contexts in the 
larger society where issues of power and stratification are prominent. The analysis would 
confirm the racialized character of mathematics learning and participation not only for Black 
children but also for all children. I conjecture that a structural analysis would also show that 
mathematics education research and policy contribute to, and constitute, racial projects. Yet, the 
hopeful side of me continues to believe that mathematics education can simultaneously be a sight 
of, and means to, liberation for Black children, helping them to combat the negative 
consequences of these racial projects. 
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Appendix 

 
Retrieved on July 12, 2009 from: http://www.thedefendersonline.com/2009/05/14/36-children-
of-color-dead-in-chicago/ 
 
By Stacey Patton 
 
Megan Kanka.  Amber Hagerman.  JonBenét Ramsey. Elizabeth Smart.  Caylee Anthony.  
Sandra Cantu. 
 
When these six cute, middle-class white girls, ranging from age 2 to 14, went missing or were 
horrifically murdered, national news outlets devoted hours, days and weeks of coverage to their 
cases.  But when children of color are victimized in similar ways, the mainstream media often 
remains conspicuously silent or provides scant coverage at best. 
 
A quick GOOGLE news archive search illustrates my point. 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

41 

There are 3,670 articles on the 1994 murder of 7-year-old Megan Kanka, who was raped and 
abducted by a twice-convicted sex offender who lived next door. The 1996 murder and 
abduction of 9-year-old Amber Hagerman produced 2,570 headlines.  An astonishing 13,500 
news stories helped sensationalize the 1996 murder of JonBenét Ramsey, a 6-year-old beauty 
pageant contestant found bound and strangled in her home. Between June and November of 
2002, 8,300 new stories were printed about the abduction and recovery of 14-year-old Elizabeth 
Smart.  Since last October, 1,570 stories have discussed the murder of 2-year-old Caylee 
Anthony, whose skeletal remains were found a month later.  And in one month, 424 articles have 
appeared on 8-year-old Cantu, who was raped, killed, stuffed in a suitcase and thrown in a pond 
in northern California on April 11. 
 
Do the math.  Six young white girls.  One abducted and later returned.  Five killed.  30, 134 news 
stories and nearly two million total web hits.  And with the exception of the Ramsey case, 
suspects have been captured, indicted, tried, and even sentenced to death for the brutal crimes 
against these innocent children. 
 
Each of these girls has her own Wikipedia entry, which discusses their lives, details of their 
investigation, and archives media references and external links to various websites, talk shows, 
and made-for-TV documentaries and movies as well as child and victims advocacy sites. 
 
Now enter the names of the following children: Corey Hatter, Ordero Hillard, Marcus 
Washington, Andre Malcolm, Arthur Tyler, Sameer Conn, Shaun Brown, Shaun Bowens, 
Kiyanna Salter, Daniel Calderon, Ernest Williams, Julian King, Brian Murdock, Quentin 
Buckner, Devour Robinson, Dushawn Johnson, Isiah Stroud, Andre Stephens, Esteban Martinez, 
Itzel Fernandez, Johnel Ford, Rachael Beauchamp, Johnny Edwards, Kendrick Pitts, Raheem 
Washington, Carnell Pitts, Franco Avila, Gregory Robinson, Lee Ivory Miller, Rakeem 
Washington, Tommie Williams, Marquell Blake, Juan Cazares, Christina Campos, and Alex 
Arellano. 
 
All 36 of these schoolchildren, mostly black and a few Latinos, were killed in the streets of 
Chicago during the past nine months.  They were shot, stabbed, beaten with bats, kicked to 
death, burned and run over by cars. 
 
GOOGLE their names and you won’t get a return of hundreds of national news stories or 
thousands of web hits discussing their deaths.  The only child of all these victims to gain a great 
deal of media attention was 7-year-old Julian King, the nephew of singer and actress Jennifer 
Hudson,  killed last October by his mother’s estranged husband. 
 
For the rest of the children, there are no Wikipedia entries.  No documentaries.  No made for TV 
films.  And there won’t be.  They’ll be remembered in a few grainy YouTube video tributes 
posted by friends and family members.  And if there are more shootings, all of these children 
will be lumped together and described as statistics and tragic victims of urban warfare, even 
though most were not high school dropouts, gang members, or criminals.  They were killed 
during day-to-day activities: walking to the store, playing in a park, waiting for a bus, or riding in 
a car with a parent. 
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The purpose of this research is to investigate the cognitive processes utilized by students when 
accessing mathematical knowledge while completing homework. In particular, we focus our 
attention on the ways in which students use distinctive features of mathematical discourse, as 
mathematical cognitive processes (i.e., “mathematical” mental functions based upon the 
function being performed), to support their own learning. Our findings suggest that there may be 
an important connection between discursive routines and endorsed narratives in student 
learning. 

 
Purposes of the Study 

Students’ inability to complete mathematics homework has been linked to achievement 
(Cooper, Robinson, & Patall, 2006). In some instances, motivation and social circumstances may 
contribute to students’ inabilities to complete mathematics homework. The curriculum and how 
it is experienced, understood, and subsequently accessed by students may also be important 
contributors to students’ inability to complete homework. Nesher, Hershkovits, and Novotna 
(2003) contend that the ability to access mathematical knowledge, independently by a student, is 
significantly influenced by a student’s initial ability to make sense of mathematical texts. 
Surprisingly, little research exists documenting the ways in which students access mathematical 
knowledge while completing homework, although research does exist in simulated settings (e.g., 
Berger, 2004). 

Therefore, the purpose of this research is to investigate the cognitive processes utilized by 
students when accessing mathematical knowledge while completing homework. In particular, we 
focus our attention on the ways in which students use distinctive features of mathematical 
discourse, as mathematical cognitive processes (i.e., “mathematical” mental functions based 
upon the function being performed), to support their own learning. Four features of distinctive 
mathematical discourse are drawn from Ben-Yehuda, Lavy, Linchevski, and Sfard (2005) and 
thus include:  

(1) uses of words [authors’ italics] that count as mathematical; (2) the use of uniquely 
mathematical visual mediators [authors’ italics] in the form of symbolic artifacts that have 
been created specifically for the purpose of communicating about quantities; (3) special 
discursive routines [authors’ italics] with which the participants implement well-defined 
types of task; and (4) endorsed narratives[authors’ italics], such as definitions, postulates, 
and theorems, produced throughout the discursive activity. (p. 182) 

We adopt for this analysis an elaborated view of mathematical discourse to include “all forms of 
language, including gesture, signs, artifacts, mimicking, and so on” (Lerman, 2001, p. 87). 
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For this research, six eighth grade children were invited to document their mathematical 
cognitive processes using at-home video diaries (i.e., “mathcams”) while completing their 
homework to capture aspects of their mathematization that are causing problems, pause, and 
reflection. Students’ verbalizing their thinking has been shown in multiple settings to improve 
mathematical performance (Mercer, Wegerif, & Dawes, 1999; Sfard & Kieran, 2001), and thus 
may be a real and tangible benefit for the students participating in this study. Beyond individual 
achievement, however, this research reporting data occurring in real-time has the potential to 
raise important insights and questions about classroom practices and student learning. Currently, 
“real-time analysis” of mathematical cognitive processes utilized by students during homework 
is scant amongst the literature. 

 
Research Questions 

1. Which mathematical cognitive processes (i.e., mathematical words, visual mediators, 
discursive routines, and endorsed narratives) do students utilize when accessing 
mathematical knowledge while completing homework?  

2. How does the interaction of mathematical cognitive processes suggest about the nature of 
student learning? 

3. How can this knowledge inform teaching of mathematics?  
 

Theoretical Framework 
In order to examine verbalized process as instances of mathematical cognition, we adopt the 

theoretical framework of Ericsson and Simon’s (1993, 1998) work on talk- and think-aloud 
protocols. Ericson and Simon contend that verbal reports as data can, depending on the 
conditions of the verbal reports, be viewed as instances of cognition. This view is also supported 
by other theorists (Lerman, 2001; Radford, 2004; Sfard & Kieran, 2001). For example, Vygotsky 
(1962) describes talking aloud as the manifestation of inner thought or cognition (p. 149). 
Vygotsky theorizes that as children “solve practical tasks with the help of their speech, and 
action, which ultimately produces internalization of the visual field” (p. 26). Cognition “is not 
merely expressed in words; it comes into existence through them” (Vygotsky, 1962, p. 125). 
Ben-Yehuda et al. (2005) also suggest that “thinking can be regarded as a special case of the 
activity of communication [authors’ italics]” (p. 181). Comparison between child and researcher-
observer reports in a study by Wu et al. (2008) investigating verbalized reports of cognition 
showed high consistency (Kappa=.948). Wu et al.’s results suggest suggests that children can 
report on their cognitive processes accurately. 

Particularly relevant to the present research are Ericsson and Simon’s (1993; 1998) protocols 
associated with Level 3 verbalizations, which are verbalizations linked to instructions to explain 
or describe thinking, and thus employ intermediary cognitive processes by virtue of the 
instruction to “explain” or “elaborate.” Ericsson and Simon also make the distinction between 
verbalizations that are given retrospectively or concurrently to task completion. In the present 
research, both applications apply. Students may be verbalizing their cognitive processes as they 
concurrently with homework completion or may retrospectively describe their cognitive 
processes associated with prior learning. 

Faithful appropriations of Ericsson and Simon’s (1993, 1998) talk- and think-aloud protocols 
occur exclusively in experimental settings. In later explications of their model for analyzing 
thinking and talk, Ericsson and Simon proposed that everyday situations can be reproduced in 
controlled laboratory settings. Indeed, many researchers simulate classroom learning with 
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laboratory “training” (Anderson, Reder, & Simon, 2000, Summer). As Anderson, Reder, and 
Simon explain, learning as a complex skill is hierarchical in structure with multiple nested 
components that require both analyses in the laboratory and in real-world settings. Our research 
is poised to make important contributions in terms of real-time analysis of mathematical 
cognition and its relationship to teaching and learning, based upon what students tell us about 
their own thinking versus what a standardized test might show.  

 
Methods 

Data for this paper were drawn from a year-long study investigating the home-school 
connection in mathematics learning in an eighth grade classroom. The teacher involved in the 
research (the third author), was a mentor mathematics teacher in his school board (Kotsopoulos 
& Heide, in press). At the time of this research, he had been teaching 12 years and had 
completed a master’s degree. He was approached to participate in this study and he agreed. 

The school was located in an economically, socially and culturally diverse urban setting. For 
example, there were a reported 52 languages spoken amongst the student population, with 195 
out of 960 students identified as English Language Learners (ELL). Only approximately 10% of 
the English Language Learners were born in Canada or resided in Canada for more than three 
years. 

Duane’s class consisted of 28 students, 14 male, and 14 female. All students were either 13 
or 14 years of age. From these 28 students, a purposive sample of six students (three males and 
three females) was selected and invited to participate in this study. In consultation with the 
grade-seven teacher, students were selected based upon the following considerations: (a) 
perceived ability of the student by the teacher to engage in thinking aloud, (b) perceived level of 
responsibility of the student to maintain continued engagement with the student and to care for 
the home equipment, (c) gender, and (d) ability. The goal in terms of ability and gender was to 
ensure mixed representation. In addition to the six students that were selected, two alternates 
were also selected in the event that a student had to withdraw from the study, which was the case 
with one of the initial student cohort. 

Observational video data were gathered from the students and also daily from the classroom 
during mathematics instruction. The six students, their parents, the classroom teacher, and the 
research team, met to engage in a training session with the students and distribute the computers. 
Students at this time were trained on (a) how to video record their verbalizations using cameras 
built-into the laptop computers, (b) how to transfer their recordings using secure email or 
memory sticks, and (c) how to engage in the task of talking aloud about their mathematical 
thinking. We encouraged students to document everything they were thinking and doing in order 
to assist themselves with the understanding and completion of the mathematical homework. We 
anticipated one to five submissions from each student per week. Additionally, Amanda, the 
fourth author, video-taped the daily mathematics lesson for the duration of the school year. 

All video data from the classroom and the students were transcribed by two different 
transcribers to ensure accuracy and then coded. There were four codes used. These codes were 
adopted from the four features of distinctive mathematical discourse from Ben-Yehuda et al. 
(2005) and thus include: identifying uses of words that count as mathematical, use of uniquely 
mathematical visual mediators, use of discursive routines, and use of endorsed narrative. Also 
appropriated from Ben-Yehuda et al. is the use of high-resolution descriptive methods to report 
our data. This method is intended to focus on detailed qualitative accounts of students’ cognitive 
process through transcription and, in our case, video analysis. The detailed qualitative accounts 
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also aimed at ascertaining relationships between the four codes used. Thus, the codes were 
examined both individually and in relation to one another. 

For this paper we analyzed 34 mathcam videos (mean length 4.79 minutes) from the six 
students (mean number of submissions 6 during the month of October 2008, in which the topic 
of study in the classroom was numeracy (e.g., exponents, factors, prime numbers, and square 
roots). In this paper we present specifically data emerging from one student—Kara who is 13 
years old. We selected this case for its explanatory potential. 

 
Results 

Our results across all six students suggested that the there were particular forms of interaction 
between the four mathematical cognitive processes under examination: uses of words use of 
uniquely mathematical visual mediators, discursive routines, and endorsed narratives. Use of 
words, specifically those mathematical words used in the homework sheet from which the 
students referred to, created some source of difficulty for each of the six students during one or 
more mathcam videos analyzed. In all cases, students indicated on the video that they would ask 
for assistance from their teacher. In one case, Kara, the student we will be discussing shortly, 
referred to the internet. 

Mathematical visual mediators were used very infrequently by students (n=4) in an effort to 
support their understanding (see line 10). In all but one instance, the visual mediators used 
replicated those in the classroom by Duane during a lesson on integers (i.e., the use of counters 
to understand negative and positive numbers). Across all six students, an interesting interaction 
was observed between discursive routines and endorsed narratives. We illustrate this with two 
examples from mathcam videos submitted from Kara. 

Instances where there were mathematical challenges exhibited by the students, discursive 
routines did not function in concert with endorsed narratives across all students. For example, 
Kara made inappropriate connections between her prior knowledge of finding the perimeter of a 
perfect square with square roots (line 2). She used a visual mediator to assist her but does not 
move forward in her trying to support her own understanding. Despite the fact that she is 
unsuccessful, she still viewed her approach as “cool” (line 4). 

 
1 So today in math class we did the perfect square problem again, and while 

everybody else was doing the systematic trial system, I decided that I was gunna 
[SIC] try to figure out the perimeter, because if I could figure out the perimeter, 
I could divide it by four, and then I’d be able to find out the outside, then I 
could find out the width and the length for each side, and then from there I 
could multiply it and get the answer to the area.  

Discursive 
routines 

2 So, I was trying to figure it out, and I was trying to…first I made the rectangle, 
with the twenty square centimeters as the area, and then I cut off the four 
extra… um, squared centimeters that made it into a rectangle, and then I tried 
dividing that up.  

Visual 

3 And though it would have taken me a long time to figure it out, I’m pretty sure 
it would have eventually worked. But my um, other members of my group 
found it quickly by us—well not quickly, but they found it eventually by using 
the systematic trial system, but it took ‘em [SIC] a while. Um, other people 
figured out a formula, and it turned out the entire thing was about roots, and I 
wish I would’ve thought about it because square root, it means the root of the 
square. If you think about it, it just kind a sounds like a big fancy word, but if 
you look at the word it makes sense to what it means. So if I thought about 
using the buttons on the calculator, maybe I could a figured it out.  

Words 
Endorsed 
narratives 
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4 But, um, I definitely thought the way I decided to find the answer was kind of a 
cool way to try and do it. 

Discursive 
routines 

 
A major source of misconception for Kara was from prior knowledge from previous 

classroom instruction linking the side length of a perfect square with an area of 16 units and the 
root of 16, which are both four. We see from her discourse that she was associating the number 
four for determining all perfect squares rather than observing that the square root is only four 
when the number is 16. Although she recognized that her method was related to perimeter (line 
7), she continued with the strategy of dividing by four to find the other square roots. This method 
of estimation works relatively well for several of the questions (8–11), but failed her when trying 
to find the square root of 78. At this point, her method was not at issue but rather, according to 
Kara, the magnitude of the number under investigation (lines 12–13). The interesting point in 
this example is that the discursive routines that led her to incorrect mathematization are not 
simultaneously interacting with endorsed narratives. 
 

5 And right now I just have to find the square root, and I know how to find the 
square root quick because of the calculator I’m using. So, I just have to type it 
in. If I can find the button. So [inaudible] the square root of thirty six is…six!  

Discursive 
routines 

6 Now, number four is estimate the value of each square root. Explain how you 
found one estimate. So, twenty-three, […]. Well, right now I’m just gunna 
[SIC] think of all the things that you can multiply twenty three by […]. I think 
I’m gunna try to figure out what…five times four is…five point seven five. I 
think it’s going to be…five point seven five…because that is what it is divided 
by four, and there’s four. Wait that’s perimeter! 

Discursive 
routines 

7 I always forget that it’s not the perimeter! It’s the inside of the square. When I 
tried doing this before, I figured out the perimeter before I figured it out but it 
didn’t work very well. 

Endorsed 
narratives 

8 I’m going to estimate. That it’s going to be . . . I’m gunna [SIC] try it with 
thirty-six. Thirty-six divided by four is nine, the actual answer was three. So, if 
thirty-six is…if thirty-six, the perimeter for thirty-six is nine, but the square root 
is six, then maybe for twenty three it’ll be three less too.  

Discursive 
routines 

9 So, if I do…twenty-three divided by four again and add five point seven, maybe 
it’ll be…I’m gunna [SIC] go with the number four. Wow the answer was four 
point eighty, so I was close!  

Discursive 
routines 

10 It’s definitely a good um, strategy for me to use if I just try and…if I just answer 
it that way then…I think I should try that for all my other questions too, and 
then I don’t have to try and come up with some type of…I don’t have to just 
guess a random number.  

Discursive 
routines 

11 So thirteen divided by four is three point two five, […]. I’m gunna [SIC] try 
three. The square root of three is my estimate. And the square root of thirteen is 
three point six one! See, my method definitely works, ‘cause it might be over, 
but it’s still close.  

Discursive 
routines 

12 Seventy-eight divided by four is 19.50, and I’m gunna [SIC] guess that it’s 
gunna be a multiple of four and I’m not sure why but I’m going to subtract four 
from it and my answer’s gunna be 15.50. So, my estimate is 15.50. And, the 
square root of 78 is eight point eighty three. Definitely didn’t work out for me 
this time, but it’s a good strategy. Probably because 78 is a larger number. 

Discursive 
routines 

13 I’m going to explain how I got the answer for thirteen. I got my estimate by 
dividing the digit, no, the number …by dividing the number by…dividing 13 by 
four, number of sides, and then subtracting one because of …because it’s the 
area and not the perimeter.  

Discursive 
routines 
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 In contrast to the preceding example, in the next set of transcriptions from another mathcam 
video, Kara described how she made sense of integers using the visual techniques in the 
classroom. She explained how Duane uses counters to demonstrate positive and negative integers 
and how this was proved to be very useful in assisting her understanding (line 14). 

 In this example related to integers, discursive routines are interacting with endorsed 
narratives (lines 14–17). This interaction has two important outcomes. First, Kara is able to move 
forward in her learning of integers. Second, she expands her understanding using the combined 
discursive routines and endorsed narratives to hypothesize about other relationships between 
integers. She calls this a “strategy” (line 15), and then proceeds to test and revisit her strategy to 
confirm her understanding (line 16). As she continued reading the homework sheet, she saw that 
the homework sheet ultimately outlined the “strategy” she had just developed (17). Her efforts 
are in contrast to those above where her strategy falls apart and there are no endorsed narratives 
engaged to assist her misconceptions or further her learning. 

. 
14 So, today in math class, I really liked how Mr. Heidi explained integers— 

integers by using counters. He used white squares and red squares. And the red 
squares are positive and the white squares were negative, and what he did is he 
added and um, subtract them using integer numbers and it was really—it made 
it easier to understand when you could see that they canceled each other out. 
Now, I’m on question three, and I’ve—I kind of do the same thing with the 
counters, except I do it in my head, which makes it- because I’m really good at 
that kind of mental math, it just kind of works out. 

Words, 
Discursive 
routines, 
Visual, 
Endorsed 
narratives 

15 So four positives, three negatives, it’s three pairs, which makes it positive one. 
[…] So now I have a new strategy—now, when there is a higher positive 
number than the negative number that’s getting added, from the negative 
number that’s getting added, I can just subtract the positive number as if it was 
just both positive numbers. So ten subtract six, which is four. And I know the 
answers gunna be four, ‘cause there’s four positives left. So I can just do that as 
a strategy now, so I don’t always have to… so I don’t always have to write it 
out. 

Discursive 
routines, 
Endorsed 
narratives 

16 I think the same thing might be for if there’s a higher negative than positive, 
except it’s the opposite- instead of having the sum of the equation a positive 
number, the sum of the equation would be a negative number. So, seven, my 
prediction that seven minus two is five…so I believe the answer’s gunna be 
negative five. Now, I’m just gunna prove my theory by doing one, two, three, 
four, five, six negatives and two positives. I’m circles the two positives, and that 
leaves one, two, three, four, five. That leaves five negatives left. That means 
that my hypothesis was correct.  

Discursive 
routines, 
Endorsed 
narratives 

17 This is a second part to question number four. It says: when you add a positive 
integer and a negative integer, the sum is positive…when the numerical larger 
integer is. Oh! Positive, when the numerical larger integer is positive, negative 
when the numerical larger integer is negative... just like my theory—my 
strategy that I was doing when I was figuring out! And, the sum is going to be 
zero when the integers are the same number. 

Discursive 
routines, 
Endorsed 
narratives 

 
 The preceding example from Kara is important. It illustrates what was seen throughout 
the students mathcam submissions; namely, that mathematical understanding as verbalized by 
the students was characterized by an interaction between discursive routines and endorsed 
narratives. Mathematical misunderstanding was linked to inappropriately transfer knowledge 
from one context to another (i.e., Kara’s use of 4 as the divisor and potential root of many 
numbers) and consistently lacked an interface with the endorsed narratives. 
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 Our results do not suggest that students improved their understanding as a result of 
verbalization (i.e., engaging in mathcams) (cf. Mercer, et al., 1999; Sfard & Kieran, 2001). There 
was minimal evidence of students engaging in self-correction based upon their verbalization (n = 
6). However, there were more instances (n=12) where students verbalized incorrect calculations 
but proceeded with their work unaware of their errors. 

As outlined by Nesher et al. (2003), a student’s ability to access mathematical knowledge 
may be linked to their initial ability to make sense of mathematical texts. Our research adds to 
this finding to suggest that the inability to make sense of mathematical texts may be linked to the 
extent to which students are able to relate discursive practices to endorsed narratives. Our 
findings do not suggest the same sort of requisite interactions for mathematical visual mediators 
and words. Rather, the latter two were seen as having supporting roles in students’ ability to 
complete homework independently following instruction. 
 

Conclusions 
Real-time data collection in naturalistic settings is a strength of this research. However, a 

limitation of this design is the inability to track more than six students at one time due to 
technological constraints (i.e., only six laptops available for the project). The results presented in 
this paper represent a small sample drawn from the larger research project that is currently 
underway. We make no claims that the conclusions we have presented can be generalized or true 
of the remaining data to be analyzed. 

Our results suggest that a students’ inability complete homework accurately so that the task 
of completing homework is not reinforcing misconceptions may be related to the interaction 
between discursive routines and endorsed narratives. Our results show that misconceptions were 
largely discursive routines that were not paired with endorsed narratives and thus the 
mathematization was often incorrect. 

More specific to the example we highlighted from Kara’s mathcams, we see that also 
important in the learning of mathematics is the ability to transfer knowledge (or not), as a 
specific goal of instruction. Although understanding relationships in mathematics are widely 
viewed as significant in the learning of mathematics (National Council of Mathematics Teachers, 
2000), it is also of critical importance to examine when certain relationships do not hold or fail to 
adhere to endorsed narratives of mathematics.  
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Previous research suggests spontaneous transfer between non-isomorphic problem settings to be 
rare in the absence of hints concerning the relationships between those settings (Holyoak & Koh, 
1987).  Two factorial experiments reinforce previous findings that transfer does not significantly 
occur between dissimilar settings, even when problems share abstract problem solving schemas 
and representations.  A third experiment supports the Indirect Representational Transfer 
Hypothesis: meta-representational reflection on the meaning of a common abstract 
representation in relation to diverse mathematical settings induces schema transfer.  Qualitative 
interviews uncover evidence of the role of meta-representational thought as part of a larger 
developmental process of actor-oriented transfer. 
 

Introduction 
A common theme in educational research on linear algebra concerns cognitive inflexibility 

associated with the appropriation of different linear algebra problem settings to similar matrix 
representations and methods, a consequence of the multiple embodiments of linear algebra 
concepts (Harel, 1989; Hillel & Mueller, 2006; DeVries & Arnon, 2004; Hillel & Sierpinska, 
1994; Dias & Artique, 1995; Dorier, 2000).  The study of multiple embodiments in linear algebra 
is important since students require an ability to establish meaningful links between 
representational forms in order to “understand the necessity for representing these situations by a 
general concept,” a competence known as representational fluency (Harel, 1987, p.30-31).  A 
common conclusion drawn from previous studies points to the general inadequacy for students to 
develop theoretical setting change competencies on their own, requiring didactic intervention on 
a meta-mathematical level.  Informed by methods from experimental psychology, this study 
reconceives cognitive inflexibility and the role of meta-mathematical information as a study of 
the transfer of knowledge from familiar to unfamiliar problems settings sharing common abstract 
problem solving schemas.  
  

Theoretical Framework 
Meta Mathematical Knowledge as ‘Sierpinska’s Theoretical Thinking’ 

Dorier (1995) defines meta-mathematical knowledge as: 
 

Information of that which constitutes mathematical knowledge concerning methods, 
structures, and (re)organization (of lower level competencies).  Methods are defined as 
the procedures applicable to a set of similar problems within a given field:  the methods 
designate that which is common to problem solving and not the technique itself (p.151).  
   

Sierpinska (2000), defined the terms practical verses theoretical thinking, as similar to 
Vygotsky’s notion of everyday concepts verses scientific concepts.  Practical thinking is 
characterized by the propensity for students to view a subject, such as linear algebra, as an 
aggregate of “prototypical examples” interconnected and understood primarily through “goal-
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oriented, physical action(s)” (Sierpinska, 2000, p.212).  Representations important at the 
practical level are the necessary symbols needed to perform computations; whereas, theoretical 
thinking produces formal systems in which “semiotic representation systems become themselves 
an object of reflection and analysis.”  In view of these definitions, the term meta representational 
knowledge is defined as meta-mathematical knowledge directed toward theoretical thinking upon 
the meaning of abstract representations in relation to mathematical contexts, settings, or schemas 
they are applicable to. 
 

 

Rp, LTp, and LCp Settings 
Conceptually non-isomorphic settings are defined as mathematical settings which are not 

mere re-labelings of each other, but consist of schemas containing different definitions, 
mathematical objects, concept-images, and structural relationships.  The linear algebra settings of 
interest for this study include the Cartesian row setting (Rp), the linear combination setting 
(LCp), and the linear transformation setting (LTp).  As an example, in figure 1 the matrix  

 forms a representation having the following associated meanings: (i) in the Rp 
setting the matrix represents the system which solves for the intersection of two lines; (ii) in the 
LCp setting the matrix solves for the linear combination of vectors  and  which 

add to give the vector ; and (iii) in the LTp setting the matrix solves for the vector  

Figure 1. Row-picture (Rp), linear combination-picture (LCp), and 
linear transformation-picture (LTp) settings associated with central 
augmented matrix. 

 
 

 

 

 

 

 

 

LCp 
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which, upon clockwise rotation of 45 degrees, would result in the vector .  Prior to this 
study, a pilot experiment with 87 undergraduate linear algebra students was conducted which 
analyzed performance on an exam question involving all three of the above settings in figure 1.  
Based on the results of that experiment, and the preponderance of the Rp viewpoint in 
prerequisite coursework such as pre-calculus and calculus, the Rp setting is defined as a 
‘familiar’ setting, while the LCp and LTp settings are defined as ‘unfamiliar.’ 
Traditional and Actor-Oriented Transfer Perspectives 

The notion of traditional transfer derives from Thorndike’s Theory of Identical Elements, 
which states that transfer is more likely to occur when tasks share similar elements (Thorndike & 
Woodworth, 1901).  When tasks have similar elemental structures, they are said to be 
isomorphic. Research in traditional transfer has often been criticized for its predominant 
emphasis on what MacKay terms, the expert point of view, as deciding criteria for task similarity 
or determination for whether or not transfer occurs (Marton, 2006, p.499; Lobato, 2006).  Over 
the past several decades, a debate has ensued concerning the theoretical foundations of transfer 
theory.  Rather than judging transfer according to normative, i.e., expert functionalist views, 
according to Lobato (2003), “actor-oriented transfer is defined as the personal construction of 
relations of similarity between the activities.”   Both traditional and actor-oriented transfer 
perspectives comprise main elements of the theoretical framework for this mixed-methods study 
against the backdrop of an overall Piagetian developmental epistemology 
 

Methodology 
Employing a mixed methods approach (Johnson, R. B., & Onwuegbuzie, 2004), three 

experiments and three interview case studies aimed to address the following questions:  
  
Research Question 1 (Quantitative) 

Is there evidence, from the traditional transfer perspective, that transfer is facilitated 
between linear algebra problems from non-isomorphic settings which share similar 
(matrix) representations and solution procedures? (Experiments 1 and 2) 
 

Research Question 2 (Qualitative) 
In what ways, from the theoretical perspective of actor-oriented transfer, do novice linear 
algebra students commonly have difficulty with conceptually non-isomorphic problem 
settings, even when sharing similar problem representations and solution procedures as 
familiar problem settings? (Interviews) 
 

Research Question 3 (Mixed: Quantitative + Qualitative) 
Is there evidence that meta-representational intervention may facilitate traditional and/or 
actor-oriented transfer across conceptually non-isomorphic problem settings involving 
novel target problems sharing similar problem representations and solution procedures as 
more familiar problems? (Interviews and Experiment 3) 
 

All of the subjects in this study were university sophomores and juniors, mostly engineering 
and science majors, in a university course.  260 participants took part in Experiments 1 and 2 
(130 each), while 3 subjects participated in the interviews.  66 subjects participated in 
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experiment 3.  Subjects were randomly assigned to condition groups for the factorial 
experiments. 
Experiments 1 and 2 

To address research question 1, a multi-dimensional procedural problem-solving model, 
inspired by Chen & Mo (2004), was created for implementing factorial experiments employing a 
source problem – target problem design (see MSP model in figure 2).  Problems used for the 
experiments all shared common goal structures and were matrix representable.  Experiment 1 
juxtaposed the familiar Rp setting with the Cp setting in the SETTING dimension of the MSP 
model, as well as manipulated different solution types to the matrix systems formed via the 
SOLUTION TYPE dimension.  Experiment 2 was designed similarly to Experiment 1, except 
the LTp setting was used instead of the Cp setting in the manipulation of the SETTING factor.  
For both Experiments 1 and 2, preliminary pilot studies found significance and non-interaction 
for the BASIS and ROW-OPS dimensions, hence to avoid confounding variables, these 
dimensions of the MSP model were held fixed.     

 
Figure 2. Multiple Setting Problem Model (MSP model). 
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Interviews 
Using problems experimentally verified as belonging to novel non-isomorphic linear algebra 

settings (Experiments 1 and 2), it was the purpose of the interview portion of this study to 
investigate transfer difficulties from a non-expert, actor-oriented perspective, characterized by 
the subjects’ “personal structuring” of phenomena, as well as “transfer distributed across social 
planes,” hence; the interview format was largely semi-structured, with its adherence to the order 
and completion of the interview problems, and minimal interviewer interaction, unless subjects 
appeared stalled in problem solving (Lobato, 2003).  The interview design consisted of two 
consecutive problems from the Cp setting, and one problem involving the LTp setting.  As in the 
previous experiments, all of the interview problems could be solved through the successful use 
of the general goal structure: 
 
 1.  Representation of the problem with an appropriate matrix. 
 2.  Row reduction algorithm employed as solution procedure to solve matrix. 

3. Interpretation of matrix system solution in the context of a novel problem setting. 
 
Experiment 3 

Indirect representational transfer hypothesis. 
In order to coordinate the solution resulting from a process of row reduction on a matrix 

representative of a given problem embedded in a particular linear algebra setting, it is necessary 
and sufficient to understand the meaning of the initial matrix representation in relation to the 
setting. 

Based on the results of Experiments 1 and 2 and the interviews, the Indirect Representational 
Transfer Hypothesis was conjectured, and a meta representational intervention was constructed 
for a treatment/non-treatment design.  Treatment participants were given the two-fold 
interpretation of matrix multiplication as a system of row equations belonging to the row-picture 
(Rp) setting, or a linear combination of the columns of the matrix, belonging to the linear 
combination-picture (LCp) setting.  Non-treatment participants were only given the target 
problem.  Since the Rp setting was earlier categorized as a familiar setting for most 
undergraduate linear algebra students, Experiment 3 did not have a source problem.  Target 
problem success was interpreted by the researcher as an indication of successful transfer from Rp 
to LCp settings.   
 

Results 
Experiments 1 and 2 
The results of Experiments 1 and 2 are summarized as follows:  

1. Dissimilar SETTING conditions from the familiar Rp setting to the less familiar and 
conceptually non-isomorphic LCp and LTp settings created reliably significant 
obstacles in applying source solutions. 

2. Dissimilar conditions in the SOLUTION TYPE dimension of the MSP model 
presented reliably significant difficulties in transferring source problem solutions.   
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Interviews 
Upon initial coding analysis of the interview data, two stages of problem solving became 

evident in the form of (1) actor-oriented representational transfer, and (2) actor-oriented solution-
interpretational transfer.  From the perspective of actor-oriented transfer, the following six results 
were found: 

1. Lack of understanding of the representational meaning of a matrix in relation to the 
problem setting, equation scalars, and equation variables (scalar-variable conflict), 
created obstacles in the transfer of correct matrix representations and solution 
interpretations. 

2. Incomplete semantic-access to setting-specific information defining both the LTp and 
LCp settings, posed as an obstacle to successful representational and solution-setting 
transfer across conceptually non-isomorphic problem settings. 

3. The beneficial effects of meta-cognitive intervention appear to consist in the formation 
of co-ordinations between non-isomorphic settings, matrix representations, and 
corresponding matrix solution interpretations. 

 

 
Figure 3. Result 4 illustration. 

 

4. Algebraic mode computations characteristic of practical thought, in combination with 
meta representationally induced reflection characteristic of theoretical thinking, 
characterized a general pattern of actor-oriented transfer seen in the formation of co-
ordinations between non-isomorphic settings, their representations, and corresponding 
solution interpretations.  Furthermore: (a) Forward co-ordinations facilitating 
representational transfer were constructed from algebraic-mode transformations from 
definitions to familiar Rp-like systems of equations. (b) Backward co-ordinations 
facilitating setting-solution transfer involved the reversibility of reflectively interpreting 
the solution to a system of equations back through the representational co-ordinations 
connecting the matrix representation to the problem setting (see figure 3). 
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5. Upon successive exposure to problems from conceptually non-isomorphic settings 
sharing procedurality and matrix representations, the evidence indicated a reduction of 
the multiple constructive processes characteristic of previous actor-oriented transfer, 
leading to the conjecture that actor-oriented transfer become progressively streamlined 
in learning, encapsulating towards the spontaneous transfer of an abstract problem 
solving schema from familiar to conceptually non-isomorphic settings. 

Experiment 3 
The results of Experiment 3 indicated that the meta representational treatment was effective 

and reliable in promoting target problem success and traditional transfer from the assumed 
familiar knowledge in the Rp setting.  
 

Conclusions 
The quantitative methods of this study produced three significant results in the area of 

traditional transfer experimentation.  (i) Experiments 1 and 2 duplicated previous research by 
finding spontaneous transfer between conceptually non-isomorphic linear algebra problem 
settings to be rare in the absence of hints concerning the relationships between those settings. (ii) 
Experiments 1 and 2 extended research in the area of non-isomorphic transfer experimentation 
by finding that the combination of representational similarity and solution-procedural similarity 
between conceptually non-isomorphic linear algebra settings did not enhance transfer. And 
finally, (iii) Experiment 3 extended previous work by demonstrating transfer was indirectly 
facilitated with information of the meaning of a common representation (matrix) in the context of 
familiar and unfamiliar settings, not requiring meta information as to the relationships between 
the non-isomorphic Rp and LCp settings themselves (see figure 4).   
 

 
Figure 4. Indirect representational transfer. 

 
From Result 5, as subjects repeatedly solved problems from conceptually non-isomorphic 

settings, the evidence showed a subtle decrease in the degree of personal constructions necessary 
in order to facilitate actor-oriented transfer.  The author characterized this phenomenon as the 
occurrence of transfer, in the traditional sense, of prior problem solving knowledge from within 
the multiple constructive processes of actor-oriented transfer.  From a Piagetian interpretation, 
the formation of forward and backward co-ordinations within the general process of actor-
oriented transfer constitutes evidence of reversibility and potential encapsulation, marking the 
progress between inter-operational and trans-operational constructive phases, or in other terms, 
practical verses theoretical thinking (Piaget, 1983; Sierpinska, 2000).   
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This study is on the effects of the function machine as a cognitive root on students’ 
understandings of function concept. Data of the study was obtained from open-ended tests and 
clinical interviews. Results were analyzed according to the conception levels of the concept of 
function of APOS theory and concept image- concept definition framework of Tall and Vinner. It 
is concluded that function machine is a helpful cognitive root to raise the students’ conceptual 
levels and to develop their concept images and concept definitions for the function concept. 

 
Introduction 

Mathematics education literature includes a lot of studies on function concept. Most of them 
agree with using multiple representation (table, graph, formula, procedure, verbal formulation, 
etc) environment in the teaching process of function concept (Janvier, 1987; Ferrini-Mundy and 
Graham, 1990; Confrey and Smith, 1991; Yerushalmy, 1997).  

 
Aim of the Study 

In this study, our attention is to investigate the effects of the function machine on students’ 
understanding of function concept.  
We aimed to answer the following research questions:  
 What is the effect of the function machine on students’ understanding levels of the 

function concept?  
 What is the effect of the function machine on the images and definitions that the 

advanced analysis course students have for the concept of function?  
 

Theoretical Framework 
Because we aimed to investigate the effects of function machine on students’ understandings 

of function concept, we evaluated their understanding levels according to APOS theoratical 
framework. Dubinsky and his colleagues’ theory, APOS is a specific theoretical framework for 
research and curriculum development in collegiate mathematics education. The purpose of the 
theoretical analysis is to describe the specific mental constructions that a learner might make in 
order to develop her or his understanding of the concept. These mental constructions are called 
actions, processes, objects, and schemas. Dubinsky and his collagues (Breidenbach, Dubinsky, 
Hawks & Nichols, 1992; Dubinsky & Harel, 1992; Dubinsky, 1991) studied on conceptions of 
function concept. A subject who is at the level of an action conception of function is able to 
calculate the value of the function for a function formula and a point. To interpret a situation as a 
function unless a formula for computing values is given, inverses of functions, and the notion 
that the derivative of a function is a function are difficulties for a subject whose understanding of 
function concept is at the action level. When the action is repeated and reflected upon, it is 
interiorized to a process. The subject, who has the process conception of function thinks of a 
function as receiving one or more inputs that are independent variables, performing one or more 
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operations on the inputs and returning the results as outputs that are dependent variables. When a 
subject becomes aware of the process as a totally and is able to transform it by some actions or 
processes, it is said that the process has been encapsulated as an object. When a subject perceives 
manipulations of functions such as adding or multiplying, she or he encapsulates the process 
conception of function to an object.  We should note that according to the Dubinsky and Harel 
(1992),  
1. The three main restrictions students possess about what a function are: 
(a)The manipulation restriction (you must be able to perform explict manipulations or you do 
not have a function)  
(b) The quantity restriction (inputs and outputs must be numbers) 
(c)The continuity restriction (a graph representing a function must be continuous) 
2. Severity of the restriction. Some students feel, for example, that before they are willing to 
refer to a situation as a function, they personally have to know how to manipulate an explicit 
expression. (Dubinsky and Harel, 1992; pp. 86, 87)     

Because other aim in this study is to investigate the effects of function machine as a cognitive 
root on students’ concept images and concept definitions for the function concept, Tall and 
Vinner’s framework of concept image-concept definition is also important for us. Tall and Vinner 
(1981) call the total cognitive structure that includes all mental pictures, associated properties and 
processes by concept image. According to Tall and Vinner, whether the concept definition is given 
to the student or constructed by himself, he may vary it from time to time, and in this way, a 
personal concept definition can differ from a formal concept definition. According to Vinner 
(1991) something which is evoked by the concept name in our memory is usually not the concept 
definition. Vinner (1991) takes the concept image and concept definition as two different “cells” in 
the cognitive structure. Vinner states the concept image cell is empty as long as some meaning is 
not associated with the concept name, and when the concept definition is memorized in a 
meaningless way, concept image cell is empty in many situations. 

According to Vinner, after the teacher has given the definition of the concept to the student, 
who has a concept image, the concept image may be changed to include also the concept 
definition (satisfactory reconstruction or accommodation), the concept image may remain as it is 
and the concept definition will be forgotten or distorted after a short time (in this case the 
concept definition has not been assimilated), or both cells will remain as they are. Vinner states 
when the concept definition is first given, a similar process might occur. The concept image cell 
is empty at the beginning and it is gradually filled by examples and explanations. But, after the 
concept image cell has been filled, it does not always reflect all the aspects of the concept 
definition. According to Vinner, interplay between concept image and concept definition as seen 
in the Figure 1 refers to the long term processes of the concept formation.  

 

 
Figure 1. Interplay between concept image and concept definition. 

 
Vinner adds that in addition to the process of the concept formation, there are also the processes of 
problem solving or task performance. When a cognitive task is posed to a student, different 
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relationships between the cells and the cognitive task can be occur according to the student’s 
concept image and concept definition cells.  

 
Figure 2. Relationships between the cells. 

 
Cognitive Root 

Tall, McGowen and DeMarois (2000) defined the notion of cognitive root as follows:  
A cognitive root is a concept that:  

• is a meaningful cognitive unit of core knowledge for the student at the beginning of the 
learning sequence,  

• allows initial development through a strategy of cognitive expansion rather than 
significant cognitive reconstruction,  

• contains the possibility of long-term meaning in later developments,  
• is robust enough to remain useful as more sophisticated understanding develops.  

(Tall, McGowen and DeMarois, 2000; p. 3)  
Tall, McGoven and DeMarois (2000) suggests using the function machine (input-output box) as 
a cognitive root while teaching the function concept.  
 

 
Figure 3. Function machine. 

 
Tall and others stated the function machine (input-output box) as the cognitive box embodies both 
the process-object duality and also the multiple representations of the function concept as seen in 
following: 

 
Figure 4. The function machine and representations of function. 
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Tall and others stated that the function box which is an embodied version of the more general 
function concept allows simple interpretations of profound ideas, for example two function 
boxes are “the same” if they have the same output for each input in the domain. They interpreted 
this perception of two function boxes being the same as occurring at the process level in the 
sense of Dubinsky. 
 

Methodology 
This study was conducted to 23 students of one of the two groups of the advanced analysis 

course in the mathematics education program of a university in Turkey. Study is a part of a more 
comprehensive study in which understanding two variable function concept was aimed to 
investigate in the APOS theoretical framework (Asiala et al.,1996 ;  Dubinsky, E. & Harel, G. , 
1992). A lot of tests and clinic interviews were conducted in the advanced analysis course 
through an academic semester in the comprehensive study, whose method is teaching experiment 
(Cobb and Steffe, 1983). At the beginning, a test on single variable function concept was 
prepared and conducted to 23 students. After this test, single variable function concept was 
summarized by using function machine as a cognitive root.  After the summary, another test on 
single variable functions was prepared in a similar manner to previous test. Then process of 
instruction of two variable function concept and preparation and conduction of tasks about this 
concept was started. After this process, clinic interviews were conducted with six of subject. 
These six subjects were chosen according to purposive sampling (Fraenkel and Wallen, 1996 ). 
Main criterion was to reach process conception for both single variable and two variable function 
concepts. Other criterion was accessibility. Because we aimed to report the effects of function 
machine as a cognitive root in this study, we will give the findings of first two tests and relevant 
tasks of interviews.  

 
Findings 

According to the results of the first test, students had several difficulties and misconceptions 
about functions. Some graphs are given in the first question and it is asked if they are graph of a 
function whose independent variable is x. It is seen that most subjects did not have the notions of 
independent and dependent variables of a function. Several misunderstandings were seen in data. 
Most subjects (17 out of 23) have written an algebraic expression, which is familiar to them 
beside the graph. Generally (except three subjects), subjects focused on the notion of 
independent variable by overriding the concept definition.  

In the aspect of algebraic (formula) representations of functions, students had similar 
misconceptions to the misconceptions students had in graph cases. Again, it is seen that the most 
effective reason of these misconceptions was that students did not have notion of independent 
variable of a function. Most students (16 out of 23) could perceive the functions only in table 
situations. That is, they could regard input-output and transference notions only in table 
situations. All students could find the input corresponding to the given output for the function, 
whose algebraic representation was given. Moreover, almost all students could complete the 
input-output table by using the given graph. The students who had faults in this task could not 
perceive the output corresponding the input in which the function was discontinuous. Almost all 
students could draw the graph of partial functions, while most students drew a whole circle 
instead of semi-circle by regardless of range of function. Contrary to the first test, most students 
(13 out of 23) could perceive the functions both graph and algebraic situations. Only four 
subjects had still focused on the independent variable notion instead of the function process. 
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For the definition of function, various types of definitions for the function concept were 
given in the pre-test. Most categories of the definitions are similar to the categories that Vinner 
and Dreyfus (1989) had.  Subjects chose the class of item, which was defined, variously like 
equation, expression, or rule. Some of them also gave the uniqueness to the right condition of 
transfer. Three subjects defined the function correctly as a relation, while four subjects defined as 
a relation, but without uniqueness to the right condition. One subject defined as a correspondence 
with uniqueness to the right condition, while another subject defined as a correspondence 
without uniqueness to the right condition. When the function definitions in the pre-test and in the 
post-test were compared, it was seen that development was surprising. 18 subjects gave correct 
definition of function concept. Most of them defined the function concept as a special relation, 
and remaining defined as a correspondence correctly. While one of other subjects defined the 
function concept as a rule with uniqueness to the right condition, two of them defined as a 
machine. Only one subject defined as an expression.  

Another task in which students had difficulties was that required the graph of an upper semi-
circle in the sixth question of the first test. Similarly, the algebraic expression of lower semi-
circle was given in the second test, and its graph was required. 17 out of 23 subjects gave correct 
graph in the second test. Only five subjects gave the graph of whole circle in the second test, 
while 13 out of 23 subjects gave the graph of whole circle in the first test.  Remaining one 
subject gave completely wrong graph in the first test.  

One of the relevant tasks to the aim of this study in the interview questionnaire was to find a 
function process on a set of functions. At the beginning of the interviews, the meaning of 
function was again questioned with a question like "what is a function?” or “according to you 
what does function mean?”. After following some other tasks, subject prompt to find a function 
process on a sets of functions with the questions as seen in following:  

 You defined the function concept at the beginning of our interview. Is there any 
restriction on the domain of a function? 

 Can the domain of a function be any set, which does not equal to the empty set? 
 Do you know a function whose elements are also function? 

If the subject could not see function as an element of a function, that is she/he could not see 
function as an object, she/he prompted as following: 

 Can you imagine a function machine such that its inputs are functions? 
 What can be the outputs of such a function machine? 
 Do you know such a function machine on functions?  

According to the responds of subjects to this task, four of six subjects could see function as an 
element of domain, and they gave the operations on a set of functions like composition, derivative, 
integral. Also one subject could see the taking inverse of a function as a function operation on the 
set of one to one and onto functions, but then it was seen that she could not have seen a function as 
an object.  Other subject could not give any interpretation about this task.  

 
Results 

According to the results of the first test, six of 23 students’ understanding of function concept 
was action level at the beginning of advanced analysis course. One of the remaining subjects’ 
conception level was transition from action to process. Except one subject, who had process 
conception, remaining 15 subjects had relatively weak process conceptions, which include at 
least one of the restrictions of severity, manipulation, and quantity. We should note that the 
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conception levels were determined after qualitative analyze of data which were obtained from 
responds for open-ended tasks.  

After brief instruction by using function machine as a cognitive root, two subjects’ 
conception level rose from action to process, and four subjects’ conception level rose from action 
to transference from action to process. Ten subject’s conception levels were process even if some 
of them had restrictions, while their levels were relatively weak process conception before the 
brief instruction. Two subjects’ conception levels were relatively weak process both before and 
after the brief instruction, but at least they abandoned the restrictions they had. Remaining 
subjects raised their conception levels from relatively weak process to weak process, because at 
least they developed to perceive functions in the table situations.  
After the interviews which were conducted by six subjects whose conceptions levels were seen 
as at least process after brief instruction, it was concluded that conception levels of four of them 
were object level.  

In the aspect of concept image and concept definitions of subjects for the function concept, 
most students’ developments were well. Subjects’ concept images, which included various 
misconceptions like familiarity, variable complexity at the beginning were disappeared after 
brief instruction. Moreover, most of them gained the concept definition and began to consult 
their concept definition and to relate their concept images and concept definitions, while they 
consulted only their concept images at the beginning.  

 
Conclusion 

We concluded that function machine is very effective as a cognitive root on understanding 
the function concept. By instruction this cognitive root, students gain input-output and 
transference notions. Emphasizing with various examples that input of the machine, which is 
independent variable of function is an element of any set, which is not empty, this input 
transforms an output, which is dependent variable of function with the operation of the machine 
is gained the students the concept definition.  Moreover, students develop the notions of domain 
and range by such an instruction. In the aspect of understanding levels of the students, it is 
helpful to rise the students’ conceptual levels. Especially, by increasing in variety the inputs, 
students can begin to see a function as an object. For instance, students can make some 
operations on the set of functions, but generally they do not see neither these operations as 
functions nor the functions as an elements of a set. To give such operations on the sets of 
functions like arithmetical operations or composition as an example of function machine is 
gained the students seeing a function as an object. Moreover, such examples are helpful to be 
disappeared the restrictions like quantitative or manipulation. Such function machine examples 
can be given instruction of not only the single variable function concept but also two variable 
function concept.  
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Figure 5. Function machine examples for single and two variables respectively. 
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This paper is the first installment of a study which seeks to identify the necessary and sufficient 
features of accommodating the idea of actual infinity. University mathematics majors’ and 
graduates’ engagement with the Ping-Pong Ball Conundrum is used as a means to this end. This 
paper focuses on one of the necessary features: the leap of imagination required to conceive of 
actual infinity, as well as its associated challenges.  

 
Introduction 

The concept of infinity has a distinctive quality which rouses the imagination, provoking 
controversy, and challenging fundamental ideas intuited as truth. In meeting these challenges and 
controversy an individual is invited to think in often new and complex ways—to engage in 
“advanced mathematical thinking.” 

The term ‘advanced mathematical thinking’ carries with it many descriptions. Although there 
is no agreement on the definition, many of the characteristics describing advanced mathematical 
thinking are exemplified in the concept of infinity. 

One working description suggests advanced mathematical thinking (AMT) involves abstract, 
deductive thought (Tall 1991, 1992), and includes “proving in a logical manner based on 
definitions” (Tall, 1991, p. 20). Alternatively, ideas that exercise advanced mathematical 
thinking may be considered as ones that are not “entirely accessible to the five senses” (Edwards, 
Dubinsky, & McDonald, 2005, p. 18), and lack “an intuitive bases founded on experience” (Tall, 
1992, p. 495). The abstract and intangible nature of actual infinity epitomises both of these 
descriptions. 

This paper presents research from part of a broader investigation which aims to identify the 
necessary and sufficient features involved in accommodating the idea of actual infinity. It 
focuses on the ‘leap of imagination’ required to conceive of mathematical infinity, as well as on 
the challenges university mathematics students and graduates faced in making such a leap. 

 
Background 

The concept of infinity carries with it a “surprisingly rich intuitive base that many students 
seem naturally to be endowed with” (Mamona-Downs, 2002, p. 49). Research into the nature of 
learners’ intuitions of infinity has shown “that infinity appears intuitively as being equivalent 
with inexhaustible” (Fischbein, 2001, p. 324). Specifically, learners are naturally inclined to 
conceive of a potential or ‘dynamic’ infinity – a process for which every step is finite, but which 
continues endlessly. Intuitions of an ‘endless infinite’ have been observed in students of all 
levels, from middle school to university (e.g. Tirosh, 1991). In resonance with the general 
characteristics of intuitions, the idea of an endless infinite tends to be resilient: it is seen as self-
evident, intrinsically certain, coercive, and resolute (Fischbein, 1987).  

Current research suggests students’ understanding of mathematical infinity tends to develop 
by reflecting on knowledge of related finite concepts and extending these familiar properties to 
the infinite case (Fischbein, 2001; Fischbein et al., 1979). As Fischbein (2001) observed, when 
learners attempt to establish an understanding of abstract concepts, their tacit mental 
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representations in the reasoning process replace the abstract concepts by more accessible and 
familiar ones. For example, when analysing infinite sets, students may apply familiar methods 
for comparing sets that are acceptable in the case of finite sets, such as the inclusion (or part-
whole) method, but which result in contradictions in the infinite case (e.g. Fischbein et al., 1979). 
With respect to infinite sets, only one method of comparison yields consistent solutions: one-to-
one correspondence. Through the idea of ‘coupling’ elements, two (infinite) sets that can be put 
into one-to-one correspondence are accepted by the normative standard as having the same 
‘size’, or cardinality. 

Students’ well-documented struggle to understand and appreciate aspects of infinite 
cardinality has motivated efforts to improve and refine pedagogical strategies. For instance, in 
set activities administered by Tsamir and Tirosh (1999), geometric figures were used to 
emphasize a correspondence between numerical sets, as well as to draw students’ attention to the 
inconsistencies of comparing infinite sets with different methods. One of the goals of this study 
was to elicit cognitive conflict in the participants, thus a task which elicited an inclusion method 
of comparison was followed by one which elicited a one-to-one correspondence method. Tsamir 
and Tirosh concluded that this series of activities, which can elicit cognitive conflict “has the 
potential for raising students’ awareness of incompatibilities in their own solutions to the same 
mathematical problem” (1999, p. 216). However, Tsamir (2003) warns that participants must 
come to appreciate one-to-one correspondence as the only appropriate method of infinite set 
comparison, and such was not the case in Tsamir and Tirosh (1999).  

This study extends on prior research by examining conceptions of university mathematics 
students and graduates as they engaged with the well-known paradox ‘The Ping-Pong Ball 
Conundrum’. Despite participants’ sophisticated mathematical background and their experience 
and skill with abstract mathematics and mathematical thinking, participants faced challenges 
distancing themselves from realistic concerns and engaging with the mathematics presented in 
this novel problem-solving situation. These challenges are explored in this paper with the intent 
to shed light on the necessary and sufficient aspects required for a normative understanding of 
actual infinity, as well as on pedagogical strategies to guide learners toward such an 
understanding. 

 
Theoretical Framework 

The concept of infinity relies on abstract, formal definitions of concepts for which intuition 
and the senses have no foundation. As such, one of the theoretical perspectives which guided this 
study is Hazzan’s (1999) ‘reducing levels of abstraction’. In Hazzan’s (1999) perspective, when 
learners are confronted with a novel problem solving situation, they will attempt to make sense 
of unfamiliar or abstract concepts by reducing their level of abstraction. Hazzan describes 
different ways a learner may attempt to reduce abstraction. One such way she observed was in 
working with familiar entities when learners were faced with problems for which an 
understanding of the mathematical entities involved were not yet constructed. As an example, 
Hazzan noted that when learning abstract algebra, students would “often treat groups as if they 
were made only of numbers and of operations defined on numbers” (1999, p. 77). By basing 
arguments on familiar mathematical entities, such as numbers, in order to cope with unfamiliar 
concepts, such as groups, students lower the level of abstraction of those concepts. 

In addition to relying on familiar entities to reduce the level of abstraction of novel ones, 
Hazzan interprets “students’ personalization of formal expressions and logical arguments by 
using first-person language” as an attempt to reduce the level of abstraction of that expression. 
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For instance, language such as “I can find” or “I want to find” (Hazzan, 1999, p. 80), indicate, in 
Hazzan’s perspective, ways that a student may cope with unfamiliar terminology and concepts. 

Hazzan (1999) relates her framework of reducing levels of abstraction to the APOS (Action, 
Process, Object, Schema) Theory of Dubinsky and McDonald (2001) through the observation 
that process conceptions of a mathematical entity may be considered on a lower level of 
abstraction than their corresponding conceptions as objects. She also argues that a learner’s 
attempt to reduce the level of abstraction of a mathematical entity through, for instance, the use 
of first-person language, indicate that the learner holds a process (rather than object) conception 
of that entity. Process and object conceptions are in the centre of the second framework 
considered in this study, that of the APOS Theory (Dubinsky & McDonald, 2001). 

Dubinsky, Weller, McDonald, and Brown (2005a, 2005b) proposed an APOS analysis of 
infinity. They suggested that interiorising infinity to a process corresponds to an understanding 
of potential infinity, or the inexhaustible. As such, a process conception of infinity is imagined as 
performing an endless action, though without imagining the implementation of each step. 
Encapsulating this endless process to a completed object, in turn, corresponds to a conception of 
actual infinity, a quantity which describes the ‘size’, or cardinality, of a completed infinite set. 
As in the more general case, encapsulation of infinity is considered to have occurred once a 
learner is able to think of infinite quantities “as objects to which actions and processes (e.g., 
arithmetic operations, comparison of sets) could be applied” (Dubinsky et al., 2005a, p. 346). 
Dubinsky et al. also observed that “in the case of an infinite process, the object that results from 
encapsulation transcends the process, in the sense that it is not associated with nor is it produced 
by any step of the process” (2005a, p. 354). 

 
Methodology 

Participants 
Data for this study were collected from five participants with advanced mathematical 

backgrounds. Each of the participants had prior experience with Cantor’s theory of transfinite 
numbers through formal instruction during upper level undergraduate mathematics courses. In 
particular, they were familiar with comparing infinite sets via one-to-one correspondence, such 
as corresponding the sets of natural numbers and rational numbers, and also with Cantor’s 
diagonal argument establishing the set of real numbers as having larger cardinality than the set of 
natural numbers. Participants also had substantial experience with infinity in calculus. The 
participants in this study included students enrolled in undergraduate degrees in mathematics, as 
well as participants who had completed at least a master’s degree in mathematics or mathematics 
education. 

• Marc was a mathematics major in a south eastern state university in the USA. He was 
very bright and eager to engage with the paradoxes. In addition to his background with 
cardinal infinity, he had informally explored aspects of infinity in other contexts. Marc 
anticipated pursuing a graduate degree in mathematics.  

• Maria was a classmate of Marc’s in the mathematics program. Her familiarity with 
Cantor’s theory included an awareness of the Continuum Hypothesis, as well as some 
properties of transfinite ordinal numbers. 

• Joey was in his fourth year of an undergraduate degree in mathematics and physics at a 
university in eastern Canada. Joey had taken upper year courses in set theory and 
analysis, both of which touched on Cantor’s theory.  
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• Vince was a doctoral candidate in mathematics at a university in eastern Canada. Since 
his participation in this study, he had completed his degree, and began a professional 
research career in cryptography. 

• Jenny was a doctoral candidate in mathematics education at a university in eastern 
Canada. Her area of research was didactiques des mathematics, and her scholarly 
background included an undergraduate degree in mathematics and physics. 

Data Collection 
Data from the five participants were collected through email correspondence, which was 

intended to offer participants the opportunity to put their thoughts in writing in order to 
contribute more precise and balanced responses than possible in a formal interview. The Ping-
Pong Ball Conundrum (described below) was presented to participants, and they were asked to 
determine how many ping-pong balls remained in the barrel at the end of the 60-second 
experiment, and to explain their reasoning. The Ping-Pong Ball Conundrum was chosen because 
of its level of complexity, and because of the necessity to address a bound infinite set in the 
paradox resolution.  
The Ping-Pong Ball Conundrum 
 

An infinite set of numbered ping-pong balls and a large barrel are instruments in the following experiment, 
which lasts 60 seconds. In 30 seconds, the task is to place the first 10 balls into the barrel and remove the 
ball numbered 1. In half of the remaining time, the next 10 balls are placed in the barrel and ball number 2 
is removed. Again, in half the remaining time, balls numbered 21 to 30 are placed in the barrel, and ball 
number 3 is removed, and so on. At the end of the 60 seconds, how many ping-pong balls remain in the 
barrel? 
 

The normative resolution to this paradox involves coordinating three infinite sets: the in-going 
ping-pong balls, the out-going ping-pong balls, and the intervals of time. Although there are 
more in-going than out-going ping-pong balls at each time interval, at the end of the experiment 
the barrel will be empty. A fundamental aspect in the resolution of this paradox is the one-to-one 
correspondence between any two of the three infinite sets in question. Given these equivalences, 
at the end of the experiment, the same amount of ping-pong balls went into the barrel as came 
out. Moreover, since the balls were removed in order, there is a specific time for which each of 
the in-going balls was removed. Thus the barrel is empty at the end of the 60 seconds. 
 

Results and Analysis 
Surprisingly, despite the sophisticated mathematical knowledge of participants, only one 

participant, Marc, provided a resolution to the Ping-Pong Ball Conundrum that was consistent 
with the normative one. Indeed, as participants attempted to reconcile properties of actual 
infinity with the notions that were elicited by the Ping-Pong Ball Conundrum many were 
unwilling to take a leap of imagination beyond practical or realistic considerations and toward 
the ‘realm of mathematics’. 

The inability to leap toward the imaginative surfaced in participants’ reluctance to distance 
themselves from concerns such as physical possibilities and constraints. For instance, Vince, a 
doctoral student in mathematics, objected to the feasibility of the experiment, and refuted the 
possibility of completing the experiment. He remarked that the “first thing that comes to mind is 
that the problem is not really that well-defined as the time left, 1/2n, never reaches zero.” Vince 
went on to consider the processes of inserting and removing balls, and concluded that: 
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You’ll have lots of balls in the barrel when you reach 0 [end of the experiment], which 
you won’t. And this is clearly a ridiculous answer if you consider the whole thing to be 
something that could take place. So my final answer is 136. 

Vince’s desire to consider the experiment as “something that could take place” suggests a 
reluctance to engage with the thought experiment in the Ping-Pong Ball Conundrum, which is by 
no means an experiment that could actually take place. Vince’s resistance to let go of practical 
experience is also recognised in his comment that “lots of balls in the barrel” is “clearly a 
ridiculous answer”, which suggest he was unable or unwilling to conceive of a barrel that could 
contain infinitely many balls. Also, Vince’s notion of an endless experiment corresponds to a 
conception of potential infinity and is suggestive of a process conception, in terms of the APOS 
Theory. A conception of potential infinity, together with resilient practical concerns, seemed to 
prevent Vince from considering the infinite sets of balls or time intervals as completed objects. 

Imagining the experiment being carried out also influenced Joey, an undergraduate student in 
mathematics. Joey’s response began by describing the physical items in the paradox – such as the 
barrel and the balls – and speculating on the outcome if he were to actually perform the 
experiment. Joey wrote: 

Well, at first I’m thinking about a massive collection of white ping-pong balls. And an 
actual wooden barrel. Clearly thinking about actually performing the experiment and then 
realising there is no way I can actually move that fast in real life so I realise the final 
ping-pong ball count would be finite. However thought experiment… so... 
mathematically… 

Joey’s instinct was to consider the experiment in a ‘realistic’ way, and like Vince, he initially 
approached the paradox as though it were an experiment that he could perform. Once Joey 
realised that the physical constraints of reality restricted his solution to a finite “count”, he 
distinguished between what was possible practically versus mathematically. This distinction 
suggests Joey was, to a degree, aware of a conflict between practical experiences and the realm 
of infinity. Nevertheless, Joey’s realistic approach of “thinking about actually performing the 
experiment” seemed to influence his deliberations even as he addressed the thought experiment 
“mathematically.” For instance, he continued to describe the experiment as though it were being 
carried out: 

Since I keep halving the time I add and remove ping-pong balls, I will never reach 60 
seconds. So the experiment should never end, really. Meaning I have an infinite number 
of ping-pong balls, and yet there are more in the barrel. Since infinity is not an actual 
number, you can’t say I have infinity here, but 9 times infinity there.  

Joey maintained a personal connection to the experiment, and described his own involvement in 
terms of the actions he would take and the outcomes he would face. The use of personal 
language to cope with an abstract concept is, in Hazzan’s (1999) perspective, an attempt to 
reduce the level of abstraction of that concept, and as such is indication of a process conception 
of infinity. Further, Joey’s description of infinity as “more like a destination, an indication of an 
unlimited amount”, and his remark that the “experiment should never end”, are consistent with a 
process conception of infinity. 

A use of personal language was also identified in Jenny’s response, as she too resisted letting 
go of ‘practical’ concerns. Jenny, a doctoral candidate in mathematics education, also 
commented on physical limitations in the experiment. She found the issues of speed and time 
problematic, suggesting, “there is not enough time to work so fast.” She also noted that “the 
fastest speed is light speed” and that if she could work at the speed of light then time would slow 
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down and there would be “infinity time, so there will never be a last ball.” She described herself 
as being stuck in an endless experiment, left to insert and remove ping-pong balls for eternity, 
lamenting “but I don’t want to do that with my life.” 

The cognitive leap from the ‘realistic’ to the realm of mathematical infinity was a source of 
difficulty for Vince, Joey, and Jenny. Their resistance to engage with the realm of imagination 
and mathematics noticeably impacted each of their resolutions, and in the case of Vince 
prevented him from resolving the paradox beyond giving an arbitrary number as his solution. 
Another student attempted to bridge her realistic concerns with the surreal thought experiment by 
introducing assumptions. This student, Maria, attempted to reconcile reality and infinity by 
assuming the impossible was possible. For instance, Maria, an undergraduate student in 
mathematics, reasoned there would be an infinite number of ping-pong balls remaining in the 
barrel at the end of the experiment “assuming the barrel has an infinite volume and can house an 
infinite number of ping-pong balls.” Maria imagined an infinite iterative process, noting that “per 
iteration, the barrel gains an additional 9 ping pong balls than it had previously… so to determine 
the number of ping pong balls in the barrel at the end of the experiment, we can simply 
determine the number of iterations and then multiply this by 9.” Maria seemed to treat infinity as 
a very large number, and as such, needed to assume that the physical constructs could 
accommodate this ‘infinite size’. Interestingly, Maria did not assume the existence of infinitely 
many ping-pong balls, only that they could be housed in the barrel. Recalling the normative 
solution, Maria’s assumption is superfluous as the barrel at no moment contains infinitely many 
ping-pong balls.  

In accordance with Mamolo and Zazkis (2008), participants who resisted distancing 
themselves from reality by clinging to practical concerns or by introducing capricious 
assumptions tended to approach the paradox in intuitive, process-oriented ways, such as focusing 
on infinite iterations. As Fischbein (1987) observed, properties of actual infinity contradict the 
finiteness of mental schemas and intuitions. In contrast, the ability to take a leap of imagination 
away from the realistic or the intuitive corresponds to an ability to engage effectively in 
advanced mathematical thinking—thinking which lacks “intuitive bases founded on experience” 
(Tall, 1992, p. 495). Clarifying the limitations that finite experience has on an understanding of 
infinity seems to be a fundamental aspect of accommodating properties of actual infinity—
properties which by all means lack intuitive bases founded on practical experience. 

Distinguishing between an intuitive and a formal understanding of infinity was an essential 
aspect in Marc’s reasoning as he addressed the Ping-Pong Ball Conundrum. Marc, an 
undergraduate mathematics student was the only participants who came up with a solution that 
was consistent with the normative resolution to the paradox. Marc’s approach was proof by 
contradiction. He wrote: 

We can assume that some ball does remain after the minute is up, and without loss of 
generality, let’s say it’s the nth ball. But we know that this ball is taken out during one of 
the steps 10n-9, 10n-8, .... ,10n-1, 10n, and all of these steps occur within one minute due 
to the fact that the series: (Sum from k=1 to k=infinity of (1/2^k)) converges to 1. But 
then the aforementioned ball is NOT in the barrel at the end of the minute, which 
contradicts our original assumption that it was. Therefore, there are no balls left in the 
barrel at the end of the minute. 

Notable in Marc’s response is his use of language. Marc seems to refer to a general, and 
perhaps impersonal, body of knowledge. For instance, Marc refers to “our original 
assumption”, commenting on what “we know” in his solution. His depersonalized use of 
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language is in sharp contrast to other participants who referred to what they as individuals 
could achieve (i.e. ‘I add’, ‘I find’, ‘I want’). 

In connection to his removed stance from the experiment, Marc was also the only participant 
to clarify a separation between his realistic intuitions and his mathematical thinking. Marc’s 
awareness of the limitations of intuition and realistic experience seemed to contribute 
significantly to his understanding of actual infinity. After discussing his solution, Marc reflected 
that “the intuition we’ve learned from the physical world fails us when it comes to the infinite.” 
His willingness to distinguish between intuitive and formal understandings can be linked to his 
ability to take the leap of imagination necessary for accommodating actual infinity. Indeed, 
holding on to realistic, finite experiences and intuitions seemed to hinder the encapsulation of a 
process for which there is no final step, but for which a completed totality does exist.  
 

Conclusion 
Conceiving of actual infinity exemplifies mathematical thinking that “extrapolates beyond 

the practical experience of the individual” (Tall, 1980, p. 1). As such, problems addressing 
infinity require a leap of imagination away from practical experience. In resonance with 
observations made in Mamolo and Zazkis (2008), participants resisted extrapolating beyond their 
practical or realistic experiences when addressing the ping-pong experiment. Letting go of 
realistic considerations was problematic for participants despite their considerable experience 
with advanced and abstract mathematics – mathematics that is inaccessible to the five senses 
(Edwards et al., 2005) and that lacks an intuitive basis (Tall, 1992). The inability to take the 
cognitive leap into the realm of mathematical infinity manifested in participants’ responses in 
striking similarity to the reactions of participants in Mamolo and Zazkis (2008), despite much 
more sophisticated experience with ‘advanced mathematical thinking’. There were those 
participants who were unable to ‘leap’, others who recognised the need to ‘leap’ but resisted, and 
some who could ‘leap’ to work within the realm of mathematics and clarify a separation between 
‘real’ possibilities and mathematical truth. 

This study draws attention to a pedagogical necessity to guide learners away from ‘realistic’ 
or intuitive approaches when addressing abstract mathematics, particularly with respect to 
concepts such as infinity. Continued research on effective pedagogical strategies to achieve this 
end, as well as on further necessary and sufficient features of accommodating the idea of actual 
infinity is underway.  
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The study of student understanding of multivariable functions is of fundamental importance 
given their role in mathematics and its applications. The present study analyses students’ 
understanding of these functions, focusing on recognition of domain and range of functions given 
in different representational registers, as well as on uniqueness of function value. APOS and 
semiotic representation theory are used as theoretical framework. The present study includes 
results of the analysis of interviews to 13 students. The analysis focuses on student’ constructions 
after a multivariate calculus course, and on the difficulties they face when addressing tasks 
related with this concept.  
  

Introduction and Purpose of the Study 
The notion of a multivariable function is of fundamental importance in advanced 

mathematics and its applications. Even though its understanding is essential for mathematics, 
science and engineering, little is known about students’ ideas and difficulties. There are very few 
research based studies that probe student understanding of the particularities of a multivariable 
function. This lack of research findings limits our understanding of how students learn the main 
ideas of the multivariable calculus.  

The present study is a continuation of a previous study (Trigueros & Martínez-Planell, 2007) 
which reported on student understanding of graphs of functions of two variables. The focus of 
the present study rests on the following research questions: What are students’ conceptions of 
domain and range of functions of two variables when they finish a Multivariate Calculus course? 
How are these conceptions related to their abstract, general notion of function?  
 

Theoretical Framework 
Two conceptual frameworks inform the theoretical basis used in this study. Firstly APOS 

theory is used to model the development of the concept of two variable functions and, secondly, 
semiotic representation theory, provides the conceptual tools to analyze flexibility in the use of 
different representations and its role in the cognitive evolution of the mathematical ideas under 
consideration. 

As APOS Theory is a well known theory, only its application for the purpose of this study is 
described. For more detail the reader may consult Asiala et al. (1996), and Dubinsky (1991, 
1994). 

The application of APOS theory to describe particular constructions by students requires 
researchers to develop a genetic decomposition—a description of specific mental constructions 
one may make in understanding mathematical concepts and their relationships. A portion of a 
preliminary genetic decomposition for the function of two variables concept given in Trigueros 
and Martínez-Planell (2007), is summarized below since it will be referred to throughout this 
paper: 

The Cartesian plane, real numbers, and the intuitive notion of space schemata must be 
coordinated in order to construct the Cartesian space of dimension three, R3, through the action 
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of assigning a real number to a point in R2, and the actions of representing the resulting object 
both as a 3-tuple and as a point in space and making conversions between them. These actions 
are interiorized into a process that considers all the possible 3-tuples and subsets of 3-tuples, and 
their representation in space, to construct a process that when coordinated with the respective 
verbal, analytic and geometric representations can be thematized as three dimensional space, R3.  

This space schema is coordinated with the schemata for function and set through the action 
of assigning one and only one specific height to each point in a given subset of R2, either 
analytically or graphically. This action is interiorized into the process of assigning a height to 
each point on a subset of R2 to construct a two variable function, and the process of conversion 
needed to relate its different representations. When the process of generalization of these actions 
to consider any possible function of two variables, as a specific relation between subsets of R2 
and R is encapsulated, it can be considered that the notion of two-variable functions has been 
constructed as an object.  

Duval (1999, 2006), argued that thinking processes in mathematics require not only the use 
of representation systems, but also their cognitive coordination. In Duval’s analysis, 
understanding and learning mathematics require the comparison of similar and different 
representations. According to this author, there are two different types of transformations of 
semiotic representations: treatments, which are transformations of representations that happen 
within the same representation register, and conversions which consist of changes of 
representation register without changing the object being denoted. He argues that these two types 
of transformations are the source of many difficulties in learning mathematics, and that 
overcoming these difficulties needs to take them both into account: to compare similar 
representations and treatments within the same register in order to discriminate relevant values of 
the mathematical object so that students notice the features that are mathematically relevant and 
cognitively significant, and to convert a representation from one register to another to dissociate 
the represented object and the content of the particular representation introduced so that the 
register does not remain compartmentalized. 
 

Method 
An instrument was designed to conduct semi-structured interviews with students and test 

their understanding of the different components of a proposed genetic decomposition (Trigueros 
& Martínez-Planell, 2007). Nine students were interviewed. The students were chosen from a 
group of undergraduate students at a private university who had taken the equivalent of an 
introductory multivariable calculus course the previous semester. The instructor of the 
mathematics course they were currently taking chose what he judged three good, three average, 
and three weak students to be interviewed. On the basis of the results obtained, and in 
preparation for the present study, the researchers decided to conduct more interviews focusing on 
items in which it seemed more data would be useful. The instrument was once again revised to 
do this and five new interviews were conducted. These students were chosen from a group of 
undergraduate students at a public university who had just finished taking the equivalent of an 
introductory multivariable calculus course that same semester. The instructor of the multivariable 
course they took chose what he judged two slightly above average, and three average students to 
be interviewed. All interviews lasted for 45-60 minutes, were audio-recorded, and all the 
students’ work on paper was kept as part of the data. The results obtained in 13 of these 
interviews were independently analyzed by two researchers, and the conclusions negotiated.  

 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

75 

Results 
Results of the analysis of students’ responses during the interview showed that none of these 

students was able to demonstrate all the constructions described in the genetic decomposition. 
Their description of what they consider a function seems to be more closely related to that of 
relation and associated mainly with its analytical representation. Students differed in the 
difficulties they faced during the interview but most of them struggled with the description of the 
domain of these functions in all the representations included in the tasks and in the conversion 
between representation registers. 

Eight of 13 students had difficulty with the arbitrary nature of the relational correspondence. 
For example, when Emily was asked if the rule: “Input: weight in kilograms and height in 
centimeters. Output: name of person with that weight and height” defined a function, she 
responded: 

Emily:   ok … [nervous laugh] for me, the fact that you have the weight, a weight and a 
height in centimeters [nervous laugher], the name is not there anywhere, … I 
don’t know how one gets to … 

The same type of response is observed in Rodrigo: 
Rodrigo:  …because it can’t be that with only the weight and the height we can obtain the 

name of the person. 
When asked to define a function of two variables Gaddis responded: 

Gaddis:  …, for me a function of two variables is a function of the form (,)fxy  is equal 
to x … a term in x, a term in y, and a constant or any number, then the domain 
would be, the two variables, that would be independent … and the range would 
be the result of those two variables evaluated in the function.  

In the genetic decomposition we assumed that the construction of the notion of function of 
two variables requires the coordination of a schema for R2 with that of function through the 
action of assignation of one and only one value to each element in the domain of the function. 
Some students did not show to have made this coordination. Among them, there were 4 students 
who did not consider that a function is determined by the uniqueness of that assignation. Rodrigo 
is one such student: 

Interviewer: and if I were to give you a list with all students at this university with their 
weight and their height 

Rodrigo:  ok, here you could, but you’d get several results 
Interviewer: and that, would be a function? 
Rodrigo:   yes, hmm, yes, yes 

Another student, Gaddis, commented to this same question: 
Interviewer: …is that a function? 
Gaddis: …yes, I think so 
Interviewer: So if a give you the weight, say 60 kg and height 2 m, what could be the output? 
Gaddis:  It would be the name of a person with that data 
Interviewer:  and, if there were more than one person with that data? 
Gaddis:  …the output would be the name of the person 

Later, while further exploring Gaddis’s uniqueness of value notion, the interviewer presented the 
equation x2 + y2 =1 to him, and asked:  

Interviewer: … y, is it a function of x?  
Gaddis:  … it could be, if we solve for the y 
Interviewer: ok, I solve for the y and get 21 x±− , the y, is it a function of x?  
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Gaddis:  y, there it depends on x in that case 
Interviewer: then, is it a function of x? 
Gaddis:  I think it is. 
Most of the students had difficulties when describing the domain of a two variable function. 

It was found that 3 students do not have a clear idea that the elements in the domain of this type 
of function are always ordered pairs. Even though they accept they need ordered pairs in order to 
find the value of a particular function, when they are asked how many elements are there in the 
domain of a function given in a table representation, they count the elements of each pair as 
different elements in the domain. For example: 

Fernando: … the elements, would be eight [he was using a 4 by 4 table] 
Interviewer:  give me an example of an element in the domain of  
Fernando:  0 comma 2  
Even though he uses “0 comma 2” as example of an element in the domain, he still counts 

the domain as a set of numbers. In terms of the genetic decomposition it seems these students 
have not interiorized the action of assigning one and only one specific height to each point in a 
given subset of R2; rather than applying the action to elements of R2, they seem to be acting on 
sets of two real numbers. In the case of María, she correctly listed the elements in the domain, 
but when asked to count them, she stated: 

Maria:  ok, then, do I count them as pairs or separate? 
Another problem some students had in finding the domain of functions was that they were 

not able to restrict the domain to specific subsets. For example, when analyzing the function 
defined by 22(,)1fxyxy =++ , where the domain is restricted to the pairs (,)xy  that satisfy: 

11 x−≤≤  and 11 y−≤≤ , Paola could not understand the meaning of that restriction. With some 
help, she eventually succeeded in drawing the domain. However, later on, when trying to find the 
range she said: 

Paola:  the thing is that I’m not sure what it means that it is restricted to the pair of 
numbers that satisfy this 

Of the 8 students having difficulty representing the domain of the above function, 5 tried to 
draw the graph of f first, without considering any restriction. Emily and Gracielle are examples 
of this difficulty: 

Emily:  I’m trying to do the graph, to know more or less what would be the domain … 
Gracielle:  … [mumbles] …It says x goes from -1 to 1, and y goes from -1 to 1, a circle 
Interviewer:  and why is it a circle?  
Gracielle:  because the graph is a paraboloid … 
It was also found that students’ ability to find the domain of a given function was related to 

the representation register used to present the information. The following was one of the 
questions of the interview: The following is the complete graph of a function f: 

 
a. Find the domain of f. 
b. Evaluate (0,0)f , (2,0)f , (2,2)f , 

(0,2)f . 
c. Find the range of f. 
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In parts (a) and (c), the domain and range were found correctly by 10 students, and 
incorrectly by 3. As was already mentioned, some students tried to graph functions in order to 
find their domain, even when a restriction defining it was given, so it seems that students did not 
have much difficulty obtaining domain and range information from a graphical representation of 
a two-variable function. However, as was reported previously (Trigueros & Martínez-Planell, 
2007), students do have great difficulty obtaining the graphical representation of functions of two 
variables, as well as obtaining other kinds of information from such surfaces. In this case 
Patricia, who treated domain incorrectly as a set of numbers when presented with functions in 
tabular or algebraic representations, was able to correctly find the domain in this case. This is 
one of the several examples found which confirm what was observed by Gagatsis, Christou, and 
Elia (2004): the cognitive demands for translating (converting) among representations are not the 
same, and so each one needs to be specifically attended. 

It was also observed that all students who could get neither the domain nor the range of a 
function when its graphical representation was given also had difficulties when asked to find 
them for functions given in tabular or algebraic representations. 

Some students showed some confusion between the domain of the function and the 
intersection of the graph of the function with the xy plane: 

Patricia:  …yes, and if this (pointing to 22 10xy ++= ) …is zero, if z = 0, then it is a circle 
with radio equal 1… 

All the above mentioned difficulties seem to be related to the coordination of students’ 
schema for space and that for function. Although they are able to assign values to specific points 
in R2, either analytically or graphically, they cannot consider sets of points in the plane as the 
domain of the function or do not clearly understand the role of the domain of the function. When 
they are able to consider sets of points, they have difficulty considering the result of applying a 
function to the whole set.  

Regarding the range of the function, most students’ responses showed that their difficulties 
were mainly related to the lack of interiorization of the actions needed to find values of the 
function into a process. Some students showed that their idea of range of a function was not 
clearly differentiated from that of graph of the function, but this was not a prevalent difficulty. 
Most of them were able to calculate specific values in the range or to read it from a given graph. 
This was also observed through a task where most students used this strategy to match the 
algebraic representation of six functions, with their corresponding graphs. Students showed 
many difficulties doing this task. We expected them to use sections in the analysis of the graphs 
but only one of them was able to do this. Gaddis was the only student to consistently, and 
without prodding, use sections to analyze graphs of two-variable functions:  

Interviewer: say, start with the second formula (,)sin()gxyxy =+  
Gaddis:  ok, we take that (,)gxy  is the function in z, if we put that the y is 0 , we have 

that sinzx= , which is the normal function, and if we put that the x is 0, the sine 
of 0 is 0 and we have that the, that zy=  

Interviewer: and you, could you identify, with what you’ve done, the graph of that function? 
Gaddis:  wouldn’t it be the graph on the upper right hand corner? 
Interviewer: that’s the one … and let’s say that (,)sin()hxyxy =  

Gaddis:  every time that x or y is 0, it will be 0, z is substituted equal to … one would 
have to assign values to the x and the y and see the behavior of … to me it 
would be the, the second on the left hand column [correct] 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

78 

He was asked more questions that showed that he understood what he was doing and used 
sections in his graph analysis.  

These results are also evidence that independently of the grades obtained by students during 
their course, they were not able to construct a process conception of function. They did not 
demonstrate having generalized the action of taking a point in the domain of the function and 
assigning it a height, or to have constructed the process of conversion needed to develop 
effective strategies to relate different representations of functions.  

We found that students’ definitions of two variable functions can be classified in essentially 
three groups. The first one contains definitions of the function machine sort: two inputs→ one 
output, or input→ output (5 students); the second one uses variable dependence, algebraic 
expression, or formula (4 students); and the third type of definition is given in terms of geometric 
images (4 students).  

Fernando’s definition, for example, was given in terms of an input→ output conception, 
which can be related to a process understanding of function: 

Fernando:  so that for each, …, so that for my domain, for each element of my domain, I 
can only have one point in the range and no more points for each point in the 
domain 

Interviewer: and what is it that makes the function be of two variables? 
Fernando:  of two variables? That I have two different … because my function, because my 

output depends on two inputs, precisely, and we have two variables 
Gaddis uses a formula; this can be related to an action conception of function: 
Gaddis:  …, for me a function of two variables is a function of the form (,)fxy  is equal 

to x … a term in x, a term in y, and a constant or any number, then the domain 
would be, the two variables, that would be independent … and the range would 
be the result of those two variables evaluated in the function.  

Pablo, whose definition was very clear, seemed to be guided by a geometrical model:  
Pablo:  …, a function of two variables means, is, that starting from a certain region in a 

plane one can, that is, of variables x y, a height function can be constructed and 
for each point in that x y region there exist only one defined height 

When considering only the definition for two variable functions given by students, it may 
seem that some of them have a process conception of these functions, however, when relating 
their definition with their responses to the other tasks it is shown that this is not the case: they 
have not interiorized their actions and they are not always able to do treatments and conversions 
on different representations. 

 
 

Discussion 
All the interviewed students had successfully finished a course on multivariate calculus in 

their university, but in spite of this, showed a very shallow understanding of the concept of two 
variable functions. They were not able to coordinate the schema that were considered to be 
important in the construction of this concept. 

If we review the historical development of the function concept as summarized in Kleiner 
(1989) and Sfard (1992), we find the development of the concept can be divided in three stages: 
The first formal definition of function was given by Johann Bernoulli in 1718: “one calls here 
Function of a variable a quantity composed in any manner whatever of this variable and 
constants.” This definition is similar to that given by Euler in 1748: “a function of a variable 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

79 

quantity is an analytical expression composed in any manner from the variable quantity and 
numbers or constant quantities.” Latter developments required that the definition of function 
could include cases where functions were not expressed by equations. Further developments 
spurred by the need for rigor, together with the great growth experienced in all fields of 
mathematics in the late 19th and early 20th centuries, led to the prevalent view of function as a 
mapping between arbitrary sets and Bourbaki’s definition of a function as a set of ordered pairs. 

Results show that students’ idea of a function seems to be pre-Bourbaki, but this does not 
deter many of them from succeeding in an undergraduate multivariable calculus course. 
Objectives of teachers of these courses include helping students develop a deep understanding of 
the concept of function. In particular we consider teachers would like to help students construct 
an object conception of two-variable function, as a set of ordered pairs.  

We can conclude that results of this study show that students’ conception of domain of a two 
variable function is not clearly differentiated from that of real valued functions. Their difficulties 
finding or describing the domain of functions can be related to a lack of coordination between 
the schema of R2 and that of function, and with conversions between representations. These 
difficulties underline the difficulty involved in the generalization that takes place in the transition 
between functions of a real variable and multivariable functions. It seems that the assumption 
that this generalization is straightforward for most of the students is not valid. Results on domain 
and range of functions show that these students were not able to interiorize the notion of two 
variable functions into a process even though they had already finished a calculus course on 
multivariable functions. 

The relationship between students’ notions of domain and range of a two variable function 
and their construction of the general concept of function is less clear from the data of this study. 
We found students who showed good understanding of domain and range of functions of two 
variables but whose general definition of function did not enable them to consider functions 
defined on arbitrary sets, and uniqueness of image. Other students’ definition of two variable 
functions showed some aspects that could be related to interiorization of this concept, but 
demonstrated a poor understanding of domain and range of specific functions in different 
representations. We consider that more research is needed to gain a deeper understanding of this 
relationship. 

The results of this study show that the description of how a student may construct the notion 
of a function of two variables has many subtleties that need to be addressed in instruction if 
students are to achieve at least a process conception of the modern function concept. One 
difficulty that had been reported has to do with the structure of students’ schema for three-
dimensional space, which includes building a subschema of subsets of R3 to be able to analyze 
graphically functions of two variables (Trigueros & Martínez-Planell, 2007). The construction of 
the function concept as a process requires that students interiorize actions on sets. They also need 
to differentiate between functions of one and two variables and be able to consider subsets (in 
particular, restricted domains) of R2 (and ordered pairs) as domains of functions. Further, the 
action of assigning a unique value to each point on a subset of R2 needs to be interiorized into a 
process that includes the treatments and conversions needed to identify important elements in 
each representation and to relate different function representations. As seen repeatedly in the 
analysis of results, students frequently struggle when doing actions on representation registers 
and when converting between them. To address this, and agreeing with Duval’s position on 
cognitive development (2006) and Gagatsis, et al (2004), we consider that much work was to be 
done with functions in different representations. Representations constitute different entities and, 
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as such, require explicit instruction; actions to perform treatments and conversions and 
opportunities to interiorize them as processes must be part of the instructional process.  
 

Endnotes 
1. This project was partially funded by Asociación Mexicana de Cultura A.C. 
 

References 
Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A 

framework for research and development in undergraduate mathematics education. In J. 
Kaput, E. Dubinsky, & A. H. Schoenfeld (Eds.), Research in collegiate mathematics 
education II (pp. 1-32). Providence, RI: AMS 

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), 
Advanced mathematical thinking (pp. 95-123). Dordrecht, NL: Kluwer. 

Dubinsky, E. (1994). A theory and practice of learning college mathematics. In A. Schoenfeld 
(Ed.), Mathematical thinking and problem solving (pp.221-243). Hillsdale, NJ: Erlbaum. 

Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical 
thinking. In F. Hitt and M. Santos (Eds.), Proceedings of the XXI Annual Meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics 
Education, 3-26. Columbus, OH: ERIC 

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of 
mathematics. Educational Studies in Mathematics, 61(1), 103-131. 

Gagatsis, A., Christou, C., & Elia, I. (2004). The nature of multiple representations in developing 
mathematical relationships. Quaderni di Ricerca in Didattica, 14, 150-159. 

Kleiner, I. (1989). Evolution of the function concept: A brief survey. The College Mathematics 
Journal, 20(4), 282-300. 

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification: 
The case of function. In E. Dubinsky & G. Harel (Eds.). The concept of function: Aspects of 
epistemology and pedagogy (pp. 59-84). United States: MAA. 

Trigueros, M. & Martínez-Planell, R., (2007). Visualization and abstraction: Geometric 
representation of functions of two variables. In T. Lamberg & L.R. Wiest (Eds.), 
Proceedings of the 29th Annual Conference of the North American Chapter of the 
International Group for the Psychology of Mathematics Education, 100-107.  

 
 
 
 
 
 
 
 
 
 
 
 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

81 

THE ROLE OF REVERSIBILITY IN THE LEARNING OF THE CALCULUS 
DERIVATIVE AND ANTIDERIVATIVE GRAPHS 

 
Erhan Selcuk Haciomeroglu 
University of Central Florida 

erhansh@mail.ucf.edu 

Leslie Aspinwall 
Florida State University 

laspinwall@fsu.edu 

Norma Presmeg 
Illinois State University 

npresmeg@ilstu.edu 
 

This study examines three calculus students’ cognitive processes as they sketched antiderivative 
graphs when presented with derivative graphs. As we explored the students’ analytic or visual 
strategies leading to different and sometimes divergent interpretations of derivative graphs, we 
provide insight into how students’ understandings can be enriched by establishing reversible 
relationships between graphs of functions and their derivative or antiderivative graphs. Our 
results suggest that their work and thinking illustrate the importance of flexibility and 
reversibility of thinking in the complete understanding of differentiation and integration in 
calculus.  

 
Background 

The visual and analytic elements of mathematical thinking have been the subject of 
discussion and debate for decades (e.g., Zazkis, Dubinsky, & Dautermann, 1996). This study 
explores three calculus students’ analytic or visual strategies as they sketched antiderivative 
graphs when presented with derivative graphs. Our descriptions of the students’ thinking 
processes demonstrate that establishing reversible relations can greatly enhance their 
understanding of derivative and antiderivative graphs. 

Visualization and visual thinking have been focal points of studies reforming the way 
calculus is taught. Zimmermann (1991) considers the understanding of differentiation from a 
graphical point of view as a fundamental aspect of visual thinking in calculus and suggests that 
students be able to sketch the graph of the derivative, the second derivative or an antiderivative 
of a function, given a graph of a function. Berry and Nyman (2003) conclude that students’ 
abilities to draw graphs of functions from graphs of derivatives will enhance their conceptual 
understanding of the derivative and its connections to the concept of the integral.   

Research literature (e.g., Presmeg, 2006) supports the assertion that understanding of 
mathematics is strongly related to the ability to use visual and analytic thinking. Similarly, 
Hughes-Hallett (2002) advocates a balance between graphical, numerical, analytical, and verbal 
expressions. Despite the considerable effort that has been spent exploring the relationship 
between visual and analytic thinking, the role of reversibility – switching from a direct to a 
reverse train of thought (Krutetskii, 1976) – in the understanding of the relationship between 
differentiation and integration, the inverse processes of calculus, has not been adequately 
described. Norman and Prichard (1994), whose work suggests that reversibility is closely related 
to the understanding of calculus, contend that when rules of integration are introduced, students 
who do not use reversibility to reason and understand differentiation and integration tend to view 
these processes as rather unrelated processes, each of which has its own rules to be memorized. 

In this study, our goal was to gain understandings of three calculus students’ thinking 
processes. We observed that these students’ visual or analytic strategies led to different and 
sometimes divergent understandings of derivative graphs. In this paper, as the students attempted 
to relate the derivative graph to its antiderivative graphs, we illustrate how their understandings 
can be enriched by changing thinking processes and establishing reversible relations between 

mailto:npresmeg@ilstu.edu
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graphs of functions and their derivative or antiderivative graphs. It was the thinking processes in 
these attempts that we analyzed based on their responses and sketches while solving the tasks 
during interviews. We describe our research findings about their cognitive processes and discuss 
pedagogical implications of these results. 

Theoretical Framework 
The research of Krutetskii (1976) and Presmeg (2006) is influential in our analyses of 

students’ cognitive processes in calculus and enables us to describe students’ thinking processes 
and difficulties associated with the use of visualization. Krutetskii (1976) identifies analytic, 
visual, and harmonic thinkers according to their preferences for visual or analytic thinking. A 
student who has a predominance toward the analytic relies strongly on analytic thinking and 
relies little on visual thinking. Conversely, a student who has a predominance toward the visual 
relies strongly on visual thinking and relies less on analytic thinking. Harmonic students rely 
equally on analytic and visual thinking. Krutetskii found that analytic students’ strong tendency 
to rely on analytic means results in a certain one-sidedness in their mathematical development. 
Visual students do need to interpret visually an expression of an abstract mathematical 
relationship or to operate with visual schemes and images even when a problem is easily solved 
by reasoning and the use of visualization is unnecessary or difficult. According to Krutetskii, to 
certain extent, it is a hindrance for visual students to be riveted to visual patterns. In his studies 
with gifted students, Krutetskii identified several mathematical abilities related to successful 
problem solving, including reversibility and flexibility. Reversibility refers to the ability of 
establishing two-way reversible relations as opposed to one-way relations which function only in 
one direction. According to Krutetskii, “In a reverse train of thought, the thought does not always 
have to travel over precisely the same route, but simply moves in reverse order” (p. 287). In the 
case of flexibility of cognitive processes, to find different or elegant solutions, the successful 
problem solvers switched from one cognitive process to another without any difficulty. 

We take the position that visual imagery resides in a person’s mind, and we have used the 
terms “image” and “imagery” interchangeably to mean a mental construct depicting visual and 
spatial information (Presmeg, 1986). Our work also is framed by Presmeg’s (2006) study in 
which five kinds of visual imagery, associated with visual thinking, are identified: concrete 
imagery, memory images of formulae, pattern imagery, kinesthetic imagery, and dynamic 
imagery.  During her interviews with visual students, rich and fully detailed concrete imagery 
was the most prevalent, and dynamic imagery, effective in depicting transformations and 
movements, was rarely used.  In the literature, several difficulties verifying the limitations of 
imagery have been documented (e.g., Haciomeroglu & Aspinwall, 2007; Aspinwall, Shaw, & 
Presmeg, 1997).  Presmeg observed that visual dynamic imagery was effective and visual 
students who were able to combine visual imagery and analytic means avoided the drawbacks 
associated with the use of imagery.  Owen and Clements (1998) confirmed Presmeg’s findings 
that dynamic visual imagery produces high levels of mathematical functioning.   

 
Methodology 

In a semester-long study, we developed cases describing three calculus students, Amy, Bob, 
and Jack, who had completed an elementary calculus sequence. We conducted weekly task-based 
interviews, during which they were presented with derivative graphs of functions (see Figure 1) 
and asked to draw possible antiderivative graphs as we sought to gain understanding of their 
thinking processes. In this paper, the term antiderivative has been used to describe a graph of a 
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function from which a given derivative graph can be drawn, and the terms differentiation and 
integration are used describe the two inverse processes of calculus. We prepared an initial set of 
graphical tasks to start the interviews, and the remaining tasks were developed based on analyses 
of these weekly interviews. Each interview lasted about 20 minutes and was video-and audio-
taped. They were presented with one or two tasks during each interview and asked to think aloud 
while they were solving the tasks so that we could analyze their responses and strategies as well 
as describe and make inferences about their thinking processes. In the end, 16 graphical tasks 
were developed to describe the nature of the students’ understandings and investigate their 
strategies to create meaning for derivative graphs. One graphical task that illustrates differences 
among these students’ thinking and concomitant difficulties is discussed in this paper; other 
graphical tasks as well as the students’ work can be found in Haciomeroglu’s (2007) study.  

 
Data Collections and Results 

We illustrate Amy’s, Jack’s, and Bob’s thinking processes and show how analysis or 
visualization alone led to different interpretations of the derivative graph. In the next section, for 
the task in Figure 1, we discuss the case of Amy, who preferred analytic thinking, and later, in a 
second section, we discuss the cases of Bob and Jack for whom visualization was primary for the 
task. In a final section, we discuss the importance of reversibility and flexibility of thinking in 
the complete understanding of calculus and 
pedagogical implications for these results. 
Analytic Understanding  

The graphical task in Figure 1 with the following 
instructions was presented to Amy: The graph of the 
derivative ()fx′  of a function f(x) is shown.  Sketch a 
possible graph of f(x).  

When we first presented the task, Amy made no 
mention of graphic interpretations of the task and 
instead translated from the graphic representation to 
the algebraic representation. That is, she estimated the 
equation of the derivative graph as ()fx′ = 1/x.  While 
integrating the equation, Amy, without using the 
absolute value of x, wrote f(x) = ln x as its integral and 
drew the graph in Figure 2. Amy knew that her graph 
could be shifted vertically; that is, shifting a graph of a 
function vertically does not change its derivative graph.  
Due to her methods of integration, Amy thought that her 
graph in Figure 2, the natural logarithm, was undefined 
on the interval (–∞, 0) and excluded this interval from 
the domain.  

At the end of the study, after discussing sixteen 
graphical tasks with Amy, Bob, and Jack, we decided to 
discuss the task in Figure 1 with Amy again to 
determine whether she would use the same strategies 
that led to her misunderstanding in integrating and 

 
Figure 2. Amy’s sketch. 

 
Figure 1. The task. 
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interpreting equations in the previous interview. When presented with the task, Amy again 
estimated ()fx′ = 1/x as the equation of the derivative graph and computed its integral to draw 
the graph in Figure 3. 
Amy:  This graph looks a lot like the graph of 1/x.  It would be 1/2x or 1/3x but I just wrote it as 
1/x so the integral of 1/x is ln |x| but I wrote it as absolute value to take into account the negative 
part of the graph too.   

When asked if she could draw another graph from which the derivative graph in Figure 1 
could be drawn, Amy said that since there were not any specific values for the derivative graph, 
her graph could be compressed or stretched horizontally due to different coefficients or it could 
be shifted up or down vertically but there were no other graphs that could produce the derivative 
graph in Figure 1.  Consider this excerpt from the interview: 
Amy:  Another function [long pause] I don’t think so. 
I:  Is this the only graph we can draw? 
Amy:  If that were 1/2x, then we could have 1/2ln |x|.  This 

could be a little bit more gradual [draws a dotted 
line in Figure 3].  We could shift it up or down.   

Since Amy assumed that the antiderivative graph had to 
be a logarithmic function, she said that her graph could not 
touch or cross the y axis because the graph in Figure 3 had 
an asymptote at x = 0. Consider the following passage:   
I:  It’s approaching the y axis.  Do you think it will 
touch or cross the y axis? 
Amy:  No, there is an asymptote at [x =]0.  It’ll keep going 
down. 
I:  The original function, f, can’t be continuous? 
Amy:  Right. There is a discontinuity at [x =]0.  
Analysis of Amy’s Understanding 

Amy, without any apparent attempt to utilize visual means, estimated an equation of the 
derivative graph and integrated this equation to draw a possible antiderivative graph. Apparently, 
for Amy, the derivative graph represented an equation and this indicates her preference for 
analytic thinking for the graph in Figure 1. For the derivative task presented graphically, Amy’s 
responses suggest that her thinking is Krutetskii’s (1976) analytic type. We observed that Amy 
used analysis as the primary method in her work but her analytic approach without visual support 
hindered her thinking; that is, due to her methods of integration, initially she thought that her 
graph was not defined on the interval (–∞, 0).  Later, she correctly integrated the equation but 
continued to assume that her graph had to be discontinuous. In addition, Amy’s responses 
illustrate how her strong preference for analytic thinking and working in one-direction – from the 
derivative graph to its antiderivative graphs – instead of working in both directions exerts an 
influence on her thinking. Since Amy determined the equation as well as the graph of the 
antiderivative based on the equation extracted from the derivative graph, without considering 
whether other functions or graphs could create the same derivative graph, she said her graph did 
not touch the y axis and could not be continuous. If she had visualized the changing slopes of a 
possible antiderivative graph or considered the derivative of a graph with a cusp, perhaps she 
would have thought of other possible antiderivative graphs.  

 
Figure 3. Amy’s sketch. 
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Visual Understanding  
The graphical task in Figure 1 with the same instructions was presented to Bob and Jack.  

First, we consider the case of Bob. When we presented the task to Bob, he examined how the 
slopes changed on the derivative graph and transformed the slopes of tangent lines into the graph 
in Figure 4. Consider this excerpt from the interview:  
Bob:  Very little slope to big negative slope [approaches the y axis from the left in Figure 1] 

and it [slope] would be going to be a very high positive slope [approaches the y axis from 
the right in Figure 1].   

Bob’s descriptions of changing slopes suggest that he was employing Presmeg’s (2006) 
dynamic imagery when he visualized the changing slopes of 
tangent lines to determine the shape of the antiderivative 
graph. Bob drew the graph in Figure 4 on the basis of his 
estimates for the slopes. Then, he tried to determine the 
continuity with the help of visual means as the following 
excerpts from the interview suggest:  
Bob:  This [the graph in Figure 4] can move up and down.  

Even though this [the graph in Figure 1] tells me the 
change in my parent function, in my integral, just 
because the derivative [in Figure 1] changes from 
positive to negative, doesn’t mean your integral [in 
Figure 4] does.  It just means slope goes from positive 
to negative.   

Bob has just said that a discontinuity on a derivative graph indicated only a quick change of 
slopes on its antiderivative graph and not a discontinuity. Bob knew that his graph could be 
shifted vertically but was not sure whether it was continuous or not. 
Analysis of Bob’s Understanding 

Bob described how the changing slopes (or y values of the derivative graph) determined the 
shape of the antiderivative graph without significant support from analytic thinking, and we 
consider this to be an example of the dynamic imagery described by Presmeg (2006). In this task, 
Bob’s preference for visual thinking reinforces our belief that his thinking is representative of 
Krutetskii’s (1976) visual type. For Bob, a derivative graph, representing the changing of slopes 
of its antiderivative graph, determined the antiderivative graph. Like Amy, Bob preferred to 
work in one direction – from the derivative graph to its antiderivative graphs – as he was 
working through the task. Without any attempt to estimate possible equations of the derivative 
graph or to consider derivative graphs of both continuous and discontinuous versions of his 
sketch, Bob determined the continuity of his graph based on his estimates for the changing 
slopes. 

Now, we consider the case of Jack. For this task in Figure 1, Jack demonstrated a strong 
preference for visual thinking. That is, without any apparent attempt at translating the derivative 
graph into another representation, Jack visualized the changing slopes and transformed the 
derivative graph into the graph in Figure 5. Consider this excerpt from the interview: 
Jack:  This [the graph in Figure 1] approaches 0.  It [slope] gets to negative infinity [approaches 

the y axis from the left].  As we go to negative infinity, ()fx′  goes to 0 and likewise it 
happens to f(x). We approach y axis from the right, it [slope] goes to positive infinity [in 
Figure 1].  We are going to positive infinity.  It’s [slope] approaching 0.   

 
Figure 4. Bob’s sketch. 
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For this task, Jack’s thinking was predominantly 
visual, and he relied on his estimation of slopes to 
draw the graph in Figure 5. Jack employed dynamic 
images (Presmeg, 2006) while describing the changing 
slopes. When we asked whether his graph could be 
shifted vertically, Jack responded: 
Jack:  This [the graph in Figure 5] can go up or down.  

This can’t go right or left.  They can go up or 
down independently of each another.  There is 
no value given for any specific point in f(x) 
here so you can change something there in the 
location along the y axis.   

Jack’s response illustrates how he could easily visualize different antiderivative graphs 
without analytic support. Jack said that the graphs on both sides of the y axis in Figure 5 could be 
shifted up or down independently or together but not horizontally. To further explore his 
thinking, we asked Jack whether his graph could be continuous. Consider the following passage.  
Jack:  Because ()fx′  [the graph in Figure 1] isn’t continuous at the y axis, it’s [the graph in 

Figure 5] not continuous at the y axis.   
As seen in the excerpts, since the derivative graph in Figure 1 is not continuous at x = 0, Jack 
thought that its antiderivative graph had to be discontinuous at that point.   
Analysis of Jack’s Understanding 

Although Jack, like Bob, used visualization as the primary method in their work, Jack had a 
different interpretation about the continuity of his graph; that is, Jack thought his graph had to be 
discontinuous at x = 0 where the derivative graph was discontinuous. Like Amy and Bob, Jack 
worked in only one direction – from the derivative graph to its antiderivative graphs – and did 
not demonstrate any attempts to reverse or change his thinking process. Instead, without apparent 
attempt to use analytic means, described how the slopes changed as he sketched a possible 
antiderivative graph. We considered this an act of Presmeg’s (2006) dynamic imagery, as our 
inferences of his work supported our belief that Jack’s thinking is representative of Krutetskii’s 
(1976) visual type.  

 
Conclusions 

For the calculus task presented graphically, Amy relied on analytic thinking, whereas Bob 
and Jack relied mainly on visual thinking. Their strong preferences for one mathematical 
thinking resulted in a one-sidedness in their understandings and presented different difficulties. 
For instance, since we presented a derivative graph, Amy, demonstrating a strong preference for 
analytic thinking, reversed the procedure by estimating and integrating the equation of the 
derivative graph and used that equation to draw a possible antiderivative graph. Due to the 
equation she estimated for the derivative graph, Amy thought that the antiderivative graph had to 
be a logarithmic function with a vertical asymptote. On the other hand, Bob’s and Jack’s visual 
approaches were quite similar in addressing the derivative graph. They employed dynamic 
images to transform the derivative graph into the antiderivative graph. From their responses, we 
inferred that in the absence of analytic support, dynamic images interfered with their cognition. 
Although, for them, a derivative graph represented the changing of slopes of its antiderivative 
graph, they interpreted the discontinuity on the derivative graph differently. For instance, at the 
point where the derivative graph was discontinuous, Jack claimed that the antiderivative graph 

 
Figure 5. Jack’s sketch 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

87 

had to be discontinuous while Bob said that the antiderivative graph was continuous with a 
drastic change of slopes.      

We agree with Norman and Prichard (1994) that the Krutetskiian perspective and problem-
solving processes – flexibility and reversibility – provide an insightful framework to analyze and 
describe students’ understanding in calculus. From the students’ descriptions of how they made 
their graphs, we conclude that their lack of flexibility in their cognitive processes or their 
reliance on one mathematical processing led to different and sometimes divergent interpretations 
of the same derivative graph. The idiosyncrasies in their work and thinking – estimating 
equations or visualizing slopes – illustrate the importance of flexibility and reversibility of 
thinking in the complete understanding of derivative and antiderivative graphs. The students did 
not demonstrate any apparent attempt to reverse their thought processes (or thinking in a reverse 
direction). Moreover, we consider their visual or analytic interpretations of the derivative graph 
to be an example of a one-way relationship (differentiation→ integration), described by 
Krutetskii (1976), not as a reversible two-way (differentiation↔ integration) relationship. 
Differentiation and integration, two fundamental concepts of calculus, are by their nature inverse 
processes, which suggest the use of reversibility of thinking when exploring the relationship 
between graphs of functions and their derivative or antiderivative graphs. We suggest that 
students’ understanding of analytic and visual strategies and establishing reversible relationships 
between functions and their derivative or antiderivative graphs go together as students construct 
mathematical meaning for the concepts of differentiation and integration.  

We conclude that failure to emphasize both analytic and visual aspects of these reversible 
processes can be an impediment to students’ conceptual understanding of calculus. It is 
suggested that students be encouraged to associate a graph of a function with its derivative and a 
graph of a function with its antiderivatives as they examine graphs of various functions. For 
example, in this case, students can be asked to reverse their thinking to decide if any other 
antiderivative graph could have created the discontinuity in Figure 1. By encouraging students to 
utilize different mathematical thinking – for example, visual and analytic – and encouraging 
them to establish a two-way reversible relationship when interpreting data from derivative or 
antiderivative graphs, it is possible that students will overcome their difficulties and gain a wider 
and more robust perspective that cannot be provided without flexibility and reversibility of 
thinking. 
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Graduate school socialization describes the process in which graduate students become 
members of the community of an academic discipline. This is important because the primary 
purpose of graduate school is to prepare individuals for a career, typically as a professor and/or 
researcher, in a particular academic discipline. This paper uncovers a role of social interaction 
in the socialization of mathematics doctoral students into the community of mathematicians by 
examining one slice of mathematics doctoral student social interaction, namely peer 
interactions, to demonstrate how processes of affective socialization take place and their 
significance on students’ views of mathematics and mathematics research. 

 
Introduction 

Over half of doctoral students in the United States leave prior to finishing their degrees 
(Lovitts & Nelson, 2000; Nettles & Millett, 2006). And for some disciplines, such as 
mathematics, the rate of departure is even greater (Council of Graduate School, 2008). The 
departure of students from doctoral study comes at a high cost for the student and the university 
(Gardner, 2008; Lovitts, 2001). And although many perceive that the high attrition is needed to 
“weed out” those who are not capable, prior research indicates that a good deal of attrition is 
unnecessary and preventable (Golde, 2005; Herzig, 2002).  

In addition, few women and minorities participate in doctoral study of mathematics. In 2007-
2008, of the 540 new mathematics doctoral recipients, who were U.S. citizens, only 166 (31%) 
were female and only 79 (15%) were minorities (Phipps et al., 2009). Broadening the focus of 
mathematics to increase the participation of women, minorities, and others who typically do not 
“fit in” may enrich the discipline of mathematics by expanding the range of mathematical 
thought and as a result, “help the profession flexibly meet the challenges posed by the growing 
quantitative sophistication of economic and political structures of the 21st century” (Herzig, 
2004, p.173-174).  Therefore, educational researchers need to determine what individual skills 
and knowledge and departmental systems and support help mathematics doctoral students (and 
women and minority mathematics doctoral students, in particular) succeed.  

Many, including faculty, attribute student attrition to personal characteristics, such as interest 
in the field, lack of academic ability, and lack of drive, and conclude that raising admission 
requirements will increase student persistence. Yet, no difference in qualifications has been 
found between students who persist and students who leave (Lovitts & Nelson, 2000). Instead, 
both personal characteristics and departmental structures, including financial support, social and 
academic integration into the departmental community, family responsibilities, and impending 
requirements, have been shown to influence students’ decisions not to persist (Earl-Novell, 2006; 
Herzig, 2004; Lovitts & Nelson, 2000).  

It appears that many of the personal characteristics and departmental structures connected to 
attrition are aspects of the socialization of mathematics doctoral students into the mathematics 
community. However, no study of has looked at doctoral mathematics student socialization or 
examined attrition through the mathematics doctoral student socialization lens. This paper begins 
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this inquiry by examining the role of social interaction in the socialization of mathematics 
doctoral students 

  
Defining Graduate Student Socialization 

In general, socialization is the process through which a novices “acquire the values and 
attitudes, the interests, skills, and knowledge, in short the culture, current in the groups of which 
they are, or seek to become a member” (Merton, 1957, p.287). More specifically, and for the 
purposes of this paper, graduate school socialization is used to describe the process in which 
individuals in graduate school become members of the community of an academic discipline 
(Gardner, 2008; Golde, 1998). This is important because the primary purpose of graduate school 
is to prepare individuals for a career (i.e., participation), typically as a professor and/or 
researcher, in a particular academic discipline (Weidman & Stein, 2003). At the same time, 
however, graduate students must participate in the graduate school community. Therefore, the 
socialization of graduate school is a “double socialization”, in which students simultaneously 
learn to participate in graduate student life and prepare to participate in the community of their 
academic discipline (Golde, 1998).  

Graduate student socialization has two dimensions: cognitive and affective. The cognitive 
dimension is the academic portion and refers to learning the knowledge and skills of the 
discipline. The affective dimension refers to learning how to participate in the social aspects of 
the discipline. Students become cognitively socialized as they take classes, learn to participate in 
research, take part in professional activities (including attending and presenting at conferences 
and writing and publishing professional papers). The means for affectively socializing graduate 
students is much less clear but occurs through personal interactions (both formal and informal) 
with faculty and peers in their department. And, since many of these social interactions occur 
during the activities in which students become cognitively socialized, both aspects of 
socialization typically occur simultaneously (Golde, 2000; Merton, 1957; Tinto, 1993; Weidman 
et al., 2001). Graduate school socialization has been closely linked to both students’ intellectual 
development and doctoral persistence (Golde, 2000, 2005; Tinto, 1993; Turner & Thompson, 
1993).  
Mathematics Graduate Student Affective Socialization 

In most fields, doctoral study is associated with isolation, and mathematics is no exception. 
Researchers continually discuss the virtually nonexistent social dimension of mathematics 
doctoral study (Herzig, 2002, 2004; Stage & Maple, 1996). And attrited mathematics doctoral 
students commonly cite isolation as a central reason in their decisions not to persist (Earl-Novell, 
2006; Herzig, 2002, 2004; Hollenshead et al., 1994; Stage & Maple, 1996).  

Social interaction is important for affective socialization into the graduate school community. 
Social membership within one’s program becomes part and parcel of academic membership, 
and social interaction with one’s peers and faculty becomes closely linked not only to one’s 
intellectual development, but also to the development of important skills required for 
doctoral completion (Tinto, 1993, p.232).  

It would also seem likely that social interaction is the primary means for affective socialization 
of graduate students into the community of mathematicians. This leads to questions of how 
doctoral students are being prepared to participate socially in the community of mathematicians 
and whether improving affective socialization of doctoral students would lower attrition.  This 
paper begins to address these questions by examining one slice of mathematics doctoral student 
social interactions, namely peer interactions, to demonstrate how processes of affective 
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socialization take place and the significance of these processes on students’ views of 
mathematics and the mathematical community.  

 
Background: The Doctoral Study of Mathematics 

Doctoral study of mathematics has two distinct stages. During the first stage, the coursework 
stage, students focus almost entirely on completing coursework requirements. This stage 
culminates in the successful completion of qualifying exams, which demonstrate to the 
department that the student has become an integral member of the course-taking community and 
is therefore, prepared to begin doctoral research. The second stage, the completion of a doctoral 
dissertation, marks the period between passing comprehensive exams and receiving the doctoral 
degree. During this stage, students complete a dissertation research proposal, go through the 
complete research process, and defend their final dissertation. 

 
Method  

The analysis draws on the data collected from three female participants in a pilot study for a 
larger research project on women mathematics graduate students. The three female participants are 
doctoral students in the mathematics department at a university in the Southeastern United States. 
All participants engaged in semi-structured, individual interviews with the two authors. Interviews 
were open enough to allow participants to raise issues of their own that they deemed as significant 
to their experiences in K-12, undergraduate, and graduate mathematics. Each interview lasted 
approximately one hour. The interviews were audiotaped and then transcribed.  

The data were analyzed using the constant comparative method, which has three phases in the 
data analysis: (a) intensive analysis, (b) developing categories, and (c) developing theory 
(Merriam, 1998). Contradictions were also examined and conjectures were made concerning the 
contradictory data. The data were analyzed for significant themes as well as differences in order to 
convey the complexity of individuals’ responses (Fine & Weiss, 1998).   

The primary themes identified in the data were the competitive nature of graduate study of 
mathematics and in the field of mathematics, in general; support for students’ lives outside of the 
department; the challenging nature of mathematical research; the importance of peer support and 
peer interactions; conflicts between teaching and research; the role of advisors; the benefits of 
pursuing a Master’s degree prior to enrolling in a doctoral program in mathematics; and 
independence and isolation in graduate study of mathematics. Through careful analysis of these 
categories and their relationships, talking out problems, a type of peer interaction, emerged as an 
important tool in successful study of graduate mathematics and mathematical research for these 
participants.  

In the text that follows, particularly articulate quotes are used to present and highlight common 
themes discussed by the participants. Quotes from each of the participants have been included to 
ensure that all voices have been presented. To improve readability, quotes were minimally edited 
to remove stutters and distracting expressions such as ‘uh’ and to obscure references that might 
reveal participants’ identities. 

 
Findings  

Peer Interaction During Coursework  
The competitive nature of the department was a common theme across the interviews. Yet, 

the participants all indicated the importance of peer interaction in their success during the 
coursework stage. Specifically, talking out problems (i.e., a peer interactions in which a student 
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talks to peers about a problem and the difficulties in solving it in order to better process, 
integrate, and understand the problem and how to approach it) was consistently described as the 
most valuable peer interaction for these students.  

In graduate level mathematics, students face difficult problems with no clear path to a 
solution. In addition, professors often believe that students should struggle with problems on 
their own and therefore, hesitate to give students help on assignments. As a result, peers become 
a key resource on difficult assignments. Students indicated that they wanted to figure out the 
problems on their own; so, peers were primarily used as sounding boards to talk out problems.  

…I found out that I can solve problems by just talking with other people about them and 
somehow come up with solutions, even if they aren’t really working on the problem yet or 
don’t know the answer. 

Thus, talking out a problem was a tool that helped students to solve complex mathematical 
problems that they had not been able to solve on their own and was seen as central to their 
success during the coursework phase of doctoral study. 
The Elimination of Peer Interaction During Dissertation Research 

However, upon entering the second stage of their doctoral program, participants were told 
that talking out a problem was not acceptable. One of the participant’s advisors went as far as to 
forbid the student from discussing her dissertation research with other students.  

You’re expected to do your work very independently and not collaborate with anybody… I 
was literally told by my dissertation advisor that I was not allowed to work with anybody on 
anything related to my dissertation. 

And because the elimination of talking out problems was difficult for her; she attempted to 
explain its importance to her advisor.  

I try to tell him, “I need to talk these things out.” For some reason he thinks that means that I 
don’t have the ability to do it myself. So, I think it’s a different perception. 

The participants perceived that dissertation research was characteristic of mathematical research, 
in general. In other words, they indicated that mathematical research is done in isolation. This led 
one participant to question the necessity of social isolation in mathematical research.  

You have to ask yourself if it’s always going to be that way. In an interdisciplinary field, like 
mine, I think I could be trained to be a team player, and I would be fine that way… And 
unfortunately, I think it will take 20 years for the community to catch up to that… I think 
there is a large section of old school professors who still believe that independent research is 
the only true research… 

As these comments indicate, students discover that peer interactions (and talking out problems, 
in particular) can be useful tool in mathematical research. Yet, as they enter into their 
dissertation research, they are led to believe that it is unacceptable in the community of 
mathematicians.  
 

Conclusion 
The primary purpose of doctoral study of mathematics is to prepare individuals for a career 

in mathematics, typically as a mathematics professor and/or researcher.  So, during doctoral 
study, students should become socialized into the community of mathematicians and 
mathematical researchers. At the same time, however, graduate students also learn how to 
successfully participate in the mathematics graduate school community. This is sometimes 
problematic because socialization is not uniform across individuals or communities (Turner & 
Thompson, 1993).  
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Traditionally, mathematical researchers have been stereotyped as working alone on problems 
and only communicating with others after a solution has been found, as peers review the 
findings. Yet, this stereotype is often not accurate. Although some mathematicians do work in 
isolation; many mathematicians work collaboratively to solve problems. For example, in an 
interview study of 70 research mathematicians, Burton (1999) found that all but four of the 
participants used collaboration in their research. 

Mathematics doctoral students typically have little experience with mathematical research 
prior to beginning the dissertation. And, the findings from this pilot study indicate that although 
mathematics doctoral students develop an appreciation for peer collaboration in mathematical 
research; they are led to believe that it is at odds with acceptable practice in mathematics 
research. This is in direct contradiction to what is actually happening in the community of 
mathematical researchers and leads to several questions, which can be addressed in future 
research.  

The first, and foremost question is whether doctoral students are being adequately socialized 
into the mathematical community? In particular, if the community of mathematical researchers 
values collaboration, is forcing students to work in complete isolation on their dissertations a 
detriment to students’ socialization into the community of mathematical researchers? Second, is 
talking out a problem a gender- or culture-specific strategy that is under-valued by the dominant 
culture. And, if this strategy becomes more accepted in mathematical research, would more 
women and minorities choose to participate in mathematics and mathematical research? Finally, 
this pilot studied uncovered one peer interaction that appears to be a valuable tool for solving 
mathematical problems. Are there others that can be uncovered in future research? 
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Dimensional analogy as a technique and different coordinate systems, apart from their intrinsic 
mathematical interest, are used in many types of applications in the sciences, engineering and 
art. As part of the process of the construction of an epistemic network for the subject, the 
identification of objects and dualities that emerge from this mathematical activity was carried 
out. The transformation of expressions to content through semiotic functions, and the 
identification of chains of signifiers and meanings, can be accomplished because of the rich 
layering and complexity of these mathematical concepts. Multivariate calculus students’ 
responses to questions involving these notions were used for classification, according to the 
socio-epistemic network. 

 
Dimensional Analogy and Different Coordinate Systems 

     The relationship between spatial dimension as a geometric concept, and the algebraic 
representation of dimension as lists of coordinates, has been recorded in textbooks as well as 
books and articles of general mathematical circulation, both pure and applied (Rucker, 1977; 
Banchoff, 1996; Tucker, 2007; Doren & Lasenby, 2007). The abstract relations are present from 
the beginning levels of algebra, but the present study privileges the multivariate calculus course 
where, as expressed in Montiel, Wilhelmi, Vidakovic and Elstak (in press): 

… it is in the multivariate calculus course where students, many for the first time, are expected to 
deal with space on a geometric and algebraic level after years of single variable functions and the 
Cartesian plane. They must define multivariable and vector functions, deal with hyperspace,… 
find that certain geometrical axioms for the plane do not hold over (lines cannot only intersect or 
be parallel, they can also be skew), and work with functions in different coordinate systems.  

The issue of transiting between different coordinate systems, as well as the notion of 
dimension in its algebraic and geometric representations, are significant within undergraduate 
mathematics. Deep demands are made in both conceptual and application fields with respect to 
understanding and competence.  

It is common to think of dimensional analogy as a method which permits the visualization of 
the fourth dimension (Weeks, 1985; Banchoff, 1996). To those interested in understanding the 
nature of multiple spatial dimensions, by taking a step back to the second dimension and trying 
to understand certain physical aspects, and then looking at the third dimension, an understanding 
of what the fourth spatial dimension would mean can be developed. For example, there are 
techniques that use generalizations, such as looking at the boundaries of one, two and three 
dimensional objects. On the other hand, there exist two ways of looking at dimension, that is, 
extrinsically or intrinsically. Briefly, the “extrinsic” point of view considers curves and surfaces, 
in particular lines and planes, as lying in a Euclidean space of higher dimension (for example a 
plane in an ambient space of three dimensions). According to the “intrinsic” point of view one 
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cannot speak of moving 'outside' the geometric object because it is considered as self-contained. 
The inhabitants of Flatland consider their plane from an intrinsic point of view. For them, there is 
no space, no third-dimension. 

The mathematical activity with lists of coordinates beyond the triple is usually introduced in 
the linear algebra context and, although mentioned in the multivariate calculus course, it is 
primarily the triple that displaces the ‘ordered pair’ (although, when working with gradients, the 
ordered pair returns, often in a way that may not be clear to the student). However, in triple 
integration the functions have a three dimensional domain (and one dimensional codomain), 
which means that the list indicating their geometrical representation would have four 
components. When dealing with functions whose three dimensional domains are expressed in the 
cylindrical or spherical coordinate system, it is not indicated, in any of the texts that were 
consulted, what that fourth component might look like. These are the types of mathematical 
issues that this study attempts to analyze when referring to dimensional analogy and different 
coordinate systems. 

 
Conceptual Framework 

Mathematical Objects 
 A mathematical object, in this study, will be considered anything that can be used, suggested 

or pointed to when doing, communicating or learning mathematics. The onto-semiotic approach 
(Godino, Batanero & Roa, 2005; Font, Godino & D’Amore, 2007) considers six primary entities 
which are: 

(1) Language (terms, expressions, notations, graphics);  
(2) Situations (problems, extra or intra-mathematical applications, exercises, etc.); 
(3) Definitions or descriptions of mathematical notions (number, point, straight line, mean, 

function, etc.); 
(4) Propositions, properties or attributes, which usually are given as statements; 
(5) Procedures or subjects’ actions when solving mathematical tasks (operations, algorithms, 

techniques, procedures); 
(6) Arguments used to validate and explain the propositions or to contrast (justify or refute) 

subjects’ actions. (Godino et al., 2005; Font et al. 2007) 
As important as the mathematical objects are: 1) the agents that move them and the meaning 

(straightforward or not) that is assigned to them; 2) the concrete appearance of these objects and 
the reference to ideal entities; and 3) their contextual and relational function with other 
mathematical objects. For these reasons, in the onto-semiotic framework, the following dual 
dimensions are also considered when analyzing mathematical objects: (Godino et al., 2005, 5): 

(1) Personal / institutional; 
(2) Ostensive / non-ostensive; 
(3) Intensive / Extensive; 
(4) Unitary / systemic; 
(5) Expression / content.  
These dual dimensions demonstrate how the primary entities must not be understood in an 

isolated manner, but according to their function and their relation in a contextualized 
mathematical activity. 
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Systems of Practices, Emerging Objects and Epistemic Networks 
According to the onto-semiotic approach (Godino & Batanero, 1994; Wilhelmi et al., 2007a), 

it is necessary to determine the meanings (plural) associated with mathematical objects in 
different contexts and organize them (the meanings) as a complex and coherent whole. The 
operative and discursive systems of practices, and their subsystems, understood as depending on 
the institutional and personal contents that are associated to a mathematical object, and the 
objects that emerge within these systems, form epistemic and cognitive networks. This means 
that if the systems of practices are institutional, the emerging mathematical objects are 
considered to be institutional objects, and if the systems of practices correspond to an individual, 
then the objects are personal, according to the duality specified above. Also, following this 
duality, the objects that emerge can be ostensive (such as symbols and graphs) or non-ostensive, 
that is, conceptual or mental. The contextualized and functional use of these objects as elemental 
entities cannot be divorced from their essentially relational nature that, at the end, justifies their 
adaptation, whether in particular  or general processes. 

Whereas the meaning of a mathematical notion represents the structured complex of a system 
of practices in a context, the holistic meaning of a mathematical notion represents the expression 
of the different (partial) meanings associated with the notion as one system. The holistic meaning 
comes from the coordination of the partial meanings associated with a mathematical notion 
(Wilhelmi et al. 2007b). Flexible mathematical thinking (FMT) is what permits the passage 
between different partial meanings, and the coordination or partitioning of the different meanings 
when necessary. 

Finally, in order to capture the semiotic complexity inherent in the communication of 
mathematics, it is important to identify the different objects that make up the mathematical 
practice in specific content areas and contexts. The resulting network is called a socio-epistemic 
configuration, and it captures the interplay of the objects and relations in a particular 
mathematical setting. This way, the personal meanings that are constructed when individuals 
carry out mathematical activity can be described by cognitive configurations. Evaluation of the 
learning and mathematical behavior of these individuals lies in the analysis of the relation 
between the socio-epistemic and cognitive configurations. 
Semiotic Functions and Representation 

 The onto-semiotic approach places great value on the relation between mathematical objects 
by means of the semiotic function (Godino & Batanero, 1997), as a relation between an 
expression and a content established by ‘someone’, according to certain rules of correspondence. 
Not only language, but the other types of objects such as concepts, situations, actions, properties, 
or arguments, can be expressions or content of semiotic functions. Font et al. (2007) pointed out 
that to understand representation in terms of semiotic functions has the advantage of not 
segregating the object from its representation. Indeed, given an object and a representation, in 
general it is not possible to identify a unique semiotic function between them, and even the 
representation can constitute the content in another context. For example, Alson (1989, 1991) 
shows how a Cartesian graph can be given an algebraic structure before the introduction and 
analytic development of the theory of functions. This fact determines an objectification process 
of a representation (in its broadest sense) that is prototypical in mathematics.  

 When talking about semiotic functions, the dependence relations can be either 
representational (one object is put in the place of another), instrumental (an object is used as an 
instrument by another) or structural (two or more objects conform a system out of which new 
objects emerge) (Godino, Batanero, & Font, 2007). An example of a representative semiotic 
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function, as opposed to structural or instrumental and related to other questions used in the 
interview that are not analyzed in this paper, could be a solid presented geometrically as the 
expression, and the formulation of a double integral ‘setup’ as the content. An instrumental 
semiotic function could have as expression the double integral, and as content the numerical 
answer, while the structural (or ‘cooperative’) semiotic function could take some region together 
with a double integral in terms of '' and ''xy  as the expression, and the set up of a double 
integral in terms of '' and ''uv over a simpler region (using the Jacobian) as the content. It should 
also be clear that the expression in one semiotic function could be the content in another. 

Research Questions 
(1) Do multivariate calculus students use dimensional analogy as a result of their transit 
from single variable to multivariable calculus? (2) In which primary entities is 
dimensional analogy used (if it is used)? (3) What primary entities and semiotic functions 
can be identified and classified, as students relate different coordinate reference systems 
to their previous study of calculus in the 2-dimensional Cartesian coordinate system? 

 
Context, Methodology, and Instrument 

The context of the present study is multivariate calculus (calculus III) as the final course of a 
three course calculus sequence, taught at a large public research university in the southern United 
States. Seven students were interviewed once in two groups, the first consisting of four students 
and the second of three. The interviews were video-recorded. Each interview was approximately 
an hour long. The students were first given a questionnaire, which is included in this text, on 
which they wrote down their responses, and they were then asked to explain them. For each 
question, the students were chosen in a different order, but it was inevitable that who spoke first 
would influence, in some way, the others. They were asked to explain verbally on an individual 
basis, but group discussion was encouraged when it presented itself. This report focuses only on 
the first question from the interview (table 1). 

Table 1. Question 1 
In rectangular coordinates the coordinate surfaces: x = x0, y = y0, z = z0 are three planes. 

(a) In cylindrical coordinates, what are the three surfaces described by the 
equations: r = r0, θ = θ0, z = z0? Sketch. 

(b) In spherical coordinates, what are the three surfaces described by the equations: 
ρ =ρ0, θ = θ0, 0φφ= ? Sketch. 

  
The intention of this question was to detect the students’ geometrical transition to 3D-space 

where, in the rectangular context, much emphasis was placed at the beginning of the course on 
the coordinate planes and the octants. These answers were important to begin to detect the 
process of dimensional analogy. The interview protocol included the question of why the 
equations represented planes, and not just points or lines. Although we have been unable to 
discover any literature on the subject, through informal discussions and comparisons it has been 
noted that the average student has difficulty with associating the algebraic equation, say, ya= , 
with a plane parallel to the xz -plane, or the actual xz -plane if  0a = . The protocol also 
indicated that, if the sketch was correct, to ask how the angle θ  ‘turns into’ a plane. 
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Analysis Using the Onto-Semiotic Approach 
While analyzing dimensional analogy and different coordinate systems within the onto-

semiotic approach, it is important to remember what was mentioned in the conceptual framework 
about the classification of the mathematical objects and the primary entities. There are aspects 
that characterize each of these entities, but by no means can there be a sharp separation between 
them. The first question from the interview will be analyzed; as there are seven students and two 
groups, S1, S2,  S3 and S4 will represent the participants in the first group, and S5, S6, and S7 
the participants in the second interview session. The two sessions will not be differentiated as 
emphasis will be placed on the question itself and the mathematical content. There are also 
written answers which will be referred to at times. Because of the natural limitations of space in 
a report such as this, emphasis will be placed on the participations that are directly related to 
dimensional analogy and the change of coordinate systems.  

The interview question will be accompanied by a table that represents the socio-epistemic 
configuration relevant to its content and context. In the lecture sessions, the professor (one of the 
authors) had a well-defined system of objects and meanings that were meant to be developed 
within the context of the institutional mathematical practices.  

In question 1, the socio-epistemic configuration of primary objects is structured in terms of 
the given situation (table 1), that is, the transition between algebraic and geometric 
representations of surfaces immersed in 3D, in different coordinate systems. The analysis and 
solutions detonate the use of different concepts, procedures, propositions and previous 
arguments, and open the possibility that new ones emerge. The activation of these emerging 
objects is brought about by the processes of definition, of creation of techniques (algorithmic or 
not), the determination of propositions and argumentation. All these processes are only possible 
through the use of language in different registers, that is, the use of languages that make the 
codification and transference of knowledge and meanings of the mathematical objects involved 
possible. (figure 1). 

 
Figure 1. Mathematical’ objects and process. 

 

       Question 1 had a marked geometrical emphasis, as students were asked to sketch what they 
understood by the algebraic equations representing surfaces immersed in 3D space, in the 
rectangular, cylindrical and spherical coordinate systems. The instructions were written in a 
combination of mathematical English (Wells, 2003) and symbols. The results of these 
instructions were sketches, a graphical language object. As institutional objects these sketches 
are considered language entities: 
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• Verbal: rectangular, cylindrical, spherical coordinates; dimension (3D);  
• Graphical: graphs of the surfaces; 
• Symbolic: x = x0, y = y0, z = z0; r = r0, θ = θ0, z = z0; ρ =ρ0, θ = θ0, 0φφ=   

We show in table 2 some of the previous and emergent concepts, procedures, propositions and 
arguments. 

Table 2. Previous and Emergent Concepts, Procedures, Propositions and Arguments 
Objects Previous Emergent 
Concepts- 
Definitions 

• Cartesian coordinate system in 2D; 
• Definitions of functions and relations in 

a single variable; 
• Graphs of single variable functions and 

relations; 

• Different coordinate systems in 3D; 
• Graphs of planes; 
• Definition of functions and relations in 

a multivariable context; 
• Graphs of functions and relations in 

different coordinate systems in 3D; 
• Extrinsic and intrinsic points of view 

Procedures • Graphing lines and curves in the plane; 
• Evaluating and setting up single 

variable functions; 

• Graphing planes and surfaces in 3D 
space; 

• Evaluating and setting up multivariable 
functions in different coordinate 
systems; 

Propositions In rectangular coordinates: 
From an intrinsical point of view: 

• In 0D space, x = x0  represents a 
point; in 1D space x = x0, y = y0    
represent lines; 

From an extrinsical point of view: 
• In 1D space, x = x0  represents a 

point on a line; in 2D space x = x0, y 
= y0    represent lines on a plane; r = 
r0, θ = θ0   represent curves on the 
polar plane. 

From an intrinsical point of view  
• In 2D space, x = x0, y = y0, z = z0; r = 

r0, θ = θ0, z = z0; ρ =ρ0, θ = θ0, 0φφ=   
represent surfaces. 

From an extrinsical point of view: 
• In 3D space, x = x0, y = y0, z = z0; r = 

r0, θ = θ0, z = z0; ρ =ρ0, θ = θ0, 0φφ=   
represent 2D surfaces immersed in 3D. 

Arguments Dimensions as degrees of freedom 
(intrinsic): a point has 0 degrees of freedom, 
a line has 1 degree of freedom. 

Dimensions as coordinates (extrinsic in this 
case): a point has 1 coordinate, a line or 
curve in general has 2 coordinates, a plane 
or surface in general has 3 coordinates. 

 
Only S1 showed a complete grasp of the (institutional) meaning in his written work. The other 
students were able to translate the equations in rectangular coordinates, but their sketches of the 
surfaces in the cylindrical and spherical coordinate systems were, to different degrees, 
inaccurate.  

As a reply to the question of why the equations in rectangular coordinates represented planes 
and not lines, S3 said “For each plane there’s only a restriction in one dimension, so that 
dimension is throughout the whole plane. Each other dimension can be anything, that’s how you 
get just one infinite plane”. The deictic signs that accompanied the verbal expression can be used 
to classify the relations that were established as a representational semiotic function, going from 
the equations, as the expression, to the sketches and gestures as content (in particular, the 
communication of the ‘infinite plane’ was clearly done by spatial gestures). In this same vein, an 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

101 

interchange with the two interviewers (I1 and I2) and S5, when asked why the equations 
represented planes, will be presented. 

S5: I don’t think I know how to verbalize why they’re planes and not points. 
I1: But why do you see x = x0  as parallel to the yz -plane? 
I2: For the record, you’re looking at the room. 
S5: I’m looking at , and zyx . 
I2: You’re pointing, what exactly are you pointing at? 
S5: The corners, I’m pointing at the corners to get my head around it in space. 

   On the other hand, S7 used dimensional analogy to explain: 
S7: When we have 2 dimensional, say 2x = . We fix x at 2 and y could be anything. Now we 
have 3D, another variable which isz . Instead of say, 3x = and y going on forever, it would be 
z going up and down forever as well. 

In the context of the cylindrical coordinate system, as was mentioned, only S1 drew all three 
expected answers. However, S3, once hearing and observing S1’s geometrical description and 
representation of the three surfaces, realized he had misunderstood the question, but “it was 
asking the same thing as the previous one” (the three surfaces in rectangular coordinates), and 
offered his interpretation: 

S3: r = r0 would be a cylinder of infinite height,  θ = θ0, would be a slice of the cylinder and z = 
z0     is an infinite plane, no, not a plane, it’s an infinite disk at z0.      
I1: What is the difference between an infinite disk as opposed to a plane? 
S3: It’s just the coordinate system that you use, it’s not rectangular coordinates any more, it’s 
polar coordinates. 
I2: But why think of it as a disk? I could think of it as an oval or a rectangular thing. 
S3: It has no restriction onθ, it turns into a plane with an angle of2π , the radius has no 
restriction, so it goes on and on. 
S1: It has to do with how you build the plane in your head. If you take one r  value at a time, it’s 
just concentric disks. It’s just the shape of the space. 

As was established in the conceptual framework, the objects that have emerged, such as 
language, situations, procedures, definitions, reflect their duality. In particular, the duality 
ostensive (symbols, graphs, gestures) or non-ostensive, that is, conceptual or mental, can be 
detected in the chosen fragments related to question 1, through the semiotic functions with their 
expression and content.  
 

Synthesis, Conclusions, and Prospective 
Dimensional analogy as a technique and different coordinate systems, apart from their 

intrinsic mathematical interest, are used in many types of applications in the sciences, 
engineering and art. The generic notion of representation is central in the cognitive and 
instructional processes involved in communicating these notions. The focus on changes of 
registers and on individual processes of objectification, conceptualization and meaning 
contributes to a coherent view of mathematical knowledge and the means of its construction and 
communication. Based on the onto-semiotic approach, it can be added that it is also important to 
emphasize the anthropological and socio-cultural character of this knowledge, indicating the 
tensions between the personal and institutional meanings. The primary entities and their 
dualities, together with the semiotic functions, allow the description of this personal-institutional 
tension, related to the notion of meaning and mathematical objects that are relevant, in this case, 
to dimension, dimensional analogy and different coordinate systems. 
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The onto-semiotic complexity that was identified is an empirical indicator that should guide 
the search for ways to improve and control the didactic systems related to the learning and 
teaching of notions, methods and meanings associated with dimension and different coordinate 
systems in the multivariate context. Dimensional analogy, as was seen in the previous section, is 
used by the students, especially when dealing with the primary entities of language, situations 
and concepts. However, this concept needs to be formalized and consciously incorporated as a 
technique in the communication of this mathematical subject, and others similar to it.  
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AND MEASUREMENT CURRICULUM FOR ALL PRIMARY STUDENTS 
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Project M2: Mentoring Young Mathematicians is a 5-year National Science Foundation 

research grant aimed to develop advanced geometry and measurement units for K-2 students and 
measure the impact on student achievement. Mathematical performance has been unimpressive 
for U.S. students on both national and international measures, particularly diverse and poor 
students (Perie, Grigg, & Dion, 2005; TIMSS, 2004). Measurement and geometry are areas of 
particular concern. U.S. fourth graders ranked only 17th in geometry and 13th in measurement out 
of the 25 countries in the 2003 TIMSS (Mullis et al., 2004); similarly, geometric shapes and 
measures was the lowest averaging cognitive domain in the 2007 TIMSS (Gonzales et al., 2008). 
This performance is reflective of insufficient time devoted to geometry instruction (Clements, 
2004) and weak measurement instruction in the primary grades (Clements & Stephan, 2004). 

In response, Project M2 is undertaking the development and research on the efficacy of 
geometry and measurement units in each grade, K-2. The units are focused on higher-level 
mathematics using research-based practices and standards in mathematics and early childhood 
education and augmented by exemplary gifted education practices. To address the needs of all 
students, the Project M2 units are being piloted in urban, suburban, and rural classes. Following, 
they are being field-tested in classrooms nationwide that include underrepresented students (12 
classes and n ~ 240 in each the intervention and control group). Teachers from the same schools 
were randomly selected to teach either the units or regular curriculum. Performance-based tasks, 
criterion-referenced unit tests, and standardized tests are being used to determine the impact of 
the Project M2 units. This session will report on the research endeavors and curricular 
innovations as well as lessons learned from the first two years of the grant. 
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SHORT-TERM CHANGES IN THE BELIEFS OF MIDDLE-SCHOOL STUDENTS 
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This study was designed to determine if a 5-week summer school program could change both 
beliefs about mathematics and intelligence and, if so, to examine how these changes coincided 
with changes in students’ effort and achievement. A curriculum was designed to expose students 
to difficult mathematics via rich, open-ended problems that necessitated daily group work, 
presentation, and discussion and that focused on teachers providing specific, qualitative 
feedback in lieu of scores or grades. This “learning-focused” curriculum was delivered to 23 
seventh- and eighth-grade students, all of whom were required to complete a summer make-up 
course to pass into the next grade. Results suggest in part that specific curricula and instruction 
can change the beliefs and increase the performance of low-performing students, even in a short 
amount of time. 
 

Introduction and Significance 
The question of why beliefs1 matter in education research is a complicated one to answer. If 

we care most about helping students be successful in mathematics, which for now at a minimum 
means passing math classes and achieving proficient scores on state math tests, perhaps what 
students believe or don’t believe is irrelevant. Furthermore, for many studies positing that beliefs 
do impact achievement there are others arguing beliefs actually follow from successes or failures 
in school. What is clear, however, is that there are indeed certain beliefs and theories held by 
secondary math students that affect both their motivation and achievement. We know that a 
junior high math student’s theory of intelligence as unchanging or evolving affects his/her 
classroom motivation and is a strong predictor of achievement in mathematics (Blackwell, 
Trzesniewski, & Dweck, 2007), for example, and children’s beliefs about mathematics and 
mathematics learning, especially when the beliefs have remain unchanged for many years, affect 
their future effort (Haladyna, Shaughnessy, & Shaughnessy, 1983) and achievement (Mason, 
2003). Furthermore, research suggests that “negative experiences have lasting negative effects 
[on achievement] primarily when they affect an individual’s beliefs” (Blackwell, et al., 2007). 

The majority of beliefs research seems to confirm that strong beliefs about oneself and one’s 
learning are resistant to change and do impact achievement, including affecting both cognition 
and behavior (Krosnick, 2007). In a study by Peter Kloosterman and Frances Stage, six 
categories of “strong” math beliefs were identified as being salient across student populations, 
then used to design a set of beliefs scales (Kloosterman & Stage, 1992). Part of the impetus for 
the study was from prior research suggesting that there are certain beliefs students hold about 
mathematics that exist across different secondary math classrooms (Schoenfeld, 1989). From a 
national assessment in 1985 for example, 83% of eighth-grade students reported to agree or 
strongly agree with the statement, “There is always a rule to follow in mathematics” (Dossey, 
Mullis, Lindquist, & Chambers, 1988). The six beliefs measured by the Indiana Mathematics 
Beliefs Scales (IMBS) are:  

• Belief 1: I can solve time-consuming mathematics problems. 
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• Belief 2: There are word problems that cannot be solved with simple, step-by-step 
procedures. 

• Belief 3: Understanding concepts is important in mathematics. 
• Belief 4: Word problems are important in mathematics. 
• Belief 5: Effort can increase mathematical ability. 
• Belief 6: Mathematics is useful and relevant to my life. 
Another set of “strong” beliefs that have recently been found to affect achievement in 

mathematics is students’ implicit theories of intelligence. While some students believe that 
intelligence is fixed (“entity theorists”) others believe it is malleable (“incremental theorists”), 
viewpoints which shape students’ responses to academic challenges quite differently (Dweck, 
2000). Incremental theorists, for example, tend to display mastery-oriented responses to failure 
more than entity theorists because they believe in the utility of effort given a roadblock or 
setback. In a study by Elliott and Dweck, researchers manipulated the value of a goal (as either 
learning-focused or performance-focused) and students’ perceived ability (as either high or low) 
to examine affects on problem-solving strategies and persistence. The students in the 
performance-goal, low-perceived-ability group manifested rapid strategy deterioration, increased 
failure attribution and increased negative affect, including learned helplessness (Elliott & 
Dweck, 1988). The findings suggest that learning-focused environments for learning 
mathematics may be most effective for maximizing student self-efficacy, persistence and 
achievement. 

To our knowledge, no research has examined both beliefs about mathematics and beliefs 
about intelligence in the same study, despite that it is reasonable to expect these two sets of 
beliefs to be related. Recently however, some curricular and programmatic efforts have been 
implemented to expose students to learning-focused mathematics education that both bolsters 
students’ achievement in mathematics and changes their beliefs about mathematics and 
mathematics learning. In 2005 for example, Boaler and colleagues wrote and taught a summer 
math curriculum in which students were encouraged to perform daily “meta-cognitive acts,” 
including mathematical summarizing, questioning, clarifying and predicting (Boaler, et al., under 
review). Prior to Boaler’s study, much research had shown that engaging in metacognitive acts 
positively affects achievement and engagement in mathematics (see White & Frederikson, 1998; 
Palincasar & Brown, 1984; Adey & Shaher, 1994). In just five weeks the students in the summer 
math program showed both math achievement gains and positive attitudinal shifts. Boaler says 
that “supporting and knowledgeable teachers, open and interesting tasks, and classroom culture 
of peer collaboration tasks, all of which characterized our summer school intervention, made it 
very likely that virtually all students would find intellectual stimulation and feel valued as 
mathematical thinkers.” 

In the study described here we intend to replicate and expand on the model designed by 
Boaler and colleagues in the summer of 2005, in order to measure if changes in students’ beliefs 
about mathematics (if they exist) coincide with changes in students’ beliefs about the 
malleability of intelligence. The research questions addressed are: 

1. Do students’ beliefs about mathematics and mathematics learning change over five weeks 
of a learning-focused math program? If so, which ones? 

2. Are students’ beliefs about mathematics and mathematics learning correlated with their 
belief about the nature of intelligence? 

3. Does a change in a student’s beliefs about the nature of mathematics and/or intelligence 
coincide with a change in achievement or effort? 
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Methods 
Subjects 

The subjects were one class of 23 seventh- and eighth-grade mathematics students in a 
summer school program in the Bay Area. Most students were allocated to classes randomly by 
the registrar, but some were switched by the principal for behavioral and motivational reasons.2 
The experimental class was a heterogeneous mix of students from several different middle 
schools. Though technically students can elect to attend summer school program to “get ahead” 
the next year, 90% of students this particular summer had been mandated to attend and pass 
summer courses to move on to the next grade, and all students in the experimental class were 
there because they needed enrichment in mathematics and/or had earned a D or F in Math the 
previous year (Stoffal, principal, personal communication 2008). Specifically, according to an 
introductory survey, 22 of 23 students in the course reported being there because they had failed 
mathematics the previous school year. 
The Curriculum 

The “learning-focused” curriculum used in the experimental class was designed to 
necessitate collaborative problem-solving and emphasized both the debriefing of final answers 
and the sharing and discussing of mistakes and roadblocks. To motivate students to persevere, 
frequent, qualitative feedback from the teacher on students’ progress toward the standards for the 
course was given, and final grades for the summer were pass or fail, where a pass was achieved 
by participating meaningfully in group work, presentations and whole-class discussions. For 
consistent formative assessment and to develop personal relationships with the students, the 
teacher wrote individualized responses to students’ journal entries completed at the end of each 
day. Finally, the activities and debriefs focused on students developing and justifying their own 
conclusions about mathematics, and not necessarily on right answers or complete work. 

The curriculum had four middle-school math content area emphases, four computational 
emphases and four process emphases. The content emphases, probability and number theory, 
proportional reasoning, patterns and generalizability and the four representations of data, were 
drawn from both state and national standards for 7th and 8th grade mathematics and represent 
topics middle-school students tend to struggle with and that are important for success in Algebra. 
The computational emphases, chosen for similar reasons, included students getting practice with 
and deepening conceptual understanding of fractions, decimals and percents, exponents and 
roots, ratios and proportions and order of operations. Finally, the process emphases, 
organization, communication, justification and questioning, came from the National Council of 
Teachers of Mathematics standards for mathematical thinking. 
Belief Measures 

In order to measure students’ beliefs about mathematics and intelligence, on the first day of 
class all students were given a survey consisting of randomly-ordered questions from the Indiana 
Mathematics Beliefs Scales (IMBS) (Kloosterman & Cougan, 1994) and from the Implicit 
Theories of Intelligence Scale for Children (ITIS) (Dweck, 2000). Items assessing one of the 
IMBS factors, “Word problems are important in mathematics,” were omitted because the 
researcher worried the phrase “word problems” might have been unfamiliar to some students or 
defined in a variety of ways. For this reason, items measuring the belief “There are word 
problems that cannot be solved with simple, step-by-step procedures,” used the phrase “math 
problems” instead of “word problems.” 

For the purposes of this paper, scores from both measures will be referred to as “beliefs 
scores.” The final survey consisted of 36 items: six items measuring each of six belief factors (5 
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beliefs about mathematics factors and 1 belief about intelligence factor). Both scales were tested 
in prior research by their designers for stability and test-rest reliability and have been used in 
prior empirical research. The students’ scores on the survey items were directionally-adjusted so 
that a score of 1 consistently correlated with a more negative belief and a 5 correlated with a 
more positive belief. 
Achievement and Effort 

In order to measure general achievement, on the second day of class all students solved two 
problems from the 2000 Math Assessment Collaborative (MAC) for eighth grade, consisting of 
an open-ended patterns and proportional reasoning problem. These particular problems were 
chosen because they were unrelated directly to content from the course, but were two, different 
measures of general problem-solving ability. First, each assessment was scored using a rubric 
and given a numerical score for correctness (“Paths” problem out of 4 points; “Lockers” problem 
out of 6 points). These scores and rubrics were derived from the existing scoring methods from 
the designers of the problems. As a measure of effort, each assessment was also given a binary 
score for completeness, based on whether or not the subject tried all parts of the problem. Two 
scorers scored all assessments, compared scores, then discussed disparities and came to 
agreements on final scores before analyses began. Because of absenteeism only 17 of 23 students 
took the post-assessment.  
  

Results 
Changes in Achievement and Effort  

The change from pre-test to post-test in achievement scores was significant (t=1.80 p=0.046), 
as well as the change in effort scores (t=2.7, p=0.007) (Tables 1.1, 1.2). 

 
Table 1.1 

Comparison of Pre- and Post-test Achievement Scores (N=17) 
 Pre-Test Post-Test Change 

M Sd M Sd 

Overall Change 
 1.74 1.38 2.32 1.71 0.59* 

Problem #1: Paths  
0.74 0.66 1.03 0.76 0.29* 

Problem #2: Lockers 
1 0.98 1.29 1.26 0.29 

Note. *p < .05 
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Table 1.2 
Comparison of Pre- and Post-test Effort Scores (N=17) 

 % who tried all 
parts of test 

Change 

Pre Post 
    

Problem #1: Paths 
 47.1% 70.6%  23.5%* 

Problem #1: Lockers 41.2% 70.6%  29%** 

Note. *p < 0.025, **p < 0.05 
 
Changes in Beliefs Scores 

All of the mean beliefs’ scores became more positive from pre- to post-survey, and four of 
these changes were statistically significant (Table 2). Belief 4 did not change from pre-survey to 
post.  
 

Table 2 
Paired T-test Results for Pre-/Post-scores on Beliefs Survey, Overall and by Belief (N=23) 

 Pre- 
Survey 

Post-Survey Change t-value 

M Sd M Sd 

Overall Change 
 3.24 1.01 3.37 0.99 0.13 3.4* 

       
Belief #1 Understanding concepts is 

important in mathematics. 3.21 0.9 3.5 0.89 0.29 3.0*** 

Belief #2 Effort can increase mathematical 
ability. 3.85 0.7 3.93 0.75 0.08 1.5* 

Belief #4 There are problems that cannot be 
solved with simple, step-by-step 
procedures. 

2.71 0.9 2.71 0.86 0.00 0.15 

Belief #5 Mathematics is useful and relevant 
to my life. 3.37 1.1 3.5 0.91 0.13 1.4* 

Belief #6 I can solve time-consuming 
mathematics problems. 2.97 1.14 3.17 1.07 0.20 1.7** 

        
Belief #3 Intelligence is malleable. 3.39 1.0 3.42 1.04 0.03 0.89 

Note. *p < 0.025, **p < 0.05, ***p < 0.01 
 
Correlations between Beliefs and Achievement 

The correlation between change in beliefs and change in achievement was (R=0.12, NS). It is 
clear from the scatterplot that the four greatest changes in achievement scores were correlated 
with large changes in beliefs scores. There was a more positive correlation between changes in 
effort scores and changes in achievement scores (R=0.42).  
 

Discussion 
The main findings of this study are that students’ beliefs about mathematics and mathematics 

learning can change over five weeks of a learning-focused math program. The largest change 
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was found in students’ beliefs about the importance of understanding concepts in learning 
mathematics. There were also significant, positive changes in students’ achievement and effort 
scores. Despite these findings, there was no significant change in students’ beliefs about the 
malleability of intelligence, nor significant correlations between changes among any of the 
beliefs. Overall, changes in students’ achievement scores correlated only weakly with changes in 
students’ beliefs, but much more strongly with changes in effort scores. 

The fact that a large number of the analyses shown above resulted in non-significant results 
is not surprising, considering the small sample size and short time frame for implementing the 
learning-focused curriculum. This makes the significant results, however, much more interesting 
and important for future research. Clearly students’ beliefs can be changed in a short amount of 
time, as evidenced by the four small but significant changes and overall significant change in 
scores. These beliefs were:  

• “Effort can increase mathematical ability.” 
• “I can solve time-consuming mathematics problems.” 
• “Understanding concepts is important in mathematics.” 
• “Mathematics is useful and relevant to my life.” 

The fact that these beliefs changed and not the other beliefs (“Intelligence is malleable” and 
“There are problems that cannot be solved with simple, step-by-step procedures”) can be 
qualified in part by certain characteristics of the curriculum used. Specifically, the curriculum 
was focused primarily on large, open-ended problems that we both asked students to try their 
best on (as opposed to solve completely) and persevere on as long as possible. Students spent a 
great deal of time trying things out and were never discouraged from attempting a particular 
method even if it was clearly wrong. In class debriefs and discussions the students then came 
together to share processes and answers and often went back to work afterward. It was an 
important part of the design of the curriculum for students to both grapple with difficult 
mathematics but also have enough access so they wouldn’t shut down. It is not surprising that 
after five weeks of doing mathematics in this way students would have different beliefs about 
effort’s role in what defines “mathematical ability” and more confidence solving time-
consuming math problems. The former is a pleasing result considering that Americans tend to be 
one of few groups internationally who believe you are either born with math ability or not 
(TIMSS, 1999). Additionally, the focus on explanation, justification and questioning in the 
curriculum could have contributed to the positive changes in students’ beliefs about the 
importance of conceptual understanding in mathematics as well. 

These same curricular characteristics, however, make the non-significant change in students’ 
beliefs about the quality of math problems curious. It would be expected that students feeling 
more confident in their ability to solve tough problems and believing that effort has more to do 
with ability than not would also believe that solving math problems has less to do with following 
one, correct procedure than it does with hypothesizing, testing, manipulating, etc. Furthermore, 
students’ beliefs about the nature of intelligence generally did not change over the course of the 
summer. This could be explained perhaps by the fact that these questions were blended in with 
the other 30 questions focused on mathematics, and thus could have been misinterpreted. 
Perhaps some students’ engrained beliefs that they personally are not “intelligent” 
mathematically overrode the fact that the questions were intended to measure beliefs about 
intelligence in general. Or perhaps some students assumed the questions were referring to their 
beliefs about themselves and not their beliefs about general intelligence. This kind of 
measurement error would need to be addressed in future studies. 
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Another explanation for any of the changes in beliefs could come from the social desirability 
of certain answers. By the end of the five weeks, it is possible that some students may have 
circled certain responses in order to impress or satisfy the teacher. But there are two reasons why 
this is probably not the case. First, both achievement and effort scores significantly increased 
form pre- to post-program. This provides evidence that even if students had grown to like the 
teacher enough to falsify answers on their survey, it is unlikely they all, as well, “decided” to get 
a higher score on the post-assessment. Second, in a study where both entity and incremental 
options were given to students on a survey, children showed “a tendency to endorse incremental 
statements,” despite actually believing different things about the malleability of intelligence 
(Erdley & Dweck, 1993). Though this suggests that students may generally have ideas about 
what they should or should not believe about intelligence, on this survey the only two non-
significant changes included beliefs about intelligence. 

Clearly the small sample size of the students is problematic, and could partly explain why not 
all changes in beliefs scores were significant or that those that were small in magnitude. Perhaps 
if these latter changes had been larger, we would have seen a significant change in beliefs 3 and 
4 as well. If this were true, it would imply that certain changes in certain beliefs about 
mathematics are correlated with changes in students’ beliefs about intelligence. 

It is not surprising that the change in achievement was correlated to some degree with change 
in effort. This could explain the change in achievement entirely, in fact. Perhaps if students had 
actually grown more confident in some way over the course of the five weeks in trying problems, 
even tough ones, their willingness to try the post-assessment problems had increased, and not 
necessarily their problem-solving ability. The correlation between changes in beliefs and 
achievement, though weak, provides some support for the argument that it was not effort entirely 
that might explain achievement gains. Though no causal claims of any kind can be made from 
this data, this finding provides impetus to examine the connection between changes in these 
beliefs, due to this kind of curriculum, and changes in achievement. Looking at the scatterplots 
from Diagram 4, for example, it may be true that above a certain level of achievement there is an 
interaction between achievement and beliefs such that a high level of achievement is associated 
with a high change in belief (the 4 plots in the upper right hand corner). It would be interesting to 
manipulate belief in a math class without doing any problems (e.g. work to convey to the class 
they are special, good problem-solvers, intelligent, etc. in other ways) and see if problem-solving 
still improves. 

 
Endnotes 

1. The concept beliefs is defined here as “the personal assumptions from which individuals 
make decisions about the actions they will undertake” (Kloosterman, Raymond, & Emenaker, 
1996). 

 2. For example, one student had failed math the year before in a class taught by one of the 
summer school teachers. The registrar had randomly placed him in her class for the summer 
program, so he was manually switched into another teachers’ class with hopes that exposure to a 
different teacher might help motivate him to do better.  
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This study explores undergraduate students’ self-reported gains in college mathematics courses 
and how these relate to the inquiry-based learning (IBL) methods used in their courses. These 
experiences were studied against the qualities and development of students’ beliefs, motivation 
and strategies for learning and solving mathematical problems. Pre- and post survey data during 
one semester-long course showed that students found the instructional practices beneficial and 
reported cognitive, affective and social gains due to the course. Clear positive correlations 
appeared between students’ gains and their experiences of instructional practices as well as 
between the gains and their beliefs, motivation and strategies. Moreover, positive changes 
between pre- and post-surveys in beliefs, motivation and strategies indicate the positive impact 
of the classes on students’ perceptions and practices in studying college mathematics.  

 
B ackgr ound 

The important role of beliefs, affect, and motivation in learning mathematics is well 
acknowledged in mathematics education research. Students’ mathematical beliefs and attitudes 
have powerful impacts on their engagement and achievement, especially on problem solving. 
Students’ beliefs about the nature of mathematical knowledge and skills, about mathematical 
problem-solving, and about their own mathematical capability, often determine their level of 
attendance and learning. Negative attitudes and emotions, together with inadequate self-
regulatory behaviors, are often connected with students’ preventive beliefs and perceptions in 
mathematics learning situations (DeBellis & Goldin, 2006; Malmivuori, 2001, 2007; McLeod, 
1992; Schoenfeld, 1992). Such beliefs and behaviors derive from students’ previous classroom 
experiences, both positive and negative; they are highly stable and difficult to change (e.g., 
Bishop, 2001; Cobb, Yackel & McCain, 2000).   

Students who choose to study college mathematics differ from those studying secondary and 
high school mathematics, as does their learning context. College students who study mathematics 
as their major or minor subject usually show positive attitudes towards mathematics and high 
motivation, but nonetheless have varying goals for their study of mathematics and varying 
beliefs about mathematics and mathematical problem solving, for example in their beliefs about 
mathematical proofs (Selden & Selden, 2007; Sowder & Harel, 2003). Other students, required 
to take mathematics courses for another major, may exhibit less positive attitudes.  Pre-service 
teachers represent a third group of college students with distinct beliefs, goals and attitudes.  

All these various personal, social and instructional aspects determine the context in which 
students develop knowledge, beliefs and attitudes. Active teaching approaches all share goals of 
engaging students in their own learning processes and activating their responsibility for their 
own learning (Prince, 2004). Inquiry-based learning (IBL) is one such approach.  Closely related 
to discovery learning or guided discovery (Bruner, 1961; Dewey, 1938) and problem-based 
learning (e.g., Savin-Baden & Major, 2004), IBL provides opportunities for students to engage in 
knowledge creation and argumentation (Rasmussen & Kwon, 2007) and promotes problem 
solving skills, independent thinking and intellectual growth (Buch & Wolff, 2000; Duch, Gron & 
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Allen, 2001). In addition, pedagogical practices that emphasize cooperative learning are seen to 
foster student dialogue, build positive interdependence within groups, and promote higher-order 
thinking (Gillies, 2007; King, 2002). Such instructional approaches offer a context that clearly 
differs from the lecturing, exams and transmittance model of providing content knowledge that 
are traditional in college mathematics courses. This study explores undergraduate students’ 
beliefs, experiences and learning gains in this kind of an active instructional context.   

 
Objectives of the Study 

This study reports preliminary findings on undergraduate mathematics students’ beliefs, 
motivation, strategies and gains with respect to their experiences of instructional practices during 
one semester of college mathematics applying IBL instructional methods. The main focus is on 
students’ beliefs, goals and experiences students while studying college mathematics, and how 
these are related to their achievement, measured in the form of self-reported learning gains. The 
results also show changes in students’ beliefs, motivation, and strategies during their IBL 
mathematics course, and, further, how these changes are related to their learning gains.   

 
M ethodology 

Subjects of the Study 
Survey data was gathered from undergraduate students studying mathematics in four 

different US research universities during one term. The students represent mostly general math 
major and minor students in advanced mathematics courses; three sections of elementary and 
secondary pre-service teachers were also included. A structured, paper-and-pencil questionnaire 
was administered in the beginning and end of each course. The data derive from 13 different IBL 
sections with 192 students responding to the pre- and post-surveys. Four additional IBL sections 
were included in the analysis of post-survey data, for a total of 233 students.  
Instrument 

The first part of the survey was constructed on the basis of theory about mathematical beliefs, 
affect, goals and strategies of learning and problem solving. It was tested and revised using item 
analysis. The seven sections measured students’ interest in and enjoyment of mathematics, goals 
in studying mathematics, learning and problem solving actions taken while doing mathematics, 
and beliefs about learning mathematics, problem solving, and proofs. Responses varied on a 
seven-point Likert-scale (e.g., from “not at all important” to “extremely important”).  

The post-survey included the same items, plus six additional sections. Four sections asked 
about students’ experiences of instructional practices:  how much various practices helped their 
learning, on a five-point scale from “no help” to “a great help.” Two sections measured students’ 
learning gains in understanding, attitudes, confidence and capabilities, on a five-point scale from 
“no gain” to “great gain”. These sections were based on the SALG instrument (Student 
Assessment of their Learning Gains; SALG, 2008), which was developed to enable faculty and 
program evaluators to gather formative and summative data on classroom practices. Both the 
pre- and post-surveys gathered information on students’ personal and mathematical background.    
Variables and Data Analysis  

New composite variables were constructed on the basis of the designed scales and 
exploratory factor analyses:  17 measures of beliefs, motivation, affect and strategies; 5 measures 
of instructional practices; and 4 measures of gains (see Table 1). Scores varied between 1 and 7 
(where 4 points to a neutral or average view) or between 1 and 5 (where 3 refers to moderate 
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help or gain). Reliability scores for these scales varied between 0.64 and 0.96. Statistical analysis 
included descriptive statistics, correlation analysis, and parametric tests (T-tests, ANOVA).   

 
Table 1.  Composite Variables Measuring Student Beliefs, Experiences and Learning Gains 
Variable items scale Emphasis of items  
Motivation 

Interest 3 7 Interest in learning and discussing mathematics 
Math major 1 7 Desire to graduate with a math major 
Math future 2 7 Desire to pursue math in future work or education 
Teaching 1 7 Desire to teach math 

Enjoyment 7 7 Pleasure in doing and discovering mathematics 
Goals for studying math 

Intrinsic 4 7 Learning new ways to think & to apply math 
Extrinsic 4 7 Meeting requirements; degree, good grades 
Communicating 2 7 Communication of mathematical ideas to others 

Beliefs about learning 
Instructor-driven 5 7 Exams, lectures, instructor activities 
Group work 3 7 Whole-class or small group work 
Exchange of ideas 3 7 Active verbal interaction with other students 

Beliefs about problem-solving 
Practice 2 7 Repeated practice, remembering 
Reasoning 5 7 Rigorous reasoning, flexibility in solving 

Beliefs about proofs (Yoo & Smith, 2007) 
Constructive 4 7 Process view; revealing mathematical ideas 
Confirming 4 7 Product view; recall and confirming conjectures 

Strategies 
Independent 4 7 Finding one’s own way to think & solve problems 
Collaborative 4 7 Seeking help, actively sharing with others 
Self-regulatory 6 7 Planning, organizing, reviewing one’s own work 

Experience of classroom practices (what helped me learn) 
Overall 7 5 Teaching approach, atmosphere, pace, workload 
Active participation 5 5 Personal engagement in discussion & group work 
Individual work 4 5 Studying & problem-solving on one’s own 
Assignments 8 5 Nature of tests, homework, other assigned tasks 
Personal interactions 6  Interaction with peers & instructor, in/out of class 

Learning gains 
Mathematical thinking 4 5 Understanding concepts, how mathematicians think 
Application 3 5 Applying ideas elsewhere, understanding others’ ideas 
Empowerment 10 5 Confidence to do math, appreciation, persistence  
Working with others 3 5 Working with others, seeking  help 

 
R esults 

Experiences of Instructional Practices and Gains 
Table 2 shows the average ratings of students’ experiences of the helpfulness to them of 

various classroom practices and of their self-reported gains due to participating in a college IBL 
mathematics course.  These are reported separately for each campus with more than one section 
and advanced mathematics students (CM1-CM3) are distinguished from pre-service teachers  at 
one campus (CT4).  
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Table 2. Average Ratings of Experiences of Classroom Practices and Self-reported Learning 
Gains 

 CAMPUS 
CM1 CM2 CM3 CT4 

Classroom practices 
 (5-point scale) 

overall 3.99 3.43 3.56 2.56 
active participation 4.18 3.84 4.05 3.65 
individual work 4.09 3.94 3.77 3.32 
assignments 3.87 3.36 3.42 2.63 
interactions 4.14 3.89 3.95 3.57 

Learning gains  
(5-point scale) 

mathematical thinking 4.37 3.89 4.01 2.72 
application 3.19 3.03 3.45 2.26 
empowerment 3.72 3.45 3.59 2.41 
working with others 3.66 3.39 3.92 2.86 

* N = 34-77 for each campus. 
 
The averages in Table 2 reflect that students on each campus found IBL instructional 

practices helpful to their learning. Averages near or above 4.0 further indicate that many students 
experienced great help due to their participation in the IBL class. Students reported the most help 
to their learning from active participation and interaction during class work, while the particular 
assignments were least helpful.  

Table 2 further shows that students’ experiences slightly varied between the campuses. Pre-
service teachers (CT4) found less benefit in the instructional practices than other undergraduate 
mathematics students. Lower ratings on the overall approach to teaching and learning and class 
atmosphere may reflect what students reported (in separate interviews) to be high workloads. 
This was valid especially for pre-service teachers, but also appeared among the advanced 
mathematics students. Campus 1 students (CM1) seemed to find their classroom experiences 
slightly more helpful than students at other campuses, but the differences were not large and 
probably reflected real variation in the actual instructional practices among classes.  

Averages for the four learning gain variables show that students reported moderate or good 
gains due to their course work. Again, averages near and above 4.0 indicate that many students 
felt they made great gains in their IBL class. Among all groups, the highest gains were reported 
in understanding mathematical thinking and concepts, with lower gains in understanding how the 
course ideas were applied outside mathematics or how to make mathematics understandable for 
other people. Again, pre-service teachers reported weaker gains than did advanced mathematics 
students; relatively speaking, they reported stronger gains in learning to work well with others.  

Campus 2 students (CM2) reported lower gains than other students, consistent with their 
slightly less positive reports of benefits from the instructional practices in their courses. On the 
other hand, students at Campus 3 (CM3) had the highest gains in working with others. Unlike 
Campus 2 students, they found interaction and active participation more helpful than individual 
work. These variations among student groups may thus reflect the differences in actual 
instructional practices, consistent with our (separate) observations of classroom sessions. For 
example, individual work may have been more emphasized at Campus 2 than elsewhere. 

Analysis of the correlations among the instructional practices and learning gains for all 
students revealed statistically significant positive correlations between all the variables (from 
0.297 to 0.749). That is, those students who experienced various class practices and interactions 
as clearly helpful also reported higher gains from their class, and vice versa. These correlations 
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indicate that students found IBL instructional approaches beneficial to their learning. 
Beliefs, Motivation, and Strategies 

Table 3 lists the averages on scales for mathematical beliefs, motivation and strategies for 
learning and problem solving. The results concern advanced mathematics students (not pre-
service teachers) in 10 IBL sections at four campuses who took both pre- and post-surveys.  
 
Table 3. Averages for Measures of Beliefs, Motivation, and Strategies for Pre- and Post Surveys 
       AVERAGES (7-point scale) 
VARIABLE Pre survey Post survey Sig. level 
Motivation interest 4.68 5.08 ** 
        math major 4.49 5.12 * 
        math future 6.20 6.19  
        teaching 3.70 4.27 * 
Enjoyment  5.34 5.56  
Goals intrinsic 5.78 5.79  
       extrinsic  5.28 5.36  
 communicating 5.18 5.50 * 
Beliefs about learning instructor-centered 5.14 4.90 * 
        group work 4.67 4.98 * 
        interaction 5.26 5.35  
Beliefs about problem solving  practice 4.88 4.83  
        reasoning 5.27 5.45 * 
Beliefs about proofs  constructive  5.65 5.85 * 
        confirming 4.96 4.77  
Strategies  independent 5.23 5.55 ** 
        collaborative 4.46 4.97 ** 
  self-regulatory 5.10 5.20  

* N =112-184; p < .05*, p < .01**.       
 
Table 3 indicates that these students had rather strong motivation and promotive beliefs that 

emphasized rigorous reasoning, flexibility and construction in problem solving. They stressed 
the value of interaction in learning and were motivated both by intrinsic and extrinsic goals and 
an ability to communicate about mathematics. In their preferred strategies for learning and 
problem solving, students emphasized both individual work and collaboration and reported a 
high level of self-regulatory activities.   

Despite these rather high initial averages, some general changes between the pre- and post-
surveys could nonetheless be observed in students’ beliefs, motivation and strategies. Most of 
these involved increases in the strength of students’ beliefs about the importance of collaboration 
and group work in studying mathematics, and in their motivation and their use of effective 
problem-solving strategies. Females showed increases from pre- to post-surveys more often than 
males. Students reported more use of both individual and collaborative ways to learn after the 
IBL course. They also reported higher interest in mathematics in general, in graduating with a 
college math major, and a slightly higher likelihood that they would teach mathematics in the 
future. Moreover, the observed changes showed some growth in a constructive view of proving 
and in seeing the importance of rigorous reasoning and multiple approaches in solving math 
problems—views more consistent with mathematicians’ views. Finally, students showed 
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declines in a transmittal view of learning that emphasized instructor explanation and seeing 
similar examples to their homework. All these changes suggest a positive impact of IBL classes 
on students’ perceptions of mathematics and on their practices in studying college mathematics.      
Connections Between Beliefs, Motivation, Strategies and Gains 

Correlations were computed between the constructed post-survey variables and gains for all 
four campuses. Table 4 displays the strongest correlations between the four gain scales and the 
post-survey scales on beliefs, motivation, and strategies for learning mathematics.   
 
Table 4. The Strongest Correlations between Learning Gains and Post-survey Beliefs, 
Motivation, and Strategies, among all Students 

VARIABLE 
GAINS 

Mathematical 
thinking Application Empowerment Working 

with others 
Motivation interest 0.515 0.338 0.466 0.220 
Goals intrinsic 0.505 0.371 0.469 0.261 
Enjoyment  0.564 0.346 0.489 0.182 
Beliefs about learning interactions 0.272 0.307 0.343 0.296 
Beliefs about problem 
solving 

reasoning 0.421 0.319 0.327 0.247 

Beliefs about proofs constructive  0.412 0.289 0.289 0.222 
Strategies independence 0.452 0.249 0.351 0.226 
      self-regulation 0.359 0.320 0.415 0.355 

*    All correlations are significant at the level  p < .01 ** N = 197-222 
 

Table 4 shows clear positive connections between students’ cognitive, affective, and social 
gains and their beliefs, motivation and learning strategies. The strongest correlations related to 
students’ gains in understanding mathematical concepts and thinking, and to their gains in 
empowerment: confidence, positive attitude, persistence, and ability to improve their own 
mathematical capacity. High interest, enjoyment and intrinsic goals for learning college 
mathematics were the most positively related to learning gains. Interestingly, these motivational 
connections were clearest among pre-service teachers—among whom interest and enjoyment 
were initially lower. Students’ preference for independent thinking strategies was most strongly 
linked to higher gains in mathematical thinking, while strategies of active self-regulation in 
solving problems were most clearly linked to higher empowerment. 

Students’ gains in mathematical thinking were linked to beliefs about the importance of 
rigorous reasoning and flexibility in solving problems, and to constructive views of mathematical 
proof. The belief that it is important to have active interaction with other students when learning 
mathematics was also clearly related to cognitive, affective and social gains.  Unsurprisingly, this 
relation was strongest for students’ gains in willingness and ability to work with others. 

Comparisons between Tables 3 and 4 indicate that the strongest correlations to gains were 
represented by those variables that also showed increases from pre- to post-surveys. This applied 
in particular to students’ interest and independence of learning but also to the importance they 
attached to rigorous reasoning and flexibility in solving mathematical problems and to 
constructive views of proofs. Positive changes in these views and approaches may have a critical 
role in affecting students’ learning gains, not only among these students in IBL classes but also 
among college mathematics students more generally.           
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Discussion 
The role of beliefs, affect, and motivation has been widely studied in secondary school 

contexts, but less so among college mathematics students. Teaching methods applying inquiry-
based learning with active collaboration create a context different from traditional college 
mathematics instruction. Active engagement of students in their own learning processes, with 
responsibility, collaboration, and creative use of personal resources, is seen to enhance growth of 
thinking and problem solving (Prince & Felder, 2007) and social skills (Duch et al., 2001; Jordan 
& Metais, 1997). Promotion of cognitive, affective and social skills in such learning contexts 
may then be reflected in students’ beliefs, experiences, and activities (e.g., Kwon, Rasmussen, & 
Allen, 2005; Smith, 2006). Our preliminary findings point to such positive impacts.    

The advanced math students in this study began with high motivation and adequate beliefs 
about mathematics learning and problem solving. However, participation in an IBL mathematics 
course seemed to further promote these views and approaches. Students gained interest in and 
motivation to study mathematics and exhibited less belief in rote learning methods. They 
attached greater importance to group work and active collaboration, and to communicating 
mathematical ideas. Their choice of problem-solving strategies emphasized both independent 
thinking and collaboration. After taking an IBL course, they saw rigorous reasoning in solving 
problems as more important and reflected a more process-based view of mathematical proofs.  

Students reported rather high cognitive, affective and social gains due to their participation in 
an IBL course and reported IBL classroom practices as helpful, especially their own active 
participation and interaction during the class work. Pre-service teachers reported lower gains and 
less benefit from IBL learning approaches than advanced math students.  

The results also showed important, direct connections between these cognitive, affective, and 
social gains and students’ beliefs, motivation, and use of particular learning and problem solving 
strategies. Higher interest, enjoyment, and intrinsic goals for learning college mathematics were 
most clearly connected to higher gains. The strongest connections to gains appeared in the 
beliefs, motivation and strategies that also showed increases during an IBL course.  

Limitations to the study include a rather low sample size and large variation in the 
instructional practices, nature of courses, and in student backgrounds within and between the 
campus sections. More data are needed to confirm these preliminary findings. However, the 
results indicate that use of active instructional methods with inquiry and collaboration represents 
a learning context that may have powerful effects on students’ learning and positive attitudes 
toward college mathematics. Future study will show how these gains and experiences vary 
between different student groups, especially with respect to gender and in comparison with 
students experiencing more traditional college mathematics teaching. 
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This study investigated the current status of developmental mathematics at a large and diverse 
state university, as it existed within national practices and recommendations. Findings suggest 
that students’ attitudes toward mathematics and learning, the time they are willing to spend, 
knowledge of how to learn mathematics, and learning experiences within remedial courses all 
play a critical role in their academic success. Strategies for improving the quality of student 
learning in developmental mathematics are proposed. 

 
Objectives and Research Perspective 

Statistics indicate that almost sixty percent of students who enroll in community colleges 
must take developmental mathematics before entering college-level coursework (Schwartz, 
2007). This statistic is also alarming at the university level, primarily at universities intended for 
non-traditional and local student populations. For example, the largest proportion (80%) of 1st-
year college students taking a developmental course at public, 4-year institutions in 2000 took 
developmental mathematics (Duranczyk & Higbee, 2006). When students face remediation, it 
means they have a longer road to completing their mathematics degree requirements. Many give 
up before they finish the sequence of courses. Additionally, taking remedial courses the entire 
first year is costly, as well as delays graduation for those needing mathematics courses. Time for 
remediation can also dissuade students from seeking majors requiring mathematics. Alternative 
pathways are needed to help facilitate students’ expeditious and successful completion of 
remediation, as well as help students arrive on university campuses ready for undergraduate 
mathematics. One common theme in this literature on instruction in developmental mathematics 
courses is that no single set of practices will be effective with every student (Biswas, 2007; 
Schwartz & Jenkins, 2007). There is a broad consensus in the literature that educators ought to 
take a holistic approach to developmental education. 

Our university has a highly diverse student population of nearly 38,000. Each year 
approximately one-third of the first-time freshmen need to take and pass pre-baccalaureate 
developmental mathematics courses before moving on to the next level (general education). 
Some of the students taking developmental mathematics struggle to successfully complete it in 
one year; approximately 30% of them do not return for a second year. In order to understand the 
current situation of developmental mathematics within our Department (Mathematics and 
Statistics), as well as propose strategies for improving the experience and completion rates of our 
developmental students, we embarked on a research study. Our Department and the larger 
University were eager to carefully examine the current situation of the program after recent 
changes to both placement and course structure, and strategize future possible changes, including 
specific pilot studies. 

Two primary research questions guided our work: 
1. What is the current situation of developmental mathematics at our university? 
2. What practically should be implemented over the next two years to improve the existing 

program? 
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Methodology 
As neither of us had previously conducted research in the area of remedial mathematics, we 

began by casting a large net across both the existing literature and other programs. We sought to 
accomplish the following: gain knowledge of what other institutions have tried and are currently 
trying, generate a portrait of what existing literature tells relative to the design and 
implementation of effective developmental mathematics programs, compile other existing data 
and completed analyses from our Department and the campus community, examine students’ 
experiences, expectations, attitudes and success in developmental mathematics courses, and 
gather insights from key individuals and other departments on campus on how to handle the 
difficult process of developmental mathematics. 

Our primary data sources included: 
• Relevant literature in developmental mathematics and mathematics education; 
• Website searches (California State University campuses, similar universities in California 

and across nation, etc.); 
• Email communication with colleagues at universities and community colleges across the 

nation; 
• Existing data (Department, University); 
• Surveys administered to developmental mathematics students at the beginning and end of 

the Fall 2008 semester (380 responses), a subset of students who had just finished 
developmental mathematics in Spring 2008 (28 responses), and developmental 
mathematics instructors (6 responses); 

• Interviews with individuals (10) within our Department, Department of English, and 
University administrators; 

• Town meetings (3) with key individuals across campus (e.g., higher administration, 
academic advisors). 

Student surveys contained both open-ended and Likert-type questions (1-6 scale) and asked 
about their expectations for and experiences within the developmental mathematics courses, their 
anxiety and attitudes toward mathematics and mathematics learning, their level of skill 
preparation (pre- and post-course), and impressions of course and instructor. Instructor surveys 
included only open-ended questions regarding their experiences teaching developmental courses, 
observations of their students’ learning and needs, and recommendations for our Department and 
future iterations of all courses they had taught. All interviews were semi-structured and informal 
in nature. 
 

Results 
Key Findings from Relevant Literature 

Two fundamental factors have proven to be crucial to student success in mathematics 
remediation: (1) the existence of an early alarm system for remediation needs, and (2) a strong 
alignment between college mathematics placement tests and high school mathematics curriculum 
and assessments (Brown & Niemi, 2007; California Partnership for Achieving Student Success, 
2008; Hill, 2008). However, students often do not perceive the need for intervention, and a 
student’s pathway within a given high school context is dependent upon his/her success at the 
middle school level. 

Once in a college or university environment, traditional approaches to instruction (e.g., 
lecture) in developmental mathematics courses do not engage students (e.g.,McGlynn, 2008). A 
focus on rote memorization of formulas and rules is a hindrance to students at the developmental 
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level. Developmental mathematics courses need to focus on critical thinking and how to be an 
effective student of mathematics, and spend time and attention to enhancing the students’ work, 
study habits and concentration skills. Non-traditional instructional methods in developmental 
mathematics education can work; for example, cooperative learning can lesson students’ “fear of 
mathematics” and the “fear of failing” (e.g., NADE Mathematics Special Professional Interest 
Network, 2002, 2003). Guided instruction appears to be more effective for low performing 
students than structured instruction (e.g., Kroesbergen & van Luit, 2002). Students’ negative 
attitudes and anxiety toward mathematics must be overtly addressed (Tobias, 1993). 

Technology could be integrated where appropriate to encourage active learning and help 
students explore concepts and visualize real-world data. Computer-based instruction is most 
successful when it is used as a supplement to regular classroom activities in developmental 
courses. In order for technology to be effective, the student-teacher interaction must be the main 
form of formal instruction with technology “acting as a conduit” for this to take place effectively 
(Robinson, 1995).  

Students in developmental courses need to be motivated and inspired, hence the role of 
teacher is critical. Teachers must listen carefully to students and meet them at their level or place 
of cognition, and attack students’ mathematics anxiety–one good strategy is to instill a 
participatory, non-threatening classroom environment (e.g., Ironsmith, Marva, Harju, & Eppler, 
2003). Teachers must have training in and appropriate attitudes toward working with this special 
population of students. Research suggests that teachers’ attitudes impact instruction and student 
achievement (Richardson, 1996; Thompson, 1992). 
Prevalent Models and Strategies 

Across higher education institutions in the United States, we have isolated three models for 
developmental mathematics courses that are most prevalent: 

(1) The Supplement Model. This model retains the basic structure of the traditional course, 
supplements lectures and textbooks with technology-based, out-of-class activities, or small-
group or individual tutoring.  

(2) The Replacement Model. This model reduces the number of in-class meetings and 
replaces with out-of-class, online, interactive learning activities in computer-labs. The in-class 
meetings could be combined into large sections and team-taught by multiple instructors. 

(3) The Emporium (or Fully-online) Model. This model replaces all class meetings with a 
learning resource center featuring online materials, multi-media resources, commercial software, 
on-demand personalized assistance, automatically evaluated assessments with guided feedback 
and alternative staffing. Course material is often organized into modules, which students will 
complete at individualized paces. 

Within any model, there are recommended considerations for the most valuable 
developmental mathematics experience. These include: (1) Proper placement of students through 
the administering of placement tests into appropriate courses is essential to student success; (2) A 
clearly defined philosophy for the program, accompanied by clearly specified goals and 
objectives; (3) On-going communication among those who teach developmental courses with 
centralized supervision; (4) A strong counseling component; counseling components should be 
integrated into the overall structure of the developmental program and be carried out by 
counselors specifically trained to work with developmental students; and (5) Tutoring for 
students; tutoring is most effective when the tutors are trained to work with students at 
developmental levels.  
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Major Findings from Student Surveys 
In September 2008, we conducted surveys with two groups of CSULB students: (1) Those 

students who had just finished taking an intermediate algebra course in Spring 2008 and were 
currently enrolled in a general education course (on our campus intermediate algebra is the 
second level of developmental mathematics course), and (2) Those students who had just begun 
intermediate algebra. In December 2008, an end-of-course follow-up survey was conducted with 
the students in the second group. Some common themes were identified across the three groups 
of responses: 

• Over three-quarters of the students took two semesters of mathematics in the senior year 
in high school; 

• On a scale of 1 to 6 (6 highest), 70% of the students entering intermediate algebra chose 3 
or 4 in rating the levels of their own mathematics skills and enjoyment. At the end of the 
course, such percentage increased to 80%; 

• Almost all of the students thought the state-level placement exam was important or 
necessary, but did no or very little preparation for it; 

• The majority of the students felt the developmental mathematics placement was fair or 
necessary, with a few expressing surprise over the placement; 

• Students did not believe they were informed of various opportunities and resources 
available; 

• Besides the in-class time, 80% of the students spent only 2 – 4 hours per week on studying 
for the course. More than half of the students believed they should have spent more time 
for better understanding; 

• As a result of taking the course, the majority of the students expressed that they were 
“somewhat” or “a little” better in mathematics. Many felt that this class reviewed or 
“refreshed” what they had studied in high school; 

• Over 90% of the students believed the class met their expectations, and the instructor and 
instruction were helpful over the semester; 

• On the December 2008 end-of-course survey, around 90% of the students felt “somewhat” 
or “very” confident in passing the class, which showed increased confidence levels than in 
September when they just started. 

Lessons Learned from Interviews with Key Individuals 
Interviews revealed that many aspects of existing practice are critical to students’ success in 

developmental mathematics. First, effort matters. For every additional hour that students study in 
our Department’s remedial courses, the effect on their performances is significant. The passing 
rate for those who spend three hours per week in developmental courses is 61%. For those who 
spend four hours per week, the rate is 67%. And, for those students who spend five hours per 
week, the passing rate jumps to 78%. Students who are most successful in developmental 
mathematics courses understand the importance of attending class, studying, and completing 
developmental mathematics early. 

Second, the most at-risk students need to be appropriately mentored; they have low or 
unclear personal expectations and drift easily. As part of this process, resources that help them 
study can be available, and they can be pushed to meet deadlines and encouraged in all aspects of 
their learning. As part of this process, mathematics information should be disseminated in the 
spring prior to students’ arrival at the University. In general, we need to push these students to 
make preparations for learning and inform them of resources and supports. 

Third, more tutoring should be made available to developmental students, with tutors who 
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are experienced in working with this special student population. 
Fourth, relative to instruction, students need to be: motivated through alternative approaches, 

evaluated through less formal assessments, and taught through a well-structured curriculum. 
Intermediate algebra instructors interviewed had varied views on the nature and goals of the 
course; goals should be aligned. One example existed within the English Department; their 
remedial sections have a common exit requirement (portfolio) to hold instructors accountable; 
instructors meet regularly and work collaboratively toward common goals. 

Fifth and finally, the Department has provided ongoing, formal professional development for 
graduate teaching assistants; this training should include specific attention to this special 
population of students. 
 

Proposed Strategies 
Based on the reality of mathematics instruction and practice in our Department and the 

aforementioned findings, we proposed the following strategies at town meetings across the 
University for improving students’ success in our developmental mathematics program: 

• Organize mathematics placement exam workshops for those graduating high school in the 
spring; 

• Offer mathematics courses to selected incoming freshmen in the summer, in order to 
reduce the number of students needing remediation in their freshman year;  

• Revise the developmental mathematics curriculum, particularly in intermediate algebra; 
• Implement common structures, assessments, and final exams across all sections of a given 

course, particularly intermediate algebra; 
• Increase course time each week in intermediate algebra by one hour for individual or 

group tutoring or Supplemental Instruction sessions; 
• Assign experienced graduate teaching assistants (as opposed to part-time instructors) to 

teach developmental mathematics courses, thereby allowing for a more aligned program; 
• Provide ongoing professional development to teaching assistants and tutors (with respect 

to mathematics content, pedagogy, student needs, etc.); 
• Identify and provide additional support to students with special needs, such as double pre-

baccalaureate students (those needing remediation in both mathematics and English) and 
student athletes. 

Based on feedback relative to our proposed strategies, we suggested to the Department and 
University a number of pilot studies that could examine changes to our existing Developmental 
Mathematics Program. Highlights include: 

(1) Provide 1-2 daylong placement exam workshops for the State-level exam to high school 
seniors on campus in Spring on the Saturday prior to the testing dates. Garner 
information (pre-test, survey) during first hour in order to sort students by ability. The 
objectives are to help participants prepare for the exam, gain insight into participants’ 
expectations for and attitudes toward the exam and mathematics at the University, and 
decrease the number of students needing developmental mathematics in fall. Data would 
include pre-post student tests, pre-post student surveys, student interviews, and placement 
exam scores. 

(2) Revise the intermediate algebra course curriculum to better reflect the nature of the 
course and these students’ needs. As part of this process, generate common assessments 
(e.g., final exam). The goal is to develop a curriculum that is more appropriate to 
developmental level students, as well as assessments that are required by all instructors, 
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with improvement in students’ passing rates. Data would include artifacts (e.g., 
assessments), detailed record of curriculum development, instructor surveys, and passing 
rates of future course sections. 

(3) Expand the number of developmental courses offered in summer and actively recruit 
from surrounding districts to target students who have just missed the placement exam 
cut-off score to bypass remediation. The goals are to decrease number of students 
needing developmental mathematics in fall and better understand the background and 
attitudes of students selecting this option. Data would include pre-post student surveys, 
passing rates of these summer sections, and numbers of students completing remediation 
as a result of this offering prior to freshman year. 

(4) Have graduate students teach as many sections of intermediate algebra as possible to 
provide structured and on-going support led by an assigned coordinator that addresses 
pedagogy, content, and special needs of students. The goals are to improve the students’ 
passing rate and enhance the learning experience for all students. Data would include pre-
post student surveys, students’ passing rate, graduate student instructor surveys and 
interviews, and interviews with the graduate student coordinator. 

(5) Increase the weekly course length of intermediate algebra by one hour for individual or 
group tutoring or Supplemental Instruction sessions (computer-based software, online 
system, human tutors or SI leaders). The expected outcomes include improved student 
passing rate and increased time to address affective and support the needs of students in 
this developmental course. Data would include pre-post student surveys, students’ 
passing and completion rates, and instructor interviews. 

 
Discussion 

Within this paper we carefully describe our methodology, as well as results from both of our 
research questions. Presenting our work in this manner allows it to serve as a model for how 
other institutions can examine their own developmental mathematics programs and make the 
changes/revisions necessary to address this nation-wide problem. While popular perception is 
that most students needing remediation either did not take mathematics in their last year of high 
school or did not successfully complete prerequisite courses, we have found, and the literature 
supports, that this perception is not accurate. Students’ attitudes toward mathematics and 
learning, the time they are willing to spend, knowledge of how to learn mathematics, and 
learning experiences within remedial courses all play a critical role in their academic success. 
Developmental programs, particularly those serving diverse student populations, must examine 
both the content and pedagogy within courses and the structure by which students’ learning is 
supported. More research of a long-term nature that qualitatively studies student success and 
learning experiences in developmental mathematics programs is needed. 
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Despite statistics showing African-American students’ less than average mathematics 
performance), there exists a population of African-American students with records of 
mathematics achievement. This paper highlights one such student enrolled at a two-year 
residential high school in the Southeast. Her academic strategies and ideology were uncovered 
to determine their influence on her mathematical success. This analysis is part of a larger study 
highlighting the academic and social strategies of mathematically successful African-American 
students attending Caldwell Academy and factors contributing to that success and social 
balance, and how both contribute to resilience. The study also investigated the lack of enrollment 
in higher-level mathematics classes among eligible African-American students. 
 

Purpose 
African-American students have historically not performed as well mathematically as their 

White and Asian counterparts (http://nces.ed.gov, 2007). However, at specialized schools like the 
one in this study, students generally enter on a much more level academic playing field than in 
traditional high schools based largely on the acceptance criteria. At Caldwell Academy, a 
specialized residential high school, African-Americans were not enrolling in higher level 
advanced mathematics course for which they were eligible.  

The study developed as the result of concerns that African-American students at Caldwell 
academy were not enrolling in higher-level mathematics courses, despite their academic 
eligibility. To uncover the reasons why students were not taking courses, it became necessary to 
determine how the students felt about their mathematical abilities, then identify the academic and 
social strategies they employed to be mathematically successful. Reasons for not taking the 
courses were shared by students during final stages of the study. Shared here is the portrait of 
one African-American student who attributed her mathematics success to her work ethic; her 
ideology – one indicative of inclusion and success – is also perceived to be directly related to her 
mathematics success.  

 
Theoretical Framework 

Resilience theory serves as the primary framework for the study. While resilience theory 
outlines the interventions, protective mechanisms, and coping strategies employed by students to 
surmount obstacles (Nettles, 1993), academic resilience focuses on the latter two (Floyd, 1996; 
Lee, 1991; Steward, 1996). Both high-levels of mathematics self-efficacy and positive social 
identity can be factors contributing to the academic resilience of African-American students. 
Resilient students have been shown both to possess high levels of self-perceived ability 
(efficacy) and to rely on others in their social circles for guidance and support (Lee, 1991; Wade 
& Oskeola, 2002). Without both strategies, students are less able to employ the coping strategies 
necessary for resilience. 

Self-efficacy and racial and social identity development are secondary frameworks. Race can 
be used to predict mathematics self-efficacy (O’Brien, Martinez-Ponz, & Kopala, 1999). That 
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self-efficacy, in turn, is strongly related to interest (and performance) in mathematics courses and 
STEM-based career fields. A high level of mathematics self-efficacy is the result of a student’s 
belief in their own mathematics ability. It is generally perceived as task-specific (Hackett & 
Betz, 1989) and for the purposes of this study was addressed from a more general perspective in 
terms of mathematics courses which study participants believed they could take and successfully 
complete with a passing  grade.  

Positive social identity for African-American adolescents generally develops as they progress 
though the stages of nigrescence, as defined by Cross (1991). Cross’ five stages include: pre-
encounter, encounter, immersion/emersion, internalization, and commitment. The significance of 
race and how central it is to the identity of African-Americans can change during each stage of 
nigrescence. Race is not as significant during pre-encounter, but becomes much more so after on 
experiences some type of encounter that causes and African-American to become more aware of 
their race and how they are perceived by others based on race.  

Though there is disagreement about the age at which encounter occurs, Tatum argues that it 
can occur as early as middle school (1997). During adolescence, African-Americans are thought 
to become more aware of their race as it pertains to mainstream society and in comparison (or 
contrast) to their peers. Encounter precipitates immersion/emersion where many adolescents 
become focused on race and associate strongly with Black culture to define them and prove their 
“Blackness.”  They also begin to negotiate between their sometimes contrasting school and home 
environments. In those situations, African-American adolescents may have one set of friends or 
peers in the classroom while they choose a social circle comprised of more African-American 
peers with whom they share experiences that are non-academic. In a residential high school, like 
Caldwell Academy, the students’ school and home environments overlap and there may not be 
any distinction between those with whom they share academic and social experiences.  

Internalization and commitment occur after one matures to allow incorporating the values 
and ideas of mainstream society without jeopardizing their racial identity. This occurs for many 
students in college after they are exposed to more opportunities to take African-American history 
classes and join Black organizations. 

 
Methodology 

A qualitative study using phenomenological methods was used to capture the experiences of 
the study participants in their own words. Phenomenology allowed the researcher to use the 
students’ experiences while inserting one’s own understanding of the phenomenon to convey 
their experiences (Tesch, 1987). 

The larger study was designed to determine what factors contributed to low African-
American enrollment in higher-level mathematics courses at a specialized, residential, high 
school. The following research questions were posed to identify those factors: 

1. How confident do African-American students feel about their ability to successfully 
complete mathematics courses? 

2. What academic and social strategies do mathematically successful African-American 
students employ? 

3. What type of shift occurs in the development of racial and social identity of African-
American adolescents at a specialized, residential high school?     

Caldwell Academy, the two-year residential school that served as the setting for the study, is 
a state-funded high school in the Southeastern United States. A member of the National 
Consortium of Specialized Secondary Schools of Science, Mathematics, and Technology, 
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Caldwell Academy required a strong academic history and records of achievement from the 
applicants chosen to attend. Application to Caldwell is open to all state residents and students are 
chosen during the spring of their sophomore year to attend the school during their junior and 
senior years. The admissions process was based on academic records, teacher recommendations, 
standardized tests scores, student activities, and an essay. Student enrollment at the time of the 
study was over 600 students. At a state-funded institution Caldwell Academy maintains an 
enrollment goal that reflects that composition of the state population. At the time of the study, 
African-American population in the state was 21.6% while 71 of the students at Caldwell 
Academy were African-American (less than 12%). 

Participants in the study were chosen by criteria sampling based on their eligibility to enroll 
in mathematics courses beyond Calculus. At Caldwell Academy, a mathematically successful 
student was one who earned a B- or higher in their Precalculus their junior year, as well as those 
who entered the school enrolled in Calculus or higher. This allowed the student met the 
prerequisites for mathematics courses that were considered more advanced and required a 
stronger mathematics foundation.  

Each study participant completed a mathematics autobiography, racial identity assessment 
(developed by Sellers, etc.), and a semi-structured individual interview. Questions from the 
autobiography and select items from the interview addressed mathematics efficacy and academic 
strategies. Other interview items addressed the social strategies the students employed to remain 
successful at Caldwell Academy, including their social circles and support systems. The racial 
identity assessment was used as an added dimension to interpret students’ reported strategies and 
responses to interview questions. 

The mathematics autobiography was designed to help students identify when and how their 
confidence in their individual mathematical abilities developed. By responding to items such as 
“When did you first realize you were good at mathematics?” and “Who helped you value 
mathematics?” students reflected on their relationships with mathematics and the events 
contributing to their levels of mathematical self-efficacy. The mathematics autobiography also 
asked that they share a strong (positive or negative) mathematics memory and the mathematics 
teacher they considered to be their favorite. 

The racial assessment used for the study was the Multidimensional Inventory of Black 
Identity (MIBI) developed by Sellers, Smith, Shelton, Rowley, and Chavous (1998). The MIBI is 
based on their Multidimensional Model of Racial Identity (MMRI) which creates a composite 
model of racial identity combining the universal properties of African-Americans with the 
specific qualitative nuances of individual African-Americans. Sellers, Smith, Shelton, Rowley, & 
Chavous identified four dimensions that collectively define African-Americans while 
acknowledging individual experiences. The four dimensions of the MMRI are salience, 
centrality, regard, and ideology. Salience, how aware a person is of their own racial identity, can 
be situation-specific and is considered less stable than the other three dimensions.  The 
remaining dimensions, centrality, regard, and ideology serve as the subscales of the MIBI. 
Centrality measures how much race comes before other aspects in regard to an individual’s sense 
of identity and self. How an individual feels about Black people and how they believe others 
perceive Black people, are personal and private regard, respectively. Ideology has four different 
categories to identify in which one would characterize their perspectives on African-American in 
America and where their priorities lie in relating to other African-Americans, minorities, 
American, and humans. The ideology subscales are not exclusive and many African-Americans 
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demonstrate some form of each. The items from each subscale are presented in a 7-point Likert 
scale and are averaged to produce a unique profile of each participant. 

The individual interviews were conducted after study participants completed the mathematics 
autobiography and the racial identity assessment. The items from the interview were a 
combination of those created during a pilot to address the students’ academic and social 
strategies and other questions that were developed specifically for each participant as a result of 
the previous two instruments. Each student was asked to describe academic and social 
experiences at their home schools prior to attending Caldwell Academy, and then describe the 
same experiences after enrollment.  The students were asked to about their perceived 
mathematics ability, effort, and performance at their home schools and at Caldwell Academy.  
They were also asked to describe the social circles they created at both schools.   

 
Findings 

Jackie was one of 71 African-American students enrolled at the time of the study, with 
approximately 20 in the senior class.  Her initial mathematics placement exam placed her in 
Precalculus. Because she completed Honors Precalculus at her home school Jackie requested to 
be re-tested. Based on her second score, she was enrolled in Calculus as a junior at Caldwell 
Academy.  Enrolling in Calculus during her junior year meant Jackie could meet the 
mathematics graduation requirement by taking any mathematics courses during her senior year. 
She was the only student in the study enrolled in higher level mathematics courses. 

Jackie’s individual portrait highlighted her strong self-concept and diverse social circle. She 
credited her mother for her developed confidence in her mathematical abilities. According to 
Jackie, her mother helped her realize her mathematical talent, while her teachers were surprised. 
She was constantly and consistently encouraged by her mother, despite the fact that others 
doubted her academic ability. The constant encouragement helped her feel strongly about being 
re-tested. In describing her own perception of her mathematics ability in her autobiography, 
Jackie stated: 

I liked to learn anything when I was younger, math was an easier thing to learn because I 
soon realized that there were formulas and tricks. I never considered myself a “math person” 
but I knew I was good at it. I liked the cut and dry, right/wrong angle to math. 
The MIBI revealed Jackie’s unique experience as an African-American and could be used to 

add dimension to her responses to other assessment instruments. Her centrality was a bit higher 
than average for study participants, suggesting that being Black was important to her, but not the 
only thing that defined her. Jackie’s private regard was higher than average, while her public 
regard was lower than average. Of the ideology subscales, Jackie scored highest as an 
assimilationist, suggesting that she believed in working within the mainstream American system 
to be most effective in changing it. Her ideology also explained her perspective on taking 
advantage of opportunities available.  

Jackie revealed a multi-faceted definition of success during her interview. Although she 
perceived the majority of the students at Caldwell Academy to be focused primarily on academic 
endeavors, her interests varied and she believed that a student with few or no other activities 
should always be academically successful. In contrast to the academics-only model, Jackie 
embraced a definition of success based on involvement in activities outside of the classroom as 
well.  She had interests that included athletics, music, and performing arts and chose to surround 
herself with others possessing similar interests. 
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Jackie perceived her academic ability to be as strong after attending Caldwell Academy as 
she did prior to enrollment. However, she acknowledged that she had to spend more time 
working to understand mathematics at Caldwell Academy and that her performance was not as 
great. She described spending down time during basketball practice working on Calculus and 
going to see her instructor much more than was necessary at her previous school. Jackie believed 
that work ethic could contribute to mathematical success just as much as natural ability. 
Although she was the only African-American student enrolled in her any higher-level 
mathematics class, not just her own, Jackie did not place emphasis on that. She was accustomed 
to that scenario and focused more on her work. She also shared that mathematics was easier at 
Caldwell Academy after she discarded the idea that mathematics came from formulas and began 
to demonstrate a more conceptual understanding of mathematics, as opposed to the procedural 
understanding to which she was accustomed. 

Social identity was the aspect that Jackie believed suffered more from being African-
American at Caldwell Academy than her academic identity. She believed it was because she 
didn’t feel compelled to spend time and create relationships with other Black students based on 
race alone; she needed more core values and interests in common with those in her social circle. 
As a result, her social circle was very diverse, both prior to enrollment at Caldwell Academy and 
while enrolled. The foundations on which she based her relationships allowed her to rely on her 
friends to help her through both academic and social challenges. Academically, Jackie thought 
students at Caldwell Academy could take advantage of the available resources to further develop 
their academic and personal interests. 

 
Discussion 

Jackie’s resilience appeared to be the result of a high level of mathematics self-efficacy and 
support systems – both familial and social. Jackie was the only student in the study enrolled in a 
higher level mathematics course although she could have taken less advanced courses to meet 
her graduation requirements. She enrolled in the mathematics courses for the academic challenge 
and relied on her work ethic to help her complete the courses with a passing grade.  

Jackie possessed a sense of her mathematics ability of which she became aware by a series of 
mathematics successes. It was also consistently fostered by her mother’s consistent belief in her. 
Jackie’s previous mathematics experiences, support systems and ideology contributed to her 
strong work ethic and ability to create diverse social circles. She was accustomed to being the 
minority and was not as affected by that as others in the study. She attributed her success to her 
work ethic and was determined to be successful by taking advantage of academic opportunities.  

As the US population becomes more diverse and the workforce becomes more 
mathematically driven, mathematic success is necessary to enter students in the pipeline for 
Science, Technology, Engineering, and Mathematics (STEM) fields. It then becomes necessary 
to identify the factors contributing to academic resilience. Once identified, these factors can be 
used to create nurturing learning environments that recognize and incorporate the unique 
challenges and needs of minority students, particularly those that vary from mainstream culture. 
Using Jackie’s experiences help create a template for improving African-American participation 
in advanced mathematics.  
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Candice L. Ridlon 

University of Maryland Eastern Shore 
cridlon@umes.edu 

The gap between teachers’ perceptions of how they teach mathematics and their actual 
classroom practice has been well-documented. To understand this disparity, data was collected 
for three years on pre-service and in-service elementary school teachers. The Dowd Therapeutic 
Reactance Scale (TRS) was used to identify psychological reactance that may predispose 
teachers’ willingness to change, thus influencing their efforts to incorporate reform strategies 
into their practice. Data analysis shows that teachers tend to be low in reactance, implying a 
greater desire to impress and to be socially appropriate. Scores indicate a low locus of self-
control and a preference for high levels of professional advice and structured support. 

Background and Perspectives 
In 2000, the National Council of Teachers of Mathematics (NCTM) revised their standards 

for teaching mathematics. Over 95 percent of teachers in the U.S. claim to be aware of the these 
standards and 70 percent indicated, when questioned, that researchers would find proof of 
standards-based teaching in their classrooms. However, very little evidence of reform instruction 
has actually been found when teachers were observed (Stigler & Hiebert, 1999). Ma found that 
most practicing elementary teachers in the U.S. believed mathematics was “an arbitrary 
collection of facts and rules in which doing mathematics means following set procedures step-
by-step to arrive at answers” (1999, p. 123). Thus when teachers engage in pre-service methods 
courses at the university or in professional development courses later in their career that focus on 
“understanding concepts,” they often face uncomfortable confrontations with their existing 
attitudes as well as their own knowledge of mathematics.  
Factors Involved in Changing Teachers’ Beliefs, Attitudes, and Classroom Practice 

Reconstructing beliefs is more complex than providing teachers with standards-based 
curricula and workshops on implementation of those standards. As Schifter and Fosnot (1993) 
point out, "... significant and enduring change in the way teachers teach cannot be induced by a 
course of lectures, a handful of workshops, or even books...no matter how informative or 
persuasive.” Instead, teachers change more readily “in ecologically embedded settings of real 
classroom practices, real students, and real curricula - elements that teachers define as central to 
their profession” (Confrey, 2000, p. 100). Learning occurs when teachers are given the 
opportunity to reflect on and communicate about the mathematical thinking of their students 
(Franke et al., 2001; Margolinas et al., 2005). They must examine their beliefs about how 
children come to know mathematics and discover ways to teach given that information. 

These issues are compounded by tensions that exist in school settings that actually sustain 
traditional teaching rather than supporting reform (Gregg, 1995). Furthermore, Remillard and 
Bryans (2004) found that a teacher’s orientation towards a curriculum influences how he or she 
engages those materials in the classroom as much as the curriculum itself. As mathematics 
educators have already discovered, supplying standards-based materials does not necessarily 
translate into any discernable change in classroom practice. Since teachers’ beliefs can either 
support or constrain their students’ learning, mathematics teacher educators need to attend 
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carefully to teacher beliefs (Warfield et al, 2005). If the gap between teachers’ perceptions of 
how they teach mathematics and their actual classroom practice is ever to be rectified, all of 
these obstacles must be overcome. 
The Influence of Reactance 

Any change in classroom practice is further complicated by a teacher’s individual character 
traits. Research shows that personality factors such as psychological reactance, extroversion, 
anxiety, independence, and self-control affect an individual’s ability to change (Bartram, 1995). 
The Theory of Psychological Reactance (Brehm, 1966; Brehm & Brehm, 1981) postulates that: 

Individuals possess “free behaviors” that can be engaged in at a moment or at some future 
time and that the motivational state of psychological reactance will be aroused whenever any 
of these free behaviors are eliminated or threatened with elimination. This motivational state 
will be directed toward the restoration of the eliminated or threatened behavior and will result 
in behavior known as reactance effects (Dowd, Milne, & Wise, 1991). 
Psychological reactance theory offers a helpful framework for understanding oppositional 

behavior in individuals. For instance, therapy clients who are high in reactance - a “state of mind 
aroused by a threat to one’s perceived legitimate freedom” (Brehm, 1966) - have low 
expectations for change and low therapy outcomes (Dowd & Wallbrown, 1993). Counselors who 
are high in reactance prefer unstructured supervision and greater degrees of professional 
freedom. In contrast, those counselors who are low in reactance were most extreme in their 
preference for structured supervision (Tracey, Ellickson, & Sherry, 1989). In another study, low-
reactant patients reduced cigarette consumption more when they were provided with high 
amounts of physician advice. However, high-reactant patients perceived high amounts of 
physician advice as a threat, especially if that advice was negatively toned. For these patients, the 
best interaction was a low amount of negatively toned advice (Graybar et al., 1989).  

Reactance potential, like other personality traits, may be higher in some individuals than it is 
in others (Brehm, 1966) and is believed to remain relatively stable over an individual’s lifetime. 
And, as is often the case with other personality factors, there may be a correlation between 
reactance, career choice, and eventual success at an individual’s chosen occupation. 

Extrapolating from the psychotherapy literature to education, then, it is probable that teachers 
who are high in reactance might engage in oppositional behavior when confronted with requests 
to adapt reform strategies. They would view standards-based curricula and workshops as a threat 
to their autonomy and exhibit a decreased willingness to change classroom practice. Teachers 
who are low in reactance would feel less threatened by outside attempts to reform their teaching 
practice and be more willing to change. However, they would desire higher levels of advice and 
structured support from perceived authority. Although “research on the relationship between 
teachers’ characteristics and teacher effectiveness as been underway for over a century” (Rockoff 
et al., 2008), little empirical research exists in the area of reactance, so this study explores 
teaching dynamics from the unique perspective of considering the social and emotional 
dimensions of teachers. 

 
Research Question 

How does the psychological reactance of elementary school teacher influence their willingness to 
incorporate mathematics reform strategies in classroom practice? 
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Participants, Methods, and Data Sources 
From 2004 - 2007, data was collected on 191 pre-service and 65 in-service teachers. The pre-

service teachers attended the same university and were in eleven cohort groups spread out over 
six semesters. The in-service teachers were employed at four different local elementary schools 
during this time frame. In one instance during the study, two of the pre-service teachers were 
hired and became in-service teachers at one of the schools. 

Participants completed a personality measure called the Therapeutic Reactance Scale (TRS; 
Dowd, Milne, & Wise, 1991) which gives scores on psychological reactance. The TRS is a one-
page, 28-item test using a 4-point Likert scale. Several of the items are reverse-keyed to 
eliminate any effect from acquiescence response sets. The instrument is based on normative data 
and has a very slightly positively skewed normal distribution. The usual mean is 67.78 and the 
median 67.75. The minimum and maximum attainable scores are 28 and 112, respectively. The 
TRS has an internal consistency ranging from .75 to .84. This clinical measure of reactance has 
been used in psychometric applications, such as counseling and human resource management, 
for more than a decade.  
 

Results 
Descriptive statistics were calculated for each of the eleven pre-service and four in-service 

groups separately. ANOVA: Single Factor was performed on all possible combinations, taken 
two at a time, to yield a simple analysis of variance on data for the samples. This analysis tested 
the hypothesis that each sample was drawn from the same underlying probability distribution 
against the alternative hypothesis that the underlying probability distributions were not the same 
for all samples. In each instance, the p > 0.90, which did not lend sufficient support to reject the 
null hypothesis. In other words, the groups were sufficiently similar that they likely represented 
the same population.  

The data from all teachers was then combined into “composite” pre-service and in-service 
scores, yielding means of 62.43 and 61.99 respectively (see Table 1.) Another ANOVA was 
performed on the composite scores, producing a p = 0.909. This confirmed that the null hypothesis 
should not be rejected: teachers, regardless of teaching experience, had relatively similar scores 
and thus represented similar populations. Interestingly, performing ANOVA against the “normal” 
TRS scores yielded a p < 0.05, showing that elementary teachers’ scores did differ significantly 
from usual scores used to normalize the TRS. In this case, the alternate hypothesis would be 
supported: Teachers had significantly lower scores in psychological reactance than the general 
population. 

A t-Test (two-sample assuming unequal variances) was also performed (see Table 1). This t-
test form assumed that the two data sets came from distributions with unequal variances (a 
heteroscedastic t-test) since descriptive statistics had exhibited this disparity. Results from this 
analysis supported the ANOVA results. They indicated that the two samples were likely to have 
come from distributions with equal population means. 
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Figure 2: In-Service Teacher Reactance

Table 1. T-test: Two-sample Assuming Unequal Variances 
 
 
 
 
 
 
 
 
 
 
 
 

 
Graphing the data from the two groups provided some interesting results (see Figures 1 and 

2). A class width of 3.4 was chosen to display TRS scores, which ranged from 44.5 to 78. In both 
instances, the data was bi-modal. One mode was near TRS’s normative central tendency 
measures (mean 67.78 and median 67.75). However, there was a second mode at a lower 
reactance score (54.8 to 58) for both sets of teachers. This less-reactant mode accounted for the 
shift to an overall lower mean and median reactance score. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 

  Pre-service In-Service 
Mean 62.43455497 61.99230769 
Variance 45.2338523 62.23040865 
Observations 191 65 
Hypoth Mean Difference 0.5  
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t Critical one-tail 1.660551218  
P(T<=t) two-tail 0.957960383  
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Discussion 
The gap between teachers’ perceptions of how they teach and their actual classroom practice 

has been studied from a variety of perspectives. This mismatch of belief and behavior appears to 
exist at several levels. For instance, Schussler, Bercaw, and Stocksberry (2008) found that an 
inverse relationship exists between teacher awareness and assumptions. In research focusing on 
the moral disposition of teachers, Johnson (2008) found an inconsistency between teacher 
candidates’ quantitative assessments (tests) and qualitative data (contextual written assignments), 
suggesting that teachers had an inaccurate picture of their own beliefs and how they put those 
beliefs into action. When Singh and Stoloff (2008) examined teacher dispositions, they 
discovered that teachers gave lip service to research based instructional strategies, but needed to 
reshape their behavior in order to actually engage in those practices. Perhaps matching 
perception to actual behavior is a common human dilemma; certainly teachers are not exempt 
from exhibiting this disparity.  

The analysis of TRS data yielded some interesting findings. First, the mean reactance value 
for teachers is low, whatever their career stage. In fact, as a group, elementary school teachers 
are significantly lower in reactance than the general population. It is interesting to speculate that 
certain personality types may be drawn (and perhaps better suited) to particular careers. Decades 
of research in vocational studies would certainly give both theoretical and empirical support for 
that hypothesis, as the goal of vocational counseling is to match the client with a vocation in which he will be both 
satisfied and satisfactory (Botterbusch, 1978; Ehrhart & Makransky, 2007; Whitehead, 2005). 

The bimodal nature of TRS scores suggest that one group of teachers is about average in 
reactance, but many more individuals than expected from the general population tend to fall 
below the normative level. In fact, the second mode indicates a large proportion of teachers are 
grouped around an unusually low reactance value. Teachers with these low TRS scores are 
unlikely to feel threatened by reform strategies. Because reactance is a personality trait that 
remains fairly constant over time, it is not surprising to note that pre-service and in-service 
teachers exhibit the same distributions. (After all, the ANOVA and t-Test indicated that the two 
samples were likely to have come from distributions with equal population means.) 

Research evidence has suggested that reactance potential may mediate compliance with 
behavioral tasks. Brehm and Brehm (1966) found that the tendency to resist overt influence is 
positively correlated with internal locus of control. Thus, individuals with Type A personality 
may possess a lower threshold of threat for arousal of reactance than Type B personalities 
(Dowd, Milne, & Wise, 1991). What does this mean in terms of low reactant elementary school 
teachers? It means that teachers have a lesser tendency to resist influence - correlated with a low 
locus of control - and demonstrate more expectation of changing their behavior (Rohrbaugh et 
al., 1981). Also, low-reactant people become significantly less anxious than high-reactant 
individuals when confronted with pressures from the “outside” (Dowd, Milne, & Wise, 1991). 
Low reactance could be a distinct advantage in a profession that requires its workers to 
incorporate an ever-changing landscape of external demands levied by administrators, parents, 
politicians, and mathematics educators. 

Low reactance is also related to a greater desire to impress others and to be socially 
appropriate (Dowd, Milne, & Wise, 1991). As teachers work in the public arena (regardless of 
whether they are employed in a public or private school), this desire might actually increase their 
willingness to change teaching practice if modifications are perceived as socially acceptable. 
Teacher preparation and development courses would therefore be more effective at changing 
classroom practice if teachers worked in communities of respected peers, and if they experienced 
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support, acceptance, and positive reinforcement from administrators and persons of recognized 
social authority. 

A final implication of low reactance is closely related to the desire to be socially acceptable. 
Research has shown low-reactant individuals change their behavior more readily with high levels 
of professional advice, and they are more extreme in their preference for structured support 
(Dowd, Milne, & Wise, 1991; Tracey, Ellickson, & Sherry, 1989). Elementary school teachers’ 
low reactance would thus indicate the desire for perceived “experts” to design highly structured 
methods and professional development courses. Mathematics educators, mathematics specialists, 
and others with professional expertise must be available to answer questions and provide 
supportive counsel on a regular basis. Contrary to oppositional behavior, low-reactant 
individuals like elementary school teachers want suggestions from more experienced leaders 
because they value such guidance when trying to implement a change in their own behavior. 

Any discussion of the use of psychological measures (such as reactance testing) in 
educational settings should include some attention to ethical concerns. Without question, tests 
that have been used successfully for clinical diagnosis and to reveal psychopathology are best 
administered by a clinician with specialized training in their interpretation. One must also 
consider the potential implications of using clinical tests and the relevance of personality 
constructs and their validity if the results of these tests are directed at pre-employment screening 
or post-employment evaluation. Camara and Merenda (2000) suggest that the fear of litigation 
resulting from testing that is used in an exclusionary manner (such as for pre-employment 
screening) may be the primary disincentive for using personality tests inappropriately. Even 
“psychologists are increasingly on ‘thin ice’ in using clinical instruments to make high stakes 
decisions in employment settings” (Camara & Merenda, 2000, p. 1183). However, these ethical 
constraints play little or no role in this study. A licensed clinical psychologist is involved in the 
research. The TRS was only used to identify psychological reactance that may predispose 
teachers’ willingness to change in order to suggest more effective strategies for delivering 
mathematics education courses to teachers. 

However, reactance scores by themselves contribute only one small piece to the complex 
jigsaw puzzle of designing effective teacher education courses. Additional data associated with 
this study is currently under analysis to examine the interplay of reactance with other personality 
traits, while tracking the change in classroom practice that is anticipated from standards-based 
instruction. Participants took a second personality measure called the 16PF Questionnaire 
(Cattell, Cattell, & Cattell, 1993). The 16PF is a 185 item self-report which measures normal 
adult personality dimensions (i.e. extraversion, anxiety, tough-mindedness, independence). In 
addition, teachers in this study have been involved in either a university mathematics methods 
course or a school-wide two-year long biweekly professional development (PD) course (or both, 
as was the case for two of the pre-service teachers who were hired by the participating school 
districts). These courses have been aimed at instruction in NCTM reform beliefs and practice.  

To measure beliefs and attitudes about teaching mathematics, each participant took the 
Integrating Mathematics and Pedagogy Beliefs Survey (IMAP, Philipp, 2002). This belief-
assessment instrument is a web-based, in-context survey using video clips that allow respondents 
to interpret and react to student actions in well-defined situations. Participants took the IMAP 
twice - at the beginning and end of their coursework – thus data has been collected to examine 
any change or beliefs or attitudes that might likely have occurred due to the reform-based 
instruction.  
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To document change in classroom practice (perceived or actual), in-service teachers 
completed self-assessments to rate their own progress at reforming their teaching practices. In 
addition, an outside evaluator made formal observations of each teacher’s classroom practice 
during regular mathematics lessons twice a year. The collaborative lessons associated with both 
the methods and the PD courses were formally observed. Pre-service and in-service teachers’ 
reflective journals were collected. Qualitative data from self-assessments, observations, and 
teacher writings is being coded for emergent themes and trends. The findings and correlates from 
these analyses will be reported and should give a more accurate picture of the dynamics of 
personality and willingness/ability to change classroom practice. 
 

Use of Results Related to PME-NA Goals 
Because teachers are individuals, they respond to training differently. Research needs to 

identify these differences and make suggestions for adapting methods and professional 
development courses to meet teacher needs. This study hopes to gain a deeper understanding of 
the influence of psychological reactance that may predispose teachers’ willingness to change, 
thus influencing their efforts to incorporate reform strategies into classroom practice. These 
findings meet the goal of embracing the diverse perspectives of teachers in order to benefit the 
children they teach. 
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From the detailed analysis of videotapes in an urban middle school classroom taken as part of a 
larger study, we provide interpretation of the notion of an “emotionally safe environment.” This 
“teacher research” project looks at proposed ways of describing a complex behavioral, social, 
and affective environment that can enhance or hinder students’ motivation to engage 
mathematically. The analysis presented here focuses on three categories: reframing frustration 
and impasse; reframing the mathematical problem solving process; and maintaining high 
cognitive demand and motivational potential in the selection and implementation of 
mathematical problems. 
 

Background and Theoretical Framework 
This analysis investigates features of a classroom that are perceived to promote an 

emotionally safe environment for student exploration of conceptually challenging mathematics. 
The research reported here is part of a larger study investigating the occurrence and development 
of powerful affect around conceptually challenging mathematics. Its focus is on urban middle 
school classrooms serving low-income students primarily of African American, Latino, and 
Caribbean descent. The class is one of three urban, middle school mathematics classes (in two 
different districts), that were studied in depth over the course of a school year, starting in 
September and ending in late May. The teachers were selected based on evidence of strong 
mathematics teaching skill, research interest, and their likely ability to elicit powerful affect 
around conceptually challenging mathematics. Data were collected during five cycles of twenty 
visits. For each cycle, data included videotapes of two consecutive lessons, pre- and post-
interviews with the teacher, and videotaped stimulated-recall interviews with four focus students. 
Three cameras were used for each class session: two following the focus students, and the third 
stationary camera capturing an overall view of the class. Additional data included students’ 
written work, observers’ field notes and earlier analysis (Alston et al., 2007; Alston et al., 2008). 
The classroom teacher joined the research team subsequent to the school year and is participating 
in the analysis; he is the first author of the present report. 

Teachers face the general problem of how to create effective learning environments in 
mathematics, and the specific problem of how to interact most effectively with students engaged 
in conceptually challenging mathematical activity. Current literature suggests the value of 
attending to issues of affect, context, social interactions, race, and culture in helping students 
gain confidence, motivation, and improving performance (Ball & Bass, 2003; Cobb & Yackel, 
1998, Goldin, Epstein, & Schorr, 2007, Goldin, 2000a, 2000b; Martin, 2000; Moschkovich, 
2002; Stigler & Hiebert, 1998). As students and teachers engage in conceptually challenging 
mathematics, a variety of emotional feelings occur that may influence instruction, motivation, 
and learning. These issues have immediate implications for learners in the mathematics 
classroom. Existing mathematics education research highlights the reciprocal relationship 
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between teacher actions and student behaviors--actions and behaviors that, in turn, appear to 
contribute to an interactive classroom environment where students are engaging with 
conceptually challenging mathematics (e.g., Carpenter, & Lehrer, 1999; Kaput, 1999; Martino, & 
Maher, 1999; Schorr, Warner, Gearhart, & Samuels, 2007; Stein, M. K., Smith, M. S., 
Henningsen, M. A., & Silver, E. A., 2000; Warner, Schorr, Arias & Sanchez, in press). In taking 
this stance the role of the teacher needs to be carefully considered when it comes to students 
engaging in exploring conceptually challenging mathematics and valuing their mathematical 
thinking as they construct, reason, and justify their solutions (Hiebert et. al., 1997). 
 Conceptually challenging mathematics is defined as mathematical content that requires some 
development of new concepts or changes in existing ones (Schorr, & Goldin, 2008), thus making 
it cognitively demanding. This frequently involves figuring something out within a problem 
situation in a “relational” manner (Skemp, 1976). Classroom social interactions around such 
mathematics may include students presenting ideas that are challenged publicly by their peers. 
Problem-solving efforts are likely to evoke discussions, explorations, and challenges to 
individuals’ thinking. Some students’ conjectures may turn out to be incorrect while the teacher 
or the class accepts others. Valid conjectures may at times be rejected as well. Students may lose 
track of underlying mathematical concepts as they bring personal details to the situation and 
experience impasse (Schoenfeld, 1992).  

An emotionally safe environment for exploring conceptually challenging mathematics is 
defined as one where students’ ideas and solutions are valued. Students are encouraged to share 
ideas. Mistakes are not criticized but transformed into opportunities for learning. Argumentation, 
reasoning, and proof are seen as part of the process in working out mathematical ideas (Ecceles, 
& Midgley, 1989; Goldin, Epstein, & Schorr, 2007; Maher, 1998; Maher, Davis, & Alston, 
1991a; Schorr & Goldin, 2008, Yackel & Cobb, 1996).  

The affective domain refers to emotional feelings, attitudes, beliefs, and values in relation to 
mathematics (DeBellis & Goldin, 2006; Evans, 2000; Evans, Morgan, & Tsatsaroni, 2006; 
Malmivuori, 2001; McLeod, 1994; Phillip, 2007). Powerful affect refers to those patterns of 
affect and behavior that lead to interest, engagement, persistence, and mathematical success. It is 
not restricted to positive emotions, such as curiosity, pleasure, and satisfaction, but includes the 
effective management and uses of feelings such as bewilderment and frustration (Epstein, 
Goldin, & Schorr, 2007; Goldin, 2000a,b; Gomez-Chacon, 2000a,b; Hannula, 2002; Malmivuori, 
2006; Schorr & Goldin, 2008). The conjecture of several of the researchers cited above is that 
powerful affect in relation to conceptually challenging mathematics is fundamental to developing 
mathematical ability and essential to present and future mathematical achievement. 
 

Research Questions and Methods 
 This report will focus on the following qualitative research question: What teacher 
interactions foster engagement during exploration of conceptually challenging mathematics?  

This analysis focuses on data from class sessions with students during the second cycle. The 
lesson was based on the unit project from “Stretching and Shrinking,” a unit of Connected 
Mathematics 2 (Lappan et. al., 2006). The activity began the night before when for homework 
students were instructed to bring in either a hand drawn picture or print out of their favorite 
cartoon character or television/music celebrity of their choice. The students were to enlarge their 
figures after applying them to a grid, plotting the points that would recreate their character, and 
apply a rule to the coordinates to enlarge them by a scale factor of at least four. This 
investigation continues for three more class periods of which analysis is ongoing.  
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With input from colleagues (Epstein et. al., 2008) involved with the larger study emerged 
some examples for exploring features of a classroom that promotes an emotionally safe 
environment for student exploration of conceptually challenging mathematics. The following 
abbreviated list builds from this collaboration with a focus on teacher strategies that foster 
engagement: 1) Reframing frustration and impasse (RFI); 2) Reframing the mathematical 
problem solving process (RP); and 3) Maintaining high cognitive demand and motivational 
potential in the selection and implementation of mathematical problems (HCD). At this early 
stage in analysis, we make no claim regarding the reliability of coding. The categories are 
preliminary and conjectural, though intended to lay the groundwork for future work.  
 

Results 
The students were working in small groups attempting to take their figure from its original 

state to a scale factor at least four times larger than the original. The initial goal was a bit 
confusing and the teacher reframed impasse (RFI) by having some students simplify their 
character to a boxier version to convert to the coordinate grid system and to enlarge their figure 
by applying a rule to the coordinates. He also had students trace their figure on a transparency to 
enlarge using an overhead projector and compare a sampling of measurements from the original 
to the enlargement to determine the scale factor (RP). The teacher also encourages another 
student to stay course with the original plan because he believed the student would have success 
(HCD). In the tables that follow are examples of reframing frustration and impasse (RFI), 
reframing the mathematical problem solving process (RP), and maintaining high cognitive 
demand and motivational potential in the selection and implementation of mathematical 
problems (HCD).  
 Mari (M) wanted to work with a television wrestler named Batista. The teacher suggested she 
make a championship belt with the wrester’s name in the middle. This provided an opportunity 
for the student to stay engaged while she plotted points for her belt that kept in line with the 
mathematical goals of the lesson. 
 
22:43 Mr. P Just to stay simple I would make little lines but I would do like a um like 

that. You could write the name in between and go, some thing like that, you 
happy with that?  

RP 

23:09 M Uh huh (smiling)  
23:10 Mr. P So something like that, so put it on there  
23:11 M So can I do that and then put it on the other  
23:12 Mr. P And then you would make sure that you’re able to put his name, you’re 

going to have to make block letters like this, making them curve might be 
rough but you’re if you want to make a B it might look like this (teacher 
draws boxy B) 

 

 
Mari comes back at a later point to get assistance with the writing of the letters in block form to 
put on the coordinate grid. 
 
41:52 M Can I just write them in?   
41:53 Mr. P Yes, but you want them to know um can I see your pencil? Okay so B, like 

you did okay, A that one’s actually pretty easy A right? ‘cause you just need, 
you might need 3 points here to make that curve. You might need to start 
back on the belt and across, you understand? And the S you’re gonna have to 

RFI 
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make one of these kind of S’s. I is just right?  
42:52 M Yeah and then there’s a T and another A.   
42:56 Mr. P Okay so i’ll just do that part. You’re gonna need to do the points in the 

middle right? You’re gonna have to tell me where these points are but you 
know you got your lines here, that’s fine, yeah I think this will work out 
good.  

 

43:21 M And now I gotta put it on the bigger paper?   
43:23 Mr. P Well now the goal, yeah, now the goal is to tell me where all these 

coordinates are. Do you know where all these points are?  
HCD 

43:31 M Oh like if it’s 1 and 15 and something like that  
43:34 Mr. P Yes and then, and then we want to apply a formula to it or a rule HCD 
 
Petri (P) had spent a good portion of the period trying to find a character and apply it to the grid. 
Her group was trying to explain to her that she could make Stewie from the television show 
“Family Guy” into a diamond to be able to graph it easier. Petri didn’t understand and became 
frustrated. Tyanna (T) also comes to the teacher to try and get some help. Mr. P suggests to her 
to put her character on a transparency and use the overhead projector to enlarge the figure. He 
also sees Petri is frustrated and suggest she do the same.  
 
48:49 E Mines was easier.   
48:52 P You could just make a box.   
48:56 R I should make a football.   
49:00 E Make a big diamond.   
49:03 R Yeah a big diamond head  
49:04 P What character is a big diamond head?  
49:06 R Stewie, it’s a football head but it’s diamond  
49:10 G Oh yeah you just do it like that, yeah look  
49:16 P What ya’ll talking about?  
49:17 R You see this look, um cube forms like that. It’s a diamond.   
49:23 P You guys are strange. You’re saying make his head a diamond. It’s gonna be 

ugly (laughs)  
 

49:33 G You don’t even know how to draw a diamond. Oh my god.  
49:38 P Ah ya’ll aggravating.   
49:52 E My dog has small hands. This dog. (Q comes to table)  
49:57 R What?  
49:59 Q Where?  
50:00 R Diamond head.  
50:03 P I don’t got no diamond head  
50:04 R Oh yeah that’s the same one as yours.   
50:10 P I’m gonna make a box with some ears.  
50:17 Q She in my seat, I don’t know why she in my seat. Are you the one they 

supposed to record? 
 

50:22 P Shut up Q, you’re retarded  
50:25 Q No I’m not. get up.  
50:49 E Ha ha look at my dog.  
50:53 R He’s hungry  
50:55 Mr. P Are you getting frustrated? RFI 
50:57 T Uh ha  
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50:58 Mr. P Draw him on the plastic paper and then you can enlarge him and you can 
find the scale factor from using the ruler instead of all the coordinates. Does 
that sound like something you’d rather do? 

RP, 
HCD 

51:08 T Um hm. I need a marker  
51:10 Mr. P Take one, use a permanent marker. I don’t…I don’t have the other ones  
51:19 P Mr. P, I’m fed up!  
51:21 Mr. P Yes? You’re fed up too RFI 
51:23 P Yes I’m just gonna draw something   
51:24 Mr. P Okay you can either, the option is to use either boxes. Glenda did you make 

that printout at home? Good job.  
 

51:32 P Okay this right here.   
51:36 Mr. P What?   
51:38 E I made a new one but it’s smaller  
51:40 Mr. P Okay  
51:43 P Can I make a crown or something?   
51:45 Mr. P You could do a crown or who was your original person? Stewie?  RFI 
51:48 P Yes  
51:50 Mr. P Some of you - some of you that are getting frustrated  RFI 
51:52 
 

R I don’t k now how to do this square thing. It’s not that, I can do it but it’s too 
many dots. Stewie’s easy. Not the square thing. You know how to do the 
square?  

 

52:09 Mr. P After you get it on a large piece of paper then we’ll have to use measurement 
to find the scale factor 

RP, 
HCD 

52:11 P Okay  
52:14 Mr. P ‘Cause I don’t want you to get too frustrated here.  RFI 
 
Ryan (R) who is an excellent artist was plugging along and trying to apply his talent to this 
mathematical situation. He approaches the teacher to see how he is progressing. 
 
43:52 R What number do I got to go up to?   
43:56 Mr. P Yours is very detailed. You’re gonna need a lot of points. Um that’s fine if 

you stop there.  
HCD 

44:01 M Who is that - Sponge Bob?   
44:03 R Yeah, that’s Sponge Bob.  
44:05 Mr. P Um the only thing, this is the only thing, I don’t want you to start over 

Bryant but one of the things, and I didn’t do a good job explaining it. If 
you’re gonna make Sponge Bob think about him more  

RFI, 
HCD 

44:25 R Cubed? More easier?   
44:26 Mr. P I’m not saying you have to do it over but um it might make your 

enlargement easier too. Here I’m having trouble drawing it, let me see him 
again how is he? He’s wide on, so yeah so you need right? Is that it? 
Something like this and then for his eyes you might want to make them uh  

RFI, 
HCD 

45:04 R Hexagon  
45:06 Mr. P Yeah because see how the sharp edges you can put on the lines easier. I 

think yours is very detailed and beautiful but it might be hard to make a 
bigger one. All right? Because these are a lot of points to identify so either 
you can go ahead with this one or try and just make him, and then if you 
want to do your X’s in the middle like you have, you can be able to do you 
know what I’m saying like if you want to keep with that theme with the 

RFI, 
HCD 
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Jamaican flag is that what it is or Dominican? 
45:37 R Dominican  
45:38 Mr. P Dominican flag in the middle then you can still do that and then when you 

make his nose, you’re gonna make it square like this  
 

45:53 R ‘Cause if I stick with this I don’t know what number to go up to.  
45:56 Mr. P You would have to go up really far, you would need a lot more points right? 

Well you don’t really need that many, you can go as high as you want but 
you can keep going with this theme, I don’t see any problem with it, you can 
tell who it is. ‘Cause you’ve done, you’ve done some boxy shapes on the 
sides, you just now need to identify the points. So like where is that point?  

RFI 

46:22 R Like at 8, 3?   
 
A bit later after a few students were encouraged to use another method due to being frustrated by 
the first method but Mr. P encourages Ryan to continue using his original method. 
 
53:04 Mr. P No no you don’t have to do it on other paper. If you’re doing that method, 

there’s a somewhat different method and if I’m I’m pushing first for you to 
graph the points and make your thing because we want a library of good 
characters for the next group of kids so that we don’t just have to use the 
wumps. Right? 

HCD 

53:26 R Yeah so this is a good character?  
53:27 Mr. P Yeah so if you’re not too flustered, just keep pushing on. Okay? HCD 
53:32 R I’m a do the coordinates in this picture  
53:33 Mr. P Yeah I think you’re doing fine Ryan, you can handle it.  HCD 
 

Conclusions and Implications 
This analysis documents the value of students’ bringing personal interests to mathematical 

concepts. The task itself brings interest to scaling figures larger or smaller with some reframing 
by the teacher. During this lesson the mathematical goal of scale factor seemed to move to the 
background while students focused on creating the likeness of their character. Despite the 
students’ struggles transforming their characters during the lesson, the agency and 
personalization that students exhibited are valuable and need to be navigated with care as to not 
disengage them. Furthermore these findings hope to shed light on the time, consideration, and 
decisions it takes to engage learners from a perspective that involves motivation and affect 
during the course of a lesson. Reframing problems, frustration, and impasse while maintaining 
high cognitive demand are relevant issues in mathematics education and need to be highly 
considered when choosing tasks and engaging learners. Teachers try to understand the 
mathematical strategies and representations a student might use in solving a particular problem. 
If we can understand and represent teacher interactions and student behaviors that enhance or 
impede emotional safety and mathematical engagement, it could be useful for creating other 
environments that encourage students to make mathematical meaning for themselves. Being the 
voice of the teacher in the classroom where the data were collected enhances the qualitative 
research paradigm by allowing for exploration of the unique features surrounding these particular 
cases and perhaps arriving at what Paul Ernest describes as the, “truth derived from identification 
with, and living through, a story with the richness and complex interrelationships of social, and 
human life” (Ernest 1994, p. 34). By adopting this perspective the present research affords an 
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opportunity to understand the situation in a way that may be valuable to other practitioners 
facing similar challenges. 
 

Endnote 
1. This research is supported by the U.S. National Science Foundation (NSF), grant no. ESI-

0333753 (MetroMath: The Center for Mathematics in America’s Cities). The views expressed 
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From the detailed analysis of videotapes in an urban middle school classroom taken as part of a 
larger study, we provide interpretation of the notion of an “emotionally safe environment.” This 
“teacher research” project looks at proposed ways of describing a complex behavioral, social, 
and affective environment that can enhance or hinder students’ motivation to engage 
mathematically. The analysis presented here focuses on three categories: reframing frustration 
and impasse; reframing the mathematical problem solving process; and maintaining high 
cognitive demand and motivational potential in the selection and implementation of 
mathematical problems. 
 

Background and Theoretical Framework 
This analysis investigates features of a classroom that are perceived to promote an 

emotionally safe environment for student exploration of conceptually challenging mathematics. 
The research reported here is part of a larger study investigating the occurrence and development 
of powerful affect around conceptually challenging mathematics. Its focus is on urban middle 
school classrooms serving low-income students primarily of African American, Latino, and 
Caribbean descent. The class is one of three urban, middle school mathematics classes (in two 
different districts), that were studied in depth over the course of a school year, starting in 
September and ending in late May. The teachers were selected based on evidence of strong 
mathematics teaching skill, research interest, and their likely ability to elicit powerful affect 
around conceptually challenging mathematics. Data were collected during five cycles of twenty 
visits. For each cycle, data included videotapes of two consecutive lessons, pre- and post-
interviews with the teacher, and videotaped stimulated-recall interviews with four focus students. 
Three cameras were used for each class session: two following the focus students, and the third 
stationary camera capturing an overall view of the class. Additional data included students’ 
written work, observers’ field notes and earlier analysis (Alston et al., 2007; Alston et al., 2008). 
The classroom teacher joined the research team subsequent to the school year and is participating 
in the analysis; he is the first author of the present report. 

Teachers face the general problem of how to create effective learning environments in 
mathematics, and the specific problem of how to interact most effectively with students engaged 
in conceptually challenging mathematical activity. Current literature suggests the value of 
attending to issues of affect, context, social interactions, race, and culture in helping students 
gain confidence, motivation, and improving performance (Ball & Bass, 2003; Cobb & Yackel, 
1998, Goldin, Epstein, & Schorr, 2007, Goldin, 2000a, 2000b; Martin, 2000; Moschkovich, 
2002; Stigler & Hiebert, 1998). As students and teachers engage in conceptually challenging 
mathematics, a variety of emotional feelings occur that may influence instruction, motivation, 
and learning. These issues have immediate implications for learners in the mathematics 
classroom. Existing mathematics education research highlights the reciprocal relationship 
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between teacher actions and student behaviors--actions and behaviors that, in turn, appear to 
contribute to an interactive classroom environment where students are engaging with 
conceptually challenging mathematics (e.g., Carpenter, & Lehrer, 1999; Kaput, 1999; Martino, & 
Maher, 1999; Schorr, Warner, Gearhart, & Samuels, 2007; Stein, M. K., Smith, M. S., 
Henningsen, M. A., & Silver, E. A., 2000; Warner, Schorr, Arias & Sanchez, in press). In taking 
this stance the role of the teacher needs to be carefully considered when it comes to students 
engaging in exploring conceptually challenging mathematics and valuing their mathematical 
thinking as they construct, reason, and justify their solutions (Hiebert et. al., 1997). 
 Conceptually challenging mathematics is defined as mathematical content that requires some 
development of new concepts or changes in existing ones (Schorr, & Goldin, 2008), thus making 
it cognitively demanding. This frequently involves figuring something out within a problem 
situation in a “relational” manner (Skemp, 1976). Classroom social interactions around such 
mathematics may include students presenting ideas that are challenged publicly by their peers. 
Problem-solving efforts are likely to evoke discussions, explorations, and challenges to 
individuals’ thinking. Some students’ conjectures may turn out to be incorrect while the teacher 
or the class accepts others. Valid conjectures may at times be rejected as well. Students may lose 
track of underlying mathematical concepts as they bring personal details to the situation and 
experience impasse (Schoenfeld, 1992).  

An emotionally safe environment for exploring conceptually challenging mathematics is 
defined as one where students’ ideas and solutions are valued. Students are encouraged to share 
ideas. Mistakes are not criticized but transformed into opportunities for learning. Argumentation, 
reasoning, and proof are seen as part of the process in working out mathematical ideas (Ecceles, 
& Midgley, 1989; Goldin, Epstein, & Schorr, 2007; Maher, 1998; Maher, Davis, & Alston, 
1991a; Schorr & Goldin, 2008, Yackel & Cobb, 1996).  

The affective domain refers to emotional feelings, attitudes, beliefs, and values in relation to 
mathematics (DeBellis & Goldin, 2006; Evans, 2000; Evans, Morgan, & Tsatsaroni, 2006; 
Malmivuori, 2001; McLeod, 1994; Phillip, 2007). Powerful affect refers to those patterns of 
affect and behavior that lead to interest, engagement, persistence, and mathematical success. It is 
not restricted to positive emotions, such as curiosity, pleasure, and satisfaction, but includes the 
effective management and uses of feelings such as bewilderment and frustration (Epstein, 
Goldin, & Schorr, 2007; Goldin, 2000a,b; Gomez-Chacon, 2000a,b; Hannula, 2002; Malmivuori, 
2006; Schorr & Goldin, 2008). The conjecture of several of the researchers cited above is that 
powerful affect in relation to conceptually challenging mathematics is fundamental to developing 
mathematical ability and essential to present and future mathematical achievement. 
 

Research Questions and Methods 
 This report will focus on the following qualitative research question: What teacher 
interactions foster engagement during exploration of conceptually challenging mathematics?  

This analysis focuses on data from class sessions with students during the second cycle. The 
lesson was based on the unit project from “Stretching and Shrinking,” a unit of Connected 
Mathematics 2 (Lappan et. al., 2006). The activity began the night before when for homework 
students were instructed to bring in either a hand drawn picture or print out of their favorite 
cartoon character or television/music celebrity of their choice. The students were to enlarge their 
figures after applying them to a grid, plotting the points that would recreate their character, and 
apply a rule to the coordinates to enlarge them by a scale factor of at least four. This 
investigation continues for three more class periods of which analysis is ongoing.  



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

154 

With input from colleagues (Epstein et. al., 2008) involved with the larger study emerged 
some examples for exploring features of a classroom that promotes an emotionally safe 
environment for student exploration of conceptually challenging mathematics. The following 
abbreviated list builds from this collaboration with a focus on teacher strategies that foster 
engagement: 1) Reframing frustration and impasse (RFI); 2) Reframing the mathematical 
problem solving process (RP); and 3) Maintaining high cognitive demand and motivational 
potential in the selection and implementation of mathematical problems (HCD). At this early 
stage in analysis, we make no claim regarding the reliability of coding. The categories are 
preliminary and conjectural, though intended to lay the groundwork for future work.  
 

Results 
The students were working in small groups attempting to take their figure from its original 

state to a scale factor at least four times larger than the original. The initial goal was a bit 
confusing and the teacher reframed impasse (RFI) by having some students simplify their 
character to a boxier version to convert to the coordinate grid system and to enlarge their figure 
by applying a rule to the coordinates. He also had students trace their figure on a transparency to 
enlarge using an overhead projector and compare a sampling of measurements from the original 
to the enlargement to determine the scale factor (RP). The teacher also encourages another 
student to stay course with the original plan because he believed the student would have success 
(HCD). In the tables that follow are examples of reframing frustration and impasse (RFI), 
reframing the mathematical problem solving process (RP), and maintaining high cognitive 
demand and motivational potential in the selection and implementation of mathematical 
problems (HCD).  
 Mari (M) wanted to work with a television wrestler named Batista. The teacher suggested she 
make a championship belt with the wrester’s name in the middle. This provided an opportunity 
for the student to stay engaged while she plotted points for her belt that kept in line with the 
mathematical goals of the lesson. 
 
22:43 Mr. P Just to stay simple I would make little lines but I would do like a um like 

that. You could write the name in between and go, some thing like that, you 
happy with that?  

RP 

23:09 M Uh huh (smiling)  
23:10 Mr. P So something like that, so put it on there  
23:11 M So can I do that and then put it on the other  
23:12 Mr. P And then you would make sure that you’re able to put his name, you’re 

going to have to make block letters like this, making them curve might be 
rough but you’re if you want to make a B it might look like this (teacher 
draws boxy B) 

 

 
Mari comes back at a later point to get assistance with the writing of the letters in block form to 
put on the coordinate grid. 
 
41:52 M Can I just write them in?   
41:53 Mr. P Yes, but you want them to know um can I see your pencil? Okay so B, like 

you did okay, A that one’s actually pretty easy A right? ‘cause you just need, 
you might need 3 points here to make that curve. You might need to start 
back on the belt and across, you understand? And the S you’re gonna have to 

RFI 
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make one of these kind of S’s. I is just right?  
42:52 M Yeah and then there’s a T and another A.   
42:56 Mr. P Okay so i’ll just do that part. You’re gonna need to do the points in the 

middle right? You’re gonna have to tell me where these points are but you 
know you got your lines here, that’s fine, yeah I think this will work out 
good.  

 

43:21 M And now I gotta put it on the bigger paper?   
43:23 Mr. P Well now the goal, yeah, now the goal is to tell me where all these 

coordinates are. Do you know where all these points are?  
HCD 

43:31 M Oh like if it’s 1 and 15 and something like that  
43:34 Mr. P Yes and then, and then we want to apply a formula to it or a rule HCD 
 
Petri (P) had spent a good portion of the period trying to find a character and apply it to the grid. 
Her group was trying to explain to her that she could make Stewie from the television show 
“Family Guy” into a diamond to be able to graph it easier. Petri didn’t understand and became 
frustrated. Tyanna (T) also comes to the teacher to try and get some help. Mr. P suggests to her 
to put her character on a transparency and use the overhead projector to enlarge the figure. He 
also sees Petri is frustrated and suggest she do the same.  
 
48:49 E Mines was easier.   
48:52 P You could just make a box.   
48:56 R I should make a football.   
49:00 E Make a big diamond.   
49:03 R Yeah a big diamond head  
49:04 P What character is a big diamond head?  
49:06 R Stewie, it’s a football head but it’s diamond  
49:10 G Oh yeah you just do it like that, yeah look  
49:16 P What ya’ll talking about?  
49:17 R You see this look, um cube forms like that. It’s a diamond.   
49:23 P You guys are strange. You’re saying make his head a diamond. It’s gonna be 

ugly (laughs)  
 

49:33 G You don’t even know how to draw a diamond. Oh my god.  
49:38 P Ah ya’ll aggravating.   
49:52 E My dog has small hands. This dog. (Q comes to table)  
49:57 R What?  
49:59 Q Where?  
50:00 R Diamond head.  
50:03 P I don’t got no diamond head  
50:04 R Oh yeah that’s the same one as yours.   
50:10 P I’m gonna make a box with some ears.  
50:17 Q She in my seat, I don’t know why she in my seat. Are you the one they 

supposed to record? 
 

50:22 P Shut up Q, you’re retarded  
50:25 Q No I’m not. get up.  
50:49 E Ha ha look at my dog.  
50:53 R He’s hungry  
50:55 Mr. P Are you getting frustrated? RFI 
50:57 T Uh ha  
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50:58 Mr. P Draw him on the plastic paper and then you can enlarge him and you can 
find the scale factor from using the ruler instead of all the coordinates. Does 
that sound like something you’d rather do? 

RP, 
HCD 

51:08 T Um hm. I need a marker  
51:10 Mr. P Take one, use a permanent marker. I don’t…I don’t have the other ones  
51:19 P Mr. P, I’m fed up!  
51:21 Mr. P Yes? You’re fed up too RFI 
51:23 P Yes I’m just gonna draw something   
51:24 Mr. P Okay you can either, the option is to use either boxes. Glenda did you make 

that printout at home? Good job.  
 

51:32 P Okay this right here.   
51:36 Mr. P What?   
51:38 E I made a new one but it’s smaller  
51:40 Mr. P Okay  
51:43 P Can I make a crown or something?   
51:45 Mr. P You could do a crown or who was your original person? Stewie?  RFI 
51:48 P Yes  
51:50 Mr. P Some of you - some of you that are getting frustrated  RFI 
51:52 
 

R I don’t k now how to do this square thing. It’s not that, I can do it but it’s too 
many dots. Stewie’s easy. Not the square thing. You know how to do the 
square?  

 

52:09 Mr. P After you get it on a large piece of paper then we’ll have to use measurement 
to find the scale factor 

RP, 
HCD 

52:11 P Okay  
52:14 Mr. P ‘Cause I don’t want you to get too frustrated here.  RFI 
 
Ryan (R) who is an excellent artist was plugging along and trying to apply his talent to this 
mathematical situation. He approaches the teacher to see how he is progressing. 
 
43:52 R What number do I got to go up to?   
43:56 Mr. P Yours is very detailed. You’re gonna need a lot of points. Um that’s fine if 

you stop there.  
HCD 

44:01 M Who is that - Sponge Bob?   
44:03 R Yeah, that’s Sponge Bob.  
44:05 Mr. P Um the only thing, this is the only thing, I don’t want you to start over 

Bryant but one of the things, and I didn’t do a good job explaining it. If 
you’re gonna make Sponge Bob think about him more  

RFI, 
HCD 

44:25 R Cubed? More easier?   
44:26 Mr. P I’m not saying you have to do it over but um it might make your 

enlargement easier too. Here I’m having trouble drawing it, let me see him 
again how is he? He’s wide on, so yeah so you need right? Is that it? 
Something like this and then for his eyes you might want to make them uh  

RFI, 
HCD 

45:04 R Hexagon  
45:06 Mr. P Yeah because see how the sharp edges you can put on the lines easier. I 

think yours is very detailed and beautiful but it might be hard to make a 
bigger one. All right? Because these are a lot of points to identify so either 
you can go ahead with this one or try and just make him, and then if you 
want to do your X’s in the middle like you have, you can be able to do you 
know what I’m saying like if you want to keep with that theme with the 

RFI, 
HCD 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

157 

Jamaican flag is that what it is or Dominican? 
45:37 R Dominican  
45:38 Mr. P Dominican flag in the middle then you can still do that and then when you 

make his nose, you’re gonna make it square like this  
 

45:53 R ‘Cause if I stick with this I don’t know what number to go up to.  
45:56 Mr. P You would have to go up really far, you would need a lot more points right? 

Well you don’t really need that many, you can go as high as you want but 
you can keep going with this theme, I don’t see any problem with it, you can 
tell who it is. ‘Cause you’ve done, you’ve done some boxy shapes on the 
sides, you just now need to identify the points. So like where is that point?  

RFI 

46:22 R Like at 8, 3?   
 
A bit later after a few students were encouraged to use another method due to being frustrated by 
the first method but Mr. P encourages Ryan to continue using his original method. 
 
53:04 Mr. P No no you don’t have to do it on other paper. If you’re doing that method, 

there’s a somewhat different method and if I’m I’m pushing first for you to 
graph the points and make your thing because we want a library of good 
characters for the next group of kids so that we don’t just have to use the 
wumps. Right? 

HCD 

53:26 R Yeah so this is a good character?  
53:27 Mr. P Yeah so if you’re not too flustered, just keep pushing on. Okay? HCD 
53:32 R I’m a do the coordinates in this picture  
53:33 Mr. P Yeah I think you’re doing fine Ryan, you can handle it.  HCD 
 

Conclusions and Implications 
This analysis documents the value of students’ bringing personal interests to mathematical 

concepts. The task itself brings interest to scaling figures larger or smaller with some reframing 
by the teacher. During this lesson the mathematical goal of scale factor seemed to move to the 
background while students focused on creating the likeness of their character. Despite the 
students’ struggles transforming their characters during the lesson, the agency and 
personalization that students exhibited are valuable and need to be navigated with care as to not 
disengage them. Furthermore these findings hope to shed light on the time, consideration, and 
decisions it takes to engage learners from a perspective that involves motivation and affect 
during the course of a lesson. Reframing problems, frustration, and impasse while maintaining 
high cognitive demand are relevant issues in mathematics education and need to be highly 
considered when choosing tasks and engaging learners. Teachers try to understand the 
mathematical strategies and representations a student might use in solving a particular problem. 
If we can understand and represent teacher interactions and student behaviors that enhance or 
impede emotional safety and mathematical engagement, it could be useful for creating other 
environments that encourage students to make mathematical meaning for themselves. Being the 
voice of the teacher in the classroom where the data were collected enhances the qualitative 
research paradigm by allowing for exploration of the unique features surrounding these particular 
cases and perhaps arriving at what Paul Ernest describes as the, “truth derived from identification 
with, and living through, a story with the richness and complex interrelationships of social, and 
human life” (Ernest 1994, p. 34). By adopting this perspective the present research affords an 
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opportunity to understand the situation in a way that may be valuable to other practitioners 
facing similar challenges. 

Endnote 
1. This research is supported by the U.S. National Science Foundation (NSF), grant no. ESI-0333753 

(MetroMath: The Center for Mathematics in America’s Cities). The views expressed here are not 
necessarily that of the National Science Foundation or MetroMath. 
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Early studies in problem-solving were concerned with the aspects of a problem that made 

solving the problem difficult (Geiger and Galbraith, 1998). The concern focused on the cognitive 
aspects of problem-solving without taking into account the background or characteristics of the 
problem-solver. Geiger and Galbraith (1998) suggested that the relationship between the learner 
and a problem is what is of significance and not so much the difficulty level of the problem. 
Schoenfeld (1992) explained that purely cognitive behavior is rare, and that learners perform 
most mathematics task within the context established by their perspectives on the nature of those 
tasks.  Only a few studies give attention to understanding the interrelationship between affect and 
cognitive processes during mathematics learning and problem-solving. 

The purpose of this grounded theory study was to investigate the interplay of prospective 
secondary mathematics teachers’ affect, metacognition, and mathematical cognition in a 
problem-solving context.  Constructivist grounded theory methodology (Charmaz, 2005) was 
used to answer the question: What is the characterization of the interplay among prospective 
teachers’ mathematical beliefs, metacognition, and mathematical knowledge in the context of 
solving mathematics problems?  Over a ten-week period, I conducted four interviews with four 
prospective secondary mathematics teachers enrolled in an undergraduate mathematics problem-
solving course. One of the interviews included a think-aloud (Ericsson & Simon, 1993) problem-
solving episode. Participant artifacts, observations, and researcher reflections were regularly 
recorded and included as part of the data collection. 

In this poster, I present the results of the study in the form of a model. The interpretive model 
that emerged from the study describes the interplay among affect, metacognition, and 
mathematical cognition during problem-solving as meta-affect, persistence and autonomy, and 
meta-strategic knowledge.  The analysis of data showed that, for the participants, “Knowing 
How and Knowing Why” mathematics procedures work, having the ability to justify their 
reasoning and problem solutions, and persisting in difficult problem-solving situations 
represented mathematics knowledge and understanding that could empower them to become 
productive problem-solvers and effective secondary mathematics teachers.   
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One belief that impacts both attitudes towards mathematics (including motivation) and 

mathematics achievement is self-efficacy.  Self-efficacy influences attitudes and behavior in 
several considerable ways.  Choice, effort and persistence are just a few of the ways that self-
efficacy influences behavior (Schunk & Pajares, 2005).  One of the ways that self-efficacy 
influences attitude is that the amount of stress and anxiety that a student may or may not 
experience during a task (Pajares, 2002).   

It has been found that self-ratings of overall academic ability, self-efficacy in the domain of 
mathematics, and expectancy of success in college mathematics are all significant predictors of 
achievement in college mathematics (House, 2001).  However, it has also been found that there 
is a significant difference in the level of mathematics self-efficacy between freshman college 
students enrolled in an intermediate or developmental algebra course and freshman college 
students enrolled in a calculus course (Hall & Ponton, 2005).  This in-progress study seeks to 
explore these differences in more detail.   

Data will be collected from freshman college students enrolled in calculus classes and in 
college algebra classes.  Students’ self-beliefs about mathematics will be measured using four 
scales from the Fennema-Sherman Mathematics Attitudes Scales: Attitude Towards Success in 
Mathematics scale, Confidence in Learning Mathematics scale, Mathematics Anxiety scale, and 
Effectance Motivation in Mathematics scale.  In addition to measuring students’ self-beliefs and 
motivation in mathematics, students’ mathematics achievement will also be measured throughout 
the semester through students’ exam scores. 

The plan for analysis of this study is to make use of simple t-tests to determine whether or 
not there is a significant difference in self-beliefs and motivation between the two groups of 
students.  Also, multiple regression will be used in the analysis of this study to determine the 
effect of each of the FSMAS domains on mathematics achievement. 

Because it is becoming increasingly common for colleges and universities to require all 
students to successfully complete a quantitative course during their undergraduate studies, the 
results of the study could be useful for college mathematics professors.  Possible implications of 
the study are for the teaching and learning of college mathematics, particularly when it comes to 
the design and structure of developmental college algebra courses. 
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Absent from the literature on flexibility is a consideration of experts’ flexibility. Do experts 
exhibit strategy flexibility, as one might assume? If so, how do experts perceive that this capacity 
developed? We describe results from interviews with eight content experts to explore strategy 
flexibility for solving equations. Our analysis indicates that experts were capable of making 
subtle judgments about the most appropriate strategy for a given problem, based on factors 
including mental and rapid testing of strategies, the problem solver’s goals, and familiarity with 
a given problem type. Implications for future research on flexibility and on mathematics 
instruction are discussed. 

Introduction 
Success in algebra has been and continues to be a concern among educators and policy 

makers because of its important role as a gateway to college (National Mathematics Advisory 
Panel, 2008). Increasingly, proficiency with algebra and mathematics in general is considered to 
involve more than just skill; it involves an integration of skill and understanding that allows for 
flexible, adaptive, and appropriate use of algorithms, all of which contribute to efficiency, 
problem solving, and transfer of ideas to new situations (Baroody & Dowker, 2003; National 
Research Council, 2001)). Yet, research on flexibility and how it develops is only emerging, 
particularly in the post-elementary years. Existing research suggests that flexibility can be 
enhanced through appropriate instruction (Blöte, Van der Burg, & Klein, 2001; Rittle-Johnson & 
Star, 2007; Star & Rittle-Johnson, in press; Star & Seifert, 2006), but much more research is 
needed to fully understand the development of flexibility. 

Largely absent from the emerging literature on flexibility is a consideration of experts’ 
flexibility. If researchers are to fully understand the trajectory of flexible problem solving in 
school mathematics, then it seems important to examine experts’ approaches to advanced school 
topics such as algebra. Do experts exhibit strategy flexibility with algebra, as one might assume? 
If so, how do experts perceive that this capacity developed in themselves? Do experts feel that 
flexibility is an important instructional outcome in school mathematics? In this paper, we 
describe results from several interviews with experts to explore strategy flexibility for solving 
equations.  
Strategy Flexibility 

Flexibility, particularly in terms of flexible use of strategies, is not a construct that has been 
consistently defined by researchers. Some distinguish flexibility from adaptability, while others 
equate the two terms. In this paper, we take the latter perspective by defining flexibility as 
knowledge of multiple solutions as well as the ability and tendency to adaptively select the most 
appropriate ones for a given problem and a particular goal (Star & Rittle-Johnson, 2008; Star & 
Seifert, 2006).  

Several recent studies have examined the development of flexibility among school-aged 
learners, and this work has identified promising instructional interventions that appear to 
improve students’ flexibility (e.g., Blöte et al., 2001; Rittle-Johnson & Star, 2007; Star & Seifert, 
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2006). However, if flexibility is an important component of students’ proficiency in mathematics 
(Kilpatrick et al., 2001), it also seems critical to have more in-depth knowledge of what this 
capacity looks like in experts. Do experts exhibit flexibility? How and when do experts become 
flexible? As discussed below, the literature on experts’ flexibility is quite limited and yields 
inconsistent results.  
Experts and Flexibility 

Although many studies have examined differences between experts and novices with regard 
to complex academic tasks (particularly in physics; Chi, Feltovich, & Glaser, 1981; Larkin, 
McDermott, Simon, & Simon, 1980), few have focused specifically on strategy flexibility in 
mathematics. The limited research suggests that experts do tend to have multiple, efficient 
strategies for solving problems, but findings are inconsistent about the extent to which experts 
employ these strategies.  

For example, Dowker (1992) found that mathematicians not only exhibited a high level of 
accuracy, but they used a variety of strategies, and the strategies tended to illustrate their 
knowledge of number properties and relationships. Similarly, Cortés (2003) found that experts 
were not only efficient, but they rapidly analyzed the task and decided on an approach based on 
the characteristics of the problem. In contrast, Carry and colleagues (Carry, Lewis, & Bernard, 
1979) reported that the primary difference between more and less able solvers was not that 
experts knew and used a greater number of strategies but rather that more able solvers tended to 
make fewer errors. These and other studies provide a useful starting point for understanding 
experts’ flexibility. However, there are several key weaknesses to this literature that suggest the 
need for additional studies.  

First, existing research does not explore the development of flexibility. Do experts attribute 
their flexibility to prior instruction? If not, how did they become flexible problem solvers? Do 
they believe instruction has a role in developing flexibility? Second, existing research does not 
sufficiently explore the nature of experts’ flexibility. In particular, research does not clearly 
distinguish between experts’ use of algorithms, knowledge of alternate methods, and preference 
for particular strategies. Finally, existing studies have provided limited opportunities for experts 
to demonstrate flexibility. Although some problems that allow for efficient or elegant solutions 
have been used in past research, the primary purpose of most studies was to understand experts’ 
strategies and accuracy in general, not to explore flexibility per se. As a result, they were given 
few problems that were explicitly designed to test strategy flexibility.  
Current Study 

The current study attempts to address the above weaknesses in the literature on experts’ 
flexibility. Specifically, we designed tasks that provided opportunities for experts to demonstrate 
flexibility; we probed experts about the approaches they noticed and preferred; and we asked 
experts to reflect on the emergence of this capacity in their own learning. Similar to Cortés 
(2003), we explored flexibility among experts from several different fields, including 
mathematics, mathematics education, engineering, and secondary mathematics instruction. Our 
analysis of experts’ interviews and problem solving focuses on the following issues.  

First, we are interested in the nature of experts’ flexibility for solving algebra problems. Prior 
research has shown that, while experts are less likely to exhibit errors in problem solving than 
novices, the degree to which experts show knowledge of multiple strategies and the ability to 
adaptively select the most appropriate strategy has varied across studies. Our investigation of 
experts’ flexibility will focus on several aspects of strategy choice, including use of multiple 
strategies, knowledge of multiple strategies, and preferences for certain strategies. A second 
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focus of the current work is development of experts’ flexibility developed. We believe that this 
developmental perspective on flexibility among experts has not been well-explored in prior 
research. Related issues include whether experts believe that flexibility is an important outcome 
and how experts believe flexibility can or should be fostered in school mathematics. As such, 
several research questions guided our study. To what extent do experts use multiple approaches 
and adaptively select the most appropriate strategies for a given problem? How do experts select 
problem solving strategies? Do experts hold preferences for particular strategies for certain 
problems, and, if so, what are these preferences based on? How do experts become flexible, and 
what are their views about the role of instruction in developing flexibility? 

 
Method 

Participants 
Participants for the current study included eight experts in school algebra. Specifically, a 

convenience sample of two mathematicians, two mathematics educators, two secondary 
mathematics teachers, and two engineers were included in the study. One of the mathematicians, 
(Mark; pseudonyms are used for all experts), held a doctorate in mathematics and had worked for 
years in a university mathematics department. The other mathematician (Matthew) was finishing 
his doctorate in mathematics but had also taught high school mathematics and worked with 
teachers for many years. Both mathematics educators held masters degrees in mathematics; one 
also held a doctorate in educational studies with a concentration in mathematics education 
(Evelyn), and the other was finishing her doctorate in mathematics education at the time of data 
collection (Ellen). One of the mathematics teachers was a veteran secondary teacher with a 
bachelors degree in physics and a masters in education with a mathematics emphasis (Tara). The 
other teacher held degrees in psychology and sociology (Timothy) but had been a professional 
tutor for many years and often taught high school mathematics in the summer. One of the 
engineers held bachelors degrees in mathematics and in aerospace engineering (Nathan). His job 
included writing flight simulations for rockets and satellites, which involved extensive use of 
algebra, calculus, and other areas of mathematics. The other was a mechanical engineer, with 
both a bachelors and a masters degree in the field. His job involved designing and testing 
electrical tools (Nicholas). These types of experts were chosen in order to provide a range of 
perspectives on flexibility and potentially different approaches to solving problems. Participants 
were from five different states, all within in the eastern United States. Five of the experts were 
male and three were female.  
Measures 

Opportunities to assess flexibility were embedded in a researcher-designed algebra test. The 
55-item test was originally designed to be used as a final examination for a three-week summer 
course for high school students that reviewed more advanced topics from a first year of school 
algebra. Test items were symbolic mathematics problems taken or adapted from a standard 
algebra text on solving and graphing both linear and quadratic equations, as well as simplifying 
expressions with exponents and square roots. The exam was edited to ensure opportunities to 
demonstrate flexibility. For example, one problem in the form a(x + b) = c was altered such that 
c was divisible by a. Whereas students are often taught to distribute first for equations that 
include parentheses, dividing both sides of the equation by a is an alternative first step to solving 
this equation.  

Semi-structured interviews were conducted to probe experts’ thinking about their strategies 
for solving algebraic problems. Experts were asked to explain how they solved certain problems, 
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why they chose the strategies, whether they knew of other ways to solve the problems, and which 
strategies they preferred. Problems were selected based on their possible relevance for exploring 
issues of flexibility. After explaining their thinking on these problems, experts were asked about 
own experiences that led to becoming flexible and whether they thought flexibility should be or 
could be taught in schools. 
Procedure 

The algebra test was administered in a one-on-one setting to the experts at a time and place 
convenient to them. At the beginning of the test administration, experts were told that the focus 
would be on the methods they used to solve the problems. As such, showing work was 
encouraged. They were informed that an interview would follow the test in which they would be 
asked about selected problems, but they were not told in advance which particular problems 
would be selected. The test was not timed, but most of the experts completed it within 20 
minutes. The interviews were conducted immediately following completion of the test. Interview 
times varied, ranging from about 10 to 30 minutes. Interviews were audiotaped and subsequently 
transcribed. 

 
Results 

We begin by reporting results on the nature of experts’ flexibility, followed by an analysis of 
experts’ views on how their flexibility developed.  
The Nature of Experts’ Flexibility 

It is important to first note that the eight experts interviewed in this study were quite 
successful on the mathematics tasks that they were asked to complete. Consistent with prior 
work on experts in mathematics and other domains, our experts rarely made errors. When errors 
were made, experts quickly noticed and corrected them. Our interest, however, was more on the 
strategies that experts used and their flexibility. We found that the experts interviewed were quite 
flexible. They exhibited knowledge of and use of multiple strategies for solving a range of 
problems, and they generally used and/or expressed a preference for the most adaptive strategies 
for a given problem.  

Choice of strategies. We first consider the criteria that experts used to select their chosen 
strategy (which was often the optimal strategy) for a given problem. Overwhelmingly, experts 
indicated a preference for strategies that they deemed to be easiest. In general, the easiest 
strategy was the one that was “faster, quicker, less steps” (Tara). However, fewer steps was not 
the only consideration for choosing an easy or efficient strategy; reducing effort was also 
important. As one expert suggested, “It’s not about extra steps. I don’t mind putting in extra 
steps if extra steps makes it easier.” (Nathan). Referring to the problem, 7(n + 13) = 42, one 
expert noted, “I wanted to minimize the effort. So another way to do it is distribute, but I didn’t 
want to do that” (Matthew).  

The experts also referred to the “neatness” of a strategy in explaining their strategy choices. 
For example, one expert noted that to solve the above problem, he felt it was best to use division 
by seven as the first step because “That was evenly divisible. If it wasn’t divisible it wouldn’t get 
a nice, clean answer” (Nicholas). Similarly, another expert also noted that, “Distributing, I would 
have had to deal with fractions and finding common denominators and things wouldn’t have 
been as nice” (Tara). Avoiding fractions was of particular interest to many of the experts. One 
expert explained that she did not like to work with fractions because they are “slower to operate 
with” (Ellen). In general, reducing the arithmetic complexity of the problem was important for 
both speed and accuracy. On expert explained, “I’m less likely to make a calculation error” 
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(Ellen). Another expert concurred, stating that “I am not real quick at arithmetic, so I like to keep 
the arithmetic as simple as possible” (Evelyn).  

In addition to selecting a strategy based on its perceived ease of execution, experts also 
considered the specific characteristics (e.g., structure and coefficients) of problems in selecting a 
strategy. This criteria for selecting strategies was particularly noticeable when the experts solved 
systems of linear equations. For example, when solving the system which included the lines 3y + 
4x = 0 and y = x – 7, one expert explained “I used substitution because it was set-up that way” 
(Timothy). Presumably Timothy is referring to the fact that the second line is already written in 
the form y = ?, which makes it particularly amenable to substitution in the other equation. 
Similarly, when another expert solved the system containing the lines 2x + y = 1 and x + y = 3, he 
explained that he used the addition/subtraction method because “you have to get rid of something 
and in this case you just observed that y is the same, so subtraction will get rid of it” (Mark).  

Failure to choose optimal strategy. Consistent with prior research (Carry et al., 1979), 
experts did not always choose the most efficient strategy for a given problem. Typically, when 
experts failed to choose the optimal strategy and were subsequently asked about their strategy 
choice, they tended to note that they “weren’t thinking.” For example, one expert solved 7(n + 
13) = 42 by distributing the seven as his first step. When he later noticed that it would have been 
more efficient to divide both sides by seven first, he stated, “I just didn’t think about it at the 
time. I just blew through it” (Nathan). In addition to “not thinking,” other experts indicated that 
their initial choice of non-optimal strategies came because of well-practiced, automatized 
approaches that they initiated very quickly after seeing a problem. For example, another expert, 
who also used distribution as the first step to solve this same problem, explained his choice as, 
“For some reason I just went straight to the formula. I guess [I was] in that mindset” (Timothy).  

However, experts’ rationales for their strategy choices clearly indicated their strong tendency 
to prefer elegant, efficient strategies even when these strategies were not used for solving a given 
problem. For the problem 1/3(x + 5) + 2/3(x + 5) = 7, both Ellen and Nathan multiplied both 
sides of the equation by 3 in an attempt to avoid calculating with fractions. However, when asked 
if they knew of another way to solve the problem, both said a better first step would be to 
combine “like” terms, obtaining x + 5 = 7, and both expressed a preference for this method. 
When asked why she preferred the second method, Ellen suggested, “There’s something about 
recognizing that those two things equal one that I, I don’t know, that I like….There is something 
pretty about it.” After noticing this alternate approach, Nathan described his original strategy as 
“incredibly convoluted,” adding that, “In this case, my fixation on getting rid of the 
denominators kind of obscured the problem there.”  
Development of Experts’ Flexibility 

Toward the end of the interview, experts were introduced to the construct of flexibility (as we 
conceptualize it here) and were asked to reflect on their flexibility. After learning about 
flexibility, not surprisingly experts uniformly believed that they themselves were flexible. 
Furthermore, when considering how their own flexibility developed, experts did not believe that 
flexibility was an overt instructional goal for their K-12 or university mathematics instructors. A 
typical response to being asked if they were taught flexibility was, “No, never!” (Evelyn). 
Instead, experts offered two explanations for how they developed strategy flexibility.  

First, several experts felt that their own flexibility had emerged as a natural consequence of 
exposure to seeing similar kinds of problems over and over again, combined with a desire to 
solve problems as quickly as possible. One expert stated, “My best guess is just a lot of repetition 
and when you to do small equations over and over and over you’re going to want to find the 
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quickest way of doing things to get done faster” (Tara). This desire to complete problems as 
quickly as possible could have been present because of disinterest (e.g., wanting to complete 
math homework as quickly as possible), but among those we interviewed, it seemed more 
common that experts found the search for the quickest and easiest strategies for given problems 
to be intellectually challenging and interesting. Experts did not report that their mathematics 
instructors had pushed them to search for optimal strategies, but rather that this was a desire that 
they themselves brought to problem solving. As one expert stated, “It’s a challenge to solve them 
in different ways, but then you start to learn which methods are quickest or easiest for certain 
problems, and you notice certain patterns” (Nathan). 

 Another explanation that several experts favored was that their flexibility was the result of 
their teaching. As one expert explained, “I’ve taught this stuff. I guess when you teach kids you 
get to know ten different ways of doing it based on what kids like” (Matthew). When describing 
how he developed flexibility, Timothy suggested, “I tutor students mainly who struggle, so I 
have just learned that if they can’t see it one way, often trying another way helps them see 
something they didn’t see before.” It appears that, through interactions with students -- both 
having to explain problems in multiple ways to struggling students and also by exposure to the 
idiosyncratic, original, or even erroneous strategies that students produce -- experts developed 
more robust knowledge of multiple strategies for solving algebra problems.  

Overall, the experts appeared to value flexibility and felt that it was an integral part of doing 
mathematics. As one expert described, “Problem solving is a general skill, and you have to be 
adaptable and flexible to the context” (Nathan). However, and consistent with experts’ views on 
how their own flexibility developed, there was variation as to whether experts felt it was a good 
idea to teach students to be flexible. Some experts thought that teaching flexibility was a good 
way to teach students to notice the mathematical structure in problems and that it would help 
“the students understand the mathematics more deeply” (Evelyn). Yet others thought that 
teaching for flexibility would confuse students and that students should learn from trial and error. 
One expert stated, “You can learn some tricks from your teachers, but eventually it all comes 
down to doing it yourself” (Mark).  

 
Discussion 

The purpose of this study was to explore the strategy flexibility of experts. Despite the recent 
emergence of a literature on students’ flexibility, relatively little research exists on experts’ 
flexibility. Our results indicated that our experts did exhibit strategy flexibility on the tasks that 
they were asked to complete: Experts showed knowledge of multiple strategies and the ability to 
select appropriate strategies for given problems. Experts expressed a strong preference for 
strategies that they deemed to be easiest, where the easiest strategies were those which resulted 
in the fewest steps, the least effort to execute, and/or the reduction of arithmetic complexity. 
Experts also considered the specific characteristics of problems (including a problem’s structure 
and its coefficients) when selecting a strategy. Consistent with prior research, we found that 
experts did not always select the optimal strategy for a given problem, despite their knowledge of 
and preference for the most efficient strategies. With respect to the development of their own 
flexibility, experts did not believe that flexibility had been an overt instructional goal for their 
prior mathematics instructors. Rather, the experts interviewed here believed that their flexibility 
emerged from their own initiative and/or as a consequence of their teaching experiences.  

Below, we discuss several implications of our results, for research on flexibility and for 
mathematics instruction more generally. 
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Implications for Mathematics Instruction 
The experts interviewed here were in agreement that flexibility was not an explicit focus of 

their K-12 and university mathematics experience (as Evelyn noted, “No, never!”). One 
interpretation of experts’ views would be that flexibility should not be an instructional target in 
elementary and secondary schools – that flexibility is best developed implicitly and individually 
by the repeated problem solving experiences of learners. According to this interpretation, 
developing flexibility requires a significant amount of personal initiative and thus may be 
considered as an advanced instructional goal – one that was only available to those with a great 
deal of talent in mathematics and an exceptional drive to develop this competency in themselves, 
largely without the aid of teachers. 

This point of view runs counter to the current emphasis in the US on the importance of 
flexibility for all students in K-12 mathematics instruction (e.g., National Mathematics Advisory 
Council, 2008; Kilpatrick et al., 2001). A proponent of this current emphasis on flexibility for all 
might point out that much has changed in the years since these experts attended elementary and 
secondary school, including a greater variety of curricula, greater diversity in instructional 
methods, and more generally increased attention to providing quality mathematics instruction to 
all students. Improvements such as these suggest that, despite some experts’ views to the 
contrary, it may be possible to consider flexibility as an instructional goal for all students, rather 
than as an outcome that is only available to future experts who pursue it themselves.  
Future Research on Flexibility 

This study underscores the importance in future research of using tasks that are specifically 
designed to elucidate flexibility. Prior work with students has shown that knowledge of 
innovative strategies for problem solving often precedes the ability to implement these strategies 
(e.g., Star & Rittle-Johnson, 2008). Similarly, this study and others (e.g., Carry et al., 1980) 
suggests that even experts do not always use the most efficient strategy for solving a given 
problem. As a result, merely giving students a list of problems to solve may not be a good 
indicator of flexibility; students may choose to use the same strategy for all problems, even when 
it is not the most efficient choice, and despite their knowledge of alternative approaches.  

In this study and in our prior work, we have used two kinds of tasks to more effectively 
assess students’ flexibility. First, we have conducted interviews to accompany problem solving, 
asking participants to explain and justify their choices of strategies. And second, we have 
incorporated different kinds of problems into our assessments to better tap participants’ 
flexibility. In some cases, we have merely changed problem coefficients, to accentuate the 
benefits of using an alternative strategy. For example, instead of using a problem such as 3(x + 1) 
= 22, we might alter the problem to 3(x + 1) = 21, to perhaps increase the likelihood that 
participants who were aware that they could divide both sides by 3 first would actually 
implement this strategy. In addition, we also devised other kinds of tasks to tap flexibility, 
including asking participants to solve the same problem in more than one way and to identify 
which strategy was optimal. 

 
Conclusion 

Strategy flexibility is an important instructional goal in mathematics instruction at all levels. 
An emerging research base on students’ flexibility is beginning to provide helpful guidance on 
the development of flexibility and instructional tasks that reliably lead to greater flexibility. 
However, experts’ flexibility has been relatively unexplored. This paper provides initial evidence 
about experts’ views on the nature, development of and importance of flexibility. Despite expert 
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agreement that flexibility was not emphasized in their own learning of mathematics, experts in 
this study had a natural and pervasive tendency to value and use efficient, elegant strategies to 
solve algebra problems. This tendency seems to be deeply related to their knowledge of the 
subject, underscoring the need to include flexibility as a goal for instruction at the secondary 
level. 
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In a year-long teaching experiment with two 7th grade students, this study investigated how 
those students dealt with enumerative combinatorial problems based on their additive and 
multiplicative reasoning. The results show that three distinctive levels of enumeration appeared 
in the students’ mathematical behavior: additive enumeration, multiplicative enumeration, and 
recursive multiplicative enumeration. Permutation problems of more than five elements seem to 
involve conceptual constructs beyond recursive multiplicative enumeration. 
 

Background 
Research on combinatorics in mathematics education has not been studied extensively when 

compared with other topics such as whole number arithmetic and fractions. Further, ever since 
Piaget and his colleagues conducted a number of studies investigating the development of 
children’s combinatoric operations (e.g. Piaget, 1975), combinatorial reasoning as a research 
topic has been given little attention although combinatorial problems have been adapted for the 
research on students’ development of proof justification or verification strategies (Eizenberg & 
Zaslavsky, 2004; Maher, 2005; Maher & Martino, 1996). However, as Piaget and Inhelder 
(1975) pointed out, children’s combinatorial reasoning is a very fundamental mathematical idea, 
whose basis is in additive and multiplicative reasoning. 

The general characteristic is to start from the additive idea of juxtaposition and not from the 
intersection or interference, that is, from multiplicative association. … His ability to 
presuppose this multiplicative association would be necessary to construct a complete 
operative system. (Piaget & Inhelder, 1975, p.169) 

Therefore, this study was conducted using a year-long teaching experiment with two 7th graders 
in order to investigate how those students dealt with combinatorial problems based on their 
additive and multiplicative reasoning and whether distinctive features, which can be regarded as 
combinatorial reasoning, would be drawn from their mathematical operations in those problem 
situations. For this report, students’ mathematical activities in the problems related to 
enumerative combinatorics will be the focus. 
 

Theoretical Perspectives 
Enumerative combinatorial problems are basically counting problems. That is, children are 

asked to count the number of ways that certain patterns can be formed. However, when 
compared with a simple counting problem such as “How many apples are on the table?” there is 
a huge difference between the two counting situations because enumerative combinatorial 
problems involve more than children’s basic counting schemes. In other words, in a 
combinatorial problem, children attend, first of all, to units of the indefinite quantity to be 
counted in the problem situation and, further, to monitoring their counting activity to decide 
when to stop counting. For example, consider the outfit problem, “If you have two shirts and 
three pairs of pants, how many outfits can you make?” For this problem, children must construct 
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the units to be counted as the combination of one shirt and a pair of pants. The countable unit is a 
pair of units rather than a singleton unit as in most counting situations children encounter. 

Piaget and Inhelder (1975) suggested three stages of children’s combinatorial operations in 
enumerative combination, permutation, and arrangement problems through clinical interviews 
with children from six to twelve years old. At the first stage of empirical operations, children 
construct countable units for the problem without establishing a systematic way to make pairs of 
units as countable. That is, for a two card arrangement problem with three different cards, they 
take any card, combine with any other one, and simply look around next to see if that pair is 
already on the board. At the second stage, children have a sense of regularity, but it always 
remains empirical at the beginning. In other words, they quickly understand that the 
combinations can be ordered according to the first numbers (1, 2, or 3) in each arrangement, but 
this is only an empirical discovery. Finally, the third stage of understanding of the system, 
children can construct the law n2 for two card arrangements with n cards. However, this is only 
empirical generalization, which does not bring about a reflective and anticipatory scheme. Later, 
based on Piaget’s works, English (1991) addressed the odometer strategy, which holds one item 
constant while systematically varying each of the other items. She showed that children seven 
years of age demonstrated such systemic operations and argued that the combinatorial domain 
should be considered as a topic of investigation in the elementary school curriculum. However, 
there remains an unexplained aspect in her research results in that she did not provide operative 
explanations based on children’ additive and multiplicative reasoning even though Piaget and 
Inhelder (1975) already mentioned that combinatorial operations should be rooted in additive 
juxtaposition and multiplicative association.  

Steffe (1992) observed children’s construction of such mathematical operations and referred 
to them as lexicographic units-coordinating operations, which have similar observable features 
to English’s (1991) odometer strategy. A units-coordination means “to distribute a composite 
unit over the elements of another composite unit” (p.279). The first multiplicative concept 
occurred as a recursive counting scheme, which was used to produce the first units-coordination. 
It follows that children’s construction of units-coordinating operations is crucial in their 
transition from an additive to a multiplicative world and researchers must understand these 
operations when investigating the status of children’s additive and multiplicative reasoning. 
Specifically, children’s units-coordinating operations that are involved when making possible 
pairs, for instance, with three numeral cards and seven letter cards are called lexicographical 
operations because of the dictionary ordering of the pairs. Thus, it is possible that the 
construction of lexicographic units-coordinating operations and symbolizing actions for those 
operations open pathways for children’s construction of combinatorial reasoning. So the main 
concern in the analysis of the teaching experiment data was to investigate how children’s 
construction of unit-coordinating operations emerged and was transformed through their 
mathematical activities in combinatorial problem situations. 
 

Methods of Inquiry 
The data for this report were collected from a year-long constructivist teaching experiment 

(Steffe & Thompson, 2000), in which a pair of seventh-grade students were taught at a rural 
middle school in north Georgia from October 2007 to May 2008. The experiment is a part of the 
larger, longitudinal study called the Ontogenesis of Algebraic Knowing (OAK), whose purpose 
is to bring forth and understand middle school students’ algebraic reasoning. Two students for 
the research were chosen after individual selection interviews conducted during September and 
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October of 2007. The criteria for selection of the students were that they should be able to use 
three levels of units for solving multiplication and division problems. During the teaching 
experiment, the two students were met twice a week in 40-minute teaching episodes. All 
teaching episodes were videotaped with two cameras for on-going and retrospective analysis. 
One camera usually captured the whole picture of interactions among the pair of students and the 
teacher-researcher, and the other camera followed the students’ written or computer work with 
the aid of two witness-researchers. The role of the witness-researcher was not only assisting in 
video recording but also in providing other perspectives during all three phases of the 
experiment: the actual teaching episodes, the on-going analysis between episodes during the 
experiment, and the retrospective analysis of the videotapes. In terms of data analysis, the first 
type of analysis was ongoing analysis that occurred by watching videos of the teaching episodes 
and debating and planning future episodes. The second type of analysis, which was conducted 
after the data had been collected, was retrospective analysis. The purpose of the retrospective 
analysis was to make models of the students’ ways of operating mathematically.  
 

Data Excerpts 
Additive Enumeration and Multiplicative Enumeration 

The two students, Carol and Damon, demonstrated that they were able to execute additive 
enumeration, in which they attended to a unit to be counted and executed counting additively. 
For example, on February 4, Carol and Damon solved the following coloring-window problem 
based on their additive counting, “Find how many ways to paint four windows with two colors.” 
Carol and Damon were given a picture of a window consisting of four sub-windows. Carol tried 
to draw pictorial symbols for all possible windows and counted them whereas Damon repeated 
writing and erasing the letter ‘r’ for red and ‘b’ for black on a given window while adding tally 
marks above the window to keep track of his ‘r’ and ‘b’ entries (see Figure 1 and 2). Finally, 
Damon found sixteen cases although he wrote fifteen tally marks down, but Carol got fourteen at 
first, missing two cases.  

                      
   
 Figure 1. Carol’s final pictorial representation.    Figure 2. Damon’s final representation using   
        using tally marks. 
 
Carol represented units of her unit-coordinating operations by drawing identical-looking 
windows like the given window, whereas Damon symbolized his results of units-coordinating 
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operations using tally marks with an aid of writing possible initial letters for each window. 
Carol’s missing two cases indicated that she engaged in additive enumeration because she 
proceeded sequentially and lost track of where she was at in enumerating the windows. Further, 
the continuing activities of the two students revealed a crucial difference in their reasoning about 
the problem situation that was important in their development of combinatorial reasoning. Right 
after checking out his answer with the teacher, Damon exclaimed, “Look at it. There is an easier 
way!” His explanation indicated that he constructed a multiplicative structure for counting his 
windows. He argued that the answer could be easily found as two to the fourth because we could 
use two colors for four squares (sub-windows). Damon’s reflective way of counting might be 
considered as multiplicative enumeration in that he counted the countable units by producing two 
to the fourth. Carol did not even seem to assimilate Damon’s explanation because she did not 
organize her activity as multiplicative although she finally drew her missing two windows and 
got sixteen as an answer. In Damon’s case, even though he said, “two to the fourth”, the structure 
seemed to be a product of his operating rather than as a given in recursively operating further 
because he could not provide a satisfactory justification for why two to the fourth worked. This 
conjecture was corroborated on February 11 while solving a two-digit number problem: “How 
many two-digit numbers can you make?”  

For the two-digit number problem, Damon started to write two-digit numerals from ten to 
ninety in a column and kept writing eleven, twenty-one, thirty-one, …, ninety-one making 
another column and then stopped (cf. Figure 3). After murmuring something, he wrote ‘81’ a 
little away from two columns as an answer, but resumed writing two-digit numbers for making 
sure of his answer because the teacher commented, “go ahead (keep writing) and check your 
answer.” Then he finally corrected it as ‘90’. As an explanation, he claimed that zero in one-digit 
place could go with nine numbers in ten-digit place and so did the other numbers in one-digit 
place. However, he could not find the right answer until he finished writing down tabular forms 
of numerals for all possible two-digit numbers. 

 

 
 

Figure 3. Damon’s answer for two-digit number problem. 
 

His comment that he thought his table was going to be a nine by nine table in the middle of his 
solving process when he said “eighty-one” and the fact that he had to transform all possible 
units-coordinating operations into written notation for him to be able to complete his counting 
activity indicate that his construction of a multiplicative structure for this combinatorial problem 
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was a product of operating and not available for analysis prior to operating. For example, he 
could have transformed his counting activity into a compressed form of symbols like ‘9x10 = 90’ 
just as he exclaimed 24 in the coloring-window problem. Similarly, Carol made a table for 
arranging all possible two-digit numbers and after writing all possible two-digit numbers, she 
wrote ‘9x10 = 90’ under the table (see Figure 4). 
 

 
 

Figure 4. Carol’s answer for two-digit number problem. 
 

After getting the solution, she exclaimed “I know a faster way. I could have done that. Oh~” and 
she explained “nine different combinations (pointing out columns) in each way. There are ten 
rows (actually ten columns) and ten times nine is ninety… If I figured out that each row has nine, 
I could have just done that.” Nevertheless, an inference that her numerical symbols and her 
reflective explanation concerning how she could organize her work were available to her prior to 
actually engaging in operating was not warranted. That is, an inference that Carol’s construction 
of the problem situation and her mathematical operations for the solution were transformed into 
the numerical symbols, ‘9x10 = 90’ prior to operating would be too strong. Rather, as Skemp 
(1987) illustrated as one of the functions of symbols, Carol’s numeral table for her solution made 
possible her reflective thinking and reorganization of the situation. Her retrospective analysis 
using her table led her to represent her construction of the situation and operations for the answer 
by writing a compressed form using numerical notation. Thus, at this moment, Carol did not 
seem to produce a multiplicative structure as a given for the solution prior to operating. To 
construct a multiplicative structure and use it to find an indefinite quantity is an important 
mathematical modification because such a structure permits a child to curtail her counting 
activity, and further helps her interiorize conducted actions and operations so that she could use 
them a priori for the construction of more abstracted combinatorial reasoning, that is, recursive 
multiplicative reasoning.  
Recursive Multiplicative Enumeration 

The teaching episode on February 13 was focused on card arrangement problems not 
allowing a repeated use of any card. For instance, “There are five different cards. How many 
different ways can you arrange those cards?” Carol and Damon began with a two-card 
arrangement problem and went through a five-card arrangement problem. While solving those 
problems, they used similar representations in that they symbolized by writing all possible units-
coordinating operations of card arrangements (see Figure 5 and 6).  
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                  Figure 5. Carol’s card arrangement.              Figure 6. Damon’s card arrangement. 
 

However, when they were faced with the five-card arrangement problem, a distinct feature from 
the previous card arrangement problems was observed. Damon tried to write down all possible 
arrangements of five cards by fixing ‘1’ for the first card, but seemed to lose track of his 
systematic way of proceeding. After two minutes passed, he suddenly wrote down ‘120’ on his 
worksheet. After the teacher’s requested an explanation for his answer, he said he fixed the first 
two cards as ‘1’ and ‘2’ and counted all possible five-card arrangements with the fixed two 
numbers, which were six cases and then he got one hundred twenty by multiplying by four and 
five in order. However, he could not provide a satisfactory justification for why he multiplied by 
four and five. On the other hand, Carol represented those possible cases more systemically and 
provided a clearer explanation than Damon did (see Figure 7).  
 

 
 

Figure 7. Carol’s solution for five-card arrangement problem. 
 

Nonetheless, whether Carol, let alone Damon, was explicitly aware of a multiplicative structure 
is still ambiguous even though she worked symbolically. The five-card arrangement problem 
seemed to reveal a limitation in their multiplicative enumeration. Writing down all possible five-
card arrangements seemed to be very hard for them. They both could hold the two initial marks 
constant and systematically and exhaustively vary the elements to place in the three remaining 
places. But this was nothing other than a modification in the lexicographic orderings that they 
initially demonstrated. They still needed to “run through” this way of ordering in the case of the 
last three places. Once that was completed, they could again use their lexicographic method of 
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ordering, but this time they anticipated the number of choices—four and then five. However, 
they seemed yet to construct the concept of a “slot” [abstracted unit] that anticipation of the 
number of choices of four and five might have indicated. A slot is an abstraction from the mental 
process of running through a deck of 52 cards, say, and choosing each one in order when finding 
how many pairs could be made using the 52 cards. The abstraction follows from unitizing the 
mental process. The construction of this concept of variable seemingly is critical in recursive 
multiplicative enumeration. For students’ multiplicative enumeration to be recursive means that 
the students are able to externalize the results of their units-coordinating scheme and operate on 
these results with operations external or internal to the scheme (Tillema, 2007). When they fixed 
the first and the second card, counted all possible cases with the two fixed cards and arrived at 
six, both students simply multiplied six by four and that result by five, which indicated recursive 
operations. However, because they did not a priori operate in this way, the inference that the 
students had constructed the concept of a slot that stood in for making five choices, then four 
choices, etc. was not warranted. Still, both students distributed the six possibilities they 
generated by holding the two initial marks constant over each element of four possibilities of the 
second card. Furthermore, the two students took the results of the multiplicative enumeration up 
to the second card as given and operated on another multiplicative enumeration with the first 
card position. They could engage in recursive multiplicative enumeration in the process of 
operating, but they were yet to do so prior to operating. The two students’ distinct solving 
activities with five cards as well as less than five cards leads to the hypothesis that arrangement 
problems of more than five elements require students to have constructed a program of 
operations that involves the multiplicative coordination of the operations that are recorded in a 
sequence of slots if the students are to mentally solve them without engaging in actual 
coordinating activity. 
  

Conclusion 
This study suggests that (a) the students’ enumerative combinatorial counting constructs can 

be based on their units-coordinating operations, (b) three distinctive levels of enumeration 
appeared in the students’ mathematical behavior: additive enumeration, multiplicative 
enumeration, and recursive multiplicative enumeration, and (c) permutation problems of more 
than five elements seem to involve conceptual constructs beyond recursive multiplicative 
enumeration, that is, the concept of a program of multiplicative operations. These explanations 
open the way to study students’ construction of combinatorial reasoning beyond the formal-
operational period in Piaget’s works. 
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Five college students’ understanding of exponents was investigated. The students then 
participated in a teaching experiment to test an alternative route for studying rational and 
negative exponents. The focus of the study was the role of the laws of exponents in the process of 
students’ understanding of exponents that are not natural numbers. What is the impact of the 
teaching experiment on the students’ understanding of such exponents? Results suggest that 
students do not base their understanding of non-natural exponents on the laws of exponents and 
that the teaching method can improve understanding of exponents, depending on their earlier 
experiences. 
 

Introduction 
Exponents are basic tools in the arsenal of college students. Functions that model population 

growth, absorption of light, decay of radioactive material, mortgage rates and interest on capital, 
all require forms of exponents. Learning exponents starts early in school mathematics. Counting 
how many times a number is multiplied by itself is probably the main notion in learning 
exponents. When students move up the mathematical ladder, exponents can be negative, 
fractions or even irrational numbers. How students construct their notion of such exponents has 
not been extensively studied. Do students reconcile their early notion of exponents as counting 
numbers with the new exponents they learn? Do they develop meaningful explanations for 
rational exponents that make sense to them? What do they think of the zero exponents? 

 
Research Questions 

1. What is the role of the laws of exponents in the students’ construction and understanding of 
rational and negative exponents? 

2.  How do these college students understand and justify their notions of rational and negative 
exponents? 

3. What is the impact of an alternative route in teaching rational and negative exponents on 
these students’ understanding of exponents?  

 
The Teaching Conjecture 

Postponing formal definitions the idea of rational exponents was built around the notion of 
relative rates of change. The context was population growth. Rates of change were transformed 
into factors of multiplication per “time” unit: if a population grows 10 % each year, and the 
present population is 5000, then the next year the population will be 5000 * 1.1. The factor 1.1 is 
the factor of multiplication over one year. What could be the population after two years? After 
three years? After half a year? Each unit of time has its own factor of multiplication.  

The emphasis shifted from just following the formal definition to the calculation of factors of 
multiplication per unit of time or parts of the unit. These factors of multiplication were taken as 
the intuitive basis for rational and negative exponents. The link between the early definition of 
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exponents and the new factors of multiplication using roots and powers of roots was actively 
pursued.  

 A major part of the conjecture was a procedure to solve exponential equations by finding the 
decimal digits of the exponents. The conjecture was that through this procedure students would 
create, discuss, and get familiar with decimal exponents and their relations to the laws of 
exponents for rational numbers, the place value system for decimal exponents and an alternative 
interpretation of the zero exponent. 

 
Empirical and Theoretical Background 

Many textbooks define AN as A*A*A*….*A with N factors of the number A. A1 is defined 
as A and A0 as one (1). Researchers have commented that these definitions together with those 
for rational and negative exponents represent an inconsistency in terms of presentation, language, 
and /or meaning of exponents compared with the early definition, in this paper the common 
definition, of exponents (Lockhead, 1991).  
Empirical Studies on Multiplication and Exponential Forms 

Many problem areas in learning and understanding multiplication have been identified in 
empirical studies on multiplication and exponential forms. Studies by Bell, Fischbein, & Greer 
(1984), Ekenstam & Greger (1983), Tirosh & Graeber (1986), have identified misconceptions 
about multiplications and divisions with decimals and fractions. Students’ struggles with word 
problems involving multiplicative contexts with or without fractions were documented by 
DeCorte, Verschaffel & Van Collie (1988), Taber (1991). Others, like Boulet (1998), Mulligan 
& Mitchellmore (1997), have studied ways to conceptualize multiplication and to link it to 
models of repeated multiplication of smaller and smaller units. An important step was made 
when Confrey and her colleagues created the splitting model of multiplication to propose an 
intuitive model for exponential multiplication. Teaching experiments testing the model suggested 
a strong learning potential of the model for visualizing exponents and multiplication (Confrey & 
Smith, 1995). 
Students’ Understanding of Definitions 

 Rational and negative exponents are defined in textbooks by relying completely on a 
definition. Natural exponents refer to actions that are clear and meaningful to the student. 
Definitions that have a strong familiar side and tend to be immediately clear to students are 
classified as “logical” definitions (i.e., logical for the learner!). Definitions that rely on features 
and characteristics of a concept and rely solely on these properties are classified as “lexical.” 
Students, even in mathematics, seem to have problems with lexical definitions (Edwards, 1997; 
Edwards & Ward, 2004). What they develop over time is a concept-definition and a concept-
image. These are cognitive structures associated with the concept or the definition and 
constructed based on experience mostly (Tall & Vinner, 1981). Students can also show 
considerable skill in computations with a concept without being able to explain what the steps 
mean or how to attach conceptual meaning to the symbols involved in the computation (Owens 
& Super, 1993). 
Theoretical Framework of Understanding of Mathematical Concepts  

Herscovics, Bergeron and Goldin developed a framework for the concept of mathematical 
understanding with three components. The first component deals with intuitive (visual, 
perceptual) understanding, logical-physical and procedural understanding, and logico-physical 
abstraction. The second component describes the emergence of mathematical concepts through 
logical and procedural understanding, mathematical abstraction and formalization. At each stage 
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the learner constructs conceptual schemes that involve layers of knowledge for problem solving. 
The construction of notions of invariance of operations, generalizations, and more abstraction are 
part of the second component. The more advanced the mathematical concepts, the less physical 
pre-concepts and more prior mathematical concepts are involved (Goldin & Herscovics, 1991). 
The third component of the framework is the theory of internal and external representations. 
External representations are symbols, diagrams, notations, graphs, equations, in general tools for 
thinking. Internal representations are inferred mental constructions, and cognitive conceptual 
schemes. Language, including definitions, visual, kinesthetic systems etc., are all part of internal 
representations. External and internal representations form one system that also includes affect 
(Goldin, 1998; Goldin & Herscovics, 1991). External systems are sometimes expressions of 
internal systems, while external systems can be internalized. The learner constructs her/his 
internal representation through acts interacting with tools and systems. Internal representations 
can also interact and mediate the working of other internal systems (Goldin, 1998). 

Encapsulation of processes. In the Goldin-Herscovics-Bergeron model of mathematical 
understanding (Herscovics & Bergeron, 1988; Goldin & Herscovics, 1991) it is not clear how 
learners’ knowledge evolves from first actions to mature mathematical concepts. APOS theory 
by Dubinsky (1994) provides a framework. Actions (A) on physical or mental (mathematical) 
objects are internalized by the learner and (can) become processes (P). When the internalized 
process has evolved to the point that the learner can reverse or transform such processes and 
actions mentally, it takes on the form of a mathematical object (O) for the learner. This is the 
stage of encapsulation. The learner thinks or talks about a process or an operation from a global, 
structural, point of view. She/He can perform actions on the mental image of the process as if it 
was an independent object. The whole mental construction becomes part of a new scheme (S).  

 
Methodology  

Five undergraduate students at a large Midwestern university were first selected based on 
their willingness to be interviewed and to participate afterwards in a four week teaching 
experiment. One student was a freshman, two were in their second year and had completed pre-
calculus classes with the researcher, and two were in the education program in their third year 
and had completed calculus classes successfully. The students are given fictitious names and are 
called Ann, Chandra (both female), Bob, Dennis, and Eddy. 

The research started with the pre-interview: a semi-structured interview, lasting a little over 
one hour, conducted by the researcher with each student separately. The interviews were audio 
taped and then transcribed. The purpose of the pre-interview was to document the knowledge 
and understanding of rational and negative exponents of each student at the beginning of the 
teaching experiment. 

The five students then participated in a videotaped teaching experiment of four weeks to test 
the effectiveness and impact of an alternative route to teaching and justifying exponents and 
improving the understanding of decimal exponents. In the teaching experiment the zero exponent 
was treated separately in two different contexts. Once as related to smaller and smaller fractional 
exponents that tended to a factor of multiplication of one. And later, as related to its role as a 
place holder in the decimal representation of exponents when solving exponential equations. The 
students were again interviewed separately after the second, the third and the last week of the 
teaching episodes. These interviews were semi-structured and audio taped. After the conclusion 
of the teaching experiment the post-interview was conducted separately with each student, using 
the same questionnaire as the pre-interview. 
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The video tapes made during the teaching experiment were studied in various cycles to 
extract as much as possible relevant material for transcription and analysis. The pre- and post-
interviews together with the data from the interviews conducted during the teaching experiment 
provided a basis for studying changes in the students’ ideas and their understanding of exponents  

 
Results 

The Role of the Laws of Exponents 
The Laws of Exponents (LOE) operate for all the students as basic properties for 

computational purposes. Each student in the study was able to work with positive integer 
exponents using the LOE “spontaneously.” Only one student (Dennis) was aware of the actual 
name of LOE. All the others just focused on knowing the specific properties that were needed to 
work with exponents. The first conclusion is that the Laws of Exponents functioned at the 
computational level for the students.  

The notion that the LOE would act as a collection of properties for understanding the 
invariant patterns or properties for all exponents and thus would provide a strong basis for 
creating rational and negative exponents was not confirmed. The most powerful concept image 
of all the students turned out to be the Common Definition of Exponents (CDE). This well 
established network of ideas states that an exponent represents the number of factors in a 
repeated multiplication of a certain unit or base number. The concept implies the existence of a 
base, or a unit, a stage of multiplication, and the presence of a sufficient number of factors to be 
multiplied. 
Students’ Understanding of Rational and Negative Exponents 

The CDE is more powerful than the LOE in forming the notion of students in their efforts to 
understand what rational exponents or negative exponents are. All the students reported serious 
conflicts in their learning activity when trying to explain what these rational or negative 
exponents were. From a learning perspective, the most important activity was the effort of the 
students for overcoming the notions of the CDE as a basic but conflicting set of ideas for 
expanding the concept of exponents. 

The zero exponent exposed the limitations of the traditional approach to exponents further. 
All students reported a conflict in trying to apply the CDE to the zero exponent. When asked to 
explain the zero exponent they all expressed reservations as to the justification for the value one 
assigned to powers of zero. Only Dennis, the freshman offered an (incorrect) explanation why 
the value should be one. All students mentioned the authority of the teacher as a basis for 
accepting the value of one (1) for zero exponents. None invoked the laws of exponents as a basis 
for their beliefs. Each student expressed the feeling that the value one was either “weird” or that 
it should be zero, because there were “no factors.”  

All the students seemed to show attempts to explain their images of exponents of various 
kinds by trying to fit these new notions of exponents into the definition that they knew and 
understood fully, the Common Definition of Exponents (CDE). The zero exponents were 
conceived as finding a multiplication when zero factors are used or as a special case with an 
explanation that seemed plausible, but avoided answering the question how the CDE is related to 
the value of 1. The negative exponents also presented challenges, voiced by students as “weird” 
or “unacceptable,” or “you can’t have negative exponents,” or they referred to the “school 
teachers” to justify the meaning of negative exponents. The fact that there was no apparent 
conceptual connection for the students between the CDE and the traditional definition of 
negative exponents did not stop them from applying the working definition of negative 
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exponents and solving problems. The authority of the teachers, the school and the existence of 
“answers” probably overruled their concerns. With the rational exponents the basic picture was 
similar in the sense that the CDE seemed to function as the point of departure for interpreting the 
given definition. No reference was made to rational actions to be applied to the underlying 
properties of roots and powers. This notion that all you needed was the value of the exponent 
seemed to be connected also to the unambiguous world of the CDE where one given exponent 
fixes the value of the expression.  

Each of the five students showed some hesitancy or uncertainty about how one knew if one 
given number is a power of another given number. The common operations with exponents 
seemed to go one way only: given a base and a number, find the value when the base had that 
number as an exponent. The reverse action seemed quite unfamiliar to the students. This problem 
would re-appear when the chain of multiplications was proposed in the teaching experiment.  

The CDE seemed to be the only concept that had a clear operational process and a 
meaningful interpretation for the concept of exponents for the students. The lack of a meaningful 
extension and development of the CDE into a broader notion that reconciled the CDE with the 
new definitions for the zero exponent, the rational exponent and the negative exponent made it 
unlikely that students like those interviewed would develop on their own, an overarching concept 
of exponents that was applicable to all types of exponents, from integers, to zero, to rational and 
negative numbers. 

When asked to explain what 51/3 meant to them they were able, after some hints, to explain 
what that symbol stood for. Chandra and Dennis commented that 51/3 did not mean 1/3 times the 
factor 5. Chandra saw the definition as problematic: “How do you multiply the number five 1/3 
times? That’s impossible.” The equality of forms like 51/3 and 52/6 were not connected to radicals 
and their properties, but to the fact that 1/3 = 2/6. Only Anna and Chandra were able to explain 
after some hints, how the decimal digit in 32.1 could increase the value of 32 from 9 to 10.045…  

The conclusion is that the laws of exponents did not provide the students with sufficient 
support to build an understanding of rational, negative or the zero exponents. The definition 
based on counting factors (common definition) was still the lens through which students tried to 
understand exponents of all kinds. Much more cognitive support was needed to build strong 
understanding of rational and negative forms of exponents for these students.  
Impact of the Teaching Experiment 

The biggest hurdle for the students was to understand that the model for population growth 
was not linear in its mechanics. Their initial ideas involved using linear and additive thinking 
models to find rates of change over multiple periods or over parts of a period. If a population 
grows by 10% each year then why is it not growing 20% over two years? If a bacterial 
population grows by 100% each three hours why does it not grow 33% per hour? The central 
role of factors of multiplication and the multiplicative nature of the process required extensive 
work and discussion.  

A procedure for numerically solving (without the use of logarithms) exponential equations 
like: find A if 5 A  = 10, made students create their own versions of the procedure. This part was 
internalized by the students with minor problems. The problems were associated with how to 
handle and explain digits of zero in exponents like 3 2.0959  = 10.  

Students struggled with the requirement in the teaching to justify the rational properties of 
fractional exponents from the properties of radicals and powers of radicals. This was most 
pronounced for Bob, Dennis, and Eddy. They stated never to have been exposed to such 
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knowledge before. All roots had to be checked with numerical examples and calculators by these 
students to convince them of certain properties of radicals. 

Negative exponents were introduced using three perspectives. The first focus was on the 
graph along the x-axis to find previous population numbers by dividing by the factor of 
multiplication. This was explained as a “backward” movement of exponents associated with 
directed numbers in ordinary subtraction. Then the functions F(x) = ax and G(x) = (1/a)x were 
compared and found to be symmetrical with intersections at X = 0. Finally the symmetry was 
used as a way to solve exponential equations like, find X if (0.8) X = 10. Finding Y in (1.25)Y = 
10 first, then using the symmetry to understand that X = -Y provided a solution for the first 
equation. 

All the students accepted the metaphor of backward movement for the exponents. Bob did 
not fully understand the use of symmetry for solving equations, but accepted the “backward 
movement” idea associated with the division. He even proposed the term “factor of division” for 
the number used. Ann and Chandra repeatedly used the metaphor themselves, while Eddy 
created his own symbolic representation to describe his understanding of negative, positive and 
zero exponents by what he called “forward, backward and no movement at all in the graph.” 
Dennis vacillated between using the metaphor and using his high school method of replacing 
negative exponents by finding the inverse of the base.   

The post-interviews revealed that Ann and Chandra were able to formulate a general, single 
definition of exponents that applied to rational, decimal, zero and negative numbers for 
exponents. The other students were not able to do that, but none mentioned weirdness or 
inconsistency again. Their definitions were still the common definition with special cases for 
rational and negative exponents. Dennis still stuck to his definition of zero from high school, but 
all the others linked the zero exponents to the fact that higher roots of a number tend to produce 
numbers like 1.0000… with expanding rows of zeros. This was associated to a final value of 1 
for exponent zero.  

 
Discussion 

The teaching experiment did not result in all students being able to voice a generalized notion 
of exponents that applied to all possible numbers. Two students did reach that stage however. 
They were the students who had studied calculus and seemed to be more mathematically mature 
compared to the other students.  

There is still more research to be done to find out what is needed beyond what was offered in 
the teaching experiment that can guide students to understand fully what exponents stand for and 
how the original laws can be extended to fractions, decimals, negative and even irrational 
exponents. The method to show how exponential equations can be solved numerically can 
possibly be used to help students understand intuitively what logarithms are.  
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We report results from a larger study using a mixed-methods approach to examine the 
relationship between changes in attitude and achievement using the connected SimCalc 
MathWorlds® environment. Aspects of students’ anxiety linked to sharing work publicly declined 
during our curriculum intervention. This was significantly correlated with increases in student 
knowledge and interpretation of multiple representations of functions. Similarly, positive change 
in student attitude towards technology was related to increases in knowledge of algebra concepts 
related to linear functions. After analyzing video data, we believe positive student outcomes 
result from increased motivation through active and mathematically-meaningful participation in 
the classroom.  

  
Background 

SimCalc MathWorlds® software (herein referred to as SimCalc) allows students to create 
mathematical objects on graphing calculators and see dynamic representations of these functions 
through the animations of characters whose motion is driven by the defined functions. Students 
are then able to send their work to a teacher’s computer.  Calculators are connected to hubs that 
wirelessly communicate to the teacher’s computer via a local access point. The flow of data 
around a classroom can be very fast allowing large iterations of activities to be executed during 
one class.  

In our intervention, we included activities that allow students to create functions in SimCalc 
on the TI-83 Plus or TI-84 Plus graphing calculator which can then be collected (or 
“aggregated”) by a teacher into the SimCalc software running in parallel on a computer using 
TI’s Navigator Wireless network.  The activities are part of a curriculum, developed and refined 
over many years, that focuses on core high school Algebra ideas such as linear functions, 
simultaneity, covariation, and slope-as-rate — rather than slope as m in the equations, y=mx+b. 
The activities utilize Classroom Connectivity (CC) in new ways to supplement or replace 
existing traditional algebra curriculum (Hegedus & Kaput, 2004).  

We report some specific findings from a larger quasi-experimental study where we 
investigated the implementation of SimCalc—a dynamic software and curriculum package—in 
regular U.S. high school classrooms.  In particular, we focus on the impact of our resources on 
student motivation and attitude, and its correlation with mathematical performance. Significant 
learning gains by high school Algebra 1 students were measured across a 3-6 week quasi-
experimental intervention conducted in several ninth grade Algebra 1 classrooms across two 
medium- to low-achieving districts in Massachusetts, U.S., with teachers of varying experience 
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(t(322)=2.711, p=0.007).   
 

Theoretical Perspectives 
Our connected approach to classroom learning is reiterated in seminal works that highlight 

the potential of classroom response systems to achieve a transformation of the classroom-
learning environment (Bransford, Brown & Cocking, 1999). Similarly other investigators have 
expanded their approaches to include devices that allow aggregation of mathematical objects 
submitted by students (Wilensky & Stroup, 2000). Linking private work in a mathematically 
meaningful way through networks, and displaying the aggregations of whole class work, 
potentially enhances students’ metacognitive ability to reflect upon their own work in reference 
to others (Huffaker & Calvert, 2003). These activities create an intrinsic motivation context with 
a socio-cultural view to “motivation in context” (Hickey, 2003) that is also intrinsically 
mathematical, accomplishing a much more intimate intertwining of motivation and mathematics 
that can be typically accomplished in existing classrooms. 
 

Research Questions 
In this paper, we focus on one particular SimCalc class, taught by an experienced SimCalc 

teacher, with respect to changes in attitude and learning gain. We explore the following 
questions: 

• What relationship(s) exists between student gains in performance on pre- and post 
content tests and measures of attitude? 

• In what ways might attitude influence performance gains?  
o Which classroom behaviors and/or interactions suggest an attitude–performance 

connection? 
• How might the SimCalc environment impact relationships between student performance 

gains and attitude? 
 

Methodology 
Sample 

Five teachers in a total of eight classes in two school districts participated in the larger 
SimCalc study. The remaining Algebra 1 classes in each district, eight in total, were used as 
comparison classes. Algebra 1 is typically taught in ninth grade where students are 14-15 years 
old. The teachers involved in the study were not randomly chosen; rather they agreed to be a part 
of the project for various reasons. We chose the single SimCalc classroom on which to focus our 
paper based upon the robustness of the relationship between the variables we wished to 
investigate, i.e., performance gain and attitude.  
Data Collection 

Motivation was measured using pre- and post-intervention attitude surveys. The student 
survey used to measure attitudes and beliefs about mathematics, school, and technology was 
comprised of 27 items that participants responded to on a Likert-type scale ranging from “0 – 
Strongly Disagree” to “4 – Strongly Agree.” An example item was, “I think mathematics is 
important in life.”  

Video data was collected for each class in the SimCalc group and one class in the comparison 
group during the intervention. Each class was recorded with two digital cameras. One of the 
cameras was focused on the teacher and the whiteboard space where connected SimCalc was 
projected. The other was positioned at the front of the class and was focused on the students 
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using a wide-angled lens to pan out and observe whole class dynamics and small group 
interactions. Both cameras were used as roaming cameras when the class was involved in small 
group work. Video data was collected for twenty-six classes, each class lasting approximately 
fifty-five minutes for the SimCalc class in this case study.  A second researcher took detailed 
field notes of the classes. Selected students were interviewed at the end of the intervention. 
Classroom video episodes were used as a qualitative component that re-enforced our quantitative 
findings because surveys and/or structured interview analyses do not always accurately reflect 
the attitude/affect of a student (Goldin, 2008; Ma & Kishor, 1997; Schorr & Goldin, 2008).  

The instrument used to measure learning gains was a mathematics content test compiled from 
various state high-stakes state tests used to determine school success for No Child Left Behind 
(NCLB) accountability. The 22 item pre- and post-test included twenty multiple choice items 
worth 1 point, one short answer question worth a maximum of two points, and one long answer 
question worth a maximum of four points. 

 
Results 

Quantitative 
Our initial analysis focused on student gain in specific content areas and on changes in 

attitude. Our goal was to identify patterns of change and potential relationships between various 
dimensions of the data.  

The content test was broken down into concept categories: graphical interpretation items 
(41% of the test), proportion and rate items (23%), recognizing and determining a pattern items 
(9%), and multiple representation items (27%). These groups did not include the long answer 
open response item, which was omitted due to a low response rate by both treatment and 
comparison groups. The SimCalc group showed gains on each category of the content test.  In 
particular, the SimCalc students had a significantly greater gain than the comparison group on 
multiple representation items t(322)=3.069, p<0.01. These items dealt with generalizing 
relationships across representations. Conceptual transfer across multiple representations of a 
mathematical concept or object is an important theme in mathematics education and one of the 
National Council of Teachers of Mathematics process standards (NCTM, 2000). 

We conducted a principle components analysis on items from the student attitude survey, 
which produced a four-component model that accounted for 48% of the total variance. We 
categorized these into four broad components that coincided with our theoretical model of 
attitude:  Deep Affect/Beliefs not subject to casual change (20.8%), Anxiety (11.4%), Preference 
to work alone (8.5%), and the Perception and Use of Technology (7.3%).  Based on this analysis 
we computed weighted composite scores for each dimension on the survey to allow us to 
measure change in attitude over time. Table 1 below displays descriptive statistics for each 
subscale used in the analysis from our sample population. 

The SimCalc case study class. The case study class demonstrated gains in both performance 
and attitude when compared with the aggregated treatment and comparison groups. This class 
had a lower score mean score on the pre-content test than the aggregated treatment or 
comparison groups. However, the case study class demonstrated greater content gains (2.42) 
from pre to posttest than either the treatment (1.99) or comparison (.96) groups. They also had 
higher mean scores on the pre-survey for the Deep Affect subscale (11.3, compared to 10.6 for 
treatment and 10.4 for control), and the Anxiety subscale (9.0, compared to 8.4 for treatment and 
8.3 for control), and recorded a greater gain (.40 and -1.2 respectively) than the other two groups 
(-.19 and -.27 for treatment and -.48 and -.07 for control).  
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Table 1  
Descriptive Statistics for Attitude and Content Test Sub-scales on the Pre Survey and Pre Content Test for 
all Classrooms in the Study 

  
 

N Mean 
Initial Score 

SD Min Max 

Content Test Content Test Score (0-26)* 396 10.2 3.6 1 19 
Graphical Interpretation (0-9)* 396 5.1 1.6 1 9 
Proportion and Rate (0-6)* 380 2.9 1.8 0 6 
Recognizing and Determining a Pattern (0-2)* 396 .36 .48 0 1 
Multiple Representations (0-6)* 396 1.8 1.4 0 6 

Student Survey Deep Affect 301 10.5 3.6 0 18.2 
Anxiety 296 8.3 3.4 1.1 18.7 
Preference to Work Alone 304 3.2 2.5 0 9.3 
Perception and Use of Technology 301 5.7 2.1 0 10.9 

*The range of scores for the subscale 
 

A larger positive gain on the Deep Affect subscale implied that students chose higher 
agreement responses on items describing math as interesting and important. This gain also 
suggested a more positive overall attitude toward school at the end of the intervention than at the 
beginning. Similarly, the case study class had a larger negative gain for the Anxiety subscale, 
which suggests students were less anxious at the end of the intervention then they were at the 
beginning. The case study class had a lower mean for the Perception and Use of Technology 
subscale on the pre-survey (5.3) but had the highest positive gain among classes (.36). The gain 
for the aggregated treatment group was negative (-.20) indicating that they enjoyed technology 
slightly less than they had at the beginning of the intervention. 

We explored the relationships between changes in attitude and gain in content knowledge by 
analyzing a correlation matrix of these dimensions (Table 2). Most notably, changes in anxiety 
and preference to work alone were correlated to gain on the multiple representations subscale. A 
regression analysis confirmed that Anxiety significantly predicted gain on this subscale, ß=-.39, 
t(16)=-2.82, p=.012. Anxiety also explained a significant portion of variance in gain scores on 
this factor, R2=.33, F(1, 16)=7.96, p=.012.  
 
Table 2  
Correlations between Gain on the Content Test Subscales and Changes in Attitude Subscales for the 
Specific SimCalc Class 
 Mult. 

Rep. 
Gain 

Gain in 
Graph Int. 

Change in 
Deep Affect 

Change in 
Anxiety 

Change in Work 
Preferences 

Change in Perception 
and Use of 
Technology 

Total Gain .711** .764** .327 -.422† .370 .460† 
Mult. Rep. Gain  .261 .214 -.576* .515* -.047 
Gain in Graph 
Int. 

  .336 .004 .350 .535* 

Change in Deep 
Affect 

   -.389 -.007 .633** 

Change in 
Anxiety 

    .065 -.016 

Change in Work 
Preferences 

     -.004 

*p<.05, **p<.01, † p<.1 
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Qualitative 

In the video data collected in our comparison classrooms, and at the beginning of the 
SimCalc intervention for this particular class, students were seated in rows, answered teacher 
questions when called upon, and the Initiation-Reply-Evaluation sequence was the primary 
discourse method of the class (Wertsch & Toma, 1995). 

Towards the end of the SimCalc intervention, the classroom discourse in this specific 
SimCalc class was quite different.  Dialogic function was evident as students actively 
questioned, reacted to, and transformed the ideas and utterances of their peers, their peers’ work 
and their own work (Wertsch & Toma, 1995).  We propose that these illustrate the significant 
learning and, more importantly, the correlation with attitudinal changes that are evident in our 
measurements presented above. The particular classroom episode on which we have focused is 
not an outlier. This episode is a representative sample of the class from the latter portion of the 
intervention that exemplified the discursive and pedagogical practices that may be attributed to 
significant changes in our content and motivation sub-scales. In this episode students worked on 
an activity called Coming Together. In this activity students created a motion for a SimCalc 
actor, B, such that B started at 2 times their group number of feet (each group was assigned a 
different group number) and ended in a tie with Actor A.  Actor A was defined by the function: 
y=2x on a domain of [0,6].  Students built a function expression to fit the goal of the activity.  
Once students developed their functions, the teacher collected them. Before any student work 
was shown the teacher conducted a class discussion.  A discussion about the motion began when 
the teacher asked what would happen when she ran the animation. 
(1) S5: We're all gonna go different speeds but we're all gonna end at the same position 

cause that uh end at 
(2) Teacher:  Where is everyone going to be at the end of the motion?  

S4: Not all different speeds. 
S6: 12. 

(5) S1: 12. 
Teacher: 12 what? 
S1:  feet.  
Teacher: Feet.  Right okay...  So at the end 
 S4: They're gonna be at point (6,12). 

(10) S5: Group 6 isn’t gonna move. {S5 is in group 6}  
S8:  yes we move.  We go like this. {In the air with her pointer finger outstretched, she 
gestures a horizontal line} 
S4: They go sideways. 
S1: No they don't move, time goes on. 
S9: Cause they start at 12. 

(15) S1: Yeah. 
S3: It’s like they already won. 
S4: It's like they're at rest. 
S5: Yeah but on the world we don't move. 
S4: They're resting for 6 seconds. 

(20) Teacher: S5 says in the world Group 6 is not gonna move. 
S1: Yeah. 
S3: No, they’re not gonna move at all. 
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S3: That's right.  They just stay there. 
Teacher: Do we agree with that? 

(25) {Multiple students reply with yeah} 
S8: Yeah but time is moving. 
Teacher: Time is moving but they aren't. 
S1: Yeah cause you'll like see everyone else move but them. 

In this excerpt, the teacher repeated what a student said twice, and facilitated the 
conversation three times: once to ask a question, once to clarify the units, and once to see if the 
class has come to an agreement.  Student agency was evident as they debated their work and the 
work of their peers (lines 9-19).  The students in Group 6 started at 12 feet and must end at 12 
feet, therefore their character would not be moving.  The students were building their 
understanding of how time and position co-vary.   

In line (9), a student responded with a multiple representational answer.  The class was 
discussing the motion, which is measured in feet, but his answer was in terms of the graph, the 
line segments would “end” at the point (6,12).  Time was implicit in the motion.   

Line (2) showed the teacher accepting the first response and then attempting to ask a 
different question. S4 did not agree with S5 and he initiated a discussion.  While his comment 
was not addressed in this except, S4 followed up a little later in the class again saying, “not all 
different speeds.”  S4 then explained that some groups would have the same speed, but different 
velocities, because they were traveling in a different direction.  He also conceptualized the 
symmetry that was created in the class’ set of motions and graphs as evidenced by his discussion 
of the slopes of the line segments that followed later in the class: 
S4: We were the opposite of them. We were their opposite. 
S6: And so then the next two... 
S4: Cause they were 2 and we were negative 2 
Teacher: So the slope. So you think group...you were saying group 4… 
S6: 5 and 7 I think 
Teacher: So group 5 and group 7 had opposite slopes? 
S6: Yeah 
S4: And group A and group 4 

The SimCalc activities allowed discussions to emerge that were not present prior to the 
intervention.  The students talked to one another about the mathematical objects they created on 
their calculators and that had been aggregated by the teacher. The networked classroom appeared 
to have enhanced a rich set of communication events where analysis of mathematical variation 
was brought to a social plane and where students could understand the core mathematical ideas 
in focus from a collaborative perspective. (Hegedus, Dalton, Cambridge et al., 2006).   

The rich collaborative communication continued as the teacher asked students what the class 
set of graphs would look like when she displayed them.  The students began using metaphors to 
describe this.  A few students mentioned the set of graphs would look like a fan or a rake with 
the graph of Group 6 as the handle of the rake because it was perpendicular to the y-axis.  The 
teacher followed up students’ initial response with her own metaphor.  

Teacher: How about if I see it as a hand? 
S1: Yeah I can see it as a hand. 
S2: Kinda, skinny hand. 
S: No. 
S1: Yeah huh cause look. 
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S3: A hand with six fingers on it? 
S9: Doesn't make sense. 
S1: Yeah, a hand. 
S4: Yeah a hand with 6 fingers {laughs}. 
Teacher: Think about it though. What would be your y-intercept? Where would your y-
intercept be? 
S9: Your pinky. 
S4: At the webbings. 
S9: That doesn't make sense. 
Teacher: Pretend there's an extra one [an extra finger] 
S3: That would be where they end though {See image 2 where S3 is referring to the 
“webbings” or palm of his hand} 
Teacher: That would be where they end—I'm sorry. You're right. So what would my palm 
be? My palm would be where they? 
S3: End. {Referring to the point (6,12)} 
 

  
Figure 1. 

A student’s drawing on the board of the 
class set of graphs. 

Figure 2. 
The gestures representing the class set of 
graphs shown by the teacher and student, 

S3.  
Within one activity, students relied on three major representations SimCalc offered them to 

make deductions on the behavior of the family of functions. They used this knowledge to help 
them derive a function rule that can be generalized for any group in the class. The group relied 
heavily on the animation space and graphs to understand which groups would have a negative 
and positive slope, which was at the heart of their debate.  

Throughout this entire classroom episode, the teacher acted as a mediator. She prompted or 
guided students if they were stuck but provided students an opportunity to make their own 
discoveries. The students debated and argued about the underlying mathematics. They 
challenged each other and made conjectures, correct or not, with the goal to derive a general 
expression and understand its meaning.  
 

Conclusion 
Several aspects of learning in the SimCalc environment may contribute to lower anxiety 

measures. While this research is in its early stages, we speculate that three effects may be at 
work: (i) SimCalc provides a malleable environment with which to explore concepts in 
personally meaningful ways, (ii) students can make numerous conjectures, some of which may 
be false, before coming to a final answer, and (iii) the use of multiple representations in the 
curriculum and software provide for the deliberate generalization of concepts. 
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At this point, there are many potential explanations for motivation/learning performance 
relationships in SimCalc classrooms. As longitudinal data accumulates, we will investigate the 
connection between attitudinal changes and gains in performance using larger sample sizes and 
more refined analyses. We will also explore whether our hypothesized factors—the richness of 
the SimCalc context, the reduced emphasis on “one right answer”, and the explicit transfer of 
concepts to a variety of mathematical representations—contribute to such changes. 
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This paper reports on an analytic case study of a pre-algebra student who makes a surprising 
and significant mathematical discovery over the course of several episodes of problem solving.  
The research reported in this paper is motivated by the goal of understanding how and why the 
student’s strategies shifted from a simple, yet purposeful, guessing and checking approach to a 
sophisticated approach based on linear interpolation. The paper illustrates how a conceptual 
change framework developed in the science education literature can provide useful analytic tools 
for understanding shifts in problem solving strategies in terms of underlying conceptual 
refinements and reorganization.  
 

Introduction 
The phenomenon of interest in this paper is how new strategies emerge during mathematical 

activities, such as problem solving. Microgenetic analyses of strategy change (See Siegler, 2006 
for a review) have focused on developing techniques for tracking shifts in strategy usage at a fine 
grain level of detail. While we share this attention to fine-grained analyses, our focus in the line 
of research reported in this paper will ultimately be on the processes by which an individual 
constructs a novel strategy from existing conceptual resources as opposed to the processes by 
which individuals come to reliably activate and use one strategy over another competitor 
strategy.  In other words, the approach proposed by this research project is to re-frame analyses 
of strategy change in terms of underlying conceptual change. We will illustrate how an analytical 
approach known as “knowledge analysis” (diSessa, 1993; Sherin, 2001) for studying growth and 
change of conceptual structures can provide useful analytic tools for understanding the shifts in 
problem solving strategies that come about due to underlying conceptual refinements and 
reorganization.  

To illustrate the potential of this approach, we will explore a case study of a pre-algebra 
student, Liam, who largely independently re-invents a deterministic and essentially algebraic 
problem solving strategy, known as linear interpolation, through the activity of solving algebra 
word problems using a purposeful guessing and checking strategy. Previous research has 
documented that students use informal problem solving approaches such as guessing and 
checking prior to instruction with algebraic solving techniques (Johanning, 2004, 2007; Kieran, 
Boileau & Garançon, 1996; Nathan & Koedinger, 2000; Stacey & MacGregor, 2000). However, 
the conceptual nature of students’ guessing strategies and what kind of mathematical ideas can 
potentially be developed as a consequence had not previously been objects of extensive study. 
One reason for this is that the prior studies of students’ pre-algebraic problem solving approaches 
were based primarily on written records and hence did not offer access to the richness and 
learning potential of students’ informal strategies. 

The case shared in this paper offers a surprisingly clear demonstration of how important 
algebraic ideas such as function, co-variation and rate of change can emerge and be developed 
through the successive refinement of informal problem solving strategies. Such potential for the 
development of algebraic reasoning is discussed in Levin, 2008.  An important contribution of 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

194 

the current research is the explicit identification of key knowledge resources that are activated 
and used as the student constructs the linear interpolation strategy. Thus, the specifics of the case 
of Liam are new to the literature on the development of algebraic thinking, but beyond that, the 
case of Liam is an interesting site to begin elaborating theoretical and analytical tools for 
studying the growth and change of knowledge (i.e., conceptual change) in mathematics, and is 
thus of more general interest. 

 
Theoretical Framework 

In this paper, the “knowledge in pieces” epistemological perspective proposed by diSessa, 
(diSessa, 1993) is adapted to analyze the conceptual underpinnings of an observed strategy shift 
in the case of Liam.  In this theoretical perspective, an important underlying assumption is that 
individual knowledge can be thought of as a complex system comprised of many knowledge 
elements of diverse types. As individuals learn and gain in expertise, activation of relevant 
knowledge elements becomes more appropriately context sensitive and coordinated as ensembles 
of elements. DiSessa, 1993 and Sherin, 2001 argue that it is fruitful analytically to engage with 
the complexity of individual knowledge systems by defining a base vocabulary of sub-
conceptual primitive knowledge elements.  One reason this is argued to be useful analytically is 
because important features of expertise may manifest themselves only at the level of primitives.   
 

Data Collection and Methodology 
The data corpus for the Liam case study includes video and written work collected over the 

course of six individual semi-structured tutorial sessions with a researcher, each approximately 
one hour in length. Liam was one of six pre-algebra students participating in this study aimed at 
analyzing students’ emergent understanding of variable and letter-notation using a curricular 
tool, a Guess and Check chart, as suggested by a widely-used algebra curriculum (Sallee, Kysh, 
Kasimatis & Hoey, 2002).  The Liam data corpus was selected for extended analysis because of 
the unexpectedly rich conceptual development that occurred during the sessions. The analysis of 
video and transcripts of problem solving in this study allowed access to students’ real-time 
reasoning as they solved problems.  Video data was transcribed for analysis, annotated with 
relevant details such as students’ gestures, and coordinated with written work artifacts.  

 
Research Questions 

1. How can we characterize Liam’s conceptual understanding in a way that will make 
tracking moment-by-moment shifts in understanding analytically feasible? 

2. What conceptual understandings did Liam develop between two contrasting episodes that 
may have allowed the observed change in problem solving strategy to occur? 

 
Background and Context 

Liam is a pre-algebra student who initially approached solving word problems using a 
purposeful guessing and checking approach, which he devised (as research shows that many 
students do) without any previous instruction about how to solve such problems. Over the course 
of several individual sessions, he refined his purposeful guessing and checking approach, 
organized in tabular form, to an essentially algebraic algorithm (linear interpolation) for solving 
word problems. The linear interpolation strategy we will examine in this paper emerged naturally 
over the course of the sessions with Liam, and was not something that was explicitly designed to 
be part of the sessions with the tutor/researcher.  
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Data excerpts illustrating the approach taken by Liam at the beginning and ending of the 
sessions are given below.  One can see that while Liam’s initial approach was based on 
purposeful guessing and checking, his later approach is deterministic, building off the linear 
structure underlying the problem contexts, and in fact no longer involves “guessing” at all.  
 

Episode One: Systematic and Purposeful Guessing and Checking 
In this first focal episode, one observes that Liam is using a purposeful, systematic guessing 

and checking approach to solve the given word problem.  This problem was the first in the series 
of sessions where the tutor had suggested that Liam organize his guessing and checking strategy 
in a Guess and Check chart.  Previously, Liam had used the invented strategy of “guessing and 
checking,” (though not arranged in a chart).   
 

The base of a rectangle is three more than twice the height.  If the perimeter of the rectangle is 
sixty inches, find the height and the base of the rectangle. 

 
Below is a reproduction of the chart Liam constructed, along with excerpts from the 

transcript coordinated with his activity with the chart. 
 

 
 

Figure 1.  Transcript from Liam’s problem solving approach in episode one in which Liam used 
“successive approximation” to find the solution to the word problem. The chart is a typed 
reproduction of Liam’s work. 
 

Already in episode one, Liam is already making very purposeful choices about the sequence 
of trial values he constructs.  Certainly, his choices of guesses are far from “random.”  In fact, he 
already appears to have an approximate sense for how the input/output pairs he generates co-vary 
linearly.  One can also notice that he is making inferences in terms of both “scalar” judgments 
(“a little too high”) and also “proportional” judgments (“it’s a little less than twice” the target 
value).  
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Episode Two: Leveraging Linearity to Solve Problems 
Later in the series of sessions (session 5 out of 6), Liam had refined his strategy from merely 

“purposeful guessing and checking” to “linear interpolation.”  In this data excerpt, one can see 
Liam deploy his newly constructed linear interpolation strategy to solve a problem of a similar 
underlying (linear) form as in focal episode one.  The problem he was working on this episode 
was: 

The sum of three consecutive integers is 414.  Find the three integers. 
 

In solving this problem, Liam continues to organize his work in a “guess and check” chart (a 
typed reproduction is pictured below).  After having solved the problem and when asked to 
explain his solution strategy in this later, contrasting episode, Liam says  
 
“I took 408 and 423 [see chart below].  I have the difference between those [between 408 and 
423] which is 15.  The difference between these two [between 135 and 140] is 5. And 15 divided 
by 5 is three.  So that means that for every one this changes [indicates the first column], this one 
[indicates the sum column] changes by 3.  So, then I took 423 and I subtracted that [moved hand 
up to problem statement to indicate the target value of the sum: 414]; the difference was 9.  3 
times 3 is nine.  So, I knew that it would have to be three less than this [indicates 140].”  
 

 
 

Figure 2.  Transcript from episode two in which Liam used the “linear interpolation” method he 
constructed.  The chart is a typed reproduction of Liam’s work. Though quotations are presented 
separately (to highlight the multiple steps involved in Liam’s strategy), this constitutes one 
uninterrupted utterance by Liam. 
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To give a quick recap of Liam’s activity in the second episode, we see that after Liam has 
finished the computations with two trial input values, Liam forms the ratio of the difference 
between the two outputs to the difference of the two trial inputs.   This allows him to figure out 
the rate of change (in this case the constant of proportionality, or the slope) of the underlying 
(linear) function.  Liam explicitly interprets the ratio he has formed as the unit worth of one 
guess:  the amount the output will change corresponding to a change in one of the input.  Liam 
then takes the output corresponding to one trial input he has selected as a reference and figures 
out how far that output is away from the target output.  He then uses the unit worth of one guess 
to figure out how much he should change the input by in order to produce the change in output 
he just computed.  

In episode two, Liam has refined his sense of how inputs and outputs co-vary.  He has now 
found a way to quantify and explicitly leverage his intuitions about the underlying linear 
relationship that all the input-output pairs satisfy. Notice that the idea that a given input is 
“worth” a fixed amount in terms of its effect on the output is a refinement of the earlier 
qualitative versions of proportionality Liam used in episode one.  
 

Discussion of the Two Contrasting Focal Episodes 
An important point of contrast between the two focal episodes is that in episode one, Liam’s 

solution method is highly dependent on his inferences about a particular guess.  However, in 
episode two, Liam realizes that his solution method is general, and depends only on determining 
the rate of change between any two input-output pairs. Further, he purposefully uses two trial 
values not for the purpose of converging to the solution to the problem, but for the purpose of 
determining an invariant (the rate of change) of the underlying functional relation which all 
input/output pairs must satisfy.  Once he has determined this invariant, he uses it to deduce the 
unknown value that solves the problem.  

 
Analytical Framework 

The key analytical move and insight made in this paper involves reframing the “strategy 
change” observed between episode one and two in terms of “conceptual change.” To understand 
strategy change as conceptual change, we need to go deeper than a top-level description of the 
contrasting features of strategy one and strategy two. The task before us now is to find a way to 
describe the relevant shifts in conceptual understanding that allowed the strategy change to take 
place.   Of course, we recognize that Liam has many other forms of resources that could 
potentially contribute to the construction of a new problem solving strategy (epistemological, 
meta-representational, etc.) in addition to the conceptual resources we will discuss in this paper. 
We focus on shifts in the activation and coordination of knowledge resources in this paper 
because even in this limited arena, there is significant analytical work to be done.   

The first strand of analysis in this study involves recognizing that the approaches in the two 
focal episodes are qualitatively different and giving a characterization of some of the important 
dimensions of this difference.  Some aspects of difference were discussed in the previous 
sections where it was noted that the move from “qualitative” to “quantitative” formulations of 
proportionality over the course of the sessions was particularly noteworthy as an underlying 
conceptual shift.   

The focus of a second analytic strand is to give a characterization of and provide an argument 
for a set of relatively primitive and elemental knowledge resources, which allow will one to track 
processes of change in fine-grained detail.  The underlying assumptions of the knowledge in 
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pieces epistemological framework directly guide how the conceptual resources are identified in 
our analysis. In this analysis, we seek to identify the knowledge that was relevant to Liam and 
that he was drawing upon in solving the problems. To do this, one can consider the justifications 
he makes concerning his choices for trial values.  This line of analysis has resulted in the 
identification of several conceptual resources that Liam activates and uses over the course of the 
sessions. Examples from the two focal episodes presented in this paper are given below.  
 

Candidate 
knowledge resource 

Description Examples of resource activation in focal 
episodes 

Monotonicity  
 

Larger inputs (in reference to 
previous inputs) result in larger 
outputs and smaller inputs result 
in smaller outputs. 

All guesses in focal episode one fit this 
pattern.  If a particular input resulted in an 
output that was too high, the next input was 
chosen to be a number lower than the 
previous input.  Likewise, if a particular input 
resulted in an output that was too low, then 
next input was chosen to be higher than the 
previous input.  (Focal episode one) 

Sandwiching/In-
betweeness 

If an input yields an output that 
is too high and another input 
yields an output that is too low, 
then the true input must be in 
between these two inputs. 

“Well it was actually definitely 9 if this 
[result for 8] was too low and this [result of a 
guess of 10] was too high.  Unless it was a 
decimal number.” 
(Focal episode one)  

Qualitative 
formulation of 
proportionality 

Small changes in input 
correspond to small changes in 
output. 

This was “a little too high.” [then he chooses 
a next guess that is two integer values lower]. 
(Focal episode one) 

Medium changes in input 
correspond to medium changes 
in output. 

N/A in focal episodes one and two.  

Large changes in input 
correspond to large changes in 
output 

“This is way too much” [and he follows up 
by choosing a guess that is a lot lower than 
the previous guess] (Focal episode one) 
 

Half as a reference 
point 

If an input yields an output that 
is about twice (or exactly twice) 
as much as the target output, 
then the next guess should be 
about half (or exactly half) as 
much.  

This is “almost twice too much.”  [then he 
chooses a next guess that is nearly half as 
much] (Focal episode one) 

Unit 
worth/Quantitative 
formulation of 
proportionality 

A change of one in the input 
corresponds to a fixed change in 
output. 

“So that means that for every one this one 
changes [notes the input column], this one 
[notes the corresponding output column] 
changes by three.” (Focal episode two) 

 
Figure 3.  A summary of “knowledge resources” identified in the analysis of Liam’s 
justifications for choices of next trial values. 

 
Discussion and Findings 

The main goal of this paper has been to illustrate how the emergence of a novel strategy in 
episodes of problem solving can be productively framed in terms of underlying conceptual 
reorganization.  As we have seen, the landscape of the knowledge resources that students draw 
upon in employing informal problem solving methods is surprisingly rich.  Through a 
preliminary analysis with the data from the case of Liam, we have seen that something as 
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apparently simple as students solving word problems using informal strategies like guessing and 
checking actually can yield a striking complexity under analysis. The main contribution of this 
paper is an analytic framework that re-positions observed strategy changes for solving problems 
in terms of underlying conceptual reorganization.  In the case elaborated in this paper, explicit 
candidate knowledge resources have been named that should allow one to track the dynamics of 
change between the two contrasting episodes discussed in this paper.  

One of the challenges of tracking strategy change in terms of underlying conceptual 
reorganization is that the conceptual reorganizations are likely to be of a small scale and highly 
situated to the task at hand.  In the data excerpts, we saw evidence that Liam had “invented linear 
interpolation” in a tabular context.  Without being explicitly taught about functions, Liam 
implicitly recognized the “guess and check” chart he was generating as he solved problems as a 
tabular representation of a function.  In inventing linear interpolation in this context, he 
discovered the tabular version of what might be stated in graphical terms as “two points 
determine a line” and the fact that once you have a point and the slope you can get to any other 
point on a line.   

Since Liam was not familiar with “symbolic” or “graphical” representations of functions at 
the time of the sessions, one would not expect that he would spontaneously recognize and apply 
his linear interpolation approach in these other representational contexts.  Hence, his 
understanding of “linear interpolation” is only a projection into the tabular representational 
context of a mature understanding of “linear interpolation.”  Accordingly, the sub-conceptual 
grain-size posited by the “knowledge in pieces” framework is particularly well adapted to the 
goals of the analytic work in this line of research.  A fine-grained and situated characterization of 
knowledge will be required to make sense of the emergence of Liam’s strategy in the tabular 
representational context.  
 

Future Research 
Future analytic work grounded in this case study and other replication case studies will be 

needed to continue to identify other potentially relevant knowledge resources used by students. 
Preliminary analyses of a complementary classroom data corpus and data from the interviews 
with the five other pre-algebra students give evidence that the knowledge resources we have 
discussed in this paper are sometimes but not always activated in the solution strategies of other 
students. This certainly does not mean that students don’t “have” such resources.  It may only 
indicate that they do not see them as relevant to the task at hand. One would hypothesize that 
classroom practices shape in fundamental ways what knowledge a student sees as relevant to 
activate as they engage with solving problems. 

The analytic framework sketched in this paper naturally extends into at least two other 
additional strands. The work in the first two strands of analysis presented in this paper focused 
on (1) documenting that there was a change in the organization of Liam’s knowledge and (2) 
generating a vocabulary with which to describe that change.  As suggested throughout this paper, 
the natural next analysis would focus on giving a genetic account of knowledge growth and 
change using the specific resources identified in this paper. Certainly, this would involve looking 
at the episodes in between focal episodes. Further, it is natural, both from the perspective of 
giving accounts of learning processes and from the perspective of designing instruction informed 
by such accounts, to ask what factors influence the process of conceptual change and by what 
mechanisms. Accordingly, a fourth analytic strand would focus on going beyond a description of 
the dynamics of change over the sessions in terms of the resources to proposing likely 
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mechanisms that drove the process of conceptual reorganization forward. There are several 
potential candidates for significant mediators of the constructive process.  Some examples of 
potential mediators include the role of the representational form in organizing the data obtained 
from individual trials, social interactions and questioning in the learning setting (both by the 
researcher and the student), the role of the activity of solving a problem in driving the inquiry, 
and the role of a students’ prior knowledge and understanding.  In addition, extending the 
analysis to other kinds of resources, such as epistemological resources and beliefs (Hammer, 
2000), could lead to future insights about how and why strategies emerge in episodes of problem 
solving.  
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In this article, we discuss differences between the mathematics instruction of CMP and non-CMP 
teachers in the LieCal project. There are three aspects of instruction that 200 6th grade urban 
classroom observations showed were strongly and differently related to the type of curriculum 
that teachers were using. These three aspects relate to the teachers' use of (1) group and 
individual work, (2) written narratives and worked-out examples, and (3) conceptually- and 
procedurally-focused instruction.  
 

Introduction 
Historically, curriculum has played a central role in educational reform. In all of the reform 

movements since the 1960s, curriculum has been used as a means to convey what and how 
teachers should teach (NCTM, 1989, 2000), and it has also been used to serve as an agent for 
instructional improvement (Ball & Cohen, 1996). While curriculum does not always dictate the 
content of instruction (Freeman & Porter, 1989), research has consistently shown that curriculum 
has a strong influence on the ways mathematics is taught (Remillard, 2005; Robitalle & Travers, 
1989; Schmid et al., 2002). In fact, teachers often base their teaching approaches primarily on the 
ways the curricular materials are presented (Cai, 2005; Robitalle & Travers, 1989; Tarr et al., 
2006). However, research has not documented specifically how curriculum materials actually 
influence classroom instruction.  

The current discussion of how curriculum materials actually influence classroom instruction 
habitually has focused on differences between the use of Standards-based curricular materials 
developed through the support of the National Science Foundation (NSF) and the use of more 
traditional curricular materials developed through the support of commercial publishers (Hirsch, 
2007; Reys, Robinson, Sconiers, & Mark, 1999; Tarr et al., 2006). Standards-based NSF-funded 
curricula claim to build students’ understanding of important mathematics through explorations 
of real-world (or sometimes fanciful) situations and problems. These curricular materials are 
intended to align with the recommendations in the NCTM Standards, with a focus on the 
importance of thinking, understanding, communicating, representing, making connections, 
reasoning, and problem solving (e.g., NCTM, 1989, 1991, 2000). This view stands in contrast to 
a more conventional approach to curriculum that emphasizes the application of well-rehearsed 
procedures to solve problems, and stresses the memorization, recitation, and use of 
decontextualized facts, rules, and procedures. In this article, we report initial findings from our 
investigation of differences between the mathematics instruction of CMP and non-CMP teachers. 

 
LieCal Project 

This research for this article was done as part of our LieCal project. LieCal (Longitudinal 
Investigation of the Effect of Curriculum on Algebra Learning) is a project that investigates 
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differences between the effectiveness of the Connected Mathematics Program (CMP) and the 
effectiveness of more traditional middle school curricula (non-CMP) on students’ learning of 
algebra. CMP is one of four Standards-based middle school curricula developed with funding 
from NSF (Lappan et al., 2002). In the LieCal project, we are studying the algebra-related 
teaching and learning of about 1400 students in 16 urban middle schools as they progress from 
sixth through ninth grades. Our overall goal for the LieCal project is to provide: (1) A profile of 
the intended treatment of algebra in the CMP curriculum with a contrasting profile of the 
intended treatment of algebra in the non-CMP curricula; (2) a profile of classroom experiences 
that CMP students and teachers have, with a contrasting profile of experiences in non-CMP 
classrooms; and (3) a profile of student performance resulting from the use of the CMP 
curriculum, with a contrasting profile of student performance resulting from the use of non-CMP 
curricula.  In order to provide a profile of CMP classroom experiences and a contrasting profile 
of experiences in non-CMP classrooms, we are collecting data on how teachers use CMP and 
non-CMP curricula.  In this article, we discuss differences in CMP and non-CMP classrooms in 
the LieCal Project.  
 

Method 
The LieCal Project is being conducted in 16 middle schools in a district serving a diverse 

student population. When we began the project, 27 of the 51 middle schools in the school district 
had adopted the CMP curriculum while the remaining 24 middle schools used other more 
traditional curricula. Eight CMP schools were randomly selected from the 27 schools that had 
adopted the CMP curriculum. After the eight CMP schools were selected, eight non-CMP 
schools were chosen based on the comparable ethnicity, family incomes, accessibility of 
resources, and state and district test results.  

An important part of the LieCal Project’s examination of the fidelity of curricular 
implementation is classroom observations. The observations upon which this article is based 
were conducted in the 6th grade of the 16 middle schools. Subsequent observations in grades 7 
and 8 yielded similar results. Using a pre-developed observation instrument1, two trained 
research specialists observed each of the 50 participating classes (24 CMP classes and 26 non-
CMP classes) 4 times a year, twice in the fall and twice in the spring. Due to space limitations, 
we have chosen to report only on the data from the 6th grade observations. 

The LieCal observation instrument is designed to provide a comprehensive analysis of the 
instruction that transpires during each class. Two retired, highly experienced mathematics 
teachers were hired as research specialists to conduct the classroom observations. Over the 
course of the year, we checked the reliability of the specialists’ coding three times. These three 
sessions revealed that the reliability of the coding done by the two specialists was quite high. The 
reliability achieved during the three sessions averaged 79% perfect agreement using the criterion 
that the observers’ coded responses were considered equivalent only if they were identical (i.e., 
perfect match). The reliability averaged 95% using the following criteria: (a) If an item or sub-
item was "scored" using an ordinal scale, then the specialists’ coded responses were considered 
equivalent if they differed by at most one unit; (b) If an item or sub-item (e.g. representation) 
was "scored" by choosing from a list of alternatives all the words/phrases that characterize it, 
then the specialists’ coded responses were considered equivalent if they had at least one choice 
in common (e.g. symbolic and pictorial vs. pictorial).  
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Results 
There are three aspects of instruction that our classroom observations showed were strongly 

and differently related to the type of curriculum that teachers were using. These three aspects 
relate to the teachers' use of (1) group and individual work, (2) written narratives and worked-out 
examples, and (3) conceptually- and procedurally-focused instruction. Our findings regarding 
these three instructional aspects are presented next. 
Teachers' Use of Group and Individual Learning 

The CMP curriculum is composed, to a large extent, of extended contextual tasks, called 
investigations. The teachers' edition of the CMP curriculum encourages teachers to organize their 
students in small groups to work on the investigations, which guide the students to explore 
important mathematical ideas and ways of thinking as they try to understand and make sense of 
real-world situations. Using the observation instrument of the LieCal Project, we documented 
ways that teachers organized students to engage in lesson activities. Two of the ways we 
documented were the use of small-group and individual learning. Nearly half of the CMP lessons 
(47 out of 100) involved students learning in small groups, but only 7.4% of the non-CMP 
lessons (7 out of 95) involved group learning (See Table 1). Accordingly, the CMP students also 
spent a larger percentage of lesson time engaged in group learning than non-CMP students. In 
particular, on average 15.4% of the total CMP lesson time was used for group learning, but only 
2.3% of the total non-CMP lesson time. This means that, overall, CMP students spent about six 
times longer than non-CMP students on group learning.  

What is surprising, however, is that when group learning was used in non-CMP classrooms, 
the time students spent in small groups was similar to the time spent in CMP classrooms. In fact, 
in the 47 CMP lessons that used group learning, the average number of minutes students spent in 
groups was 18.9 minutes, which is very close to that for the seven non-CMP lessons, 16.4 
minutes. This result suggests that once teachers decide to use small-group learning, both CMP 
and non-CMP teachers engage their students in small group learning for about the same amount 
of time per lesson.  

 
Table 1. Group and Individual Learning in Both CMP and Non-CMP Lessons 
 CMP 

Lessons (n=100) 
Minutes 
(n=5724) 

Non-CMP 
Lessons (n=95) 

Minutes 
(n=4980) 

 
Z 

Group work     
% of Lessons  47.0 7.4  6.02 p < .01 
% of Minutes  15.5 2.3  22.75 p < .01 

Individual work (not on homework)     
% of Lessons  32.0 51.6  2.69 p < .01 
% of Minutes  10.7 12.6  3.15 p < .01 

Individual work (on homework)     
% of Lessons  9.0 27.4  3.09 p < .01 
% of Minutes  1.4 6.5  16.15 p < .01 

 
From the opposite point of view, the relatively little use of group learning in non-CMP 

lessons implies that individual student work occurred in many more non-CMP lessons than in 
CMP lessons. There are two types of individual work. One is on homework, and the other is on 
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non-homework activities. About half of the non-CMP lessons included individual learning that 
was on non-homework activities, but only about one third of the CMP lessons included 
individual learning that was not on homework.  

CMP students worked individually on homework in 9 of the 100 observed lessons (9%), but 
non-CMP students worked individually on homework in 26 of the 95 observed lessons (27.4%). 
Both CMP teachers and non-CMP teachers assigned homework in about one third of their 
lessons. Therefore, in our study non-CMP students worked individually on homework in about 
81% (26/32) of the classes in which homework was assigned. However, CMP students worked 
individually on homework in only about 27% (9/33) of the classes in which homework was 
assigned. So, non-CMP lessons were three times more likely than non-CMP lessons to have 
students working individually on homework.  
Teachers' Use of Written Narratives and Worked-Out Examples  

Even a cursory comparison of the CMP mathematics curriculum with non-CMP mathematics 
curricula reveals major differences between them. Customarily, the sections of non-CMP 
curricula are organized around worked-out examples of mathematics problems similar to the 
beginning exercises that appear at the end of the sections, rather than the application problems 
that appear later. The worked-out examples generally are connected by short narrative 
paragraphs that explain the worked-out examples, or that provide definitions, generalizations, 
and formulas that are based on the examples. On the other hand, the CMP curriculum contains 
very few worked out examples and almost no formulas. Instead, the curriculum is composed of a 
series of investigations that the students are expected to explore, often in groups. Each 
investigation comprises multiple paragraphs of written narrative interspersed with diagrams, 
tables, and unworked problems that the students are asked to analyze, solve, and discuss. In our 
study, we found that these two types of curricular presentations lead to very different patterns of 
textbook use by teachers and students.  

 
Table 2. The Purpose of Textbook Use* 
 % of 

CMP 
Lessons 
(n=100) 

% of 
Non-CMP 
Lessons 
(n=95) 

 
Z 

Students looked for problems in the text 63 64 0 NS 
Students reviewed diagrams, charts or pictures 28 1 5.10 p<.01 
Students reviewed examples or find formulae 5 16 2.30 p<.05 
Students read from text 49 14 5.09 p<.01 
Students do not use text 3 16 2.89 p<.01 
Teachers drew examples from text 17 47 4.34 p<.01 
*Student percents total more than 100 because textbooks can be used for multiple purposes in a 
lesson. 
 

Table 2 shows ways that students used both CMP and non-CMP textbooks. The students’ 
most frequent use of both the CMP and non-CMP texts was to look for problems in the text. 
These problems generally formed the basis for their instruction or their practice. This type of 
usage occurred in almost equal frequencies in the CMP lessons (63%) and the non-CMP-lessons 
(64%).  We have shown elsewhere (Cai et al., 2009), however, that the overall cognitive level of 
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the tasks posed by the CMP teachers was significantly higher than that of the tasks posed by non-
CMP teachers.  Therefore, opportunities to think conceptually and make connections were much 
different in the CMP classes, even though the frequency of use of problems from the text was the 
same in both types of mathematics classes. 

The investigation of the other three purposes for which students used their textbooks revealed 
large and significant differences between the CMP and non-CMP classrooms. In particular, the 
CMP students in our study used their textbooks to review diagrams, charts or pictures in 28% of 
the CMP lessons we observed, while the non-CMP students used the textbook for this purpose in 
only 1% of the lessons. However, the percents were reversed when students used their textbooks 
to review examples or find formulae (5% of the CMP lessons and 16% of the non-CMP lessons). 
Also, the students read their textbooks in about half of the CMP lessons we observed, but 
students read textbooks in only about 14% of the non-CMP lessons.  

These last three findings may be due, in part, to the fact that the CMP curriculum contains 
more written text and more diagrams and charts than the non-CMP curricula. It may also be due, 
in part, to the fact that teachers of non-CMP curricula presented and discussed the textbook’s 
worked-out examples (or ones like it) much more often than teachers of the CMP curriculum 
(17% of CMP lessons and 47% of non-CMP lessons). This may have helped obviate the need for 
the non-CMP students to read the text. These two arguments are especially compelling when one 
considers that the brunt of the learning from non-CMP texts is often based on the worked-out 
examples and the subsequent practice problems. This is in stark contrast to CMP texts, in which 
the burden of learning usually resides in the students’ own work on un-worked problems in the 
text, many of which are integrally dependent for their solutions on accompanying diagrams, 
charts, and pictures. Similar arguments can be made to explain why non-CMP students did not 
use their textbooks in 16% of the lessons we observed, but CMP students failed to use the their 
textbooks in only 3% of the lessons. 
Teachers' Use of Conceptually- and Procedurally-Focused Instruction 

CMP can be characterized as a problem-based curriculum. The focus is more on conceptual 
understanding than on procedural knowledge. It is expected that students will learn algorithms 
and master basic skills as they engage in explorations of worthwhile problems. On the other 
hand, the non-CMP curricula in our study include extensive sets of practice exercises, and the 
focus is more on procedural knowledge and basic skills than on conceptual understanding. Take 
the introduction to equation solving as an example, in the Non-CMP curriculum, equation 
solving was introduced symbolically by using additive property (add or subtract the same 
quantity on both side of the equation, the equality holds) and multiplicative property (multiple or 
divide a non-zero quantity on both sides of an equation, the equality holds).  On the other hand, 
in the CMP curriculum, real-life contexts are used to help students understand the meaning of 
each step of the equation solving, as shown in Table 3 below (Nie, Cai, & Moyer, 2009). 
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Table 3.  Introduction of Equation Solving in CMP 

Thinking Manipulating the Symbol 

“I want to buy a CD-ROM drive that costs $195.  To pay for the 
drive on the installment plan, I must pay $30 down and $15 a 
month.”  

195 = 30 + 15N 

“After I pay the $30 down payment, I can subtract this from the 
cost.  To keep the sides of the equation equal, I must subtract 30 
from both sides  

195 – 30 = 30 – 30 + 15N 

“I now owe $165 which I will pay in monthly installments of 
$15.”  165 = 15N 

“I need to separate $165 into payments of $15. This means I 
need to divide it by 15.  To keep the sides of the equation equal, I 
must divide both sides by 15.”   
“There are 11 groups of $15 in $165, so it will take 11 months.”  11 = N 

 

Table 4. Sample Conceptual and Procedural Scales in the LieCal Observation Instrument 
 
1. Example of Measuring Conceptual Understanding 

The teacher’s questioning strategies were likely to enhance the development of student 
conceptual understanding/problem solving (e.g., emphasized higher order questions, 
appropriately used “wait time,” identified prior conceptions and misconceptions). 

1 2 3 4 5 
Does not ask 

questions 
Asks low level 

questions or 
answers his/her 
own questions 

Asks low level 
questions that lead 

to a dialogue 
between teacher 

and students  

Asks high level 
questions but does 

not pursue the 
answers 

Asks high level 
questions, and 
pursues their 

answers 

 
2. Example of Measuring Procedural Knowledge 

The teacher worked out examples to demonstrate the steps of a mathematical procedure or 
solution process. 

1 2 3 4 5 
Not at all  

 
 Moderate 

Demonstration  
 Extensive 

Demonstration 
     

 

 
The classroom observation instrument of the LieCal Project includes twenty-one 5-point 

Likert scale questions, which are designed to rate the nature and quality of instruction in a lesson. 
A factor analysis of the 21 questions revealed that five of the 21 questions rate the extent to 
which the lesson fosters students’ conceptual understanding of mathematical knowledge, and 
another five questions rate the extent to which the lesson fosters students’ ability to carry out 
mathematical procedures. The first question in Table 4 is an example of the type of Likert scale 
that was used to rate the likelihood that the teachers’ instruction would help develop students’ 
conceptual understanding of math knowledge. The second question in Table 4 is a detailed 

15
15

15
165 N

=
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example of the type of Likert scale that was used to rate the likelihood that the teachers’ 
instruction would help develop students’ procedural knowledge. 

The mean of the sum of the scores on the five questions that measure the likelihood that the 
teachers’ instruction would help develop students’ conceptual knowledge was 17.99 for CMP 
classes and 12.33 for non-CMP classes, which is statistically significantly higher for CMP 
classrooms than for non-CMP classrooms: t(193)=10.05, p<.0001. 

The mean of the sum of the scores on the five questions that measure the likelihood that the 
teachers’ instruction would help develop students’ procedural knowledge was 14.70 for CMP 
classes and 17.16 for non-CMP classes, which is statistically significantly higher for CMP 
classrooms than for non-CMP classrooms: t(193)=4.25, p<.0001. 

 
Conclusion 

In this article, we discuss differences between the mathematics instruction of CMP and non-
CMP teachers in the LieCal project. There are three aspects of instruction that our classroom 
observations showed were strongly and differently related to the type of curriculum that teachers 
were using. These three aspects relate to the teachers' use of: (1) group and individual work, (2) 
written narratives and worked-out examples, and (3) conceptually- and procedurally-focused 
instruction. This article shows that the use of different types of curriculum materials in the 
LieCal project corresponds to major differences in teachers’ classroom practice as it relates to 
these three aspects of instruction. 

Based on findings from the LieCal Project, this article shows that the use of CMP and non-
CMP curriculum materials can impact teachers’ classroom practice in very different ways. 
Regarding group versus individual learning in classroom instruction, CMP teachers dedicate 
more time to group learning than non-CMP teachers, while non-CMP teachers use more 
individual learning. Because students in CMP classrooms more often work in small groups to 
perform cognitively demanding tasks, it is likely that CMP students are given more opportunities 
to interact and digest math concepts and ideas than non-CMP students. On the other hand, 
students in non-CMP classrooms have more opportunities to practice basic mathematical skills 
individually. Our classroom observations also revealed that teachers who use the CMP 
curriculum provide more opportunities for students to use diagrams, charts, and pictures than 
non-CMP teachers. For non-CMP lessons, both students and teachers are much more likely to 
use the curriculum materials to study worked-out examples. Finally, CMP classroom instruction 
is more likely to enhance students’ conceptual understanding of mathematical knowledge while 
non-CMP classroom instruction focuses more frequently on mathematical procedures.  

The data in our study do not establish a causal relationship between the different instructional 
practices we analyzed and the use of CMP and non-CMP curricula. Nonetheless, the differences 
that we highlighted between CMP and non-CMP teachers' classroom practices are closely related 
to the nature of CMP and non-CMP curriculum materials. Thus, there is good reason to believe 
that the choice of curriculum materials by a school or district is an important decision that should 
be made with the utmost care. When all is said and done, our study confirms that teachers tend to 
teach their lessons in ways that are compatible with the nature of the texts they use. Therefore, 
deliberate and close attention should be paid to the compatibility of potential curricula with the 
teachers' beliefs about the nature of mathematics instruction, and with the goals they have for 
their students.  
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Endnotes 
Authors' Note: The research reported in this paper is part of a large project, Longitudinal 
Investigation of the Effect of Curriculum on Algebra Learning (LieCal Project). LieCal Project is 
supported by a grant from the National Science Foundation (ESI-0454739). Any opinions 
expressed herein are those of the authors and do not necessarily represent the views of the 
National Science Foundation. Assistance provided by Tony Freedman and Bikai Nie is greatly 
appreciated. 
1In developing the instrument, we adopted ideas from the QUASAR project, the Middle School 
Mathematics Study, the Evaluation Study of Mathematics in Context, and from Horizon 
Research, Inc. 
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Recent studies of procedural flexibility have identified promising instructional techniques can be 
effective in promoting flexibility with solving equations, but they have done so within controlled 
environments and using brief interventions. We describe results from a three-week course in 
algebra, in which these techniques were regularly employed as part of daily instruction. Written 
assessments and interviews of students who struggle with algebra suggest accuracy, rather than 
efficiency, is often a driving force when choosing solution methods. Prior instruction 
emphasizing one method appeared to inhibit flexibility when accuracy was not a concern, but 
students demonstrated flexibility for less familiar problems. 
 

Introduction 
For decades, researchers in the fields of mathematics education and cognitive psychology 

have been interested in the relationship between procedural and conceptual knowledge (e.g., 
Byrnes & Wasik, 1991; Hiebert & Lefevre, 1986; Rittle-Johnson, Siegler, & Alibali, 2001). A 
number of questions have been asked about how these two types of knowledge are linked, 
including which develops first and whether one is necessary for the other. However, recent 
arguments have emerged that challenge how the two types are defined and measured (Baroody, 
Feil, & Johnson, 2007; Newton, 2008; Star, 2005, 2007). In particular, Star (2005, 2007) argued 
that procedural knowledge is often conceived of and measured in ways that that are consistent 
with rote memorization. Yet, procedural knowledge can also be deep, as it must be in order to 
flexibly apply solution methods. The current study adds to the literature on procedural flexibility 
by exploring its development in a real classroom, with students who struggle with algebra. 
Flexibility 

Verschaffel, Luwel, Torbeyns, and Van Dooren (2007) suggest that researchers have 
conceptualized flexibility in a variety of ways. Some use the term to refer to a person’s ease in 
switching between solution methods, whereas others also include a person’s tendency to select 
the most appropriate method in a given situation. In the current study we take the latter 
perspective, suggesting that flexibility develops slowly from knowledge of multiple procedures 
to the adaptive use of them  (Blöte, Van der Burg, & Klein, 2001; Star & Seifert, 2006). 

A number of recent studies support the notion of flexibility developing on such a continuum 
(e.g. Blöte et al., 2001; Star & Rittle-Johnson, 2008). Blöte and colleagues showed that second 
grade students can learn multiple ways of solving addition and subtraction problems, but the 
tendency to use alternative methods lags behind their knowledge and preference for them (Blöte 
et al., 2001). On the other end of the continuum, Star and Newton (under review) demonstrated 
that experts show knowledge of, frequent use of, and strong preferences for elegant and efficient 
solutions. The experts were in surprising agreement about which methods were better, even if 
they did not originally choose the method. When explaining why, they consistently pointed to 
structural characteristics of the problem (e.g., a certain number is divisible by another) and 
preferred methods that were more efficient, made use of important mathematical ideas, and 
reduced the chance for error. 
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Research by Rittle-Johnson and Star (2007) demonstrated that students who are first learning 
algebra can gain conceptual knowledge, procedural knowledge, and flexibility simultaneously. 
By comparing and contrasting two different solutions to the same problem, students in a 
treatment group (n = 36) gained more on measures of flexibility and procedural knowledge 
compared to a control group (n = 34) that examined the same two methods but with isomorphic 
problems. Given the brief intervention used by Rittle-Johnson and Star (4 instructional days), the 
significant gains in favor of the treatment group in flexibility are encouraging, but it is less clear 
whether this intervention can yield similar results over more extended periods of instructional 
time. 

Klein, Beishuizen, and Treffers (1998) demonstrated positive effects of flexibility instruction 
over time in their study of 275 second graders. These researchers compared the impact of 
arithmetic instruction that promoted flexibility from the beginning, to instruction that 
emphasized procedural skill prior to promoting flexibility. Both groups of students demonstrated 
flexibility at posttest; however, promoting flexibility from the beginning of instruction seemed to 
be more effective. Students who learned flexibility and skill simultaneously outperformed those 
who focused first on skill alone. Furthermore, their findings suggest that early exposure to 
multiple solution methods does not hinder procedural competence; the groups performed 
similarly on a skills assessment.  

Star and Rittle-Johnson (2008) also demonstrated that students can learn both skill and 
flexibility when they compared direct instruction to a more discovery-oriented approach. In their 
study of 132 rising seventh graders learning to solve linear equations, they found that the 
different types of instruction had similar effects on accuracy of equation solving but differential 
effects on flexibility. Namely, prompting students to solve problems in more than one way was 
most effective for increasing students’ use of multiple methods, whereas direct demonstration of 
efficient methods was most effective at increasing students’ use of efficient methods. Although 
the treatments impacted flexibility differently in terms of use, they were similarly effective in 
increasing flexibility in terms of knowledge (i.e., knowing that multiple methods exist and that 
some are more efficient than others.) This distinction is important and lends support to the notion 
that flexibility develops on a continuum.  
Current Study 

The current study builds on prior research on flexibility while addressing some of the 
limitations of that research. First of all, few studies at the secondary level have examined 
flexibility in real classroom settings, which often include pressures to cover large amounts of 
material in a limited amount of time, grading systems that emphasize accuracy over efficiency, 
and a wide range of student abilities. Second, few studies have examined how flexibility might 
develop for students who struggle with mathematics. Klein et al. (1998) reported that weaker 
second grade students were not confused by being introduced to multiple ways of solving 
problems, but it is unclear whether or not this finding would hold for weak algebra students, who 
may have struggled for years and built up a number of misconceptions that could impede 
learning. Finally, most studies have relied exclusively on written assessments to understand 
flexibility. Research suggests that knowledge of efficient procedures sometimes precedes the use 
of them (Blöte et al., 2001; Star & Rittle-Johnson, 2008), and interviewing students may help 
researchers understand why. The current study addresses each of these limitations. 

Three research questions guide the current study. How do knowledge and use of multiple 
methods change during an algebra course focused on promoting flexibility? How does prior 
instruction in algebra impact students’ flexible use of solution methods? How does prior 
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knowledge of mathematics impact students’ flexible use of solution methods in algebra? These 
questions are explored in the context of a three-week remedial/review algebra course offered in 
the summer. 

 
Method 

Participants 
Two boys and four girls from a private school participated in the study. Xavier, Ricardo, and 

Nicole were all new to the school and were entering the ninth grade. A placement exam in 
algebra determined their need for this course. Annemarie and Naomi were entering tenth grade, 
and Yvonne was entering eleventh grade; these three students enrolled in the summer course at 
the recommendation of their prior math teacher. Performance during the course indicated that 
Nicole and Annemarie struggled most with the content, whereas Yvonne and Naomi struggled 
least. All students had previously taken a first course in algebra.  
Measures 

Algebra exam. The final exam for the course served as both a pre-test and a post-test. It 
included 55 items, including linear and quadratic equations, systems of equations, graphing, and 
pre-requisite skills for quadratics such as factoring and simplifying with exponents and roots. 
Some of the items were designed such that the traditional approach might not be the easiest or 
most efficient.  

Intermediate assessments. Intermediate assessments included homework, quizzes, and tests. 
Unlike the final exam, intermediate assessments sometimes prompted students to solve problems 
in more than one way, in order to determine whether or not they had knowledge of solution 
methods that were different than the ones they chose to use on their own, without being 
prompted. When prompted, the students were asked to indicate which method they thought was 
better by placing a star by that method. 

Interviews. Students were interviewed three times during the course to assess their flexibility 
and attitudes about flexibility. The pre-interview and post-interview were identical, and they 
prompted students to solve problems in more than one way or to evaluate two methods of solving 
or graphing. The students were also asked about their views on learning more than one way of 
solving problems. An intermediate interview asked about the students’ particular solutions from 
the first algebra test in the course. It also asked about their views on learning to solve problems 
in more than one way.  
Procedure 

The three-week summer course included 14 instructional days plus one day devoted to the 
final exam. The class met Monday through Friday each week for two hours in the afternoon. The 
first week focused primarily on solving and graphing linear equations and systems of equations. 
The second week focused primarily on simplifying with exponents and radicals, as well as 
factoring. The final week continued with factoring and then focused on solving and graphing 
quadratic equations. A quiz and a test were administered for each of these units, and homework 
was assigned nearly every evening. Students were interviewed before the course began, 
immediately following the first test, and after the final exam. The pretest was administered on 
the first day of class, and the posttest was administered after the last day of class. 

A typical lesson involved comparing and contrasting pre-worked examples of problems 
relevant to the day’s topic. Having students contrast cases before discussing them may serve to 
deepen conceptual understanding by illuminating important features (Schwartz & Bransford, 
1998). The features of the compared problems varied in such a way that one method might be 
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preferred in some cases, but another method might be preferred in other cases. For example, 
when solving equations with parentheses, students might prefer to distribute the number in front 
of the parentheses when it is a whole number but they might prefer to multiply by the reciprocal 
first when the number is a fraction. These types of variations were meant to draw students’ 
attentions to the structure of the equations rather than the superficial characteristics (e.g., the 
equation includes parentheses). However, students were not pressed to use a particular method. 
Instead, they discussed which methods they preferred, why they preferred them, and under what 
circumstances. 

 
Results 

Knowledge and Use of Multiple Methods 
When students were familiar with a particular solution method for a problem type, 

knowledge of alternate methods preceded use, confirming the findings of prior studies (Blöte et 
al., 2001; Star & Rittle-Johnson, 2008). However, students were more likely to use alternatives 
to the general approach with problems that posed difficulty, such as those containing fractions. 
As an illustration, on Test I all six students solved 7(n + 2) = 49 by distributing the 7 as a first 
step. On the same test, students were asked to solve -5(7x – 16) = 45 in two different ways, and 
all six showed knowledge of how to divide by -5 as a first step. Alternatively, three of the 
students solved ½(x – 15) = -4 by distributing first, and the other three multiplied both sides of 
the equation by 2. As Xavier noted for this problem, “I think since there is a fraction, it would be 
easier just to use the reciprocal, in this case, instead of just working out the whole distributive 
property” (Xavier, intermediate interview). 

When students were equally familiar with two different methods, two common reasons were 
cited for choosing a particular method in a given situation: efficiency and problem structure. 
With respect to the former, when graphing linear equations on Test I, Naomi and Yvonne both 
successfully used the slope-intercept method rather than plotting points. Although Naomi’s 
intermediate interview revealed she had knowledge of both methods, she said she used the slope-
intercept method “because it’s faster.” Likewise, Yvonne said her reason for not choosing to plot 
points was that “there is more involved, and it takes longer.” On the other hand, it was quite 
typical that students noted the structure of the equation when providing a rationale for their 
graphing method. Although Ricardo chose to plot points when “the problem is really easy”, such 
as for x + y = 10, he switched methods when the structure of the equation was more conducive to 
a different method. For y = ½x + 3, he said, “Since it already had the slope and the y-intercept, I 
just found the y-intercept and went up from there, using the slope” (Ricardo, intermediate 
interview). Similarly, Xavier’s rationale for the slope-intercept method was that “you know 
where to start, and from there you just to use the rise over run….it is ready to go” (Xavier, 
intermediate interview). And Nicole, who admittedly struggled with all graphing methods, 
successfully used the slope-intercept method for the same problem “because it was basically in 
that form” (Nicole, intermediate interview). 

When solving systems of equations, students also attended to the structure of the problem in 
selecting strategies. At pretest, none of the six students attempted to solve the systems of 
equations, indicating weak or no knowledge of them. On Test I the students demonstrated both 
knowledge and use of two methods for solving linear systems, and their reason for switching 
between methods was often focused on the structure of the equations. For example, when one of 
the equations was already solved for y, students generally chose to substitute its equivalent 
expression into the remaining equation. As Xavier stated in his intermediate interview, “it’s right 
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there, what y equals, so you just substitute.” Yvonne, Ricardo, and Naomi gave similar reasons 
for using substitution for this same problem. Focusing on characteristics of the equations was 
consistent with the experts for these types of problems (Star & Newton, under review). 

For solving quadratic equations, students concentrated on a mix of efficiency and problem 
structure at posttest but not at pretest. At pretest, the students showed weak or moderate 
knowledge of quadratics, and only Naomi alluded to efficiency as a reason for choosing a 
particular method. During the course, students demonstrated knowledge of all three instructed 
methods for solving quadratics, but only Yvonne, Nicole, and Naomi attempted to use all three 
on the posttest. Most students cited efficiency as a rationale for a particular method, but some 
students mentioned structure. For example, Xavier stated in his post interview that one equation 
had a “perfect square” and another was “pretty easy to factor, it’s already in a factorable form.” 
Presumably, Xavier was referring to the fact that the equation was already set equal to zero. 
Nicole, who often preferred the quadratic formula because she admittedly struggled with 
factoring, said in her post-interview that her reason for preferring factoring for a particular 
problem was “because there’s no coefficient.” 
Impact of Prior Instruction  

At times, prior instruction seemed to limit the development of flexibility. It seemed students 
were less likely to use alternate methods when they were familiar with one that worked for a 
particular problem type, especially if they were comfortable with it. The most prominent 
example concerned linear equations of the type a(x+b) = c where a was a whole number. The 
course attempted to help students develop flexibility for solving problems of this type, presenting 
them with an alternate to “distribute first” when c was divisible by a (e.g., use the “divide first” 
method). Several students began the study having already developed automaticity with the 
“distribute first” method, and it appeared the exposure was so extensive that it negatively 
influenced flexibility for these problems. 

Students’ interview responses provide insight as to why knowledge of the “divide first” 
method did not lead consistently to its use. In her intermediate interview, Yvonne indicated that 
she still used the familiar “distribute first” method because “it was like instinct.” Annemarie’s 
and Ricardo’s interview responses show a similar pattern. At the intermediate interview, 
Annemarie explained that while she knew how to use the alternative “divide first” method, she 
had still distributed first because “It’s just the way I was taught.” Similarly, Ricardo indicated 
that he still preferred to use “distribute first” because he was “used to it.” 

Unlike the other students, Naomi had prior instruction that promoted alternate methods for 
solving linear equations, at least for those involving fractions. In particular, she stated that one of 
her teachers taught her to “clear the denominator” when solving equations with fractions. In 
some cases, this strategy led to more efficient methods than the general approach, but not always. 
For example, at pretest she solved ⅔w + 3 = 10 by first multiplying all terms by 3, obtaining 2w 
+ 9 = 30 as the next step. For the same problem at posttest, Naomi used the more traditional first 
step of subtracting 3 from both sides but then again cleared the denominator by multiplying by 3. 
In both cases, her methods were less efficient than the typical method of subtracting 3 and 
multiplying by the reciprocal. Although she did demonstrate knowledge and use of efficient 
algorithms during the course, her methods were clearly influenced by prior instruction that did 
not seem to emphasize efficiency. Instead, it seemed to be focused on minimizing error. 
Impact of Prior Knowledge 

Weak knowledge of algebra in some students interfered with their ability to implement and 
attend to efficient methods for certain problem types. For example, students in the class learned 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

215 

two ways to simplify multiplied exponential expressions with the same base (e.g., a 3 × a 4 = a7). 
One method was to expand all the terms and then find a single term that was equivalent to the 
expansion (i.e., a × a × a × a × a × a × a = a7). The second method was to add exponents and 
keep the base the same. In this case the general algorithm, adding exponents, is also the more 
efficient one. However, some students were not comfortable with that method and chose to 
expand the terms in order to simplify the expression. When simplifying more complicated 
expressions, some students still used the expansion method. For example, Annemarie seemed to 
use the method to verify that exponents could be multiplied when raising a power to a power. 
Although Annemarie’s method was inefficient, it did allow her to solve the problem correctly. 

Although weak knowledge sometimes led students to use inefficient methods, other times it 
led to efficient ones. For example, when choosing to not to distribute on equations with fractions, 
Annemarie said, “Distributing fractions kind of scare me. Distributing them, I’m not good with 
fractions so I was afraid that if I distributed it, I would distribute the fractions wrong” 
(Annemarie, intermediate interview). 

In fact, many of the students changed their methods when fractions were involved. For 
example, Ricardo expressed a preference for distributing in most cases but felt differently when 
6/5 was in front of the parentheses. In this case, he preferred to multiply by the reciprocal of 6/5 
“because this one was totally confusing….it was getting confusing multiplying 6/5 by this. It was 
easier just to get rid of it” (Ricardo, intermediate interview). Experts who took the same test were 
also concerned with avoiding fractions or any other arithmetic that may lead to errors. However, 
accuracy was not the dominant reason for choosing solution methods. For the experts, efficiency 
seemed to be the driving force (Star & Newton, under review). 

Post-interviews support the notion that students who struggle with algebra are often more 
concerned with accuracy rather than efficiency. This focus may partially explain why knowledge 
of efficient methods sometimes preceded the use of them; if the method first learned by students 
was not problematic, they seemed less likely to try a different method. But despite not always 
choosing to use alternate methods, students in this study still viewed their knowledge of them as 
advantageous. Nicole suggested that knowing an alternate method was good “because in case 
you get stuck doing one way, you can always have a backup” (Nicole, post-interview). Ricardo, 
Xavier, and Yvonne had similar responses. Xavier and Yvonne added that being able to check 
your work was another advantage of having an alternate way to solve a problem. Only Naomi 
alluded to efficiency as an advantage. She said in her post interview, “Well knowing more than 
one way makes it easier to solve an equation just because one way might make solving it a lot 
harder, so if you know a different way, you could do it faster.” 

When asked about disadvantages, the students were again concerned with accuracy. In their 
post-interviews, the same possible disadvantage was offered by all six students. As Xavier stated, 
“Sometimes you could get the two methods mixed up.” However, it was somewhat surprising 
that five of the six students insisted this was simply a possibility for someone else. As illustrated 
by Naomi, “People could do that, but I don’t tend to get methods confused. Either I get it 
completely right, or I forget the method all together.” Only Annemarie admitted that she might 
personally “mix up different methods.” At the same time, however, she also expressed that the 
first method she learned did not always make sense to her. In those cases, learning a new method 
was particularly helpful. In the case of radicals, she stated that the one method her teacher taught 
was one she “really didn’t understand and when you showed me the other method I was like, 
wow this is easier….I could understand it more and I always hated radicals, but now I am 
starting to get them” (Annemarie, post-interview). 
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Discussion 
Being able to flexibly solve problems is one of the hallmarks of procedural fluency 

(Kilpatrick, Swafford, & Findell, 2001), and recent attention to flexibility in the research 
literature has revealed some interesting findings about its development. The current study 
confirms and adds to those findings in several ways. The purpose of the study was to explore the 
development of flexibility with algebra within a real classroom setting and with students who 
struggle with algebra. 

Findings confirm that students tend to acquire knowledge of alternate methods before they 
tend to use them (Blöte et al., 2001; Star & Rittle-Johnson, 2008), particularly if they have 
gained automaticity with one particular method. These results are consistent with Klein et al. 
(1998), who found that second graders who focused on skill before flexibility were less flexible 
that ones who focused on both at the same time. 

When students encountered problems that were especially difficult or confusing for them 
(such as those containing fractions), they were more likely to use a new method for that problem. 
This finding is somewhat counter-intuitive, since one might expect students who are confused to 
prefer using one method only in order to minimize confusion. Yet, students in this study seemed 
grateful to have a “backup” method. In general, accuracy was often a driving force for deciding 
how to solve problems. This finding differs from experts who were asked to solve the same 
problems (Star & Newton, under review). For experts, efficiency (e.g., being fast, less 
complicated, easier to compute mentally) was a driving force, and salient features of the problem 
were cited as reasons for choosing one method over another. 

When two methods were equally familiar and comfortable to students, they were more likely 
to cite efficiency and/or structure as reasons for choosing a method. Most students demonstrated 
little or no knowledge of graphing, solving systems of equations, and solving quadratic equations 
at pretest but, during interviews, consistently suggested they used a particular method because of 
the way the problem was posed to them or because a particular method was faster/more efficient. 
When students were not concerned with accuracy, their rationales for choosing methods were 
reminiscent of experts. 

Taken together, findings of this study have implications for algebra classrooms. Comparing 
and contrasting methods for solving algebra problems seems to enable struggling students to 
solve problems they may not otherwise be able to. Furthermore, prolonged focus on one 
particular method for a problem type may inhibit flexibility with that type (Klein et al., 1998). 
The number of cases is limited in this study, but assessments and interviews suggest positive 
outcomes of instruction focused on flexibility. Although three weeks of instruction extends the 
time of prior studies, research is needed on how flexibility can be developed in a semester or 
year-long algebra course. 
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This is a report of a study on high school Mexican students aged 16 and 17. The study seeks to 
unravel the role tasks when solved by CAS. Algebraic linearity epistemological obstacle features 
prominently in the tasks that were given to the students. The results showed that students were 
able to overcome the obstacle relating through the well designed task using CAS. 
 

Introduction 
For almost 3 decades, Researchers in mathematics education have reported that many 

secondary school students make algebraic syntax errors when solving problems in a pencil and 
paper environment. The reasons when students make such mistakes has been well documented 
such as (Matz, 1980; Booth, 1984). 

Recent studies, (e.g., Kieran and Drijvers, 2006), on the use of technology, especially CAS, 
on the teaching and learning of algebra has indicated that students not only learn the syntax of 
algebra, but also reflect upon the underlying concepts involved in the symbolic manipulation. 
The use of technology in teaching change the kind of students-teacher interaction in the class so 
interesting tasks that students would enjoy solving has to be given (Kieran, 2007, p. 728). 
Technology on its own does not impact knowledge on the students, rather tasks whose solutions 
are interesting to students and rich in mathematics concepts should be designed and given to 
students. What then are the types of tasks that should be given to students when they are allowed 
to use technology to solve them? High school students achieve to overcome the algebraic 
linearity epistemological obstacle using technology in teaching? (Adapted from Monaghan & 
Pierce, 2004, p. 179.) 

The role of solving tasks with the help of technology by the students of high school in 
Mexico is hereby documented. The aim of the study is to answer the question: “What is the 
influence of carefully drawn tasks such that students overcome the algebraic linearity 
epistemological obstacles when the tasks are solved with CAS?” 

 
Conceptual Framework 

Epistemological Obstacle 
The notion of epistemological obstacle arose in Bachelard (1948/2007) when he states: 

“When a scientific progress is being researched upon the scientific knowledge must be 
formulated in terms of obstacles, which are neither external nor due to the weakness of the 
senses, but rather in the very act of knowing “(p. 15). In education there have been many 
theoretical contributions to shed lights on the various types of obstacles. For example, Cornu 
(1991) affirmed that an epistemological obstacle is of the same nature as knowledge itself, while 
Brousseau (2002) notes that the origin of epistemological obstacles are intrinsic difficulties 
inherent in knowledge (p. 87). 

According to Brousseau, an epistemological obstacle is an element of knowledge, which 
enables students to solve correctly mathematical problems of certain context. In this way the 
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obstacle is established in the person but stops to be effective in solving problems of different 
context. 

In mathematics education, overcoming an epistemological obstacle necessarily implies the 
occurrence of various interactions between a student and a medium (le milieu, which in the 
opinion of Brousseau), aims at giving students a task that eliminates any knowledge which acts 
as an obstacle (Brousseau, 2002). In this sense, Kieran, Guzmán, Boileau, Tanguay and Drijvers 
(2008) argue that technology can act as an agent that destabilizes some kind of knowledge in 
students, which acts as an obstacle. 
The Role of Task and Learning in Technology Environments 

Tasks are primarily problems. In the process of solving them, it is important that the people 
(students and the teacher) focus attention on the underlying mathematical concepts in the tasks. 
Franke, Kazemi, and Battey, (2007, p. 234) highlights the design of relevant mathematical 
problems which allow an exchange of ideas that lead to conjecture which are easily verified by 
students using technological tools in solve the problems. 

The instrumentalist approach is one conceptual framework rich in theoretical elements to 
analyze processes of teaching and learning in technological environments (Drijvers and Trouche, 
2008). Under this approach, the integration of technological tools in the classroom is seen as 
complex because it affects different aspects of education (Drijvers, Doorman, and Boon 
Gisbergen, 2008b) such as what didactic settings should be used in the classroom, How it should 
be used and the kind of tasks that should be posed to students to arise their interest in solving 
them. 

To Drijvers and Trouche (2008, p. 368) an artifact is useless when a potential user does not 
know what kind of tasks that can be solved with it. The artifact suffers from a cognitive 
processing in the user when he is aware that the use of the devise can be extended (mental 
scheme) to solve other problems. When a user has developed various ways of using an artifact, 
an artifact becomes part of a useful and valuable instrument that mediate his mathematical 
activity. According to Drijvers and Trouche, before an artifact can becomes an instrument 
(instrumental genesis), a user needs to develop mental schemes which involve the ability to use 
the artifact properly and the knowledge of the circumstances under which the device is useful. 
More precisely, in the instrumentalist approach an artifact is an object (physical or symbolic), 
while an instrument is both the object and the mental scheme. 

The instrumentalist approach in education led researchers to define three (closely related) 
concepts to explain how students learn meaningfully through solving tasks by technological 
tools. The concepts are: task, technique and theory, known in research as TTT (Artigue, 2002; 
Lagrange, 2002 & 2003). Technical means the manner in which tasks are solved. This manner 
does not have to necessarily be quasi-type algorithm or algorithm (Chevallard, 1999) since the 
use of a technique involves the conceptual knowledge of it; that is know why it is effective or not 
in solving tasks. Technique is a complex set of reasoning and routine work (Artigue, 2002). 
Lagrange (2002, p.163) states that tasks are after all, problems. Techniques play a pragmatic role 
in that the allow results to be generated. They also play an epistemic role, helping users of 
technology to understand the concepts involved in the task; they help in the generation of theory 
and serve as a source of further or emergent questions. Thus, resolution of tasks by students 
involves the development of theory related to the tasks. 
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The Study 
Methodology 

The research focuses on nine students (aged 16 to 17) of a Mexican high school. Given their 
academic background having studied three courses of algebra in the second, third grade of 
secondary and in the first degree of high school in line with the existing Mexican syllabus, 
although in the traditional environments using paper and pencil, we can guess that they have 
imbibed algebraic epistemological obstacle of linearity. The students worked in groups each of 
which was made up of three students. Each of the students was given a printed copy of the tasks 
and a TI-voyage 200 calculator. 

The applied tasks were designed taking into account persistent and recurring algebraic errors 
common to students of this educational level. The classical error, � 

a2 + b2 = a2 + b2

, due to the 
linear extrapolation from the rule � 

a2 × b2 = a2 × b2

. In general, each of the tasks given to the 
students has two possible solutions. Two errors or mistakes are committed in solving them: one 
of them is obvious (e.g. substitution error), while the other results from linear extrapolation from 
an algebraic rule. 

The activities were designed to allow students reflect on algebraic errors related with linear 
extrapolation before and after using CAS. Thus, the purpose of the activities was to inquire what 
arguments students give in defense of their responses, before and after the use of CAS (calculator 
TI-voyage 200), to solve the tasks.  
Structure of the Activities 

a) Formulation of the problem;  
b) Possible solutions to the problem;  
c) Question about what the correct solution is;  
d) Justifying their answer;  
e) Use of the calculator and implementation of some its specific commands;  
f) Reflection on the results given by the calculator;  
g) Explanation on the results given by the calculator;  
h) Reflections on the processes of the proposed solutions and student’s initial response; and 
i) Questions about what the correct solution to the problem proposed is. 
The activity used in the study is herby reported. Due to space, only part of the data is 

discussed. 
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Figure 1. Exploration of the linearity epistemological obstacle (� 

a2 + b2 = a2 + b2

). 
 

Data Analysis and Discussion of Results 
Before Using CAS Technology  

According to the students’ justifications before using the calculator to answer the first 
question of the activity (Figure 2), it is noted that they considered 

� 

a + b = a + b

 a valid 
equality. While all students identified the error or omission in calculating B, this did not lead 
them to automatically choose A as correct. Importantly, it was the separation of the square root 
� 

22 + 32 = 22 + 32

 of A which led to the discussion as to whether such separation was correct or 
not. Below is part of the discussion among team 2, with regard to this separation of the square 
root. 
S1: But here [referring to the separation of the square root

� 

22 + 32 = 22 + 32

]. Is it separable? I 
can remember it should not be separated. It goes with everything. 
S2: It can be in two forms. 
S1: Well yes. It’s the same result.  

At the end of first part of the activity (paper and pencil environment), all the three groups 
agreed that the correct solution was A. They argued that separating the sum of the square root 
simplifies the calculations. In particular, group 1 said that this allows them to rationalize (Figure 
2).  
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Figure 2. The response of the group 1 to the first question of the activity before using the 

calculator. 
 
Figure 3 shows the written record of the response of group 3 to the first question. It notes that 

the team identified the error or omission in calculating B, not the error in calculating A. In their 
discussion, it appears that they justified the separation of the square root, arguing that this will 
simplify the calculations. Here’s part of their discussion: 
S1: I would say no to this [referring to the separation of the square root]. This is not done when 
a formula is applied [showing the error] [...] It is not separable. Not in this kind. 
S2: This can be [referring to A]. As you said [pointing to student S1] here the square root is 
separated [...] It is not altered. 
S1: Just a little [...] 
S3: One more step. 
S1: Less 
S2: Avoid a step. 
 

 
Figure 3. The answer of group 3 before using the calculator. 

 
After Using CAS Technology 

After exploring equality 
� 

a + b = a + b

 (Figure 4) using the calculator substituting with 
some specific numerical values for a and b as chosen by the students. The results obtained by the 
students, allowed them to reflect on their initial response and thus change their mind. 
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Figure 4. Part of the activity where calculator was asked to be used. 

 
The exploration of � 

a + b = a + b

 by students, enabled most of them develop techniques 
that led to choose the correct answer to the problem (Group 3). This group developed strategies 
of solving the tasks, which are unlikely to have been developed in the paper and pencil 
environment. Although these students continued to use only natural numbers, they explored the 
equality using whole numbers (Figure 5). 

 

 
Figure 5. Exploration of equality by group 3. 

 
After the equality 

� 

a + b = a + b

 has been explored using CAS, most students were able to 
solve the problem correctly. Some of them were even able to affirmed that the equality is true 
only when a or b is zero. Affirmations as the above are unlikely to be made by students of this 
level if they solve tasks in the paper and pencil environments. 
 

Conclusions and Final Reflections 
It can be noted, in the study, that tasks designed allowed students to reflect on their solutions. 

Their reflection can be located on three crucial moments in the process of their solution: a) in 
paper and pencil environment, b) using CAS technology to verify their conjectures and c) in their 
answer to the questions under each task. Interestingly, the results given by the calculator 
motivated the students to discuss the veracity of their first sets answers which were based on 
prior their knowledge in the paper and pencil learning environments. The exploration of equality 
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� 

a + b = a + b

 substituting a and b with certain numbers helped students to raise conjectures 
which are later validated using CAS. 

The model proposed here is useful for activities in two settings (paper and pencil, 
technology) to solve tasks. The results show that the use of technology, and through the model 
used in the study, helped students to overcome the algebraic linearity errors. The results of the 
study however raise another question: Is the epistemological obstacle overcome by the students 
when using CAS technology to solve tasks permanent or temporal? This question will be 
addressed in a subsequent research under normal classroom environments using technology. 
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This report is the first instalment of a broader study which investigates university students’ 
conceptualisations of static and dynamic geometric entities. In this part we offer a refined look at 
the conceptualisations of two groups of students – one group which was taught using Dynamic 
Geometric Software and the other in a ‘traditional’ fashion. We use both APOS Theory 
(Dubinsky & McDonald, 2001) and Sfard (2008) to interpret learners’ understanding of the 
slope of lines. Our data reveal that students using DGS developed a strong proceptual 
understanding of slope, which enabled them to solve problems in which slope could be seen a 
conceptual object. This report sets the stage for a look forward to how DGS may influence 
learners’ process-object conceptualisation of other geometric representations of algebraic 
equations. 

 
Background 

Dynamic geometry software (DGS) offers the possibility for modeling mathematical 
concepts and processes related to topics across the curriculum (Scher, 2000; Sinclair & Jackiw, 
2007). As many researchers have pointed out DGS also enables students to perform multiple 
actions and generate a large number of examples effortlessly (Hollebrands, 2007; Laborde, 1992; 
Mariotti, 2000). Although more widely used, and studied, in the context of the geometry 
curriculum, the dynamic and interactive features of DGS enable the designing of models 
appropriate for representing algebraic concepts. Such models are built using the geometric 
language of DGS such as The Geometer’s Sketchpad (Jackiw, 1989), and thus offer geometric 
representations of algebraic concepts.  

Additionally, these representations are fundamentally dynamic, representing relationships 
and behaviours over time; students are invited to explore these relationships through the 
dragging capacity of the software. For example, a model of an affine function might be 
represented both geometrically (as a line on a Cartesian coordinate system) and algebraically. If 
the line itself is draggable, students can investigate the relationship between the position of the 
line on the graph and the resulting algebraic equation, thus emphasizing the invariance of the 
slope as well as the changing value of the intercept.  

While DGS research has mostly been conducted in the contexts of teaching and learning 
geometry, recent studies have focused attention on the possible benefits that the dynamic 
manipulation paradigm might have for other school topics (as well as for tertiary-level 
mathematics). For example, Falcade, Laborde, and Mariotti (2007) have shown that the use of 
Cabri-géomètre (Baulac et al., 1988) can support a covariational approach to functions. 
Similarly, Sinclair, Healy, and Sales (to appear) report on the use of dynamic functions within 
both Sketchpad and Cabri, and the way in which, compared to static functions, dynamic ones 
elicit more attention to mathematical aspects such as domain and range, the relationship between 
the dependent and independent variables, and the effect of asymptotes.  

In this study, which draws on a wider investigation of the use of DGS in non-geometric areas 
of the curriculum, we focus on a much more specific element of the school algebra curriculum—
that of slope. Given the importance of the notion of slope in early algebra, as well as in higher-
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level studies, as well as its convenient and widely-used geometric representation, we chose to 
study the effect of dynamic representations of slope on student learning. Prior research on slope 
has focused on the notion of slope as a ratio, and on the difficulty students have in constructing 
the concept of slope using the typical representation of the slope formula (Lobato & Seibert, 
2002). Given the dynamic representation available in Sketchpad, and, in particular, the ability to 
drag a line (either by rotation or translation) and observe the dynamically-linked slope 
measurement, we decided to investigate whether such a representation might help students gain a 
better understanding of the slope concept as an object (and not just the end point of a calculation 
involving the rise and the run). 

 
Theoretical Perspectives 

Prior research suggests that learners’ engagement with computer software can facilitate 
certain mental constructions, particularly with respect to the process-object tension (e.g. Weller 
et al., 2003). Process and object understandings of mathematical entities lie at the centre of the 
inter-related theoretical perspectives which informed our study: the APOS Theory (Dubinsky & 
McDonald, 2001), Sfard’s reification (1991), and the percept-procept distinction (Tall et al., 
2000). 

The APOS (Action, Process, Object, Schema) Theory postulates that learners’ understanding 
of mathematical entities can develop from a process conception to an object conception through 
the mechanism of encapsulation. In the view of Dubinsky and McDonald (2001), an individual 
who imagines a mathematical entity, such as multiplication, as an action to be performed 
internally is said to conceive of that entity as a process. Accordingly, a process conception is 
recognised by qualitative descriptions which may describe actions though not execute them. For 
example, with respect to multiplication, imagining an action of collecting three groups of two 
objects to yield six objects would correspond to a process conception. If that process can be 
realised as a completed totality – three groups of two objects as six, rather than to yield six – then 
encapsulation of that process to an object is said to have occurred. Encapsulation of a process is 
a sophisticated step in an individual’s conceptualisation. It requires appreciating the 
mathematical entity as a completed totality upon which transformations or arithmetic operations 
may be applied.  

In a similar vein, Sfard (1991) describes the “quantum leap” that must occur in order that “a 
process solidifies into object, into a static structure” (p.20) in a learner’s conceptualisation. Sfard 
refers to this leap as reification: “an ontological shift – a sudden ability to see something familiar 
in a totally new light” (1991, p.19). Further, Sfard (2008) identifies reification as a discursive 
process and describes it as “the act of replacing sentences about processes and actions with 
propositions about states and objects” (p.44). Relating the process-object distinction made both 
by Sfard and the APOS Theory to the idea of slope, we suggest that a process conception of 
slope might be recognised by an individual’s description of a line that “goes up” by so much. In 
contrast, an object conception of slope could correspond to the description of an angle that may 
be scaled by any number. 

Tall et al. (2000) offer a close look at the nature of mathematical objects and the intricacies 
of encapsulation or reification, and suggest that there is no “universal answer” to the question 
“how are [objects] constructed” (p.223). In particular, Tall et al. echo Sfard’s (1991) observation 
that a structural (object) conception need not follow directly from an operational (process) 
conception, particularly in the case of geometric presentations. Tall et al. identify a distinction in 
how geometric ‘objects’ may be conceived: as “perceived objects” – percepts – or as “conceived 
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objects” – procepts. In Tall et al.’s perspective, a perceptual understanding is recognised by an 
individual’s attention to the “specific physical manifestations” (2000, p.228) of the geometric 
image. For example, a learner might conceive of a circle first as a percept – as a round, 
symmetric object – rather than as the process of finding all the points equidistant to the centre 
point.  

Eventually, through reflective abstraction, a geometric percept may be constructed by an 
individual as a procept. Tall et al. (2000) suggest that procepts “are constructed as imaginary 
manifestations of the perfection of the definition, for instance, lines with no thickness that can be 
extended arbitrarily in either direction” (p.236). Further, they observe that “the construction of 
perceived geometric objects leads later to conceived geometric objects, which, though imagined 
in the mind's eye, and discussed verbally between individuals, are perfect entities that have no 
real-world equivalent” (ibid). With respect to the circle, a proceptual conception might 
correspond to the idea of the set of points which are equidistant from a centre point, and which 
necessarily form a round shape with infinitely many lines of symmetry. 

We contend, in accord with Denis (1996) and Sfard (2008), that an object conception 
corresponds to ‘descriptive’ rather than ‘narrative’ discourse and suggest further that a 
pedagogical approach which connects algebraic representations with the percept of geometric 
entities may trigger a shift from narrative to descriptive discourse, and as such, promote 
encapsulation of that entity to a conceived object. Extending on prior research, we examine how 
DGS, which allows learners to act directly on objects such as circles and lines, may facilitate the 
leap toward the descriptive, from process to object conceptualisation of entities with both a 
geometric and algebraic representation, in particular with respect to slope.  

 
Setting and M ethodology 

Participants  
Participants were undergraduate liberal arts and social science students enrolled in a 

foundations course in quantitative reasoning. The course was designed as an up-grade to 
secondary school mathematics courses and focused on topics such as percentages, single variable 
equations, graphing lines, and problem solving. Two different sections of this course, Class A 
and Class B, respectively, which were taught by the first and second authors, were engaged in 
our study.  
Comparing Instructional Representations 

Class A students were introduced to the notion of slope using dynamic representations of 
lines. These students used dynamic interactive sketches to visualize the change of slope 
measurement and the resulting geometric representation of the line. They were introduced to the 
notion of slope as a measurement to find out the steepness of a straight line, and discussed the 
relationship of numerical value of slope with its steepness. Sketchpad was employed to support 
the introduction and discussion with providing dynamic sketches of lines. Students interacted 
with the sketch shown in Figure 1. Specifically, they were asked to drag points A and/or B to 
find lines with slopes of -10, -4/5, -1/4 and 0. Dragging these points has the effect of tilting the 
line and generating several different examples of lines and their slopes.  
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Figure 1. A snapshot of the sketch used by Class A. 

 
Class B students were introduced to the notion of slope using a more traditional approach. These 
students saw static images of the typical triangle construction exemplifying ‘rise over run’ and 
the associated calculations. Students were exposed to a collection of different examples, 
including lines with different steepness as well as lines with negative slopes. Analogies and 
problems that reinforced the concepts of slope and steepness were also discussed. Students were 
also asked to reflect on and compare lines of different slopes, as in the task demonstrated in 
Figure 2 below. 

Figure 2. A snapshot of the sketch used by Class B. 
 

Each class spent approximately 30 minutes on these slope tasks, and then moved on to 
investigations of linear equations and intercepts.  
Data Collection 

Data were collected from in-class pre- and post-tests. Pre-tests were given two weeks prior to 
the lessons on slope, and post-tests were given the week following instruction. Participants’ 
results on the pre-test informed the design of the post-test items. Pre-test items included 
questions relating to positive and negative slopes, as shown in Figure 3. It also included a 
question on identifying parallel lines given a list of equations, interpreting a story problem, and 
comparing the graphs of y = x, y = 2x and y = 2x+3.  
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Figure 3. Shows positive negative slopes question of the pre-test. 

 
Our intent in designing the post-test was to probe participants’ conceptions about the notion 

of slope. In addition to repeating the question shown in Figure 3 above (with modifications of the 
actual order and shape of the graphs), we also included three additional questions shown in 
Figure 4 below: (1) A non-graphical question about the steepness of the slopes of different linear 
questions; (2) an example generating task; and, (3) a story problem where participants were 
asked to identify with justification whether the graph matched the story. This line of questioning 
was intended to present participants with non-routine problems relating to slope and to identify 
key features in participants’ discourse that might indicate how they were conceptualising slope.  

 
1. Consider the equations (a) y = 3x+2  (b) y = 3x+10  (c) y = 2x+1000  (d) y = 2x-50. 
i. Which is/are steepest? Why? 
ii. Which is/are less steep? Why? 
2. The equation of a line is given as y = 5x -3. Provide three different examples of linear 
equations that pass through (0, -3). [An empty Cartesian graph was also provided]. 
4. Read the story below and discuss whether the story fits the graph. 
John was walking with his wife along the seaside. After about 5 minutes, he stopped to 
chat with his friend for a few minutes. He then began to run, to catch up with his wife. 

2

1.5

1

0.5

-0.5

-1

distance (kilometres)

-5 5 10 15time (minutes)

 
Figure 4. Three additional post-test problems. 
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R esults and A nalysis 
We present our results in two sections, first in terms of descriptive statistics on the pre- and 

post-tests, and second, on more qualitative interpretations of the patterns of student answers.  
Analysis of Pre- and Post-test 
Given that only the negative/positive slope question was repeated from pre-test to post-test, we 
limit our descriptive statistics to the comparison between the two classes on that item. The results 
are shown in the table below. Class A scores significantly lower on the pre-test compared with 
Class B, but then outscores Class B on the post-test.  
 
Table 1. Comparing Class A and Class B: Identifying Lines with Negative Slope 

 Pre-test % Post-test % 
Class A 36.36 87.5 
Class B 77.59 83.87 

 
These results indicate that Class B was already quite strong on the pre-test, and improved 

only slightly on the post-test. On the other hand, Class A was very weak at identifying lines of 
negative slope, and improved significantly after their instructional session in which they 
interacted with the dynamic sketch shown in Figure 1. On this sketch, the values of the rise and 
the run are shown, as was the value of the slope. Students were asked to drag the line 
continuously on the screen, so that they created a wide number of examples of lines along with 
their corresponding slopes. Given that the task asked them to create lines of given slope, they 
probably focussed more on the value of the slope, than on the values of the rise and the run. 
Therefore, these students did not need to coordinate the two numbers rise and run, and would 
have conceptualized the slope in terms of either bending forward or backward.  

The lower pre-test scores on this item for Class A are consistent with their scores on other 
items in the pre-test; in other words, they were weaker than Class B on all items of the pre-test, 
and were also judged to be relatively weak by their classroom instructor. Given the significant 
difference in scores on this item from pre- to post-test, we decided to further investigate the 
students’ understanding of slopes in contexts other than identifying positive or negative slope.  

While comparative statistics on the remaining three items of the post-test are less useful, we 
include them here in Table 2 for completeness. We note that question 2, in which students were 
asked to generate equations having the same y-intercept, showed the only significant difference 
in favour of Class B. We found this result surprising, and will discuss it further in the following 
section. 

 
Table 2. Comparing Class A and Class B: Identifying Lines with Negative Slope 

 Post-test question 1 Post-test question 2 Post-test question 4 
Class A 64.29 48.81 69.64 
Class B 75.81 79.57 59.68 

 
Participants’ Discourse on Slope 

Tall et al. (2000) identify two distinct descriptive narratives relating to individuals’ 
conceptualisation of geometric entities. On one hand, an individual may attend to visual cues 
elicited by the physical presentation of the entity – indicating a perceptual understanding. On the 
other hand, an individual may abstract from the visual cues to describe “the perfection of the 
definition” (Tall, et al., 2000, p.236) of the entity – indicating a proceptual understanding. Based 
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on our analysis of participants’ discourse relating to slope, students in Class A seemed to have 
developed a strong perceptual understanding of slope. Participants in Class A were able to reason 
visually, distinguishing negative from positive slopes visually, without relying on the rise over 
run formula.  

Contrary to Class A’s results, no change in participants’ reference to perceptual aspects of 
slope or lines were observed in responses to post-test items from Class B. Rather, in support of 
our hypothesis, Class B participants seemed to rely more on narrative discourse, indicating a 
process conception of slope, in terms of the APOS Theory. For instance, in response to the 
“steepness” question on the post-test, the majority of students in Class B who answered correctly 
justified their response by saying that rise/run = 3/1 was greater than rise/run = 2/1. In contrast, 
the Class A participants who correctly answered did not make use of ‘rise over run’ narrative 
descriptions, and simply stated that 3 was greater than 2. In both classes, incorrect answers 
involved making comparisons between the values of the intercepts. This suggests that students 
were not so much confused about slope itself, but about the expression of slope within a linear 
equation. 

Similarly, for the example-generating task illustrated in Figure 4, many participants in Class 
B superfluously introduced rise over run calculations, relying on manipulating the equation of a 
line to generate examples of lines with different slopes. Very few participants in Class B realised 
they could just change the value of the slope to generate a new example. Class B’s reliance on 
manipulating equations is indicative of an operational, or process, understanding of slope. Rather 
than appreciating slope as an object that could be scaled or acted upon, many seemed to view 
slope as something which needed to be calculated – indicating a process understanding, in APOS 
terminology, or operational understanding in Sfard’s (1991) perspective. Students in Class A 
who correctly answered this question did seem to generate equations without using the rise over 
run narrative (we infer this from the absence of the words ‘rise’ and ‘run’ in their responses). 
However, a larger proportion of Class A students simply left this question blank. Once again, we 
hypothesise that their inability to respond relates to a lack of coordination between the values of 
slope and intercept in the linear equation. In this case, having a procedural way of solving the 
problem seems to have benefited Class B.  

Similar features were identified in participants’ responses to the story problem illustrated in 
Figure 4. Again, participants in Class B were observed introducing slope calculations to justify 
whether or not the graph matched with the story. In contrast, participants in Class A were more 
likely to attend to the visual aspects of the graph, such as identifying stoppage time with a 
horizontal line segment (slope equal to 0). Participants in Class B were also more likely than 
participants in Class A to describe lines which “start at” a particular point, suggesting they 
viewed lines, as well as slopes, as entities which needed to be constructed – processes which 
needed to be carried out. The relatively strong performance of Class A supports the hypothesis 
that these students had built a strong perceptual understanding of slope, which they were able to 
use to interpret the visual graph accompanying the story. 

  
C onclusion 

Based on our analysis of the students’ responses to post-test questions, we suggest that the 
use of Sketchpad can help students develop a strong proceptual understanding of slope that 
emerges somewhat independently from the process-oriented conception inherent in the rise over 
run formulation of slope. This proceptual understanding corresponds to a descriptive narrative 
about the conceptual object of slope. The students in Class A, who had interacted with a dynamic 
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graph, were able to use a descriptive narrative to distinguish positive and negative slope, to 
evaluate the steepness of lines, and to solve story-based problems. We argue that they were able 
to solve these problems because of their ability to see slope as an object, an ability that they had 
developed in their interactions with Sketchpad in which they directly acted on the graph to create 
different slopes (rather than acting on, say, the rise or run values of the line). The students in 
Class A solved these problems very differently than students in Class B, who depended far more 
strongly—and sometimes superfluously—on process-based conceptions.  

Additional questions on the pre- and post-test that involved only algebraic manipulation (and 
not evaluation of visual graphs) indicated that the students in Class A were less successful in 
using their descriptive discourse in solving problems in which they had to coordinate between 
the slope and intercept values of a linear equation. Such problems may in fact require a more 
narrative discourse. However, we are pursuing further research to determine whether students 
can also develop an effective descriptive conception of slope within a linear equation, and 
coordinated with the role of the intercept, in order to be able to solve problems involving both 
slope and intercept concepts. 
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We are reporting on the results of a study undertaken with secondary school students in which a 
virtual version of a balance model is used to teach the students how to solve linear equations. 
The model is dynamic and enables the solution of term subtraction equations. We are studying 
the passage from the model to algebraic syntax and have adopted the perspective of 
mathematical sign systems (Filloy, Rojano & Puig, 2008), which incorporates student signic 
productions into the analysis as part of the interaction among the sign systems of algebra, 
arithmetic and the model.  
 

Introduction 
A good number of studies have focused on analysing the difficulties faced by students when 

learning algebraic syntax in order to solve linear equations. Some of the studies highlight the 
importance of reconceptualizing equalization as a sign of equivalence (Kieran, 1981; Kieran & 
Sfard, 1999). While others, underscore the need to learn how to operate with unknowns (Filloy & 
Rojano, 1989; Filloy, Rojano, & Puig, 2008; Herscovics & Linchevsky, 1991; Stacey & 
MacGregor, 1997; Vlassis, 2001). Some of the latter authors have specifically analyzed the role 
played by concrete modeling with a balance in the processes of building said syntax. Filloy & 
Rojano (1989) identified extreme cognitive tendencies in secondary school students, who at the 
beginning of their work with a balance showed, in some cases, a deep attachment to the model 
or, in other cases, a very quick detachment from the model going on to carry out the actions 
solely at the level of symbolic algebra. Vlassis observed in her study that use of the balance 
model helped students to learn the formal method of applying the same operation to both sides of 
the equation and that the main difficulties arose when it became a matter of having the subjects 
generalize the method to equations containing negative integers (Vlassis, 2002). Whereas 
Radford & Grenier (1996) found that a balance helps students to understand the rule for 
elimination of like terms. 

One common element in several of the previously mentioned studies is that extending the 
numerical domain of equations to the set of integers represents a factor that obstructs 
generalization of the equation solution method. Gallardo (2002), Bruno and Martinón (1997) and 
Glaeser (1981) have analyzed the nature of the difficulty of incorporating negative numbers and 
their operativity into algebraic syntax. And in more particular terms, Filloy and Rojano have 
done so with respect to negative numbers and their relation to concrete modelling; they report the 
case of a student who spontaneously adapted the concrete model so as to solve equations with 
negative coefficients, which in principle was unexpected (that is to say that the ability to use the 
model to solve equations with negative coefficients was unexpected). These authors indicate that 
the foregoing is a manifestation of a cognitive tendency that consists of a deep-seated attachment 
to the concrete model, even in cases in which the modelling may be even more complex than the 
operativity itself at the symbolic level (Filloy & Rojano, 1989, pages 22 and 23; Filloy, 1991) 
that this may represent an obstacle to abstraction and generalization of the algebraic method. By 
the same token, Vlassis found in her research that the effect of having given students a concrete 
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meaning for manipulation of the equation terms lasted for several months after they had worked 
with the balance –considered a positive effect. This author admits however that the students will 
later on have to overcome obstacles related to the processes of abstraction, for instance such as in 
the case of solving equations that involve negative numbers and for which the balance model 
was not designed (Vlassis, 2002, pages 356-357). 

The study reported here incorporates usage of an applets-based virtual balance model that 
differs from the traditional model (concrete or diagrammatic) in that it is dynamic and interactive 
and in that its expanded version (pulley balance) includes representation and solution of 
equations with term subtraction (SEP-ILCE, 2007) [1]. Another trait of this interactive unit is 
that it includes a section in which the balance is fixed and the user must choose the operation to 
be carried out with the terms of the equation (application of inverse operation so as to eliminate 
terms), which has the effect of helping the student to “abstract” the model’s actions to the 
algebraic syntactic level. The results obtained suggest that after working on tasks with the 
interactive unit and worksheets that indicate a didactic route for mastering the syntax, the 
students are able to abstract the model’s actions and recover them at the level of symbolic 
manipulation. The foregoing is achieved for broad families of linear equations, including those 
that contain terms with negative coefficients. 
 

Aim of the Study 
The main purpose of the study is to research the extent to which work with the dynamic 

version of the balance referred to above helps subjects to abstract the actions undertaken with the 
balance at the level of the algebraic syntax associated with the solution of linear equations. In 
other words we are interested in investigating whether subjects are able to generalize the method 
of “doing the same thing on both sides of the equation” to increasingly more complex equation 
modes, including equations that contain term subtractions with positive coefficients. We have 
included arithmetic (Ax = B; Ax ± B = C; A if a specific positive integer, B, C, and D are 
particular non-negative integers) and non arithmetic equation modes (Ax ± B = Cx ± D), in 
keeping with the classification of Filloy & Rojano (1989). 
 

The Virtual Balance and the Didactic Circuit 
As previously mentioned the concrete model used consists of a virtual version of the 

traditional diagrammatic model. In the first part 
of the interactive unit, students work with the 
basic balance (see Figure 1). 
Users can drag objects to add them onto either 
side of the balance (taking them from the piles in 
the middle) or to drop them. The objects 
available have either known weights (unit 
weight) or unknown weights (x). The idea is for 
students to understand the principles guiding the 
actions that maintain or re-establish equilibrium 
at each step. The sequence of scenes includes the 
following sections: a) weigh objects; b) 
represent a given equation; c) find the value of 
the unknown weight. The bottom section 
displays the equation that is to be solved, as well 

 
Figure 1. Basic balance. 
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as the changes to the equation that result from the actions carried out on the balance, thus acting 
as feedback. Equations to be solved appear randomly, however the level button makes it possible 
to gain access to exercises containing increasingly more complex equations. 

In the second part of the interactive unit, students work with pulley balance (see Figure 2). 
With the extended balance model one can 
represent and solve equations that include 
subtraction of positive coefficient terms, that is 
to say it is possible to remove and subtract 
weights.  The terms that are subtracted are 
represented by weights that are placed in the 
upper pans. Objects can be dragged from the 
upper pans to the lower pans –be that the right 
or left pan– and vice versa. One can see that 
when going from an upper pan to a lower pan 
(or the other way around) or from the left to the 
right pan (or the other way around), the 
operation sign preceding the corresponding 
term in the equation changes (this can be 
observed in the equation that is displayed in the 
bottom section of the balance). 

In the basic balance model, the didactic circuit consists of the following: 1) Familiarization 
with the balance (weighing objects); 2) representation of equations on the balance 
(correspondence between the elements of the equation and those of the model); 3) solution of 
equations with the dynamic balance, finding the unknown weight by eliminating objects from the 
pans (principles of manipulation that maintain the equilibrium); 4) solution of equations with the 
fixed balance, by choosing the inverse operation that is applied to the terms of the equation 
(recovery of the principles that maintain the equilibrium at the syntactic level: notion of algebraic 
equivalence) see Figure 3; and 5) solution of equations without the balance, transforming and re-
establishing equalization at the symbolic level of algebra (automatization of actions at the 

syntactic level).  
Steps 1-5 are repeated when using the 

pulley balance, thus extending the method to 
equations with term subtraction. 
 

Mathematical Sign  
Systems and Abstraction to Syntax 

     In the theoretical approach proposed by E. 
Filloy (Filloy, Rojano, & Puig, 2008; Kieran 
& Filloy, 1989; Puig, 2004) the notion of text 
is introduced to be used in the analysis of any 
sense production practice, for example when 
the learner interacts with a teaching model. 
From this standpoint essentially based on the 
semiotics of Pierce (1931-58), a distinction is 

made between text and textual space, a distinction that corresponds to that between meaning and 
sense. A text is the result of a reading/transformation labor made with a textual space, the aim of 

 
Figure 2. Pulley balance. 

 
Figure 3. Fixed balance. 
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which is not to extract a meaning inherent in the textual space, but to produce sense (Filloy, 
Rojano, & Puig, 2008, page 125). The textual space is a system that imposes a semantic 
restriction on the person who reads it; the text is a new articulation of that space, individual and 
unrepeatable, made by a person as a result of an act of reading. Thus a teaching model is a 
succession of texts that are taken as a textual space to be read/transformed into another textual 
space as the learners create sense in their readings. 

The interactive virtual balance unit is a teaching model and a textual space in terms of the 
afore-described theoretical perspective. When students interact with that textual space reading / 
transformation processes are unleashed, and sense is produced in those processes: the sense of 
the actions in the model and the corresponding actions at the symbolic level of algebraic syntax 
with the elements of the equation. 

At the same time in this theoretical model symbolic algebra is considered a mathematical 
sign system (MSS), understood as a sign system (with its corresponding code) in which there is a 
socially conventionalized possibility of generating signic functions (Filloy, Rojano, & Puig, 
2008, page 7). Attached to the MSS are the sign systems or strata of sign systems that learners 
produce in order to give sense to what is presented to them in a teaching model. According to 
Filloy the texts produced by readings that use different strata can be described in an MSS, but 
when that does not take place only the creation of a new MSS will make it possible. The process 
of creating new MSSs for that purpose is a process of abstraction and the new sign system is 
more abstract than those preceding it. In the case at hand, the new sign system is that of algebra 
and it is more abstract than the sign system of arithmetic. It is also more abstract than that of the 
intermediate strata constituted by the productions of the students themselves based on their 
interaction with the virtual balance model. Examples of that type of production will be showed in 
a subsequent section. 
 

Methodology and Data Collection: Sessions With and Without the Balance 
The study was carried out with a group of eight secondary school students, 12 to 14 year 

olds, who had not received any instruction on the algebraic method for solving linear equations. 
Worksheets were prepared in keeping with the didactic circuit of the interactive balance unit, as 
were a pre and post questionnaire aimed at finding out what strategies the students used to solve 
the equations prior to and after their work with the balance. The items of both questionnaires 
correspond to arithmetic and non arithmetic equations. 

The six class sessions in which the balance was used were undertaken in a computer lab 
during one and the same school term. The large screen display of the interactive unit was used 
for teacher explanations, pupils’ individual participation, and collective discussions. Additional-
ly, the students worked in pairs on the computers to solve the tasks proposed on the worksheets. 
The following section is a discussion of the outcomes obtained during the class sessions. 
 

Analysis of Outcomes 
Sessions Using the Basic Balance 

In the first session, students worked with the scenes “finding the weight of “x” and 
representation of linear equations on the balance”. They manipulated the virtual dynamic model 
and were able to relate the meaning of balance –pertaining to the sign system of the model– with 
the meaning of the equality sign in the equation –pertaining to the sign system of algebra. 
However not all of the students were able to attain said level of understanding; when doing the 
tasks with paper and pencil, two of the students continued to write the equation transformations 
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as chains of equalization (their own productions that are located within an intermediate stratus 
between the sign system of arithmetic and that of algebra). 

During the equation solution session (second scene) the students demonstrated self 
confidence, navigating through the five complexity levels: from solution of equations with a 
single occurrence of an unknown (arithmetic equations), through to solution of equations in 
which the unknown appears on both sides of the equalization (algebraic equations). The 
worksheets, which students solved with paper and pencil, show how the subjects adapted the 
model and used it in solving equations containing coefficients greater than those supported by 
the virtual model. In this stage, we observed diagrammatic reproductions (drawings) of the 
model and the symbology used is a mixture of those diagrams with arithmetic operation signs 
(personal productions generated due to the interaction with the sign system of the model and 
incorporation of elements of the sign system of arithmetic).  

In the third session, where students must solve equations choosing the inverse operation, we 
observed significant progress in algebraic syntax. The students were able to solve the equations, 
eliminating terms by applying the corresponding inverse operation and in the majority of cases 
there were no indications that the students had resorted to the balance model, not even 
diagrammatically. As of that point, we observed recovery processes of the actions undertaken in 
the model, at a more abstract level, producing sense related to the actions carried out with the 
elements of the equation.  This more abstract level is the sign system of algebra, which enabled 
the students to carry out the reading/transformation of the texts constituted of the more complex 
linear equation modes (for instance, non arithmetic equations with negative coefficients that did 
not have meaningful referents in the balance). The foregoing was not possible for them when 
they remained at intermediate (more concrete) strata related to the model and/or to arithmetic.  
At this stage the solution characteristics were the following: use of the inverse operation; 
progressive usage of algebraic signs (students no longer use the model drawing, they rather make 
use of algebraic symbols), although in some cases we still observed certain reluctance to 
operating unknowns and a return to arithmetic strategies. The progress achieved in algebraic 
syntax as of the third session can be seen in Figure 4, which depicts part of two students’ 
worksheets produced throughout several sessions. 

 
Figure 4. Examples of worksheets of Francisco and Alexis during six sessions. 
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Sessions with the Pulley Balance 
In addition to progressing toward solution of a more extensive family of linear equations, 

working with the pulley balance enabled students to identify and learn the term transposition 
method. As such at the end of the study, participants could indistinctly apply that method, as well 
as that of “doing the same thing on both sides” or “using the inverse operation” method. Toward 
the second to last session, students solved all of the exercises and any reluctance for operating 
unknowns in non arithmetic equations had disappeared. At the same time, students had left 
behind usage of the model, and equations were solved in the sign system of algebra, although in 
some cases use of arithmetic operation signs persisted (for instance, ÷). At the syntactic level, the 
difficulty of applying the methods learned to a more extensive family of equations with negative 
numbers reappeared, especially in cases of signed numbers that are not suitable to modeling with 
the balance or in the case of negative solutions (such as, for example: 5x + 7 = -3x – 9). The 
latter confirms the outcomes of Vlassis (2002), in the sense that the presence of negative 
numbers represents an obstacle for generalization of the method. 

During the last session, which dealt with solution of equations containing terms with negative 
coefficients, choosing the correct operation, the virtual model made it possible to reinforce the 
way of working that the students had previously acquired; that is to say, transposition of terms. 
The foregoing can be attributed to the fact that in this section the model displays, on the left hand 
side of the scene, a representation of the actions that are carried out. 
As mentioned before, the worksheet for this scene contains both arithmetic and non arithmetic 
equations, with additive structure and with term subtraction. We observed that the final work of 
the students contained both solutions attained using the “doing the same thing on both sides” 
method (for single-step equations), as well as the “term transposition” method (for equations 
with occurrences of “x” on both sides) (See Figure 4, session 6). 
Pre and Post Questionnaires 

Figure 5 is a synthesis of the outcomes of the pre and post questionnaires, while Figure 6 
depicts some examples of the answers given by the students to items contained in both 
questionnaires. These outcomes confirm 
our classroom session observations, 
through the worksheets, dealing with the 
evolution of subjects on their road to 
mastering algebraic syntax in order to 
solve linear, arithmetic and non 
arithmetic, additive and term subtraction 
equations. In some cases, children could 
extend the method to equations of the 
form Ax + B = - Cx + D. However, there 
is no evidence to suggest a complete 
generalization of the method, for 
example to linear equations with a 
negative solution. 
  

Figure 5. Pre-Post general outcomes. 
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Figure 6. Students’ answers to items VII and VIII. The highlighted correspond to Post Questionnaire. 

 
Final Discussion 

According to Filloy when teaching is begun with a concrete model it is important to 
understand the actions executed, as well as to discover the syntax elements implicit in those 
actions. This process leads to abstraction of operations; that is to say recovery processes at the 
syntactic level. In the study reported on here, manipulation of the dynamic virtual balance model 
in the initial scenes made it possible to produce sense related to those actions in the model. Work 
with the scenes of the fixed balance and choosing the inverse operation favored production of 
sense at the level of algebraic syntax. In other words the fact that it was not possible to 
manipulate the balance fostered abstraction toward the sign system of algebra by way of 
discovering the implicit principles of preserving equality (balance). The foregoing became 
crystal clear in the post-questionnaire when the students solved the equations solely with paper 
and pencil and with no access to the interactive model. These outcomes serve to ratify those of 
other authors (Vlassis, 2002; Filloy & Rojano, 1989; Radford & Grenier (1996) who used a 
diagrammatic version of the balance in their research. The outcomes from the pulley balance 
section suggests that working simultaneously with addition and subtraction of weights also leads 
students to discover and abstract the rules of term transposition. That discovery broadened the 
students’ level of algebraic competence with respect to solving linear equations, from the “doing 
the same thing on both sides” method to the vietic “term transposition” method, as well as to the 
rule for grouping like terms.  The expansion also applied to the type of linear equations, given 
that the students ended up solving equations with negative coefficients, although several cases 
demonstrated the classic difficulties that students of that age group have in understanding and 
operating negative numbers. 
 

Endnote 
[1] The pulley balance allows for modeling of equations that have an additive structure and of 
term subtraction equations. This means that only terms with positive coefficients that are added 
or subtracted can be modelled, while terms that include signed numbers, such as in 7 – (-2x) or 
5x + (-3) cannot, unless the students are familiar with the syntax of negative integers that enables 
them to reduce the previous cases to 7 + 2x & 5x – 3, respectively. The foregoing is due to the 
fact that objects on the balance always have a positive weight. This applet-based interactive unit 
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was developed by the programming group “Descartes” at the Latin American Institute of 
Educational Communication (ILCE) in Mexico and is part of the interactive materials that the 
Ministry of Education (SEP) has distributed in the public secondary schools across the country. 
The experimental work was funded by CONACYT, Mexico (Project Ref. No. 80359). 
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Interpreting Global allows to explore the contents of the algebraic expression in order to identify 
visuals variables in the graphic, giving a categorical variable in the algebraic expression. 
However, developing the global interpretation in polynomials of degree higher than two seems to 
be a complex task, because the trace, to identify and interpret the correspondents visual 
variables. To overcome this problem, an alternative to explore qualitative and quantitative 
traces is reviewed  here based upon “visual characteristics”. This is enriched through the use of 
numeric representation analyzing the graph relations of deep-figure from the numerical point of 
view. 
 

General Background 
Duval (1999), mentions that mathematic visualization is not simultaneous in the field of 

perception; it is an intentional cognitive activity that produces a representation in two-
dimensions (screen, paper, etc.). It shows the relationship between representational units that 
make up the figure, meaning that mathematical visualization presents only a mathematical 
object. These are “seen” through the organization of relationships between figures. In the case of 
the graph, it has two figures: deep-figure (meaning the Cartesian Plane) and the figure-form 
representing the trace. 

In this regard, global interpretation (Duval, 1999) identifies the visual values to establish the 
relationships with categorical values of the algebraic expression. The treatment is essentially 
qualitative, leaving the deep-figure as a stable frame. This is an important issue in order to 
explore the contents of the representation, since the modification of deep-figure, dividing locally 
the unit of graduation, produces a change in figure-form. This activity modifies the unit of 
graduation, a change identification of the values. 

Duval (1994), emphasizes the common principle of the visual organization for the numerical 
representation, in learning, which has two apprehension levels: 

• “an apprehension resulting of a simple exposition cognitive of control. 
• and an apprehension that result of the interpretation global”. (pp. 6) 

The first level is the most helpful in teaching, because it focuses exclusively on one approach 
to control, i.e. …, while the second level is ignored, it is required to expose the contents of the 
representation to identify the representational units, establishing connections with others, in 
particular the algebraic. 

The objective of this paper is to establish a numerical analysis of the graph through the 
numerical table to enhance the algebraic construction. To pursue such a goal it is necessary to 
explore the contents of the numerical table (numerical representation) from a global 
interpretation requiring the use of treatments, thus benefiting the identification of numeric 
variables to establish connections with the categorical variables (from the algebraic 
representation). 

 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

245 

Enhancement of Global Interpretation 
The global interpretation (Duval, 1988) stresses the changes in the algebraic expression 

corresponding to visual variables pertinent to interpret the graph, allowing the association of a 
visual variable with a categorical variable within the algebraic expression. It contributes to the 
identification and establishment of relations between the two representations. 

Duval analyzes the behaviour of the straight line through the global interpretation, 
mentioning the possibility of a similar analysis for the case of the parabola. This paper has 
identified and reviewed the visual and categorical variables (algebraic expression) for second 
order polynomials. The study reveals the difficulty in discriminating the visual variables that 
characterize the polynomial, since the behaviour of the trace presents more variation than the 
straight line, increasing the number of numerical variables to be identified. With respect to the 
study of the cubic polynomial, the interpretation of its content through the analysis in the 
algebraic expression is performed. This task tends to be exhaustive due to modifications of the 
trace, obstructing the interpretation of the visual variables suffering many variations. However, 
these are identified for the cube term )( 3axy ±= . The analysis is complicated when involving 
linear and quadratic terms, except from the independent term that does not modify the behaviour 
of trace. An alternative is designed based upon qualitative information, for instance, the cubic 
polynomial around the origin in a vicinity small enough, whereby the term 3

3 xa  is neglected in 
magnitude to the rest )( 1

1
2

2 xaxa + . This induces behaviour similar to 1
1

2
2 xaxa +  facilitating 

the visual identification of the visual variables with respect to the modifications of algebraic 
expressions, whereas the term independent is null. 

Since the conditions used to discriminate the visual variables in the cubic polynomial, 
specifically for the terms 1

1
2

2 xaxa +  are different from those developed by Duval (1994), these 
are named “visual characteristics”. The analysis to identify the “visual characteristics” of linear 
and quadratic terms is carried out through the selection of a small vicinity around the origin, 
where the term 3ax  is neglected in magnitude compared to the rest ( cxbx +2 ), including the 
behaviour of a cubic polynomial, it is very “similar” to cxbx +2 , i.e. the reader may reviews 
the cubic polynomial cxbxaxxY ++= 23)( , considering the functions 3)( axxy =  and 

cxbxxh += 2)(  in order to identify the visual variables of the cubic term, as the “visual 
characteristics”.  (see Figure 1) 
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y(x)=x3 h(x)=2x2+x Y(x)=x3+2x2+x

+ =

=+

y(x)=x3 h(x)=1/2x2-x Y(x)=x3+1/2x2-x

y(x)=x3 h(X)=-2x2+x Y(x)=x3-2x2+x

+ =

 
Figure 1. Examples of the behaviour of linear and quadratic terms 

for the polynomial (Y (x) = ax ³ + bx ² + cx). 
 
The "visual characteristics" identified in the vicinity of the origin are:  
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Features Visual  Categorical Variables (bx²) 

The line opened up  

The line opens down  

The stroke is close to its axis of 

symmetry  

The line moves away from its axis of 

symmetry 

b>0 

b<0 

b≥1 

 

b<1 

 
Moreover, in the behaviour of the linear term the trace is the tangent line to the parabola at 

the origin. This line is displaced to the right or left of the vertical axis with respect to the 
parabolic behaviour. For that analyzed behaviour, the line around the origin benefits the global 
interpretation through qualitative treatment to identify the “visual characteristics”. It interprets 
the information from the global perspective, allowing the relations based on the changes of the 
categorical variables from the algebraic. 

This approach strengthens the exploration of the trace within a region of the plane, 
identifying the information for the recognition of “visual characteristics”, as well as the relation 
with the algebraic representation (categorical variables). Based upon this information it is 
suggested a global study in one region of the plane, whose information helps to identify 
relationships in the graph and the algebraic expression according to the modifications set out in 
this by using other representations from the identified information. 

 
Exposition of the Reason to Explore the Content Numeric in the Graphic, as well as the 

Need for Numeric Representation (table value), to Enrich the Information Identified in the 
Graphical Representation 

Until now, the information has been analyzed using qualitative treatments in the graphical 
representation, however, the task to construct the algebraic expression of a graphic requires 
information of the numerical type, raising the possibility of analyzing the graphic through 
quantitative treatment, i.e., analyzing the relationship between deep figure and figure form from 
a numerical point of view. This led to exploration of the information contained in the deep-figure 
to establish relationships with the behavior of trace, requiring the use of treatments that 
contributes to the identification of numerical values, and thus establishing relations with the 
characteristics and visual variables. In this sense, the discrimination of the numerical values are 
closely related to the scale, since the characteristic and visual variables depend directly of the 
scale. Therefore is necessary to consider the same graduation in both axes. This is a global 
condition to identify the characteristics of visual variables. Based upon this premise, the variable 
and visual characteristics of the polynomial of degree two and three explore the deep-figure, 
allowing the identification of specific numerical values. 
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The quantitative treatment developed in the deep-figure generates numerical sequences, 
which are identified globally. Discrimination is performed through the “covariance”. That 
consists of a displacement of my  to 1+my  in coordinated movements mx to 1+mx , while 
maintaining the same graduation in both axes. This favours a particular behaviour of the 
numerical values, which are obtained through the movements in the x-axis (Figure 2). 

 

Figure 2. Treatment of the quantitative polynomial y = x ³. 
 

The displacement takes place on the y-axis, generating the following sequence: 1, 7, 19, . . . , 
3n ² +3 n +1 (called a basic sequence). This sequence has an important role in the study of the 
cubic polynomic cubic, which is identified in global representation. To discriminate the visual 
value of the cubic term, depends on the number of repetitions that present the numerical 
sequence, so its algebraic representation is y = 1x ³. 

To identify the sequence number in the numerical representation (numeric values) explores 
the coordinated behavior of the "x" values and the "y" values, i.e. for the composite column with 
"x" values is carried a subtraction operation of consecutive terms. Typically the increase in x is 
the unit, while the column's “y” values are implemented in terms of the consecutive subtraction 
of values (finite difference).  

The exploration is performed with the information generated by finite difference. Table 1 
shows the treatment to identify the quantitative information contained in the polynomial of 
degree three. 
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Table 1. Treatment for the Global Quantitative Numeric Representation  
x

0

1

2

3

4

y = a x3 + bx2 + cx + d   y ))

d

a    +    b    +    c    +    d

8a   +    4b   +   2c   +    d 

27a   +   9b    +   3c    +   d 

64a   +  16b   +   4c   +   d

7a       +     3b     +      c

19a      +     5b     +      c

a        +      b      +     c

37a       +     7b      +    c

            6a     +   2b           

            12a    +    2b

             18a    +    2b

6a

   6a

Diferencia
Común

1° Diferencia
y ( )

2° Diferencia
( ( y

3° Diferencia

 
In the case of the cubic polynomial (y = ax ³ + bx ² + cx + d), the quantitative analysis of the 

numerical representation generates three columns corresponding to the first, second and third 
difference (Table 1), These provide information to discriminate the numerical values of the 
visual variables, therefore the numerical values of the categorical values for the algebraic 
expression. For example in the third difference (∆(∆(∆y))) (Table 1, column 5), a common 
variance allows the identification of the numerical value for the coefficient of cubic term (a) 
using the general rule for the common difference "6a" 
 

Third Difference

Constant Categoric Value
6 a  

 
The second difference (∆(∆y)) (Table 1, column 4) allows discrimination between the 

numerical value for the categorical value of the coefficient of the quadratic term (b). The second 
difference consists of two digital sequences, the first of which is multiplied by the value of the 
categorical coefficient cubic term, while the second is multiplied by the value of the categorical 
coefficient quadratic term. 
 

 

Categoric Value Numerical Value

Second Difference

a

b

(6,12, 18,..., 6n)

(2,2,2,..., 2)  
Referring to column 3, which corresponds to the first difference (∆y) provides information to 

identify the categorical value of the coefficient of the linear term (c), consisting of three 
numerical sequences: the first one is multiplied by the value categorical coefficient of cubic term 
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(a), the second sequence is multiplied by the value of the categorical coefficient of quadratic 
term (b), and finally the last sequence is multiplied by the value of the categorical coefficient of 
linear term (c), i.e. ;  

First  Difference

Categoric Value Numeric Squence

a

b

c

(1,7,19,37,..., 3n2+3n+1)

(1, 3, 5, 7,...,2n+1)

(1, 1, 1,..., 1)  
 

The use of finite differences allows identifying the numerical values of the visual variables 
and characteristics. These values are also present in the algebraic and graphic representations, 
which allow connections between the three representations from the interpretation global under 
the focus numeric.   

 
Conclusions 

The global interpretation is a way to identify relevant information in the graphical 
representation in the numerical representation, to explore its implications in the algebraic 
representation, since the modification of a variable visual (graphic) or numeric sequence 
(numerical representation) involves a change in the categorical variables of the algebraic 
representation. In this sense, the numerical representation provides relevant information that 
benefits the identification of the numerical values of the coefficients to the algebraic expression. 

The scale is  a determining factor for constructing the expression of a curve and the visual 
identification of variables and the numerical sequence, i.e. if the scale is the same for both axes, 
visual variables are kept while the numerical sequences are altered, however, if the change of 
scale is only one axis then both variables are altered visual and numeric sequences. Therefore the 
study of the background figure-fund is an important aspect to be considered seriously when 
exploring the graphical representation and numerical representation. 

The identification of the visual variables, as mentioned by Duval (1988), is an important 
activity to explore and interpret the contents of the representation, however, when scanning 
polynomials of degree greater than two, the task becomes difficult due to the complexity of the 
curves. Therefore, we discussed the need to explore qualitatively the trace at vicinity to evaluate 
its content. This vicinity is around the origin where the polynomial 

n
nn axaxaxf +++= − ...)( 1

10 behaves as a polynomial of the degree n-1 such as n
n axa ++− ...1

1 . 
In other words the polynomial n

nn axaxaxf +++= − ...)( 1
10 tends to lose the term nxa0 . 

The analysis of the behavior of some trace of the origin allows the qualitative approach of 
identifying the "visual characteristics", and interpreting information from a global perspective, 
which allows connections to the categorical variables in the algebraic representation. 
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A three-week teaching experiment employed qualitative analysis to determine the growth of 
algebraic reasoning. Learning trajectories were determined across individuals and tasks. Results 
indicated that subjects increased their abilities to symbolically generalize and justify rules.  

 
The Study 

 The focus of this study is to consider the effects of a three-week teaching experiment 
designed to introduce pre-service teachers [PSTs] in an elementary mathematics methods course 
to algebraic reasoning. The question of study relates to 12 PSTs’ growth of algebraic reasoning 
over time, through a study of their learning trajectories when engaged in pattern finding 
activities. The conceptual framework is derived from the work of Powell, Francisco, and Maher 
(2003) and a previous analysis of the critical events that occurred during this teaching 
experiment (Richardson, Berenson, & Staley, 2008). Five critical events were noted beginning 
with the generalization of a recursive rule (level 1) and concluding with the generalization of an 
implicit rule with justification of the y-intercept and coefficient (level 5). The 12 Caucasian, 
female subjects were first semester, senior undergraduates in elementary education at a large 
state university in the Southeastern US. The related tasks asked PSTs to determine rules and 
justifications related to the perimeter of n-block trains made from pattern block shapes.  Audio 
data were collected and transcribed for each diad and whole class discussions; artifacts and field 
notes provided additional data. Cross case analysis was used to analyze the data. The analysis of 
pre-service teachers’ learning trajectories tends to indicate individual growth of algebraic 
reasoning over time while reminding the researchers that learning is not linear and that time is 
needed with related tasks for quality learning to occur. Using each week’s result as a case 
informs the researchers of the varied knowledge bases and learning time lines of pre-service 
teachers including tasks that proved more or less difficult. Analyzing the second case of 
individual PSTs we capture the extent to which the tasks contributed to growth of reasoning over 
time. We conclude that it is important to find a series of related tasks that are geometric in nature 
and engage the PSTs in a community where ideas flow freely in written and verbal form. These 
are features of the teaching experiment that we attribute to its success in promoting algebraic 
reasoning among a methods class of elementary pre-service teachers. 
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Introduction 
Although there has been increasing emphasis on algebra in early grades in the past several 

years, we are still only beginning to appreciate young children’s abilities to reason algebraically.  
In this study I investigated young children’s understanding of functions.  The central task was a 
variation on activities previously used to assess children’s function abilities—numeric function 
machine game and visual growing patterns (see Carraher & Schliemann (2007) for a review)—in 
which cube towers serve as inputs and outputs in a function machine game.  In this way students 
should be able to “see” relationships clearly without needing to calculate total amounts and thus 
be able to explore relatively complex rules.   
 

Method 
Seventy-two second grade children were shown a series of input/output tables in the context 

of the activity described above.  Students were also assessed with more traditional and/or non-
visually based function tasks, for example finding the appropriate number of paddles for a given 
number of canoes, or inferring a f(x) = 2x+1 rule from a table of numeric data.  Finally, students 
were administered standardized mathematics and language ability measures.  
 

Findings 
Preliminary analysis indicates that the majority of the children could infer multiplicative 

(e.g., f(x) = 3x) and composite multiplicative and additive or subtractive (e.g., f(x) =3x + 2; f(x) 
= 2x-1) rules.  Further, many children could also understand more complicated rules such as f(x) 
= x(x+1) or f(x) = x(x-1).  Even children achieving relatively low mathematics ability scores and 
who performed poorly on other function tasks could identify mathematical functions using the 
activity.  Many children could coherently express generalizations for rules; however this piece 
was challenging for others, particularly those with lower mathematics and language abilities.   
          

Conclusion & Implications 
Data collected thus far suggest that in the context of this activity, young children are able to 

infer functional rules before a) they learn about those functions’ corresponding operations 
formally, and b) they can succeed on other types of function tasks.  More analysis is needed to 
understand correlations among performance on this task, performance on other function tasks, 
and mathematics and language ability scores.  The results have implications both for curriculum 
development for young children and for approaches to algebra instruction in general. 
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This paper describes research conducted on a group of 38 college students entering a College 
Trigonometry course. A quantitative literacy test aimed at tapping into these students’ 
proportional reasoning skills suggests that when permitted to use the calculator, students tend to 
more readily use a multiplicative mode of reasoning, whereas additive reasoning is favored 
when operations are performed by hand. These results have potential applications on making 
technology-embedded assessment decisions. 
 

Introduction – Perspective and Framework 
“Proportional Reasoning refers to detecting, expressing, analyzing, explaining, and 

providing evidence in support of assertions about, proportional relationships” (Lamon, 2005, p. 
4). Students’ thinking when faced with proportionality situations has been extensively researched 
over the past two decades (Behr, Harel, Post & Lesh, 1992; Clark & Kamii, 1996; Lamon, 1993, 
2005; Longest, 2002; Steffe, 1994). Researchers have designed assessment instruments to 
evaluate students’ proportional reasoning skills and raise teachers’ awareness of children’s 
thinking about ratios and fractions (Allain, 2000; Misailidou & Williams, 2003). The middle 
school curriculum relies heavily on proportional reasoning. Students’ error patterns, 
misconceptions and intuitive reasoning about proportionality are particularly interesting for 
educators in middle grades and beyond (Cramer & Post, 1993; Sowder, Armstrong, Lamon, 
Simon, Sowder, & Thompson, 1998). Indeed, research shows that students’ ability to reason 
proportionally is a strong predictor of how well they thrive in algebra and geometry (Person, 
Longest, & Berenson, 2003). Of particular interest is the differentiation between two types of 
mathematical thinking when dealing with numbers: additive, and multiplicative thinking, which 
translate into absolute versus relative terms when dealing with a comparison setting (Lamon, 
2005, p.29). Having to choose between these two reasoning is the ground for many students’ 
mistakes in answering problems that involve ratios and proportions. 

With the widespread use of calculators in the mathematics classroom, it is crucial to study the 
effect of such technology on students’ thinking. Research focusing on students’ learning 
mathematics with technology is already extensive (Penglase & Arnold, 1996; Forster, 2006; Heid 
& Blume, 2007). The 2008 Educational Technology Standards for Teachers clearly address the 
issue of assessing students’ thinking while using technology by encouraging teachers to “provide 
students with multiple and varied formative and summative assessments aligned with content and 
technology standards and use resulting data to inform learning and teaching” (ISTE’s 
Educational Technology Standards for Teachers, 2008). To align assessment designs with the 
technology standards, one needs to gain insight on how using technology affects students’ 
responses on various forms of assessments. 

Research Focus/Questions: This article contributes to raising awareness on how the 
calculator might affect students’ answers within the scope of proportionality situations. This in 
turn will hopefully help teachers design thoughtful technology-embedded assessment strategies 
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when trying to diagnose students’ reasoning. In particular we consider the following questions: 
Does using the calculator affect students’ choice of reasoning patterns when solving 
proportionality problems? And if so, what does the calculator allow students to do differently? 
 

Methodology 
The initial setup for the project was to assess a group of college students’ quantitative 

literacy skills upon entering an introductory college math course. “Quantitative literate citizens 
[…] are capable of interpreting and using information presented quantitatively” (Hastings, 2006, 
p. 56). These issues are currently highly in focus for higher education curriculum changes 
(Madison & Steen, 2003). A group of 38 college students entering a college trigonometry course 
were assigned a Proportional Reasoning test on the first day of class. This decision was based on 
the researcher’s belief that acquiring proportional reasoning fluency is a major requirement to 
becoming quantitatively literate (Lamon, 2005, p.10). Quantitative literacy being especially at 
stake for students in courses below calculus (Hastings, 2006), it was important for this project to 
rely on comprehensive evidence of these students’ ability to reason proportionally. Even though 
the test was initially designed to assess rising 8th graders’ proportional reasoning skills (Allain, 
2000), it was selected over other proportional reasoning assessment instruments for its 
comprehensive approach to proportional reasoning, including comparison problems as well as 
missing value items. Indeed, reducing proportional reasoning to missing value problems would 
have provided only limited insight on quantitative literacy (Lamon, 2005). 

The majority of college students will not encounter mathematics beyond pre-calculus, and 
the courses below calculus hold a population of students that calls for increased focus by the 
Mathematics Education Community due to its variety of backgrounds and ability levels 
(Hastings, 2006). However, the results described in this article are striking enough that they also 
might raise questions at the middle school and secondary school level. 

The test, developed by Allain (2000), is comprised of ten questions from various sources that 
assess a variety of skills related to proportional reasoning. Half of the students were allowed to 
use the graphing calculator when taking the test, and half were not.  The test was graded using 
the following rubric and students’ answers were analyzed individually in random order, and then 
grouped according to the calculator split after individual grades had been assigned. The list 
below shows the categories of Allain’s rubric, with Longest’s (2002) additional category of a 
zero score for no response or a response that shows no mathematical effort, designed in 
combination with the test: 
 

4 -  Correct answer with evidence of appropriate strategy; 
3 -  Incorrect answer due to computational error with evidence of appropriate strategy; 
2 -  Correct answer without evidence of strategy or evidence of inappropriate strategy; 
1 - Incorrect answer with evidence of inappropriate strategy; 
0 -  No mathematical response. 

 
Analysis of the Results 

Examination of students’ solutions shows that students tend to translate a problem into 
percentages or decimals when allowed to use the calculator, therefore adopting a multiplicative 
behavior, whereas students without the calculator more often resort to additive thinking patterns. 
For example, students were asked to solve the problem below: 
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Problem #1: Two trees were measured five years ago. Tree A was 8 feet high and tree B was 
10 feet high. Today, tree A is 14 feet high and tree B is 16 feet high. Over the last five years, 
which tree’s height increased the most relative to its initial height? 
 

A typical answer using additive thinking is that both trees increased the same, by 6 feet.  When 
using multiplicative thinking, a student is likely to compare the relative growth ratios of both 
trees and may conclude that either tree A or tree B grew the most relative to its initial height 
depending on how the ratios were compared. An example of both reasonings by students is given 
below: 
 
Answer 1 to Problem #1: Angela, with calculator. 

 
Answer 2 to Problem #1: Eric, without calculator. 

 
Eric’s and Angela’s answers were chosen here for their commonality in the group’s responses to 
Problem #1. Among the students who were not allowed to use the calculator, 48% resorted to 
absolute thinking similar to Eric’s in trying to answer the problem, and 48% chose relative 
reasoning. Within that group, 75% of the students who arrived at the right answer using relative 
thinking opted for an additive type of reasoning first (both trees increase the same amount of 
6ft), and then a relative comparison to the initial heights of the trees (comparing 6:10 versus 6:8). 
Of the group with the calculator, only 31.5% chose additive thinking while 68.5% opted for 
multiplicative comparisons, none of which involved an initial additive step; others did not 
provide appropriate explanations for their answers to decide. 

Choosing multiplicative reasoning over additive reasoning did not necessarily lead to the 
right answer. Indeed, students who used a ratio comparison often misinterpreted the final results 
when providing an answer, the same way Angela did. A further analysis shows that among the 
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students who opted for multiplicative reasoning, 50% from the calculator group arrived at the 
correct solution, whereas 60% of those not using the calculator got the correct answer. This type 
of error due to numerical misinterpretation reflects another clear indicator of deficient 
quantitative literacy when the connections and transfers between numerical and contextual 
worlds are overlooked. This inability to interpret a result is better illustrated by students’ most 
common answer to the following problem, probably one of the most difficult in the set assigned: 
 

Problem #2: There are 7 girls with 3 pizzas and 3 boys with 1 pizza. Who gets more pizza, 
the girls or the boys? 
 

Answer 1 to Problem #2: Anthony, with calculator. 

 
Answer 2 to Problem #2: Erika, without calculator. 
 

 
For problem #2, 39% of the group with the calculator followed Anthony’s path and answered 
that the boys were getting more pizza, whereas only 28% of the group without the calculator 
made that mistake. In this case, not having access to a calculating device forced the students to 
carefully think about the relationships among quantities, often in terms of sharing slices as Erika 
did. On the other hand, students with the calculator often simply plugged in the numbers in order 
of appearance in the text and compared decimals without thinking further about their contextual 
meaning. This type of error has been previously documented (Clark, Berenson, & Cavey, 2003; 
Person, 2004) and shows a disconnection between the contextual world of ratio and the 
numerical world of fractions. An important step to adequate proportional reasoning, thus 
improved quantitative literacy, involves the ability to go back and forth between these two 
worlds. This seemed more instinctive for the students when the calculator was not available. Like 
Erika, students without the calculator had a tendency to use drawings in their solutions, whereas 
no student using the calculator felt compelled to do so throughout the whole test. 
 

Discussion 
The results above lead us to think that allowing the calculator on the proportional reasoning 

test had an effect on students’ reasoning patterns. In particular the multiplicative reasoning 
patterns necessary to solve most proportional reasoning problems were encouraged by the use of 
the calculator. One should not conclude however that allowing the use of technology on such 
assessment will necessarily improve students’ results. On average, the students from the group 
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with calculators did not perform better than the group without, but the types of inappropriate 
strategies used were different. The absence of a calculator forced the students to think more 
carefully about the relationships between quantities. They often designed strategies that showed 
evidence of an elaborate thinking process and involved heuristics other than numerical 
manipulations. On the other hand, the students with the calculator more often misinterpreted the 
results they were finding even though their initial computations were correct. Students who did 
not use the calculator also provided more written explanations which we could use as a more 
transparent window into their thinking processes. 

The tendency to choose multiplicative reasoning when using a calculating device has major 
consequences on designing assessments where the calculator will be available. Indeed, if the 
purpose of the assessment is to diagnose students’ ability to reason through a given problem, and 
choose an appropriate sequence of operations that will lead to a correct answer, one must be 
aware that the calculator is likely to condition students into adopting a multiplicative behavior, 
which may flaw the interpretation of the results in terms of students cognitive abilities: in such 
cases, opting for a multiplicative type of thinking would not necessarily show evidence of 
understanding why this particular thinking is appropriate in the given situation. Nevertheless, 
knowing the advantages that technology brings to the classroom, especially with the greater 
availability of visual representations and greater access to self-monitoring, one should not 
suppress it from the assessment process the way it has often been advocated in college courses. 
Rather, these results call for the development of technology embedded instruction where 
assessments are carefully designed to reflect its daily use in the classroom culture. It is important 
for teachers to learn how to use technology efficiently and know when to introduce it in the 
classroom for higher conceptual understanding: more studies like this one will help accomplish 
that goal so that technology may also be selectively part of assessing students’ skills, rather than 
banning it altogether from college courses for what it might “help” students accomplish. A 
diversity of modes of assessment is highly necessary to get a glimpse of students’ reasoning 
complexity. Due to the pervasive nature of technology in our society, quantitative literacy 
assessments should be highly informed by studies on cognitive technology.   
 

Conclusion 
It is important to call for caution when trying to generalize the results described here. The 

pool of participants being small, the author wishes to encourage further research designs that 
may confirm or refute the validity of such findings. Of particular concern would be the tendency 
to generalize them to lower grades at which students’ developmental stages might affect their 
attitude towards the calculator, as well as their quantitative literacy skills and choices of 
reasoning. In other words, this paper is intended as a call for a larger scale study, be it to inform 
the higher education community on effects the calculator might have on students’ answers to 
assessments, or to raise questions on how one might be able to incorporate technology in 
assessment designs while still tapping into students’ cognitive skills. 
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TEACHERS’ ESTIMATION OF ITEM DIFFICULTY: WHAT CONTRIBUTES TO 
THEIR ACCURACY? 

 
Wenyan Zhou 

Vanderbilt University 
wenyan.zhou@vanderbilt.edu 

This study used assessment items as a tool to assess teachers’ understanding of student learning 
progression. We asked ten teachers to rank the difficulties of eleven items about the concept of 
linear measurement for elementary and middle school students. We compared teacher’s rankings 
to the empirical order found in a field administration of the eleven items. Results indicated that 
only three teachers’ ranking reflected the empirical order. Neither the amount of training 
teachers had on mathematics nor did the mere length of their teaching experience predict their 
accuracy. We discussed the relation among pedagogical knowledge, content knowledge, and 
teaching experience.   

Background 
This study is situated in a large, multi-year, multi-site project that focuses on teaching and 

assessing student knowledge of data modeling and statistical reasoning at elementary and middle 
school levels (e.g., Lehrer, 2007, Lehrer, Kim, & Schauble, 2007, Seeratan, et al, 2008). We 
conceptualize data modeling and statistics as encompassing knowledge of seven dimensions, and 
have developed construct maps (Wilson, 2005) to describe the hypothetical trajectory of learning 
progression along each of those dimensions.  We used those construct maps not only as models 
for developing assessment items, but also as professional development tools to stimulate 
discussions about student performance. This paper focuses on one of the seven construct maps, 
namely, the theory of measurement construct that focuses on children’s understanding of 
principles underlying (linear) measurement. Specifically, we suggest that evaluating item 
difficulty is a useful activity to learn about teachers’ understanding of student learning 
progression, in this case, progression with regard to the concept of linear measurement.  

 
Perspective 

The importance of understanding children’s learning progressions is well-established and is 
clearly articulated, for example, by Davydov (2008) in his theory of developmental instruction. 
We consider this understanding a part of teachers’ pedagogical content knowledge (Shulman, 
1986). Understanding the learning progressions is a complex task. Teacher knowledge of the 
structure of a domain and of child development has been postulated as contributors to a 
sophisticated understanding of the learning progressions. Before we test the relation between 
teacher understanding of a learning progression and the other knowledge preparations of 
teachers, however, we need to have tools to assess their understanding of a learning progression. 
This study uses an assessment-based tool to probe into teachers’ understanding of learning 
progression on the topic of linear measurement.  

 
Method 

Participants 
Ten teachers were recruited from participants of our monthly professional development 

workshops during the year 2007-2008, held in a major city in the southwestern US. We sent out 
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requests to the entire group of 26 teachers, and ten of them responded. Among these ten teachers, 
one was male. This male teachers and one of the female teachers were the only teachers having a 
degree in mathematics. One female teacher had prior training and experience in accounting. 
These three teachers were the only teachers among the ten who had teaching experience in 
mathematics only (7th-9th grade mathematics). The remaining seven teachers all had training in 
educations and had taught all subjects. At the time of interviews, one of the seven teachers was a 
7th grade mathematics teacher; one was a coach for mathematics and science in an elementary 
school. All teachers had teaching experience of at least four years.  
Instrument 

A series of items assessing student understanding of linear measurement had been developed 
in the large project about assessing data modeling and statistical reasoning. We used eleven 
items in the research described here. The measurement topics covered by the items include the 
following: direct reading of a ruler, reading a ruler from starting positions other than zero, unit 
iteration, constant units, unit conversions, and unit partition in different fractions.  

In addition to the eleven items, we prepared student responses for two of the items, one item 
on constant units and another on reading a ruler from starting position of one. We prepared four 
types of student responses for each of the items.  

The theory of measurement construct map was also used during the interview. 
Procedure 

In December 2007 and February 2008, we interviewed the teachers individually on days not 
having the workshops. Prior to the interview, teachers filled out a questionnaire asking for 
information about their academic training and teaching experience. In the beginning of the 
interview, we asked teachers to reflect on their theories of how children developed concepts of 
linear measurement. We then presented them the eleven items, in random order. We asked 
teachers what understanding each of those items assessed. Following this question, we asked 
teachers to order the items according to their relative difficulty. We used prompts such as 
“Which item do you think students are able to complete successfully earlier than the others? 
Which item do you think would be the hardest for the students?” We asked teachers to try to put 
the items to distinct levels, but ties were also permitted. Teachers were also asked to justify their 
ordering.  

After teachers order the items, we asked them to locate the items on the theory of 
measurement construct map. We asked that, if a student were completely correct on an item, 
what level on the construct map his/her performance would correspond to. Following this 
activity, we asked teachers to examine the selected student responses for two of the items, one at 
a time. Teachers were asked to explain student strategy indicated in each response, to locate the 
responses on the construct map, and to order them according to their sophistication levels.  
Administration of the Items 

We asked teachers of our existing professional development partnership in another site to 
help collect responses from their students to the same eleven items. Those teachers located in 
school districts in south central US. They administered the items in their classrooms during 
December 2007 to January 2008. Individual teachers determined exam time and duration for 
their classes. A field coordinator collected completed tests from participating teachers and 
mailed them to us. A total of 360 students responded to our tests. Student responses were coded 
and analyzed with a partial credit model to determine the relative difficulties of the items. The 
analysis was run using the ConQuest software (Wu, Adams, Wilson, & Haldane, 2007). The 
resulting order was the empirical order of item difficulty. 
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Preliminary Results 
We calculated Spearman rank-correlations between each teacher’s ordering of the items and 

the items’ empirical order. Three teachers’ orderings were significantly correlated with the 
empirical order at the level of .05 (Spearman’s rho > 0.648, n=11), indicating high accuracy. 
Among these three teachers, two taught all subjects and one taught middle school mathematics. 
The one who taught middle school mathematics was also the teacher with the least teaching 
experience (four years teaching 7th and 8th grade mathematics). Another one of these three 
teachers initially erred on a problem involving improper fraction, indicating that mathematics 
competence might not be directly related to knowledge of learning progression.  

Moreover, mathematics training did not seem to be a significant contributor to teachers’ 
accuracy. Between the two teachers with degree in mathematics, one tended to underestimate the 
more difficult items, but was relatively more accurate with the easier ones; the other tended to 
overestimate the easier items, but was more accurate with the more difficult ones. The 
mathematics coach had the lowest accuracy among the ten teachers, followed by another teacher 
who had teaching experience only at grade five and above.  

Furthermore, teachers who were more accurate (i.e., having a larger Spearman’s rho) were 
often more accurate with the easier items (e.g., between the two teachers with mathematics 
degree, the one who was more accurate with the easier items was also more accurate in general). 
Therefore, it appeared that teachers’ difficulty with these set of items focused on ordering the 
easier items. Teachers appeared to have better sense of the difficulty for items that were more 
difficulty. The mathematics coach, however, was the only anomaly among the ten, because she 
overestimated the easier items and underestimated the more difficult ones, resulting in a negative 
rank correlation between her ordering and the empirical order.   

Examining teachers’ justification of their ordering indicated that many related their answers 
to their personal experience, i.e., what they personally found more challenging. This might 
explain why the teacher who initially erred on the problem involving a simple improper fraction 
could be accurate in her estimations – although she might not be good at mathematics, she might 
be a reflective learner/practitioner.  

 
Discussion 

This study shows how assessment items of student knowledge can also be used to assess 
teachers’ understanding of learning progression, which we consider to be a component of 
teachers’ pedagogical content knowledge. We note that the pattern emerged out of our finding is 
consistent with the notion that pedagogical content knowledge and domain content knowledge 
are different. Our study also indicates teaching experience may not be directly related to 
teachers’ pedagogical content knowledge, which in this case is in the form of understanding 
student learning progression.  

As we are completing the analyses of the remaining interview data, which include a detail 
look at teachers’ justifications of their orderings and their interpretations of the construct map, 
we hypothesize that teachers who are more accurate in their ordering would also tend to have 
better understanding of our construct map, which describe the learning progression of students 
about the concept of linear measurement.  

We realize that, however, our study is exploratory, and future research will need to establish 
the validity of our tasks as an assessment tool for teachers’ understanding of learning 
progression. 
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Using the framework that assessment can provide an opportunity to learn, this study investigated 
the impact of collaborative testing on college students’ understanding of statistics. In addition, 
because collaborative tests have the potential to mitigate test anxiety, students’ attitude toward 
the treatment was studied. Results of the tests demonstrated that those students who tested 
collaboratively scored higher than students who tested individually. Moreover, students who 
tested collaboratively and were rated as low ability (based on a standardized entrance exam) 
outscored high ability students who tested individually. Additionally, results of the attitude 
survey showed an overwhelmingly positive view of using collaborative tests. 

 
Theoretical Framework 

 Assessment, referred to broadly by Shepard (2001) as an emergent paradigm, can also be 
referred to as a framework to study students’ understanding of mathematics. Assessment as an 
emergent paradigm refers to a conception of assessment that is more aligned with a constructivist 
perspective on teaching and learning. A focus on reform teaching in the 1980s and 1990s led to a 
gap between contemporary mathematics teaching and traditional assessment practices. Whereas 
the teaching and learning of mathematics had entered a reform paradigm that was determined by 
constructivist ideals, the assessment of mathematics remained in a traditional paradigm more 
closely aligned with behaviorist ideals (Greeno, Collins, & Resnick, 1996; Shepard, 2001).  

One way to shift assessment into the constructivist paradigm is to provide students the 
opportunity learn by communicating with each other while completing an assessment task. 
Communication is a critical component of learning mathematics; in particular, communication is 
an essential component for learning mathematics with understanding (Fennema, Sowder, & 
Carpenter, 1999). In fact, NCTM highlighted communication as a necessary component when 
defining communication as one of the five Process Standards (2000). According to the 
communication standard, students must be able to— 

• organize and consolidate their mathematical thinking through communication; 
• communicate their mathematical thinking coherently and clearly to peers, teachers, and 

others; 
• analyze and evaluate the mathematical thinking and strategies of others;  
• use the language of mathematics to express mathematical ideas precisely (p. 60).  

Discussing others’ ideas while defending one’s own, can expose misconceptions, 
misinterpretations, and holes in one’s thinking, leading to expanded understanding by all. 
“Through communication, ideas become objects of reflection, refinement, discussion, and 
amendment” (NCTM, p. 60). Communication in learning mathematics and the importance of 
assessment in determining the amount of learning that occurred are central features in learning 
with understanding. As such, they provide a solid foundation by which to frame a study of 
students’ understanding of mathematics through the use of collaborative tests.  
  

Literature Review 
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Although assessment has many purposes, its use as a summative tool to evaluate, rank, and 
quantify student understanding is its most common purpose. Currently, researchers in K–12 (de 
Lange, 1999; Romberg, Zarinnia, & Collis, 1990) and higher education alike (Gold, Keith, & 
Marion, 1999; Shepard, 2001) agree that how students are assessed needs improvement. 
According to Shepard, “the purpose of assessment in classrooms must…be changed 
fundamentally so it is used to help students learn and to improve instruction, not just to rank 
students or to certify the end products of learning” (p. 1080).  

A focus on assessment is grounded in the prominent role assessment takes in the learning 
process—prominent because one can only determine the degree to which learning has occurred if 
one assesses that learning. This role is also appropriate due to the fundamental nature of 
assessment on student performance not only in K–12 education (Chappuis & Stiggins, 2002; 
Shepard, 2000; Stiggins, 2002), but in higher education as well (Adams & Hsu, 1998; Ritter, 
2000). Especially when assessment is used to support learning in addition to being used as a 
measure of learning, it is fundamental to the whole teaching/learning process. When assessment 
is used to support learning, teachers adapt the process and flow of information about student 
achievement in order to advance, not merely check on, student learning (Stiggins, 2002). This act 
of assessing can provide students with an opportunity to learn, and specifically, learn important 
mathematics (Steen, 1999; van den Heuvel-Panhuizen & Fosnot, 2001). When envisioned as 
such, assessment is an integral part of instruction (Black & Wiliam, 1998; Schoenfeld, 1997; 
Shepard, 2001; D. C. Webb, 2001).  

While the main goal for using collaborative tests in this study was to provide students with an 
opportunity to learn, research has confirmed many other reasons for implementing collaborative 
testing. For example, taking tests in groups can reduce anxiety in testing situations. It is possible 
that anxiety surrounding test taking can serve to motivate students to rise to the challenge. 
However, it is much more likely that this kind of anxiety will interfere with thinking and 
eventually compel students to give up. According to Helmericks (1993), “[C]ollaborative testing 
operates to alleviate, or at least mitigate, examination anxiety, a major source of the debilitating 
math anxiety that …students endure” (p. 287). Thus the use of collaborative tests can allow 
students who normally might “freeze” to not only complete the test, but actually learn in the 
process. 

Research has also shown that collaborative test taking promotes continued learning in that 
once students have the opportunity to learn, they can continue learning (Ittigson, 2002; Lehman, 
1995; N. M. Webb, 1995). According to Webb, “[e]ven a small amount of collaboration may 
influence a student’s understanding and performance” (p. 247). In addition, developing new 
understanding by building on other students’ ideas is a form of learning as is giving explanations 
which encourage the explainer to justify, reorganize, and clarify his/her thoughts (Webb, 1995). 
Learning is not accomplished when students have given up. In a group testing situation, it is not 
acceptable to give up; “students put a lot of pressure on their group members and get very 
irritated if another member is not holding up his/her end” (Lehman, p. 4). So while peers do not 
allow each other to slack, it is because they hold their group members responsible for ensuring 
all group members understand the material. 
  In addition, collaborative tests require communication, which many agree is of the utmost 
importance not only in teaching and learning, but also in assessment (McConnell, 2002; NCTM, 
2000). In fact, in NCTM’s Assessment Standards for School Mathematics (1995), the authors 
state that assessment should enhance learning, and learning involves being able to reason and 
communicate mathematically. Communication such as this encourages support for each other’s 
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learning as opposed to competition. Traditional testing methods involve students working alone 
and are characterized by individual competition, primarily for grades. In contrast, collaborative 
testing engenders an “all for one, one for all” atmosphere conducive to learning, especially with 
the peer pressure for everyone to hold their own.  

Based on the framework presented above, the author chose to investigate the effectiveness of 
using collaborative tests to improve students’ understanding of statistics and their perceptions of 
the treatment in general. In particular, the present study is guided by two overarching research 
questions: 1) In what ways does taking tests collaboratively increase students’ understanding of 
the material, and 2) What aspects of the treatment did students find especially helpful in terms of 
helping them understand? 

 
Methods 

This study was designed to provide data sources that would document the influence of using 
collaborative tests as compared to individual tests. The primary source of data that was used was 
a series of three initial tests and three similar, but different retake tests measuring students’ 
understanding of basic statistics concepts. A secondary data source, an attitude survey, required 
students to rate ten statements on a five-point Likert scale and answer five open-ended questions 
regarding their perceptions of the treatment. Using a very simple two-by-two experimental 
design, this study compared initial test scores (taken either collaborative or individual) to retake 
scores (all taken individually) in both groups (reading horizontally) and compared scores on both 
tests between groups (reading vertically) (see Figure 1). 

 
 Initial Test Retake Test 
Control Group 
(initial test taken individually) 
 

               

 
Treatment Group 
(initial test taken collaboratively) 

               

Figure 1. Two-by-two design to compare test scores between groups and between tests. 
   

Forty-eight students enrolled in two sections of Quantitative Literacy at a two-year Arts 
College in the Midwest participated in the study. The median age of the students was 19, almost 
70% were male, and the majority of the students were Caucasian. Both classes met twice a week 
for one hour and forty minutes, one class in the morning (the control group) and the other in the 
afternoon (the treatment group). The classes covered the same material each day and were taught 
by the same instructor.  

The groups were deliberately assigned so that each group had at least one high ability student 
and to the extent possible, similar numbers of high and low ability students as measured by a 
median split of the scores received on an Asset test (ACT Incorporated, 2003) taken upon 
admission to the college. The Asset test is a national standardized test designed to “[obtain] 
academic and background data about advisees,…[place] students in courses that match their 
interests and abilities,…[and help] students explore their educational and career options” (ACT 
Incorporated, 2009). The students remained in the same groups throughout the study except for 
occasions when more than one student was absent from a group.  
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Through the discussion of a reading based on Johnson, Johnson, and Holubec (1993) which 
highlighted the purposes, goals and methods of cooperative learning and collaborative test 
taking, the treatment group learned about the key features of cooperative learning and 
collaborative testing. In addition, the treatment group practiced, in their prescribed groups, the 
cooperative techniques by solving an in-class problem which involved multiple solution 
strategies and multiple answers. The students in the control section had no cooperative training 
and completed the same in-class problem individually. The students in the control section had no 
cooperative training and completed the same in-class problem individually.  

All students took an initial test measuring their understanding of basic statistics concepts and 
then two days later, at the start of the next class period, they took a similar, but different, retake 
test on the same material. Each test contained two or three open-ended problem-solving 
questions that required students to explain, describe, or demonstrate how the problems were 
solved, and one or two procedural questions. The tests were all graded by giving partial credit if 
either (a) the answer was wrong but the process was correct or (b) the answer was wrong but the 
student was on the right track. Tests from both sections were graded together by the instructor 
with care being taken neither to look at the names nor to note in which section the student was 
enrolled. The students in the treatment group took all of the initial tests in their prescribed groups 
of three, while the students in the control group took the initial tests individually. Both groups 
took the retake test on the same material individually.  

 
Results 

Table 1 lists the relative scores all for students on both the initial and retake tests. Reading 
vertically, the table shows the difference in students’ understanding of basic statistics concepts 
between original scores and retake scores. Surprisingly, in only one case (control group, test 2) 
did students score better on the retake than on the original. In fact, students who tested 
collaboratively scored as much as almost 37% lower on all retake tests, whereas students who 
tested individually scored higher on two out of three retake tests, although at most only 5% 
higher. 

Reading horizontally, in all but one comparison between the control group and treatment 
group, the treatment group scored higher, not only on all the initial tests, but also on two out of 
three retake tests. In particular, students testing collaboratively scored as much as 31% higher on 
an initial test and 12.5% higher on a retake test.  

 
Table 1 
Mean Percents of Tests and Percent Differences between Control and Treatment Scores 
 
 
 
Tests 

Control group 
(Individual initial,  
individual retake) 
Mean 

Treatment group 
(Collaborative initial, 
individual retake                
Mean 

Percent of increase ↑ 
or (decrease ↓) 
between control and 
treatment scores 

Test 1 78.0% 86.8% 8.8% ↑ 
Test 1 Retake 71.5 77.3 5.8↑ 
Percent of ↑ or (↓) 
initial to retake 
 

(6.5) ↓ (9.5) ↓  

Test 2 58.4 89.8 31.4↑ 
Test 2 Retake 62.8 75.3 12.5↑ 
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Percent of ↑ or (↓) 
initial to retake 
 

4.4 ↑ (14.5) ↓  

Test 3 56.0 84.9 28.9↑ 
Test 3 Retake 
Percent of ↑ or (↓) 
initial to retake 

58.3 
2.3↑ 

54.2 
(30.7) ↓ 

(4.1) ↓ 
 
 

 
The results of the breakdown between high and low ability groups are shown in Table 2. The 

mean scores of and the mean difference (high minus low) between the high and low ability 
groups are represented. As might be expected, the high ability students scored higher on all tests 
taken individually. However, the low ability students who tested collaboratively actually 
outperformed the high-ability students in two out of three initial collaborative tests. And 
although the low-ability students scored lower than the high-ability students on the individual 
retake tests, they only scored on average, 3.6% lower. This is contrasted with low-ability 
students who tested individually and scored an average of 17.1% lower than the high-ability 
students. 

 
Table 2 
Mean Test Percentages for High and Low Ability Students and Mean Differences between 
Abilities 
  Individual   Collaborative   
 Test 1 Test 1 

Retake  
T1R-T1 Test 1 Test 1 

Retake 
T1R-T1 

High ability 81.0% 82.7% 1.7% ↑ 82.9% 79.3% (3.6↓) 
Low ability 75.0 62.1 12.9 ↑ 90.7 75.6 (15.1↓) 
Mean 
difference 

6.0 20.6  (7.8) 3.7  

       
 Test 2 Test 2 

Retake 
T2R-T2 Test2  Test 2 

Retake 
T2R-T2 

High ability 67.0% 70.0% 3.0 ↑ 75.5% 76.1% 0.6% ↑ 
Low ability 51.0 50.0 (1.0) ↓ 88.8 74.3 (14.5) ↓ 
Mean 
difference 

16.0 20.0  (13.3) ↓ 1.8  

       
 Test 3 Test 3 

Retake 
T3R-T3 Test 3 Test 3 

Retake 
T3R-T3 

High ability 68.2% 63.7% (4.5) ↓ 93.2% 56.4% (36.8) ↓ 
Low ability 43.8 53.0 9.2↑ 75.9 51.0 (24.9) ↓ 
Mean 
difference 

24.4 10.7  17.3 5.4  

The secondary data source, the results of the attitude survey, showed that with only a few 
exceptions, students expressed very positive feelings about the treatment. The answers to both 
the Likert scale section and the open-ended question section strongly supported testing in 
collaborative groups. In particular, 93% of the students agreed or strongly agreed that they felt 
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much less stressed when taking the tests in groups; 92 % of the students stated that working in 
groups made it easier to learn; and 70% agreed or strongly agreed that they have a better 
understanding of the material because of working in groups. The only suggestion students had to 
improve the collaborative testing process that was mentioned by numerous students referred to 
group composition. Forty-one percent of the students commented on the size, make-up, or 
consistency of the groups, but with no one suggestion standing out as agreed-upon by a majority 
of students.  

Discussion 
In five out of six tests, students who had the chance to test collaboratively performed better 

than those students taking the tests individually. It is no surprise that students testing in 
collaborative groups during the initial test would score higher; the fact that they scored higher on 
two of the three individual retake tests strongly suggests that collaborative testing has merit. 
However, if collaborative testing really improves understanding it would be expected that the 
scores were higher on all three individual retake tests. Since all retake tests were taken 
individually, one could speculate that (a) students were not using the collaborative testing 
situation to help them learn and instead simply solved the problems by relying on the expertise of 
the high ability student in the group, or (b) the lower scores were due to the retake tests 
themselves, a possible limitation of the study. 

However, the results of the high and low ability analysis were consistent with other research 
(N. Webb, Nemer, Chizhik, & Sugrue, 1998) in that the low ability students who tested 
collaboratively benefited the most from the testing treatment. They scored, on average, 11.9% 
higher on the individual retake tests than the low ability students who tested individually. An 
interesting result is that the high ability students who tested collaboratively scored an average of 
14.3% lower on their individual retest. One could speculate that this was due to their perception 
that working in a group was not going to be beneficial to them; often high ability students prefer 
to work alone or only with other high ability students, and feel burdened when working with 
lower ability students. This is in contrast to low ability students who might perceive immediate 
value to testing collaboratively; due to their lower ability they often are much less confident 
about their answers and benefit greatly by the feedback they receive while testing 
collaboratively. 

 
Limitations 

Some limitations exist within this study that could minimize the amount of strong evidence 
of the effectiveness of collaborative testing. One such limitation is the small sample size. Classes 
consist generally of at least thirty students, but student withdrawals resulted in class sizes of 
approximately 23 students. Another limitation is the limited time invested on training students 
how to learn cooperatively and test collaboratively. Training for these skills occurred at the same 
time as the study itself, thus the effectiveness of students testing collaboratively was 
compromised by the fact they were at the same time learning how to work together.  

However, as can be seen by the scores, the students did improve over time; the scores of the 
second and third collaborative tests were approximately 30% higher than the scores on the 
individual tests, and 6% higher on the initial test taken collaboratively. This is consistent with the 
research that states that students need specific training over time in the skills required to work 
effectively in groups (Johnson et al., 1993). 
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The tests themselves also may have decreased the effectiveness of the study. For a test to 
accurately measure a group's understanding, it needs to include open-ended questions that 
require all group members to participate and contribute to the solutions. Otherwise, if there is 
only one right answer, the brightest student will often simply take the test and allow the others to 
copy. These types of tests, although effective when testing collaboratively, are extremely 
difficult to take individually. This would explain the lower scores on the retakes (which were 
taken individually), as all tests were written with collaborative testing in mind to maintain 
consistency. 

However, two other limitations—if they could be accounted for in future studies —might 
actually strengthen the case for collaborative tests. A major limitation in this study was the 
transient student population. The multiple absences of numerous students made the consistency 
of groups nearly impossible in some cases. According to the research, for cooperative learning 
(or collaborative testing, in this situation) to work, students must be invested in the group; the 
group sinks or swims together (Johnson and Johnson, 1993).  With so many students repeatedly 
absent, building this type of commitment was nearly impossible, as groups were constantly 
changing. Also, the absences meant that those students were behind when they did show up since 
almost no students returned to class with the current homework done. Thus, simply by improved 
student attendance, both group commitment could be developed and students could remain 
caught up. 
 

Conclusion 
The results of this study has shown that students—especially low ability students—do 

increase their understanding of basic statistics concepts when testing collaboratively. Although 
the individual retake scores of students in the collaborative testing group increased only two-
thirds of the time, the students' positive attitudes towards the treatment suggest that using 
collaborative tests is a method worthy of more study. Also, the large increase in scores of low 
ability students makes collaborative testing especially useful in teaching students whose 
strengths may not include math. Further research could be done with larger sample sizes, more 
collaborative training, tests specifically geared toward individual testing as well as collaborative 
testing, and a more consistent participant groups. 
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Practitioners often notice that students have difficulty with area measurement. For instance, 

students often confuse the area of a rectangle with its perimeter. A review of the literature (e.g., 
Battista, Clements, Arnoff, Battista, & Van Auken Borrow, 1998; Doig, Cheeseman, & 
Lindsey,1995; Kamii & Kysh, 2006; Lehrer & Chazan 1998; Outhred & Mitchelmore, 2000; 
Reynolds & Wheatley, 1996) has indicated that student difficulty with the area tasks is often due 
to their lack of conceptual understanding of area as a quantitative attribute.  

In order to assist teachers to better diagnose their students’ conceptual understanding of area 
measurement, this presentation reports our effort in developing an assessment for student 
understanding of area measurement. This poster consists of three major parts: 
1. Description of the instrument development process. Our process of developing the 

assessment follows a construct mapping approach (Wilson, 2005), which requires us to 
specify a hypothetical learning progression at the outset of the assessment development. This 
learning progression is used as a model to guide item design.  

2. Description of a calibration study of the assessment items: We use the learning progression 
specified in the beginning to guide interpretation of student responses. Student responses are 
coded and analyzed using a partial-credit Rasch model. The quantitative results are 
supplemented with qualitative analysis of selected examples. 

3. Description of a teaching study of area measurement with embedded formative assessment: 
We describe a teaching study that embeds the formative assessment items to support the 
teaching and learning of the concept of area measurement.  
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This study investigated the factors that contribute to first-year secondary mathematics 

teachers’ assessment practices as well as their conceptions about assessment. Given the fact that 
teachers spend about 40% of their time in assessment-related activities (Stiggins, 1988) coupled 
with the current educational reform calls for a much broader role of assessment in mathematics 
and the continued dominance of paper-and-pencil assessments (Shulman, 1986; National Council 
of Teachers of Mathematics, 2000), it is important to investigate which influences are important 
to first-year teachers’ assessment practices and conceptions. Three case studies were conducted 
with first-year secondary mathematics teachers. Literature from the areas of teacher beliefs, 
beginning teachers, and mathematics assessment provided a lens to analyze the observations, 
interviews and classroom artifacts.  

Results suggest that several factors influenced first-year teachers’ assessment practices. 
Teachers’ beliefs about mathematics and its teaching and learning, students and assessment were 
all intertwined and together impacted how they assessed student learning. The locale of their 
source of authority (external or internal) along with their perception of external constraints 
influenced their assessment practices. The teachers were also influenced by the practices of their 
colleagues and the school culture. Lastly, the presence of the researcher in the classroom played 
a small role in the assessment decisions and practices of the first-year teachers.  

Despite their knowledge of reform efforts in assessment, their assessments were very 
traditional but looked different in each of the first-year teachers’ classrooms. Jack heavily used 
traditional formal assessments from the school-created teacher test bank. Karen created her own 
assessments and experimented with nontraditional assessments like a project and a pair test. 
Angel modified her colleagues’ traditional assessments and frequently used informal assessments 
like peer teaching and student questioning. Teachers thought assessment should provide all 
students a fair opportunity to show what they know and can do, align with instruction and 
include multiple sources. Furthermore, informal assessments like facial expressions and students’ 
verbal explanations provided important information about student mathematical knowledge but 
did not contribute towards the student’s final grade.  
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In this report, we offer a framework for analyzing the ways in which collaboration influences 
learners’ building of mathematical arguments and thus promotes mathematical understanding. 
Building on a previous model used to analyze discursive practices of students engaged in 
mathematical problem solving, we introduce three types of collaboration and discuss their 
influence on the building of mathematical arguments and student agency. The framework is 
exemplified using data from a study of the development of mathematical reasoning in an urban 
sixth-grade informal after school program.  
 

Introduction 
In recent years, policy makers and researchers have focused on the role of discourse in the 

mathematics classroom. The National Council of Teachers of Mathematics (NCTM, 2000) 
emphasizes the importance of communication in students’ developing mathematical 
understanding and suggests that students be afforded the opportunity to share their ideas in a 
mathematical community and analyze and evaluate the ideas of their peers. Participating in 
mathematical discussions and reasoning about mathematics requires that students have 
opportunities to share and to discuss their ideas with others (Lampert & Cobb, 2003). 

Collaboration is often viewed as learners supporting each other by offering missing pieces of 
information needed to solve the problem. Alternatively, a powerful type of collaborative work 
involves group members relying on each other to generate, challenge, refine, and pursue new 
ideas (Francisco & Maher, 2005). With this type of collaboration, rather than piecing together 
their individual knowledge, the students build new ideas and ways of thinking as a group. 
Martin, Towers, and Pirie (2006) refer to collective mathematical understanding as the kind of 
learning and understanding that transpires when a group of students work together on a 
mathematical task. They identify co-acting as a process through which an individual’s 
mathematical ideas and actions are adopted, built upon, and internalized by others, thus 
becoming shared understandings rather than being limited to the individual. In co-acting, ideas 
are initially put forth by an individual student and are then picked up by others and built upon, 
thus they consequently become shared by the group members (Martin, Towers, and Pirie, 2006). 
In this report, we offer a framework for analyzing the ways in which collaboration influences 
learners building of mathematical arguments and thus promotes mathematical understanding.  
 

Theoretical Framework 
Davis (1996, 1997) introduced a framework for analyzing the ways that teachers listen to 

their students. His framework involved three modes of listening: evaluative, interpretive, and 
hermeneutic. Powell and Maher (2002) extended Davis’ categories to analyze “the discursive 
practices of learners in conversational exchanges” (p. 319) and referred to this phenomenon as 
interlocution. They identified the four properties of interlocution as evaluative (judging without 
participating), informative (seeking or providing information without judging), interpretive 
(teasing out the intention or meaning behind a partner’s statement), and hermeneutic (engaging 
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and negotiating the partner in the interaction, participating in a shared project). Powell (2006) 
modified this framework for the purpose of analyzing students’ mathematical discourse. Powell 
noted that negotiary discourse (hermeneutic) is particularly important in the development of 
socially emergent cognition. This phenomenon, as defined by Powell, is the “process through 
which ideas and ways of reasoning materialize from the discursive interactions of interlocutors 
that go beyond those already internalized by any individual interlocutor” (p. 33). Powell found 
that students’ discursive interactions influence their mathematical ideas and reasoning. 

When considering aspects of student collaboration and the reasoning that results from this 
collaboration, we must also consider the issue of agency and the nature of the interplay of 
mathematical ideas in the mathematics learning environment. Agency involves taking the 
initiative and making things happen in the classroom (Wagner, 2004). Human agency is 
exhibited when one creates one’s own mathematical idea or extends an established idea 
(Pickering, 1995). Agency, then, is important in tracing the origin of mathematical ideas as well 
as the way that discourse, and the participants in the discourse, influence the ultimate 
mathematics that is constructed. 

In this paper, we draw on these ideas to inform our conceptualization and analysis of student 
collaboration and the mathematics that results from various forms of student collaboration. Our 
framework highlights three modes of student collaboration, the discursive nature of each, and the 
significance and interplay of agency and neighbor interactions that take place during 
collaborative instances. 

The first form of collaboration occurs when students engage in the co-construction of ideas. 
This is a form of collaboration in which the dialogue occurs in a back and forth nature (similar to 
the action that occurs during a ping-pong game) until the argument is built. In other words, the 
argument is simultaneously built from the ground up. 

The second form of collaboration is that of integration. This form of collaboration is 
identified when a student’s argument is strengthened using ideas from their peers. In other words 
the ideas, explanations, or representations of others are assimilated into their original argument. 

The primary distinction between co-construction and integration is that in a co-constructed 
argument, the two interlocutors are creators of the argument. Without one of the participants, the 
argument would not exist. An argument that results form the process of integration, on the other 
hand, is established by its originator and is only enhanced by the other participants’ 
contributions. 

The third form of collaboration is that of modification. This occurs as students attempt to 
correct a peer or assist him/her in making sense of a model or argument that was originally 
expressed in an unclear or incorrect way. As the student attempts to make sense of the faulty 
argument and assist one’s partner in seeing the error or sense-making, a sound argument is 
created that differs significantly in presentation and/or interpretation. 

Figure 1 below illustrates the nature of the discourse and of the agency that is typical of each 
form of collaboration. Co-construction is typified by negotiary discourse, and all participants 
share agency in the discussion. Integration makes use of both informative and interpretive 
discourse. The original argument is interpreted by the second participant, who then enhances the 
argument in a way that informs the originator and allows the first participant to assimilate the 
information in a meaningful way. During integration, the originator of the argument is the 
principal agent, but the secondary participant influences the mathematical outcome and thus is a 
secondary agent in the discussion. Modification is characterized by interpretive discourse, as one 
student attempts to makes sense of another’s faulty or flawed argument. This sense-making 
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student also has the primary agency in the discourse, as he/she has the ultimate control in the 
mathematical outcome of the discussion. 

 

 
 

Figure 1. Three modes of collaboration. 
 

Method of Inquiry and Data Source 
Setting  

This research is a component of a larger, ongoing longitudinal study, Informal Mathematics 
Learning Project (IML), conducted through an after-school partnership between a University and 
an economically depressed, urban school district whose school population consists of 98 percent 
African American and Latino students. A goal of the program was to explore how mathematical 
reasoning develops in middle-school age students over time and under certain conditions. 
Students worked on challenging tasks, interacted with peers, and were allowed the time and 
opportunity to explore, explain, and discuss. The IML project spanned more than two and a half 
years (including summers) and included 30 sessions (each approximately 60-75 minutes in 
length). During each session a cohort of 24 students was asked to engage in open-ended problem 
solving working on stands of mathematical tasks, involving topics such as fractions, 
combinatorics, and probability. 

In this paper, we report on the first five sessions of the IML program. Students, seated in 
heterogeneous groups of four, were given a strand of tasks dealing with fraction ideas in which 
they were asked to justify their solutions. For many of the students, the opportunity to work 
collaboratively on open-ended tasks was a new experience. With this in mind, tasks developed 
from earlier research had been found to promote collaborative reasoning and problem solving. 
Students were invited to build models of their solutions to the tasks using a set of Cuisenaire 
rods. The set contains ten colored wooden or plastic rods that increase in length by increments of 
one centimeter. After each task was posed, students worked in their small groups and were 
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encouraged to build models and share ideas and conjectures. Students were then invited to the 
overhead projector to share their models and arguments with the whole class. Our analysis in this 
paper focuses on two groups of students working on two tasks during the second and fifth 
sessions of the program.  
Analysis 

Four video cameras were used to capture the activity of students working in small groups and 
presenting at the overhead projector. Video recordings and transcripts were analyzed using the 
analytical model outlined by Powell, Francisco & Maher (2003). The video data were first 
viewed repeatedly so that researchers could get a sense of the big picture. Next, the videos were 
transcribed and critical events were identified. Critical events consisted of students constructing 
justifications and defending these justifications. The critical events were organized into episodes 
which were organized in tables that traced the development of the justifications. Codes were 
developed to flag solutions offered by students, the justifications provided to support these 
solutions, and the occurrence of students collaboratively building arguments. 

A modified grounded theory approach was used to analyze the data for collaboratively 
constructed arguments. Initial codes for the collaborative actions in building ideas emerging 
were organized into three categories: building on other’s ideas, questioning others, and 
correcting others. Sub-codes of building on others’ ideas included: expanding, redefining, and 
reiterating. Analysis of the patterns that these codes highlighted enabled the identification of 
patterns of interaction that were present. The result of our analysis was a coded, sequential 
narrative of both the justifications that students built collaboratively and the challenges that they 
made during the five sessions. 

 
Results 

Examining the data across sessions, we found that the majority of arguments were built 
collaboratively. Upon further analysis, we discovered that the students collaborated in three 
different ways, and these modes of collaboration were ultimately crystallized and defined as 
outlined in the theoretical framework. A description of the three ways that students collaborated 
is organized by presenting an analysis of two episodes in which students collaboratively built an 
argument. 
Episode 1: Integration and Co-construction 

During the second session of the after-school program students were given the following 
task: If I call the blue rod one, I want each of you to find me a rod that would have the number 
name one-half. This is an impossible task since the blue rod is 9 cm. long. As such, the task 
generated many different arguments from the 24 students that included four different types of 
reasoning (contradiction, upper and lower bounds, cases, and inductive). The students worked for 
a few minutes and determined that such a rod did not exist. Chris lined up nine white rods under 
a blue rod and explained that you could find a rod whose length is one-third of the blue rod but 
not one-half. Danielle and Brittany began to build models of combinations of rods whose lengths 
were equivalent to the length of the blue rod (for example, a train of a yellow rod and a purple 
rod). After about five minutes Chris presented his partners with his model and explained:  

 
Chris:  If you take out four that’s an even number but if you put the four back, 

that’s not a half because it’s nine, and nine is an odd number.  
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Danielle then presented the combinations of trains of rods whose lengths are 
equivalent to the blue rod (yellow and purple, black and red, light green and dark green, 
brown and white). Again, Chris explained using his model of nine white rods. 

 
Chris:  You can’t find a half of the blue one because if you put all white you 

only have nine so for nine you can’t really do it. And also if you put 
the white ones, you – it’s an odd number which is nine, and you can’t 
do it. 

 
Referring to the model that she and Danielle built, Brittany explained that none of the 

combinations of rods were a half because they were not the same length. In response, 
Chris explained that the blue rod is equivalent in length to nine white rods and nine is an 
odd number. The following dialogue then occurred:  

 
Danielle:  You can’t really divide an odd number; if the two yellow rods were the 

same length as the blue rod then they would be a half.  
Chris:  Overall you can’t do it because if you use a white one, it is an odd 

number so you can’t divide by two.  
Jeffrey:  Unless you get a decimal or a remainder. 
Chris:  And you wouldn’t be able to do it anyway because none of these are 

even.  
Danielle:  If only we had the two yellows and the yellows were shorter— 
Jeffrey:  If purple was bigger— 
Danielle:  Yeah, if the purple was bigger, then the green was kind of shorter so 

that the same color green could fit on it.  
Jeffrey:  If the purple would have been a little, like half of the white, it would 

have been good. 
Danielle:  Or if the light green was, um, it was, yeah, like a little bigger, then you 

could only have one up there or two.  
Jeffrey:  The light green rod would have to be bigger than the purple rod. 
Danielle:  But the purple has to be bigger; the purple has to be bigger equally 

because if you take another purple, you’re going to have to add a 
white. Yeah, you’re going to have to add a white; see, it don’t work. 

Chris:  The thing we should say is that since we put the white cubes and we 
got an odd number, then if you have an odd number you can’t divide 
by two so you get one-half. So you get a decimal or a remainder so 
you can’t really divide it, right? 

  
In the above dialogue we see that two different forms of collaboration occurred 

simultaneously, integration and co-construction. Chris built a model using nine white rods and 
offered an argument based on a contradiction. Although his partners used a different line of 
reasoning, Chris continued to use his argument; however he integrated ideas from Danielle (You 
can’t really divide an odd number) and Jeffrey (Unless you get a decimal or a remainder) into 
his original argument. The integration of these ideas strengthened Chris’ original argument. 
Meanwhile, Jeffrey and Danielle co-constructed an argument based on upper and lower bounds. 
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Danielle offered the upper bound and Jeffrey the lower bound and together they determined that 
not rod existed between these two rods.  
Episode 2: Modification 

During the fifth after-school session students were presented with the task: which is bigger 
one-half or one-third, and by how much? Many students initially tried to name the orange rod 
one but realized that they could not find a rod whose length was one-third of the orange rod. 
They struggled with finding a model that they could use to compare one-half and one-third. 
Finally, Michael explained that the dark green rod would be named one, the light green rod one-
half, and the red rod one-third. He used a model of the rods lined up next to each other to 
convince Ian. The students continued working on the task using Michael’s model. Eventually 
Michael shared his “cake metaphor” described below. 
 

Michael:  And like, say, say you got five kids and each kid want a different slice [of 
cake] so one kid gets one-half [he pushes aside a light green] another kid gets 
this half [the other light green rod]—you only have three pieces left and the 
other three want small, well not small pieces, medium pieces [the red rods], 
okay, alright. 

 
The researcher called Michael’s attention to the discrepancies in his model (taking away two 

halves and then taking away three thirds) and walked away. Michael then asked Ian for help. Ian 
asked Michael a series of clarifying questions about his model. Through this questioning, he 
made sense of Michael’s model and ideas and was able to explain it in his own words. 

 
Ian: Oh, I get what your saying, so you’re trying to divide them into different 

slices, like, if this is a cookie and your only here is a whole [the dark green 
rod], then when your friend comes over it’s a half, you split it’s a half [light 
green rods] and then when another friend comes over you split it into three 
slices [red rods]. 

Michael: This [he removes the dark green rod] it ain’t a whole no more 
So you just cut it right? So those are the three halves [red rods], this is the 
third. 

Ian: Oh, this is the one-third [pointing to the red rods] and this is the half [pointing 
to the light green rods]. 

Michael:  yeah 
Ian: Oh I get what your saying now- if this is the whole cake, this is what you’re 

trying to say, if this is a whole cake, alright so this is one whole and then you 
can divide it into three so this isn’t a whole anymore, you have three pieces 
but then let’s say this is the whole again—you divide this into one-half and 
you got two pieces instead of three—like one half is bigger than one-third, is 
that what you’re saying?… yeah I get what your saying  

 
Ian and Michael then used Michael’s cake model to determine that one-half was bigger than 

one-third by one white rod or one-sixth. When the researcher rejoined them, both boys 
simultaneously explained the relationships and presented evidence to show that one-half is 
bigger than one third by one-sixth. 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

282 

In this mode of collaboration, Michael initially built a direct argument to compare one-half 
and one-third using a cake metaphor. However, his explanation was faulty. In the process of 
making sense of Michael’s argument and clearing up the inconsistencies (taking away two halves 
and having three thirds left), Ian developed a solid agreement for comparing the two fractions 
and used the model to find the difference.  

 
Discussion and Implications 

In this paper, we extended Powell’s (2006) framework for analyzing students’ mathematical 
discourse by examining the effects of the four types of interlocution on the ways in which 
students collaborate when building mathematical ideas and justifications. In doing so, we offer a 
framework for analyzing student collaboration and the influence of this collaboration on agency. 
We show two episodes of students collaboratively building arguments as examples of the three 
modes of collaboration: integration, co-construction, and modification. In these episodes, it is 
evident that the nature of student’s agency and the type of discourse in which the students 
engaged were interdependent and thus influenced the arguments that were constructed. The 
students’ discursive interactions clearly had an influence on their mathematical ideas and 
reasoning. We concur with Powell (2006) that negotiary discourse promotes the development of 
socially emergent cognition, but also contend that informative and interpretive discourse are 
important in the discursive interactions of students and play a role in the ways in which ideas and 
reasoning influence students’ justifications and mathematical understating. 

Research points to the benefits of students working collaboratively on mathematical tasks 
and suggests that this collaboration influences individual mathematical understanding. We add to 
the literature by examining how specific types of discourse influence this collaboration and 
identifying three modes of collaboration that result. In addition, we show that each type of 
collaboration played a role in developing the strength or validity of the final argument. Analysis 
of the collaborative moves of students, then, is essential for the promotion of effective 
mathematical reasoning and argumentation in the learning environment. Ultimately, a more 
complete understanding of the mechanisms by which collaboration is encouraged can enable 
educators to facilitate the various forms of collaboration and promote agency and effective 
mathematical reasoning and argumentation in all students.  
 

Endnotes 
1. This research is a component of the National Science Foundation funded project, Research 

on Informal Mathematical Learning (REC-0309062). Any opinions, findings, conclusions and 
recommendations expressed in this paper are those of the authors and do not necessarily reflect 
the views of the National Science Foundation. 
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Mathematics discussion has been suggested to improve mathematics achievement. The current 
study investigated the compound effects of students discussing mathematics with one another in 
both the third and fifth grades using hierarchical linear modeling. Results indicated that having 
discussion in fifth grade but not in third grade had a positive impact on mathematics 
achievement. The impact of discussion in both third and fifth grade was not found to be 
statistically significant from the impact of having no discussion in either grade. However, 
significant variability found in one variable may explain why a compound effect of discussion 
was not found. 
 

Background and Objectives 
According to Silver, Kilpatrick, and Schlesinger (1990), “mathematics deepens and develops 

through communication” (p. 15). Students gain a deeper understanding of the meaning of 
mathematics when they communicate with others about it (Goos, 1995; Lee, 2006; Pimm, 1987). 
Additionally, discussion has been shown to have a positive impact on mathematical achievement 
(D’Ambrosio, Johnson, & Hobbs, 1995; Grouws, 2004; Hiebert & Wearne, 1993; Koichu, 
Berman, and Moore, 2007; Mercer & Sams, 2006). Yet, there is evidence that discussion does 
not always have a positive impact on mathematics achievement (Kosko & Miyazaki, 2009; 
Shouse, 2001), which may imply that either discussion is not consistently effective in deepening 
mathematical understanding or that it is not consistently implemented to maximize its 
effectiveness.  

A previous study conducted by the authors (Kosko & Miyazaki, 2009) investigated the 
impact of discussion on mathematics achievement using data from the Early Childhood 
Longitudinal Study (ECLS). Results showed that when accounting for prior achievement the 
difference between the two discussion groups in the study (weekly and less than weekly) was 
found not to be statistically significant. However, there was a statistically significant amount of 
variability in the impact of weekly discussion across schools. This variability was unable to be 
explained by the authors, even after the addition of covariates.  

The previous study conducted by the authors was done with reference only to the impact of 
discussion in the fifth grade (Kosko & Miyazaki, 2009). The current study seeks to investigate 
the accumulated impact of discussion on fifth grade mathematics achievement. The large amount 
of unexplained variability in the previous study led the authors to question if mathematics 
discussion may take longer than one school year to positively impact math achievement. Yet to 
determine if this is actually the case, a new study had to be conducted. To date, the authors have 
yet to find a longitudinal study to investigate the compound effects of discussion on mathematics 
achievement. Therefore, the purpose and research question for the current study is as follows: 
Does the frequency of peer mathematics discussion in third and fifth grade have a compound 
impact on the mathematics achievement scores of fifth grade students. 
 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

285 

Theoretical Perspectives 
Student discussion of mathematics has been stated as a means to deepen understandings of 

the mathematics discussed (Goos, 1995; Lee, 2006; Pimm, 1987; Silver et al., 1990). Students 
who understand mathematics more deeply should predictably perform better on mathematics 
achievement tests. According to several studies (i.e. Hiebert & Wearne 1993; Mercer & Sams, 
2006; Stigler & Hiebert, 1997) students who were asked to explain and justify their mathematics 
in discussion had higher gains in mathematics achievement than students who were not asked to 
do so. Yet in some cases, student discussion of mathematics has been found to have a negative 
impact on achievement (cf. Shouse, 2001). As mentioned above, a previous study by the authors 
(Kosko & Miyazaki, 2009) found that the impact of student discussion on mathematics 
achievement varies significantly between schools. This means that in some schools the impact of 
achievement can be largely positive while in other schools it is largely negative. While some 
qualitative research (i.e. McGraw, 2002; Nelson 1997) suggests that it takes time for effective 
mathematics discussion to be successfully implemented, there is little to no quantitative data to 
support the impact of time or exposure on the effectiveness of discussion. 
 

Research Question 
Does the frequency of peer mathematics discussion in third and fifth grade have a compound 
impact on the mathematics achievement scores of fifth grade students? 
 

Methodology 
The current study analyzed data from the Early Childhood Longitudinal Study (ECLS) using 

a two-level hierarchical linear model (HLM). Hierarchical linear models are typically used when 
evaluating data nested in many groups (Raudenbush & Bryk, 2002). Since much of what is 
studied in education exists in hierarchical structures (i.e. students within classes, teachers within 
schools), HLM is particularly useful in studying differences within and between nested units. A 
two level hierarchical linear model looks at both the micro units at level-1 and the macro units at 
level-2. The micro units at level-1 (i.e. students) are nested within the macro units at level-2 (i.e. 
classrooms or schools). HLM-2 allows factors examined at the first level to be compared at the 
second level unit of analysis which they are nested in (see Raudenbush & Bryk, 2002 for further 
information). The purpose of using an HLM-2 model in the current analysis was to take into 
account the nested nature of the data (students nested within schools). 

Third and fifth grade data from 3583 students in 1006 schools was used in the current 
analysis. The main variables included in the analysis were achievement scores and a teacher 
assessed item which asked how often the students involved in the study engaged in discussion 
about mathematics with other students. Teachers were required to complete this item for each 
student they taught who was a part of the ECLS study and was therefore used as an individual 
level variable rather than a classroom level variable. The variable addressing how frequently 
students discussed math with their peers was assessed in both third and fifth grade. For the 
purposes of simplifying the model for analysis, the variable was dichotomized at both levels to 
students who did have weekly discussions about mathematics and students who had discussions 
about mathematics less than weekly.  

To investigate the compound effects of discussion on fifth grade achievement scores, four 
categories of students were compared in the analysis: students who did not have mathematical 
discussions with other students on a weekly basis in third grade or in fifth grade (control); 
students who did not have weekly math discussion in third grade but did in fifth grade 
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(disc_0_1); students who had weekly math discussion in third grade but not in fifth grade 
(disc_1_0); and students who had weekly math discussion in both third and fifth grade 
(disc_1_1). These categories were included as dummy-coded variables in addition to other 
variables which served as covariates. These covariates included third-grade math achievement 
scores, race/ethnicity, gender, and socio-economic status. 

 
Results 

Results showed that students in the disc_0_1 group had statistically significant higher scores 
than students who did not have discussion in either third or fifth grade. Students in both the 
disc_1_0 and disc_1_1 groups did not score significantly higher than students without discussion 
(control). At first glance this seems to indicate that there is no compound effect of discussion. 
However, the variable disc_1_0 was found to have significant variability across schools, more 
than four times the impact of disc_1_0. Such variability indicates that weekly discussion in third 
grade had a largely positive impact on math achievement in some schools but also had a largely 
negative impact on math achievement in other schools. In turn, this variability may have affected 
the impact of disc_1_1 on math achievement. Since weekly discussion in third grade was shown 
to have a negative impact on math achievement for many students, such discussion may, in part, 
counteract the generally positive benefits of having weekly math discussion in fifth grade. This 
would therefore explain why a compound effect of discussion was not found in the analysis. 

 
Discussion 

Mathematics discussion has been shown to have a positive impact on math achievement in 
some instances (D’Ambrosio, Johnson, & Hobbs, 1995; Hiebert & Wearne, 1993; Koichu, 
Berman, and Moore, 2007; Mercer & Sams, 2006; Stigler & Hiebert, 1997) and a negative 
impact in others (Shouse, 2001). The previous study conducted by the authors (Kosko & 
Miyazaki, 2009) showed a large amount of statistical variability in the impact of discussion that 
could not be explained. The current analysis sought to explain the variability in the previous 
study (Kosko & Miyazaki, 2009) and conflicting results of other studies (i.e. Shouse, 2001; 
Stigler & Hiebert, 1997). Although the results of the current study seem, at first glance, not to 
support a compound impact of discussion, the statistically significant amount of variability found 
in the impact of discussion in third grade is reminiscent of the results for analysis of the impact 
of fifth grade discussion (Kosko & Miyazaki, 2009). Therefore, the current study provides 
evidence that in a given year the general impact of student discussion on mathematics 
achievement can vary significantly between school setting if prior exposure to discussion is not 
taken into account.  

One interesting result of the current study was that the impact of weekly discussion in the 
fifth grade without weekly discussion in the third grade (disc_0_1). This result could support 
claims made by Mercer and Sams (2006) who suggested that younger students may not 
inherently posses the skills necessary to maintain mathematics discussion without specific 
guidelines from the teacher. However, it is unknown how much guidance or structure these 
students received from the teacher in discussing mathematics with their peers.  
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In this paper, we provide an account of the evolution of mathematical norms for argumentation 
that emerged during an ongoing teacher collaboration. The collaboration involves the 
mathematics and science teachers at Green Valley High School in the southwestern United 
States. As part of the collaboration, teachers were offered the opportunity to participate in 
college level courses offered at the school. In the fall of 2008, 21 of the 32 mathematics and 
science teachers chose to participate in a course that focused on functions and the covariation of 
the measures of two quantities. The activities that comprised the course were intended to serve 
as didactic objects around which productive conversations could emerge. Therefore, 
mathematical arguments developed around key significant mathematical issues. As a result, the 
norms for mathematical argumentation evolved during the semester. 

 
Introduction 

Balancing the tensions inherent in simultaneously attending to students’ contributions and the 
mathematical agenda is a hallmark of deliberately facilitated discussions (cf. McClain, 2003). 
These discussions involve a plethora of decisions that must be made both prior to and while 
interacting with students. The image that results is that of the teacher constantly judging the 
nature and quality of the students’ contributions against the mathematical agenda in order to 
ensure that the issues under discussion offer means of supporting the students’ mathematical 
development. This view of mathematical discussions stands in stark contrast to open-ended 
sessions where all students are allowed to share their solutions without concern for potential 
mathematical contributions. In order to engage in the process of elevating discussions to the level 
of sophisticated mathematical argumentation, the teacher must have a deep understanding of the 
mathematics under discussion (cf. Ball, 1989; Ball, 1993, Ball, 1997; Bransford et al., 2000; 
Grossman, 1990; Grossman, Wilson, & Schulman, 1989; Ma, 1999; McClain, 2004; Morse, 
2000; National Research Council, 2001; Shulman, 1986; Schifter, 1995; Sowder, et al., 1998; 
Stein, Baxter, & Leinhardt, 1990). This is critical in both being able to advance the mathematical 
agenda and in judging the quality and worth of student contributions. It requires decision-making 
in action concerning the pace, sequence and trajectory of discussions in order to ensure that the 
discussions are mathematically productive. 

When focusing on students’ offered explanations and justifications, the teacher is seen to 
actively guide the mathematical development of both the classroom community and individual 
students (Ball, 1993; Cobb, Wood, & Yackel, 1993). This guiding necessarily requires a sense of 
knowing in action on the part of the teacher as he or she attempts to capitalize on opportunities 
that emerge from students' activity and explanations. With this comes the responsibility of 
monitoring classroom discussions, engaging in productive mathematical discourse, and 
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providing direction and guidance as judged appropriate. Similar pedagogical issues are addressed 
in Simon's (1995) account of the Mathematics Teaching Cycle that highlights the relationship 
between teachers’ knowledge, their goals for students, and their interaction with students. 

A focus on the importance of students’ contributions also highlights the importance of norms 
that constitute the classroom participation structure. The importance attributed to classroom 
norms stems from the contention that students reorganize their specifically mathematical beliefs 
and values as they participate in and contribute to the establishment of these norms.  

In the analysis in this paper, we focus on the discourse between and among the teachers and 
instructors in a setting in which the authors were the instructors. The analysis will make explicit 
the evolution of the discussions over the course of the interaction. In doing so we clarify the 
normative ways of speaking that evolved in the process. This work is significant in that it offers 
one framework for thinking about how to guide the evolution of productive mathematical 
argumentation. 

 
Setting 

The authors are involved in ongoing teacher collaboration with a group of high school 
mathematics and science teachers from Green Valley High School1. Green Valley High School 
serves a student population of approximately 2,800. It contains grades ten through twelve. As 
part of the collaboration, in the fall semester of 2008, 21 of the 32 mathematics and science 
teachers at Green Valley chose to participate in a course that was taught on Monday afternoons 
at the school. The authors served as instructors for the course that focused on covariational 
reasoning. The teachers were able to earn three hours of college credit for their participation. In 
addition, all of the mathematics and science teachers in the school attended weekly curriculum 
planning meetings. The teachers were assigned to groups according to the primary subject they 
taught. For instance, all of the Biology teachers met together as did the pre-calculus teachers. 
This meeting time was supported by the Principal as evidenced by his arranging for common 
planning periods for the teachers. However, for the purposes of the analysis in this paper, data is 
taken only from the discussions that occurred during the Monday night class. 
 

Description of the Course 
The course was designed to focus on a significant mathematical concept, that of covariational 

reasoning. Oehrtman and colleagues (Oehrtman, Carlson, & Thompson, 2008) have argued that 
covariational reasoning is foundational to high school mathematics and should serve as the 
organizing concept for all courses. We agree with this stance and therefore took covariational 
reasoning as our mathematical endpoint. In order to achieve the envisioned endpoint of 
covariational reasoning playing a significant role in instruction, we initially engaged the teachers 
in activities that were used in an Algebra I class where covariational reasoning guided the 
development of the mathematics. (These activities were part of a project conducted by Pat 
Thompson and his research team.) The teachers in the class worked through the series of 
activities as students and then reflected on their prior activity from their position as teachers. 
Following their mathematical investigations, they explored the classroom in which the 
instructional unit was implemented. This was made possible by video-based case development 
efforts from Thompson’s ongoing grant. Two of the authors, McClain and Coe, had participated 
in the case development and were, therefore, well equipped to provide instruction based on the 
case. 
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Following the case investigation, class sessions turned to materials developed from Project 
Pathways that was funded by the National Science Foundation under Carlson’s direction. She 
therefore took the lead on the instruction for this portion of the course. The materials begin with 
an investigation of proportional reasoning as it relates to functions, and they form the basis for an 
exploration of linear and exponential growth. Throughout the investigations the teachers were 
encouraged to consider how the measures of the two quantities co-varied in each situation. The 
grounding of the problems in contextual situations allowed the teachers to work in small 
intervals to investigate the phenomena (e.g. small increments of time). It also helped support a 
shift away from what Thompson (personal communication, 2008) calls “shape thinking.” Shape 
thinking involves imagining the “path” of the phenomena and then seeing the graph as a “static” 
representation of the completed trace of the path. In other words, the graph is static and has 
already occurred. An example can be seen when students trace the path of a car given the time 
and distance it has traveled instead of trying to coordinate the measures of the quantities of time 
and distance. 

It is important to note that throughout the semester, the teacher participants were constantly 
encouraged to speak with meaning. Elsewhere we have described speaking with meaning as 
ensuring that explanations carry meaning for all participants. This requires conceptually based 
conversation about quantity. The negotiation of the norms for argumentation that resulted lead to 
improved understanding between the teachers and deeper knowledge of the content. It is these 
discussions that provide the basis of our analysis. 

 
Methodology 

The general methodology falls under the heading of design research (Brown, 1992; Cobb, 
Confrey, DiSessa, Lehrer, & Schauble, 2003). Following from Brown’s characterization of design 
research, the teacher collaboration involved engineering the process of supporting teacher change. 
Like Brown, we attempted to “engineer innovative educational environments and simultaneously 
conduct experimental studies of those innovations” (p. 141). This involved iterative cycles of 
design and research where conjectures about the learning route of the teachers and the means of 
supporting it were continually tested and revised in the course of ongoing interactions. This is a 
highly interventionist activity in which decisions about how to proceed were constantly being 
analyzed against the current activity of the teachers.  

The particular lens that guided our analysis of the data was a focus on the normative ways of 
arguing about solutions, or what Cobb and Yackel (1996) define as the classroom mathematical 
norms. Classroom mathematical norms focus on the collective mathematical learning of the teacher 
cohort2 (cf. Cobb, Stephan, McClain, & Gravemeijer, 2001). This theoretical lens therefore 
enabled us to document the collective mathematical development of the teacher cohort over a 
period of time. In order to conduct an analysis of the communal learning, it is important to focus on 
the diverse ways in which the teachers participate in communal practices. For this reason, the 
participation of the teachers in discussions where their mathematical activity is the focus then 
becomes the data for analysis. The diversity in reasoning also serves as a primary means of support 
of the collective mathematical learning of the teacher cohort. An analysis focused on the 
emergence of classroom mathematical norms is therefore a conceptual tool that reflects particular 
interests and concerns (Cobb, et al., 2001). 
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Analysis 
Research on effective teaching often characterizes the teacher’s classroom decision-making 

process as informed by the mathematical agenda, but constantly being revised and modified in 
action based on students’ contributions. These characterizations take account of the students’ 
contributions while attending to the mathematics. Attempting to balance the tension inherent in 
simultaneously attending to students’ offered solutions and the mathematical agenda is the 
hallmark of deliberately facilitated discussions. A critical resource for the teacher in this process 
is therefore the means of support available to help him achieve his mathematical agenda. This 
support manifests itself in the form of the instructional tasks and the tools available for solving 
the tasks. For this reason, tools, notation systems, and student generated inscriptions all serve an 
important role in the mathematics classroom. However, it is not the tool (or the notation or the 
inscription) in isolation that offers support for the teacher. It is instead the students’ use of the 
tools and the meanings that they come to have as a result of this activity (Kaput, 1994; Meira, 
1998; van Oers, 1996). In this way, the tool is not seen as standing apart from the activity of the 
student. When designed, these objects must be thought of as didactic objects that will form the 
basis for reflection and discussion (cf. Thompson, 2002). For this reason, the teacher generated 
artifacts from the course served an important role in supporting the evolution of mathematical 
discourse. 

As an example, one of the first tasks posed to the teachers in the Monday afternoon class is 
called the Sprinter Task3. In this task, the teachers first watched a video of Florence Griffith 
Joyner’s Gold Medal 100 meter race. After viewing the race a couple of times, the teachers were 
asked to qualitatively track the distance from the start against time since the start. In this 
introductory task, the teachers had to begin to coordinate two quantities4, distance from start and 
time from start. As part of the coordination, they were asked to create a graph and then explain 
the graph in terms of the two co-varying quantities. 

As the teachers worked, one group of mathematics teachers was very focused on the 
accuracy of their graph. They were unable to think about the measures qualitatively and 
struggled to get exact measures for exact times by continually starting and stopping the video. 
They were reluctant to share their solution until they were sure that their graph was correct. Our 
goal was more global. We wanted the graphs to show a qualitative relationship between the 
measures of the two quantities that could be described generally with wording such as, “As time 
passes, her distance from start increases.” We were also interested to know if the teachers viewed 
Griffith-Joyner traveling at a constant rate, an increasing rate or other, and we were interested in 
their understanding of the meaning of these. Our ability to support the teachers’ ability to focus 
on the coordination of the measures of the two quantities depended upon their ability to reason 
about the situation, not read a graph in the canonical sense. 

Unfortunately, we did not achieve our goal on this first task. This is not surprising either now 
nor was it at the time. The mathematics teachers in particular argued that scaling the axes was an 
important part of creating a graph. We eventually had to tell them to leave them unmarked. Even 
so, they were hesitant to present their results. 

Although all of the groups of teachers were able to generate a graph that gave a qualitative 
sense of the how the measures of the two quantities co-varied, conversations at this point were 
characterized by telling. In this early phase of the class, the teachers were focused on the 
correctness of the answer and their contributions were a recitation of that correct answer and the 
procedure used to arrive at it. In addition, they did not question each other, but sat quietly as each 
group shared. This portion of the lesson took on characteristics of a “show and tell” instead of an 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

292 

intellectual conversation about ideas. We were, in fact, unable to prompt significant 
conversations at this point. We therefore describe the first mathematical norm that emerged as 
that of argumentation as telling. 

A week later, we posed a question that involved the teachers watching another video and then 
creating a graph of the situation. In this video, a skateboarder skates back and forth on a half 
pipe. The Skateboarder task required the teachers to coordinate the boarder’s horizontal distance 
from start with the time from start. In this task, the teachers had to attend to the quantities being 
tracked rather than the position of the boarder. This is in sharp contrast to the Sprinter task where 
Griffith-Joyner’s position gave information on the distance from start. This task, therefore, 
focuses on the issue of shape thinking in that if teachers tried to rely on the position of the 
skateboarder, the graph would be incorrect as shown below in Figure 1. 

 
 
 
  
 
 
 
 
 
 

  Time  
 

Figure 1. Path of the skateboarder on a half pipe. 
 

The other significant issue that emerged was that of explicitly labeling the axes. For instance, 
using the descriptor “distance” to label the vertical axis does not clarify what quantity is varying. 
It could be the total distance traveled. When graphed correctly, the vertical axis should be 
labeled horizontal distance from start and the horizontal axis labeled time from start. For this 
reason, the graph is not the trace of the half pipe as shown above, but the coordination of the 
measures of the two quantities. Therefore, in creating their graphs, the teachers had to wrestle 
with first understanding what two quantities were being measured and then coordinating the 
variation in those quantities. In the process of creating their graphs, the different groups came up 
with differences in their interpretations as shown below (Figure 2).  

 
 
 
 
 
 
 
 
 

Figure 2. Graphs of the skateboarder’s distance from start as a function of time. 
 

Distance  
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

293 

When these were juxtaposed on the board, a lively discussion ensued. The teachers initially 
fell into their original mode of discussion by engaging in a show and tell. However, the 
differences in their graphs initiated a shift in the conversations such that the teachers began to 
take the position of defending their own graph. There was no effort to make a comparison across 
the different graphs—only to justify why their graph was correct. As a result, the teachers did not 
attend to each other’s argument, but focused only on their artifact. There was no attempt to revise 
and modify the current graphs to move toward a more accurate representation. That only 
occurred at our initiation. The teachers just kept pointing to their own solution. As a result, the 
second mathematical norm that emerged was that of argumentation as disagreement.  

As the course continued and the teachers continued to investigate situations where they had 
to coordinate the measures of two quantities, the instructors began to push the teachers to speak 
meaningfully about their graphs. In particular, as the teachers explained their graphs to the class, 
they were pressed to talk about what was happening to one variable as the other changed or 
varied. As an example, in the skateboarder task, it was insufficient to say, “First he went down 
and then across and then back up.” A more meaningful explanation was, “as he dropped down 
the left side of the pipe, his horizontal distance from start did not change. However, as he moved 
along the base of the pipe, his horizontal distance from start began to increase. As he went up the 
right side of the pipe, his horizontal distance from start was the same.” In other words, the 
explanation had to be in terms of the two quantities and how they are covarying. In subsequent 
problems the teachers and instructors began to renegotiate what constituted an adequate 
explanation.  

In this third phase there was, therefore, a significant shift in that the teachers began to engage 
in conceptual explanations. However, their goal was not to engage other members of the class in 
a discussion. The teachers spoke to the other members of the class, not with them (elsewhere 
Lima and colleagues have made a similar distinction, (personal communication, June, 2008)). 
Although the teachers were able to reconceptualize their own thinking about a particular 
solution, they were still unable to understand what it might mean to speak so that others could 
comprehend their thinking. As a result, the third mathematical norm for argumentation that 
emerged was that of speaking conceptually to another. 

The last mathematical norm for argumentation that emerged was that of speaking 
conceptually with another. In this fourth and final phase, the teachers continued to speak 
meaningfully or engage in conceptual explanations with their colleagues. However, the teachers 
were not only able to reconceptualize their own thinking about a particular solution but also do 
this while thinking about what it might mean to speak so that others might comprehend their 
thinking. This shift in argumentation was apparent in discussions of the Bungee Jumper task. In 
this task, the teachers were shown a video of a man bungee jumping off of a bridge. The task was 
to create a graph that coordinated the time since the jumper leapt from the bridge with his 
distance from the ground. By making the distance quantity the distance from the ground, 
teachers were unable to create a graph that was merely the trace of the jumper’s path. Instead, 
they had to coordinate the variation of the time since he leapt with his distance from the ground. 
As the teachers shared their solutions, they used their explanations and questions to clarify for 
both themselves and their colleagues how the distance varied as time changed. In this process 
there was a concerted effort on the part of the teachers and the instructors to communicate 
clearly. It was during these conversations that the teachers began to speak conceptually with one 
another. 
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Conclusion 
In the analysis presented in this paper, we have provided an account of the evolution of the 

mathematical norms for argumentation that occurred in the course taught to the mathematics and 
science teachers at Green Valley High School. This work is significant in that it provides a 
framework for thinking about mathematical argumentation in the context of teacher 
development. This evolution is similar to data we have analyzed from other teacher development 
collaborations (see McClain, 2002). For this reason, we argue that we are providing the starting 
points for what diSessa and Cobb (2004) call a framework for action. diSessa and Cobb 
characterize a framework for action as a first step toward the development of a guiding theory. 
Therefore, we are not claiming that we have discovered a new theory. Our claims are much more 
modest. What we are offering is a first step in that direction. As a result, this pattern of evolution 
will be useful in our future work. The potential of its power as a theory is only determined by its 
use by others in similar and different situations. The messiness and complexity of teacher 
development in the context of design research “highlights the pressing need for theory while 
simultaneously making the development of useful theories more difficult” (p. 79). It is for that 
reason that we offer this process as a “way of looking” at this significant aspect of teacher 
collaborations. 
 

Endnotes 
1. Green Valley is a pseudonym. 
2. In this analysis, we purposely refer to the group of teachers as a cohort instead of a 

community. Documentation of the evolution of the cohort into a community is beyond the scope 
of this paper. We therefore take the “easier road” by not making assumptions about the nature of 
the relationships within the cohort at the time of this analysis. We choose to do so because of the 
importance we place on both establishing communities of teachers and verifying their existence 
with established criteria (cf. Wenger, 1998). 

3.  The initial tasks were designed by Scott Adamson and Ted Coe as part of their grant 
work with Pat Thompson. 

4.  By quantity we mean an attribute that can be measured or that one can imagine 
measuring. 
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This study applied thematic discourse analysis (Lemke, 1990) to a section of a middle school 
lesson focused on the relationship between the area of parallelograms and rectangles. This 
analysis provides a way to show the structure of the semantic relations between mathematical 
terms, shedding light on points of convergence and divergence between parallelograms and 
rectangles that can be, and often are, used for instructional purposes. Points of teacher dialogue 
where the semantic relations between mathematical terms might have been unclear to students 
are identified and particular attention is given to subtle shifts in the meanings of the terms base 
and height. 
 

Background 
Mathematical language presents several significant challenges to students (Schleppegrell, 

2007). For example, mathematical terms are used with a different level of precision than terms in 
everyday language, in part because a mathematical definition provides both necessary and 
sufficient information about the term whereas the definition of an everyday term merely 
describes its meaning. This distinction was taken further by Poincaré who pointed out that a 
mathematical definition, rather than encapsulating an existing meaning, actually creates the 
mathematical entity in question (Folina, 1992). Linguistic challenges also arise when words are 
used differently inside mathematics classrooms than they are outside (Pimm, 1989; Thompson & 
Rubenstein, 2000), as is the case with average, power, similar, right, and even the word or. 
Another challenge of mathematical language, one that is especially relevant to the current study, 
is that a single term is often used in ways that have subtly different meanings. A mathematician 
using the word inverse may, depending on the context, be referring to an inverse function, an 
inverse operation, or the multiplicative inverse of a group element. We are not arguing that such 
uses of mathematical terms are inappropriate or undesirable because we recognize the value in a 
compact, versatile language that mirrors the myriad connections between mathematical entities. 
Rather, we are emphasizing that in the process of learning mathematics, which in part means 
becoming fluent in its language and meaning systems (Chapman, 2003), overcoming such 
obstacles is non-trivial for students. We contend that more detailed attention to such non-trivial 
aspects of mathematics learning can be helpful to teachers and researchers, a point we return to 
in the final section of this paper. 

The fundamental geometric concepts of base and height provide another example of 
mathematical terms that are used with subtly different meanings at different times. The purpose 
of this study is to examine a classroom interaction that includes the terms base and height to see 
whether and how this subtle shift in meaning manifests in the dialogue. 
 

Theoretical Perspective 
Michael Halliday’s (Halliday, 1978; Halliday & Matthiessen, 2003) theory of systemic 

functional linguistics underlies the analytic methods we employ in this paper. A foundational 
assumption of this theory is that context and language use are intimately related: context 
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influences language choice and language choice helps to construe context. Halliday described 
three metafunctions of language—ideational, interpersonal, and textual. Language is used to 
make sense of experience and in so doing serves the ideational metafunction; that is, it is used to 
give cues and clues regarding the meaning of what is being talked about. Language is also a 
means for acting out the social relationships of those who are using the language, thus serving 
the interpersonal metafunction. The textual metafunction refers to aspects of the organization of 
the language itself. Unfortunately, we are unable in the present paper to provide a full description 
of the theory, but we can make note of work in mathematics education that has taken up the 
general ideas of systemic functional linguistics (e.g., Atweh, Bleicher, & Cooper, 1998; 
Chapman, 2003; Morgan, 1998). For this study we focus specifically on the ideational 
metafunction—that is, the content of mathematics—though we recognize the value of research 
focused on other aspects of language and also recognize the artificial nature of isolating one 
metafunction from the others. That said, we, along with others (e.g., Steinbring, Bussi, & 
Sierpinska, 1998), feel that it is important to engage in forms of discourse analysis that focus on 
mathematical content and meaning. 

Lemke (1990), who applied systemic functional linguistics to transcripts of science lessons, 
viewed language as “a system of resources for making meaning” (p. ix). From this perspective, 
language does not consist of mere grammar and vocabulary but is also seen as a semantic system 
or a system of meaning that allows us to create “webs of relationships” among and between 
ideas. As Lemke highlights, there are many ways to talk about ideas, but the underlying meaning 
or “pattern of relationships of meanings, always stay the same” (1990, p. x). It is through the 
patterns of semantic relations that meaning is construed. For example, a group of people may 
talk about the leg of a table using a wide variety of particular words and sentence structures, but 
the pattern across the particular instances will be the semantic relation that the leg is a part of the 
table (a MERONYM/HOLONYM relation). Lemke (1990) articulated a method for thematic analysis, 
described below, with the purpose of uncovering and examining such patterns. Examples of the 
semantic relations we drew on in this paper are displayed in Table 1. 

 
Table 1 

Semantic Relations 
Linguistic Terms Description 
MERONYM / HOLONYM part of a whole 
HYPONYM / HYPERNYM subset of a set 
EXTENT / ENTITY space associated with an object 
LOCATION / LOCATED spatial relationship 
SYNONYM / SYNONYM equivalence relationship 

 
Methodology 

We employed Lemke’s thematic analysis method as a lens that would bring into focus the 
mathematical content of a middle school lesson on area. The lesson comes from a sixth-grade 
classroom in an urban Midwestern middle school. The teacher, Robert, is elementary certified 
and had been teaching for seven years. Prior to the collection of the data presented here, Robert 
had not been a member of any professional organizations and the textbooks he used (there were 
several) can be described as conventional. 

The analysis consisted of several stages. First, we selected the transcript excerpt from a larger 
corpus of classroom observations.1 This selection was based on the pervasiveness of content 
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terms used in the excerpt and the fact that a classroom observation of another teacher existed in 
our corpus that also dealt with the topic of area. (An article involving a detailed analysis of both 
of these transcripts is forthcoming). Second, we reviewed and filled in details (e.g., what “this” 
refers to) of the transcript. Third, we identified the content words that were central to the lesson 
and generated a clean map of the semantic relations between these terms. This clean map, which 
Lemke referred to as an ideal map, was based on our own mathematical understandings of the 
terms as well as the definitions of the terms presented in various mathematical textbooks. Fourth, 
we went through the transcript excerpt line by line and, for each occurrence of the identified 
content words, attempted to identify the semantic relation at play. Finally, we looked across the 
semantic relations of the transcript for thematic patterns and developed a transcript map. The 
processes of the analysis and the products of the analysis both contributed insights regarding the 
content of the interaction. 
 

Results 
The mathematical terms that we identified for analysis were rectangle, parallelogram, area, 

base, height, length, width, as well as the non-technical term bottom. There is a 
HYPONYM/HYPERNYM relationship between rectangles and parallelograms since the former are 
particular instances of the latter. Area is an EXTENT of a polygon because it is a measure of two-
dimensional space. The base of a rectangle or parallelogram is defined as one of its sides, thus 
forming a MERONYM/HOLONYM relationship involving base. In particular, a base is by definition 
a geometric ENTITY. The height of a rectangle or parallelogram, on the other hand, is defined as 
the distance between the given base and the line containing the opposite side and so is a quantity. 
This semantic difference is not always made explicit to students, as we shall see below, and may 
be confounded when the phrase “base and height” is used in a way that implies their 
interchangeability. Furthermore, the term base can also refer to the EXTENT of the base segment 
(as in the area formula “base times height” which calls for the quantities), and the term height 
can also refer to a line segment (often dotted) drawn between the base and the opposite side. 
Thus base is defined as a MERONYM of a rectangle or parallelogram but can also refer to an 
EXTENT (i.e., the length of the base segment). The term height, on the other hand, is defined as an 
EXTENT but is also used to refer to a geometric ENTITY (e.g., the dotted line from the base to the 
“top” of the parallelogram). This is captured in Figure 1, the clean map, by the fact that these 
terms appear twice under rectangles and parallelograms (with the term-as-defined above the 
other usage). 

The semantic relations we have just described hold for both rectangles and parallelograms, 
which we see in Figure 1 because the overall semantic structures of rectangles and 
parallelograms with respect to area are quite similar. This structural similarity is one of the 
reasons that Robert, in the excerpt below, chose to teach parallelogram area by appealing to prior 
knowledge of rectangular area. There are, of course, important differences. For instance, length 
and width are terms that are associated with rectangles but not generally with parallelograms. 
Also, a side adjacent to the given base of a rectangle can be interpreted as a height (in the 
ENTITY-sense) of the rectangle, forming a MERONYM/HYPONYM relationship between the height 
and the rectangle. However, this relationship does not exist with non-rectangular parallelograms. 
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Figure 1. A clean map wherein rectangle is a HYPONYM of parallelogram. 

 
Turning now to the classroom transcript, we join Robert after he has reviewed the area 

formula for rectangles and is about to transition to the development of the area formula for 
parallelograms. We use boldfaced text to draw attention to the content words in the transcript 
since these were a primary focus of our analysis. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Robert: OK, now it was important that you brought up parallel because the next one is 
area of a parallelogram. You just described to me a parallelogram, which was this: 
rectangles are parallelograms. [Student: Yeah, just turned.] Parallelograms have two 
sets of parallel sides. That’s what a parallelogram is by definition. So what would you 
guess the formula would be for finding the area of a parallelogram? Adam? 

Adam: Length times width. 
R: Length times width. OK, aren’t rectangles--, didn’t we just decide that rectangles 
are parallelograms? 

Ss: Yes. Yes we did. 
R: We decided because I told you that (laughs). 

S: Actually you decided. 
R: OK, so using that, area would be equal to length times width. They call it a little 
different. Instead of saying length times width, they say base times height. They say 
base times height. [Ms: Face?] Base. We’re going to make a parallelogram from our 
rectangle. On your picture of your rectangle I want you to make this…a diagonal line 
like this. [Draws on overhead a segment from the upper right corner of the rectangle to 
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17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

the interior of the bottom side.] We’re going to make a parallelogram from a 
rectangle. OK? Now, when I put this diagonal in what shape did I make? 

Ss: Triangle. 
R: Triangle. So what we’re going to do, we’re going to take this triangle off and we’re 
going to put it on the other side [draws a congruent triangle on the left side]. We’re 
going to put it over here. So if we have our rectangle, which is what we had before, 
and we had our three centimeters by five centimeters. We cut this section off and we 
just add it on to the other side. OK? So here is our diagonal. 

S: That looks like a 3D figure. 
S: That’s cool. 

R: That’s how they’re getting your parallelogram. 
From the first teacher turn (lines 1–5) we can identify several semantic relations. The first 

and last sentences of this turn imply that parallelograms have an area which, as was established 
in previous classroom interactions, is an EXTENT. Also, rectangles and parallelograms are related 
by the phrase “rectangles are parallelograms” in lines 3 and 7–8. By this the teacher means that 
all rectangles are parallelograms (i.e., the set of rectangles is a HYPONYM of the set of 
parallelograms), but the phrase is unclear because “are” can also be used to mean equivalence 
(e.g., rectangles are quadrilaterals with four right angles). Because of this ambiguity we will 
denote the relationship using the original term “are” in the transcript map (displayed at the 
conclusion of the third portion of the transcript). We also see in lines 3–4 a definition of 
parallelograms, with the implication being that a parallelogram is equivalent to or SYNONYMOUS 
with a figure satisfying the definition (i.e., containing two parallel sides). 

Using reasoning based on the relationship between rectangles and parallelograms, Robert 
leads Adam to state the area formula of parallelogram, which the student describes as “length 
times width” (line 6). If we take “rectangles are parallelograms” to mean (correctly) that the set 
of rectangles is a subset of the set of parallelograms, then this reasoning about the area formula is 
flawed; the subset relationship would imply that rectangles have the same area formula as 
parallelograms but not the converse, as was assumed in the excerpt. If, on the other hand, we 
take “rectangles are parallelograms” to mean (incorrectly) that the two are equivalent, then their 
area formulas would necessarily be equivalent as well. In lines 12–13, the teacher modifies 
Adam’s statement to be base times height, noting that “they call it a little different” than length 
times width. This information from the teacher establishes a sort of equivalence between the 
terms length and width and the terms base and height. Lines 14–27 add another semantic relation 
between parallelogram and rectangle as we see that the former can be constructed from the 
latter. A rectangle, however, is already a parallelogram so what is meant is that a non-rectangular 
parallelogram can be constructed from a rectangle, but this is not explicit. 

We continue in the transcript, picking up directly where we left off. 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Robert: OK, now we said that the formulas were similar. We determined that because 
we said that the rectangle was a parallelogram, so we said that the formulas are 
similar. OK, this bottom section will be considered our base [shades in base on 
overhead]. OK, base is like length, so it is similar. That would be our base [points to 
the parallelogram on the projection screen]. Now, when we found perimeter of a 
rectangle what sides did we add? Or, what did we add together? If we were going to 
find the perimeter of this rectangle what would we add? 

Students: The sides. The length. 
R: Which would be what? 
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37 
38 
39 
40 
41 
42 

S: Fifteen. 
R: Five, five, three, and three [points to the sides of the rectangle], correct? [S: Yeah.] 
So if we were going to find the perimeter we’d go around the outside. OK, this 
diagonal here is not the height of it [points to slanted side of parallelogram on screen]. 
It is on the outside but it’s not the height. The height has to be perpendicular or at a 
right angle to the base. 

This excerpt begins with the statement that the area formulas are “similar.” We see in line 31 
that base is “like” length and that they are also “similar.” This is slightly weaker than the 
previous semantic relation, which implied that base and length were different references for the 
same thing. In line 30 the teacher states that the bottom of the parallelogram will be “considered” 
the base. The semantic relation in this situation is not clear, but there is some sort of 
identification or equivalence taking place between base and bottom. Furthermore, in lines 39–42 
we see height for the first time and learn that it is not the slanted side of the parallelogram and so 
not a MERONYM. Its relationship to the base is articulated as one of perpendicularity. Since 
perpendicularity is a characteristic of actual entities and not quantities, this statement about the 
height implies that it is an ENTITY and not a quantity. 

The relations involving height will be further developed in the next excerpt. Before then, 
however, we would like to point out the subtle semantic shifts occurring in lines 32–38. The 
teacher begins by asking what would be added in the calculation of a rectangle’s perimeter, 
hinting in line 32 that sides are involved. Students respond that the sides are added. Semantically, 
however, it is not the sides themselves that are added but the EXTENTs or lengths of the sides. 
This subtle distinction is even more clearly confounded in line 38 when Robert points to the 
sides themselves but calls out their measurements. (Again, we do not wish to communicate that 
such action is negative, but merely to illuminate the fact that two different semantic relations are 
involved.)  

We continue directly following line 42. 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

Robert: So if this was our parallelogram, the height would actually be this vertical 
distance here between these two lines [draws vertical segment in the interior of the 
parallelogram on the overhead]. OK, so this would be our height, from here down. Or 
it’d be from here down [draws vertical segment in the exterior of the parallelogram]. 
That would be our height. The height is actually just the distance between those two 
bases. So, what is the area of this figure here? Think about what we did with this 
[points to the cut-off triangle]. What does it have to be? 

Student: Fifteen. 
R: Fifteen. Didn’t we just take this triangle and move it over here [points to rectangle]? 

Ss: Yeah. 
R: So doesn’t the area have to be the same? [Ss: Yes.] Yeah, so we know the base is 
five and the height is three. These side lengths may be different. They may actually be 
four or three point seven. They may be some other number. But the height has to be 
perpendicular to the base. It’s got to be straight up and down for a parallelogram. OK? 

We see in line 43 and again in line 47 that height is defined as a distance, which corresponds 
with the definition used in the clean map in Figure 1. This explicit discussion of height does not, 
however, correspond with the semantic relations in the previous excerpt in which height was 
characterized as a geometric ENTITY rather than a quantity. The notion of height and base as 
quantities reappears in line 54 when it is stated that “the base is five and the height is three.” The 
notion of height and base as entities reappears in lines 55–56 when Robert reminds the class that 
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“the height has to be perpendicular to the base.” Thus this final turn is another example of the 
subtle and implicit shift in semantics involving the terms base and height. Figure 2 contains a 
transcript map based on all three excerpts discussed in this subsection. 

 

 
 

Figure 2. A transcript map based on Robert’s excerpt. 
 

Discussion 
In this paper, we used thematic analysis to examine the semantic relations from a middle 

school lesson on the area of parallelograms. In generating the clean map of the relations between 
the pertinent mathematical terms (see Figure 1), we became acutely aware of the structural 
similarities between the semantic relations of rectangular area and those of parallelogram area, 
similarities that are often exploited in instruction as teachers and curriculum materials relate 
parallelogram area to rectangles or vice versa. The clean map also allowed us to see where the 
semantic differences lay between the two types of polygons, differences that could inform 
instructional decisions. Moreover, the clean map process exposed the difference between base (a 
geometric ENTITY) and height (an EXTENT) as mathematically defined, as well as the fact that the 
same terms base and height are used to refer to both physical segments and the lengths of those 
segments. Height has the additional distinction of having the semantic possibility of being a 
MERONYM of a rectangle but never of a non-rectangular parallelogram. All of these subtleties and 
possible points of student confusion appeared in the transcript from the sixth grade lesson. Base 
often referred to a side but was also used as a number and plugged into the formula (e.g., line 
54). Height was explicitly defined as a distance (e.g., line 43) but then was referred to as the 
drawn-in segment and described as being perpendicular to the base (line 41); a property that only 
makes sense in reference to a geometric ENTITY. One point the teacher did try to be clear about 
was that the parallelogram’s height was not its “diagonal” side. Perhaps this effort was a result of 
his experience with students thinking that height, because it is a characteristic of a polygon or 
because it seems interchangeable with base, is necessarily a MERONYM of that polygon. Indeed, 
all of these subtleties and implicit shifts in meaning involving height may be related to 
documented difficulties with the concept (e.g., Gutierrez & Jaime, 1999). 
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In summary, we have looked closely at the ideational metafunction of language from a lesson 
on area. We have seen that even the terrain of a topic such as parallelogram area, which appears 
smooth from a distance, can contain many potential potholes and pitfalls. If, however, 
researchers and teachers examine and come to better understand the structure and patterns of the 
semantic relations between mathematical terms, they can make mathematical language, and thus 
mathematics itself, more navigable for students. 
 

Endnote 
1. This data was collected as part of an NSF grant (#0347906) focusing on mathematics 

classroom discourse (Second Author, PI). Any opinions, findings, and conclusions or 
recommendations expressed in this article are those of the authors and do not necessarily reflect 
the views of NSF. We would like to thank the teachers for allowing us to work in their 
classrooms. 
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Identity has become a useful tool for making sense of students’ mathematical learning. However, 
investigations of identity frequently consider students’ stories told outside of the classroom. This 
paper proposes a lens on identity that examines how identity is enacted from moment to moment 
in the classroom, providing more opportunities to see how mathematical activity, identity, and 
learning are connected. Use of this lens revealed how one fourth-grade student’s identification 
as someone who already knew limited her mathematical activity and had consequences for her 
mathematical learning. 
 

Introduction 
Many mathematics education researchers have turned to the notion of identity to make sense 

of connections across who students think they are, their mathematical activity, and their 
mathematical learning (e.g., Boaler & Greeno, 2000, Cobb, Gresalfi, & Hodge, 2009; Sfard & 
Prusak, 2005). This research has been productive in explaining variations in students’ 
participation in mathematical tasks, in connecting affective factors to mathematical activity, and 
in establishing links between identity and mathematical activity. However, much of this research 
examines identity at a level that is removed from actual moments of mathematical learning. For 
example, researchers have asked students to reflect back upon their experiences in mathematics 
classes (e.g., Boaler & Greeno, 2000; Martin, 2000). While this delayed narrativization has 
yielded interesting connections between identity and mathematical activity, it does not examine 
identity in the moments of mathematical learning, which is when identity might operate on 
mathematical activity. Zooming in on mathematical activity as it unfolds from moment to 
moment during a lesson should provide significant opportunities to learn more about the 
relationship between identity, mathematical activity, and learning. 

This paper proposes a lens for capturing identity in these moments of mathematical activity 
and then uses this lens to closely examine the identifying activity of one fourth-grade student as 
she worked with two peers to solve a mathematical task. In addition to illustrating how identity 
might be visible in activity, this case also explores how one student’s persistent identification of 
herself as someone who already knew, in spite of her limited mathematical understanding, had 
consequences for her mathematical activity and her mathematical learning. 
 

A Framework for Zooming In: Connecting Mathematizing, Identifying, and Learning 
Mathematical Activity 

Rendering identity visible at the scale of student activity requires a framework for studying 
student activity, both activity related to mathematics and activity related to identity, as it occurs 
during a lesson. Anna Sfard’s (2008) commognitive framework provides tools for conducting 
this analysis. In Sfard’s framework, the salient feature of mathematical activity is communication 
– communication among students and others and communication a student has with him/herself. 
Sfard focuses on communication because she defines thinking as communication with oneself. 
She notes that this communication does not need to be inner and it does not need to be verbal. 

mailto:johndoe@gsu.edu
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Defining thinking as communicating makes discourse the object of study, where discourse 
includes gestures and other nonverbal or nonlinguistic means of communicating along with what 
might be spoken or written. In the commognitive framework, participation in discourse 
pertaining to mathematical objects, whether mathematically appropriate or not, is called 
mathematizing.  

The commognitive framework also provides a means for making claims about learning. 
Defining thinking as communicating suggests that learning, as an outcome, can be defined as a 
change in discourse. As students learn, they are working (even if tacitly) to change their 
communication with themselves and with others. The effectiveness of the process of learning can 
be evaluated by comparing the resulting change in discourse with the mathematically desirable 
discourse. 
Defining Identity 

A definition of identity must link to this framework for mathematizing and it must make 
identity visible as students engage in mathematizing. The definition proposed by Sfard & Prusak 
(2005) meets both of these conditions. They define identity as a collection of reifying, 
significant, and endorsable narratives about a person. They elaborate on this definition: 

The reifying quality comes with the use of verbs such as be, have or can rather than do, and 
with the adverbs always, never, usually, and so forth, that stress repetitiveness of actions. A 
story about a person counts as endorsable if the identity-builder, when asked, would say that 
it faithfully reflects the state of affairs in the world. A narrative is regarded as significant if 
any change in it is likely to affect the storyteller’s feelings about the identified person. (p. 16-
17, italics in original) 

For example, statements like “I am a woman” or “I am a math person” are identities for me: I 
believe them to be true (or endorsable) and important (or significant) to how I feel about myself. 
In addition, these two statements are reifications: They no longer reflect actions I might have 
performed, such as wearing particular clothes or enjoying a mathematics class. Instead those 
actions are summarized and frozen into a label. Finally, these statements are also narratives. 

My use of narrative draws upon the work of Ochs and Capps (2001). They studied narratives 
arising in everyday conversations, investigating how impromptu, co-constructed narratives help 
people understand themselves and others with whom they interact. They defined narrative as an 
account of life events. While some narratives can be quite extensive, Ochs and Capps 
specifically noted that narratives need not be lengthy: Even short sentences can also be 
narratives. Dino Felluga (2003) concurred, arguing that statements like “The road is clear” are 
narratives because they suggest some sequence of events. Similarly, statements like “I am a math 
person” are narratives because they conjure images of what a person has done or might do. 

The connection between minimal narratives and potential actions captures an essential 
function of identities: They explain and predict an individual’s activity. Their ability to do this is 
tied to the ways in which identities reify or freeze activity. According to Etienne Wenger (1998), 
reification is “the process of giving form to our experience by producing objects that congeal this 
experience into ‘thingness’” (p. 58). As people tell stories, they tend to summarize the story’s 
action into statements that describe or label people. These statements convert activity into human 
conditions. For example, a story about a high score on a math exam might become a reification 
through the statement, “Daren is smart.” The story is no longer about one moment in Daren’s 
life. Instead, the score on the test has been translated into an identity for Daren. 

Thus far, I have discussed identifications as narratives that are directly uttered. However, 
individuals can also be identified through their actions and interactions. For example, the teacher 
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could identify Daren as smart by asking him to share his work with the class. This request might 
specifically include a statement that Daren is smart or his smartness might be implied in the 
request and the teacher’s subsequent reaction to his work as he displays it. This framing of 
identifying activity draws upon positioning theory. Positioning theory assumes that people use 
stories and position themselves and any others involved in the activity in the story (van 
Langenhove & Harré, 1999). Instead of relying only on reified narratives, identification through 
positioning is based upon the cluster of utterances and actions that are appropriate for that person 
in context of the story. For example, as the teacher invites Daren to share his work, she positions 
him through her words and accompanying gestures as smart. 

Positioning theory also provides a means for individuals to negotiate their identities. Daren 
might agree with the identification of him as smart and as someone others can learn from, or he 
might think that someone else in the class has a better solution and that if he takes the risk of 
presenting, he will look stupid and not smart. He could dispute this identification of him as smart 
by refusing to present his work and/or pointing to someone else who he thinks has a better 
answer. Daren is not bound by this identification of him: His reactions can affirm or refute any 
identification of him. 

Sfard’s (2007) recent work on identity elaborates ways of identifying that are consistent with 
the indirect story-telling assumptions of positioning theory. Sfard has described three ways in 
which people identify: direct, indirect-verbal, and enacted. Direct identifying occurs as a person 
tells a reifying story about the identified person. I primarily referred to this way of identifying as 
I elaborated the definition of identity in the sections above. Indirect-verbal identifying is when a 
story is told about a person that does not include reifying statements. Finally, a person may 
identify him/herself or another through other activities that do not include story telling. Sfard 
calls this type of identifying enacted. As students interact in classrooms, they rarely directly 
identify each other. Instead, most identifications are enacted or in-direct verbal. Positioning 
theory’s use of story to provides a framework for elaborating these last two ways of identifying. 

Positioning theory also supports the specific vocabulary I will use to talk about identities. 
The notion of positioning emphasizes that identities are constructed by individuals in response to 
situations and are thus situated and dynamic. Rather than describe individuals as having 
identities, I draw upon Sfard’s (2007) recent work and use the words identifying, enacting 
identities, identification, and engaging in identifying activity as a means of emphasizing the ways 
in which identities are constructed from moment to moment. 
Theoretical Links between Mathematizing and Identifying 

This framework of identifying has many parallels with the description of mathematizing. 
Because identifying arises from communication of stories, it, like mathematizing, arises in 
discourse. Both are also central to a definition of learning as a change in discourse: As a student 
engages in learning, the student both communicates about mathematics and identifies him/herself 
as a kind of learner of mathematics. His/her communication about mathematics simultaneously 
tells an identity story and provides the opportunity of changing the learner’s mathematical 
discourse. These connections between identifying and mathematizing suggest that learning arises 
from the interplay of these two activities (Sfard, 2007). It is the goal of this paper to elaborate the 
interplay among identifying, mathematizing, and learning. Specifically, this paper explores the 
effects of the activities of identifying and mathematizing on one another and on the development 
of mathematics discourse. 
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Figure 1. Scanned image of Figures H and I. 

Background and Methods 
The student discourse analyzed in this paper comes from one group of fourth grade students 

interacting during one mathematics lesson. This case was part of a larger study involving over 70 
hours of videotape and accompanying student work arising from 28 mathematics lessons in one 
fourth-grade classroom. The videotapes were analyzed for evidence of student learning: For each 
lesson, student’s initial discourse was compared to their final discourse using four discursive 
features elaborated by Sfard (2008): word use, visual mediators, discursive routines, and 
endorsed narratives. When there were mathematically desirable changes between the student’s 
initial and final discourse along these four features, the video was further analyzed for 
mathematizing and identifying activity. The entire lesson was transcribed, capturing not only 
what was said but also any writing, gestures, and other nonverbal communication. Portions of the 
student discourse that involved mathematical topics were parsed into message units (Bloome, 
Carter, Christian, Otto, & Shuart-Faris, 2005). 

For each message unit, the identifying analysis considered the range of possible meanings for 
the speaker and the listeners, seeking to answer questions about what story the speaker and 
listener(s) might construct from the unit and how each person might be identified or might 
identify him/herself within that story. Units that identified the focal student as a learner in a 
consistent way were grouped and labeled as a kind of learning. 

The mathematizing activity of each message unit was also analyzed. This analysis focused on 
the ways in which the discourse of each member of the group resembled desirable mathematical 
discourse. This analysis used Sfard’s (2008) four discursive features as described earlier. As 
patterns of mathematizing emerged, message units were grouped and compared to the analysis of 
identifying activity. Message units that demonstrated patterns across mathematizing and 
identifying activity were grouped and labeled as a kind of learning. Finally, moments in which 
the student enacted these different kinds of learning were examined to determine their 
connection to mathematically desirable changes in the student’s discourse. 

I have limited the findings in this paper to one group of students interacting during one 
lesson. This lesson and this group were selected because the interactions among the students and 
the mathematical learning of one student demonstrated important aspects of the interplay among 
mathematizing, identifying, and learning. While some features of the interactions in this group 

were typical of interactions observed in the 
classroom, many of the specific details of the 
activities in this group were unique to this group 
and this lesson. Thus, the moments of learning 
examined in this paper reflect the possibilities for 
activity and learning among students without 
making any claims about predicting activity or 
learning in other groups or for other students. 

The group examined in this paper consisted 
of three students: Minerva, Bonita, and Jessica. 
The analysis in this paper focuses on Minerva’s 
learning and how the mathematizing and 
identifying in the group were connected to that 
learning. The lesson focused on how to determine 

the area of triangular figures. The students were given pairs of figures, one triangle and one 
rectangle (See Figure 1). The students were to determine which figure “covered more area.”  
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Each figure was partitioned by a square grid placed so that rectangle was partitioned into squares 
while the triangle (which had the same area as the rectangle) contained spaces that were squares 
and triangles. 

 
Findings 

Throughout this lesson, Minerva was careful to identify as knowledgeable and in possession 
of right answers, although this identification stands in contrast to an analysis of her mathematical 
discourse, which suggests that her mathematical understanding was limited. What was 
remarkable about Minerva was not her efforts to be seen as knowledgeable and having the right 
answer – many students work to do this – but instead her skill at using this identification to mask 
her learning. This covert learning – presenting as knowledgeable and hiding learning – had 
consequences for the effectiveness of Minerva’s learning. Her efforts to appear as 
knowledgeable meant that she worked on when and what to say, but not on exploring the 
mathematical discourse or probing the validity or consequences of the mathematical statements 
she uttered. As a consequence, Minerva’s verbal discourse frequently seemed mathematically 
appropriate, but she was unable to construct and explain an appropriate solution to the task. This 
case of Minerva demonstrates how a focus on right answers and on identifying as knowledgeable 
can undermine opportunities to fully engage and thus learn mathematical discourse. The findings 
below provide one extended example of Minerva’s covert learning followed by a summary of her 
other mathematizing, identifying, and learning activities. 

Minerva’s desire to appear as knowledgeable was most apparent when she resisted her peers’ 
identification of her as someone who needed to learn. This moment occurred early in her group’s 
work to compare the areas of Figures H and I (See Figure 1). The teacher asked the group how 
they would compare the areas. (Each excerpt from the transcript indicates the line number from 
the transcript, the speaker, any verbal discourse, and finally, in italics, any nonverbal 
communication or activity.) 
200 Bonita Both the areas, they both have two. 
201 Teacher How do you know? 
202 Bonita Because two triangles make a square. Bonita points at the 2 triangles in Figure I. 
203 Minerva No it doesn’t 
204 Bonita Uhhunh. This is an affirmative utterance. 
205 Jessica Yes it does!  
206 Minerva Nah hunh This is a negative utterance, said in a sing-song way. 
Minerva’s “No, it doesn’t” (Line 203) was a direct contradiction of Bonita’s statement that “two 
triangles make a square” (Line 202). Minerva may have disagreed that two triangles made a 
square or that the information was helpful in determining the area of the figures. In either case, it 
seemed that Minerva was not thinking about how triangles and squares would be useful in 
determining the area of the figures. Because successful completion of this task required students 
to make sense of the relationship between the triangles and the squares, Minerva’s utterance in 
Line 203 demonstrated that she needed to learn in order to complete this task correctly. 

As the interaction continued, Minerva’s peers identified her as someone who needed to learn 
and as someone who could learn from them. 
209 Jessica Let me see, let me show you 
210 Bonita You cut this right off and put it there.  Bonita is holding Figure I. She points to 

one triangle in Figure I and motions next to the other triangle in the figure. 
Minerva watches her as she does this. 
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211 Minerva Nah hunh 
212 Jessica Let me see. See. Look it. Let me show her that it can make a triangle. Jessica 

picks up two copies of Figure I. Jessica seems to misspeak here, uttering 
“triangle” instead of “square.” 

213 Minerva Nah hunh. Minerva watches Jessica. 
214 Jessica See. Look it. Jessica places both figures together to make a large square. 
215 Minerva Nah hunh, nah hunh, nah hunh 
In this excerpt, both Jessica and Bonita explicitly positioned Minerva as a learner and themselves 
as teachers. Bonita’s demonstration of how to rearrange the figure (Line 210) and Jessica’s 
insistence on showing Minerva how to make a square (Lines 209, 212, and 214) communicated 
their understanding that Minerva did not understand something they both understood. 

Rather than respond with questions about the explanations, an acknowledgement of 
understanding, or a definite denial of the role of learner, Minerva reacted to Bonita and Jessica’s 
positioning with a persistent, mocking “Nah hunh.” Minerva countered each utterance of Bonita 
and Minerva with “Nah huhn,” continuing for a full minute after the interaction above and 
uttering this phrase 32 times in total. Her “Nah huhn” had a sing-song quality and mocking tone 
that seemed to communicate that Bonita and Jessica’s explanations were unnecessary and trivial. 
It seemed to be an attempt to portray her initial disagreement in Line 203 (“No it doesn’t”) as a 
jest or a joke and suggested mockery of the serious, explanatory tone used by Bonita and Jessica. 
Through her repeated utterance of “Nah huhn,” Minerva seemed to communicate her rejection of 
the identity of learner. 

In spite of Minerva’s work to reject this identity, the timing of her utterances and her 
attention to Minerva and Bonita’s activity provided her with an opportunity to learn from them. 
Minerva could have interrupted or ignored Bonita and Jessica. Instead, she carefully watched 
their demonstrations and timed her “Nah huhn” so they punctuated rather than disrupted Bonita 
and Jessica’s explanations. Furthermore, in spite of Minerva’s disagreement with Bonita’s 
statement that “two triangles make a square,” Minerva adopted this statement in her subsequent 
discourse. She incorporated these words into her first solution to the problem and she repeated 
these words on two separate occasions. In addition, all but one of Minerva’s solutions to the task 
included the arrangement of the two triangles into a square. Minerva’s use of Bonita’s statement 
and arrangement of triangles suggests that Minerva learned from Bonita even while she resisted 
her identification as a learner. 

This covert learning was not an isolated incident: There were four occasions in which close 
observation of Minerva revealed that she was unsure about the solution or how to proceed in the 
task or that she was not yet articulating the teacher-approved response to a question. In each of 
these instances, rather than admit that she didn’t know, Minerva carefully and unobtrusively 
observed her peers and the interaction between her peers and the teacher. She then repeated the 
discourse of her peers that had the approval of the teacher. For example, Bonita stated and the 
teacher concurred that the areas of Figures H and I were the same. Eight turns later, Minerva 
articulated this same idea for the first time. Her use of this idea was in contrast to her previous 
solution which did not show the areas of the two figures as equivalent. Thus, Minerva seemed to 
be listening and learning from the interactions occurring at her group and using this learning to 
appear knowledgeable, but she was not overt about this learning. 

While Minerva frequently repeated the discourse of others, her use of their discourse was 
limited. For example, she was able to use Bonita’s statement that “two triangles make a square” 
to appropriately respond to the teacher’s question about the area of Figure I and she cut out and 
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connected the two triangles from Figure I into a square. However, one of her initial solutions to 
the task focused on demonstrating that the two triangles made a square and not on how that 
information contributed to a comparison of areas. Her final solution also placed the two triangles 
into a square, but, rather than compare areas, Minerva joined all of the pieces of both figures 
together and counted the total area, recording an answer of “4.” While four was the count of the 
area of both figures in terms of square units, this answer failed to compare the areas of the two 
figures. Minerva’s later work also demonstrated her understanding of area as an operation in 
which two figures were combined and total area was determined, rather than understanding area 
as a property of each figure that could be compared. 

This limited understanding of mathematical discourse may have been tied to Minerva’s 
limited use of mathematical discourse. She was very skilled at identifying and repeating 
mathematical statements that were valued by the teacher, but she only used these narratives to 
reply to teacher questions. Her mathematical discourse was limited to brief responses, almost 
exclusively uttered only in the presence of the teacher. She did not talk mathematics with Bonita 
or Jessica. She did not explore the solutions of her peers, explain her own work (even when 
asked to do so by Jessica), or ask questions about the mathematics. Indeed, she asked only two 
questions throughout the lesson, both at the beginning of the lesson: one about the context of the 
problem and one about what to do. Her limited use of mathematical discourse provided her with 
few opportunities to explore the mathematical words, connect the words to representations, or 
examine the verity of the statements she used. 

Perhaps if Minerva had been willing to identify as a learner, if she had been less insistent 
about appearing as knowledgeable and more curious, she might have done more exploration of 
the mathematical discourse. These changes in her mathematizing and identifying may have 
resulted in more effective learning. 

 
Conclusion 

This case of Minerva’s covert learning demonstrates how mathematizing and identifying are 
intertwined and have consequences for learning. Minerva’s mathematizing communicated her 
identification as someone who knew answers: She could successfully respond to the teacher’s 
questions and she did not ask questions or request explanations. Minerva reinforced this 
identification through nonmathematizing moves when she resisted Jessica and Bonita’s 
identification of her as someone who needed to learn mathematics.  

While these mathematizing and identifying moves were meant to demonstrate competence 
and knowledge, they limited Minerva’s mathematizing such that the changes in her mathematical 
discourse were primarily limited to adoption of the mathematical statements uttered by others. 
As a consequence, her mathematical learning was limited. She incorporated some 
mathematically desirable statements (i.e. “Two triangles make a square”), but her final discourse 
(which employed combining rather than comparing areas) was mathematically troublesome. 
Perhaps if Minerva had identified in a way that allowed her to ask more questions (of her peers 
or her teacher) or to explain her work to her peers, she would have engaged in more 
mathematizing and perhaps experienced more desirable learning. 

Minerva’s identifying and mathematizing also had consequences for the learning of her 
peers. As she discouraged mathematical conversations between herself and her peers, she also 
limited the mathematizing and consequently the learning of her peers. Thus, Minerva’s activity 
has implications for mathematics pedagogy and curricula that emphasize group work and 
learning from conversations among peers. This case seems to imply that if students are to learn 
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from each other, they must be willing to overtly identify to each other as learners. 
This case of Minerva provides a perhaps extreme example of the consequences of focusing 

on right answers. It suggests that as teachers and schools seek to support students in learning 
mathematics, they may want to support students in valuing mathematizing and identifying 
activities that demonstrate questioning and exploring and a willingness to learn rather than 
quickly knowing. Eleanor Duckworth (2006) notes, “What you do about what you don’t know is, 
in the final analysis, what determines what you will know” (p. 67). How students mathematize 
and identify as they engage in mathematics will have consequences for the mathematics they 
learn. 
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Introduction 
This paper contributes to a body of literature that is concerned with supporting our 

understanding of how to facilitate whole-class mathematical discussions. In this paper, we share 
an analysis of four fifth grade mathematics teachers who are teaching with a worksheet that is 
designed to target students’ understanding of fractions. Our analysis targets the relationship 
between particular teacher moves and the nature of mathematical ideas that get on the table in the 
classroom discussion. This paper makes a unique contribution because it looks across multiple 
classrooms in order to examine the nature of particular teacher moves that impact whole-class 
discussions.  

Whole-class discussion is a key part of reform mathematics classroom practice, but one that 
is challenging and takes some time to master. As such, orchestrating whole-class discussions has 
been the topic of significant attention, although as a field we are still working to document 
practices that teachers can leverage which consistently support high-quality discussions. More 
specifically, while it is clear that the culture of the classroom significantly impacts the kinds of 
conversations that can take place amongst students (Cobb, 1999), teachers play a key role in the 
facilitation of whole-class mathematical discussions. Even within classrooms that create cultures 
of discussion, the difference between conversations that build to key mathematical 
understandings (as opposed to those that result in merely sharing ideas) appears to be related to 
the particular moves a teacher makes in the course of the conversation, and which create 
opportunities to engage with mathematics in particular ways. 

Key challenges involve the tricky business of tracking the nature of the mathematical topic 
under discussion, the potentially fruitful and potentially unanticipated sidepaths, the sites to 
locate and address misconceptions, and the orchestration of students’ own emotions and agency 
as contributors to these discussions. In her book Teaching problems and the problems of 
teaching, Maggie Lampert (2001) described the myriad conflicting goals that she often 
negotiated in the course of a single 10-minute discussion. Likewise, Deborah Ball (1993) has 
described the challenging task of unpacking the key mathematical ideas at play in the course of a 
discussion, and knowing how to most productively step in to either support the trajectory of the 
conversation, or redirect it.  

This paper contributes to the growing body of literature that focuses on the relationship 
between particular teacher moves and mathematical meaning-making (Ball, 2001; Gravemeijer, 
2004; Stein, Engle, Smith, & Hughes, 2009). In the work we present here, we focus specifically 
on the ways teachers’ moves position students as mathematical meaning-makers, and position 
content as rules to be remembered versus ideas to be interrogated. Below, we unpack the idea of 
positioning and explain how it is used in this analysis. We then detail the methods and results of 
our study, and discuss implications for future work.  
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Positioning in Practice 
In this work, we leverage the notion of positioning as a lens for analysis. Positioning, as a 

mechanism, helps to bridge the space between the opportunities that are available for 
participation in particular ways and what individual participants actually do. In our work, we 
have examined two aspects of positioning: how students are positioned relative to content 
(disciplinary positioning), and how they are positioned relative to others (interpersonal 
positioning) (Greeno & Hull, 2002; Gresalfi, in press). For example, students are positioned 
relative to the discipline of mathematics through the ways in which content is organized to afford 
particular mathematical insights and understandings. This speaks not only to the design of 
different tasks, although design of course creates significant opportunities (Stein, Smith, 
Henningsen, & Silver, 2000), but also to the ways content itself is treated in conversation as a 
series of rules to be learned (procedural engagement) or a set of ideas to be interrogated 
(conceptual understanding) (Gresalfi, Barab, Siyahhan, & Christensen, in press),  Likewise, 
practices around doing mathematics can create opportunities for students to become positioned 
relative to each other, such as being expected or obligated to convince or constructively 
challenge someone else (Carpenter & Lehrer, 1999; Lampert, 1990). In so doing, both what it 
means to do mathematics, and who is capable of engaging mathematics, is constructed.  

Positioning takes place at two levels--as a moment-by-moment process through which 
particular students are given opportunities to participate in particular ways (Davies & Harre, 
1999), and over time, as students become associated with specific ways of participating in 
classroom settings (e.g., (Holland, Skinner, Lachicotte, & Cain, 1998); (Wortham, 2004)). At the 
moment-by-moment level, positioning can be seen most easily in talk, as students and the teacher 
speak to each other about academic content, about themselves, and about their current work (van 
Langenhove & Harre, 1999)). When looking over slightly longer time periods, students can be 
positioned as being certain kinds of people through the emergent participant framework 
(Goffman, 1974; Goodwin, 1990; Herrenkohl & Guerra, 1998; O'Connor & Michaels, 1996)) of 
a classroom which shapes the ways that students are expected, obligated, and entitled to 
participate with content and with others in the classroom. For this paper, we consider two types 
of positioning:; the ways that students are positioned relative to others, or their interpersonal 
positioning; and, the ways they are positioned relative to content, or their disciplinary 
positioning.  
Interpersonal Positioning  

The idea of interpersonal positioning is closely aligned with van Langenhove and Harre’s 
(1999) work on positioning, which concerns the fluid positions, roles, or characterizations that 
people make available for themselves and others through their talk. As Holloway (1984) states: 
“Discourses make available positions for subjects to take up. These positions are in relation to 
other people. Like the subject and object of a sentence…women and men are placed in relation 
to each other through the meanings which a particular discourse makes available” (p. 236, quoted 
in van Langenhove & Harre, p.16). Interpersonal positioning refers explicitly to the ways that 
students recognize themselves and others in relation to one another, for example, how are 
students expected or obligated to talk to each other?  To challenge each other’s ideas?  Do some 
students become positioned as more or less competent than others?    

One central way that students get positioned relative to one another involves their relative 
status—including aspects of status that are not necessarily relevant to academic work (Cohen & 
Lotan, 1995)). Interpersonal positioning also includes implicit and explicit comparisons between 
students, and between their ideas. Students’ ideas might be positioned as equally valuable (even 
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if they are not both accurate, c.f. (Lampert, 1990)), or one idea might be positioned as less 
important than another—for example, in a classroom that is more competitive. In some 
classrooms distinctions between who is “smart” and who isn’t may become a particularly 
dominant form of positioning, while in others, such distinctions are rarely made. In this paper, 
we attended to teacher moves that positioned students relative to each other in terms of their 
mathematical discussions; for example, teachers might position students as (productive) “critics” 
by asking them to “listen to this strategy and see what you agree with and what you disagree 
with.” Likewise, teachers might position students as “comparers” by setting them up to “see if 
your strategy is similar or different to the one you hear.” 
Disciplinary Positioning  

Students are also positioned relative to particular subject matter. Disciplinary positioning is 
related to both the affordances of the mathematical tasks, and the way those tasks are realized in 
the classroom. For example, in some classrooms, students are positioned primarily as receivers 
of knowledge (Boaler & Greeno, 2000). In such a classroom, students have opportunities to 
record and practice particular mathematical procedures, but possibly not to engage in acts of 
deeper meaning-making. In contrast, other classroom practices position students more actively 
and create opportunities for them to construct new information. In such spaces, students become 
both active consumers and producers of new knowledge and are positioned as having authority in 
justifying and determining the accuracy of their solutions (Gresalfi, Martin, Hand, & Greeno, 
submitted).  

For example, Lampert (1990) describes an effort she undertook in her own classroom to 
position students to be both courageous and modest in their mathematical activity. By 
positioning students as courageous relative to the content—taking risks in sharing information 
that they weren’t necessarily confident about, and modest about their proposals (in other words, 
being ready and willing to accept suggestions and revisions to their ideas)—Lampert was 
positioning her students relative to the content of mathematics in ways that supported deep 
engagement with the subject matter. As a consequence, both the ways that students engaged with 
the content—sharing mistakes, listening to and offering suggestions about others’ work—and the 
actual content with which students were engaging—thinking about proof or rationales behind 
why particular decisions were meaningful—changed from the beginning to the end of the year. 
In this paper, we attend to teacher moves that positioned students relative to content by tracking 
utterances that positioned content as either “stable” or “shifting,” by noting the kinds of 
opportunities to engage content that were offered to students. For example, when teachers tell 
students information without asking for challenge or feedback, they are positioning content as 
unmalleable and students as receivers of information. In contrast, when teachers ask students to 
justify why a solution is sensible, they are positioning content as open to challenge, and students 
as active meaning-makers.  
 

Methods 
The topic of this paper is four fifth-grade teachers and their students in a suburban school in 

southern Indiana. The data for this paper comes from one day of instruction in each of these four 
classrooms, during which time all students were working on the same worksheet about 
multiplying fractions. The worksheet was designed to promote discussion by posing open 
questions that could be answered in more than one way, and by asking students to explain to 
each other how they knew their answers were sensible. Specifically, the worksheet began with 
open-ended problems that targeted multiplication of fractions, and ended by asking students to 
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explain if the fraction multiplication algorithm would work every time. These four teachers were 
participants in a larger project whose purpose was to support both small group and whole-class 
discussions about mathematical content. As a part of the project, all teachers had participated in 
four full-day professional development sessions whose purpose was to highlight key 
mathematical ideas with which students were grappling, and to devise strategies to support 
student discussion. The strategies that were developed in the professional development sessions 
primarily targeted key mathematical ideas that students might understand or have 
misconceptions about.  

All four teachers used this worksheet in conjunction with the same lesson from their usual 
textbook, Everyday Mathematics. All teachers had their students begin by working 
collaboratively in groups of 3-5, and concluded with having students share and discuss their 
solutions collectively with the entire class. Beyond this common structure, teachers were free to 
discuss the worksheet however they pleased; as an example, some teachers had a member of 
each group share their solution while others selected particular students to share their work. 
Some teachers had common expectations for group work as a coherent part of their classroom 
practice, while others used collaborative group work less often in their everyday practice. Each 
teacher had between 25-30 students in their classroom. All classes were heterogonous, and the 
small groups were arranged heterogeneously. 

Data was collected using three video cameras; two of which were focused on a small group, 
and the third of which followed the teacher. Data for this paper considers only whole-class 
discussion times, and draws from the teacher camera. All videoed segments of whole-class 
discussions were transcribed and entered into a qualitative database (NVivo8). Codes were 
developed using both a priori and emergent methods; drawing from previous work that targeted 
productive teacher moves, we began with a list of codes that we thought would be useful 
descriptors of teachers’ moves. After watching the videoed segments of classrooms while using 
these a priori codes, additional codes were developed in order to capture emergent themes. A 
final coding scheme consisting of both forms of codes was then refined, and the codes were used 
on all four transcripts. The coding scheme documented both the kinds of teacher moves that were 
undertaken (for example, press, emphasizing expectations, telling), and the nature of the 
mathematical ideas those moves targeted (for example, making connections, procedural 
engagement, conceptual engagement) All coding was undertaken collaboratively between the 
first and second author, and disagreements between codes were discussed until agreement was 
reached.  
 

Findings 
Our analyses revealed, unsurprisingly, that teacher moves that emphasized procedural aspects 

of mathematics were related to procedural mathematical ideas being introduced, while moves 
that emphasized conceptual aspects of engagement led to conceptual aspects of mathematics 
being shared. Specifically, 100% of teacher moves that emphasized procedural aspects of 
mathematics led to mathematical discussions that focused on procedures. An example of such an 
exchange (coded as “set expectations” “justify” and “procedure”) is below. It begins with the 
teacher giving her students instruction on what a good drawing would look like in order to be 
convincing. The problem that the students were working on involved taking 2/3 of  ½ of a pan of 
brownies. Some students divided the pan of brownies into halves, and then divided only one side 
of the pan into thirds, and arrived at the answer of 2/6. The teacher was concerned that students 
cut up the entire pan of brownies in order to “prove” that their answer is correct: 
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T:  So, as you guys continue on, have you realized that once are working with this 
whole, if you divide it into more pieces equally, do you just do a part of it? Do 
you just divide a part of it? Will that work? It kind of worked, because you 
guys are smart enough that you can visualize and even though a lot of you did 
not divide both halves into sixths, you’re smart. And you’re like, “I know 
that’s two-sixths, because you can see it in your head. But, as you get into 
more complex problems, you may not be able to see that so easily. So, it’s 
very important that when you- that you keep that whole in equal-sized pieces; 
otherwise, our fractions aren’t balanced.”   

This utterance was coded as procedural because although the teacher was focused on helping 
students to think that they needed to prove their answers, the source of the proof could be seen in 
students’ accurate use of procedures; in this case, ensuring that they divided an entire figure 
equally, instead of visualizing the division of a figure into pieces. In this utterance there was little 
justification of why this was more convincing, except for the idea that it would help when 
problems became more complex. In this way, the utterance served to position students relative to 
content as mere executers of algorithms; they were not asked to critique solutions, but rather to 
ensure that they were able to perform solutions accurately. This positioning created opportunities 
for students to engage procedurally with content. As can be seen in the following exchange, 
procedural mathematical content was discussed following this utterance. In the exchange below, 
students were solving the next problem on the worksheet; one that involved taking 1/3 of ¼. A 
student had just come up to share her solution, and the teacher claimed that this solution was a 
wonderful proof:   

T:  Why does this prove it to me? Why does this prove it? Talk to me, guys. Talk to me. 
Why does this prove it? When I look at that entire pan of brownies, what do I see? 

St:  She divided it into fourths and then thirds? 
T:  OK, but what do I see? I’m the accountant. I don’t know one thing about serving 

brownies. I just have to know how many- I have to know for sure how many 
brownies were sold, so I can keep my accurate records for your business. How do I 
know how many brownies that pan was cut into? Talk to me! 

St:  She divided it into twelve equal parts? 
T:  It’s in twelve equal parts!   

In this exchange, the teacher and the students were focused on the appearance of a problem, 
and a justification that focused on procedural aspects of understanding. Thus, the mathematical 
content that got established as a topic of conversation involved a procedure for proof: divide a 
figure into equal parts. These coupled exchanges detail the relationship between the ways that 
students are positioned to engage content, and their resulting opportunities to learn that content.  

Likewise, students who were positioned to engage conceptually with content had 
opportunities to participate in discussions that focused on conceptual aspects of doing 
mathematics. Almost 65% of teacher moves that were classified as conceptual led to 
mathematical discussions that focused on conceptual understanding. An example of a teacher 
utterance that was coded as pushing on conceptual understanding can be seen below:  

T:  OK. Turn to that problem on the back page real quickly, ‘cause that’s sort of where 
the connection was. How can you multiply and end of with a smaller amount than you 
started with? How does that work?  ‘Cause normally if you multiply two times three, 
you’re going to get six. How come we’re multiplying, and we’re getting something 
smaller? 
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In this utterance, the teacher focuses on the conceptual aspect of mathematics by asking 
students to consider why things work as they do. Thus, they are focused on justifying, rather than 
following rules. Specifically, students are positioned as investigators whose role is to make sense 
of mathematics. This positioning created opportunities for students to engage conceptually with 
content, as can be seen in the following exchange that led to conceptual mathematical content 
being discussed in the classroom. In the exchange below, students were working on answering 
the teacher’s question of why multiplying by fractions makes things smaller:  

St:  Um, well, because fractions are less than one, so, um, like, um, multiplying is like, I 
mean, um, like, three times two. Three two times is six. 

T:  OK. 
St:  Um, so, one times point five, because point five is a decimal and decimals are (like) 

fractions- 
T:  Mmm-hmm. 
St:  That would be, um…one times a half and that’s (a half) 

In this exchange, a student was focused on trying to justify and explain how mathematics 
works. Although she did not produce a complete explanation, the topic of conversation shifted to 
justifying, rather than following rules. As could be seen in the procedural exchanges, these 
coupled exchanges detail the relationship between the ways that students are positioned to 
engage content, and their resulting opportunities to learn that content. Specifically, our analysis 
documents that teachers’ moves which position students as meaning-makers lead to opportunities 
to engage in activities of meaning making, while moves which position students as following 
rules lead to opportunities to merely enact those rules.  

Because our interest in this work is on better understanding how whole-class conversations 
lead students to have opportunities to engage mathematical meaning-making, our analysis has 
also detailed the specific moves that teacher make that are likely to support such meaning-
making. Although space prevents us from detailing these practices in this paper, our presentation 
will detail the specific moves that were associated with conversational exchanges that focused on 
mathematical meaning-making.  
 

Conclusions 
Understanding how students come to participate knowledgably with a domain and to see 

themselves as capable of doing so requires renewed attention not only to what students do, but to 
what they have opportunities to do. By attending closely to these opportunities, it is possible to 
see how students are positioned in moments of interaction relative to aspects of classroom 
practice. In this paper, we consider two types of positioning: how students are positioned relative 
to content (disciplinary positioning), and how they are positioned relative to others (interpersonal 
positioning). For example, students are positioned relative to the discipline of mathematics 
through the ways content is organized to afford particular mathematical insights and 
understandings. This speaks not only to the design of different tasks, but also to practices around 
doing mathematics. These aspects of mathematical practice can create opportunities for students 
to become positioned relative to each other, for example, as being expected or obligated 
convince or constructively challenge someone else. In so doing, both what it means to do 
mathematics, and who is capable of engaging mathematics, is constructed. 
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This session explores the ways that practicing teachers came to reflect differently regarding the 
discursive teacher/student binary during a graduate-level course entitled “Mathematics 
Education within the Postmodern.” Using Dewey’s concept of reflective thinking, as well as 
Foucault’s discourse and Derrida’s deconstruction, we show how the course provided new 
suggestions for the students as they continued their journey of becoming teachers. Through 
interweaving comments written by the students with concepts borrowed from postmodern 
philosophers and theorists, we illustrate how the teachers began to understand that teachers and 
students might indeed be described differently in the postmodern. 
 

Introduction 
Most, if not all, mathematics teachers, educators, and policymakers would agree that the 

documents produced by the National Council of Teachers of Mathematics (NCTM) over the past 
30 years describe a different mathematics classroom than that which is experienced by most 
students in U.S. schools (see, e.g., NCTM, 2000). Although the impact of these documents in 
reforming mathematics teaching has been somewhat limited (see, e.g., Wilson & Goldenberg, 
1998), research has shown that these documents have had an impact on how mathematics 
teachers define and practice “good” mathematics teaching (see, e.g., Wilson, Cooney, & Stinson, 
2005).  

Wilson, Cooney, and Stinson’s (2005) research on the perspectives of seasoned mathematics 
teachers about good teaching suggests that efforts to reform mathematics teaching are seldom all 
or nothing affairs. Their research illustrated that even as seasoned teachers reformed (some of) 
their teaching practices that most often they continued to maintain a belief in the teacher-
centered classroom and the infallibility of mathematics. It has been argued that the latter of these 
beliefs is counter to reform-oriented mathematics teaching, thus securing the continuation of 
traditional practices (see, e.g., Davis & Hersh, 1981; Ernest, 1998). To make it possible for 
teachers to create mathematics classrooms that are consistent with the constructivist, student-
center objectives of reform-oriented mathematics teaching, we believe that teachers must be 
provided an opportunity to challenge and “trouble” both traditional mathematics teaching and the 
reform efforts themselves. In understanding the mathematics classroom as a pedagogical space 
for teachers and students to “reason together” (David and Hersh, 1981, p. 282) through the 
socially constructed discipline of mathematics (Ernest, 1998), we argue that postmodern (or 
poststructural) theory provides a different theoretical framework for teachers to trouble both 
traditional and reform-oriented mathematics teaching as they explore their own pedagogical 
philosophies and practices.  

The value of postmodern theory is found in its awareness of and tolerance toward social 
differences, ambiguity, and conflict; it requires developing new languages, conventions, and 
skills to address the moral and political implications of knowledge (Seidman, 1994). In short, 
postmodern theory requires shifting the “focus from foundations and familiar struggles of 
establishing authority toward exploring tentativeness and developing scepticism of those 
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principals and methods that put a positive gloss on fundamentals and certainties” (Walshaw, 
2004b, pp. 3–4).  

 
Foucault’s Discourse, Derrida’s Deconstruction, and Dewey’s Reflection 

As Foucault (1969/1972) reinscribed the concept discourse, he argued that discourses are not 
a mere intersection of words and things but are “practices that systematically form the objects of 
which they speak” (p. 49). That is to say, for Foucault, “discourses do not merely reflect or 
represent social entities and relationships; they actively construct or constitute them” (Walshaw, 
2007, p. 19, emphasis in the original). Foucault (1976/1990), however, also conceived discourses 
“as a series of discontinuous segments whose tactical function is neither uniform nor stable” (p. 
100), which provides for the occasion of developing different discourses—and, in turn, different 
knowledges. Thus, we are not forever doomed by discourses. In general, Foucault’s (1969/1972) 
analysis of discourse replaces the concept of the “nature” of knowledge with the “discursive 
formation” (p. 38) of knowledge. His analysis rejects the “natural” or taken-for-granted concepts 
of knowledge found in humanism, such as Descartes’ dualism of mind-body (which argues that 
the thinking subject is the authentic author of knowledge) or Comte’s positivism (which argues 
for a “scientific” knowledge gained from methodologically observing the sensible universe) (St. 
Pierre, 2000). Foucault uncovered knowledge as a discursive formation through the means of 
performing an archeological analysis, which examines the history of a discourse. But rather than 
being concerned with uncovering the “truth” by an examination of facts and dates, it is 
concerned with the “historical conditions, assumptions, and power relations that allow certain 
statements, and by extension, certain discourses to appear” (St. Pierre, 2000, p. 496). In short, 
this methodology allows for the understanding of “how knowledge, truth, and subjects are 
produced in language and cultural practice as well as how they might be reconfigured” (St. 
Pierre, 2000, p. 486). 

In other words, there is no origin, or understood in another way, no center to discourse. 
Derrida (1966/1978) argued that accepting discourse as having no center allows discourse to be 
open for the “movement of play” (p. 289). He defined play as the “disruption of presence” (p. 
292). In this context, play rejects the totalization of humanism with its “dreams of deciphering a 
truth or an origin which escapes play” (p. 292). This movement of play provides more freedom. 
This reconstitution of freedom as play is implicated in Derrida’s deconstruction of discursive 
binary oppositions (see, e.g., Derrida, 1974/1997). Although Derrida refused to limit the 
possibilities of deconstruction through definition (1983/1991, see also Derrida & Montefiore, 
2001), others have described it as the methodology of exposing discursive binary oppositions 
defined interdependently by mutual exclusion, such as good/evil or true/false (Dillon, 1999). For 
Derrida, these binary oppositions shape the very structure of thought by constructing an 
“essential” center and authorizing presence—a center and presence that, it is assumed, will 
collapse if the binary opposition is undermined (Usher & Edwards, 1994). Within the context of 
mathematics education, some of these binary oppositions are: mathematical Truths/mathematical 
truths, teacher/student, effective teacher/non-effective teacher, reform teaching/traditional 
teaching, mathematically able student/non-mathematically able student, high-level course/low-
level course, and so forth.  

The deconstruction of binary oppositions identifies the first term, the “privileged” term, as 
being dependent on its identity by the exclusion of the other term, demonstrating that primacy 
really belongs to the second term, the subordinate term, instead (Sarup, 1993). Deconstruction, 
therefore, involves unsettling and displacing (or troubling) binary hierarchies, uncovering their 
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historically contingent origin and politically charged roles, not to provide a “better” foundation 
for knowledge and society but to dislodge their dominance, creating a social space that is tolerant 
of difference, ambiguity, and playful innovations that favors autonomy and democracy 
(Seidman, 1994). In short, deconstruction acknowledges that the world has been constructed 
through language and cultural practices; consequently, it can be deconstructed and reconstructed 
again and again (St. Pierre, 2000).  

In the past 2 decades or so, the discourse of reflection has been identified as a crucial 
characteristic of exemplar teachers by numerous national, state, and local organizations, 
foundations, and boards (Rodgers, 2002). For example, the NCTM (2000) stated, “opportunities 
[for teachers] to reflect on and refine instructional practice—during class and outside of class, 
alone and with others—are crucial in the vision of school mathematics outlined in Principles and 
Standards” (p. 19). Mewborn (1999), in her study on reflective thinking among preservice 
elementary mathematics teachers, traced the emphasis of teacher reflection to Dewey, suggesting 
that he believed the primary purpose of teacher education should be to help teachers reflect on 
problems of practice. Although Mewborn rightly noted that there is little agreement as to the 
content and nature of Dewey’s reflective thinking in general, she did find some commonalities 
present within the literature, including that reflective thinking is qualitatively different from 
recollection or rationalization, and is both an individual and shared experience. Rodgers (2002) 
argued that reflection is not an end in itself but a tool used in the transformation of raw 
experience into meaning-filled theory—grounded in experience and informed by existing 
theory—to serve the larger purpose of the moral growth of the individual and society. 

 
The Course 

Teacher reflection was a primary objective as I (the first author) planned the course 
“Mathematics Education within the Postmodern,” a graduate-level, mathematics education 
course. The course, a reading intensive seminar, began by engaging students in a brief overview 
of postmodern theory, reading book chapters by foundational French scholars such as Gilles 
Deleuze and Félix Guattari (1980/1987), Jacques Derrida (1966/1978), Michel Foucault 
(1976/1990), and Jean-François Lyotard (1979/1984). In addition, the students read book 
chapters and essays by education theorists who position their scholarship within postmodern 
theory, such as Patti Lather (2000), Robin Usher and Richard Edwards (1994), and Elizabeth St. 
Pierre (2000, 2004). This overview provided the foundation for students to begin an initial 
critical analysis of essays contained in Margaret Walshaw’s (2004a) edited book Mathematics 
Education within the Postmodern, essays that deconstruct and trouble the discourses of 
knowledge, learning, teaching, power, equity, and research, among others, within the context of 
mathematics education (for a review of this book see Powell, 2007). 

The specific learning objectives of the course were for students to develop an introductory 
understanding of the philosophical underpinnings of postmodern theory and to explore and 
(re)position the philosophical and structural foundations of mathematics, mathematics teaching 
and learning, and research in mathematics education within a postmodern framework. The 
intended purpose was not to “change” their teaching practices per se, but rather to provide the 
opportunity for mathematics education professionals to reflect differently on mathematics, 
mathematic teaching and learning, and, in turn, their pedagogical practices in light of postmodern 
theory. In short, the purpose of the course was for students to take the familiar discursive binaries 
of mathematics education (noted earlier) and to undergo a deconstructive process, individually 
and collectively.  
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Twelve students (8 women and 4 men) took the course; all but one were part-time graduate 
students and full-time mathematics teachers, ranging from elementary to college, with 5 to 15 
years of teaching experience. A daily written assignment for the course was to maintain a reading 
journal (i.e., annotated bibliography) that included written summaries of each assigned reading, 
student-selected significant quotations from each reading, and comments regarding the student’s 
struggles with each reading and how it might (or might not) assist in her or his teaching (and 
research). The final for the course was a reflective, academic essay (eight text pages in length) in 
which each student was to discuss her or his understanding of mathematics education framed in 
the postmodern and her or his struggles with and remaining (or new) questions of such a 
framing. 

 
Teachers Reflecting Differently 

No matter what the students’ initial comfort level with the ideas of postmodern theory, in the 
following discussion we argue that their final reflective essays demonstrate that in most cases 
each student’s thinking attempted to take a new “line of flight,” in which they endeavored to 
“make a map and not a tracing” (Deleuze & Guattari, 1980/1987, pp. 11–12) of the meanings 
and truths of mathematics teaching and learning. Through using the first phase of Dewey’s 
(1933/1989) five phases of reflecting thinking—suggestion—the discussion attempts to capture 
(some of) these new lines of flight, illustrating how these practicing teachers began to 
reflectively think differently. The discussion is not about tracking or documenting mathematics 
“teacher change.” We understand mathematics teacher change to be a complex endeavor that 
most often occurs when teacher professional development opportunities are long-term, school-
based efforts conducted within a community of learners that provide teachers opportunities to 
grapple with significant mathematics and to consider how students might engage with that 
mathematics (Mewborn, 2003). Like the NCTM Principles and Standards (2000), however, we 
believe that teaching is a continual journey. “Effective teachers” do not master teaching, but 
rather find themselves in a continuous state of growth and change (Mewborn, 2003).  

Within Dewey’s (1933/1989) reflective thinking phase of “suggestions, in which the mind 
leaps forward to a possible solution” (p. 200), we believe that postmodern theory offered these 
seasoned teachers the possibility of different suggestions as the familiar discursive binaries of 
mathematics education underwent deconstruction, and, in turn, motivated different suggestions. 
Given the space limitation of this paper, we focus the discussion on the discursive practices that 
classify and describe teachers and students through interweaving comments written by the 
students with concepts borrowed from postmodern philosophers and theorists, illustrating how 
the teachers began to understand that teachers and students might indeed be described differently 
in the postmodern (Hardy, 2004). 

In a postmodern frame, a new suggestion emerges that attempts to pry loose the binary 
(Spivak, 1974/1997) teacher/student, deconstructing the binary both in identity and relations of 
power. Within postmodern theory, teachers and students are (re)defined as subjects rather than as 
individuals. The term individual is a humanist term that implies that there is an “independent and 
rational being who is predisposed to be motivated toward social agency and emancipation—what 
Descartes believed to be the existence of a unified self” (Leistyna, Woodrum, & Sherblom, 1996, 
p. 341). A postmodern perspective, on the other hand, defines the person as a multiplicitous, 
fragmented subject who is subjugated, but not determined, by the social structures and discourses 
that constitute the person.  
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This conception provides for a different suggestion of power and, in turn, agency. Power in a 
postmodern frame is reconstituted, not as an object that can be shared, deployed, or taken away, 
but as a dynamic and productive event that exists in relations of power (Foucault (1976/1990). 
Deanne (a pseudonym, as are all student names throughout) used this Foucauldian reconstitution 
of power when she argued that teachers can challenge discourses by the decisions they make in 
their classes, for their students, everyday. Deanne also wrote, “Teachers in a postmodern 
classroom (occupied by subjects who transfer power between the teacher and each other in order 
to gain knowledge) attempt to create a space where students [and teachers] can learn through 
communication with others in the class.” Similarly, Lauren wrote, “I must consciously 
acknowledge my students, not as objects, but as [subjects], using power, resisting power, and 
interacting with each other and with the mathematics.” While reconstituting power as “‘letting 
go’ of the control in their classroom” and allowing “for the possibility of being ‘found out’ as not 
being the authority,” Charles wrote: “Teachers need to embrace their lack of expertise. …By 
joining the learning process in the classroom, teachers can model the open-mindedness necessary 
for students so that they might begin questioning, discussing, and constructing their own 
mathematical knowledge.” This joining in the learning process allows for a different interaction 
between teacher and students—and mathematics—that supports the mathematics classroom in 
becoming a pedagogical space that is open for “negotiation of intentionality” (Valero, 2004, p. 
49, emphasis in original).  

Valero (2004) suggested that when students (and teachers) are defined as agents who 
negotiate the intentions of the mathematics classroom—using power, resisting power, interacting 
with each other and the mathematics—that real empowerment might take place. Here, 
empowerment is understood as self-empowerment: “a process one undertakes for oneself; it is 
not something done ‘to’ or ‘for’ someone” (Lather, 1991, p. 4). Within the context of a 
postmodern mathematics classroom, Valero claimed that empowerment is not passed from 
teacher to student through the transference of “powerful knowledge,” but rather might be defined 
in terms of the potentialities for students (and teachers) to participate in (i.e., to negotiate) the 
discursive practices of school mathematics. Sarah noted, “I hope to help my students empower 
themselves to overcome the discourses…to overcome the limitations society and our culture has 
put on them.”  

Coupled with this different understanding of student and teacher empowerment was a 
different suggestion of understanding students and teachers as fragmented subjects. Lauren 
wrote: “I have been many in my life—there is no one woman who defines me. I am mother, wife, 
teacher, daughter, boss, and student—each time made anew by social context and relationships 
with others.” As these seasoned teachers began to understand themselves as fragmented subjects 
constructed through discourses and relations of power, they, in turn, began to view their students 
as fragmented subjects. For example, Nancy stated: “Educators should begin to look at their 
students as multiplicitous subjects rather than as individuals; it is important to remember students 
are not identical in math or English class, in sports or hobbies, at home or school.” She 
continued, “I need to accept my students as multiplicitous—each one coming to me with 
different levels of prior mathematical knowledge and different ways of learning.” Likewise, 
Susan wrote: “If nothing else, I have come out of this class knowing that students think 
differently, react differently, and position themselves differently; I need to recognize and respect 
these multiplicities.” 

The multiplicitous is a key reconstitution of self, others, and knowledge found within 
Deleuze and Guattari’s (1980/1987) characterization of the rhizome. The rhizome, as described 
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by Deleuze and Guattari, is not “reducible neither to the One nor the multiple. …has neither a 
beginning nor end, but always a middle (milieu) from which it grows and overspills” (p. 21). 
Fleener (2004), building upon the rhizome, argued for the importance of seeing teachers and 
students (and the mathematics curriculum) as multiplicitous, and that teachers should shift their 
“focus to the in-between, the relational, and the dynamic” (p. 213). Through “engaging the in-
between, students build their own understanding, not as foundations, but as complex webs of the 
nexus of relationship in the abstract world of mathematics” (p. 214). Sarah began engaging in the 
in-between, writing: “Typically, in mathematics we think there is one right answer to a problem 
and focus on developing our students’ knowledge of how to get to that answer, [but] it is…the 
‘in-between’ that matters the most.” 

A new suggestion of the in-between brought about a different suggestion regarding the 
possibilities of classroom communication. Within the postmodern, Cabral (2004) claimed, 
language ceases to be regarded as a means of “communication,” but as the very process of 
constitution of the subject; that is, the discipline of mathematics, students, and teachers are 
constituted within a language community. Therefore, Cabral argued, “we need to stop talking 
and start listening to the student...it is through speaking that one learns and through listening that 
one teaches” (p. 147). Lauren wrote: “I will listen more, talk less. …Let the students guide the 
lesson, hear what they have to say, to me and to each other, about the mathematics, about their 
understandings, questions, and confusions.” Nancy noted, “Actively listening to students’ 
questions and concerns may lead to further areas of exploration outside of the daily…lesson.” 
Dorothy, a doctoral student, spoke about the importance of teachers listening to their students, 
and of students listening to each other: “There have been many times in my classroom when I 
could not understand the point a student was trying to make. It took another student, in different 
words, to relay the message so that I could understand.” 

 
Conclusion 

The preceding discussion attempted to capture the different suggestions that engaging in the 
postmodern provided these seasoned teachers as they began to think differently about the 
discursive binary teacher/student. These suggestions motivated different classifications and 
descriptions for teachers’ and students’ identity, agency, and empowerment, and, in turn, a 
different suggestion of teacher and student participation in the mathematics classroom. There 
were several other instances in the teachers’ final essays in which other familiar discursive 
binaries were deconstructed or troubled. Some troubled the binary of mathematical-able 
student/non-mathematical-able student, while others troubled the effective teacher/non-effective 
teacher binary. And, in rare occasions, even the discursive binary mathematical 
Truths/mathematical truths was troubled. For instance, Marcus, a doctoral student, wrote, “Are 
we confining ourselves and our students by the rules and laws of mathematics that do not allow 
for them to do the unexpected, to go beyond their own reality?” Likewise, Nicholas noted, “I was 
blown away by the thought that mathematics, something that I had found comfort in because of 
its absolute nature, was being viewed as a science of uncertainty that could not be defined by its 
absolutes any longer.” In general, the teachers limited their comments regarding the truths of 
mathematics, or, similar to Nicholas, somehow resisted reconstituting the “absolute nature” of 
mathematics. It appears that although mathematics has been argued to be the roots of postmodern 
thought (see, e.g., Tasić, 2001), to deconstruct the capital-T truths of mathematics might prove to 
be the most difficult deconstruction to undertake; it may be, nonetheless, the most important. 
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This paper discusses learner-focused, whole-class discourse from an elementary teacher’s 
perspective based on her thinking and practice in teaching mathematics. A learner-focused 
perspective based on agency, collaboration, and reflection frames this study of classroom 
discourse. Analysis of data obtained through interviews and classroom observations produced 
six central ideas involving reflection on “self” and the sharing and guiding of thinking that 
formed a key basis of learner-focused discourse. These ideas are discussed with examples of how 
they occurred and were supported by the teacher’s thinking and actions. This learner-focused 
discourse is shown to be important to empower “self” in the learning of mathematics and to 
allow students to talk mathematically from and about their experiences and to make sense of 
mathematical ideas, mathematics in their lives, and their ways of thinking or learning. 
 

Introduction 
This paper is based on a two-year study of discourse that facilitates mathematical thinking as 

practiced in the classroom in the teaching of elementary school mathematics. The focus here is 
on the aspect of the study that investigated the teacher’s perspective of learner-focused discourse 
in whole-class settings as a basis of facilitating the learning of mathematics. 

 
Related Literature 

Many studies in mathematics education have dealt with various aspects of discourse that 
occurs, or ought to occur, in mathematics classrooms (e.g., Hiebert & Wearne, 1993; Hufferd-
Ackles, Fuson, & Sherin, 2004; Knuth & Peressini, 2001; Lampert & Blunk, 1998; Sherin, 2002; 
Steinbring, Sierpinska, & Bussi, 1998; Wertsch & Toma, 1995; Wood, 1999). Sfard (e.g., 2000a 
& b, 2001) and Cobb, with colleagues (e.g., Cobb & Bauersfeld, 1995; Cobb et al., 1997; Cobb, 
Wood & Yackel, 1993; Cobb, Yackel, & McClain; 2000), in particular, have written extensively 
about discourse in learning mathematics. Some studies offered units of analysis in studying 
discourse, For example, Sfard (2000b) identified three foci that exist in any analysis of 
mathematical discourse – the pronounced focus (i.e. the words used by the interlocutor); the 
attended focus (i.e., what the interlocutor is looking at, listening to, etc.); and the intended focus 
(i.e., the inter-locutor’s intention in contributing to the discourse). Ryve (2006) identified four 
types of math-ematical communication, i.e., discourse focused on: intrinsic properties – typically 
produced by students who ask “why”; identification of similarities – reasoning that relies on 
identified surface similarities; established experiences – discourse that does not fit into other 
categories; and non-mathematical – often about practical issues related to completing an assigned 
task. (Knuth & Peressini, 2001) identified “dialogic” and “univocal” as a basis to unpack the 
nature of discourse.  

Some studies focused on the relationship between discourse and learning. For example, Cobb 
et al. (1997) examined the relationship between classroom discourse and mathematical 
development. They concluded that collective participation in classroom discourse, although 
useful to the learning of children, does not by itself determine that mathematical learning or 
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development occurs. Other studies focused on the teachers’ role, the tasks, and the learning 
community to support discourse. For example, Wood (1999) discussed argumentation as an 
interactive process of knowing how and when to participate in an exchange. She offered 
examples of strategies used by a teacher to establish the classroom norms necessary to lay the 
foundation for argumentation as a form of learning. In some studies, the teacher’s role in relation 
to listening has been explored as an important aspect of discourse since the teacher must listen to 
students to sustain discourse. Wallach & Even (2005) identified five characteristics of how their 
participant heard or misheard her two students: over-hearing – when a teacher thinks she has 
head statements that were not made by the students; compatible-hearing – attributing meaning to 
what students are saying; under-hearing – not hearing or noticing cognitive progress made by 
students, e.g., believing that students have stumbled upon the correct answer, when in fact they 
have systematically arrived at a suitable solution; non-hearing – disregarding part of what 
students said; and biased-hearing – impacted by prior knowledge of students and views held by 
the teacher. Davis (1997) discussed three categories of listening – evaluative: listening for a 
particular, preconceived “right” answer or explanation, or listening to respond; interpretive: 
listening for sense-making, and for student understanding; and hermeneutic: listening to the 
speaker as a prelude to and as a component of a negotiation for meaning in a situation. He 
emphasized the importance of listening to discourse. 

This increased interest in discourse in mathematics education in recent years can be linked to 
learning theories and reform recommendations such as those of the National Council of Teachers 
of Mathematics (NCTM, 1991) that emphasize the importance of a different form of classroom 
communication from that of traditional mathematics classrooms. NCTM (1991) describes this 
reform-oriented discourse as dealing with the ways of representing, thinking, talking, and 
agreeing and disagreeing as a way to learn about, and engage in, mathematics as a domain of 
human inquiry with characteristic ways of knowing. This discourse attends to reasoning and 
evidence for sense making and to the development of ideas and knowledge collaboratively. It 
allows students to create their own understandings. It provides opportunities for individual 
students to connect and integrate their mathematical learning. It makes thinking public and 
creates an opportunity for the negotiation of meaning and agreement (Cobb & Bauersfeld, 1995). 
It provides collective support for developing one’s thinking, drawing it out through the interest, 
questions, and probing ideas of the teacher and others (Cobb, Wood, & Yackel, 1993). It enables 
students to articulate what they know as a way to clarify their own understandings (NCTM, 
1991). It is important in helping students develop and sharpen their mathematical thinking 
(Watson & Mason, 1998). In general, this discourse involves a more dialogic-type of interaction.  

Both the teacher and students have vital roles in this discourse process in order to initiate and 
sustain it (NCTM, 1991). But this form of discourse can be difficult for teachers to implement 
and manage. Kilpatrick, Swafford, and Findell (2001) explained: “Managing discourse is both 
one of the most complex tasks of teaching and the least thoroughly studied. Research needs to 
make visible teachers’ considerations as they handle classroom discourse and the consequences 
of their moves for students’ learning” (p. 346). Teachers who are able to implement meaningful, 
reform-oriented discourse offer a basis for such research in ways that could inform mathematics 
teaching and teacher education. This paper reports on a study based on such a teacher and 
provides insights of discourse that is learner focused from the perspective of the teacher. 
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Theoretical Perspective 
Theoretically, discourse can be considered from different perspectives (Steinbring, 

Sierpinska, & Bussi, 1998). Social constructivist or socio-cultural perspectives tend to be more 
common in conceptualizing it in studies in mathematics education. While these perspectives are 
applicable to this study, the focus, instead, is on highlighting the learner and the personal as 
central features of the discourse. Thus, a learner-focused perspective of discourse, as a basis to 
compare the teacher’s perspective, is adopted based on Bruner’s (1996) description of four 
“crucial ideas” of framing learning: agency, collaboration, reflection and culture. 

Bruner (1996) explains: “The agentive view takes mind to be proactive, problem-oriented, … 
selective, constructional. …Decisions, strategies, heuristics – these are key notions of the 
agentive approach to mind” (p. 93). This means, “one can initiate and carry out activities on 
one’s own” (p. 35). Thus, agency involves one being able to take control of one’s own mental 
activity. In this context of agency, Bruner notes: “the child … [is] somebody able to reason, to 
make sense, both on her own and through discourse with others” (p. 57). This view of children as 
thinkers requires the teacher to give “effort to recognize the child’s perspective in the process of 
learning” (p. 56). Agency, then, is about learner-focusedness and vice versa. This means that in 
learner-focused, classroom discourse, students are allowed to participate in ways that might 
include: initiation of a discussion; re-direction of discussions in a relatively teacher-unscripted 
direction; responses unanticipated by the teacher; responses with an element of creativity, 
students’ intentions, and personalization; and expression of students’ interests or agendas. 

Bruner (1996) associates collaboration with “sharing the resources of the mix of human 
beings involved in teaching and learning” (p.93). He explains that agency and collaboration need 
to be treated together to account for the individual and the collective in learning. He notes:  

 
Mind is inside the head, but it is also with others. It is the give and take of talk that makes 
collaboration possible. For the agentive mind is not only active in nature, but it seeks out 
dialogue and discourse with other active minds. And it is through this dialogic, discursive 
process that we come to know. (p. 93)  
 

Thus, agency and collaboration should be integrated in the design of a learner-focused classroom 
culture. For example, students should not only generate their own hypotheses, but also negotiate 
them with others—including their teachers. The authority for knowing mathematically must be 
shared between participants—either teacher and student or student and student—when 
constructing new meaning or developing students’ understanding of mathematics.  

Regarding reflection, Bruner (1996) describes it as: “not simply ‘learning in the raw’ but 
making what you learn make sense, understanding it … going “meta,” turning around on what 
one has learned through bare exposure, even thinking about one’s thinking.” (p. 58). Thus, like 
agency, reflection is about learner-focusedness and vice versa. This means that learner-focused 
discourse, for example, should allow or prompt students to notice for themselves and to become 
aware of their own thought processes, that is, “to become more metacognitive—to be aware of 
how she goes about her learning and thinking as she is about the subject matter she is studying” 
(Bruner, 1996, p. 64). Finally, regarding classroom culture, Bruner (1996) suggests that it is 
crucial to support learning and is the way of life and thought that we construct, negotiate, and use 
for understanding and managing the classroom. For a learner-focused, classroom culture, this 
will include creating, for example, a supportive and non-judgmental attitude to allow students to 
feel comfortable to share their thinking and experiences.  
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Research Process 
A case study was conducted with an experienced elementary teacher and her Grade 3 class. 

The teacher’s practice embodied social constructivist principles with discourse playing a 
prominent role. The teacher regularly engaged her students in whole-class and small-group 
discussions and inquiry-oriented mathematical activities. Whole-class discourse occurred 
consistently throughout the school year, sometimes for most of a lesson, for the first half of a 
lesson, or integrated with small-group activities. The whole-class discourse was usually centered 
on problem-solving tasks or introduction of a new mathematics concept from the curriculum. 
Data sources consisted of interviews with the teacher, weekly classroom observations throughout 
three consecutive school terms, and classroom artifacts. The open-ended interviews focused on 
the teacher’s thinking about discourse and her discourse behaviors in the classroom. For 
example, she was prompted to talk about her understanding of, goals for, and role in the 
discourse; her goals for students in relation to discourse; her approaches to questioning, listening, 
and task selection; how/why she intervened during discourse; how she established the classroom 
context; and her understanding of mathematical thinking. The interviews and all whole-class 
discourses for the lessons observed were audio taped and transcribed. Field notes were made of 
learning tasks, board work, and non-verbal teacher-student interactions relevant to discourse. The 
artifacts obtained included relevant students’ written work and teacher’s notes. 

Data analysis for the larger project focused on identifying characteristics of discourse and the 
relationship to facilitating students’ learning and mathematical thinking. Initially, a process of 
open coding was carried out. Corbin and Strauss (1990) describe this as taking data and segment-
ing them into categories of information. Two research assistants conducted this open coding 
independently of the researcher, and independently of each other. Only after initial categories 
had been identified were the results discussed and compared and revisions made where needed 
based on disconfirming evidence. Coding included identifying: (a) types of questions/prompts 
that elicited mathematical thinking (guided by Watson and Mason, 1998) and reflection; (b) what 
the teacher attended to in students’ responses; and (c) different teacher’s actions and/or thinking 
that determined or influenced different features of discourse and the nature of students’ participa-
tion and learning. Themes emerging from the initial coded information were used to further 
scrutinize the data and then to draw conclusions. Learner-focusedness emerged as an umbrella 
theme that characterized discourse in this classroom. The findings presented here focus on the 
nature of it based on the teacher’s thinking and classroom behavior during whole-class discourse. 

 
The Teacher’s Perspective of Learner-Focused Discourse 

The teacher’s perspective of learner-focused discourse during whole-class settings was 
evidenced in her classroom behaviors that promoted and supported students’ reflection on “self” 
and her thinking that emphasized connections to the students’ world in learning mathematics. 
The central ideas of this discourse (Table 1) are interrelated, but discussed separately here.  

 
Table 1 

Central Ideas of Learner-Focused Discourse 
Learner-focused discourse involves students: 
1. Reflecting on (making connection to) personal “real-world” experience 
2. Reflecting on conceptions 
3. Reflecting on preconceptions 
4. Reflecting on thinking 
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5. Sharing thinking 
6. Guiding thinking 

 
Reflecting on/making connection to personal real-world experience was a central aspect of 

discourse in this teacher’s classroom. Students were required to reflect on their out-of-school, 
real-world experiences to decide on and identify what mathematics they embodied, as in these 
three cases. (1) Students reflected on their experiences to identify examples of mathematics. 
Their challenge was to decide on what was an example of mathematics in their real-world 
experiences. This was initiated by the teacher posing questions, usually at the beginning of 
lessons, such as: “Where is math in your world?” “Did anything happen in your life that involves 
math that you want to share?” “Who experienced a math situation since we met in class 
yesterday?” “What math is happening in your world since I’ve seen you last?” (2) In contrast to 
case (1) where a mathematics concept was not specified, for this case, students reflected on their 
experiences to identify a specific mathematics concept. This occurred during the introduction 
and discussion of a mathematics concept and involved students associating real-world 
applications or significance of the concept. For example, in introducing a discussion of the 
concept of one million, the teacher asked, “Where would you find the number one million used 
in your world?” During a discussion of a line graph, students drew on their experiences to 
respond to the teacher’s question: “where have you seen it?” (3) Students reflected on their 
experiences to associate real-world meanings or interpretations as in the following situation: 
“We’re going to look at numbers on the calendar and try to think of how many ways to make this 
number. …Is there anything that you can think of in your life that makes you think of 17?”  

This focus on real-world experiences was also central in the teacher’s thinking. The teacher 
emphasized the importance and connections of mathematics to students’ world as a central goal 
for her students. She explained: “I want them to think it’s important in their world, I want them 
to see it’s around their world, and I want it to be positive.” She elaborated that this involved: 

 
How they interpret it [math], how they use it,…where they were seeing it. …Viewing things 
that are math. … Thinking that math is not just numbers on a page or just work in school. … 
Seeing the real world connections and patterns. …I question them to bring it [math] back and 
make a connection to their lives, because a lot of times they don’t do that. You have to link 
them with those questions. …I always tell them “see the math.” 
 
Reflecting on conceptions during discourse involved students thinking about what they knew 

about a mathematics concept based on their past experiences, in particular, what they learned in 
prior grades in school. The teacher prompted students to unpack a concept based on the 
conceptions they had constructed of it. For example, the teacher probed students’ thinking about 
the shape making up the bar graph they were discussing. She asked, “How do you know it is a 
rectangle? Make me believe that it is a rectangle.” Students were able to recognize the rectangle, 
but initially encountered a problem explaining why. To prompt their reflection, the teacher 
asked, “How did you know it wasn’t a circle.” This led them to talk about what the rectangle was 
not. The teacher then prompted, “Think about the art project we did,” as a way for them to find 
the language to describe the rectangle, which they were able to do. This discourse allowed the 
students to reflect on what they knew, i.e., their conceptions, based on making comparisons and 
connections within and outside of their mathematical experiences. 
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Reflecting on preconceptions during discourse involved students thinking about their real or 
imagined preconceptions of a mathematics concept, that is, what they thought they knew about it 
before formally learning it, as in the following three cases: (1) Students reflected on a concept or 
process of which they likely held preconceptions. For example, at the beginning of a lesson on 
linear measurement, the teacher initiated the discourse with: “We are going to determine our 
height today. … How could we do that? … What tools do we need to use for math today to 
determine our height?” The students’ responses led to a discussion of both the tools and units of 
measurement based on their preconceptions. (2) Students reflected on a concept of which they 
unlikely held preconceptions, but to which they could relate. For example, during a lesson on 
representing a number numerically in different ways, the teacher asked: “But just talking about 
numbers, does anybody really know where numbers came from and why we have numbers?” (3) 
Students reflected on a mathematics concept they likely or actually had formed a preconception 
of, but had not explicitly thought of or articulated, as in the situation when the teacher asked: 
“What’s the biggest number you can tell me?” 

Reflecting on thinking during discourse involved students thinking about their own thinking, 
that is, engaging on a metacognitive level, as in these four cases. (1) Students reflected on what 
they looked for, or thought of, in order to make sense of, or interpret, a mathematics concept. For 
example, the teacher asked, “We are going to take a look at how numbers are made up … what 
do you do when you read a large number?” (2) Students reflected on their problem-solving 
processes or strategies, as when asked, “What did you think of first when you read the riddle?” 
(3) Students reflected on their choices of tools to aid learning, as when asked, “Who used the 
place value mat? … Can you tell us why you chose to use that?” (4) Students reflected on the 
affective aspect of their problem-solving experience, as when asked, “How many people had a 
little bit of difficulty trying to solve it? … How many people found it a challenge?”  

The preceding situations of reflecting on thinking and (pre)conceptions were also central in 
the teacher’s thinking. For example, she explained: “I always say, ‘Hands down, brains on.’ 
That’s my saying so that every brain can have a chance to at least think about what they know.”  

Sharing thinking during discourse involved students expressing their ideas in their own ways. 
This was supported by the teacher’s questions, such as: How do you make sense of that? Can you 
say out loud what’s going on in your head? Do you have an “aha!”? What have you noticed? Can 
you explain that more? What do you know about this? Can you talk about it; describe it?  

One unique aspect of the teacher’s goal for discourse that supported this focus on students’ 
sharing was her own learning. She explained: “I want to learn something. I want to be “aha’d!” 
and surprised. I want them to teach me something. … I’m not afraid to take a risk so I just put 
myself out there and see what I can learn too.” In addition to her learning, she explained: 
“Always, my kids know you have to explain the why, not just an answer. … I really want to 
know the process…how they got there. It tells me a lot more about the kids.” She helped “to 
bring them out, to get them to think they have something to contribute, … to make everyone feel 
important and have a voice.” She believed that the best way to listen was: “Get rid of an answer 
in your head as you focus on their answer.” She added, “They see me trying to figure out what’s 
in their heads as opposed to wanting them to figure out what’s in my head – the answer I want.” 

Guiding thinking during discourse involved students taking the discussion in different 
directions based on their thinking and questions as in the following situations: (1) The teacher 
invited students’ guidance; for example, “We’re going to do patterns…what do you want to 
know about patterns?” (2) The teacher used students’ responses as a basis of follow-up questions 
for discussion. As she explained: “When I am planning a lesson, I think of some good questions 
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as openers…to get them thinking about the concept and then from there the other conversational 
questions just come from what they are sharing or asking.” She would also “do an off-shoot on 
something one might say, take it somewhere else, and that will lead someone else to 
participate…in oral discussion.” (3) The teacher probed students’ ideas, for example, on 
occasions “When I know they have something that will help the others understand or something 
that I never thought of to bring into a lesson.” (4) The teacher provided a question box in 
response to students’ request. She explained, “They wanted their own claim to the lesson. …It 
was unexpected to hear clearly that they wanted more empowerment to ask the questions they 
wanted or to learn the things that they wanted.” 

The teacher noted that “the math questions that the kids are asking” triggered conversation 
that developed in mathematically significant directions. Also, “Because they were given freedom 
to say, ‘tell me what you want to learn’… what triggers it is the interest from the kids.” She also 
supported students’ thinking when she repeated or paraphrased their responses. Her intent was 
often to check her understanding of what they said or meant; to get clarification of what they 
intended; to allow them to correct her interpretation; and “to spring off into another math topic.”  
 

Conclusion 
This teacher’s perspective of learner-focused discourse embodies notions of agency, reflect-

ion and collaboration as discussed earlier in the “theoretical perspective” section. It provides one 
way of understanding this view of discourse that could enhance the teaching and learning of 
mathematics. At the center of this view are the students’ thinking and real-world experiences as a 
basis of their learning of mathematics. Students get to personalize mathematics, to see mathema-
tics in their personal world, and to mathematize their personal world. In general, this view of 
discourse takes account of students' personal experiences, thoughts, and feelings. It capitalizes on 
and values students’ contributions to their learning. It provides opportunities for students to bring 
their own backgrounds, personalities, and beliefs into the construction of their mathematical 
knowledge. Thus, through it, students can come to realize that their ideas are valued and, as a 
result, have more authority over their learning and engage in more voluntary participation.  

This learner-focused discourse empowers “self” and gives students “voice” in learning 
mathematics. Human agency, therefore, is of significant importance. This form of agency was 
also promoted by Boaler (2003) in terms of the “I”-voice. She promoted classroom discourse that 
prompts students to take initiative, to demonstrate human agency. However, the learner-focused 
perspective promoted through this study includes the unique aspect of reflection on “self” i.e., 
students become the subject in the process of their own reflection and learning. Thus, there is a 
connection between personal experience and conceptual sense making. In general, this study 
suggests that discourse framed in agency, reflection and collaboration can allow students to talk 
mathematically from and about their experiences and to make sense of mathematical ideas, of 
mathematics in their lives, and of their way of thinking or learning. This way of empowering self 
makes the learning of mathematics personal, real, relevant, important, and meaningful.  

This study also suggests that in order to support this view of discourse, the teacher’s role has 
to be framed by the intent to listen to learn from the students and to listen to know them mathem-
atically. For example, based on this Grade 3 teacher’s perspective, this required her: to be aware 
and accepting of alternative ways of thinking or approaching something; to be able to recognize 
the students’ logic or believe that there was a logic; to believe that she can learn something from 
the students; and to understand students’ knowledge of a concept, their strategies, their prior 
experiences with the concept and their preformed perspectives and understanding. This view to 
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learn from and about the students is supported by an “intersubjective” (Bruner, 1996) perspective 
where the teacher applies the same theories to herself as she does to her students. For example, 
the teacher creates approaches that are as useful for students in organizing their learning as they 
are for her, i.e., approaches that support each other’s learning. From this intersubjective stance, 
the teacher is also interested in what the student is thinking and thus is concerned with formulat-
ing a basis of discourse that she can use to satisfy this and facilitate the efforts of the student.  
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This study investigated the relationship between the written and enacted curricula through an 
analysis of their mathematical features, including (a) Mathematical Words, (b) Visual 
Mediators, (c) Endorsed Narratives, and (d) Mathematical Routines. The results from the 
examination of the mathematical routine of questioning are reported here. The study revealed 
similarities and differences between the questions included in the written and enacted curricula 
indicating the utility of this framework for documenting the characteristics of curricular 
implementation.            
 

Background 
The National Council of Teachers of Mathematics (NCTM) published a series of three 

standards documents beginning nearly twenty years ago that provided a new vision for school 
mathematics (NCTM, 1989; NCTM, 1991; NCTM, 1995). This vision advocated for a student-
centered model focused on mathematical reasoning, problem solving, and communication. 
Subsequently, the National Science Foundation (NSF) funded the development of mathematics 
curricula based on the NCTM standards. These curricula, and the standards on which they were 
based, have been challenged to prove their effectiveness. The resulting evaluation and 
comparative studies have been criticized for inadequate documentation of the implementation of 
the curricula (e.g., Senk & Thompson, 2003; National Research Council, 2004) saying that in 
order to credit a curriculum for students’ learning or blame a curriculum for lack thereof, some 
degree of fidelity of implementation must be established. Textbook-use diaries, table-of-contents 
implementation records, classroom observations, interviews, and surveys have been used in 
recent studies to document curricular implementation. What has been missing from these 
methods of accounting for implementation has been a focus on mathematics. That is, how is the 
mathematics presented in the written curricula, how is it enacted in the classroom, and what is 
the relationship between the two? In this study, I use the commognitive framework (Sfard, 2008) 
to compare the mathematical features of written and enacted curricula.  
 

Theoretical Perspectives 
Commognition (formed from communication and cognition) treats communication 

(interpersonal exchange) and cognition (intrapersonal exchange) as two forms of the same 
phenomenon. It was developed to emphasize the relationship between these two processes.  The 
commognitive framework proposes that mathematics is discourse about mathematical objects 
and learning mathematics is a change in participation in mathematical discourse. The framework 
suggests an examination of the discursive features of mathematics, including (a) Mathematical 
Words, (b) Visual Mediators, (c) Endorsed Narratives, and (d) Mathematical Routines.   

Mathematical words are those that signify quantities and shapes (e.g., number) and those that 
highlight relationships between these quantities and shapes (e.g., equivalence). Visual mediators 
are artifacts created for the primary purpose of mathematical communication (e.g., symbols, 
graphs). Narratives include any text that is framed as a description of objects, of relations 
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between objects or processes with or by objects, and which is subject to endorsement or rejection 
(i.e., being labeled true or false). Definitions, axioms, theorems, and proofs are commonly 
endorsed narratives in mathematics. Finally, mathematical routines are repetitive characteristics 
of mathematical discourse. A detailed comparison of these four mathematical features in the 
written and enacted curricula provides new ways to talk about curricular implementation that 
highlight the mathematics. The overarching question of this study is: What does an investigation 
of the key features of mathematical discourse, using the commognitive framework, in the written 
and enacted curricula reveal? Of particular interest in this paper: What does an investigation of 
the mathematical routine of questioning in the written and enacted curricula reveal?       

 
Methodology 

I utilized the commognitive framework to investigate the relationship between written and 
enacted standards-based mathematics curricula. To this end, I made use of two primary data 
sources, (a) the written version of a standards-based mathematics curriculum and (b) an 
enactment of the same standards-based mathematics curriculum.   

The Connected Mathematics Project (hereafter referred to as CMP) (Lappan, Fey, Fitzgerald, 
Friel, & Phillips, 2006) was used as the written curriculum. In particular, Multiplying with 
Fractions, an Investigation in Bits and Pieces II: Using Fraction Operations was used. The 
written curriculum is conceptualized here as the union of this Investigation in the Teacher’s 
Guide and the Student’s Guide.    

I used videotapes of Investigation 3 in a sixth grade classroom as the enacted curriculum.  
This particular class is heterogeneous in mathematical ability (i.e., the students are not tracked). 
It is located in a middle school in a small rural town in the Midwest. The teacher of this 
particular class is a veteran CMP teacher. She has attended and conducted professional 
development for CMP and verbally endorses the curriculum. The discourse of the classroom 
(i.e., the union of the words and actions of the teacher and the students) is considered the enacted 
curriculum for this study.   

My data analysis entailed, broadly speaking, comparing the mathematical features of the 
commognitive framework in the written and enacted curricula, and using the results of these 
analyses to investigate both the relationship between the two curricula as well as the usefulness 
of the framework to describe the results.  Here, I report only on mathematical routines, and only 
on the routine of questioning. 
 

Findings 
Routines are “well-defined repetitive patterns in interlocutors’ actions, characteristic of a 

given discourse” (Sfard, 2007, p. 574). Questioning is a widely used mathematical routine in 
both the written and enacted curricula. The CMP Teacher’s Guides contain a section entitled 
“Suggested Questions” for each Problem in the Investigation. Given the fact that learning 
mathematics is conceptualized here as changing discourse practices, the questions included in the 
written and enacted curricula are worthy of examination. That is, “What discursive practices are 
elicited through questions in the written and enacted curricula?” 

The written and enacted curricula include 110 questions and 579 questions, respectively. A 
series of analyses was conducted on these questions: (a) Leading Words of Questions, (b) 
Elicited Answers to Questions, (c) Mathematical Processes addressed by Questions, (d) 
Questions that Address the Answer, and (e) Miscellaneous Questions. 
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Leading Words of Questions 
For this analysis, the first word of each question in the written and enacted curricula was 

noted. Figure 1 summarizes the relative frequencies of the first words of questions that are 
present in at least 10% of either the written or enacted curriculum or both. 
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Figure 1.  Relative frequencies of leading words of questions. 

 
“What” and “How” are most common in both curricula. In both cases, however, the relative 

frequency in the written curriculum is greater than in the enacted curriculum. “Why” is not 
prevalent in either curriculum, but is twice as common in the written curriculum as in the enacted 
curriculum. Here, learning mathematics is defined as changes in participation in mathematical 
discourse. Given this, it seems that “open” questions (i.e., questions that require more than 1-2 
word answers) would be preferable to “closed” questions, as they would provide both 
opportunities for students to engage in extended mathematical discourse as well as opportunities 
for the teacher to monitor mathematical learning. “How” and “Why” questions tend to be open, 
whereas the “Do” “Am,” and “Can” families of questions are more likely closed. Contrasting 
these categories reveals that 34% and 23% of the questions in the written and enacted curricula, 
respectively, are open questions. “What” questions are not obviously open or closed and they 
appear in fairly equal frequencies in both curricula, therefore they were not included in this 
calculation. 
Elicited Answers to Questions 

The questions in the written and enacted curricula ask students either to say something or to 
do something. If learning mathematics is conceptualized as a change in ways of participating in 
mathematical discourse, then what students are expected to say and do is of critical importance. 
In particular, if students are expected primarily to “do,” then it is questionable how much 
mathematics learning can take place. In both the written and enacted curricula, questions asking 
students to “say” something are much more common than questions asking students to “do” 
something (i.e., 84% and 86% “saying” questions, respectively). 

The questions were classified into what the students are expected to say or do. When 
expected to “say” something, three types of responses are represented in at least 10% of either 
the questions in the written or enacted curriculum or both: (a) explanation, (b) yes or no, and (c) 
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a number. Table 1 provides examples from the written and enacted curricula of questions 
eliciting each of these types of responses. 

 
Table 1   
Sample Questions Eliciting Particular Response Types  

Response Written Curriculum Enacted Curriculum 

Explanation 
“Why does it make sense that the 
product [of reciprocals] is always 1?” 
(TG, p. 81) 

S:  “Why did you write twenty twos, 
though?” (Day 5) 

Yes/No “Do you think Takoda’s strategy 
works?” (Student’s Guide [SG], p. 38) 

T:  “So, is it fair to say that these two 
girls took each one of these thirds and 
split them into seven pieces?” (Day 1) 

Number “What fraction of a whole pan does 
Mr. Williams buy?” (SG, p. 33) S:  “So, how many thirds?” (Day 5) 

 
Figure 2 summarizes the relative frequency of each category of response.   
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Figure 2.  Relative frequencies of categories of elicited answers to questions. 

 
Figure 2 indicates that explanations are the most commonly elicited type of response in the 
written curriculum, whereas Yes/No responses are slightly more common than explanations in 
the enacted curriculum. This analysis supports the conclusion from the previous analysis that 
“open” questions are more prevalent in the written curriculum than in the enacted curriculum.       

When a question expects the students to “do” something, the actions include constructing a 
symbolic mediator (e.g., a number sentence); and constructing, manipulating, or indicating an 
iconic mediator (e.g., a diagram). Table 2 provides examples of questions from each category. 
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Table 2   
Sample Questions Eliciting Particular Actions 

Action Written Curriculum Enacted Curriculum 

Construct 
Symbolic Mediator 

“Ask groups to write the number 
sentences for the problems on their 
transparency.” (TG, p. 72) 

T:  “Can you write that [number 
sentence] next to it?” (Day 1) 

Construct 
Iconic Mediator 

“How would you represent 
3
2x

4
1

 

on a number line?” (SG, p. 34) 

T: “Who can come up and show 
what that would look like on a long, 
skinny model?” (Day 3) 

Manipulate 
Iconic Mediator 

“What could you do in your 
drawing to make this clearer?” 
(TG, p. 60) 

T:  “Could you continue them as if 
this brownie were here, or this part 
of the goal was there?” (Day 4) 

Indicate 
Iconic Mediator 

“Where do you see this [the 
numerators] on the brownie pan 
drawing?” (TG, p. 61) 

T:  “So where is one whole 
ounce?” (Day 5) 

 
Figure 3 summarizes the relative frequencies of the types of “doing” responses to questions in 
the written and enacted curricula. 
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Figure 3.  Relative frequencies of “doing” question responses. 

 
Figure 3 illuminates several differences between the “doing” question responses in the written 
and enacted curricula. First, constructing iconic visual mediators is more than twice as common 
as any other expected “doing” question response in the written curriculum. In fact, half of all 
“doing” questions in the written curriculum expect this action. In contrast, several categories 
have relatively similar frequencies in the enacted curriculum. However, it should be noted that 
all three of the responses with the highest relative frequencies in the enacted curriculum involve 
iconic visual mediators. 
 
 
 
Mathematical Processes Addressed by Questions 
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The mathematical processes addressed in at least 10% of the questions in either the written or 
enacted curriculum or both include: (a) estimating, (b) decomposing numbers, (c) using a model 
(including concrete, iconic, and symbolic mediators), and (d) using an algorithm. There are also 
questions that address mathematical processes in general. Table 3 includes sample questions 
from the written and enacted curricula which address each process. 
 
Table 3   
Sample Questions Addressing Particular Mathematical Processes 

Process Written Curriculum Enacted Curriculum 

Estimating 

“Who can explain how they estimated 

1
2
1

 x 2
10
9

?”(TG, p. 72) 

T: “If I said I was going to get one 
half of two and nine tenths, Graham, 
how could we think about estimating 
that answer?” (Day 4) 

 
Decomposing 

Numbers 

“Would you want to use this strategy 
[distributive property] with the 

problem 3
8
7

 x 2
6
5

?” (TG, p. 77) 

T: “Could I do ten groups of two and 
a third and then a half of a group of 
two and a third?”(Day 5) 

Using a Model 
“How does your drawing help 
someone see the part of the whole 
pan that is bought?” (TG, p. 60) 

T: “So how far, what fraction of a 
whole mile is this one little piece 
right here [pointing to part of 
model]?” (Day 3)   

Using an 
Algorithm 

“What observations can you make 
from Questions A and B that help you 
write an algorithm for multiplying 
fractions?” (SG, p. 35) 

T: “Do you think that these are the 
steps that we should tape - take?” 
(Day 3)   

General “What method did you use to solve 
the problem?” (TG, p. 81) 

T: “Can you do this in a whole day, 
so how could you figure out what you 
do in a half of a day?” (Day 5) 

 
Figure 4 summarizes the relative frequencies of the mathematical processes addressed in the 
questions.   
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Figure 4.  Relative frequency of mathematical processes addressed in questions. 
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Figure 4 indicates that more than 50% of the questions in the enacted curriculum address the use 
of a model. In contrast, 25% of the questions in the written curriculum address the use of a model 
and another 25% address the use of estimation. Questions addressing algorithms and general 
methods also represent at least 10% of the questions in the written curriculum. The same is true 
for algorithms and decomposing numbers in the enacted curriculum.   
Questions that Address the Answer 

Questions that address the “answer” are very common in both the written and enacted 
curricula. In fact, 45% of the questions in the written curriculum address the “answer” compared 
to 23% of the questions in the enacted curriculum. These questions take several forms including 
(a) asking for the answer, (b) asking for an explanation of the answer, (c) asking about the 
relative size of the answer, and (d) asking about the answer’s relationship to another answer. 
Table 4 provides examples of questions from these categories.  
 
Table 4 
Sample Questions Addressing the Answer  

Question Type Written Curriculum Enacted Curriculum 

Asking for the Answer 
“What fraction of a whole pan 
does Aunt Serena buy?” (SG, p. 
33) 

T: “What fraction of the candy 
bar did I eat?” (Day 1) 

Explaining the Answer 
“How did you come up with 

2
2
1

?” (TG, p. 71) 
T: “How did you decide three 
eighths?” (Day 1) 

Asking about the 
Relative Size of the 

Answer 

“Does multiplication with 
fractions always lead to a product 
that is less than each factor? (TG, 
p. 67) 

T: “Is your answer going to get 
bigger, or is your answer going to 
get smaller?” (Day 1)  

Asking about the 
Answer’s Relationship 

to Another Answer  

“Who can use their model to 

prove that the answer 
12
8

is 

sensible?” (TG, p. 76) 

T: “Do you think that it's one 
fourth or do you think it's showing 
one sixth of the whole bar?” (Day 
3) 

 
Miscellaneous Questions 

Table 5 provides examples of several types of questions that each represent approximately 2-
3% of the questions in the curricula.   
 
Table 5 
Sample Miscellaneous Questions  

Question Type Written Curriculum Enacted Curriculum 

What is the Meaning of 
Fraction Multiplication? 

“What does it mean to find 

3
1

of 
3
2

?” (TG, p. 60) 

T:  “What does that mean 
again, one third times one 
fourth?” (Day 2) 

Do You “Agree” with a 
Suggested  Answer or 

Strategy 

“Do you agree with this 
answer and the reasoning?” 
(TG, p. 72) 

T: “Do you agree with that, 
Jacob, or no?” (Day 2) 
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Does a Suggested Answer or 
Strategy “Make Sense”? 

“Do you think Paula’s 
strategy of rewriting the mixed 
numbers as fractions is 
sensible?” (TG, p. 80) 

T: “Could you guys live with 
that, does that make sense?” 
(Day 3) 

Do You “Understand” an 
Answer or Strategy? ----- T: “Everybody understand 

what Katie did?” (Day 3) 
 

Discussion 
The question addressed in this discussion is, “What does an investigation of the mathematical 

routines (in this case, the routine of asking questions) in the written and enacted curricula allow 
us to see?” That is, “What do we know now about the relationship between the written and 
enacted curricula that we did not know before?” Table 6 summarizes the findings from this 
investigation of questions. 

 
Table 6   
Summary of “Mathematical Routines” (i.e., Questioning) Analysis 

 Written Curriculum Enacted Curriculum 

Leading Words 
of Questions 

“What” and “How” are the most common first word of a question 
in both curricula 

10% of questions begin with “Why” 5% of questions begin with “Why” 
34% of the questions are open 23% of the questions are open 

Elicited 
Answers to 
Questions 

Approximately 85% of the questions ask students to “say” something rather 
than to “do” something 

The most common elicited answer to 
“saying” questions is an 

“explanation” (49%) 

The most common elicited answer to 
“saying” questions is “yes/no” (40%) 

Approximately 25% of the “saying” questions elicit 
a “number” in both curricula 

49% of the “saying” questions are 
open 

31% of the “saying” questions are 
open 

Nearly all elicited responses to “doing” questions 
involve visual mediators 

Mathematical 
Processes 

addressed by 
Questions 

26% of the questions address using a 
model and 24% address estimating 

55% of the questions address using a 
model and 6% address estimating 

Approximately 10% of the questions address the relationship 
between two or more mathematical processes 

Questions that 
Address the 

Answer 

45% of the questions address 
the answer to a Question 

23% of the questions address 
the answer to a Question 

Miscellaneous 
Questions 

Both curricula include questions that ask for the meaning of fraction 
multiplication, requests for agreement/disagreement, 

and whether particular mathematics makes sense 
 

Table 6 and the more detailed analysis described earlier highlight many discursive 
similarities and differences between the questions included in the written and enacted curricula. 
Table 6 indicates (in several places) that a greater proportion of the questions in the written 
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curriculum require an explanation (i.e., are open questions). If learning mathematics involves 
changing participation in mathematical discourse, then the opportunities that “open” questions 
provide for students to participate actively in mathematical discourse (i.e., beyond short answers) 
make a difference in students’ learning. 
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Free, open, online, calculus forums are websites where students can post course-related queries 
that may be viewed and responded to by others. Is this a prescription for cheating or mastery-
oriented help-seeking? I investigated one such site, FreeMathHelp.com, with a focus on the 
positioning of students as they sought help on their coursework. Two hundred exchanges on limit 
and related rates were collected and examined for evidence that students are contributing ideas 
and proposals for action, challenging and questioning others’ proposals, and indicating that the 
issue was resolved. Of particular interest was the serendipitous finding that students sometimes 
engaged in self-reflection. 

 
Background 

Open, online help forums are websites where students can post course-related queries that are 
then visible to the public. These forums are “open” in the sense that they are not affiliated with 
any particular course or institution; members are attracted to them by necessity and interest. 
People learn of the forums’ existence, access the web sites, and then choose whether or not to 
join in the conversation, either by posting a question, responding to an unanswered question, or 
contributing to an ongoing exchange. In this way, these forums alter the very nature of tutoring 
as it is traditionally conducted and transform it from a private activity between tutor and tutee to 
a public activity between people who share an interest in the subject domain. In this study, I 
explore how participating in this conversation engages students and tutors in mathematical and 
pedagogical discourse in ways not characteristic of traditional one-on-one tutoring. 

 
Theoretical Perspective 

Traditional one-on-one, face-to-face tutoring is a popular form of instruction that offers 
benefits not generally provided by classroom instruction, mastery learning, computer-aided or 
programmed instruction, or computer tutors (Chi, 1996). One feature that distinguishes tutoring 
sessions from other means of instruction is the pattern of dialogue between participants. In 
contrast to the 3-step Initiation-Response-Evaluation dialogue frame that often marks classroom 
discourse (Cazden, 2001; Mehan, 1979), the dialogue in traditional tutoring sessions generally 
follows a 5-step dialogue frame (Graesser, Person, & Magliano, 1995): (1) Tutor asks question 
(or presents problem); (2) Learner answers question (or begins to solve problem); (3) Tutor gives 
short immediate feedback on the quality of the answer (or solution); (4) Tutor and learner 
collaboratively improve the quality of the answer; (5) Tutor assesses learner’s understanding of 
the answer. This dialogue pattern occurs in a context in which the tutor explains a pre-
determined set of topics to the tutee, often with the goal of providing remediation or augmenting 
an instructional explanation. Questions or problems are chosen by the tutor for the purpose of 
assessing the learner’s understanding, and, in fact, the learners generally ask few questions 
during the tutoring session (Graesser & Person, 1994). 

Alternatively, consider an instructional episode spawned by a particular problem that a 
student has encountered in coursework and has posed to a peer or more experienced other. In 
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order to distinguish this type of instructional episode from traditional tutoring sessions, we have 
referred to them as “tutorettes” (van de Sande, 2007; van de Sande & Leinhardt, 2007a) and 
considered them as a form of student-initiated help-seeking (Nelson-Le Gall, 1985) that occurs in 
university help centers (face-to-face) and in online forums (computer-mediated). In these 
situations, the student selects the question(s) that begins the discussion, indicates the 
acceptability of the tutor’s responses, and generally decides whether the goals of the interaction 
have been met (i.e. whether the exchange was helpful). Thus, a typical dialogue frame (for a 
single student-tutor pair) for this type of encounter might look like the following: (1) Student 
asks question (or presents problem); (2) Tutor answers question (or begins to provide 
scaffolding); (3) Student gives feedback on the quality of the help; (4) Student and tutor 
collaboratively work on solving the problem; (5) Student assesses whether tutor’s responses were 
helpful. 

Although tutorettes share many features of tutoring sessions (such as personalized instruction 
and support), they are also different in terms of initiation, goals, and instructional objectives. One 
key difference between online tutorettes and face-to-face tutoring encounters (either tutoring 
sessions or tutorettes) is the presence of an audience. Face-to-face sessions are generally 
conducted between a single student-tutor pair in relative privacy, whereas the exchanges in open, 
online forums are public and can be witnessed by others. In addition, in some forums, more than 
a single member can contribute to an ongoing exchange with alternative solutions, corrections, 
and commentary on mathematical issues as well as pedagogical approaches. The broader social 
dimension afforded by these open, online help forums reframes tutoring as a collective activity in 
which the exchanges become a public conversation between individuals who share a common 
interest in doing mathematics and helping others (van de Sande & Leinhardt, 2007b, 2008a).  

 
Methods 

Design 
In order not to disrupt this natural phenomenon in any way, this research was conducted by 

collecting a sample of 100 exchanges on the limit and 100 exchanges on related rates (both 
dating back from 4/29/08) from the archives of the calculus homework help forum on a 
representative site. 

Site choice and description. The calculus forum at FreeMathHelp.com was selected because 
this site has an extensive history (archives dating back to 2005), includes a search mechanism for 
locating exchanges by a keyword or phrase, and is active in terms of daily postings and 
membership.  In addition, the forum policies (such as achievement of member status) are 
explicit, and member “reputation” is an implicit mechanism of the social arena rather than being 
quantified (e.g. by others’ ratings of one’s postings or by some ranking determined by the forum 
site administrator) and made an explicit part of forum identity. In addition, all forum members 
can initiate threads in a discussion forum (e.g. as students posting mathematics questions) and 
can respond to others’ posts (e.g. as tutors providing help).  

The prescribed etiquette for participation is located in a “sticky” that is the lead posting 
within each help forum. This covers administrative issues (e.g. posting to an appropriate 
category) and politeness (e.g. patience while waiting for response). In addition, there are three 
rules that specifically address the content and framing of posts: include problem context (“Post 
the complete text of the exercise”), show initial work (“Show all of your work [including 
intermediate steps that may contain errors]”), and attend to clarity (“Preview to edit your posts 
[to minimize errors]”).   
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Topic choice. Students enrolled in “introductory calculus” are exposed to a large number of 
topics from differential and integral calculus. Although the exact coverage of the syllabus will 
vary across programs and institutions, there is a large amount of overlap in the topics that are 
presented. Two such topics are the limit concept and related rates. Coming to grips with the limit 
concept is one of the first challenges that students in an introductory calculus course face. There 
is general consensus that many students struggle with constructing a coherent understanding of 
limit (Cornu, 1991; Cottrill et al., 1996; Tall, 1993; Williams, 1991) and that many fail to 
achieve this through instruction (Szydlik, 2000). Some part of student difficulty can be chalked 
up to the abstract nature of the limit concept; it is based on a never-ending process and therefore 
requires the contemplation of an infinite number of computational steps – a large conceptual leap 
from topics encountered in algebra and precalculus. In contrast, the topic of related rates 
encompasses a class of problems that involves the relationship(s) between two or more changing 
quantities, one of which is unknown and must be determined. These exercises generally appear 
in introductory calculus instruction as applications of implicit differentiation and the chain rule 
and are framed as word problems meant to reflect authentic situations with the solution to such 
problems scripted as a 5-7 step process. Yet, students struggle with this topic as well (Engelke-
Infante, 2007; Martin, 2000). The concept of limit and related rates, then, were chosen as topics 
for this study to reflect the diversity of problem types characteristic of the subject domain and to 
capture tutoring interactions on topics that are challenging to students. 

Sample characteristics. FreeMathHelp.com features participants’ profiles that include 
information on occupation, location, and interests. Whereas many student participants do not 
provide this information, the participating tutors in the calculus forum are self-reportedly 
students, educators, professionals, and retired mathematics professors. The most frequent tutor 
participants are from the United States, although there are representatives from a variety of other 
countries as well.  

Although some tutors and students post more frequently, numerous tutors and students 
frequent MathHelpForum.com. The sample contained 100 related rates exchanges initiated by 65 
different students, with responses from 18 different tutors and 100 limit exchanges initiated by 
67 different students, with responses from 23 different tutors.  There was some overlap in 
participants (both students and tutors) across the two mathematical topics: 17% of these students 
posted queries on both limits and related rates, and 63% of the tutors provided assistance for both 
topics. 
Coding and Analyses 

Conversational complexity. In order to characterize forum tutoring dialogue patterns, each 
exchange was assigned a participation code that tracks the number of participants, the total 
number of contributions in the exchange and the sequence of participation. For example, a code 
of 1231 would be assigned to a thread with four postings containing contributions from 3 
different participants: a student (designated 1) posted a problem and then two different tutors 
(designated 2 and 3, respectively) responded, followed by a final contribution by the student. 
These codes permit one to catalogue exchanges that involve multiple conversational turns, 
multiple participants, and multiple contributions by a single participant. In addition, although the 
participation codes are agnostic with respect to the quality of the contribution (e.g. mathematical 
accuracy and depth, and pedagogical sensitivity), the codes do provide some indication of 
interaction within an exchange: for example, 1213121 is more likely to be an exchange in which 
two tutors are conversing with a student, whereas 1213232 is suggestive of dialogue between 
two tutors.  
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Based on these participation codes, each exchange received a conversational complexity 
index defined as the sum over code entries. For example, an exchange with participation code 
1231 would have a complexity index of 1+2+3+1=7. While this index makes arbitrary use of the 
categorical indices – the numbers in the codes have no value beyond marking the sequence of 
participants – the index appears “well-behaved” (van de Sande & Leinhardt, 2008b). Lower 
sums correspond to exchanges that do not contain intense mathematical discussions and elements 
of pedagogical sophistication. Exchanges in which mathematical principles are invoked and 
perspicuous mathematical reasoning is present have higher indices (which is not to say that all 
discussions with higher indices are of high caliber, but simply that quality exchanges are marked 
by higher indices). Thus, the complexity index provides a rough guide as to which exchanges are 
“simple” versus which are “complex” that suffices for examining the effect of various 
positioning moves within an exchange.    

Positioning. In order to explore aspects of student positioning in forum activity, each 
exchange was examined for the presence of three types of student activity that are consistent 
with active student participation and agency (Greeno, 2006): (i) assertions and proposals for 
mathematical actions (e.g. “THis is what i did. I don’t know exactly how to solve for this but, my 
logic is that it’ll go to zero eventually, because the bottom goes to infinity faster than the top so 
it’ll to go zero. But i am not sure exactly if this is right can someone prove this or tell me if i’m 
intuatively correct. Thanks”), (ii) questions and challenges of others’ proposals (e.g. “to find the 
derivative of this last part, i get that deriv of cos is -sin, but where does the -2 go. did you use the 
product rule. if so, what did you make ‘f(x’ and ‘g(x)’ for product rule?”), and (iii) indications of 
resolution coded according to strength (e.g. “i got it, forgot to factor, btw -14/sqrt(18) = -3.30, 
which is the correct answer” was counted as strong resolution, whereas “Thanks” was counted as 
weak resolution). Cohen’s κ, a conservative statistic for establishing reliability, showed 
considerable inter-rater consistency on a sample of 20 exchanges: assertions and proposals for 
action (Cohen’s κ = 1, standard error = 0); questions and challenges of others’ proposals 
(Cohen’s κ = 0.77, standard error = 0.22); degree of resolution (Cohen’s κ = 0.74, standard error 
= 0.14); all differences in coding were resolved following discussion.  
 

Results 
Although the forum participants acting as tutors are generally more experienced 

mathematically than forum members who bring their queries to the forum, students can position 
themselves with authority in an exchange in three ways: by contributing to the construction of a 
solution; by questioning or challenging the contributions of others; and by indicating that an 
issue has been resolved. In this section, we look at each of these three indicators of student 
authority in turn to reveal how students are positioning themselves as they participate in the 
forum.  In the analyses, the threads are partitioned into sections with descriptive labels that are 
intended to convey and characterize the positioning of participants in that portion of the 
interaction. 
Student Makes Assertion or Proposes Action 

Students participate in the forum for different reasons: because they have reached an impasse 
while attempting a problem, because they wish to confirm the accuracy of a solution that they 
have constructed, or because they have questions regarding an explanation that they have 
encountered in their studies. When a student posts a query on the forum, s/he can assume either a 
passive or an active position in the construction of the solution or explanation. One mark of 
active participation involves making assertions or proposing mathematical actions (even if these 
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are hedged or couched in uncertainty), and the exchanges were examined for this aspect of 
positioning. 

Error! Reference source not found. contains the percentage of exchanges in which the 
student made (or failed to make) an assertion or proposed a mathematical action within each 
topic by location in the thread (initial versus subsequent posting or both). The results indicate 
that students are generally positioning themselves as contributors to the discussions on solving 
the limit and related rates problems. The pattern of the location of these contributions in the 
thread is shared across topics, with students following the participation guideline to “show all of 
your work” in the initial posting 60% (limit) and 68% (related rates) of the time and contributing 
at some location in 69% (limit) and 79% (related rates) of the exchanges. Out of all 200 
exchanges 74% involved students making some sort of assertion or action in the thread, and, of 
these, nearly three quarters involved exchanges with a complexity index greater than 6. That is to 
say, students proposed actions or made assertions in contexts that proved to have higher 
conversational complexity.  

 
Table 1. Percentage of Exchanges Containing Student Proposals by 
Location in Thread 
 
 
Topic 

No assertion or 
proposal 

Within initial 
posting only 

Within initial 
and subsequent 
postings 

Within 
subsequent 
posting only 

Limit 31 45 15 9 
Related rates 21 54 13 12 

 
Student Questions or Challenges Assertion or Proposal Made by Others 

Contributions that question or challenge others’ assertions or proposals are another indication 
of the way participants position themselves in the interaction. When a forum tutor offers advice, 
constructs part of a solution, or produces a hint, a student can either accept or question the 
information (just as contributions are either accepted or rejected in Clark’s (1992) model of 
conversation). A student adopting a position as an active participant in a forum exchange may 
ask questions or challenge contributions as part of a self-regulatory learning strategy and in order 
to repair knowledge deficits. 

Nineteen percent of the exchanges on limit and 20% of those on related rates contained a 
contribution in which the student questioned or challenged the contribution of a forum tutor. 
Only one of these exchanges in each topic had a conversational complexity index less than 7, and 
both of these had a participation code of 1212 (complexity index of 6). In other words, when a 
student introduced a question or challenge into a discussion, the outcome was an extension rather 
than a termination of the conversation. The patience and politeness that characterized this 
tutoring exchange are particularly noteworthy as an indication of how the forum functions as a 
tutoring environment in which students can safely challenge the contributions of more 
experienced others. 
Student Indicates that the Issue has been Resolved 

In the classroom, it is generally the teacher who is positioned to evaluate the understanding 
of the student(s) and makes the decision whether to continue or terminate a discussion (e.g. the 
IRE dialogue pattern in which the teacher asks a question and then evaluates a student’s response 
(Mehan, 1979). Similarly, in tutoring sessions, the tutor is the participant who assesses the 
understanding of the student and decides whether to extend the discussion or move on to the next 
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topic. In contrast, in an open, online forum, it is the student who initiates the exchange and who 
is ultimately responsible for deciding whether the goal of the interaction has been achieved to 
her/his satisfaction.  

The perceived importance of indicating resolution within an exchange is underscored by the 
existence of automated “thank you” responses in some online help forums. For instance, 
MathHelpForum.com appends a “thanks” button to each post so that members can, with the click 
of a mouse, generate a response reading “The following users thank [name of contributor] for 
this useful post: [name of member].” This feature was introduced in the forum to support and 
encourage public recognition of the usefulness of member contributions.  However, because not 
all forums include this feature (including the forum chosen for the current study), and because 
students may indicate that an issue is settled in other ways, it is worthwhile to consider a broader 
range of resolution markers. 

There are several ways that a participant can indicate that an issue has (or has not) been 
resolved. First of all, participants can be silent and opt not to further contribute to an exchange. 
Silence in computer-mediated exchanges may indicate acceptance or rejection of another’s 
contributions and does not offer evidence for (or against) the achievement of resolution. Thus, in 
the forum discussions, if a student does not return to the exchange beyond the initial posting or 
following tutor interventions, it is not clear whether the student feels that the issue has been 
settled or not. Exchanges of this type are referred to as “hangers” since other forum participants 
are, in some sense, left hanging regarding the helpfulness of their contributions. On the other 
hand, when a student does acknowledge tutors’ contributions, they can do so in either a weak or 
strong manner. For instance, an expression of appreciation, such as “Thank you,” indicates a 
weak level of resolution on the part of the participant since this may simply be a residual of 
polite manners, that is, a customary response to receiving assistance. In contrast, the contribution 
of mathematical actions (e.g. the presentation of a solution to the problem) and assessments (e.g. 
reflections on differences in understanding) are stronger indications that the issue has been 
resolved to the satisfaction of the student. Finally, an exchange can evince a lack of resolution, as 
when a student receives no response to a query or receives a refusal from forum tutors to provide 
further assistance. Error! Reference source not found. shows the number of exchanges for 
each topic in which resolution could not be determined (hangers), in which resolution was 
evident and the strength of the expression (weak versus strong), and in which there was no 
resolution.  
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Figure 2. Student indications of resolution by topic. 
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The majority of the exchanges that were not “hangers” (with unspecified resolution) 
exhibited resolution from the student’s perspective, in either a weak or strong manner. This 
means that roughly 40% of the exchanges showed some level of resolution, surely a level that is 
higher than most classroom exchanges in which the teacher has little indication whether students 
“got it.” In addition, the number of exchanges exhibiting characteristics of strong resolution 
outnumbered those in which only weak resolution was evident by a factor of two, a finding that 
is consistent with the amount of student activity in the forum. Over three quarters of the 
exchanges evincing weak resolution had low conversational complexity (index of 7 or less), so 
that exchanges in which a student received help and merely thanked the tutor(s) without 
demonstrating why the intervention was helpful were more likely to be brief transmissions of 
information rather than interactive discussions. Furthermore, there were very few exchanges (3 
on limit and 5 on related rates) for which the issue was not resolved and in which the outcome of 
the exchange from the student’s perspective could be characterized as inconclusive or unhelpful. 

 
Conclusions 

Free, open, online, help forums have transformed tutoring and instructional assistance outside 
of the classroom in a grass roots fashion. These help forums have grown up in response to a 
prevailing and universal need for accessible, efficient, and cost-effective homework assistance. 
The operational principle behind of these forums is that they connect students with a group of 
others who are willing to contribute their time, expertise, and support to help anonymous 
students arrive at solutions to course-related queries. Sites that are staffed by volunteers who 
spontaneously visit and come to the aid of students − the “Good Samaritans” of mathematics 
(van de Sande, C. & Leinhardt, 2008) − host collaborative dialogues so that tutoring in this 
venue is realized as a public and often many-to-one conversation between participants rather 
than as a private, one-on-one activity.  

In some forums, students are positioned to learn calculus in nonstandard ways as they make 
mathematical assertions and proposals, question and challenge others’ proposals, and take 
initiative in demonstrating that the issue at hand has been resolved. As they work through course 
assignments and materials, students must both formulate and communicate their ideas, thoughts, 
and reasoning on the mathematics behind the solution to a problem to someone else through the 
computer. In addition, students in the forum may freely engage in self-reflection following tutor 
intervention. Student participation in such cases goes beyond the construction of a correct 
solution to the exercise to an analysis of the discrepancy between a novel and prior 
understanding that is then shared openly with other participants as a natural contribution to the 
exchange. This practice, consistent with the assumption of responsibility by students for their 
own learning efforts and advancement of understanding, has been observed in other online 
learning environments and appears to be facilitated by a computer-mediated mode of 
communication (Muukkonen, Lakkala, & Hakkarainen, 2005).   

This study on authentic student-initiated online help-seeking positions us as researchers and 
educators to better understand how students are working on assignments outside of the 
classroom. In this emergent learning environment, many students are positioning themselves to 
learn and, through interaction with members of a larger mathematical community, taking away 
much more than just solutions to exercises. The impact such participation has on students’ 
broader mathematical endeavors and experiences remains to be addressed. 
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This case study examined the efficacy of tasks designed for promoting multiplicative reasoning in 
students with learning disabilities. Chad’s (grade 4) construction of a mixed-unit coordination 
scheme was nurtured in the context of a teaching experiment with 14 students in two USA 
Midwest elementary schools. The analysis focuses on how a sequence of tasks, tailored to Chad’s 
available conceptions, brought forth his transfer of a crucial mathematical idea to novel, 
realistic problem situations. We argue for the use of such conceptually tailored tasks as a means 
for promoting students’ progress from what they know to a transfer-enabling stage 
(anticipatory). 

 
Background 

How can one design tasks that draw on available conceptions of students with learning 
disabilities (LD) in mathematics to effectively promote their conceptual understanding of a key 
idea, including ‘transferring’ this idea to a novel, realistic problem situation? The present study 
addressed this problem, which is particularly vital for students with LD who, too often, are left 
behind when facing the challenges of reasoning multiplicatively. A common denominator of LD 
is a severe discrepancy between the student’s academic achievement and his/her normal or near 
normal potential (Mercer & Pullen, 2005). “Mathematics disabilities represent a learning 
disorder that has specific cognitive, behavioral, and potential neurological profiles” (Geary, 
Hoard, Nugent, & Craven, 2007, p. 83). Research indicates that the mathematical performance of 
a 9-year-old student with LD remains at about grade 1 level; the gap grows over time, as a 17-
year-old student with LD performs at about grade 5 level (Cawley & Miller, 1989). In the USA, 
two Federal Acts—No Child Left Behind of 2001 and Individuals with Disabilities Education 
Amendment (IDEA) of 2004—have mandated that students with LD should achieve the same 
rigorous academic standards as their peers. However, while procedural, rote memory approaches 
are common practice in special education settings, conceptual knowledge of students with LD 
has not been studied methodically (Geary et al, 2007), particularly not their learning to reason 
multiplicatively.  

This study focused on how carefully designed tasks/activities facilitate the understanding of 
schema of correspondence (Piaget, 1965) and double counting (e.g., Steffe, 1994), which are 
fundamental to multiplicative reasoning (Vergnaud, 1983, 1988, Nunes & Bryant, 1996). We 
were particularly intrigued by the difficult-to-grasp scheme of mixed-unit coordination. In this 
scheme, a learner has to figure out the number of singletons (units of One, 1’s) or numerical 
composite units (larger numbers, CU) that, combined, constitute two sets of objects. For 
example, a child may be presented with 5 groups (e.g., ‘sport teams’) of 8 items (e.g., ‘players’) 
and 24 additional single items, and asked how many players are in all, or how many teams can be 
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created if the 24 players were grouped, too. Mixed-unit coordination strengthens the 
understanding of what unit (singletons or CU) the student is operating on.  

 
Conceptual Framework 

A constructivist perspective rooted in Piaget’s (1985) and von Glasersfeld’s (1995) core 
notions of assimilation, anticipation, and reflective abstraction, served as the overarching 
framework for this study. In particular, we used Tzur and Simon’s (2004) recent distinction of 
two stages—participatory and anticipatory—in the construction of new mathematical 
conceptions via the mechanism of reflection on activity-effect relationship (Ref*AER, see 
Simon, Tzur, Heinz, & Kinzel, 2004). Ref*AER commences via assimilation of a task into the 
learner’s extant schemes, which engender an anticipated global goal, and possibly sub-goals, 
toward which the learner carries out mental activity sequences with/on objects. The reflective 
process consists of two types of comparison the mind continually executes, through which 
learning—transformation in one’s anticipation—occurs. Type-1 involves comparison between 
the learner’s goal and the actual effect(s) of his/her activity. This allows the learner to notice 
effects s/he had not noticed before and relate them with the activity, hence re-structure their 
awareness (Mason, 1998, 2008). Type-2 involves comparison across his/her re-presented AER 
records. Common to both stages is the invariant anticipation of particular effects that follow an 
activity; the stages differ in the extent to which a learner has access to that anticipation. At the 
participatory stage a learner can only access an evolving anticipation if she is prompted for the 
activity that generates its effect(s). At the anticipatory stage, s/he can spontaneously access the 
anticipated relationship to consistently and properly employ it for solving similar tasks, that is, 
for the desired phenomenon that educators call ‘transfer.’  

The Ref*AER framework entails a particular stance toward design and implementation of 
tasks for promoting and assessing students’ learning that elaborates on Simon’s (1995) 
hypothetical learning trajectory notion. To promote learning, Simon and Tzur (2004) and Tzur 
(2008a, 2008b) suggested a cyclic process that necessarily begins with analysis of every 
student’s available conceptions. To analyze such learning, Tzur (2007) proposed the fine-grained 
assessment method, in which tasks are sequenced from ‘hard’ ones (prompt-less) to ‘easy’ ones 
(prompt-inclusive). This method is consistent with several recent studies (Sullivan, Mousley, & 
Zevenbergen, 2004; Watson & Mason, 1998; Watson & Sullivan, 2008; Zaslavsky, 2007) as it 
focuses on identifying what in a learner’s mathematics allows his/her to independently initiate 
activities that, via reflection, can bring forth intended changes in his/her conceptualizations. 

The Explicitly Nested Number Sequence (ENS, see Steffe & Cobb, 1988) was the central 
content-specific notion that guided this study. ENS refers to a number scheme a child constructs 
in which abstract composite units (CU), integrated from units of one (1’s), are embedded within 
and linked to one another. For example, 8 is nested within 9, is nested within 10, etc. Most 
importantly, such CU can be embedded within larger CU (e.g., 3 CU of 2 and 5 CU of 2 are 
embedded within 8 CU of 2). It is the ENS that underlies the foundational scheme, multiplicative 
mixed-unit coordination (mMUC), on which the present study focused. A critical aspect of the 
ENS is that the child’s standard number sequence (1, 2, 3, 4, etc.) is used for counting two 
distinct types of units (CU, 1’s) that must be explicitly differentiated prior to operating on/with 
them, particularly when it is possible to select and operate on the other. 
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Methodology 
This study was conducted within the larger context of the NSF-funded, Nurturing 

Multiplicative Reasoning in Students with Learning Disabilities project1 (Xin, Tzur, Si, 2008). 
The second author (Ron) led a constructivist teaching experiment (Cobb & Steffe, 1983; Steffe, 
Thompson, & von Glasersfeld, 2000) to promote and study how seven pairs of 4th and 5th graders 
with LD construct multiplicative conceptions. The data presented in this paper focuses on five 
consecutive episodes with Chad and his partner Tara (pseudonyms), which took place at their 
elementary school’s group education auditorium. 

Data include the children’s solutions to and the tasks posed in the context of a turn-taking, 
‘platform’ game we call, “Please Go and Bring for Me …” (PGBM). Its basic version involves 
sending a student to a box with Unifix Cubes, to produce and bring back a tower made of a few 
cubes. After taking 2-9 ‘trips’ for bringing same-size towers, students are asked how many 
towers (i.e., composite units, CU) they brought, how many cubes each tower has (i.e., unit rate, 
UR), and how many cubes (1’s) there are in all (hereafter, MTN indicates M towers of N cubes; 
7T5 means 7 towers of 5 cubes each). The PGBM game, and particularly its basic version, was 
designed to promote learners’ anticipated creation of and differentiation among 1’s and CU. 
These two anticipations are crucial if the learner is to ever construct the mental operation of 
multiplicative double counting (mDC, see Steffe & Cobb, 1998), that is, to operate with his/her 
single number sequence on two different unit types. A variation of PGBM, central to this study, 
was designed to promote construction of a multiplicative mixed-unit coordination (mMUC) 
scheme, which indicates the explicitly nested number sequence (ENS, see Steffe & Cobb, 1988). 
For example, a teacher may ask: “I covered 9T6 here and 18 cubes there. If you put all 18 cubes 
into T6 and moved them under the other cover, how many towers will you have in all?” 

Analysis began after each episode, with a team’s discussion for noting major events and their 
significance. These notes served for planning tasks for the next episode(s) and for later, 
retrospective analysis. Next, team members read the transcripts of each episode and highlighted 
segments with critical events (teaching moves, changes in learners’ anticipation), including 
conjectures as to why children solved or failed to solve a problem the way they did. This phase 
focused on two principal issues: the unit a child operates on and the operation s/he uses (Steffe & 
von Glasersfeld, 1985). Highlighted segments were then discussed retrospectively, to identify 
explanatory segments. All segments were organized in a story line (presented next) that 
interweaves theory-based tasks and prompts with our inferred models of the children’s available 
and evolving conceptions. 

 
Analysis 

We organize this section chronologically, along the 5 teaching episodes during which Chad 
progressed from having no idea of multiplicative mixed-unit coordination (mMUC) to the 
anticipatory stage of this scheme. This stage, as we predicted, enabled his independent solution 
of a novel, realistic task a month after the teaching took place (Episode 5). We briefly report on 
the first 2 episodes, as they served to lay the conceptual groundwork for Chad’s learning during 
the 3rd episode. We culminate with data that indicate Chad’s spontaneous use of the mMUC 
scheme to solve PGBM and realistic tasks (a week and a month later, respectively). 
Episode 1 – November 8, 2008 

The first teaching episode with Chad and Tara familiarized them with the PGBM game. All 
tasks were posed in the basic form—asking each child (in turns) to bring towers of cubes from 
the box at the top of the auditorium. After the towers were brought to the bottom of the 
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auditorium and the known quantities were spelled out (# of towers=CUs, cubes in each=UR), the 
children were asked about the total number of cubes (1’s). For 3T5 and for 3T4, Chad added the 
number of cubes three times; for 5T5 he used skip counting, apparently due to his familiarity 
with multiples of 5. Yet, for 4T7 he ‘slowed down’ and used counting-on from 7 into the second 
tower, from 14 into the third, and from 21 into the fourth tower. Although not yet fully 
intentional (anticipatory), Chad’s solution indicated multiplicative double-counting (mDC) at 
least at a participatory stage. The episode culminated by the students sending Ron to bring 3T9, 
which he solved via skip counting (9-18-27) coupled with keeping track of CU on his fingers. 

Using the PGBM basic form in Episode 1 supported two key conceptions for Chad’s later 
learning of mMUC. First, making one tower at a time oriented his awareness to the anticipated 
production of a composite unit via the activity of iterating the unit of One (1’s). Second, it 
engendered his use of counting of CUs that he, or others (Tara and Ron), produced. Combined, 
these activities would underlie not only his mDC, but also differentiation and selection of the 
unit (1’s, CU) he would need to operate on. 
Episode 2 – November 18, 2008 

The second episode focused on both promoting and assessing Chad’s and Tara’s AERs of 
production, differentiation, selection, and operation on 1’s and CU. Starting with a task to assess 
a possible anticipatory stage of mDC for solving a measurement (quotitive) division task, we 
posed a ‘What if?’ form of PGBM: “Pretend we would put these 18 cubes in T3, how many 
towers can you make before running out of cubes?” Chad spontaneously began counting, 1-2-3, 
1-2-3, etc., and found he could make 6 towers. To see if Chad used mDC, Ron asked, “Could it 
be that [in your head] you did, 1-2-3 is ‘1’, 6-7-8 is ‘2’, and so on?” Chad confirmed, which led 
Ron to pose the follow-up task: “What if we added 9 more cubes and put them in T3; how many 
towers would you have?” Here, instead of first operating on the 9 cubes and composing them 
into 3 towers, then adding those to the 6T3 (total = 9T3), Chad operated on 1’s by adding the 9 
and 18 cubes via counting-on, announcing the total was 27. Ron responded by first asking Chad 
if he meant ‘27 towers’; Chad confirmed. Ron asked him to make the towers, a task that was 
particularly geared toward orienting Chad’s reflection on the actual effect of his composition of 
the 9 cubes into towers. As Chad completed his action and found there were only 9T3, he also 
noticed, and made explicit to himself and to Ron, his confusing of the units: “Oh, yeah, I meant 
27 cubes.” Indeed, Chad’s inability to solve the mixed-unit task even within the context of 
producing and differentiating towers from cubes indicated that he has not yet constructed the 
mMUC scheme even at a participatory stage. It is this confusion among 1’s and CU in a mixed-
unit situation that became the focus of our ongoing analysis, and turned into a set of tasks 
designed for first promoting explicit unit differentiation.  
Episode 3 – December 2, 2008 

We began this episode to examine, and possibly claim, an anticipatory stage of a new 
conception. In particular, we asked both students to pretend they would bring 7T3 and figure out, 
in the absence of real cubes, how many cubes there would be in all. Already in answering the 
questions about the givens in the task (“How many cubes in each tower?”) Chad’s response (“7”) 
indicated the aforementioned confusion of units. Unlike Tara who intentionally kept track of CU, 
Chad first just counted CU of 3 (1-2-3, 1-2-3, ...) to find the total. Thus, Ron replicated Tara’s 
method—to possibly prompt Chad’s re-activation of mDC. This intervention was useful, as Chad 
added keeping track to his counting of CU (1-2-3, 4-5-6, etc.). When Chad was done, Ron 
introduced the first among many statements of emphasis on the unit with which one operates as it 
relates (or not) to the answer requested in a task. That is, Ron initiated the socio-mathematical 
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norm (Cobb, Yackel, & Wood, 1992) of always making explicit which unit a person is operating 
on and/or talking about. 

The second task of this episode then moved to assessing the students’ operation on CU. Ron 
asked Chad and Tara to pretend they brought 2 more T3 and added them to the given 7T3, and to 
figure out how many such towers there would be in all. Consistent with our ongoing analysis 
conjecture, both students shifted to operating on 1’s, figuring out there would be 27 cubes. Like 
in the previous episode, Ron asked to clarify if they found how many towers or how many cubes, 
and Chad realized (“Aha”) that he responded in terms of cubes. Ron re-negotiated the 
aforementioned norm then moved on to a task designed for promoting unit differentiation. 

The third task aimed to promote awareness to the difference between 1’s and CU. Ron asked 
Tara and Chad to produce 9T5 and 7T5, respectively, and then name all differences and 
similarities they could detect between their sets. After announcing several non-mathematical 
ones (e.g., colors), Tara suggested and Chad agreed that common to both sets were 5 cubes in 
each tower. Next, Chad also noticed and used counting-up of CU to figure out a difference: “I 
got 7 [T5]. I added 2 more and got 9 [T5] so she got 2 more.” Ron asked, “Two more what?” and 
Chad responded, “Two more towers.” Then, Ron engaged them in solving how many cubes they 
had in both sets. Chad used mDC, skip counting by 5’s and his 10 fingers (failed); later he used 
his 10 fingers and 6 of Ron’s to figure out – 80. Thus, we turned to a task conjectured to bring 
forth Chad’s first solution to a mixed-unit task, at least when prompted. 

Ron showed Chad and Tara how he produced 6T4 (CU), then covered the towers. He then 
placed 12 additional cubes (1’s) on the desk, and asked while pointing to those cubes: “If you put 
all of them in towers of 4, how many towers will we have?” Taking a few seconds to 
contemplate the task, Chad then spontaneously began manipulating the visible cubes into groups 
of 4, counted the groups, and (as he later explained his solution to Tara) used counting-on of T4 
to solve the task: “9.” Ron repeated Chad’s solution for Tara as well as to boost Chad’s 
confidence: “If you put them in T4, you have 3 of those [points to the groups of 4] and adding the 
3T4 to the 6T4 will make 9.” 

Chad’s (but not Tara’s) successful operation in the mixed-unit situation included the 
following activity sequence: (a) selecting the singleton set (1’s) to operate on, (b) composing 
them into groups of four 1’s, selecting the proper quantity (CU) from the other set—6 towers (of 
4 cubes in each with total of 24 cubes), and (c) operating ‘additively’ on the CU from both sets. 
We specify this sequence precisely because Chad was not yet able to anticipate it in its entirety 
in the absence of tangible objects.  

For the last task, Ron produced 7T5 and covered them; placed 10 singletons nearby and 
covered them, then asked: “If we put those 10 cubes into T5 and ‘mush’ them altogether with the 
7T5, how many T5 will we have?” This time, both Tara and Chad were at a conceptual loss. 
Quietly and persistently using his fingers, Chad seemed to mightily struggle with executing the 
activity sequence—but to no avail. After about 3 minutes, Ron decided to examine if Chad had 
constructed the mMUC at least at the participatory stage and, as a prompt, lifted only the cover 
above the 7T5. Soon after the towers became visible, Chad joyfully exclaimed, “9.” In response 
to Ron’s follow-up question Chad explained, while explicitly using his open hands to indicate a 
‘tower-of-five’ on each hand: “Five right here (lays left hand on desk), and five right here (lays 
right hand), so that is 2 towers… so that is 1-2-3-4-5-6-7 [counting visible T5] and put 2 more 
like I did last time and [so we] get, 8-9.”  

There were three crucial pedagogical moves, explicitly informed by the Ref*AER account, in 
that last task of Episode 3. First was the increase in conceptual demand on the students’ mental 
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operations, via covering both sets of objects (1’s, CU). This move proved powerful particularly 
when considering how the second move—prompting by lifting the cover—enabled Chad’s 
completion of the activity sequence. Before the prompt, Chad could anticipate executing the first 
two components of the sequence (selecting 1’s, composing them into CU), but not the third 
(selecting the 7T5 and adding the 2T5 resulting from the prior actions). Once prompted, Chad 
quickly reinstated his evolving, participatory stage of mMUC. The third move—asking Chad to 
explain his solution to Tara—opened the way for Chad’s re-presentation of and reflection on 
records of his solutions to the last two tasks. It must be noted that Chad was not asked about the 
similarity between the situations; rather, he spontaneously and quite proudly announced they 
were alike. Thus, we argue that the reflection-orienting follow-up question opened the way for a 
twofold realization on Chad’s part. He realized that his 3-step activity sequence, particularly the 
final step, produced an effect identical with his global goal in the task and that this activity-effect 
production was invariantly applicable across the last two tasks. Accordingly, we conjectured he 
might be able to independently solve such tasks in the next episodes. This conjecture, which 
amounts to saying we attributed to Chad an anticipatory stage of the mMUC scheme, was 
strongly confirmed (See Episodes 4-5). 
Episode 4 – December 9, 2008 

This episode consisted of 3 mixed-unit tasks, all posed within the context of PGBM in the 
absence of cubes. Chad solved all three with clear anticipation of the 3-step AER underlying the 
mMUC scheme. During the first task, (5T4 & 8 cubes), he found out that 2 more towers would be 
composed, but lost track of the number of towers (not of the unit to operate on!) and added 4+2 
to arrive at 6T4. He immediately corrected himself (7T4) when Ron briefly lifted the cover above 
the 5T4. Then, Chad independently and straightforwardly solved the second (7T6 & 18 cubes) 
and third (9T7 & 21 cubes) tasks, though he experienced some difficulties explaining why the 
second would yield 10T6. Furthermore, unlike previous events in which a different answer by 
Tara would confuse Chad, her response (13) to the second task did not impact him whatsoever. 
We concluded that Chad had constructed the anticipatory stage and conjectured he would solve 
‘transfer’ tasks in realistic situations in the same way. 
Episode 5 – January 13, 2009 

A month and a few holidays after Episode 4, Ron presented Tara and Chad with the 
following problem printed on a paper. “Grandma bakes chocolate chip cookies for birthday bags. 
She puts 6 cookies in each bag, and has already filled 9 bags. She now has 12 more cookies 
waiting to cool down. Once she’ll put these cookies in bags, how many birthday bags ready for 
the party will she have?” Consistent with our theory-based prediction, Tara was unable to solve 
the problem (15, via adding 9+6), whereas Chad could again ignore her response, confidently 
announce, “11,” and quite simply explain that grandma could fill 2 bags with 6 cookies in each, 
and hence 11 bags (9+2). Ever since, Chad solved any mixed-unit problem situation in a similar 
way and with much confidence. 

 
Discussion 

This study contributed to two novel and important understandings. First, it showed how 
effective tasks designed on the basis of fine-grained assessment of evolving mathematical 
conceptions of a student with LD could be in promoting such students’ learning. In particular, 
analyses of units (quantities—1’s, CU, UR) a child operates on in situations that call for relating 
those units multiplicatively enabled designing a sequence of tasks, as well as creating on-the-spot 
follow-up prompts and questions that promoted transition to a participatory and then an 
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anticipatory stage of mMUC. We claim that the latter, which is consistent with Steffe and Cobb’s 
(1988) ENS construct, is the root for Chad’s capacity to transfer his thought processes to the 
novel, realistic situation.  

Second, this study demonstrated the possibility for effectively teaching students like Chad to 
properly reason (coordinate, or ‘translate’ quantities) in situations that are divisional in nature. 
That is, mixed-unit situations like those Chad successfully solved in different contexts (e.g., 7T6 
+ 18 cubes) require acting on the two sets by segmenting (Steffe & Cobb, 1998) the composite 
unit (18) with a given unit rate (6 cubes per tower, quotitive division) while maintaining the 
composite unit (set) of composite units (7 towers) of units (six 1’s per tower).  

 
Endnotes 

1. This research was supported by the National Science Foundation, under grant DRL 
0822296. The opinions expressed do not necessarily reflect the views of the Foundation. 
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Elementary teacher candidates enrolled in a mathematics methods course were asked to “draw 
math” at the beginning and end of the semester. Findings display the vision of mathematics that 
teacher candidates have before and after exploring teaching methods and implementing these 
methods with elementary students.  In addition, it examines the specifics of the changes that 
occurred during the semester of methods and field placement experience.  

 
Background 

What is math?  Often people reflect back to their vision of school mathematics, while others 
reflect upon its relevance to the real world when this question is asked. Vinter (1999) found that 
teachers often struggle to find the application of much of the math they teach. This can be due to 
the lack of meaningful experience with the content taught in the elementary grades (Ball & Bass, 
2000). In addition to lack of experience with math, many elementary teacher candidates have 
high levels of mathematics anxiety (Swars, 2006). These factors can affect the impression of 
mathematics that teachers give to their students. Through examining their own perceptions of 
mathematics, teachers and teacher candidates can begin to explore how to deepen their own 
understanding, overcome anxiety, and connect the content to elementary students.  
This article documents an elementary mathematics methods course, which begins by asking 
teacher candidates to draw math and write a few sentences describing the drawing. The drawings 
often involved students communicating and reflecting upon their emotions and past experiences 
associated with the content, including mathematics anxiety.  In addition it became a theme of the 
course throughout the semester, inviting students to revisit their perceptions as various methods 
and content were introduced. This simple task provided insight into the perceptions teacher 
candidates bring to their teacher preparation programs and the impact that positive experiences 
with students and content can make upon these perceptions. 
Drawing 

Student drawings have been used to examine students’ perceptions about various content 
areas for years. In literacy, drawings of reading and writing have been used to understand their 
perceptions of the subject areas (McKay & Kendrick, 2001). Students’ impressions and attitudes 
of scientists and science have been studied in many elementary and teacher candidate classrooms 
in order to understand student perceptions (Thompson et al., 2002). Drawing images before 
writing or verbalizing ideas can foster more creative responses and help generate ideas, because 
often language can slow down the creative process (Caldwell & Moore, 1991). Ideas can be 
explored through drawing without the cognitive demands often found when using language. 
Art is often used in therapy, because thoughts and emotions can be expressed vividly through 
images (Lusebrink, 2004).  These same techniques can be useful in supporting meta-cognition 
and addressing negative emotions often tied to mathematics by elementary teacher candidates.  
Drawings by teacher candidates of various subject areas can reveal dispositions, attitudes, and 
experiences related to a subject area.  These drawings allow the artist to establish and reflect 
upon these attitudes and experiences in a non-threatening way (Rule & Harrell, 2006).  
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By acknowledging and giving voice to negative emotions and experiences, such as mathematics 
anxiety, through drawings, one is better able to deal with and move beyond those negative 
emotions and experiences (Rule & Harrell, 2006). This study relies on the theoretical 
understanding that the relationship between the conscious and unconscious mind can be 
expressed through images and thus given a voice where it otherwise might be ignored (Hillman, 
1992). Often the negative emotions surrounding a concept, such as mathematics, develop in ways 
that distort original experiences. Instead reflection upon past experiences tends to reflect the 
current emotional attachment that has evolved over time and repeated experiences with that 
concept (Hillman, 1992). Sometimes images used to express the larger concept, such as 
mathematics, can be literature snapshots of a particular event and at other times they are more 
representational.  However, both reveal a deep insight into the true relationship of the artist to the 
subject, such as mathematics (Rule & Harrell, 2006). By examining his/her own understanding 
and perception of a subject, the artists are better able to improve the negative emotions related to 
the concept and this in turn allows them to focus on the learning, without the obstacles associated 
with their negative experiential baggage. Watkins (1984) suggests that by investigating images 
and discussing feelings related to the images, the artists become empowered to engage actively 
in changing the negative perceptions related to the subject. 
Mathematics Anxiety 

Mathematics anxiety often begins in elementary school when students have negative 
interactions with the content and are taught by procedural, rather than conceptual teaching 
methods (Harper & Daane, 1998). Tying instruction to the exact procedures in the textbook, 
timed tests, hostile teacher behavior, embarrassing students in front of peers, only accepting one 
method of solving a problem, and lack of differentiation based on student needs are all factors 
that can contribute to mathematics anxiety (Swars, 2006). Hembree (1990) found the highest 
level of mathematics anxiety among college students came from elementary teacher candidates.  
To resolve mathematics anxiety, teachers need to have positive experiences with mathematics 
and see the purpose behind the mathematics they are teaching and have mathematical 
experiences with manipulatives and working in groups (Harper & Daane, 1998; Swars, 2006). 
Vinson (2001) found that exploring the conceptual content in meaningful ways with 
manipulatives before learning the procedural aspects of mathematics reduced the mathematics 
anxiety among teacher candidates. This impacts the way they teach their students. 
When teachers are confident in their mathematics ability they spend 50% more time teaching 
mathematics than those who have mathematics anxiety (Schmidt & Buchmann, 1983). In 
addition teachers with math anxiety spend less time implementing standards based instruction 
and more time teaching to the whole class and assigning seat work (Bursal & Paznokas, 2006; 
Bush 1989). These activities perpetuate the notion that mathematics lacks real-world meaning. 
Perception of the Use of Mathematics  

Vinter (1999) found that many teacher candidates lack an applied understanding of 
mathematics and this in turn affects their ability to make the content meaningful for their 
students. Resnick (1987) suggests that many times teachers prepare students to do school math, 
but this is not the same as mathematics beyond the classroom. NCTM (2000) stresses the 
importance of problem solving, communication, and connecting math content, which requires 
teachers to have a deeper understanding in order to support these connections. Chappell and 
Thompson (1994) expressed the importance of the mathematical courses that teacher candidates 
experience in their preservice programs. The preservice program is crucial to the development of 
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teacher candidate’s beliefs, content knowledge and attitudes about the way math should be taught 
at various grades and their effectiveness as educators.  

 
Research Questions 

1. What is the perception of mathematics held by elementary teacher candidates at the 
beginning of a mathematics methods course? 

2. How do elementary teacher candidates perceptions of mathematics change during a 
mathematics methods course? 

 
Methodology 

This study examined the symbolic representations of math drawn by teacher candidates at the 
beginning and end of a mathematics methods course. The drawings were analysed and 
categorized to explore the initial impressions of mathematics that teacher candidates bring to 
their teacher preparation courses and the changes experienced through opportunities to discuss 
anxieties, work with students, and explore various pedagogical theories for mathematics.  

Sixty-two teacher candidates were enrolled in a mathematics methods course for elementary 
teachers at a midsized university in the southeast.  The study took place over a period of two 
years with the same mathematics instructor, but four different sections all offered in the spring of 
their junior year.  There were fifty-nine females and three males, fifty-five Caucasian, four 
African-American, and three Latino teacher candidates.  

During the first class meeting, participants were asked to draw pictures of math. Teacher 
candidates were told to draw whatever came to mind and not to filter images. When they asked 
for further details about what to draw, the instructor simple advised them to draw what comes to 
mind about math. It was emphasised that the grades in the course would in no way be influenced 
by the drawings. Teacher candidates were asked to put the last four digits of their student 
identification number on the paper in order to compare pre-test and post-test results. Then they 
were asked to write a few sentences related to their drawing on the back of their paper.  

During the semester teacher candidates spent one day a week in a practicum experience.  In 
addition during the weekly three-hour mathematics methods course, each teacher candidate spent 
30 minutes working with two fourth graders exploring various mathematics content. A portion of 
the methods course involved discussing the lessons learned from the fourth graders. In addition, 
teacher candidates explored various theories about teaching and learning mathematics, effective 
use of technology in mathematics, and the role of manipulatives in mathematics.  

Throughout the class, there were informal conversations about the impressions of math that 
teachers bring to the classroom.  Teacher candidates were able to evaluate the content and their 
experiences with their students with a conscious understanding of their lens that developed from 
their personal experiences as a learner.  For example, those who understood algorithms were able 
to listen to students with misconceptions or invented algorithms. Teacher candidates who entered 
the methods course with hesitation due to their own struggles with math often found their 
struggles could help them relate and better explain the content to their students.  

The same drawing activity was conducted the final day of class. Teacher candidates were 
asked to draw math and write a few sentences about it.  In addition they were asked to write 2-3 
sentences describing if and how the course changed their impressions. These drawings, and 
sentences were used to investigate the mathematics views held by the teacher candidates and the 
changes experienced over the course of the semester.  
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Data Analysis 
The writing was used as needed for clarification of the meaning behind the drawings. 

Drawings were categorized in three ways: positive, neutral, and negative emotions; particular 
experiences and general meanings, and classroom, abstract or real world connection. Positive, 
negative and neutral were based on if the drawings or descriptions had specific emotional 
prompts, such as faces with smiles or tears.  Next, the pictures were grouped by particular 
experiences or general meaning.  Particular experiences were drawings in which one point in 
time was displayed, such as drawing on the board. When pictures simply had mathematical 
images such as a fraction, this was classified as general meaning, Finally, the drawings were 
categorized based on if the pictures showed images connected to the classroom, were abstract, or 
were connected to the real world. Pictures that were connected to the classroom displayed 
images such as books, teachers, or a white board. Abstract images were images such as fractions, 
multiplication problems and algorithms. Real world connections, had images such as shopping or 
cooking. This type of classification for analysis is based on the evaluation technique used by 
Rule and Harrell (2006). These categories were confirmed by a member of the mathematics 
education faculty.  This faculty member evaluated and supported the initial findings, categories, 
groupings, and count. This confirmation provided validity of the interpretation. Then the analysis 
to determine the change was charted by grouping pre and post drawings and then analysing them 
for positive and negative changes. These findings were also confirmed by the aforementioned 
mathematics education faculty member. 
 

Results 
Initial Drawings  

Through the drawings and writings, teacher candidates expressed a variety of experiences 
and impressions of mathematics. A majority (32) of the experiences were negative.  However, 
there were nine that were positive and twenty-one were neutral.  All the positive drawings related 
mathematics to the content, real world examples, and puzzle.  Most negative drawings related to 
the teacher candidates’ emotions and experiences in school (see figure 1 and 2).  For example, 
three people drew themselves at the board with question marks.  Question marks seemed to be a 
common expression for teacher candidates to show their feelings of confusion.  Also, many drew 
textbooks and jumbled ideas in their drawings. 
 

Figure 1     Figure 2 
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Table 1 shows the positive, neutral, and negative emotions connected to the drawings. A 
common thread for many of the negative drawings was the struggle that teacher candidates felt in 
school mathematics.   One teacher candidate explained, “I never understand it.  I always feel 
stupid and like what the teacher says is a foreign language.” Several wrote sentences expressing 
the desire to change these emotions in order to avoid negatively impacting future students.   
 

Table 1 
Categories of Drawings 

 Pre-test Post-test 
Positive 9 38 
Neutral 21 24 

Negative 32 0 
Particular Experience 33 19 

General 29 43 
Classroom Setting 28 22 

Read World Setting 7 11 
Abstract 27 29 

 
After analysing the emotions in the drawings, were categorized based on if they referred to 

particular experiences or were more general (see table 1).  Thirty-three drawings displayed a 
particular point in time.  For example one teacher candidate drew tears and question marks 
around an illustration of herself. In her writing she explained that she remembers her fifth grade 
math teacher being angry with her. She went on to describe a time she was at the board in fifth 
grade and had no idea how to solve the problem. She described this situation as representative of 
her feelings of math. Twenty-nine drawings were math symbols or items related to math, rather 
than a specific memory related to math.  

The final category evaluated if the images related math to the classroom setting, real world 
setting, or were more abstract (see table 1).  Many teacher candidates drew content images such 
as shapes, numbers, and equations. The abstract images had a mix of written responses varying 
between positive, negative, and neutral emotions. The teacher candidates who drew themselves 
cooking, shopping, or building all expressed a passion and conceptual understanding of 
connections, real world meaning, and reasoning essential to mathematics.  
Drawings of Change  

The experiences of teaching mathematics to fourth grade students during the methods course 
as well as exploring content in the methods course from a Standards-based approach (NCTM 
2000) were positive for the teacher candidates. Fifty-eight teacher candidates reflected in the 
final writing, that they now saw the connections between the real world and the content they 
were teaching.  While five were still hesitant and concerned about their own understanding, they 
expressed growth and a more positive perception of math.  Thirty-eight of the final drawings and 
writings showed a new perception that math is fun, meaningful, and makes sense. Teacher 
candidates expressed more confidence in teaching mathematics, but also more confidence in 
their own personal mathematical abilities. 

I always thought I was bad at math and dreaded this course, 
but now I see that math isn’t just memorizing stuff the 
teacher says. It is talking about stuff, exploring different 
ways of doing things, and thinking about what makes sense. 
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I am actually good at it, now that I understand that. 
When the emotions attached to the final images were compared to the initial drawings a 

positive growth in emotional affect and reduction of anxiety was seen (see Table 1). The 
drawings that showed positive emotions in mathematics contained images of collaboration, 
manipulatives, real world connections, and discussions.   There were no changes towards 
negative emotional connections to mathematics in the drawings. Those that initially drew 
positive drawings kept these, but several included more images of collaboration and simplified 
the mathematics in the drawings to match the mathematics that they will use in the elementary 
classroom. In the final drawings the images of specific classroom experiences were positive, 
rather than the negative images initially drawn. In addition, drawings displayed more 
collaboration and meaningful learning (see figure 3). 
 
Figure 3 

 
 
 
 
 
 
 
 
 
 
 

 
Implications 

These findings contribute to the body of research on perceptions of mathematics held by 
elementary teacher candidates. Several key findings provide insight into teacher candidates’ 
perceptions and have implications for teacher education programs. 

This study provided further evidence of the negative experiences teacher candidates bring to 
the classroom (Swars, 2006). It goes deeper than simply recognizing these negative emotions and 
experiences. It examines how teacher candidates view the concept of math.  The details in the 
images provide visual understanding of the anxiety experienced by many. One interesting 
finding was the discovery that the negative experiences are often related to the classroom rather 
than real world math. This aligns with the work of Nicol, who suggests this lack of real world 
connection negatively impacts their students (2002). When teacher candidates connected math 
with real world experiences, they viewed math in a positive light and displayed confidence in the 
content.  

When teacher candidates changed their depiction of mathematic to a more positive image, 
this included images of discussions, manipulatives, understanding, and connections to the real 
world beyond the classroom. Even when classroom images were the focus of the drawing, the 
writings on the back referred to the importance of making connections. Those who expressed 
math in a positive light at either the beginning or the end did not make references to textbooks, 
isolation, or working problems on the board.  Instead meaningful, connected, and engaging math 
was the focus. By exploring the methods for teaching elementary content within a context 
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connected to working with students, teacher candidates expressed a change in beliefs about the 
concept of mathematics as displayed in their drawings.  

The connection between teaching children and reduction of mathematics anxiety aligns with 
Harper and Daane's study (1998). Because conscious reflections on attitudes can alter negative 
complexes (Hillman, 1992), the attitudes may have been changed through the symbolic analysis, 
which was both a part of the unique methodology of the study and a conscious reflective process. 
This is one of the reasons that the images can be analyzed, but assumptions about why they 
changed cannot be made. By having teacher candidates draw their perception of math initially, 
they were more aware of this throughout the course.  Their emotions attached to math were a 
natural part of the conversations about methods and their experiences with students. These 
teacher candidates were challenged to draw their own perceptions of math and many used this 
opportunity to express their own problems they encountered in math as a student.  This in turn 
made them more aware of problems students might have throughout the semester.  

Teacher educators need to allow time for teacher candidates to reflect upon the perceptions 
and beliefs they bring to the classroom. This reflection allows teacher candidates to acknowledge 
their biases and begin to explore how to create more meaningful experiences for students (Rule 
and Harrell 2006).  In addition time for teacher candidates to make real world connections 
between math concepts should be an essential portion of elementary methods courses (Chappell 
& Thompson, 1994). 

While this study offers insight into the perceptions that elementary teacher candidates hold, 
further studies are needed. Continuing this activity by having teacher candidates at the end of 
internship and inservice teachers draw math could show how these perceptions change and are 
refined as they progress in their development as teachers as well as the sustainability of the 
newfound positive perceptions.  In addition, it would be interesting to compare the images of 
inservice teachers with the students they teach in order to see the correlation of perceptions. 
Asking teacher candidates to draw, write, and explain their conceptions of math can further 
understanding into the mathematics anxiety that many experience, the pedagogical stances they 
bring into teacher preparation courses, and their understanding of connections between concepts 
and real world uses of school mathematics. These understandings can provide insight into 
supporting teacher candidates as they develop positive affect, effective pedagogical strategies, 
and content knowledge for teaching mathematics. These are all critical areas of development to 
increase student achievement and end the cycle of mathematics anxiety. 
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The purpose of this study is to examine the mathematics teaching cycle of two kindergarten 
teachers who took part in a professional development project that promoted culturally relevant 
pedagogy and teaching mathematics for understanding.  The study examines if and how the 
teachers’ lesson planning practices and their enacted lessons are consistent with the ideologies 
associated with culturally relevant pedagogy and teaching for understanding.  This paper will 
focus on the social culture of the classroom, in particular how the teachers encouraged their 
students to develop their own strategies for sharing fairly and how those strategies were valued 
in the classroom. 

 
Background 

Recent reform efforts in mathematics education stress teaching mathematics for 
understanding in an environment that is accessible to all students (NCTM, 2000).  Literature on 
the nature of teacher planning in light of reform efforts to change the teaching and learning of 
mathematics is sparse (Simon, 1995; Simon & Tzur, 1999).  The majority of research on teacher 
planning is not specific to mathematics nor does it address how teachers attend to the cultural 
aspects of teaching and learning or what teachers need to do to promote learning mathematics for 
understanding (McCutcheon, 1980; Yinger, 1980; Zahorik, 1975).  Additionally, research has not 
addressed how teaching mathematics for understanding and attending to students’ cultural 
backgrounds can effectively be incorporated into teachers’ lesson planning practices (Eisenhart, 
et al., 1993; Gutstein, Lipman, Hernandez & de los Reyes, 1997; Ladson-Billings, 1995; Putnam, 
Heaton, Prawat & Remillard, 1992). 

In light of this gap in the research, this study aimed to examine the lesson planning practices 
and enacted lessons of two teachers who participated in a year long professional development 
project which promoted the development of culturally relevant pedagogy (Ladson-Billings, 
1994) and teaching for understanding (Heibert, et al., 1997).  The purpose was to examine if and 
how the teachers incorporated the ideologies associated with culturally relevant pedagogy and 
teaching for understanding into their lesson planning practices as well as their enacted lessons.  

 
Conceptual Framework 

Due to the nature of the professional development project in which the teachers in this study 
participated in, this study is framed theoretically by tenets of culturally relevant pedagogy 
(Ladson-Billings, 1994) and Hiebert et al.’s (1997) dimensions of classrooms that promote 
teaching for understanding.  Since the focus is on teacher planning in addition to classroom 
practices, Simon’s (1995) mathematics teaching cycle will be used as a lens through which to 
view this phenomenon.  This section provides details about each construct. 
Culturally Relevant Pedagogy 

Research has emerged to examine the pedagogy of teachers that are successful at teaching 
students of color without disregarding their home culture.  Ladson-Billings (1994) has coined the 
term culturally relevant pedagogy (CRP) and defines it as “a pedagogy that empowers students 
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intellectually, socially, emotionally, and politically by using cultural referents to impart 
knowledge, skills, and attitudes” (p. 17-18).  CRP does not adhere to an explicit list of behaviors 
that if performed will ensure the success of all students, but rather is an ideology that may look 
different in different classrooms.  CRP is supported by three general tenets: (1) academic success 
is experienced by all students; (2) students nurture and sustain cultural competence; and (3) 
students develop critical sociopolitical conscientiousness (Ladson-Billings, 1995). 
Teaching for Understanding 

Learning mathematics with understanding can be described as the ability to make sense of 
new knowledge by relating it and connecting it to what we already know.  By drawing on the 
research of four large projects that focused on students’ conceptions of multidigit addition and 
subtraction, Hiebert, et al., (1997) were able to characterize classrooms that promote students’ 
mathematical understanding.  Hiebert, et al. (1997) calls these critical characteristics dimensions 
of classrooms that support mathematical understanding and they are: (1) the nature of classroom 
tasks, (2) the role of the teacher, (3) the social culture of the classroom, (4) mathematical tools as 
learning supports, and (5) equity and accessibility.  This paper will focus on the third dimension, 
the social culture of the classroom, in particular how students are encouraged to develop and 
share strategies and if these strategies are valued in the classroom. 
The Mathematics Teaching Cycle 

The mathematics teaching cycle was chosen because it is grounded in the constructivists’ 
view of learning, and as such, is consistent with CRP and teaching for understanding.  The 
framework design for this study utilizes the three major components of the mathematics teaching 
cycle: planning (drawing on teacher knowledge and the creation of a hypothetical learning 
trajectory), teaching (the enactment of classroom activities) and assessment (formative).  In each 
of these components, the researcher used tenets of CRP and dimensions of teaching for 
understanding as the lens through which to analyze the data (see Table 1 and Figure 1). 

Teachers whose beliefs are consistent with CRP and teaching for understanding will draw on 
these constructs during each phase of the mathematics teaching cycle.  For example, during the 
planning phase, one might expect that a teacher would draw on students’ prior knowledge, 
students’ out of school knowledge as well as the teachers’ own mathematical knowledge.  
During the teaching phase, one might expect to see a classroom culture where students are 
encouraged to choose and share their own methods for solving problems and where those 
methods are valued.  In addition, there would be evidence of high academic success by all 
students and students would be communicating about mathematics in ways that are consistent 
with their cultural ways of expression.  During the assessment phase, one might expect to see 
teachers’ attend to how students are communicating and reflecting on mathematics and how 
student learning informs the teachers’ own knowledge.  This framework was used to drive the 
design of the study as well as direct the analysis of the data to answer the research questions. 
Table 1. Features of CRP and Teaching for Understanding 

Features of CRP and Teaching for Understanding (TU) 
(adapted from Ladson-Billings (1995) and Hiebert, et al. (1997) respectively) 

CRP: 
• High academic achievement is 

experienced by all students 
• Cultural competence 
• Sociopolitical consciousness 

 

TU: 
• Nature of classroom tasks 
• Role of the teacher 
• Social culture of the classroom 
• Mathematical tools as learning supports 
• Equity and accessibility 
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Figure 1. Mathematics Teaching Cycle (Simon, 1995). 

 
 
 
 

Research Questions 
1. What does a kindergarten teacher attend to in each phase of the mathematics teaching cycle? 

2. Is there evidence of the ideologies associated with CRP and teaching for understanding with in 
each phase of the teaching cycle? 

 
Methodology 

Context for the Study 
Participants in the current study were involved in Nurturing Mathematics Dreamkeepers 

(NMD), a professional development project for kindergarten through second grade elementary 
school teachers (for more information, see Marshall, 2008).  Three cohorts of teachers from six 
local elementary schools were chosen to participate in the project.  Each cohort of teachers 
attended professional development retreats for varying lengths of time (cohort I for three years, 
cohort II for two years, and cohort III for one year), where participants took part in various 
mathematical tasks aimed at improving not only their content knowledge and own mathematical 
understanding, but also their pedagogical content knowledge.  In addition, teachers participated 
in a variety of activities where they were asked to engage in critical reflection on issues related to 
culture in the teaching-learning process. 

Participants.  This study involves two kindergarten teachers who were participants in the 
third cohort of teachers.  Sarah is a white female in her twenty-ninth year of teaching 
kindergarten and pre-kindergarten.  Pamela is a white female who has spent both of her two 
years of experience teaching kindergarten.  Both teachers held undergraduate degrees in 
elementary education and had not received any specific training in mathematics instruction other 
than the curriculum training that was required by the county in which they teach.   

Sources of data.  Four sources of data were collected: a lesson planning interview, an 
observation of a lesson planning session, video-recordings of two consecutive math lessons, and 
a post-lesson reflective session.  The lesson planning interviews as well as the lesson planning 
observation was audio recorded and transcribed.  The lesson planning interview questions asked 

CRP and  
TU 

CRP and 
TU CRP and 

TU 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

374 

the teachers to describe and discuss what they attend to when planning their mathematics 
lessons.  Questions were specific to content, types of activities, resources, assessment (both 
formative and summative), and student knowledge.   

The math lessons and post-lesson reflective session were video recorded.  The math lessons 
were described in five minute increments and portions were transcribed.  The post-lesson 
reflective session was transcribed verbatim.  The videotaped math lessons took place in the 
teachers’ classrooms during their regularly scheduled math times for two consecutive days.  On 
the first day, Sarah’s math lesson was recorded first while Pamela observed, and then Pamela’s 
math lesson was recorded while Sarah observed. On the second day, Pamela’s math lesson was 
recorded while Sarah observed and then Sarah’s math lesson was recorded while Pamela 
observed.   

The reflective session took place four days after the second videotaped lesson.  In the 
reflective session, the teachers discussed how their lessons supported or hindered their students’ 
conceptual understanding of the mathematics and were asked questions regarding their students’ 
out-of-school and in-school knowledge as well as if their enacted lessons followed the lessons 
they had planned. 
Analysis of Data 

The data was analyzed to describe what the teachers attended to in their lesson planning and 
what parts, if any, of their lesson planning and enacted lessons were consistent with culturally 
relevant pedagogy and teaching for understanding.  In addition, the enacted lessons were 
compared to the lesson planning observation to determine if the lessons were consistent with 
what was planned.  The four sources data were analyzed in three separate phases. 

Phase 1: Teaching planning.  First, the three transcribed sources of data (interviews, 
observation, and reflective session) were organized with respect to Simon’s (1995) Mathematics 
Teaching Cycle and each piece of data was coded for instances of teacher knowledge, 
hypothetical learning trajectory (HLT), and assessment.  Any parts of the data relating to teacher 
knowledge were then combined into one document.  Similarly, new documents were created for 
parts of the data pertaining to HLT and assessment.  The researcher then analyzed and coded 
each new document for what each teacher focused on in their lesson planning such as objectives, 
content, activities, materials, etc. 

Phase 2: Teaching for understanding and CRP.  During the second phase, each new 
document was analyzed for teaching for understanding and CRP.  First, the documents for 
teacher knowledge, HLT and assessment were coded for evidence of teaching for understanding 
using Hiebert, et al.’s (1997) dimensions of teaching for understanding.   

In order to analyze the data for evidence of CRP, the researcher initially coded with respect 
to the three tenets of CRP: high academic achievement, cultural competence, and sociopolitical 
consciousness.  Once the data were coded, the initial codes did little to answer the research 
questions.  More specific codes were created as sub-codes of the three tenets of CRP.  Since CRP 
is an ideology, it may not be readily observable in a kindergarten classroom. 

Phase 3: Video-taped lessons.  In addition to the documents, the video-taped lessons were 
also coded for teaching for understanding and CRP.  The lessons were viewed several times and 
then they were described in five minute increments.  The lessons were viewed again and critical 
events were identified and transcribed.  Then, the lessons were coded for evidence of teaching 
for understanding and CRP.  The transcriptions included dialogue by the teacher and students as 
well as a description of any actions that were visible on the video recording.  Lastly, the video-
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taped lessons were compared to the lesson planning observation to determine if the enacted 
lessons were consistent with what was planned. 

 
Findings 

For the purposes of this paper, a specific dimension of teaching for understanding, the social 
culture of the classroom, will be described with respect to the teachers’ mathematics teaching 
cycle due to the fact that this aspect of teaching for understanding was readily observed in the 
teachers’ lesson planning and in their enacted lessons.  Because of the nature of this dimension, 
one would expect to find evidence of classroom culture in teachers’ lesson planning and in their 
enacted lessons.  Therefore, this section will provide evidence of the teachers’ social culture of 
the classroom first with respect to their lesson planning, and then with respect to their enacted 
lessons. 
Lesson Planning 

Planning for “fair shares”.  Sarah and Pamela did not plan collaboratively on a regular basis; 
however, because of the nature of data collection for the NMD project, they chose to plan their 
video-taped lessons together.  The content they chose came directly from the North Carolina 
Standard Course of Study (NC DPI, 2003) for kindergarten: “The learner will share equally 
(divide) between two people; explain.”  This concept was also referred to by the teachers as 
sharing fairly.  The teachers chose this content based on the fact that it was listed as an objective 
from the Standard Course of Study for the current quarter. 

During the lesson planning session, the teachers began by stating the objective they wanted 
to cover.  Sarah referred to a previous activity where her students struggled with the concept of 
equality and states, “So that’s why I feel like we really need to do this.”  Sarah conveyed to 
Pamela the story The Doorbell Rang, by Pat Hutchins and stated that she had used the story in 
previous years and felt like it was relevant to the chosen objective. 

The story is about a mother who offers her two children a plate of 12 cookies to share 
between themselves. After the children decide they will get 6 cookies each, the doorbell rings 
and in comes two more children. Now they must decide how to share the 12 cookies between 
four children. The story continues this way until each person has only one cookie and the 
doorbell rings one last time.  Thankfully, it is Grandma with more cookies. 

The teachers discussed using pretend cookies and plates to act out sharing the cookies fairly 
as in the story.  Through their discussion, the teachers talked about how their students would 
learn fair shares and how to emphasize the idea of equality.  They also discussed how to extend 
the activity for students who they believed could understand how to share an odd number of 
cookies.  In thinking about strategies their students might use to share fairly, Sarah stated 
“…they’ll be somebody…that will say ‘Six?  Oh that’s three each.  Eight?  That’s four each.’  I 
have some that will do that.”  Other than this comment about students using known facts, they 
did not discuss specific strategies they would emphasize or other strategies they thought their 
students would use during the lesson. 
Enacted Lessons 

Day 1.  During the first day of the two day lesson, both teachers read the story The Doorbell 
Rang to their class and had the children act out the story by sharing 12 cookies between 2, 4, 6 
and then 12 children.   

Both Sarah and Pamela created a classroom culture where the focus was on students’ 
methods for determining fair shares and not just the answer.  Sarah and Pamela emphasized 
wanting to know students’ strategies, frequently asking their students “What can we do to make 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

376 

it fair?” and “How did you know…?”  However, neither teacher encouraged her students to 
reflect upon chosen strategies or how they were thinking about the mathematics involved. 

The students in both Sarah’s and Pamela’s classes were encouraged to come up with their 
own strategies for sharing fairly and some students had the opportunity to share their strategies 
with the class during the first lesson.  However, in Sarah’s classroom, it was apparent that she 
did not value all of these strategies as she continually emphasized (and tried to get her students to 
emphasize) dealing out one cookie at a time until they were all gone, and then counting the 
cookies to determine how many each person had and if the amounts were equal.  Sarah listened 
to the ideas offered and acted on some of them, but she was not content until a student suggested 
passing out one cookie at time. 

For example, at the beginning of the story, Sarah’s class is trying to determine how to share 
12 cookies among two people.  A student suggests giving each person three cookies. After Sarah 
passes out three cookies to each of two students, the class determines that there are still 6 more 
cookies left to share. Sarah asks her class “So how do we figure out how many more they can 
have?  Who has an idea how we could figure out how to share it fairly?”  Three different 
students suggest giving three of the remaining six cookies to each student to share the cookies 
fairly.  Sarah verbalizes that this is correct, but continues to probe the class to find out “[What 
can I do] if I didn’t know if there was enough for three and three?  Is there another way we could 
do it?”  Once the strategy of passing out one cookie at a time was offered, she was willing to 
continue on with the story.   

In addition, Sarah did not ask her students to reflect on any of the ideas offered by their 
classmates.  In one instance, a student suggested a strategy whereby she was able to count the 
cookies and determine how many each person should get.  Sarah explained what she believed to 
be the student’s thinking, however she did not attempt to have the student explain her strategy 
nor did she ask the class what they thought of this strategy.  She continued to question the 
students and even put all the cookies back in the middle, until another student suggested giving 
one cookie to each person. 

Pamela, too, encouraged her students to come up with and share their own strategies, yet she 
emphasized passing out one cookie at a time as well.  Despite this, Pamela was more accepting 
of other strategies offered by her students than Sarah.  Pamela was willing to act on students’ 
strategies as long as they were correct.  For example, when Pamela’s class was trying to 
determine how to share 12 cookies among 4 students, a student suggested giving each person 3 
cookies.  Pamela modeled this strategy and even asked the student “How did you know to say 
give three to Adarian and three to Ally?”  However, Pamela did not ask the class to reflect on the 
strategies suggested by students or the strategies she chose to model during the story.  It was not 
clear if Pamela valued all of the ideas suggested by her students and in fact, only gave verbal 
praise to a student who suggested passing out one cookie at a time. 

Day 2.  On the second day, both teachers had their students work in pairs to share a set 
number of cookies between two people and then represent their answers in a table that they 
provided.  In both classrooms, students were completing the activity, but they were not 
encouraged to discuss their strategies or explain how they determined fair shares. 
 

Discussion 
In the context described by Hiebert, et al (1997), the social culture of a classroom that 

supports teaching and learning mathematics with understanding provides opportunities for 
students to choose methods that are meaningful to them.  Additionally, Hiebert et al. (1997) state 
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that “ideas, expressed by any participant, have the potential to contribute to everyone’s learning 
and consequently warrant respect and response” (p. 9).  By examining and reflecting on students’ 
chosen strategies, teachers are valuing students’ ideas and using these ideas as opportunities for 
learning. In this way, a mathematical community is created where students collaborate and 
communicate about important mathematics, thereby fostering mathematical understanding.   

Both Sarah and Pamela created a classroom culture where the focus was on students’ 
methods for determining fair shares and not just the answer.  The teachers wanted their students 
to come up with strategies to solve problems and to communicate their ideas.  During the 
planning phase, the teachers hypothesized about the importance of understanding equality and 
how their students might approach the chosen activities.  Throughout the first lesson, both 
teachers encouraged their students to share their ideas and at times, both teachers acted on their 
students’ suggestions about how to share the cookies.   

However, the teachers did not appear to be open to the idea that all of their students 
strategies, both correct and incorrect, had value in the classroom.  Both Sarah and Pamela 
focused on dealing out one cookie at a time when their students were in fact using more 
sophisticated strategies such as dealing out by two’s or three’s.  Although it is unclear why the 
teachers did not choose to focus on the more sophisticated strategies their students came up with, 
during the post-lesson reflection they did state that they wanted to emphasize passing out one 
cookie at a time in order to explicitly offer a strategy for students who struggled with 
determining fair shares.  Nonetheless, with respect to the strategies that were offered by their 
students, neither teacher encouraged their students to reflect upon and evaluate the strategies they 
used.  In this way, the teachers did not appear to value the strategies offered by their students. 

On the second day, the focus was less on the strategy that students were using and more on 
determining the correct answer when a certain number of cookies were shared fairly and filling 
out the table correctly.  Although both Pamela and Sarah worked with individual groups of 
students to make sure they were sharing fairly, as students worked in their pairs, they used 
whatever strategy was meaningful to them and they were not asked to communicate about their 
strategies, only the answers. 
Implications 

With respect to the current study, it can be hypothesized that if the teachers had been more 
aware of the different types of sharing strategies appropriate for their students, they first may 
have been able to identify strategies other than dealing out by one at a time, and then secondly, 
may have been more accepting of those strategies.  The findings from this study highlight the 
importance of teachers’ knowledge on how students think about and develop mathematical 
concepts.  Teachers can use literature on how students learn to inform their instruction.  For 
example, in an article by Sally Roberts (2003) from the NCTM journal, Teaching Children 
Mathematics, teachers are offered ideas on how to teach fair shares and what strategies are 
typical of kindergarten students such as estimating, dealing out by ones, or grouping by twos or 
threes. 

Furthermore, it should be emphasized that by merely having students share ideas, teachers 
are not necessarily valuing them.  Teachers can allow students to not only share, but to also 
explain their ideas and use both correct and incorrect ideas as opportunities to develop students’ 
understanding.  By reflecting on and evaluating different strategies, students can build 
mathematical reasoning and extend their problem solving skills. 

Teachers can choose appropriate classroom activities or tasks when they have information 
about how students may think about concepts and how those concepts can be developed over 
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time.  Through preservice methods courses and inservice professional development, teachers can 
gain insight into how students learn mathematics in order to accurately develop lessons that are 
meaningful and accessible to all students and that increase students’ mathematical understanding.  
In addition, teachers can build on students’ chosen strategies, encourage students to evaluate 
ideas, and use mistakes and misconceptions as learning sites for all students. 
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The purpose of this paper is to report how U.S. elementary mathematics textbooks differ from 
other international curricula, specifically Korean national curricula. This paper further 
investigated the characteristics of the U.S. curricular within two opposite spectra, traditional 
and standards-based curriculum and extended the comparison with Korean textbooks. This study 
found that the Korean national curricula mostly emphasized on number and operation and both 
U.S. curricular was more advanced in geometry and measurement. The major difference 
between the U.S. curricula was its major focus on story and strategy based problems in 
standards-based textbook and more practice problems in traditional textbook.  
 

Background 
The findings from the TIMSS study brought considerable concern about the mathematics 

achievement of the U.S. students. One of the responses was the comparative curriculum studies 
with international textbooks in order to understand how the U.S. mathematics curricula differ 
from international averages. The textbook was a focus for two reasons. The first is teacher’s high 
dependency of using textbooks in mathematics classrooms (Weiss, 1987 and Tarr et al 2006). 
The other reason was the importance of curriculum in terms of opportunity to learn, which means 
it is not taught unless it is introduced in the textbooks (Flanders, 1994; McKnight et al., 1987; 
NCTM Standard, 2000; Reys et al., 2004; Tarr, 2006).  

 
Theoretical Framework 

Recognizing the need for the international curricular study, a number of research scholars 
examined the U.S. curricula in relation to students’ mathematical achievement based on SIMS 
and TIMSS (Frase, 1997; NRC, 2001; Peak, 1996; Schmidt, W., McKnight, C., & Raizen, S.A., 
1997; Reys, B.J., Reys, R.E., & Chavez, O., 2004). These researchers compared the 
mathematical content of textbooks on what content was introduced across participating countries. 
One major distinction found in these curricular analyses was that the U.S. curricular were not 
determined at the national level, as it was in most TIMSS countries (Frase, 1997). The above 
research scholars reported several problematic aspects of the U.S. mathematics curricula. 
Schmidt et al. (1997) described the U.S. textbook was ‘a mile wide and an inch deep’ (Schmidt 
et al. (1997)), which means the U.S. textbooks deal with too many topics in each grade with little 
emphasis on particular and strategic topics. He criticized covering too many topics as not 
facilitating students’ higher achievement with deeper understanding. Flanders (1994) and Tarr et 
al. (2006) criticized the U.S. textbook focused less and late on algebra and geometry than 
international average. Another weakness was that the same topics were revisited repeatedly in 
the U.S. textbook (NRC, 2001 and Schmidt, 1997). They reported that in the U.S. curricula, 
multidigit computations were introduced over several years with one digit added each year, 
meanwhile, high performing countries introduced and develop such topic for students to master it 
within a specific grade level. These studies negatively valued this repetition because it defers 
students’ mastery of concepts at a certain grade level. However, a Korean research paper which 
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comparing the Korean national curriculum and Everyday Mathematics stated that repetition had 
a positive point. Seo et al (2003) argued that in Korean textbooks, mathematical concepts and 
skills were usually introduced once with little relation to the previous year, thus, the focus is 
placed on students’ mastery of the concept at a specific grade level. They also criticized that this 
curriculum did not provide students with enough time and opportunities to learn important 
mathematical concepts and skills.  

 Other comparative studies criticized that in the U.S. textbooks, the topics persist over grade 
levels (Fuson et al (1998)). She reported that both the simplest and the most difficult multidigit 
addition and subtraction appeared and disappeared late (from 1 to 3 years) in the U.S. textbooks 
than other countries such as Japan, China, Taiwan etc. However, if extended this comparison to a 
Korean textbook analysis (Kang et al, 1998), even though Korea excelled in TIMSS, there was 
no difference between Korean textbooks and the U.S. textbooks, in terms of the first introduction 
time of multidigit number operation (Korean has 3.5 average grade level versus the U.S. has 3.4 
grade level).  

This comparative analysis implies that some factors other than the first instruction time 
possibly play a role in students’ mathematical learning. Hence, there is a need for looking at how 
the concepts are developed within the chapter as Stein et al (2007) argued in his paper. He 
criticized that the previous curriculum studies primarily focused on what content was covered 
but rarely compared how the content was developed within the concept. He argued how the 
content was presented was also important because they set into motion different pedagogical 
approaches and different opportunities for students learning. For example, the organization of 
textbooks will be different depends on whether the developers believe that mathematics is best 
learned through student constructions or direct instruction and skill practice.  

Along with above stated considerable critiques of the U.S. mathematics curricula, a number 
of mathematics educators developed elementary mathematics curricular to incorporate the ideas 
of the NCTM standards (1989, 1990, 1995). Even though the release of NCTM standard 
produced an entire new set of curricula there is not enough data analysis that compares 
international textbooks to the U.S. standards-based textbooks. The characteristics of the U.S. 
curricular described so far stood out more in the traditional U.S. textbooks. This brings an 
attention to the need for extending comparisons to both curricula, and to its organizations as 
well. Furthermore, it is necessary to broaden the comparisons cross culturally in order to evaluate 
the strengths and weaknesses of the U.S. curricula from an international perspective.  

 
Research Questions 

In this paper, I extended the international curricula comparisons to Korea, which is one of the 
highest performing countries on TIMSS and made deeper comparisons with both the U.S. 
traditional and standards-based curricula. In addition to the topic placement in the textbooks, I 
also examined how three different textbooks - the Korean national, the U.S. standards-based and 
the U.S. traditional - were organized under three guiding questions. 1) What topics are placed in 
each textbook for both 1st and 4th grade? 2) How those topics are developed within the 
mathematical concept? 3) What is the main focus of the problems in the chapters (e.g. procedure 
based or strategy based)?   
 

Methodology 
This paper investigated two mathematics textbooks currently being used in the U.S. 

elementary classrooms and the Korean national curriculum. One of the U.S. textbooks is 
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research-based, developed through NSF funding and structured around the NCTM standards 
(standards-based). As a standards-based textbook, I selected the most recent edition of the 
Investigation series (2008) from Pearson: Scott Foresman, The other textbook is not research-
based (traditional) and I chose 2007 Harcourt Math series which are widely used in the U.S. 
elementary schools. I considered it as traditional because although it references the NCTM 
standards, its structure is similarly to textbooks prior to the standards. As an extension of 
previous comparisons, I chose two fairly different US textbooks in terms of their characteristics 
and broadened the comparisons to the Korean national textbook which is dissimilar to the 
localized U.S. curricula. In order to analyze both lower grade levels and upper grade levels in 
elementary school I compared 1st grade and 4th grade of all three textbooks.  

This comparison consists of three parts: 1) topic placement, 2) topic organization and 3) 
problem focuses. In topic placement analysis, the proportion of topic was main focus. In topic 
organization, I investigated the order of sequence of two major topics of elementary level, which 
were number and operation and geometry, and examined its highlighted mathematical ideas. In 
problem focus analysis, I classified all the problems as either 1) computation or procedure based 
problems when the problem asked for the answer or procedures without justification, or 2) story 
or strategy based problems when the problem was introduced with word problems and asked to 
the answer with reasoning or strategy. For the analysis of optic organization and problem focus I 
selected the multidigit addition and subtraction chapter for 1st grade and multidigit multiplication 
and division chapter for 4th grade because multidigit number operations are one of the most 
fundamental mathematical concepts for students.  

 
Result 

Topic placement and organization of curricula differed from textbook to textbook across 
grade levels. There were unique features that stood out the most in each textbook and these 
features were somewhat different across grade levels. This paper reported the major differences 
among textbooks first and illustrated in depth comparisons later.  

The most fundamental difference of the Korean textbook was its emphasis on the number and 
operation in both grade levels. It is not only because the Korean textbook dealt with the largest 
numbers across the grade levels, but also the Korean textbook highlighted the place value and 
number operations the most. For example, the Korean textbook included the activities such as 
counting objects, making groups of ten, and decomposing and composing numbers focusing on 
the combination of ten in 1st grade. Furthermore, in 4th grade, only the Korean textbook 
developed number sentences that contained all four operations (addition, subtraction, 
multiplication, and division) at the same time.     

The highlighted features of Harcourt were first, the biggest number of topics observed from 
both grade levels. For instance, only Harcourt contained the fraction and probability concept for 
1st grade and measurement of volume and circumference for 4th grade textbook.  
The other was the emphasis of practice of number and operation. As shown in the table 2, 
Harcourt included the most number of practice problems for both grade levels.  

In Investigations, activity based lessons and group discussion were the primary emphasis. In 
general, each chapter of Investigations started with student activities that included the 
mathematics concepts of that chapter and those activities were composed of group work.  
Another major focus of this curricular was the largest portion (about 35 %) of story based 
problems and the most flexible approach of using strategies.   
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For in-depth analysis, the placement of topics was firstly examined. This section examined 
two aspects; what topics existed and the portion of such topic in each textbook.  
 
Table 1.1. Topic Placement for 1st grade 

 
 

This table illustrated that in the 1st grade curriculum. The Korean textbook focused the most 
on number and operations (62.5 %) than the U.S. textbooks (Harcourt - 53.3 % and 
Investigations - 33.3 %). This contrasted with the least emphasis of geometry of Korean textbook 
(21.8 %) than the U.S. curricular (Harcourt -29.9 % and Investigations - 33.3%). The critiques 
from the previous studies, less emphasis of geometry, stood out more in the U.S. traditional and 
Korean national curricula. However, the comparison was the opposite for the 4th grade curricular.  
 
Table 1.2. Topic Placement for 4th grade 

 
 

As shown in the table 1.2, Korean textbook included the least portion of number and 
operations (25.0 %) than Harcourt (36.7 %) and Investigations (44.4 %) at this grade level. The 
contrasting result by grade level continued to the geometry. The Korean textbook contained the 
most amounts of geometry (31.3 %) than both of the U.S. curricula (Investigations - 22.2% and 
Harcourt - 30.0 %) at 4th grade. The differences within other topics were not obvious at both 1st 
and 4th grade. The analysis of topic placement illustrated the proportion of each topic but it is 
necessary to examine in what order the topics were organized for deeper analysis. 
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Topic organization was examined focused on the sequence and the highlighted mathematics 
ideas under number and operation and geometry. In the analysis of the sequence, the central 
focus was how the same concepts were closely connected each other within the textbook 
especially when the same topics were revisited. First, the order of sequence was reported from 1st 
grade followed by 4th grade and key mathematical ideas were noted as the same order.   

For the 1st grade, the Korean textbook included the least gap between number and operation 
concept and introduced such concept the earliest among three textbooks but it contained the least 
geometry concept. On the contrary, there was a largest gap in number and operation in Harcourt 
for this grade level but this textbook introduced the most advanced contents in geometry. 
Investigations was placed in between. For example, in Harcourt, chapter 20 introduced the 
addition and subtraction sums up to 20 but fraction came at chapter 21, then chapter 22-28 was 
all measurement. The similar leap was observed in Investigations. In this textbook, the number 
and operation concept was re-introduced five chapters later since it was introduced first time. 
This type of structure may be more difficult for the students to build number sense. 

In the order of senesce of 4th grade, Investigations was placed in between Harcourt and the 
Korean textbook in terms of its distance. There were no significant gap different in number and 
operation but Investigations had the least gap among three textbooks. But when compared the 
content of number and operation, some major differences were observed. The first standing out 
feature was that only Harcourt included the concept of addition and subtraction of whole 
numbers (Chapter 1 – 4) at this grade level. Such concepts were not presented in other two 
textbooks.  

Even though both of the Korean textbook and Investigations presented multiplication and 
division of multidigit number, there were differences between those two. Korean textbook dealt 
with multi-digit operations of multiplication and division as a mastery level, hence, such 
operations disappeared after chapter 1 and 2.On the other hand, both U.S. curricular introduced 
the concept of multiplication and division as a beginning level. This concept was introduced 
even later in Harcourt, which is in the middle of the book. Another difference within number and 
operation comparison was both Korean and Investigations began with multiplication first and 
related them to division later but Harcourt combined two concepts first and then introduced 
multiplication and division separately.   

When compared the sequence of geometry in 4th grade, Investigations included the least gap 
than the other two. However, when compared the geometry concept of Harcourt and Korean 
textbook, the distance was bigger in Korean curricula. Chapter 17 through 19 of Harcourt 
covered lines, angles and plane figures and the chapters 28 to 30 covered measuring perimeter, 
area and volume of polygon. Harcourt provided explanation of general polygons first then moved 
to the measuring them at the end. On the contrary, Korean textbook explained learning angles 
and triangles first (chapter 4 & 5) and introduced quadrilaterals and other polygons at chapter 12. 
This structure provided less information to learn the relationships among polygons. Overall, 
Korean textbook introduced geometry concepts with least connection and relatively later 
compared to the U.S. curricula.  

In addition to these differences, the highlighted mathematical concepts of each textbook were 
also dissimilar each other. This section was reported as the following order: 1) 1st grade number 
and operation, 2) 1st grade geometry 3) 4th grade number and operation 4) 4th grade geometry. 

Firstly, the grouping number around 10 was highlighted the most in Korean textbook. When 
counting numbers, Korean textbook contained the activities to make a group of 10 and 
introduced only counting by ones and tens. Meanwhile, both the U.S. curricular introduced 
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counting by twos, fives and tens equally without emphasis of grouping of tens. This pattern was 
repeated to the fact family. In Korean textbook, only the combination of 10 was introduced as a 
fact family but the U.S. curricular included fact family of 10 as one of other fact families.    

How such concept was developed was dissimilar each other. Harcourt emphasized number 
operation the most than any other number concept hence it introduced the vocabulary and 
symbol first than the concept. However, both in the Korean textbooks and Investigations, number 
recognition, counting and composing numbers were explained first without symbols. In addition, 
Harcourt was composed of more operational problems than the conceptual problems, which will 
be discussed later in this section.  

In Investigations, multiple strategies and conceptual problems stood out the most. This 
textbook introduced the highest numbers in counting (up to 200) and contained the smallest 
number of addition and subtraction (sums less than 20). It contrasted to the Korean textbook and 
Harcourt, which consisted of the same operation (sums up to 100) at this grade level. However, 
Investigations pushed more various strategies with the small number operations.   

Yet, the different tendency was observed under the geometry. Compared to both of the U.S. 
curricular, Korean textbook included the least geometry contents and explained such concept 
limitedly. For example, Korean curricula only introduced three 3-D shapes (cylinder, cube and 
sphere) and three 2-D shapes (square, triangle and circle). However, both Harcourt and 
Investigations introduced more shapes such as cone, pyramid, hexagon etc. The central focus of 
geometry in Korean textbook was recognizing shape, and any other contents did not exist. On the 
other hand, both the U.S. curricula introduced geometric terms such as vertex, faces, sides and 
symmetry etc. and they also engaged with further geometric activities such as moving shapes. 
Within the U.S. curricular, the contents were pretty similar to each other.     

Thirdly, in 4th grade comparisons, the difference among geometry concept was more 
significant than number and operation. Only Korean textbook contained separate chapters 
entitled ‘order of operation (Ch 6)’ which consisted of number sentences with mixture of all four 
operations (addition, subtraction, multiplication, and division), but none of U.S. curricular 
contained the same number sentences. Estimation related problems were placed separately under 
this chapter in Korean textbook, but in both U.S. curricular, the same concepts were embedded 
within the number and operation chapters. Even though Korean textbook contained the smallest 
portion of number and operation, those concepts seemed to be more advanced than the U.S. 
textbooks. However, the result was the opposite in geometry comparison.  

The geometry comparison for 4th grade demonstrated the similar results as 1st grade but the 
difference became greater. For instance, Korean textbook did not contain the transformation of 
shapes and finding area of polygons but both the U.S. curricular were composed of measuring 
angles, perimeters, areas, volumes. Harcourt further added circumferences. No measurement was 
placed in Korean textbook and such concepts were introduced in 5th and 6th grades, which was 1 
or 2 years later than the U.S.. Among the U.S. textbooks, Harcourt included the most number of 
topics such as congruent & similar figures, tessellation, circumferences, and diameter etc. which 
were not represented in Investigations.  

A further comparable finding was that the U.S. curricular classified polygons based on the 
relationships across the shapes. Meanwhile, Korean textbooks tended to explain the properties of 
polygons limitedly connected the relationships among polygon. There was another dissimilarity 
that observed only at this grade level comparison, which was the different mathematical focus 
within geometry concept.  The Korean textbook emphasized the angles of polygons hence it 
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asked how to prove the sums of inside angles of triangle and quadrilateral but neither of the U.S. 
textbooks contained the similar problems.    

The last analysis was to investigate the problem type of number and operation of each grade 
level. The result of each textbook was shown in table 2.  
 
Table 2. Analysis of Addition Problem Types for 1st and 4th Grade 
 1st Grade  4th Grade 
 (N=total number of 
problems in the chapter)  

Harcourt 
(N=220) 

Korean 
(N=53) 

Investigations 
(N=49) 

 Harcourt 
(N=145) 

Korean 
(N=53) 

Investigations 
(N=56) 

Computation or procedure 
based problem 200 36 31  129 49 36 

Story or strategy based 
problems 20 17 18  16 12 20 

Percentage of story 
problems out of total 
number of problems   

9 % 32 % 36 %  11 % 22 % 35 % 

 
Overall, for both grade levels, Investigations most often included story/strategy based 

problems and the U.S. traditional textbook had the largest number of practice problems but 
included the least number of story based problems. In the meantime, the number of problems 
was similar between the Korean and U.S. standard based textbook. 

 
Discussion and Conclusion 

The results of this study brought some similar findings from the previous studies and 
dissimilar findings at the same time. Similar to previous studies (NRC, 2001; Schmidt, 1997), I 
found that the U.S. textbooks tended to revisit same topics in the previous year. Both in U.S. 
textbooks, multidigit addition and subtraction problems were represented in 4th grade textbooks, 
but, in the Korean textbook, the concept was introduced and disappeared only within the 
assigned chapter. Number sense and operations persisted across grade levels (NRC 2001) in the 
U.S. curricula but the U.S. reform curricula contained the most flexible way of number 
operation. Unlike the previous critique, both the U.S. textbooks were more advanced than the 
Korean textbook in geometry. Furthermore, the in-depth analysis of the textbook organization 
brought worthwhile educational implications in addition to the analysis of placement of topics.    

 The findings here highlight the demand of detailed comparisons of curricula from the 
opposite end of spectrum in U.S. and the need of broadening the study to cross cultural 
comparisons in order to improve written curricula. However, I believe it is also critical to 
develop the intended and implemented curricula for teachers who use traditional textbooks. This 
is urgent for teachers because it takes a long time and a lot of money to scale up reform curricula, 
even though researchers agree that reform curricula is more effective for students’ mathematical 
understanding. How to use traditional textbooks is also effective if teachers can teach concepts 
with traditional textbooks. Therefore, research studies beyond the written curricula would help 
curriculum developers and researchers understand how curricula play out differently in student’s 
mathematical learning and their achievement.  
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a teaching proposal on ratio and proportion. A group of sixth-grade students (eleven years old,) 
of elementary education in México participated in the implementation of the proposal. The child 
of the case study was representative of those students in the group who had a lot of recourse to 
handling algorithms mechanically and whose elaborations made no sense at all, according to 
their answers to an initial questionnaire. A didactical program, developed in a problem-solving 
context for the research study, helped the child widen his qualitative thinking and strengthen his 
quantitative thinking about proportion.  
 

Research Problem 
The case study we present in this report was part of a research study carried out for a doctoral 

dissertation (Ruiz, E.F. 2002). Previously, other aspects and activities of that research have been 
presented and reported in various communications. The case study of our research is about a boy, 
Emilio, who solved ratio and proportion problems by having recourse to algorithms which made 
no sense and had no meaning at all.  

By other hand, the topics of ratio and proportion beginning in the Primary School (Secretaría 
de Educación Pública, 2001 a y b, and NCTM, 2003), and they are the support for the other 
concepts, ( Clark, Berenson y Cavey, 2003). 

We designed a teaching proposal embedded in this situation, with the aim of strengthening 
his establishing of solid connections between qualitative and quantitative thinking about 
proportion1, so that he could improve his handling of algorithms by situating them into 
meaningful applications. The following question guided our research about Emilio´s case.  

 
Research Question 

Does the extensive handling of qualitative aspects of ratio and proportion allow the student to 
widen quantitative relationships of these concepts as well as to improve the handling of her 
algorithms? 

 
Hypothesis 

Enriching Emilio´s qualitative thinking -by using integrated verbal categories, recognizing 
the compensations posed between these categories, and involving the corresponding empirical 
and perceptual data- favors the significance processes he has developed by using algorithms for 
solving ratio and proportion problems.2 

 
Some Theoretical Antecedents  

Piaget and Inhelder (1978a) pointed out, as a result of their experimental researches in 
education, that children acquire qualitative identity sooner than quantitative conservation. Thus, 
these authors made a distinction between qualitative comparisons and true quantification. 
According to Piaget and Inhelder (1978b), the acquisition of the notion of proportion always 
starts in a qualitative by using categories or classes of words. Our own interpretation of what is 
qualitative refers to what is based on linguistic recognitions by creating comparison categories 
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such as big or small. Our interpretation is that what is qualitative consists of intuitive and 
empirical aspects as well, which are provided by our senses. 

Piaget (1978) pointed out that the idea of order emerges during transition from the qualitative 
to the quantitative realm, although the idea of quantity is not yet present. 

Piaget called these situations intensive quantifications. For us, this is what makes the 
transition from qualitative to quantitative thinking stand out. 

On their part, Van den Brink and Streefland (1979) agreed with Piaget as to their research 
findings that qualitative aspects of thinking occur sooner than quantitative ones. However, 
Streefland usually had recourse to these findings in teaching contexts. In our approach for the 
designing of the didactical program as well as in the development of interviews for the case 
study of educational research we present in this report, we used that contribution by Streefland. 

Research findings reported by Streefland (1984; 1985) emphasized that the early teaching of 
ratio and proportion topics must depart from qualitative levels of recognizing them.  For that 
purpose, Streefland made use of didactical resources, which strengthen the development of 
perceptual patterns for supporting the corresponding processes of quantification. Streefland 
stated that qualitative reasoning evolves as the thinking of the child advances and he or she is 
capable of incorporating more elements for an analysis, which will allow him or her to consider 
different factors simultaneously. 

Thus, since Piaget and Streefland took into account qualitative and quantitative thinking 
about proportion exhibited by their subjects under research, the rationale for our case study was 
strongly based on Piaget´s and Streefland´s findings. We based the didactical approach 
developed for our research on Streefland´s realistic mathematics approach. 

Hart (1988) and her collaborators had reported results of their research studies on 
proportional thinking as well. They found out that most students who participated as subjects in 
their researches considered that it was difficult to solve mathematics problems that involved 
proportion. However, Hart and her team analyzed collected data and evidenced that younger 
students as well as pupils in secondary school with less success had a certain sense of “what is 
seen right” or of “what seems to be a distortion”. Hart designated the latter as a regulation from 
“common sense”, which we recognized as intimately involved in “qualitative thinking”. 
Moreover, Hart pointed out that the most advanced level of proportional thinking occurred in 
those subjects who had already constructed certain concepts. 

We based the didactical context of our research on realistic mathematics education referred to 
by Streefland (1993). Realistic mathematics education has become a theory since reality is, in 
first instance, a source of information and the context for the application of teaching models, 
schemata, and notations-school productions that have an influence in social practice. This theory 
favors the development of research and practice of the teaching and learning of mathematics. 
Analogously, according to this realistic theory it is essential to link students’ learning periods by 
resorting to the “strategy of change in perspective”, which is characterized by the exchange of 
part of the information in the problem-situation being approached. Consequently, the 
possibilities for the reconstruction and production of problems become explicitly recognized by 
students, without losing their multifaceted conceptual richness, (Gueudet, 2007). 
 

Methodology 
The research process of the case study of included integrating results from analyses of data 

collected from (a) his answers to an initial questionnaire, (b) a teaching program designed under 
a constructivist-didactical approach, (c) a final questionnaire, and (d) interviews of “didactical 
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nature”. The research instruments were tested in a pilot study of a one-year school cycle and 
definitively implemented during a ten-month period of fieldwork. In this case-study report we 
present relevant examples of the use of the research instruments. 
Participants 

Twenty-nine students of sixth-grade of elementary education in México, who were eleven 
years old, solved the initial questionnaire. We choose a child (Emilio), for a case study because 
he was representative of those students who, in the initial questionnaire, had a lot of recourse to 
handling algorithms that made no sense and who simultaneously exhibited few elaborations in 
the qualitative context. Throughout the development of the teaching experience, Emilio exhibited 
enrichment of his qualitative thinking and, in spite of making a lot of progress in the numerical 
context, he did not abandon the qualitative context of proportionality. He achieved a close 
harmony of both contexts.  
The Initial and Final Questionnaires 

The initial and final questionnaires were integrated by the same tasks, although their 
application had a different aim. The first questionnaire was applied for exploratory purposes, 
whereas the second one focused on evaluating the implementation of the teaching program. Eight 
months elapsed between the applications of both questionnaires: Thus, there was no influence of 
the first questionnaire on the students' answers to the second one. 

The tasks included in the questionnaire did not involve the use of quantities for their solution: 
it comprised comparison activities that allowed the student recognize similarity relationships 
between figures. 
Didactical Program 

Figueras, Filloy, and Valdemoros (1987) defined model as a collection of teaching strategies 
which include meanings –of both technical and common languages–, didactical program, 
according to that definition, we designed several situations associated to “teaching models” so 
that Emilio could link his qualitative and quantitative thinking processes on proportion. We 
worked with those models at different stages of the research experiment, similarly to what 
Streefland (1993) pointed out in his realistic theory as to the “change strategy in perspective”: 
We created a model and tried to get the best out of it in the light of an idea, so that we could 
retake it and use it for another idea.  
 

Analysis of Emilio's Progress by Comparing his Answers in the Initial and in the 
Final Questionnaires 

In the initial questionnaire, Emilio exhibited a preference for using algorithms mechanically 
and very little work in the qualitative context. We observed that he almost did not use his 
common sense or visualization.  

From the thirteen tasks posed in the initial questionnaire, he solved nine of them correctly. 
The first two tasks in the questionnaire were designed so that Emilio could give justifications 

of his answers by strongly resorting to qualitative appreciations and not taking into account 
explicit quantities associated to the given relationships of proportionality. We employed squared 
paper in the next three tasks of the questionnaire to favor a transition toward quantification. The 
remaining tasks in the questionnaire involved quantified situations of ratio and proportion. In 
these last tasks, we provided Emilio with certain numerical values and asked his for new values. 
In some of these tasks we used a table of numerical values as a mode of representation for the 
recognition of external and internal ratios. 
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 Now we present an analysis of two tasks Emilio answered incorrectly: task 1 and task 4. In 
task 1, the drawing of a car was presented and the student was required to select the correct 
reduced sketching of the original drawing (see figure 1). Emilio selected a sketching that did not 
correspond to the original drawing and he argued that his choice was the car C because it 
resembled best the original drawing. However, in the final questionnaire Emilio based his choice 
of the reduced drawing by having recourse to his intuition first and then by measuring each part 
of this drawing to obtain the ratios with corresponding magnitudes of the original drawing, 
although in his new explanation he mentioned again that "car B looks like the original car" and 
added that "it is similar, that is, proportional". Thus, we observed that, from the initial 
questionnaire to the final one, the expression "looks like" underwent a change of meaning for 
Emilio: he exhibited an understanding of the term "proportion" as the relationship of equivalence 
between two ratios (but he did not abandon his common sense, which was exploited throughout 
the teaching program).  

 
 

 

                
How did you solve it?  

Figure 1. Task 1 of the initial and final questionnaires solved by Emilio. 
 

The answer that Emilio gave in the initial questionnaire was: “The car C is the one which best 
resembles the original one”, and the one he gave in the final questionnaire was: “Car B looks 
like the original car. It is similar, that is proportional.” 

We can ascertain this based on other collected evidence: for instance, Emilio did not solve 
correctly task 4 in the initial questionnaire, but he did in the final one. It is important to make the 
explanations he elaborated stand out in this research study; they are included in figures 2 and 3. 
In the task 4 we asked students to make amplification the original drawing, and we give them a 
portion of the amplified drawing.  

As shown in figure 2, Emilio completed the drawing but he did not notice that he had 
amplified it twice and not thrice. As seen from figure 3, Emilio showed the establishing of 
equivalence between two ratios that were obtained from comparing two corresponding 
magnitudes from the middle portion of the ship. 

A reduced photocopy has been 
made of the figure to the left from 
the drawings shown below. Cross 
the letter that corresponds to the 
reduce photocopy 

B 
A C 

D 
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Figure 2. Task 4 solved by Emilio  Figure 3. Task 4 solved by Emilio in the initial 
questionnaire.     the final questionnaire. 

 
Analysis of Emilio's Progress during the Development of the Teaching Program 

The solution of different tasks employed during the development of the teaching program, 
such as comparison activities, involved using quantities. These activities allowed Emilio 
recognize—by using very intuitive terms such as reduction and amplification—similarity 
relationships between figures and he could enrich his qualitative thinking. We worked with those 
notions by referring to concrete situations of the type of the experience of reproducing a drawing 
to scale and of the idea of using a photocopier. In the figures 4 and 5, we show two activities that 
are part of the Didactical Program and that Emilio solved them. In those activities is shown the 
notion that Emilio has about the proportionality, after some working sessions and the relation 
between magnitudes to establish ratios, as well as equivalences relations between ratios. 

       
Figure 4. Activity solved by Emil about  Figure 5. Activity solved by Emil using  
proportionality using verbal categories.  quantities to establish ratios and 

equivalences relations between ratios 
 
During the transition from qualitative to quantitative thinking, Emilio produced an ordering 

when comparing: he used the phrases "bigger than and smaller than". This finding agrees with 
what Piaget (1978) pointed out. Later on, Emilio took measures to make comparisons. First, he 
compared different objects by placing one figure over another and then by using a measure 
instrument. In terms stated by Freudenthal (1983), the resources exhibited by Emilio at this 
development stage of her thinking are called "comparers." After that, Emilio established 
relationships between magnitudes. He worked with natural numbers and employed fractions as 
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well. Thus, at a very elementary level, he introduced his elf to the field of rational numbers. The 
boy of this case study could designate a ratio as a relation between two magnitudes and a 
proportion as an equivalence relation between two ratios. This designation agrees with 
definitions given by Hart (1988). 

When the working sessions ended, Emilio showed he had achieved a close relationship 
between his qualitative and quantitative thinking. This relationship implied the sense she made of 
her work in the numerical context, which was not revealed at the beginning of his work. 
Eventually, when the teaching experience ended and the final questionnaire was applied. Emilio's 
meanings and quantification processes had been enriched. Now he could use a technical 
language in the designation context. He achieved a generalization stage in which new situations 
related to ratio and proportion were favored. 

 
Analysis of Emilio's Progress during the Interviews 

Emilio was interviewed in three different occasions, once a week, after the teaching program 
ended and the final questionnaire had been applied. The main purpose of the interviews was to 
asses the teaching program. The interviews consisted of asking  to solve new tasks which aims 
were similar to that of the didactical program and of the questionnaires. Additionally, the 
development of the interviews gave feedback to Emilio. 

With the first tasks we posed Emilio during the interviews, through his solution processes we 
could observe how he kept qualitative aspects to the light of having worked quantitative aspects, 
and how important it was for his to use visual images as well as his perception ability. Through 
the next tasks in the interviews, we also investigated how he handled numerical tables to 
recognize ratios and express these as fractions. During the interviews he exhibited his use of 
internal and external ratios, his transition from one symbolic system to another, and his posing of 
a situation where the use of proportions would be necessary to solve it this first interview was 
closely related to the Snow White and the seven dwarfs teaching model. Next, we show the 
development and analysis of that interview. Emilio measured the length and the width of Snow 
White's wardrobe as well as the length and the width of each of the four drawings shown in the 
figure so that he could choose the required reduction. Once Emilio had chosen a wardrobe, he 
obtained the ratios between magnitudes of some of its parts and the corresponding parts of the 
original wardrobe. Now we show part of the interview with Emilio. 

 
 Interviewer: What did you base your choice of the dwarfs' wardrobe on? 

Emilio: I took measures and found out that wardrobe B is proportional to Snow White's 
because all their ratios are equivalent. (Emilio pointed to what she had written, "12/8 = 

6/4=3/2."). 
Interviewer:    Will you please tell me how you obtained the ratios? 
Emilio:           By comparing measurements of Snow White's wardrobe with those of the 

dwarfs'. 
The numerator of each fraction measures certain part of Snow White's wardrobe: for instance, 

12 is the length of the height, 8 is the length of the base, 3 is the length of one little window (she 
pointed to one of the drawings representing a decoration of the wardrobe), and 1.5 is the width of 
this little window. The denominators of the fractions are the measurements of the corresponding 
parts of the dwarfs' wardrobe. (The measurements Emilio mentioned are given in centimeters.) 

Thus, Emilio established links to determine ratios based on taking measures. In another part 
of the same interview we could observe how he had recourse to his perception ability when he 
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said, "Wardrobe A is too long, C is very wide, and D is very little. Although I did take measures, 
I noticed that those three wardrobes did not seem proportional to Snow White's." 

Emilio exhibited that his handling of conceptual aspects was meaningful since he identified 
ratio as a relation and proportion as an equivalence relation between ratios. Moreover, we could 
notice that Emilio did not abandon the qualitative context, since he also used verbal categories 
and common sense to verify that his choice of the wardrobe was the right one. To this respect, he 
wrote that Snow White's wardrobe was equivalent to that of the dwarfs, and that as to their form 
they were equal although one was small and the other was big. 

 
Conclusions 

Emilio exhibited a strong progress in relation to two important aspects: 
1. The development of her qualitative thinking in relation to ratio and proportion. 
2. The signification he gave to his using of algorithms. 
During the processes of solving different tasks, Emilio exhibited how strong perceptual data 

became for his as well as how important it was for his to rely on his own experience. This is 
evidence about his achievements in the qualitative context of proportionality. The algorithmic 
work allowed us to explore the tacit recognition of the operators about which Emilio was 
thinking. These operators were natural numbers as well as fractions. The latter were used 
implicitly when multiplying certain value by a number and then dividing the result by another 
number, or vice versa, first dividing and then multiplying. In the context of what is now 
considered the construction of meanings, these—together with the processes of signification—
were enriched. As to their designation, Emilio could eventually use the appropriate mathematical 
terms. Finally, he reached the point of constructing the concepts of ratio and proportion. This 
achievement was evidenced by the applications he made of those concepts in different contexts 
as well as by using their different modes of representation. 

 
Footnotes 

1. The qualitative thinking is supported by linguistic recognition creating comparison 
categories such as big, small. In the qualitative is included the intuitive that is the supported in the 
experience, the empiric, in the senses. The quantitative refers to activities that allow the student to 
count, to measure, to use quantities in the procedures 

2 According to Benveniste (1971), meaning is a “dictionary entry” and “a universal semantic 
category”; and sense is a semantic content, which is associated to particular constructions of 
language, it does not shape universal categories and usually keeps a close relation to specific 
modes of articulating them. Moreover, it is proper to emphasize that there is not a chronological 
sequence, or of precedence, in the development of sense and meaning. They are different 
semantic components, which complement each other. 
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How do school districts make decisions about the adoption of new elementary mathematics 
curriculum materials? Although these decisions are made annually at school districts across the 
country, little is known about the questions district leaders ask when adopting new materials, the 
kinds of evidence they consider, or the tensions and challenges involved in the decision-making 
process. In this paper, we present a case study of one district, River City (pseudonym), adopting 
new curriculum materials. We claim that the issues, questions, and tensions experienced in River 
City can inform the work of districts adopting new materials in the future.  

River City is a district of 38 elementary schools serving approximately 14,000 students 
(~55% eligible for free and reduced lunch). In this district, textbooks are seen as just one among 
many tools teachers might draw on in designing instruction. The district mathematics leader 
articulated this vision of the relationship between teachers and curriculum materials and its 
relationship to the adoption process in the following quotation: 

I want teachers to have the freedom to make professional decisions based on their students 
and yet, I understand the need for that additional task to be taken off someone’s plate who 
just doesn’t have the time, the energy, or the knowledge….but I feel as if we were to 
purchase a material, then why would teachers ever read Teaching [Children] Mathematics? 
Why would they ever go to the NCTM web site? It almost appears as if we’re turning our 
backs then on other things that could be valuable supplements, enhancements, or 
replacements. 
The materials evaluation and adoption process initially proceeded quite smoothly. Without 

significant debate, the committee agreed on three programs for more in-depth consideration: 
Investigations (TERC, 2008), Math Expressions (Fuson, 2008), and Math Trailblazers (TIMS 
Project, 2008). It was in the process of considering these three programs that two key tensions 
arose. The first tension involved identifying a single set of curriculum materials that would meet 
the diverse needs of all of the teachers in the district. The second tension involved the levels of 
professional development and teacher learning required by each program and whether it would 
be best to adopt a high risk (in terms of demands on teacher learning), but also high reward (in 
terms of moving the district forward) program (Investigations) or to adopt a program (Math 
Expressions) that would represent more incremental and less risky change for most teachers, 
with the assumption that more teachers would be likely to implement a program that required 
less of them. It is important to note that members of the committee were not necessarily making 
judgments or assumptions about the willingness or the capacity of individual teachers for change, 
but instead about the capacity of the district and the curriculum programs to support the 
significant change that would be required. In the poster, we present more details about the 
process, as well as the eventual outcome. 
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Mathematics educators and researchers have increasingly recognized the gatekeeper role of 

algebra in preK-12 schooling (Carraher & Schliemann, 2007). Previous research highlights the 
importance of integrating arithmetic and algebra in early grades (Carpenter, Franke, & Levi, 
2003). In Asian countries, students are exposed to algebraic thinking in textbooks much earlier 
than their U.S. peers (Cai et al., 2005). To investigate the transition from arithmetic to algebra, 
this study examined the features of introduction to algebraic thinking in selected Asian 
elementary mathematics textbooks. 

The textbooks chosen for this study consist of two series of new Standards-based elementary 
mathematics textbooks in China and one series of widely adopted elementary mathematics 
textbooks in Singapore. Through the theoretical lens of Kieran (2004), this study adopted 
qualitative methods to examine and analyze the selected textbooks.  

The main findings of the study include: First, introduction of algebra in Chinese and 
Singaporean textbooks is characterized by patterns and generalization. For example, in one 
Chinese textbook, students are asked to generalize from a popular Chinese nursery rhyme, Count 
Frogs, by filling in “n frogs, ____ mouths”. Second, Chinese and Singaporean textbooks address 
difficulties and misconceptions of the equal sign and variables as a unidirectional operator and 
placeholders, respectively. Chinese textbooks present equations with numbers on both sides of 
the equal sign, followed by equations with one variable on one side of the equal sign. For 
example, 5=5, 5+2=5+2, and x=10, x+5=10+5. Singaporean and Chinese textbooks also present 
various forms of the multiplication sign. For instance, an expression of 3p can be written as 3×p 
or 3·p. Third, by emphasizing such topics as relating equations containing numbers alone with 
equations containing numbers and variables, and interpreting and simplifying algebraic 
expressions, Chinese and Singaporean textbooks help students make adjustments and transit 
from arithmetic to algebra. 

This study extends our understanding of transition to algebra in early grades and has 
implications for curriculum development in algebra in the U.S.  
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There is a growing trend in mathematics teacher education on researching the nature of 
pedagogical content knowledge required for teaching. In what unique ways can rich 
mathematics problem-solving experiences contribute to pre-service teachers’ understanding of 
subject matter and pedagogy? We research an elementary pre-service program that since 2004-
2005 added a rich mathematics problem-solving component to its mathematics methods course. 
Specifically, we will report the results of a survey that studied elementary school pre-service 
teachers’ cognition and affective responses at the end of the program. The conference poster will 
show case knowledge and attitude profiles of pre-service teachers. These profiles created from 
mixed methods survey data. 

 
There is a trend in mathematics teacher education on researching the nature of mathematics 

required for teaching (Ball, 2002). Many elementary pre-service teachers’ classroom experiences 
have been negative, even when positive, have left the pre-service teachers with a narrow 
understanding of what doing mathematics involves (Cooney, 1999). Many researchers conceive 
that re-organization is one of the major roles of teacher education courses. They present varied 
tasks as forms of intervention and preparation. The program which we research uses rich 
mathematics problem solving. Teachers and students need to experience a better, re-
conceptualized mathematics. “The underlying premise is … to allow them [teachers] to 
understand and reconstruct what they know with more depth and meaning” (p. 230, Ponte & 
Chapman, 2008). In our work we focus on ways to get teachers to engage in doing warm 
mathematics, specifically non-routine problem solving (Namukasa, Gadanidis & Cordy, in 
press). The study is guided by complexity research in education. In a manner consistent with 
most research on mathematical affect, complexity research asserts that the cognitive and the 
affective are closely interwoven. Complexity research also recognises the need for mixed 
methodologies (Day, Sammons, & Gu, 2008). The methodology for the study combines 
interpretive and survey study. Beginning 2004 we collected qualitative data from students’ 
written work interview transcripts. In 2007, in an attempt to corroborate our methodology we 
designed a survey questionnaire on mathematical knowledge and beliefs. The survey is 
descriptive and explanatory. In 2008-2009, 150 candidates completed the pre-program and post 
program questionnaire for instruction and evaluation purposes. This poster illustrates pre-service 
teacher’s knowledge and attitude profiles that were created from data from a small preliminary 
study with 20 participants carried out in 2007-2008. The profiles are an example of results from 
a mixed methods research and assessment design.  
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This paper reports on an exploratory study on the role of affect in mathematics achievement 
disparities. Qualitative data was used to develop a survey (N = 513) to examine relationships 
between students’ emotional experiences during class and their perceptions of group work, 
relationships with teachers and mathematics achievement. Analyses were conducted by 
racial/ethnic group. Results for African American students were significantly different than those 
for students from other groups, including: negative emotions were more associated with lower 
grades, and less frequent negative emotion was more associated both with positive views of 
group work and stronger relationships with teachers.  
 

Introduction 
Affect influences how students perceive assignments, relate to teachers, participate in class, 

and ultimately their achievement. This paper reports on exploratory research into how affective 
issues may contribute to achievement disparities in mathematics. More specifically, the study 
reported here considered negative emotions and analyzed how these emotions relate to students’ 
perceptions of group work, relationships with teachers, and math grades.  

The research was conducted at a medium-sized, urban, public high school with a diverse 
student body (no racial/ethnic group was in the majority). The school had a mathematics 
department that in many ways matched the ideals promulgated by leaders in the field of 
mathematics education. Teachers were predominantly mathematics majors from top schools and 
credentialed by leading programs. They worked collaboratively on developing norms across 
classrooms and improving teaching practices and materials. They were involved in professional 
organizations and maintained connections with the higher education community. They used high 
quality mathematical tasks for their courses and emphasized group work, multiple 
representations, and conceptual understanding. In addition, they made serving all their students a 
priority. Their classes were untracked. They had a block schedule. Extra help from teachers was 
available daily, before school, during lunchtime, and after school.  

However, analyses of achievement trends found that African American students, males in 
particular, had not benefited to the same degree as students from other groups from their 
otherwise successful implementation of reforms. Differences in SES cannot account for these 
differences because the student population is from working class homes across races.  

Department leaders reached out to the research community for help understanding and 
addressing the observed achievement inequity. The paper reported here is part of a larger project 
to help in these efforts. This school site and its mathematics department provide a particularly 
rich context to explore issues related to equity in education. It differs from the more commonly 
documented under-resourced schools, where there is often a lack of will or skills to address the 
challenges of promoting equity. 

The initial focus of the research was to understand the school and the mathematics 
classrooms as social spaces. Toward that end 300 hours of observations were conducted over a 
three-year period, primarily in mathematics classes, but also in other courses, extracurricular and 
social contexts within the school. At the conclusion of each academic year interviews were 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

401 

conducted that explored students’ views of themselves, their school, their attitudes toward 
mathematics, and their experiences in their mathematics classrooms (N = 60; African American 
N = 45). All data sources were open coded. This qualitative research had several important 
findings. First, literally, all the African American students interviewed reported caring about 
their grades and viewing mathematics as important for their lives (Davis, 2008). (Consensus on 
the importance of mathematics may be related to departmental norms regarding communicating 
mathematics’ value to the students.) Additionally, students uniformly showed disappointment or 
dejection with low marks and protested when they thought they deserved higher grades. Despite 
their commitment to achievement the students frequently did not engage in mathematical 
activities as expected by their teachers. Many students reported and were observed experiencing 
and expressing intense negative emotion during mathematics class, including physical rage and 
crying.  

Anger and frustration frequently emerged when students confronted assignments they could 
not understand. Also, many students spoke about fear of exposing incompetence. These reports 
fit with observational data. Students were often reluctant to share their approach to a problem 
unless they were confident it was correct and became agitated when pressed by their teachers and 
peers. Importantly, some factors seemed to be associated with less intense negative emotions. 
Students who understood and endorsed group-learning practices and had stronger relationships 
with teachers appeared to experience less negative emotion. It also seemed that these students 
engaged more frequently in group work activities as expected by their teachers. For example, one 
such African American student commented that he volunteered to present his work on problems 
when he was confused because he knew that he would get the support of his classmates in 
understanding the problem.  

Our qualitative data (referred to above) focused heavily on African American students. It 
seemed that similar issues were playing out for students across racial/ethnic groups. However, it 
also appeared that African American students more frequently confronted the types of negative 
emotions described above. Moreover, we suspected that these emotional experiences might 
contribute to disparities in mathematics achievement and be alleviated by particular pedagogical 
approaches. Therefore, we investigated the role of negative emotions in student achievement 
across racial/ethnic groups and the degree to which students’ perceptions of group work, 
personal connections to teachers, and mathematical identities were related to these negative 
emotions. We also examined how these relationships varied across racial/ethnic groups.  
 

Literature Review and Theoretical Perspectives 
The focus of this study cuts across several different bodies of research. As is often the case 

with exploratory research, there is not an established body of directly relevant research. This 
review considers relevant studies on affect in mathematics, stereotype threat, and reform 
mathematics. It concludes with some theoretical considerations about emotion and cognition. 

Research on affect in mathematics education has focused primarily on beliefs and attitudes 
and has not attended as much to more “hot” emotions, such as anger, fear, and shame (McLeod, 
1994). Studies that do consider emotion have been mostly limited to the investigation of math 
anxiety. Although these studies have consistently found significant relationships between levels 
of anxiety and performance, they have either not considered race or found no differences 
between racial/ethnic groups (Ma, 1999). McLeod (1994) argues that researchers in this field 
have not attended sufficiently to the characteristics and experiences of their subjects. This 
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limitation, in conjunction with investigating an insufficiently broad range of emotions may have 
contributed to finding no differences across racial/ethnic groups.  

Other research suggests that there may be interactions between race, context, emotion, and 
cognitive performance. Stereotype threat research has shown that increasing the salience of an 
identity that is stigmatized in the domain tested can have detrimental effects (Aronson & Steele, 
2005), including African Americans in mathematics (Steele & Aronson, 1995). Although 
research on causal mechanisms for these findings, has been inconsistent, anxiety-related 
emotions appear to be a contributor (Smith, 2004). However, stereotype threat findings are 
limited to specific populations and conditions, namely domain-identified individuals being tested 
in controlled settings on material that is at the edge of their skill level. In contrast, this study 
considers students’ experiences in natural learning environments. Further, it explores how 
negative emotions operate in classrooms where race is salient on a day-to-day basis. Moreover, it 
looks at reform mathematics classroom that are highly social in nature where issues of identity, 
racial/ethnic identities included, are pushed to the forefront.  

 The public and social nature of mathematical activity in reform-based courses makes them 
interesting contexts to consider affect. Some researchers studying reform mathematics have 
found that these curricula foster achievement supporting affective changes (Boaler, 2002; 
Nichols et al., 1990; Stipek et al., 1998). However, these studies did not conduct analyses by 
race/ethnicity. Other researchers (Lubienski, 2007) have argued that issues of diversity have not 
been adequately addressed in the implementation of reform curricula. More specifically, some 
studies have found that teachers of African American students have difficulty establishing the 
desired discourse norms for these courses (Martin, 2000; Murrell, 1994). It is unclear what role 
negative emotions might have in the challenges observed.  

There are several aspects of reform curricula that may make considerations of affect 
important for addressing equity concerns. First, these curricula employ problems that lower-
achieving students have had more challenges with (Jordan, Kaplan, Nabors Olah, & Locuniak, 
2006). Models of affect suggest that past experiences cumulatively precipitate relatively stable 
beliefs and attitudes that come to shape perception and behavior (Marshall, 1989; Schumann, 
1994). Thus, students with histories of low achievement in mathematics (and by extension those 
students from under-served social groups) may have negative affective responses to the types of 
problems that are the focus in reform mathematics. Also, these curricula focus on types of 
mathematics most associated with math anxiety (Hembree, 1990). Finally, students are expected 
to share answers and justifications, which increases opportunities to expose not only 
miscalculations, but also misconceptions. Students who view these experiences as creating a risk 
of appearing incompetent may avoid participating in ways could help them learn (Covington, 
1992). Negative emotions may also lead to prolonged deficits in the ability to complete 
assignments even when students re-engage (Carver & Scheier, 2005) 

Studying the role of affect in learning, particularly emotion, presents methodological 
challenges. However, isolating affect from intellect is of questionable utility for developing an 
understanding of human behavior (Eder et al., 2007). Vygotsky (1986) wrote, “Their separation 
as subjects of study is a major weakness of traditional psychology” (p. 10). More recently other 
scholars have pointed out that education research in particular tends to treat affect as separate 
from cognition, which has limited a thorough understanding of affect (Malmivuori, 2006). We 
can make theoretical distinctions between cognition and emotion but the boundaries between 
them are not clear (Schoenfeld, 1994). Even while engaged in purely analytical processes our 
thoughts have an emotional valence (Schumann, 1994). These feelings influence our behavior 
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and thinking and are connected to our identities and beliefs. We advocate a distinctly 
sociocultural view of emotion that seeks to understand how beliefs and identities are interrelated 
with affect and participation (see Evans, Morgan, & Tsataroni, 2006 for a related approach). Our 
model moves beyond looking at affect as an aspect of personality and the subject experiencing 
the emotion as the prime cause of that experience. Instead, it considers the ways contexts afford 
and support different beliefs and identities (Greeno, 1994) and how these are related to emotions.  

 
Research Questions 

1. Are there differences across racial/ethnic groups in the frequency of negative emotion 
during mathematics class? 

2. What is the relationship between negative emotion and mathematics achievement? Are 
there differences across racial/ethnic groups?  

3. Are students’ positive perceptions of group work, stronger connections with teachers, and 
identification with mathematics associated with less frequent negative emotion during 
mathematics class? Are there differences across racial/ethnic groups? 

 
Methodology 

We investigated these questions through a survey that allowed us to make comparisons 
across broad segments of the population (N = 515; African American N = 115). The survey was 
administered to all students taking mathematics during a single semester. Participation in many 
classrooms was 100%. The survey contained four Likert questions about emotion that asked 
students to rate the frequency that they experienced the following during mathematics: worry 
about looking stupid, anger when confused, frustration when confused, and headache or stomach 
aches due to difficulty in mathematics. The content of these items was derived from interview 
transcripts and observation notes. Other scales included mathematical identity, which asked 
students about their commitment to the subject and sense of skill in it, and interpersonal 
connections with teachers, which asked about care and respect in student-teacher relationships 
(Marks, 2000). In addition, we asked students to provide five reasons why their teachers ask 
them to work in groups. Answers were coded into three categories: providing instrumental 
support for learning mathematics (IM), providing instrumental support for social learning (SL), 
and negative comments about group work (N). An additional pair of Likert questions asked 
students to report the degree to which they found working in groups helped them learn 
mathematics. 

 
Results 

Question 1  
Our results indicated that students from all racial/ethnic groups experience some negative 

emotions during mathematics class. There were no statistically significant differences in the 
levels of negative emotion reported between racial/ethnic groups  
Question 2  

Correlations between negative emotion and math grades for the entire sample were 
significant r(470) = -.215**. African American females showed no correlation between negative 
emotion and math grades, r(56) = .015, while African American males showed a significant 
correlation, r(50) = -.345*.  

Breaking down the negative emotion variable into individual survey items we found two 
items contributed more strongly to the significant correlations for African American males, fear 
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of looking stupid in mathematics class, r(51) = -.478** and frustration when unsure of what to 
do, r(51) = -.345*. White females (N = 20) were the only other group with significant 
correlations on both of these variables.  

To investigate whether the relationship between math grades and ‘fear of looking stupid’ for 
African American students was significantly different from that found for the general population 
we tested the slopes of the regression lines for parallelism for math grades on ‘fear of looking 
stupid’ and found that the slope for African Americans was significantly steeper (t = -2.752, p = 
.003). To ensure that this significant finding was not confounded by gender differences, we also 
compared the slopes of the regression lines for African American males to the slope for all other 
males for these same variables. The difference between these slopes was also significant (t = -
2.149, p = .033).  
Question 3 

Turning to the relationship between negative emotions during mathematics class and 
perceptions of group work learning exercises, we did not find significant correlations when 
examining the sample as a whole. However, analyzed by race/ethnicity, African Americans were 
the only group that displayed significant correlations between two of these variables, 
instrumental social (IS) r(103) = -.235* and negative comments (N) r(103) = .267**. These 
findings indicate that for African American students the awareness of teachers’ intention to 
promote social learning through group learning activities was associated with less negative 
emotion and critical views of group work were associated with higher levels of negative 
emotion. A test for the parallelism of the slopes of the regression lines for African American 
students and non-African Americans students for negative emotion on IS found a nearly 
significant difference, with the regression line for African Americans having a steeper slope (t = 
-1.853, p = .064).  

 In the general population, higher levels of mathematics identity (MI) were associated with 
lower levels of negative emotion (MI r([513] = -.251**). Analyzed by race/ethnicity students 
from all groups displayed significant correlations between these variables, such that less negative 
emotion was experienced by more domain-identified students.  

In the general population, there was a weak but significant negative correlation between 
interpersonal connection (IC) and negative emotion, r(513) = -.108*. Analyzed by racial/ethnic 
groups, only African American students showed a significant correlation between IC and 
negative emotion r(106) = -.269**. Analyzed by gender and race/ethnicity we find only African 
American and Latino male students showed significant correlations between these variables, but 
results for African American females were approaching significance (AAM: r[50] = .335*; LM: 
r[83] = -.244*; AAF r[56] = .252, p = .069). A test for parallelism of slopes for African-
American students and non-African American students for the regression of negative emotion on 
interpersonal connection was approaching significance (t = -1.846, p = .065). 

Group work support and interpersonal connection were both associated with lower levels of 
negative emotion for African American students. We also found that African American males 
showed the strongest correlations between these variables. Comparisons of the slopes for African 
American males and all other students for the regression of group work support on interpersonal 
connection found that African American males showed a steeper slope (t = 3.034, p = .002). 
 

Discussion 
Not surprisingly, students from all racial/ethnic groups reported experiencing negative 

emotions in mathematics class. Although there were no significant differences in the amounts of 
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negative emotion reported, there was divergence in how negative emotions were related to 
achievement across racial/ethnic groups. It is unclear if differences between groups are related to 
variation in how readily students acknowledge social anxiety, how they define negative emotions 
as expressed in the survey, and/or different responses to these emotions (or some combination). 
For example, fear of looking stupid can be experienced as a gripping anxiety or merely as 
something unpleasant to avoid. Also, some students may manage this anxiety (whatever its 
strength) by trying to take good notes and ask questions so as to insure that they master the 
material, whereas others may be motivated by this emotion to attempt to get recognized for some 
socially valued identity, such as class clown. In addition, we suspect that prior histories of 
difficulty with mathematics may be related to the strength of negative emotion experienced and 
how it is responded to. Longitudinal research that can disaggregate the role of factors related to 
race/ethnicity from achievement history is needed.  

African American students showed a stronger relationship between negative emotions and 
perceptions of group work than students from other groups. Due to the prevalence of stereotypes 
about African Americans and intelligence (Steele, 1997) and students’ awareness of the social 
consequences of school failure (van Laar, 2000) there may be more at stake and thus more 
negative emotions for African American students in school contexts where race is salient and 
emotional safety is lacking. Therefore, perceptions of learning exercises and their purpose may 
have a greater influence on African American students’ emotions. That is, believing that teachers 
assign group work to promote learning or social development may help students view risk 
exposure as having an instrumental value, which in turn may lead to experiencing lower levels of 
negative emotion. Endorsing the learning practices may provide a much-needed proximal reason 
for engagement for those students who lack certainty about the distal value or likelihood of 
school achievement. Seeing group work as instrumentally valuable may help also students 
cognitively restructure interpretations of events in ways that down-regulate negative emotions 
when they emerge (Gross, 2002). Domain identification with mathematics and interpersonal 
connections with teachers may help students in similar ways. For example, believing that your 
teacher respects you and is committed to your learning may provide ways of framing struggle 
that decreases arousal and supports engagement and persistence. 

Findings indicated that higher levels of mathematics identification were associated with 
lower levels of negative emotion. These results contrast with stereotype threat research that finds 
that only domain-identified individuals are subject to the performance-reducing effects of racial 
priming. This contrast suggests that perhaps the kinds of negative emotion measured in this study 
are not related to stereotype threat effects. Alternatively, these effects may play out differently in 
situ.  

 
Conclusion 

This study suggests that negative emotions may play a role in achievement inequity in high 
school mathematics. It also offers promising results. More specifically, this study suggests that 
when students view the learning practices as having instrumental value and have interpersonal 
connections with teachers, they may experience less negative emotion. Further research is 
needed to develop validated measures for the kinds of emotions investigated in this study and to 
better understand the variability observed in the relationship between negative emotions and 
achievement across racial/ethnic groups. Additional qualitative research that adds needed 
complexity to the limited fixed categories of racial/ethnic identities used in these analyses is 
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called for. It will be valuable to examine the different ways racial/ethnic identity is constructed 
and how these variations relate to the ways emotion influences participation in mathematics. 
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Equity and social justice agendas in mathematics education are becoming increasingly central to 
researchers and educators. The Mathematics Education in the Public Interesti project 
implemented a mathematics course for preservice elementary and middle teachers where 
mathematical units are placed in contexts encouraging critical analysis and exploration of the 
world and connections between mathematics and students’ lives. Preservice teachers’ views 
about mathematics and mathematics teaching changed over time. Mixed-methods research 
indicated mechanisms supporting their engagement with and reframing of mathematics included: 
(1) Learning the relevance of mathematics; (2) Developing interest in mathematical 
applications; and (3) Changing prior assumptions and instructional goals. 
 

Introduction 
Projects such as the Dartmouth Mathematics Across the Curriculum project and the Indiana 

University Mathematics Throughout the Curriculum project have suggested the need for greater 
indisciplinarity and a strengthened mathematical infrastructure in the undergraduate curriculum. 
Quantitative literacy projects such as Quantitative Reasoning in the Contemporary World at the 
University of Arkansas have strong potential to help students make connections between 
quantitative information and their lives and interests outside the classroom. These projects help 
students to understand the relevance and interconnectedness of mathematics with other subjects 
and with the real world.   

In recent years, an increasing number of mathematicians and mathematics educators have 
begun to ground mathematical investigations in meaningful personal and social contexts. 
Teachers and researchers have begun to document students’ experiences and learning from this 
process, as well as their own experiences and learning. For example, teaching in a middle school 
classroom in a diverse Chicago school, Gutstein’s class included mathematical studies of the 
distribution of the world’s wealth, possible racism in housing data and mortgage loans, and 
random drug testing (Gutstein & Peterson, 2005). Based on his research, Gutstein (2007) 
suggested, “Students learned mathematics and began to develop sociopolitical awareness and see 
themselves as possible actors in society through using mathematics to understand social 
injustices” (p. 420). Turner and Strawhun (2005) described New York City middle school 
students’ mathematical investigations of overcrowding at their school, concluding, “Not only did 
opportunities to engage in responsive action support students’ sense of themselves as people who 
can and do make a difference, but using mathematics as a tool to support their actions challenged 
students’ view of the discipline” (p. 86).  

Consortiums such as the Center for the Mathematics Education of Latinos/as (CEMELA) 
have been extremely important to advancing equity and social justice agendas in mathematics 
education. CEMELA involves parents, school administrators, and teachers in a collaborative 
effort to improve the mathematical education of low-income Latino students by focusing on the 
interplay of the language, social and political issues affecting Latino communities. Thus far, little 
has been done in teacher education programs to prepare preservice teachers, in particular, for 
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centering their future mathematics practice on equity and social justice agendas. In May 2008, 
the NSF-funded “Connecting Mathematical Funds of Knowledge Conference” held in Tucson, 
Arizona helped teacher educators consider what it means to support preservice teachers to 
connect children’s mathematical thinking with children’s and community funds of knowledge in 
the context of elementary mathematics methods courses. Such emphases, while still very 
uncommon, are beginning to take root in a small number of mathematics methods courses across 
the country. However, mathematics content courses engaging preservice teachers in learning 
mathematics in support of equity and social justice emphases, with an eye toward the relevance 
of mathematics in local and global communities, have been nearly non-existent.  

The Mathematics Education in the Public Interest (MEPI) project initiated at Radford 
University has implemented a mathematics course designed for preservice elementary and 
middle school teachers where mathematical units are placed in contexts encouraging critical 
analysis and exploration of the world and connections between mathematics and students’ lives. 
Based on mixed-methods research in the junior-level Elementary and Middle Grades 
Mathematics for Social Analysis (Math for Social Analysis) course, this article communicates 
changes in preservice teachers’ views about mathematics and about mathematics teaching and 
mechanisms supporting preservice teachers’ engagement with and reframing of mathematics.  
 

Theoretical Foundation for MEPI 
Democratic access to powerful mathematical ideas for social justice requires that students 
have comprehension of global conditions that are driving the global society and how 
mathematical and technical knowledge can be tools used to develop a more just world. 
(Malloy, 2008, p. 29) 
For many years now, various forms of classroom or knowledge management, instruction, 

opportunities, and so forth, have been suggested as stratified across social classes (e.g., Anyon, 
1980; Bowles & Gintis, 1976; Knapp & Woolverton, 1995, 2003; Moses & Cobb, 2001; Oakes, 
Joseph, & Muir, 2004; Secada, 1992; Tate, 1997). Among other things, content and pedagogies 
weak or lacking in cultural relevance for some students or stemming from Eurocentric 
perspectives (e.g., Atweh, Forgasz, & Nebres, 2001; Ladson-Billings, 1995; Lubienski, 2002; 
Rodriguez & Kitchen, 2005; Tate, 1995) have been offered as contributing to race and class 
divisions in access to knowledge. As a discipline, mathematics, “often regarded as the most 
abstract subject removed from responsibilities of cultural or social awareness” (Boaler & Staples, 
2005, p. 32), has additionally been associated with such stratification. Historically, school 
mathematics is isolated from other subjects and from students’ lives and interests outside of 
school. Mathematics is treated as independent from important social, political, and economic 
issues facing our communities and our world.  

Regarding student learning, research has yielded largely positive support for reform practices 
of the kind supported in the U.S. by the NCTM Standards (1989, 2000). In an extensive, three-
year comparative study of two schools in England, Boaler (1998) suggested that students who 
receive project-based instruction learn more, and different, mathematics than students receiving 
traditional skills-based instruction. In the U.S., relatively consistent evidence also exists that 
students using reform-based curricula perform equally well on tests of mathematical skills and 
procedures as comparison students using traditional curricula, and perform better on tests 
involving mathematical concepts and problem solving (Schoenfeld, 2002; Senk & Thompson, 
2003). Schoenfeld further explained, “Reform appears to work when it is implemented as part of 
a coherent systemic effort in which curriculum, assessment, and professional development are 
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aligned. Not only do many more students do well, but the racial performance gap diminishes 
substantially” (p. 17). Also, both male students and female students in reform-based school 
programs in the U.S. outperformed their counterparts in traditional programs; and for female 
students, all performance differences by program were statistically significant (Riordan & 
Noyce, 2001).  

Equity and social justice agendas in mathematics education have become increasingly central 
to a growing number of researchers and educators in recent years. Recommendations for how to 
achieve equity goals almost always include requirements for setting high expectations and 
providing strong support for all students (e.g., Moses & Cobb, 2001; NCTM, 2000). But despite 
many great strengths, reform documents such as the NCTM Standards (1989, 2000) still do not 
go far enough.  

Lubienski’s (2002) criticism of Standards-based reforms (NCTM, 1989, 2000) focuses 
largely on multicultural considerations of discourse and the NCTM’s general oversight of such 
considerations. Others have focused more on the absence in the Standards of a critique of 
societal inequities (e.g., Apple, 1992; Gutstein, 2003, 2006). Gutstein (2006) indicated the 
Standards embody a relatively narrow perspective on equity, discussing equity in terms of 
opportunity to learn, but not critiquing societal inequities behind the lack of those opportunities 
for many segments of the population both in the U.S. and abroad.  

Social justice agendas help students to clarify issues, to understand the structure of society, 
and to justify or refute opinions, increasing learners’ capacity to understand and also challenge 
oppressive social structures and power relations that perpetuate over time and across the globe 
(cf., Frankenstein, 1989). In a world where educational inequities and other inequities persist, the 
treatment of school mathematics as abstract, as independent of students’ lived experiences, and 
as independent of moral and social obligations is short-sighted. We can do better. 

Gutstein (2006) proposed an exploratory orientation toward building mathematics curriculum 
with integrated components of community knowledge, critical knowledge, and classical 
knowledge. The twelve characteristics of the Connected, Equitable Mathematics Classroom 
proposed by Goodell and Parker (2001) also support similar emphases in the rethinking of 
mathematics. The MEPI project foundation rests on an assertion that mathematics curriculum 
and instruction can be improved by maintaining overlapping objectives that, for example: (1) 
incorporate NCTM Standards-based reform practices, (2) are more culturally responsive, (3) 
make use of individuals’ and groups’ funds of knowledge, (4) engage learners’ more fully, more 
meaningfully, and more responsibly with their communities, and (5) explicitly aim to achieve 
social justice locally and globally. 

 
Math for Social Analysis Course 

In Radford University’s Department of Mathematics and Statistics, we created a junior-level 
course for elementary and middle school preservice teachers, Math for Social Analysis. Math for 
Social Analysis is the third course in a three-course sequence of mathematics content courses for 
preservice teachers, each offered out of the Department of Mathematics and Statistics. All 
elementary and middle grades preservice teachers at Radford University are required to take 
Math and Human Development I and II, both of which are prerequisites for Math for Social 
Analysis. Math for Social Analysis is required for elementary education majors and 
recommended for middle school education majors—likely to become required for that group in 
the future as well. The course, and related research project “Mathematics Education in the Public 
Interest,” maintain overlapping emphases on mathematics content, social critique, and 
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community relations and actions. After completing this mathematics sequence, students later 
take a mathematics methods course in the education program. 

In Math for Social Analysis, the connection between mathematics and the world emerges as 
students critically analyze social issues using mathematics. For example, one curriculum unit 
speaks to environmentalism, which includes topics on global warming, mountaintop removal in 
Appalachia, rainforest depletion, and water conservation. Students learn and raise questions 
about their own and global contributions to these problems. Another curriculum unit tackles the 
global economy, where students explore and mathematize such topics as poverty, the distribution 
of wealth, and sweatshop labor. Class activities, readings, guest speakers, and videos help 
connect students to the social issue, which promotes dialogue, and deepens their mathematical 
understanding as they grapple for solutions.  

Additionally, our students complete a semester-long project, choosing between a 
research/teaching project option and a service learning project option. The research/teaching 
option is a small group project. The group raises an authentic question about the world and they 
research answers to their question. The group produces a research paper and several age 
appropriate mathematics lessons based on the research, and the project culminates with the group 
teaching one of the lessons to their classmates. The service learning option is an individual 
project in partnership with a local community-based organization’s after school programs. Our 
students provide mentoring and tutoring assistance for 3 hours each week. This option requires 
the students create and teach five mathematics activities, two based on social issues, and they 
write reflections detailing their experience. The project culminates with a presentation to their 
classmates, reflecting on their experiences. 
 

Research Methods 
This paper is based on mixed-methods research conducted with 77 preservice elementary and 

middle school teachers enrolled in three sections of Math for Social Analysis in 2007-2008. 
Three participants were male, and 74 female; 75 identified themselves as “Caucasian/White” on 
the survey. Further, 70 of the 77 participants were in elementary education, 3 in middle school 
education, 3 in special education, and 1 in early childhood education. 

Data collection included: 
• Pre- and post-surveys with all participants on their views related to the relevance of 

mathematics in understanding and solving social issues and to connections between 
mathematics and students’ families and communities. Surveys included demographic 
items, Likert-type items, and open ended response items. 

• 18 interviews (with 16 participants) conducted in the latter half of the semester to learn 
preservice teachers’ background experiences with mathematics, views and attitudes about 
mathematics and its relevance, and learning and experiences in Math for Social Analysis 

• Introductory journal reflections from all participants to learn their background 
experiences with mathematics, views and attitudes about mathematics and its relevance, 
and goals and expectations in Math for Social Analysis 

• Final project assignments from all participants, including reflection papers addressing 
their attitudes toward mathematics, their experiences and learning in Math for Social 
Analysis, and the relevance of the course for their future teaching of mathematics 

The author of this paper and colleague Jean Mistele each teach one or more sections of the 
Math for Social Analysis course each semester. For ethical reasons and to limit bias, we 
interviewed each other’s students rather than our own. Data analysis involved coding and 
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recoding the qualitative data, using categories such as “Math Anxiety/Confidence,” “Interest in 
Math,” “Views on Math and Social Issues,” and “Goals for Math Teaching.” We triangulated 
multiple quantitative and qualitative data sources to arrive at conclusions regarding the nature of 
preservice teachers’ experiences and learning in Math for Social Analysis. As we reviewed data 
and heard preservice teachers almost universally describing very different, and mostly very 
positive, experiences and learning in this course than in all previous mathematics courses, we 
became interested in how and why they characterized the course as they did. Our results section 
documents changes in preservice teachers’ views about mathematics and about mathematics 
teaching from the pre-survey to the post-survey and communicates mechanisms supporting 
preservice teachers’ engagement with and reframing of mathematics. 
 

Supporting Student Engagement with and Reframing of Mathematics 
My attitude about mathematics for a long time has been dread and confusion…I feel that by 
teaching math in this new method, people may better understand math because they will be 
able to learn by relating it to real life…This may also better people’s attitudes toward math 
by showing them its importance and relevance to their future. By using this method of 
teaching math, we have the opportunity to greatly change the way the world sees math for the 
better.  (Mary, 12/11/08) 
Students universally label this course as their first extended experience with learning 

mathematics in connection with multiple meaningful real-world applications and social issues. 
Many of our preservice teachers enter Math for Social Analysis describing high levels of 
mathematics anxiety. We have previously reported ways that preservice teachers’ mathematics 
anxiety levels subsided as a result of their engagement with social issues in the course (Mistele & 
Spielman, 2009). Survey results also provide evidence that preservice teachers’ views about 
mathematics and about mathematics teaching changed over the semester. They come to see 
mathematics as: (1) Increasingly useful for understanding and engaging with important issues 
and (2) Increasingly connected to home and community experiences. 
Using Mathematics to Understand and Engage with Important Issues 

One set of pre/post survey items measured preservice teachers’ views about the ways 
mathematics is, or can be, used to understand and engage with important issues. These items 
were measured on a 4-point scale ranging from strongly disagree to strongly agree. The 10-item 
scale (Scale reliability, Cronbach’s α = 0.80) included items such as, “Having an understanding 
of mathematics makes people more powerful as citizens” and “It is my job as a math teacher to 
help students see connections between mathematics and social issues.” A t-test comparing pre- 
and post-survey means on this composite yielded a significant difference (t = -5.229, p < 0.001). 
At the end of the semester, preservice teachers reported significantly stronger agreement with 
scale items such as these, or respectively, disagreement with negatively worded items. 
Connecting Mathematics to Home and Community Experiences  

A second set of pre/post survey items measured preservice teachers’ views about the ways 
mathematics is, or can be, connected to students’ home and community experiences. These items 
were likewise measured on a 4-point scale ranging from strongly disagree to strongly agree. The 
9-item scale (Scale reliability, Cronbach’s α = 0.81) included items such as, “Getting to know 
students’ families and becoming familiar with their communities is useful for teaching 
mathematics” and “Home and community activities are good contexts for posing and solving 
mathematical problems.” A t-test comparing pre- and post-survey means on this composite 
yielded a significant difference (t = -3.203, p = 0.002). At the end of the semester, preservice 
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teachers reported significantly stronger agreement with scale items such as these, or respectively, 
disagreement with negatively worded items. 
Mechanisms Supporting Engagement 

Overall, student responses thus far have been very positive and supportive of the Math for 
Social Analysis course, although to appropriately characterize in detail students’ experiences and 
learning in the course would require greater depth than may be included in a conference paper. 
Based on qualitative data analysis, interwoven mechanisms supporting preservice teachers’ 
engagement with and reframing of mathematics included: (1) Learning the relevance of 
mathematics to something they care about; (2) Developing interest in mathematical applications 
and in supporting their future students’ interest and learning in mathematics; and (3) Shifting 
their perspectives on mathematics by changing prior assumptions and instructional goals. See 
Figure 1. 

 

 
Figure 1. Mechanisms supporting engagement. 
 

Classroom experiences helping preservice teachers connect mathematics to other disciplines 
and to social issues helped them develop a foundation for constructing new connections and 
applications in the future. Once preservice teachers started making connections between 
mathematics and other disciplines and social issues, they found it much easier to make additional 
new connections. Preservice teachers had often never considered relationships between 
mathematics and the things they cared about. By learning examples of how mathematics is 
related to social issues, this spurred many new possibilities for how to teach math using social 
issues. They saw a whole array of new possibilities for their future classroom practice. As 
teachers increasingly saw mathematics as relevant and important in social issues, they developed 
new teaching goals to help students integrate math with other subjects and the world outside of 
school. 

Preservice teachers also re-examined their assumptions about the (ir-)relevance of 
mathematics as they learned mathematics in ways they had never before experienced. They used 
their new learning of interdisciplinary and social issue connections to mathematics to rethink 
their futures in mathematics teaching and reframe math as a discipline children can become 
excited to learn. Further, they developed a new sense of agency to create mathematical learning 
opportunities that students will find interesting and relevant. Preservice teachers’ own interest 
and confidence in teaching mathematics in the future was tied to their knowledge of different 
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ways to get students interested in the discipline. Their interest in mathematics was related to the 
ways they understood connections between mathematics, other disciplines, and their own lives 
and interests. The mathematics came alive to them in the context of meaningful applications. 
 

Implications and Future Research 
Results from mixed-methods research in Math for Social Analysis are sufficiently positive to 

suggest the need for continued implementation and testing over time, on a larger scale, and at 
additional sites. Further research is also needed to learn more about the ways the Math for Social 
Analysis course, or similar courses, impact preservice teachers’ mathematical understandings, as 
that has not yet been rigorously examined. 
 

Endnotes 
i The Mathematics Education in the Public Interest project is funded by the National Science 
Foundation, award number DUE-0837467. 
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While research has shown the effectiveness of representational technologies in mathematics 
education, barriers to broad use remain. The Scaling Up SimCalc project has begun to address 
these barriers by considering the role of technology within a wider “curricular activity system.” 
In this paper we discuss how we leveraged the representational and communicative 
infrastructure of SimCalc to meet the needs of a diverse student population, while we also met 
the needs of key stakeholders in the wider education system. This resulted in increased learning 
for a diverse group of students. We also discuss possible improvements to our intervention. 
 

Introduction 
Research has shown the effectiveness of using representational technologies in mathematics 

to scaffold and support student learning (Mayer, 2005; Marzano, 1998). However, there have 
been barriers to broad use, such as the perception that technology is too difficult to implement in 
diverse classrooms (Becker, 2001), and inconsistent findings on the benefits of educational 
technology in mathematics (Dynarski et al., 2007; National Mathematics Advisory Panel, 2008).  

In this paper we report on a study that leveraged the effective aspects of representational 
technology while overcoming existing barriers to broad use. The study evaluated a particular 
instantiation of the SimCalc approach, which integrates interactive representations with paper 
curriculum and teacher professional development to increase students’ opportunity to learn 
advanced mathematics.  In designing the Scaling Up SimCalc study, we incorporated the 
perspectives of different stakeholders –students, teachers, and school districts– to minimize 
barriers to implementation and increase the chance of having the intervention used. We 
addressed teacher and district concerns regarding current policy demands (e.g. NCLB and 
accountability testing) and the need to meet local standards. We considered multiple teaching 
styles and designed materials so teachers with a wide variety of mathematical and technological 
backgrounds could use them. And, through representational technologies and scaffolded 
curriculum we met the cognitive, linguistic, and social needs of a diverse student population. At 
the heart of this approach is a refinement of our conceptualization of the use of innovative 
technology in the classroom. Whereas earlier work focused primarily on the representational and 
communicative infrastructure of SimCalc, the concept of a “curricular activity system” has 
emerged as being vital to successful scale up (Roschelle et. al., in review). 

Scaling Up SimCalc makes an important contribution to the literature by providing very 
strong evidence that embracing these diverse perspectives increased student learning of advanced 
mathematics with a diversity of teachers in a wide variety of settings. 
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Background 
For over fifteen years the SimCalc project has had the goal of ensuring that all learners have 

access to complex and important mathematics, as expressed in the SimCalc mission statement 
“democratizing access to the mathematics of change and variation” (Kaput, 1994). The 
mathematics of change and variation emphasizes the concepts of rate and accumulation as 
thematic content that can be developed across many grade levels. A foundational belief of the 
SimCalc Project team is that reconceptualizing middle school and high school mathematics in 
light of the broader mathematics of change and variation developmental strand can yield a more 
coherent and fruitful mathematical experience for all learners, including those that have not 
traditionally been successful in mathematics (Kaput & Roschelle, 1997).  

This view of how mathematics can be structured stands in contrast to the traditional 
mathematics curricula, which was laid out in the 17th and 18th centuries, and hasn’t changed 
much since (Kaput & Roschelle, 1997). This is, in part, because the curriculum has “worked” to 
train a workforce where most jobs require little more than arithmetic, and few require deep 
understanding of advanced mathematical concepts. Today, the picture is different. Not only are 
there economic arguments for preparing more young people, of different races and backgrounds, 
to use complex mathematics on the job (National Advisory Mathematical Panel, 2008), but 
participation in society as an empowered citizen requires understanding the mathematics of 
change (Kaput & Roschelle, 1997), and increasing the number and diversity of those in the field 
of mathematics may even be vital in advancing the field itself (Gutierrez, 2007).  

While the SimCalc research program has considered restructuring the mathematics 
curriculum as a way to achieve its goal of democratization, strict adherence to this goal in the 
short term may stand in the way of necessary reforms that can help many of the students who 
need this access the most—those in low-performing schools who are already likely to get worse 
instruction and less access to high-level content than their peers at high performing schools. In 
this study, guided by a curricular activity systems approach, we built upon the past successes of 
SimCalc, while taking an incremental approach to addressing what is taught.  

In this paper, we will use SimCalc to refer to the Scaling Up SimCalc study (2005-2008) and 
the system of curriculum, software and professional development developed therein. The 
software, SimCalc MathWorlds® (hereon referred to as MathWorlds), is a simulation 
environment in which the user and the software co-construct mathematically meaningful objects 
and relationships. MathWorlds moves beyond simple interactivity and animations of math, and 
instead provides students with access to complex mathematics, and allows students to quickly 
conjecture, test, and iterate while preserving mathematical relationships and structures. This is 
very difficult to replicate in static media, where students may unintentionally violate 
mathematical principles in an investigation (Hegedus, 2005). 

We next describe the results from the Scaling Up SimCalc study, and then report on those 
features of our intervention that most likely resulted in its success in helping a wide variety of 
students learn important mathematics. 
 

Results from the Scaling Up SimCalc Study 
The Scaling Up SimCalc study found the SimCalc approach to be successful in meeting the 

needs of a diverse set of students and teachers. Ninety-five seventh grade teachers and their 
students across varying regions in Texas participated in a randomized controlled experiment in 
which they implemented a SimCalc-based three-week replacement unit. An analysis of the 
results showed a large and significant main effect with an effect size of 0.8 (Roschelle et al., 
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2007; Roschelle et al., in review). This effect was robust across a diverse set of student 
demographics. Students who used the SimCalc materials outperformed students in the control 
condition regardless of gender, ethnicity,1 teacher-rated prior achievement (we will discuss 
possible remedies for the trend of higher achievement students having slightly higher gain scores 
in the Conclusion and Discussion), and poverty level2 (Figure 1). We provide a comparison of 
students in one particular region in Texas, Region 1, to other students in the study. Region 1 is in 
the Rio Grande Valley adjacent to the Mexican border, is predominantly Hispanic, and is one of 
the poorest areas in the United States. Consistent with our other data, we see that the students in 
Region 1 who used SimCalc had greater learning gains than students in the control condition. 
   

 
 

Figure 1. Mean student-learning gains by subpopulation group. 
 

In the remainder of this paper we report on those aspects of the SimCalc curricular activity 
system that most likely led to these robust findings. In particular, we leveraged those features of 
the SimCalc environment that are consistent with the literature on under-achieving students 
(particularly those from non-mainstream backgrounds), while also meeting the needs of key 
stakeholders in the education system. We also discuss ways the integrated system could be 
improved to further close the gap for particular subpopulations. 

 
  Research Foundations 

In this section we describe some of the key features of SimCalc as a representational and 
communicative infrastructure. These features of SimCalc relate directly to what we know about 
effective instruction for all student populations, including students from non-dominant cultural 
and language backgrounds and other students who traditionally underperform in mathematics 
(e.g. Moschovitch, 2007b; Kaput and Roschelle, 1998).  

SimCalc builds on students’ existing competencies and experiences. The SimCalc approach 
differs from the traditional pre-algebra approach in several ways. Perhaps the most important is 
that SimCalc places motion phenomena at the center of learning (see Figure 2), enabling students 
to build on their existing cognitive and social competencies. Research with urban students (Monk 
& Nemirovsky, 1994) has shown that students tend to engage in “interval analysis” of motion 
simulations and interpret motion in a piecewise manner (e.g. “First the boy was going slowly, 
then he was running really fast, and then he stopped”). Further, all students, including 
traditionally low-achieving students, are capable of constructing rich stories about motion over 
time and can use narratives as a resource for interpreting graphical and tabular representations of 
motion as they build a qualitative understanding of calculus (Stroup, 2002). SimCalc allows 
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students to play and replay a simulation of motion as many times as they wish, allowing more 
students to access these fundamental resources than is possible using traditional static media. 

 

  
Figure 2. SimCalc linked representations (left); MathWorlds activity screenshot (right). 
 
SimCalc supports multiple forms of representation and expression (see Figure 2). In SimCalc 

students study functions through linked motion, graphs, tables, and symbolic expressions. 
Research has found that complex mathematics is more learnable when students are not reliant on 
symbolic forms or dense textual descriptions, but can interact directly with a mathematical 
representation such as a graph, and immediately see the effects on other linked representations 
(Roschelle et. al., 2000). Moreover, providing access to multiple representations means that 
symbols can be introduced after students have experience with motion, narratives, tables, and 
graphs. In this way the symbols are about something, and can be understood as a compact and 
precise way of describing phenomena. By waiting to introduce the symbolic form, SimCalc is 
also not held hostage by what is symbolically or computationally simple. For instance, piecewise 
linear functions are quite complex to represent symbolically, and so are not introduced in most 
middle- and high-school curricula. However, interpretations of piecewise motions can help 
students understand the mathematics of change, and the narrative of an exciting race can provide 
exactly the context students can use to engage in deep mathematical thinking. 

SimCalc supports communication and discourse. Making mathematical connections across 
different representations has social and communicative advantages. The four linked 
representations provide a shared set of referents for students and teachers to explore by replaying 
the motion or making changes in one representation to see the changes in the others. Students 
have opportunities to use a wider range of verbal and nonverbal communication acts, such as 
pointing: “See, right here the boy starts running faster.” Students also have opportunities to use 
the language of academic mathematics for a communicative goal (e.g., Does going longer refer 
to time or distance?). This goal- and meaning-oriented approach is consistent with best practices 
for learning language and with recommendations for supporting mathematical discourse 
(Moschkovich, 2007b; Swain, 2001) and is in contrast to traditional approaches to teaching 
academic language that rely on memorization of vocabulary lists. 

 
Scaling-Up: Meeting the Needs of the Educational System 

Taking these research findings to the classroom on a large scale was a new challenge for the 
SimCalc project. Previously, the SimCalc approach was taught directly by either researchers or 
teachers who had been involved in long-term professional development or collegial 
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arrangements with the researchers. In order to reach a larger audience of teachers and students, 
we needed a robust combination of curriculum, technology, and minimal professional 
development to leverage the benefits and while minimizing the chances of lethal mutations 
(Brown, 1991). This resulted in the emergence of a curricular activity system approach 
(Roschelle et al., in review), which helped us to address teacher, district and state constraints and 
realities while extending the SimCalc mission. 

We designed a curriculum sequenced in a way that would be comfortable to most American 
teachers: breaking complex concepts into small pieces, starting with the smallest piece, and 
culminating with complexity. This approach differs from the “historical” SimCalc approach, 
where students are presented with a fairly complex problem, are asked to generate solutions for 
it, and through this process, learn concepts of rate and function—and other calculus related ideas. 
What we retained from the SimCalc approach built up over the years was a reliance on motion as 
a context for understanding function, and function as a way to think about rate. This, fortunately, 
aligned with Texas state-advocated approach. And of course, the curriculum is tied to the 
MathWorlds software, in which students are able to control simulations of motion and 
representations of graphs, equations, tables and actions are related.  

We also focused on a small number of important activity structures, and provided supports 
for these in the written curriculum materials. For example, we incorporated the SimCalc tradition 
of having students predicting a motion by interpreting a graph, running the simulation to check 
their predictions, and explaining verbally differences or coincidences between prediction and 
simulation. This “predict-check-explain” model was not only discussed in trainings, but also 
written into each lesson in the student workbook, as one way to ensure students were exposed to 
the SimCalc approach, regardless of the teachers’ approach.  

We used a fairly typical “week in the summer” model of professional development that met 
the time (and funding) constraints of a large number of districts and teachers. All teachers in the 
study received TEXTEAMS training, a two-day workshop on rate and proportionality developed 
by the Dana Center. SimCalc teachers received 3 additional days of professional development on 
the SimCalc curriculum. Over these three days, teachers became familiar with the SimCalc units 
and MathWorlds, and planned when they would teach the SimCalc units. The SimCalc pedagogy 
was modeled by the facilitator and included in the student workbook. 

Deciding what mathematics to include in the units was a task of finding the intersections 
between the mathematics of change and existing national and state standards for 7th and 8th 
grades. The Texas Education Authority, through the Dana Center, was advocating an approach to 
teaching proportionality that was consistent with the SimCalc approach. Rather than presenting 
three numbers, and a procedure for finding the fourth, embedded in the equality among ratios 
(a/b = c/d), the advocated approach was to teach proportionality as a linear function of the form y 
= kx (Stanley et. al., 2003). This provided the SimCalc project with the opportunity to connect 
the multiplicative constant k in the algebraic expression y = kx, the slope of a graphed line, the 
constant ratio of differences in a table comparing y and x values, and the experience of rate as 
“speed’ in a motion. 

To ensure that students engaged with the mathematics in a variety of contexts, we grounded 
the unit in an overarching story framework–managing a soccer team. While use of real world 
contexts was consistent with prior SimCalc work (which has always been grounded in modeling 
the real world and students’ own experience of motion), having a single story framework was a 
departure from past research. This decision enabled us to start the units with typical linear and 
piecewise linear motions, and extend into non-motion contexts, such as mileage and money (oft 
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used contexts in traditional math curricula and standardized tests). Though the units had 
overarching contexts, they were “context-light” in that the problems and software presented a 
highly simplified model of the real world, and these simplifications were made apparent to 
students. Knowledge of soccer, for example, was neither an advantage nor a barrier to 
understanding the problems. All the clues and grounding experiences necessary for solving the 
problem were contained in the simulation, so that all students regardless of cultural or 
socioeconomic background have the same opportunities to engage with the materials. Because 
SimCalc provides the phenomena to be studied, we leverage student knowledge of the “real 
world,” while avoiding inappropriate uses of their real world knowledge 

 
Conclusion and Discussion 

In this paper we have shown how the Scaling Up SimCalc project integrated multiple 
perspectives to meet the needs of diverse student and teacher populations. Our focus on the 
representational and communicative infrastructure of SimCalc allowed us to create materials that 
were effective for students who are considered among the most at-risk for academic failure. By 
also incorporating a focus on the larger educational system, we were able to create materials that 
were used by a wide variety of teachers in a wide variety of settings. We believe that, as more 
innovations attempt to make a difference on a large scale, this focus on the overall curricular 
activity system will become crucial to successful scale-up. 

We also note that, while our instantiation of SimCalc was successful in its goal of helping a 
wide variety of students learn important and complex mathematics, we believe that more can be 
done to further meet the needs of a diverse student population. We recognize that the data shown 
in Figure 1 indicates that there may be some disparities in learning among sub-populations of 
students who used the SimCalc intervention. For instance, students who were rated by their 
teacher as having low prior achievement had smaller gains than those who were rated as having 
high prior achievement, and there is a non-significant trend that Hispanic students had smaller 
gains than non-Hispanic students.  

Detailed analysis of classroom interactions of a subset of the SimCalc teachers shows the 
importance of specific teacher moves that were used to scaffold discourse. Teachers who 
incorporated student ideas into their explanations (called “responsiveness”) and who engaged 
students in tasks that required cognitively complex intellectual work (similar to “cognitive 
demand”, Stein et al., 2000) had greater student gains than those who did not use such moves 
(Pierson, 2008). Providing additional professional development and support to allow all teachers 
to engage in these high-impact moves is likely to increase student achievement for 
underperforming sub-populations, as students with low prior achievement and students from 
non-dominant cultures and languages are those most likely to have impoverished classroom 
discourse. An additional component of discourse support is aiding students in acquiring an 
appropriate vocabulary (Moschkovich, 2007a; Olivares, 1996) including highlighting those 
words that have register-dependent meanings (Halliday, 1978; Pimm, 1987). Future work will 
consider creating a visual glossary of mathematical terms as well as general academic words 
(e.g. “predict,” “evidence”) to support students in using academic language appropriately.  

To further aid in supporting productive discourse for our target students, we will investigate 
strategies that allow a reduction of the language load while maintaining the rigor of mathematical 
discourse. A productive strategy has been that of making expectations explicit, and providing 
scaffolding that aids students in meeting these expectations (Lee, 2005). This strategy is based on 
the finding that much of academic discourse is based on implicit norms (Gee, 2001; Lee, 2005), 
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and students who are not aware of, or have cultural norms that are in conflict with, academic 
discourse norms are at a disadvantage (Ladson-Billings, 1995). By making norms and 
expectations explicit, all students will be able to more fully participate in the classroom 
discourse, while also engaging in rigorous academic thinking. 
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Endnotes 
1. We focus on Hispanic students because they consisted of a majority of our student sample, 

there were negligible numbers of other minority groups in the study, and Hispanic students have 
traditionally underperformed in measures of mathematics achievement (Education Trust, 2003). 

2. We take as our measure of poverty the percentage of the campus eligibility for the free and 
reduced price lunch program. 
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BECOMING A “LIBERAL” MATHEMATICIAN: EXPANDING SECONDARY 
SCHOOL MATHEMATICS TO CREATE SPACE FOR CULTURAL CONNECTIONS 

AND MULTIPLE MATHEMATICAL IDENTITIES  
 

Lisa M. Jilk 
University of Washington 
jilklisa@u.washington.edu 

 
This case demonstrates how a multidimensional construction of secondary mathematics afforded 
Amelia, a young Latina immigrant, opportunities to participate in her mathematics classrooms in 
ways congruent with her cultural knowledge and salient identity as a “liberal.” Additionally, 
this expanded version of school mathematics positioned Amelia’s “liberal” ways of knowing as 
valuable tools for learning and provided her with opportunities for genuine self expression, 
motivating her continued engagement. This research contributes to the literature about culture 
and mathematics learning that is aimed at building from diverse forms of knowledge and 
cultured ways of being in an effort to support students who are often marginalized by traditional 
curricula and pedagogies. 

 
Background 

There exists a grave and immediate concern about how to encourage and support diverse 
students to engage more in school mathematics, to be academically successful with mathematics 
and to enroll in more upper-level mathematics courses. Some responses to this problem are the 
use of  Culturally Relevant Pedagogy (Ladson-Billings, 1995), Culturally Responsive Teaching 
(Gay, 2000), pedagogy for social justice (Gutstein, 2006), Complex Instruction (Cohen, 1994; 
Cohen & Lotan, 1997), and Funds of Knowledge (Moll, Amanti, Neff & Gonzalez, 1992) as 
researchers and practitioners advocate for  making connections been students’ cultural 
knowledge and the knowledge needed to be mathematically successful and simultaneously create 
classrooms and use mathematical content that reframes cultural knowledge as necessary for the 
learning of school mathematics.  

One mathematical success story has been explored in the research of Boaler and Staples 
(2007) and Horn (2002) and explained by the department’s collaboration as a learning 
community and the use of Complex Instruction as a primary pedagogical tool in its mathematics 
classrooms. Many Railside students are achieving in mathematics and choosing to enroll in 
upper-level courses after they have met their graduation requirements. Previous research at 
Railside has used the Complex Instruction program, teachers’ practices, and classrooms as the 
units of analysis. This work takes a different perspective by starting with students, specifically 
young immigrant women who achieved mathematical success at Railside. The goal of this work 
is to expand and build from what is already known about Railside High and Complex Instruction 
while changing the focus to students, their perspectives and experiences.  
 

Theoretical Framework  
Research in mathematics education has recently begun using identity as a research construct 

in an effort to better understand the relationship between learning and culture within 
mathematical communities of practice (Boaler, 1997; Boaler & Greeno, 2000; Boaler, 2002; 
Cobb & Hodge, 2002; Cobb & Hodge, 2007; Martin, 2000; Nasir, 2002; Sfard & Prusak, 2005). 
This is important work, as attention to the identities students create within the local cultures of 
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their mathematics classrooms has the potential to illuminate how students make sense of their 
school mathematical experiences and then make choices about how to act in relation to them. 
Additionally, understanding learning as a process that encompasses the construction of new ways 
of being provides for a unique balance between personal agency and influences from the broader 
communities in which students participate. This perspective prevents us from completely 
attributing students’ failure or achievement to cultures located outside of school and 
simultaneously recognizes the role of the individual in academic pursuits. 

The research that has been done about identity and mathematics learning has determined a 
reciprocal relationship between identity and practice. That is, within any learning community, 
inside or outside of school, students construct identities in practice. They shape self-
understandings relative to the cultural activities afforded them, meaning that their participation 
affects the construction of their identities (Wenger, 1998; Nasir, 2002). Simultaneously, 
identities affect participation. Students come to a practice with ideas about who they are and their 
purposes for engagement which were situated in specific cultural contexts. Students understand 
practices and are motivated to practice in particular ways because of these identities (Nasir, 
2002; Boaler & Greeno, 2000; Jilk, 2007; Sfard & Prusak, 2005). 

However, there is little research about identity and mathematics learning that considers the 
multiple out-of-school communities in which students participate which shape ideas for how one 
thinks about herself and then acts. Martin’s (2000) attention to the intersection of ethnic identity 
with students’ mathematical identities is significant, because it acknowledges the culture 
inherently created in of all communities of practice (Cobb & Hodge, 2002). Ignoring culture 
means ignoring a critical component of students’ lived experiences, which they use to shape their 
identities, and simultaneously contributes to the homogenization of young people by presenting 
an incomplete and inaccurate portrait of their lives.  

This paper builds on and expands previous research about identity and mathematics 
education by foregrounding the life story of one young woman and her self-understandings 
relative to her lived experiences in Mexico, the United States, and her secondary mathematics 
classrooms. It considers the communities outside of school in which she participated as critical 
sites for identity construction and the ways in which identity is privileged and supported within 
the context of learning mathematics.   

The research questions that framed this study were:  
(1) What are the salient identities created by Latina immigrants who were academically  
successful in their secondary mathematics classes, and in which communities of practice  
were they shaped? 
(2) How do Latina immigrants who were academically successful in secondary mathematics  
interpret their experiences with Complex Instruction through the lenses of their salient  
identities? 

 
Methods 

Context and Participants 
This case is part of a larger one-year ethnographic project focused on the cultural 

interpretations of secondary mathematics classrooms by Latina immigrants who attended a large 
urban high school as English Language Learners and successfully completed four years of 
college preparatory mathematics, including Advanced Placement Calculus. There was no 
specific site for this study. The stories the young women shared spanned time and contexts, both 
inside and outside of school, and both inside and outside of the United States.  
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Railside High School, however, was the one community that all participants had in common. 
They attended Railside during the 2000-2001 school year, the same year in which both Boaler 
(2002) and Horn (2002) conducted their research. During this school year Railside had 
approximately 1500 total students.  Of these students, 35% were Latino, 25% African American, 
21% White, and 18% Asian or Pacific Islander, and 1% American Indian.  In 2000-2001, 12% of 
all students at Railside received English language services, and of these 68% were Spanish 
speaking (Education Data Partnership, 2007). 

Additionally, these young women experienced four years of mathematics instructions steeped 
in the program of Complex Instruction. Based on the work of Elizabeth Cohen and Rachel Lotan 
at Stanford University, Complex Instruction (CI), is a framework that “enables teachers to teach 
at a high intellectual level” (Cohen et al., 1999) through the use of collaborative groups in 
heterogeneous classrooms. At the core of CI is an awareness of the structural inequities that are 
generated both in the larger society and within schools and classrooms, which often translate into 
an assumed hierarchy of competence. Complex Instruction aims to eradicate these hierarchies 
and to promote equal-status interactions amongst students, creating opportunities for all students 
to engage with and learn from rigorous mathematical tasks within a cooperative learning 
environment.  
Data Collection and Analysis 

Narrative methods (Lieblich, Tuval-Mashiach, & Zilber, 1998) were used to collect life 
stories told by these young women about experiences in their home countries, in the United 
States, and in their secondary mathematics classrooms. Other data included focus group meetings 
and parent interviews.   

Narrative inquiry was used to shift the research focus away from teachers, programs and 
classrooms as the units of analysis and foreground individual students and their stories as 
primary data sources. This shift helps to dispel common views of Latina immigrants as a 
homogenous group and simultaneously affords access to the “self-understandings” (Holland et 
al., 1998, p. 8) and “representations of self” (p. 29) as described by the young women. Second, 
narrative inquiry is not often utilized in mathematics education research, therefore this frame 
expanded available information about students’ inner realities and the meanings assigned to 
them. Finally, in this work I am responding to a call by many to attend to out-of-school contexts 
as sites that influence students’ beliefs about self and mathematics in order to better understand 
the range of sociohistorical forces affecting students’ mathematical learning (Martin, 2000; 
Reyes & Stanic, 1988; Weis & Fine, 2000).  

I analyzed the data by using a “content-oriented approach” (Lieblich, Tuval-Mashiach & 
Zilber, 1998), in which I dissected the original stories and analyzed smaller narrative sections 
aimed at uncovering the implicit content by asking about the meaning conveyed by the narrative, 
which traits or motives of the individual were portrayed, and the relevance of the images invoked 
by the author. I considered the distribution of themes across the story as a while and attended to 
emphasis placed on particular words or phrases and considered the emotion with which the 
young woman spoke.  

Case studies provided me with the opportunity to examine the “local particulars” (Dyson & 
Genishi, 2005, p. 3) of each young woman’s identity and experiences as related to the more 
abstract phenomenon of learning mathematics. As a research design, case study emphasizes “the 
role of organizations, communities, crucial events, and significant others in shaping subject’s 
evolving definitions of self and their perspectives on life” (Bodgen & Biklen, 2003, p. 57). This 
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focus coincides with my multi-level framework that includes multiple communities of practice in 
which each woman participated as important sites for identity formation.  

 
Results 

Although her identities as a young woman and Mexican were important to Amelia, her 
identity as “liberal” was most salient to her. Amelia emphasized her “liberalness” in her 
decisions about the people with whom she associated and how she participated in the world. 
Amelia’s “liberal” identity did not have any political connotations. The meaning she assigned to 
“liberal” focused on voice and authority. Amelia felt that she acted “liberally” when she 
verbalized her ideas and opinions and made decisions that determined the trajectory of her life. 
Amelia constructed this salient “liberal” identity as she participated in both local communities in 
Mexico and as she moved across geographical and emotional borders throughout her life. 

When Amelia described her secondary mathematics experiences at Railside High, she 
focused on the “multidimensional” (Boaler, 2004) nature of mathematics, especially the myriad 
ways to think, talk, and reason mathematically that were available to her. For Amelia, being a 
mathematics learner at Railside meant that she could discuss ideas, explore and justify alternative 
solutions, argue and reason.  In these spaces where school mathematics was broadly constructed, 
Amelia’s “liberal” identity was useful and necessary. Her communication skills and desire to 
verbalize her opinions became strengths in these mathematical communities that required 
students to put forth ideas and justify reasons. Amelia’s “liberal” desires to determine her life 
decisions and paths were necessary skills when her mathematics teachers asked for multiple 
strategies for solving a problem. Indeed, Amelia’s “liberal” ways of being in out-of-school 
communities supported her mathematical participation, and her “liberal” identity became an 
intellectual resource for participating with and learning mathematics.  

   
Discussion 

Amelia’s case demonstrates that the identities most salient to young people are not always 
constructed relative to major social structures such as ethnicity and gender. Identities are 
extremely nuanced and particular to an individual and her lived realities. It is therefore not useful 
and simultaneously potentially harmful to assume that all Latina immigrants fit into a 
homogenous group. While brown skin, long dark hair and a Spanish accent may place Latinas 
from the same continent, varied experiences intertwined with unique issues of immigration, 
bilingualism, religion, and generational status shape the identities created by Latinas.  

Additionally, this case illuminates the cultural connections Amelia made between her salient 
identity as “liberal” and her participation in secondary school mathematics. Amelia’s focus on 
the multidimensionality of Railside’s mathematics program, framed by the use of Complex 
Instruction, argues for the expansion of secondary school mathematics such that students have 
opportunities to negotiate their use of cultural knowledge in service of learning mathematics. The 
knowledge and skills that young people cultivate while constructing salient identities become 
necessary resources for learning.  

Finally, the opportunities available for Amelia to participate “liberally” in her mathematics 
classrooms helped her to engage authentically. As opposed to those who assert, “I am not a math 
person,” or students who claim that the norms for participation available in their mathematics 
classes do not coincide with the ways in which they think of themselves as young people (Boaler 
& Greeno, 2002), Amelia maintains that she could “be herself” in her mathematics classes. She 
could simultaneously be “liberal” and a mathematics learner. In fact, through her participation in 
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four years of high school mathematics at Railside, Amelia created a new identity by bringing and 
using her “liberal” identity in the mathematics classroom and becoming a “liberal” mathematics 
learner in the process.  

 
References 

Boaler, J. (2002). The development of disciplinary relationships: Knowledge, practice, and 
identity in mathematics classrooms. For the Learning of Mathematics, 22(1), 42-47. 

Boaler, J., & Greeno, J. G. (2000). Identity, agency, and knowing in mathematics worlds. In J. 
Boaler (Ed.), Multiple perspectives on mathematics teaching and learning: International 
perspectives on mathematics education (pp. 171-200). Westport, CT: Ablex Publishing. 

Boaler, J., & Staples, M. (2007). Transforming students' lives through an equitable mathematics 
approach: The case of Railside School. Teachers College Record. 

Bogdan, R. C., & Biklen, S. K. (2003). Qualitative research for education: An introduction to 
theories and methods (4th ed.). Boston: Pearson Education Group. 

Cobb, P., & Hodge, L. (2002). A relational perspective on issues of cultural diversity and equity 
as they play out in the mathematics classroom. Mathematical Thinking and Learning, 
4(2&3), 249-284. 

Cobb, P., & Hodge, L. (2007). Culture, identity, and equity in the mathematics classroom. In N. 
S. Nasir & P. Cobb (Eds.), Improving access to mathematics: Diversity and equity in the 
classroom (pp. 159-172). New York: Teachers College Press. 

Cohen, E. G. (1994). Designing groupwork: Strategies for the heterogeneous classroom. New 
York: Teachers College Press. 

Cohen, E. G., & Lotan, R. A. (1997). Raising expectations for competence: The effectiveness of 
status interventions. In E. G. Cohen & R. A. Lotan (Eds.), Working for equity in 
heterogeneous classrooms: Sociological theory in practice (pp. 77-91). New York: Teachers 
College Press. 

Cohen, E. G., Lotan, R. A., Scarloss, B. A., & Arellano, A. R. (1999). Complex instruction: 
Equity in cooperative learning classrooms. Theory into Practice, 38(2), 80-86. 

Dyson, A. H., & Genishi, C. (2005). On the case: Approaches to language and literacy research. 
New York: Teachers College Press. 

Gay, G. (2000). Culturally responsive teaching: Theory, research & practice. New York: 
Teachers College Press. 

Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for 
social justice. New York: Routledge.  

Holland, D., Lachicotte, W., Skinner, D., & Cain, C. (1998). Identity and agency in cultural 
worlds. Cambridge, MA: Harvard University Press. 

Horn, I. (2002). Learning on the job: Mathematics teachers' professional development in the 
context of high school reform. Unpublished Ph.D. Dissertation, University of California, 
Berkeley. 

Jilk, L. M. (2007). Translated mathematics: Immigrant women’s use of salient identities as 
cultural tools for interpretation and learning. Unpublished Ph.D. Dissertation. Michigan State 
University, MI.  

Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American 
Educational Research Journal, 32(3), 465-491. 

Lieblich, A., Tuval-Mashiach, R., & Zilber, T. (1998). Narrative research: Reading, analysis, 
and interpretation (Vol. 47). Thousand Oaks, CA: SAGE Publications, Inc. 



Vol. 5  430 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   

Martin, D. (2000). Mathematics success and failure among African American youth. Mahwah, 
NJ: Lawrence Erlbaum Associates. 

Nasir, N. S. (2002). Identity, goals and learning: Mathematics in cultural practice. Mathematical 
Thinking and Learning, 4(2 & 3), 213-247. 

Reyes, L. H., & Stanic, G. M. A. (1988). Race, sex, socioeconomic status and mathematics. 
Journal for Research in Mathematics Education, 19(1), 26-43. 

Sfard, A., & Prusak, A. (2005). Telling identities: In search of an analytical tool for investigating 
learning as a culturally shaped activity. Educational Researcher, 34(4), 14-22. 

Weis, L., & Fine, M. (Eds.). (2000). Construction sites: Excavating race, class, and gender 
among urban youth. New York: Teachers College Press. 

Wenger, E. (1998). Communities of practice: Learning, meaning and identity. New York: 
Cambridge University Press. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



Vol. 5  431 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   

CURRICULAR REDESIGN, COFLECTION, AND DEMOCRATIC  
MATHEMATICS EDUCATION 

 
Lecretia A Buckley 

Jackson State University 
lecretia.a.buckley@jsums.edu 

 
In this paper, I examine teachers’ tacit notions of equity as they engage in several efforts to 
reform their department’s curriculum. Their efforts are examined for insights to implement 
equity-centered reform. Coflection, or joint inquiry, is a construct with four components: 
collective, deliberative, critical, and transformative. Coflection is offered as a means to promote 
equity-centered reform which encompasses teachers’ professional development, curricular 
design, and construction of placement policies.  

 
Introduction 

Equity is a longstanding issue in mathematics education. For decades, equity has gained 
more attention with increasing prominence. In spite of gains in achievement on low cognitive 
demand items among students who traditionally underperform (American Institutes for Research, 
2005; Tate, 1997), a significant achievement gap remains (Lubienski & Crockett, 2007). The 
achievement gap can be partially attributed to students’ access to content or the curriculum. At 
the high school level, students’ access to advanced mathematics content or courses is influenced 
by course offerings and policies such as tracking. When departments offer fewer and more 
rigorous courses, students experience higher performance (Lee, Smith, & Croninger, 1999).  

In the face of low performance which is typically worse among underrepresented students, 
mathematics departments have engaged in various reform efforts to mitigate the problem. While 
some departments have been identified as Organized For Advancement (Gutierrez, 1999), others 
have implemented detracking (Oakes, Wells, Jones, & Datnow, 1996) to address the problems 
associated with the achievement gap. Still, others have sought reform through professional 
development programs (e.g., Silver & Stein, 1996). Each of these approaches has provided 
insights to the field. Yet, there remains a need to examine reform as a dynamic process in which 
assumptions about equity are explicitly addressed and challenged. 

In this paper, I examine teachers’ tacit notions of equity as garnered through a research study 
of department level curricular design. In particular, I consider the impact of their conceptions of 
equity on the curricular redesign that was implemented. The teachers’ conception of equity 
comprise their expectations for underrepresented students as well as their expectations for how 
and for what students would use their mathematical understanding. Afterwards, I analyze how 
equitable the resulting mathematics program is as well as the barriers which contributed to 
inequitable outcomes. Finally, coflection is offered as an alternative approach to implementing 
equity-centered reform.  

 
Theoretical Framework 

The teachers’ conceptions of equity are informed by Secada’s (1989) notion of equity as 
comparative, qualitative, and dynamic. In order to gauge equity, comparisons are made between 
two entities in order to judge what is fair or just. Equity is different from equality in that 
comparisons employed to evaluate equality consider if there is sameness or parity. The 
comparisons that are made are a matter of what is just; consequently, there is an 
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acknowledgement that the comparisons are value-laden (Gutierrez, 2002). Equity is a dynamic 
construct and is context specific requiring ongoing and periodic evaluations. Additionally, what 
is characterized as equitable mathematics education comprises inputs (e.g., access to courses), 
processes (e.g., pedagogical approaches), and outputs (e.g., achievement scores). This approach 
to gauging equity was employed by Rousseau and Tate (2003) as they evaluated a mathematics 
program and identified barriers that impeded teachers’ reflection on their practices.  

The research reported here is also informed by Skovsmose and Valero’s (2001) work which 
posits coflection as a means to promote democratic mathematics education and the work of Carol 
Malloy (2002). Coflection is a knowledge generating process and consists of four components – 
collective, deliberative, critical, and transformative. Coflection refers to the “thinking process by 
means of which people, together, bend back on each other’s thoughts and actions in a conscious 
way, that is, people together [emphasis added] consider the thoughts, actions, and experiences 
they live as part of their collective endeavor, and also adopt a critical position toward their 
activity (Skovsmose & Valero, 2001, p. 48, 2001). Democratic education is characterized as 
education that is concerned with providing access and mathematical literacy (Malloy, 2002). 
Malloy outlines three benefits of democratic mathematics education - inclusiveness, 
mathematical understanding, and the ability to apply mathematics to problems.  

With this framing in mind, I identify barriers that inhibited the design of a more equitable 
mathematics program. The resulting curriculum is evaluated to gauge how equitable or 
democratic it is. Then the barriers are investigated as I discuss how equity-centered reform 
focusing on coflection may have minimized their influence and yielded different, more-equitable 
outcomes.  

 
Research Design 

The research was conducted in a secondary mathematics department in a small town in the 
Midwest. The department served 1500 students and consisted of 13 teachers with 12 
participating in this study. The department implemented several efforts to reform its curriculum 
focusing specifically on low level classes which were disproportionately populated by 
underrepresented students. The data sources include field notes from a year of department 
meetings; field notes from classroom observations of five sections of low-level mathematics 
courses taught by three teachers; up to three interviews with each of 12 participating members of 
the department, administrators, and a guidance counselor; and school documents. 

Constant comparative analysis (Strauss, 1987) was employed as I identified emergent 
themes. A list of initial codes was informed by the research literature and was used for the initial 
coding. The list of codes was revised as iterations of analysis were completed. 

  
Findings 

The teachers held a one-dimensional conception of equity that focused primarily on 
providing students with access to content. They added and eliminated courses; however, they did 
not evaluate the pedagogical practices that were employed or how specific courses limited or 
increased students’ access to advanced mathematics. The teachers’ expectations were low and 
led them to eliminate content they classified as rigorous from courses. The efforts in which the 
department engaged did not produce a more equitable mathematics program. Rather, the 
department designed a new program of course offerings that limited students’ access to advanced 
mathematics, perpetuated tracking, and neglected conceptual understanding. 
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The course offerings which resulted from the department’s efforts yielded a mathematics 
program that was, perhaps, less equitable than the one they sought to reform. First, the new 
course offerings included two additional low-level courses. These courses were intended to 
provide students with opportunities to increase their fluency with skills and procedures or to 
prepare them for the first mathematics course for which a student could receive mathematics 
credit towards graduation. Second, the new course offerings included Modified Algebra, a course 
that by design, covered concepts in algebra with less depth than the traditional algebra course. 
Third, a Modified Geometry course was added; however, it excluded formal proof writing, 
thereby, limiting students’ opportunities to engage in deductive reasoning. 

While the new course offerings provided more opportunities for students to take more 
remedial courses, the course offerings also increased tracking, and stricter placement policies 
were implemented. Together, the Modified Algebra and Modified Geometry course constituted 
an additional track for students in the low level courses targeted by the department’s efforts. 
Although this track permitted more students to take a geometry course, the track itself consisted 
of courses that were deemed, by the teachers in the department, as less rigorous and unlikely to 
prepare students for advanced mathematics course taking. 

Moreover, the curriculum did not promote conceptual understanding. The Modified Algebra 
course addressed concepts with less depth, and the Modified Geometry course lacked formal 
proof writing and did not seek to improve students’ ability to reason. 

Two significant barriers to designing a more equitable mathematics program existed in the 
department’s dynamic reform processes. The first barrier was the teachers’ failure to examine 
their own beliefs and expectations for underrepresented students. Their conceptions of equity 
were narrow and reflected many commonly held and low expectations. Their low expectations 
were evidenced by their rationale to exclude formal proof writing; their rationale was that this 
was the harder content in the course. The goal became designing a course that students could 
pass. They did not examine their expectations for what their students could learn or how their 
own teaching might influence student performance. 

The second barrier was the teachers’ views about the purpose of mathematics. The teachers 
did not envision their students as users of mathematics far beyond arithmetic. They sought to 
prepare their students for everyday tasks that were restricted to purchasing and banking oriented 
tasks. They did not design courses that sought to prepare their students for college entrance 
examinations or mathematics- or science-based majors or careers. Nor were the students’ 
preparation aimed at preparing them for decision-making and analysis needed to participate in a 
democratic society. The answer to the question that Secada (1989) asked about the intended ends 
of the students’ mathematics education was that it would not to prepare them for advancement or 
economic or democratic participation.  

 
Discussion 

In this section, I summarize how this research aligns with previous findings and outline how 
coflection employed as a knowledge generating process embedded in professional development 
might have minimized the negative, unintended outcomes. An exploration of how the four 
components of coflection promote democratic mathematics education is provided. The insights 
gained from this inquiry highlight the need for equity-centered professional development and 
reform efforts that explicitly confront teachers’ conception of equity. 

This study addresses areas that already have been studied. The curricular redesign efforts in 
the department revealed that the teachers held low expectations of their students. The students 
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affected by the changes were primarily students of color and poor students, and the teachers 
holding low expectations aligned with previous research (e.g., Irvine & York, 1993). Analysis of 
student performance on national assessments reveal that despite some gains, the gains made by 
students of color are typically on low cognitive demand items. The focus of the department to 
design remedial courses and to improve procedural fluency yielded a program that did not 
promote conceptual understanding. The addition of more lower level courses may restrict the 
number of students who would take more higher level courses and stifle their performance since 
research higher performance is associated with a narrower more rigorous curriculum. 

The department sought to improve students’ performance in the low level courses and to 
have those students to take more mathematics. While a small percentage of the students would 
take geometry as a result of the new course offerings, the mathematics education that they 
received fell short of democratic education. Indeed, more students would take geometry. This 
access to new content speaks to inclusiveness – the first benefit of democratic mathematics 
education (Malloy, 2002). However, mathematics understanding and the ability to apply 
mathematics, the second and third benefits, were not foci or outcomes of the reform efforts. 

Despite these disheartening outcomes, the challenge to create more equitable mathematics 
programs must not be abandoned. As mathematics teachers, mathematics educators, and 
mathematics teacher educators forge ahead, we must evaluate prior efforts and offer alternative 
approaches. Coflection is an alternative that I propose. 

The four components of coflection speak to the barriers of equity-centered reform that I 
identified in the department’s efforts. Coflection is collective; it takes place within a community 
with a shared endeavor. In this case, the community is the mathematics department, and the 
endeavor is reforming its mathematics program to address high failure rates amongst students of 
color and poor students. Coflection is deliberate with community members engaging in discourse 
aimed at solving the problems they have identified. Members of the department met frequently, 
at least once per month, and smaller groups of teachers met to discuss issues specific to 
particular courses. Thus, meeting to deliberate would be an unlikely problem for this department 
to employ coflection. The critical component of coflection, however, is essential and was 
missing from this department’s efforts. While the members of the department met frequently and 
had a shared goal, they did not engage in critical analysis of the courses they designed or their 
rationale for such. Rather, their notions about the nature of mathematics, who can learn advanced 
mathematics, and the role of teaching in student learning were unchallenged. The absence of this 
critical component facilitated reform that was not more equitable. The goal of coflection and 
democratic education is also the fourth component of coflection – transformation. 
Transformation that advances equity, however, did not result. Yet, coflection appears to be an 
alternative that may have yielded more equitable outcomes had it been included as part of the 
reform process.  

 
Conclusion 

Teachers who engage in reform must be willing to be critical of existing ideologies, 
practices, and policies. This study demonstrates that in order to create more equitable 
mathematics programs, having teachers who are willing to devote time, discuss problems, and 
make changes are insufficient conditions. Rather, reform must be equity-centered challenging 
long held notions about who can learn powerful mathematics and re-envisioning students’ 
possibilities and how mathematics opens or closes the doors of opportunity. Coflection, with its 
goal of transformation that results from deliberation from a critical perspective to solve a shared 
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endeavor by a collective, presents an alternative to equity-centered reform efforts that have been 
unsuccessful.  
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This paper provides an analysis of the mathematical ways of thinking present in a 15-minute 
interaction between an African American mother and her preschool son during a craft project as 
a way of opening up notions about the competence of young minority children and their parents. 
  

Introduction 
Much of the news reported about the achievement gap in mathematics is pretty bleak, even 

for young children. Studies have shown that while 66 percent of European American 
kindergarteners pass tests on reading numerals, counting past 10, sequencing, and comparing; 
only 42 percent of African American and 44 percent of Hispanic children pass similar tests 
(NRC, 2005). Similarly, other research has shown that poor children have a harder time solving 
problems mentally than well-off children do (Jordan, Huttenlocher & Levine, 1994). 

Historically, researchers have attributed this gap at the start of school to a variety of factors, 
including inadequate preschool education (e.g., Graham, Nash & Paul, 1997) and inadequate 
support from parents (e.g., Starkey & Klein, 2000). The National Research Council (2005, p. 
173) summed up this line of work in this way: “overall, the research shows that poor and 
minority children entering school do possess some informal mathematical abilities but that many 
of these abilities have developed at a slower rate than in middle-class children.” 

More recently, some mathematics education researchers have argued that the gap in 
performance between minority and low-income students and their majority peers may result from 
different mathematical values and practices in homes and schools as well as educators’ inability 
or unwillingness to capitalize on the mathematical strengths children bring from home (Anderson 
& Gold, 2006; Baker, Street & Tomlin, 2006). 

The purpose of this paper is to build on this later work by providing an in-depth analysis of 
the mathematical ways of thinking present in a 15-minute interaction between an African 
American mother and her preschool son as they worked together on a craft as part of a family 
involvement activity. To do this, we draw on the theoretical frame of multiliteracies (New 
London Group, 1996), which has been used by reading and language researchers to diversify 
notions of what it means to be literate. We believe this theoretical frame can be used within 
mathematics education to highlight the diverse practices involved in competent mathematical 
performances.  

 
Literature Review 

A number of researchers concerned with the mathematical development of low-income and 
minority preschoolers have written about interventions that were designed to teach parents 
successful ways of developing the mathematical thinking of their children (Baker, Piotrkowski & 
Brooks-Gunn, 1998; Bryant, Burchinal, Lau & Sparling, 1994; Starkey & Klein, 2000). 
Although these studies demonstrated some success improving preschoolers’ performance on 
mathematics assessments, the studies also began with the assumption that the research 
community and teachers had little to learn from low-income and minority parents. For example, 
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Bryant, Burchinal, Lau and Sparling (1994) compare children from “better” home environments 
to those in “poorer” home environments. The line between these two kinds of homes was 
determined by a survey, which asked about things like number of books in the home, 
organizational schedules, and family activities. Families that came out lacking in these measures 
were not seen as having alternative resources that had not been addressed by the survey. The 
authors of the study conclude that “determining how to improve the quality of Head Start child 
care and home environments are major challenges that still need to be addressed” (Ibid, p. 306). 
This notion that researchers must work to “improve” family lives makes it difficult to think about 
low-income and minority families as having strengths that researchers and teachers might tap. 

Anderson and Gold (2006, p. 262) challenged this line of thinking with a study that examined 
the mathematical practices of low-income, minority children in informal settings, such as game-
playing at home and school. They wrote: “Too often, teachers and schools fail to recognize or 
credit the knowledge, skills, and strategies that children bring with them from home – especially 
when a child comes from a family background that differs from that of the teacher’s in social 
class, race, or ethnicity.” Researchers are only just beginning to identify home-based knowledge, 
skills, and strategies that may be useful in early mathematical learning. Recent studies have 
identified some funds of knowledge (Gonzalez, Andrade, Civil & Moll, 2005) that families in 
some communities possess that may be drawn on in mathematics classrooms, such as knowledge 
of gardening (Civil, 2001). More work needs to be done that looks not only at the particular 
knowledge and skills that families in communities may have as a result of their work or home 
lives, but also how ways of speaking to and interacting with children in non-majority 
communities can be seen as sites for building mathematical competence, rather than as deficits. 

A number of researchers have noted differences between the speaking patterns and norms of 
interaction of African American students and their majority teachers (e.g., Delpit, 1995; Heath, 
1983). These differences have been explored in a number of ways. For example, Orr (1987), who 
studied the failure of African American students in mathematics and science at a private, 
progressive school, concluded that Black Vernacular English prevented students from thinking in 
mathematical ways. She suggested that this dialect, used by many African-American students in 
the school, did not have adequate vocabulary or grammar structures to support high-level 
quantitative thinking. This was harshly critiqued by linguists, in particular Baugh (1994); 
however, the notion that adult-issued commands and non-standard English inhibit mathematical 
thinking lingers. Other researchers have suggested that the rich, linguistic traditions in the 
African American community could be taken up and used in productive ways to further school 
learning (e.g., Delpit, 1995); however, much of this work has focused on language literacy 
learning. This paper seeks to bring this line of work into mathematics, examining the ways that 
an African American, low-income mother’s comments, questions, and directions to her son can 
be seen as supporting his mathematical thinking and reasoning. 

 
Theoretical Framework 

To contribute to the literature described in the previous section, this paper draws on the 
notion of multiliteracies to identify mathematical literacies present in a parent-child interaction. 
The goal is to name particular language and communicative practices that could be studied in 
other settings with attention to mathematical thinking and reasoning. 

Multiliteracies, first articulated by the New London Group (1996), was intended to address 
both the multiplication of modes of literacy (visual, print, computer, etc.) and the increasing 
cultural and linguistic diversity present in many countries around the world. The theory was 
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intended to expand notions of literacy beyond language and traditional representations of 
language to include the many ways that literacy is used by people in the world. In some ways, 
this work is similar to work in mathematics that has sought to identify and to value the ways that 
mathematics is used by people in informal situations (e.g., Lave, 1988). However, with the term 
“multiliteracies,” the New London Group made a conscious effort to include these alternative 
practices in the definition of what it meant to be literate in the world today. In particular, 
research drawing on multiliteracies has emphasized the visual aspects of language and has 
criticized definitions that focus only on the decoding and meaning-making of written words. 
Using this framework, literacy researchers have found that children identified as “struggling” in 
literacy classrooms often are capable of complex literacy practices when the definition of literacy 
is broadened (e.g., Cumming-Potvin, 2007). 

 
Modes of Inquiry 

The data reported in this paper comes out of a larger study located within interpretive 
ethnographic traditions (Eisenhardt, 1988; Geertz, 1973). For the last two years, we have been 
studying the mathematical learning of children in a preschool classroom located in one of the 
most rural counties in Georgia. Oliver County Public School is a PK-12 school with fewer than 
300 students. Most of the students are African American, and, because so many students qualify 
for free lunch, the school decided not to charge any of its students for meals. These 
characteristics make it an ideal setting to study the mathematical learning of underrepresented 
students in a rural (as opposed to the more-commonly studied urban) context. 

Over these two years, we have visited the classroom weekly to observe both formal 
instruction and center time, where children engage in more open-ended play. During these visits, 
we wrote fieldnotes, audio-recorded conversations, took digital pictures, and collected student 
work. To supplement the written fieldnotes, all audio tapes have been transcribed. For this paper, 
we chose to focus on the fieldnotes and transcripts of a 15-minute interaction between a mother, 
Patrice, and her four-year-old son, Markus. In order to promote family involvement, one of the 
high school classes occasionally organizes activities for the preschool children and their parents. 
This activity, which involved making a paper plate scarecrow, was held just before Thanksgiving 
in the second year of the project. Although here we focus on just this interaction, our analysis 
was informed by our experiences in the classroom over two years as well as our analysis of the 
larger corpus of classroom fieldnotes for other purposes. 

Little (2002) did similar work when she chose a short segment of conversation to analyze in 
her study of collaborative learning in teacher study groups. She notes that “there is crucial 
strategic value in looking closely at bounded segments of text” (p. 920) because the “mundane 
exchanges” of any moment reveal interaction patterns, ways of speaking, and shared values and 
expectations. The goal of this analysis is not to generalize to all of Patrice and Markus’s 
interactions and certainly not to all interactions between African American mothers and their 
children. As Geertz (1973, p. 23) has written, the point of ethnographic work is not to show “the 
world in a teacup.” Rather, the goal here is to provide an analytic model for examining informal 
conversations in order to identify mathematical literacies. 

To meet this goal, we began our analysis by asking the following research question: What 
mathematical literacies did Markus engage in during this craft-making experience and how did 
his mother support this engagement? For this preliminary analysis, we did a content analysis of 
the mathematical knowledge and skills represented in the focal transcript as well as a discourse 
analysis of the conversational moves used by the mother and child. 
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The Conversation 

Due to the space limitations, we present the first seven minutes of transcript below in as 
much detail as possible (although we analyzed the entire interaction). To save space, markers of 
pausing have been eliminated, some parts of the conversation have been summarized instead of 
quoted, and some unrelated conversations with other children and parents have been removed. 
Although we could not present the whole interaction, we wanted to present a significant chunk in 
because there are few examples of parent-child interactions around mathematics in the literature. 
Many claims about parents’ abilities to support their students in mathematics are based on 
interviews and surveys, rather than observations. 

As stated above, this conversation occurred around an activity that asked parents and children 
to make a scarecrow out of a pre-packaged craft, which included paper plates, colored foam 
cutouts, and written directions. These directions included a black-and-white diagram of what the 
finished product was supposed to look like. Some of the foam cutouts were irregular, while 
others were triangles, circles, and rectangles. 

 
 
Patrice showed Markus the black-and-white paper with the directions on it. He looked at it in her hands as she 
talked. 
 

Patrice:     “See this page?” He nodded. “See what’s supposed to go at the top? See that triangle?”                                                         
 
Patrice pointed to the drawing of the triangle on the paper. Markus looked at it and then at the foam pieces spread 
out in front of him. He reached for the large brown triangle that was the biggest part of the hat and was supposed to 
be glued on top. 
 

Patrice:      “You see how that goes at the top?” She pointed at the picture in the directions. Markus put the 
piece on the top of the scarecrow’s head. Patrice picked up the piece that was supposed to serve as 
the brim. “And this.” She held up the brim piece. “This goes like that.” She pointed first to the 
picture on the diagram and then put the brim onto the scarecrow. 
 

 
Patrice then picked up a rectangle of perforated yellow foam. “See this? This is the hair. We got to take these apart. 
I guess.” She looked back at the diagram and then pulled one of the pieces off. “Here, you can help me.” Patrice 
handed Markus some of the foam. 
 

Markus:       “Where the hair go?” 
Patrice:        “Look on the picture and see.” She handed him the diagram. “You see? Up under there?” She 

pointed to the hair. Markus put down the foam and picked up the diagram and studied it. 
Markus:       “Under the hat?” 
Patrice:        “Yeah. I’ll take it apart for you and you can put it on.” She took back the foam and quickly ripped it 

apart, while Markus laid three pieces of foam down over the forehead of the scarecrow and tucked 
up under the hat, just like in the picture. He sat back. “That’s all the hair you want?” 

Markus:       “Uh-uh.” He started to put more pieces on. 
 
Patrice put the strips she had separated into two piles in front of Markus. “They got long hair and short hair.” She 
picked up the directions. “You can use them so it can look like this, with the short hair in the front and the long hair 
can go on the back.” Patrice noticed that they had forgotten to put glue down on the paper plate. She took off the 
hair that Markus had put on, got a glue stick, and spread glue on the top. She then started to replace the hair.  
 

Patrice:     “You see. You do the rest of them.” Markus started to lay down more strips of foam across the 
forehead of the scarecrow.  “Make sure it sticks now. Press it down.” Markus pressed on the hair. 
“Can you get one more on there?” Markus picked up another strand of hair and placed it in line 
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next to the others. “Now, you’re going to put the long hair on the sides, but you need more glue.” 
 
 

While Patrice got glue from another parent, Markus picked up the paper with the directions on it and traced the 
long hair on the sides with his finger. Then he looked back at his own scarecrow. Patrice took the glue stick and 
spread it on the sides and then put more glue on the top of the plate above the hair that had already been glued 
downed. 
 

Patrice:     “Look at your picture. Remember.” Markus picked up the directions and studied them. 
Markus:     “The triangle goes on top?” 
Patrice:     “Uh-huh. How?” Markus pointed to the top of the scarecrow. 
Markus:     “Like that.” 
Patrice:     “Uh huh. You show me.” Markus picked up the triangle top the hat and placed it on the scarecrow 

to match the picture. 
Patrice:     “And then … this.” She picked up the brim of the hat. Without prompting, Markus picked up the 

directions and looked at them. After a moment he pointed to the bottom of the hat. 
Markus:     “It go right there.” 
Patrice:     “Okay.” She put glue on the bottom of the hat and then Markus put the brim on. 
Patrice:     “What else we got there?” She picked up the directions. “We need a nose, don’t we? You got a 

nose?” Markus looked at the directions 
Markus:     “Uh-huh.” 
Patrice:     “What kind of nose?” Markus picked up the triangle piece that matched the black-and-white 

drawing in the directions. 
Markus:     “Orange.” 
Patrice:     “Okay. And what kind is it? … What it look like? … Shape.” 
Markus:     “That way.” He held the triangle so it was oriented the same way as in the picture. 
Patrice:      “Triangle, right?” Markus nodded. 

 
Patrice put glue in the center of the face and Markus put the triangle on. The conversation continued as they 
finished the project. 
 

 
Mathematical Multiliteracies 

Throughout this conversation, Markus demonstrated literacies related to geometry, spatial 
reasoning, and representation. The Principles and Standards (NCTM, 2000, p. 41) asks that 
young students “analyze characteristics and properties of two-and three-dimensional shapes,” 
“specify locations and describe spatial relationships,” “apply transformations,” and “use 
visualization, spatial reasoning, and geometric modeling to solve problems.” In addition students 
are expected to “use representations to model and interpret physical, social, and mathematical 
phenomena” (Ibid, p. 67). Repeatedly, Markus studied the written diagram presented in the 
directions to place objects on the paper plate circle that represents the scarecrow’s face. He 
began by placing the large triangle that represented the hat on the top of the paper plate, not only 
putting it in the correct place, but also orienting the triangle to match the diagram contained 
within the directions. He went on to place the brim in the correct place, as well as the hair, the 
eyes, the nose, the mouth, a flower, and a bow tie (some of this happened in the portion of the 
transcript not reported.) 

Making these placements was not simple work for a four-year-old. In the written 
representation, the picture of the scarecrow was complete, in black-and-white, and much smaller 
than the craft Markus was making. Thus, to identify the correct piece among the foam cut-outs, 
Markus had to scale up the black-and-white image, disregard the color, and, often mentally 
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transform the orientation of the cut-out to match the image in the diagram. This demonstrated not 
only literacy in reading a written diagram, but also in visualizing to solve geometric problems. 

Some of the foam cut-outs were regular 2-d figures that preschool children are commonly 
asked to identify. (The eyes were circles; the nose and hat a triangle; and the long and short hair 
was differently-proportioned rectangles.) When working, Markus occasionally used the names of 
these shapes. When talking about the hat, he asked if “the triangle goes on top” and in the 
unreported part of the conversation, he described the center of the flower as a circle. However, 
when his mother asked him to identify the shaped of the nose, he did not use the word “triangle.” 
He talked instead about its orientation. Because this question is prominent in the conversation 
(and most closely resembles the kinds of questions preschool teachers typically ask), one might 
assume that Markus has difficulty using shape names. However, his casual use of the terms in 
other contexts suggests that this is not the case, and rather, that it was the problem of orientation 
that he found more interesting at this time. 

Another emerging literacy demonstrated by Markus in this conversation was his use of the 
written directions and the visual diagram to direct purposeful activity. In both prompted and 
unprompted moments, Markus returned to the written directions to make decisions about his 
craft. This demonstrated his expectation that directions are meaningful and that he is competent 
to interpret them. As in the reading and language multiliteracies work, this meaning-making 
around visual images can be seen as a literacy that is increasing important in an age of technical 
diagrams and machines. Despite its value, the interpretation of visual images and diagrams is a 
literacy rarely assessed in most standard assessments of preschool and kindergarten readiness. 

Throughout the conversation, Patrice scaffolded her son’s emerging mathematical literacies 
in a variety of ways. One frequent strategy she used was the making of “see” statements to direct 
Markus’s attention and to model ways of thinking about and performing a task. She introduced 
the written directions by saying to Markus: “See this page? See what’s supposed to go on top? 
See that triangle?” In the complete transcript, she told Markus to “see” a dozen times. These 
statements communicated to Markus what was important. Often, even when the statement was 
phrased as a question, Patrice did not expect Markus to answer, but instead looked at him to 
make sure that he understood what she was saying.  In that opening question, after asking 
Markus “see what’s supposed to go at the top?” she did not allow him to reply, but continued by 
directing his attention to triangle. She reinforced this move by pointing to the triangle on the 
written diagram. She then remained silent while he looked for the corresponding piece among 
the foam cutouts. When he located the correct piece, she reinforced the connection between the 
foam cutouts and the diagram by saying: “You see how that goes on top?” which was another 
question that Markus was not intended to answer (and, in fact, did not answer.) Some might 
critique Patrice’s questioning here as not being sufficiently open-ended or as taking over the 
thinking for the child. However, her prompts can also be seen as promoting opportunities for 
Markus to make connections and to think. Later in the conversation, Markus picked up the 
diagram to decide where to place the hair on his own. It seems likely that he did this because his 
mother encouraged him to see the diagram as a source of information and provided him with the 
necessary support he needed to interpret it. This is another site where the concept of 
multiliteracies can open up ideas about competence. Markus does not necessarily need to be able 
to verbally articulate his thinking about mathematics in order to be seen as thinking 
mathematically. Competence can lie outside of spoken words. 

Patrice also modeled her work interpreting the written directions as a way of figuring out 
what to do next. After she picked up the yellow foam that was to be taken apart to make the 
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rectangles for the hair, Patrice looked back at the written directions to make sure her actions 
were correct. She did not explain this Markus, but simply performed it. This is a different kind of 
modeling then the sort often done by teachers of young children. Patrice did not over-dramatize 
her actions, narrate each step, or quiz Markus about what she was doing. Instead, she used the 
directions for information as an adult. Again, this could be seen as problematic because the 
modeling is not made explicit or because she is taking over the work of interpretation for 
Markus. However, Patrice’s moves can also be seen as productive. Patrice’s actions 
demonstrated to Markus that the reading of directions and the interpretation of a diagram is 
genuinely useful in the adult world, rather than acting as if this was the case. It is in many ways a 
much more genuine modeling of how adults solve problems in the world. 

In addition to examining the mathematical literacies present, it is also worthwhile to think 
about the kinds of literacies that are not represented here, particularly those that mathematics 
educators and preschool teachers might expect to see in such an activity. For example, Patrice 
never asked Markus to count any of the foam cutouts in the project. The only reference to 
enumeration is when she asked Markus if he could add “one more” hair. (He did.) During this 
activity, both the teacher and the paraprofessional, who were helping children whose parents 
could not attend, repeatedly asked children to count eyes, noses, and hair. This emphasis is 
understandable given the focus on counting in many preschool standards and in many of the 
assessments that are used to make judgments about children. In some ways, Patrice missed an 
opportunity to help her son practice these often-assessed skills; however, by focusing on the 
kinds of mathematical literacies necessary for the task, she presented an image of mathematical 
literacy aimed at purposeful activity rather than as one imposed unnecessarily on the world. In 
similar ways, Patrice did not ever ask Markus to explain his thinking, as many mathematics 
educators might do. There are certainly drawbacks to this; however, it is important not to confuse 
the articulation of thinking with thinking itself in considering Patrice’s ability to support her 
son’s developing mathematical literacy. 

In conclusion, it is unacceptable to dismiss what Markus does in this episode as 
demonstrating “some informal mathematical abilities,” as the authors of Adding it Up appear to 
do. In discussions of the early achievement gap, the emphasis on counting, reading numerals, 
sequencing, comparing, and shape identification has created a narrow view of early mathematical 
literacy. To appropriately value and assess the mathematical literacies that all children bring to 
school, broader lenses must be used. The mathematical literacies demonstrated by Markus in this 
episode are in many ways more sophisticated than those required by many of the preschool 
assessments used to label low-income and minority children as behind. Systematically looking 
for diverse mathematical strengths may both broaden our conceptions of young children’s 
mathematical literacies as well as challenge our notions about who is capable of supporting their 
children’s learning. 
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This paper analyzes a clinical interview of one student’s understandings of the causes of racial 
performance gaps in mathematics education. The topic was chosen because there is a literature 
on teachers’ perceptions of racial gaps but little in terms of student perceptions. The particular 
student was chosen because her thought processes indicated an interesting tension between 
behavioral and structural explanations for the gap. Data suggest that this student privileged 
behavioral factors and justified her reasoning by drawing on prior in-school and out-of-school 
experiences in problematic ways. Implications of student perceptions of racial performance gaps 
for teaching and learning are discussed. 
 

Background 
The latest report from the Trends in International Mathematics and Science Study (TIMSS) 

shows that White and Asian students continue to excel relative to Black and Latino students in 
both elementary and secondary mathematics, thus confirming the persistence of disparate 
achievement patterns amongst racial/ethnic groups in the United States (Gonzales et al., 2008). 
Explanations for the achievement gap have spanned between what race scholar Cornell West 
(2001) calls “conservative behaviorism” and “liberal structuralism.” Those falling in the first 
category explain the achievement gap in terms of personal responsibility, citing cultural deficits 
such as an impoverished work ethic passed on to children by their parents. Those in the latter 
camp find behavioral factors insufficient (Lee, 2002), instead explaining this phenomenon as an 
effect of racism at both an individual and institutional level (Oakes, 2005). Yet despite 
tendencies by some to advocate exclusively for either extreme (e.g., McWhorter, 2000), others 
contend that neither perspective in isolation fully explains the achievement gap (Noguera, 2008); 
that in fact, understanding the gap as a complex sociopolitical phenomenon implicates the 
relevance of both behavioral and structural factors. 

One factor that has been shown to contribute to academic performance is teachers’ 
perceptions of their students’ academic capabilities. Secada (1992) has argued that teachers’ 
perceptions tend to vary based on demographic variables, such as race, socioeconomic status, 
and gender. These disparate perceptions can result in unequal academic expectations for 
students, which in turn contribute to a widening of the achievement gap (Ferguson, 1998; 
Jussium, Eccles, & Madon, 1996). 

However, while characterizing teachers’ perceptions of the achievement gap continues to be 
a worthwhile enterprise, it is equally important that students’ perspectives on this matter be 
explored as well. Making sense of the manner in which students’ perceive and explain 
differences in mathematics achievement is significant not only because of students’ status as 
critical actors in the classroom, but also because their beliefs have implications for teaching and 
learning. For instance, the reform movement in mathematics education encourages teachers to 
make collaborative learning a part of their pedagogy, an exhortation that is predicated on the idea 
that appropriately structured discourse facilitates student understanding (National Council of 
Teachers of Mathematics, 2000). But when students hold particular views on race and on the 
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achievement gap, their perceptions of their classmates may affect collaborative learning. The 
present study takes a first step in the direction of documenting student perceptions of disparate 
performance patterns by way of a fine-grained analysis of one student’s causal explanations of 
such variations in mathematics performance. 
 

Theoretical Perspectives 
Given the inherent complexity of the achievement gap, a study of a naïve explanation of this 

phenomenon must be geared to handle potentially conflicting explanations. In the context of his 
research on physics education, diSessa (1979) has claimed, “People are more fundamentally 
model builders than they are formal system builders….Their views are as much conflicting 
patchworks as they are coherent systems” (p. 251). When asked to explain the physics 
underlying everyday phenomena such as projectile motion, diSessa (1988) found that in lieu of a 
coherent, systematic explanation, people tended to provide multiple, occasionally inconsistent, 
explanations. 

Although diSessa’s ideas derive from a radically different domain, it has been shown that 
diSessa’s theory can shed light on people’s reasoning about social issues such as race and equity 
(Philip, 2007). Indeed, the notion of people’s beliefs as “conflicting patchworks” has precedent 
in the literature regarding the cognitive underpinnings of stereotyping. For example, Katz (1981) 
has proposed that Americans embody an “attitude duality,” whereby individuals can 
simultaneously endorse competing values like individualism and egalitarianism—even when 
doing so results in inconsistent reasoning. From this perspective, the messy way in which people 
might explain the achievement gap can be thought of as an entirely sensible cognitive process 
(Monteith, Zuwerink, & Devine, 1994). 

Thus, it seems reasonable to expect ambivalence when asking people to explain complex 
phenomena, but that begs investigation into the factors that influence people’s reasoning. 
Tversky and Kahneman (1974) have argued that biases in judgment are significantly affected by 
the “availability” of information. That is, people tend to draw conclusions about the frequency of 
an event based on the ease with which information can be retrieved from memory, and are 
consequently less likely to account for information that is not directly available to them in a 
particular context.  

In the present study, analysis of data procured from an interview with a student seem to 
suggest that availability played a critical role in the subject’s reasoning as she negotiated a wide 
range of explanations for the racial achievement gap. 
 

Research Questions 
1. How do high school students explain the racial achievement gap in mathematics 

education? 
2. What is the nature of their causal reasoning about the phenomenon, and what factors 

influence that reasoning? 
 

Methodology 
Between 2002 and 2007 the author taught mathematics in a racially and ethnically diverse, 

urban public high school. In 2007 the racial demographics of the school were as follows: 74% 
Latino, 13% African American, 11% Asian, and 2% White. The racial achievement gap was 
explicit at the school, as African American students were grossly underrepresented in advanced 
math courses, while the opposite was true of Asian students. Latino students were 
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proportionately represented, and the White student population was too small to warrant an 
evaluation. For this study the author recruited former students with whom he had developed 
strong bonds during his tenure and had since maintained consistent contact. The expectation was 
that the close relations would encourage the students to candidly express their opinions about a 
sensitive issue. 

Semi-structured, one-on-one interviews were conducted because they facilitated the goal of 
understanding students’ causal reasoning at a fine-grained level. A similar methodology has been 
used to study people’s understanding of issues of race and social dynamics (e.g., Bonilla-Silva, 
2003). Interviews lasted approximately forty-five minutes and began with the following prompt: 
“Research shows that in advanced math classes, Asian students are overrepresented and African 
American students are severely underrepresented. When I was a teacher I saw the same thing in 
my classes. How do you explain those trends?” As the interview progressed, subjects were 
presented a series of probes in order to investigate how being forced to grapple with a 
problematic context affected their reasoning. 

Seven students were interviewed. Each of them had recently graduated high school and was 
enrolled in a highly selective university at the time of the study. Of the seven interviews, the 
interview with one student, Nikki (a pseudonym), was chosen for detailed analysis because it 
most clearly illustrated an individual attempting to juggle multiple causal explanations in 
complicated and intriguing ways. Nikki self-identified as Asian and was widely considered 
among her peers and the faculty as one of the top students at her high school. She had been the 
author’s student for three years in the most advanced mathematics courses offered by the school. 
 

Results 
Data suggest that as the interview progressed, Nikki did not settle on any one coherent 

explanation for the achievement gap. As Figure 1 shows, ten distinct “narratives” (A through J) 
were identified in the data that Nikki invoked in complicated and occasionally inconsistent ways 
throughout the interview. The narratives (A through E) that arose in response to the initial 
interview prompt fell on the “behavioral” side of West’s (2001) behavioral-structural dichotomy. 
In fact, behavioral narratives were repeatedly called on throughout the interview. The most 
popular of these was Narrative A (“parental influence”), which Nikki called on five separate 
times during the interview. The lone definitively “structural” explanation, Narrative I 
(“teacher/counselor bias”), came up near the end of the interview. 

A closer examination of the data also suggests a hierarchical organization of the narratives. 
The following excerpt, which occurred at the very beginning of the interview, illustrates this 
point: 

Interviewer: So you were talking about…let me see if I get you right. You were 
thinking that because Asian parents – let’s say that they emigrated from 
another country, so they’re kind of new here – that you’re saying that’s 
why they push education to their kids? 

Nikki:   Yeah, they strive more for better education, and since…I think, like, for 
me, personally, parental influence has been a lot on me. If my parents 
hadn’t, like, because even my parents are immigrants, and they tell me that 
they’ve come here to give us a better education, to make better…to make 
ourselves better. And, um, they tell me to, like, do good in class and take 
advanced classes and everything. And, um, that’s what really made me go 
for it, honestly. 
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Figure 1. Overview of the interview with Nikki. The shaded boxes represent attempts to probe Nikki’s reasoning. 

Narrative A: Parental influence 

Narrative B: Immigration status – education 
was the reason for coming to the U.S. 

Narrative C: Desire for a ‘good life’ motivates effort 

Narrative D: Presence/absence of same-race role models 

Narrative E: African Americans don’t try as hard as Asians 

Probe 1: Aren’t there already some African 
Americans in advanced math classes (that can 

serve as same-race role models? 

Response: 
Yes, but 
not enough 

Narrative F: Same-race peer pressure (positive or negative) 

Narrative G: Positive/negative societal perceptions/influences 

* Unlike African Americans, Mexicans try to 
overcome negative societal perceptions 

Probe 2: If both Mexicans and African 
Americans experience negative societal 

perceptions, why do they respond 
differently? 

B A 

Probe 3: Are Asians just (naturally) smart? E G 

F A 
Probe 4: If people can’t just be 

naturally good at something, 
why are there so many African 

Americans in sports? 

A 

D 

Narrative H: Perception of self-efficacy affects 
where one exerts effort 

H 

Can you think of other 
explanations for the 

phenomenon? 

Narrative I: Teacher/counselor bias 

* Nikki asserts that teacher bias has a greater effect on 
African American kids than parental influence 

Can you think of other 
explanations for the 

phenomenon? 
F 

Probe 5: Despite similar experiences, 
why do Latino students seem to do 

better than African American 
students? 

Narrative J: Comfort with the dominant language 
affects participation in class 

B A 

J 

I 
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A causal hierarchy emerged in Nikki’s reasoning. She explained her academic success in terms 
of her motivation to “do good in class and take advanced classes” (Narrative E), but this 
explanation depended on other explanations. Nikki’s motivation was a product of her parents’ 
influence (Narrative A), and her parents pushed education because of their status as immigrants 
(Narrative B). Based on Nikki’s reasoning, if her parents had not been immigrants, then they 
would not have been likely to push education, which in turn would have left her less motivated to 
succeed in school. 

In addition to the hierarchical relationship between the narratives, the previous section of 
transcript highlights the way in which Nikki privileged Narrative E (“personal effort”) as a prime 
determinant of success in mathematics. Her response to Probe 3 provided further evidence to 
support this claim: 

Interviewer: One thing I’ve been trying to make sense of is, I guess, you know, why 
can’t it just be that Asians are just better at math than African Americans? 
Why can’t that be true? 

Nikki:  You can’t really single out a race. It’s just that Asians try a lot harder than 
African Americans, it’s not that they’re better at it, they just try harder. 
That’s why they become better at [math]. 

But while Nikki touted behavioral narratives during the entire first half of the interview, when 
asked if there were other explanations for the achievement gap, Nikki provided multiple, first-
hand accounts of biased teachers and counselors limiting the academic opportunities made 
available to African American classmates (Narrative I). Unclear as to how she reconciled her 
behavioral and structural explanations, the author asked Nikki whether parents or 
teachers/counselors had a bigger impact on African American students’ achievement, to which 
she replied: 

Nikki: I think both have similar impact, but probably teachers and counselors 
have a bigger impact, because they’re the ones that set the standards for 
African Americans, for students in general. I think it’s a really big impact 
from teachers, personally. 

Interviewer:  Why do you think that? 
Nikki:  Because, like, even if parents say, “Do good in school,” if the teachers 

aren’t paying attention, then how are they going to do good in school? If 
their teachers aren’t paying attention to them, or if having talks with them 
about college or about other things, how are they going to know about 
those things? 

To that point, Nikki had built a fairly consistent story around the behavior of students and 
parents, so it was interesting that she would demote it in favor of Narrative I. However, it was 
even more surprising that Nikki changed her mind once again when confronted with Probe 5. 
Given that Latino students at Nikki’s high school were proportionately represented in advanced 
mathematics courses, the author asked her why Latinos and African Americans were achieving at 
different levels. This was her response: 

If they have the same group of friends…it’s a lot probably coming from parents and a 
little bit coming from teachers. Because, well, Latinos if they just immigrated here, 
they’re probably having a hard time getting to know English. At [her high school], I’ve 
seen that. So, um, they usually ask for help, I think, because their parents probably tell 
them, “If you don’t get something, just ask for help.” And African Americans already 
know English, so they think, “What am I going to ask for help for?” And then if the 
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Latinos start talking to the teachers, they’ll interact more and start speaking [with their 
teachers] about college and other stuff. 
The primacy Nikki attributed to Narratives A and I changed once again. Just moments after 

arguing for a “really big impact from teachers,” Nikki stated that “it’s a lot probably coming 
from parents and a little bit coming from teachers.” It is also noteworthy that Nikki shifts the 
burden for academic achievement from teachers to students when considering the issue in the 
context of Latino students. Recall that Nikki had previously criticized teachers for not “having 
talks with [African American students] about college and other stuff,” but here she implied that 
teachers present academic opportunities to students when students reach out to teachers. 

 
Discussion 

It is not altogether surprising that Nikki did not fixate on a single explanation for the racial 
achievement gap. The ambivalence Nikki showed in negotiating the ten narratives she generated 
reflects the complex nature of the phenomenon she was trying to explain (Katz, 1981). 
Moreover, the fact that nearly all of those narratives were of a behavioral nature is consistent 
with Bol and Berry’s (2005) findings that secondary mathematics teachers tended to explain the 
achievement gap in terms of behavioral factors.  

On the other hand, it was interesting that Nikki could vacillate so quickly between behavioral 
and structural narratives without appearing to consciously realize it. Why did Nikki make such a 
thorough case for Narrative I (“teacher/counselor bias”) when the data indicate that she more 
likely favored behavioral explanations? And if in fact she actually attributed greater priority to 
Narrative I, why was it not among the first of her explanations? 

One possibility is that Nikki simply did not immediately feel comfortable talking about 
prejudiced teachers in front of the author (who happened to be her former teacher), so she 
delayed mentioning Narrative I until halfway through the interview. Although the author and she 
had developed a family-like rapport over the years, the topic of race had never before been 
explicitly broached in one-on-one conversation. A related possibility is that Narrative I was 
actually a misrepresentation of her true beliefs, designed to provide balance to her point of view 
so that she did not come off as racist. 

While more data would be needed to establish the validity of those conjectures, considering 
the role of Nikki’s prior experiences in her reasoning may illuminate the issue. The data suggest 
that Nikki had a wealth of prior experiences regarding the academic consequences of both 
“parental influence” and “teacher/counselor bias,” and yet for some reason she delayed 
mentioning the latter narrative. However, a potentially important difference between Narrative A 
and Narrative I is context. Because Narrative A depended on past interactions with her parents, it 
may be that the memories that gave rise to Narrative A were in some sense more “available” to 
Nikki than those that gave rise to Narrative I (Tversky & Kahneman, 1974). For although she 
cited specific examples in which she directly observed differential treatment of her peers with 
respect to race, those in-school experiences were of a markedly different nature than her prior 
experiences with her parents. Not only were the latter experiences more personal, but it is also 
likely that they were more frequent than the instances of bias she noticed in school. Calling on 
the experiences needed to vocalize Narrative I required Nikki to empathize with a largely 
unfamiliar perspective. And in the pressure of an interview setting, telling a story of her parents’ 
influence may have been an easier story to tell because it did not require her to see the world 
through the eyes of another person or group. Whether or not experiences of an egocentric nature 
are more accessible is a question worthy of further investigation. 
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Another aspect of the data related to the availability of information was Nikki’s tendency to 
over-generalize from her past experiences. In Narrative G Nikki described how people respond 
to negative societal perceptions of their racial/ethnic group: “Sometimes [African American 
students] adjust to what society thinks of them, and they don’t try to overcome that” (marked 
with an asterisk in Figure 1). She also cited the existence of a negative perception about 
Mexicans being “lazy in academics and stuff,” but went on to say, “But I know a lot of my 
Mexican friends: they’re not lazy, they strive harder. They’ve overcome that perception.” 

Noteworthy here is that Nikki made this claim based not on her knowledge of her school’s 
Mexican population as a whole, but instead on her knowledge of her Mexican friends. Because 
the overwhelming majority of her friends were also enrolled in advanced classes, generalizing 
from the slice of the population would result in an obviously skewed perspective. Nevertheless, 
Nikki reasoned based on the information that was available to her. Still, given the low enrollment 
in those courses overall, and the fact that the majority of Latino students at the school were not 
achieving at dramatically higher levels than African American students, it was interesting that 
Nikki did not explicitly acknowledge her sampling bias. 
 

Future Research 
The findings of this study suggest myriad avenues for future research. An important issue 

that this study raises questions about is the possibility that some students may explain the racial 
achievement gap in behavioral terms. In spite of evidence that she had observed multiple 
instances of racial discrimination first-hand, Nikki ultimately placed the onus for getting a good 
education on students and parents. To what extent were her perceptions of the racial achievement 
gap a function of her background as someone who “made it” in a beleaguered educational 
environment? Given her background, one might argue that it was to be expected that Nikki 
would lean toward behavioral factors rather than structural factors. But might a high school 
sophomore repeating Algebra 1 explain the achievement gap differently? Interviews with 
students at varying levels of academic success may reveal different perspectives. 

Also worth pursuing is how the notion of the “model minority” may influence student 
perceptions of the achievement gap. As a member of a “model minority,” Nikki expanded the 
application of the label in a unique way. Historically, the “model minority” label has been 
reserved for Asian students (Wu, 2003), but Nikki stated that African American students respond 
to negative societal perceptions of their racial group by “conforming to the stereotypes,” while 
Mexican students respond by “overcoming the stereotypes through hard work.” Based on this 
datum, Nikki seemed to position Mexican students as a de-facto “model minority.” Whether or 
not her framing of this population indicates an emerging trend in education, in addition to what it 
might mean for African American students, are both matters that deserve attention.  

Finally, the tendency for students to explain the achievement gap in behavioral terms has 
serious implications for classroom dynamics. What impact might those perceptions have in 
classrooms where collaborative learning takes place? How should teachers account for students’ 
perceptions in their pedagogy? In what ways can reform-oriented curricula and forms of 
classroom discourse militate against the effects of potentially negative perceptions among 
students? Exploring such questions would certainly benefit our understanding of teaching and 
learning, particularly in racially and ethnically diverse schools. 
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This study examines the perspectives of two Dominican mothers on the teaching and learning of 
mathematics. Through interviews and classroom observations by the parents, we learn about 
their mathematical learning experiences (both in formal school settings and in informal settings) 
in the Dominican Republic and their children’s mathematical learning experiences (again, both 
in and out of school) in the United States. The mothers compare their own educational 
experiences to those of their children. The findings indicate that a more inclusive stance toward 
parents by the school would benefit the children’s learning of mathematics. 

 
Purpose of the Study 

The purpose of this study was to give voice to the perspectives of two Dominican parents 
with regard to their own and their children’s mathematics education with the intention of 
informing the school-home discourse around the teaching and learning of mathematics. 

 
Theoretical Perspective 

This chapter builds on a small body of work that has been done about parental perspectives 
on the teaching and learning of mathematics. It is built on strands of research that examine issues 
of (a) the power relationship that exists between school and parent, and (b) the funds-of-
knowledge that exist in homes and communities including the value that is (or is not) placed on 
knowledge the parent may possess. 

The perspective of parents is one that is often missing from conversations of how to address 
the learning needs of children. Yet, parents are their children’s first teachers, and their role as 
teachers continues to be an important one throughout elementary school and beyond. In spite of 
this, parents (particularly non-middle-class parents including immigrant parents whose facility 
with English may be emerging), and the homes and communities of many students are often 
positioned as a problem rather than a support for academic achievement (Foote, under review).  

Research indicates that schooling in the United States maps best onto middle-class child 
rearing practices (Lareau, 2003). It is understandable that immigrant parents, schooled in an 
educational system distinct from that of the United States, may have different understandings and 
perspectives on schooling from parents schooled exclusively in the United States. Exploring and 
understanding the gap (or lack of it) between the mathematics learning experiences of parents 
and their children can only serve to support educators in understanding how to acknowledge and 
possibly build on parental experiences in the service of being more effective teachers for their 
children. Tapping into parents’ actual perspectives may support educators in understanding what 
parents see as their role in supporting the mathematics learning of their children as well as how 
their own personal schooling histories inform that perspective.  

Moll and Civil (Civil & Bernier, 2006; González, Andrade, Civil, & Moll, 2001; Moll & 
Gonzalez, 2004) and their colleagues developed the construct of “funds-of-knowledge” that 
countered the deficit perspectives often held by schools about poor or immigrant parents and 
families. In this work, power relationships between family/community and school are 
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acknowledged and interrogated. The present study expands these ideas to include parental 
knowledge of educational systems (in this case that of the Dominican Republic) and how the lens 
of their personal educational experience influences their perspectives on mathematics teaching 
and learning as it plays out in their children’s school in the United States.  

The importance of including the parent voice in the discourse around mathematics learning is 
a position taken by Remillard and Jackson (2006). They state that it is important for preK-12 
educators to understand the parent perspective so that they can work with parents toward 
common understandings. They further indicate that partnerships between parents and schools 
(including very importantly, teachers) must acknowledge (and I believe, fight against) the 
inherent power differentials that exist between the dominant culture (of which school is a force) 
and (in this case) the immigrant parent. Allexsaht-Snider (2006), suggests a question that is 
particularly appropriate to this study:  

If we do create more mathematics education contexts that bring together educators and 
diverse parents and link home, school, and community contexts, how can we help students, 
parents, and teachers find common ground and negotiate potential conflicts and areas of 
dissonance to create meaningful and successful mathematics learning for urban children? (p. 
193)  

This study explores one such avenue for finding common ground. Through this study I hoped to 
address the question of how understanding parental perspectives on the teaching and learning of 
mathematics might inform the discourse on classroom practice, so that eventually classroom 
practice can more effectively address the needs of some of the traditionally more vulnerable 
learners.  

 
Methods 

Researcher Position and Participant Selection 
I was a volunteer and researcher in two classrooms in an elementary school in New York 

City at the time of the study. I spent one half day a week in a Kindergarten classroom and one 
half day a week in the English component of a third grade. I was engaged in working on a 
separate research project with the classroom teachers and also assisted them in individual and 
small group instruction at their request. Although I did not know the parents at the onset of the 
study, I knew their children and I knew their children’s teachers. Because of these relationships 
that I had formed with these teachers and students, I solicited parent participants from these two 
classrooms through letters sent home. A number of parents, all mothers, responded showing 
interest. For several of these mothers, it proved logistically impossible to set up interviews and 
classroom visits. Many of these mothers work long hours and do not have the flexibility at their 
jobs to come to school easily during the day. In the end four mothers participated in initial data 
gathering and three of those four were able to participate completely in all phases of data 
gathering; ultimately, one did not prove to meet the participant criteria of significant schooling in 
the Dominican Republic. Further discussion of participants is limited to the two who met 
participant criteria and completed all phases of data gathering. 
Setting and Participants 

Two mothers whom I call Silvia (child: Sarita, Kindergarten) and Vera (child: Victor, Grade 
Three), participated in this study. (All names of parents and children used in this chapter are 
pseudonyms). Both mothers were born in the Dominican Republic and currently live in the 
United States. Their children attend the same K-5 public elementary school in New York City.  
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Vera was raised and schooled in the Dominican Republic including attending university and 
receiving a degree in Accounting. She moved to the United States as a young adult and currently 
works as a school crossing guard. Vera is the sole adult living in her household. Vera identifies 
herself as able to understand, speak, read, and write Spanish, and to understand and speak a little 
English. In addition to her third grade son, Victor, Vera also has an older son who currently 
attends Middle School.  

Silvia was raised and schooled in the Dominican Republic, moving to the United States when 
she was a young adult. Silvia currently cares for children in her home where she lives with 
Sarita, her kindergartener, another daughter, aged two, and her husband. Silvia identifies herself 
as able to understand, speak, read, and write Spanish, and to understand, speak, read, and write a 
little English.  

Both mothers then have finished secondary school with Vera having finished a university 
course of study. They both have studied algebra, geometry and trigonometry in high school. Vera 
counts calculus, statistics, and accounting among her university courses. The participants in this 
sample of convenience prove to have extensive school-based experiences with mathematics and 
are therefore well positioned to note differences and similarities between the teaching and 
learning of mathematics in the Dominican Republic and the United States. 
Data Gathering 

Data gathering included (a) a preliminary interview with each mother, (b) a classroom 
observation of a mathematics lesson by each mother in the classroom of her child, and (c) a post-
observation interview with each mother. The researcher took field notes during or immediately 
after each of the above sessions. The interviews were conducted in Spanish by parental choice. 
All interviews were audio-taped. The interviews were transcribed and translated into English for 
analysis.  

In the preliminary interviews, participants were asked to provide personal information about 
their language proficiency in English and Spanish, their employment, their children living at 
home, (these data are reported above in the section on setting and participants), their own school 
history and that of their children. In addition to this basic information, participants were asked 
about their own personal history with mathematics, as well as their perspective on their 
children’s experiences with mathematics, including interactions between parent and child around 
mathematics homework and mathematical activities more generally. 

Each parent observed a mathematics lesson in the classroom of her child. Although the 
lesson observed in the third grade classroom was conducted in English, the teacher repeated 
much of what she said in Spanish for the benefit of Vera (whose language of preference is 
Spanish, although she understands English). The lesson observed in the Kindergarten classroom 
was conducted in Spanish.  

Each mother participated in a post-observation interview either immediately after or within a 
few hours of the observation. In the interview parents were asked to give their perspectives on 
what they noticed in the classroom in general and in the mathematics lesson in particular with 
special attention to the teaching approach and goals, and the participation patterns. The 
participants were also asked to reflect on whether what they observed was consistent with what 
they had expected to see. They were asked as well what they had liked about the lesson and 
whether there were concerns that were raised for them. Finally, the parents were asked to reflect 
on how the teaching and learning that they had observed in their child’s classroom compared 
with their own classroom experiences in the Dominican Republic. 
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Data Analysis 
Upon completion of the data gathering, the entire data record (all interviews and field notes) 

was reviewed. Emergent themes were noted. The data record for each individual participant was 
then reviewed chronologically. Interim research texts (narratives) were constructed for (a) the 
initial interview, (b) the classroom setting on the day of the observation from the researcher’s 
perspective, and (c) the post-observation interview (Clandinin & Connelly, 2000; Clandinin, et 
al., 2006). Using these interim research texts, chronological narratives were constructed with 
particular attention to the individual cases within this chronology. Finally themes were noted that 
cut across participants. This was done by re-examining the data from all participant responses to 
each question in each of the two interviews. In this way, the focus of analysis shifted from the 
individual case as the focus to the particular interview question as the focus. By providing 
another perspective on the data, a triangulated perspective was obtained. These themes and the 
interim research texts (initial narratives) were then used as the basis for constructing the final 
narratives found in the results section. 

In an attempt to respect the perspectives of the parent participants, the results of the study 
were shared with them through informal conversation. The support of the teachers was likewise 
acknowledged by sharing with them, through informal conversation, the results of the study. This 
was done so that these important contributors to the research story had the opportunity to review 
the manner in which they were represented, modifying the picture if they thought it necessary. In 
the end, parents and teachers both were comfortable with their portrayal.  

What follows is the story of two Dominican mothers and their perspectives on the teaching 
and learning of mathematics. These perspectives take into account their own mathematical 
learning experiences (both in formal school settings and in the informal setting of the home) in 
the Dominican Republic (and in the case of one mother in the United States as well) and their 
children’s mathematical learning experiences (again, both in and out of school) in the United 
States.  

 
Results 

In presenting the results, I will first present individual narratives of the perspectives of each 
of the two mothers regarding her own, and her child’s experiences learning and using 
mathematics. I will then present individual narratives of the parent perspectives on the classroom 
and mathematics lesson.  
Parent Perspectives on Learning Mathematics 

The case of Vera. Vera describes herself as someone who loves mathematics and was an 
excellent student of mathematics. Algebra was an area that she particularly liked. Vera describes 
the school system in the Dominican Republic, where she graduated from university, as much 
more formal in many respects than that in the United States, from the more formal clothing worn 
by both teacher and student to the teacher directed manner in which the classes are conducted.  

Vera reports that both her children (Victor, the third grader and an older child who is in 
eighth grade) like mathematics. Vera indicates that she works with Victor on word problems 
teaching him to look at the language in the problem. For example to know to add if you see “in 
all” in the problem, to know that if it says someone has more than another, you have to subtract. 
She also helps him to draw out or diagram the problem situation. In the case of a problem such as 
five children needed to share 100 balls, she would encourage him to draw five circles to 
represent the children. She would tell him that everyone needs to have the same amount so that 
they don’t fight. When he was younger, she would encourage Victor to use beans or other small 
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objects to model the problems and to work on calculations. Vera indicates that it is quite 
common in the Dominican Republic to work with beans or other small materials when doing 
math with young children.  

Vera says that the notational system for standard algorithms in the Dominican Republic 
differs from that in the United States and has caused her some problems in working with her 
children. Once, for example, the older child came home with a system for multiplying that 
involved dividing the paper into small squares (something I recognize as lattice multiplication). 
Vera says she never understood that method. In addition to the notational issue, language use can 
also present difficulties for Vera. When she directly translated “dos por dos” into English as 
“two by two” instead of “two times two,” Vera’s older child said that wasn’t the way he was 
learning in school and that his mother was confusing him. 

Vera does not feel well informed about what Victor, her third grader, is doing in school. Vera 
reports she knows what’s going on in the mathematics classroom mainly through homework. She 
feels that she should get some indication at least once a month as to the child’s progress. No 
school work or tests come home. She sees only homework. This she says is in sharp contrast to 
the Dominican Republic where completed quizzes are regularly sent home. Since Vera works as 
a school crossing guard, she is not in a position to pick her son up at school and so does not (like 
so many other parents) have access to those quick, informal, after-school conversations with the 
teacher. Vera is concerned that Victor is beginning to show less interest in school this year and 
has tried to hook him up with an after school program to support his learning, but hasn’t heard 
anything back from the school.  

Vera is a single parent and as such is the sole earner as well as the person who manages all 
household finances. She has begun to talk to the older child about spending money and at times 
asks him to do shopping for her. Aside from this, she does not explicitly make a point of 
addressing mathematics in home and community situations. She takes a more organic approach. 
If something comes up that involves mathematics, they talk about it. They play cards and 
dominoes at home and Victor, the third grader, much like Marta’s son, loves to play with and 
count pennies. 

The case of Silvia. Silvia feels that she was a good student of mathematics, maybe not 
earning top grades, but making a solid showing. Silvia feels her kindergartener, Sarita, learns 
math easily and with enjoyment. Silvia describes herself as very involved in the mathematics 
homework that her daughter brings home from school. Sarita’s father also helps her with her 
homework. Silvia supports Sarita’s leaning by working with her using a variety of manipulative 
materials such as dried corn or beans. She recalls that this is how her own father helped her with 
her mathematics when she was a young child. In addition to using manipulatives available in the 
home, Sarita’s parents also try to support her developing mathematics understandings by putting 
mathematics problems into contexts that she might find motivating, such as money. They try to 
find ways that are both interesting and understandable when explaining mathematics situations or 
contexts.  

Silvia feels well informed about what is happening in school with Sarita. She picks up her 
child from school each day and has the opportunity to have a quick informal discussion with the 
teacher. In addition, Silvia cites parent-teacher conferences as time when she has an opportunity 
for more extended conversation with the teacher about her daughter’s progress in school. 

In addition to using mathematics while she helps her child with homework, Silvia identifies 
grocery shopping as an area in which she regularly uses mathematics, doing comparison 
shopping, for example. Sarita often accompanies her to the grocery store and she involves her in 
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the shopping process, tying in mathematics by asking the child to select, for example four 
oranges or three pears. Silvia tries to buy games that are educational in order to support learning 
at home.  
Parent Perspectives upon Observing a Mathematics Lesson  

After both of the observations, I met with the mother to discuss her perspective on what she 
had observed in the classroom.  

The case of Vera. Vera observed a lesson on volume of a rectangular prism. She liked the 
look of the classroom and how the children worked in groups. She was definitely surprised by 
the lesson. She had expected to see a lesson on computation and to see the students working 
individually out of a text book. She noted the difference between the structure for learning she 
observed in this classroom and what she had experienced as a student, which was primarily 
individual work done exclusively on paper, copying an example from the board and completing 
similar problems after hearing the teacher’s explanation. Vera commented on the manner that the 
teacher had with the children, calling her accessible, caring, and calm. She noted that gathering 
the children in the meeting area supported them in being more focused and attentive. 

Vera mentioned that there were wide attempts at participation, with many students 
volunteering during the mini-lesson, even if they were not all called upon. She felt that the 
children were very involved in the lesson both during the mini-lesson and afterward during the 
work period. This was an aspect of the lesson that Vera liked well. She did notice that after the 
mini-lesson, while the majority of children were working in table groups, that the teacher kept a 
small group with her in the meeting area and was able to focus more attention on their particular 
needs, supporting them in focusing on the activity. 

Vera commented on how the learning environment was structured through what she 
described as play. She was impressed by the use of centimeter cubes to explore the concept of 
volume. She thought, however, that the teacher’s explanation of the relationship of the base to 
the volume was confusing. Vera noticed that during the work period when the children were 
constructing a rectangular prism, for example, with a base of six, that they would draw the base 
as a 6 x 6 rectangle. She felt this confusion on the part of the students was due to what she saw as 
the teacher’s confusing explanation. Vera thought that an exploration of more examples might 
have dispelled some of the confusion. Vera also thought that a review of the work at the end of 
the work period would have supported student learning. She noted that the need to go to lunch 
precluded this, but she felt that a discussion of the results the students had obtained as well as 
why they had obtained them would have contributed to the learning. 

The case of Silvia. Silvia observed a lesson on comparison of numbers. Silvia was positive 
about her lesson observation. She too commented on the manner that the teacher had with the 
children which she found to be an encouraging one where the children were also supported in 
helping one another. She was impressed with how readily the children helped each other, how 
well they worked together, and how the teacher supported this atmosphere of cooperation that 
pervaded the classroom. She thought the classroom was inviting with much useful and 
interesting information about mathematics posted for the children to see. She was pleased with 
the level of participation as it seemed to her that every child in the class participated fully in the 
lesson. She liked the use of materials (pattern blocks in the routine portion, and number cards in 
the main activity) to support the learning.  

Silvia found the class to be very different from her early childhood experiences in the 
Dominican Republic where the emphasis had been much more on simply play as opposed to play 
as a vehicle for learning particular content. She was impressed with the children’s knowledge. 
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Silvia had expected that the work the children would be engaged in would be at a simpler level. 
She found the level of mathematical understanding demonstrated by the children including the 
range of numbers they were comfortable with to be well advanced over what she experienced in 
kindergarten. She thought that the dual focus in the use of games, both to entertain and to teach 
was a laudable one. 

 
Discussion  

I will begin this section by discussing the initial perspectives that parents expressed in their 
first interviews. I will then discuss their reaction to and reflection on the lesson they observed in 
their child’s classroom.  
Initial Perspectives 

I will begin this section by discussing two themes that emerged from the data: parental help 
at home at support from school.  

Helping at home. Silvia and Vera both talked about how they used the same kind of 
manipulatives (dried corn and beans) in working with their children as were customarily used in 
the Dominican Republic. They also mentioned that she tried to reframe mathematics problems 
using interesting contexts or contexts that were motivating to her child. We see parents who see 
one aspect of their role as a parent to include fundamentally that of teacher. 

Support from school. The perception of the support provided to the parents by the school 
(including the classroom teacher) varies from parent to parent. Silvia seems satisfied, even 
pleased, with the communication she has with the school. We can speculate that some of this 
may be due to the fact that her daughter is in Kindergarten and just easing into the school system. 
Vera is frustrated by the paucity of information she receives about her child’s progress. Who 
knows if this lack of communication between home and school is contributing to what Vera 
identifies as a gradual lessening of interest in school on the part of her son, Victor. As Remillard 
and Jackson (2006) note, when parents are left out of discussions of mathematics learning, it can 
have a negative impact on their ability to be actively involved in their children’s schooling. 
Reaction to the Lesson  

Both of the participants’ experiences with mathematics in school were with traditionally 
taught mathematics. Based on their own schooling histories, both mothers expected to see more 
traditional mathematics lessons when they observed their children’s classrooms. One might think 
that this would orient them toward resisting the teaching style they observed. This did not turn 
out to be the case. Both mothers were pleased by many aspects of what they saw in the 
classroom.  

They both commented on being pleased that the teacher was using manipulative materials 
that supported the children in understanding the mathematics. Since they had both previously 
mentioned how it was typical in their experience in the Dominican Republic that small objects 
were used at home to support their developing mathematical understanding, the use of these 
materials may have been recognized as a support familiar to them. 

In addition, they both commented on the teacher’s manner with the children (saying similar 
things about the two different teachers); they liked how calm and supportive they were. This 
speaks to the importance of the connection between teacher and student for supporting learning. 
And more particularly, in the data being examined here, that parents recognize and appreciate 
this fact. 

Vera alone pointed to a feature of the lesson that she thought was lacking. She recognized 
that simply engaging in the mathematical activity (building rectangular prisms with centimeter 
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cubes) was not sufficient to develop a sufficiently deep understanding of the problem at hand. 
She recognized that a discussion following the activity would have supported the children in 
processing their work and arriving at a clearer understanding. Perhaps because she is the mother 
with the more advanced education (including a degree in accounting), Vera is positioned to 
understand the important role that discussion can play in learning. Whether this is the case or not, 
Vera’s understanding of what is necessary for learning is impressive. This mother brings 
understandings to the learning of mathematics which could be exploited for the benefit of her 
child’s learning.  

These two mothers brought a keen eye to their observations of the mathematics lessons in 
their children’s classrooms. Their comments are show a sophisticated understanding of 
children’s learning needs. In addition to Vera’s noting that a follow-up discussion to the 
mathematics activity would have supported student learning, Silvia understood and appreciated 
the level at which the Kindergarten children were functioning.  

Here we see parents eager to help their children. The suggestions they have of more 
communication from the school and access to materials that can be used in the home to support 
learning are indicative of a desire to be involved in and support their children’s learning. It seems 
that they recognize that having home and school learning environments better aligned would be 
supportive of their children’s learning.  
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This study investigated the impact of two divergent pedagogical styles on the mathematics 
learning of African American middle school students. One of the teachers used her knowledge of 
students’ background and culture, and aligned her instruction with their learning preferences to 
design meaningful and contextual learning experiences. In doing so, mathematics learning was 
positively impacted. Results suggest while knowledge of mathematics and pedagogy is crucial to 
teaching mathematics, an understanding of African American cultural style and learning 
preferences are also essential to effectively teaching African American learners.  
 

Purpose of Study 
The National Assessment of Educational Progress (NAEP) results show significant gains in 

mathematics achievement among African American middle school students (Tate, 2005). Even 
so, African American students are more likely to be enrolled in lower-level mathematics courses 
and experience a mathematics curriculum that stresses basic skills (Tate, 2005). As a 
consequence, African American students can expect to use computers for drill and practice, as 
opposed more meaningful activities such as simulations, demonstrations, or applications of 
mathematical concepts (Lubienski, McGraw, & Strutchens, 2004). Worksheets are also more 
commonly used on a daily basis in classrooms that serve African American students (Strutchens, 
Lubienski, McGraw, & Westbrook, 2004). The National Council of Teachers of Mathematics 
(NCTM) recommends students receive standards-based instructional practices (Lubienski, 
McGraw, & Strutchens, 2004). Standards-based instruction is characterized by an emphasize on 
conceptual understanding, mathematical reasoning, student engagement with mathematical ideas, 
multiple representations, collaborative investigations, and open discussion and writing 
(Goldsmith & Mark, 1999). Unfortunately, many African American students are less likely to 
experience these standards based approaches in mathematics classes (Lubienski, McGraw, & 
Strutchens, 2004).  

This study investigates the impact two different pedagogical styles had on middle school 
students’ mathematics learning. The study was conducted at Spartan Middle School, located in a 
rural county in a southeastern state. The two teachers involved in the study, Ms. Canady and Ms. 
Able, are both experienced mathematics teachers; Ms. Canady has taught for 14 years, and Ms. 
Able has taught for 12 years. Both are White women who graduated from the same teacher 
education program and they both grew up the community where Spartan Middle School is 
located. During the period in which the study took place, there were 514 total students at the 
school: (a) 258 Black, (b) 248 White, (c) 3 Hispanic, (d) 4 Asian, and (e) 1 unspecified. Two 
hundred eighty-nine students (56%) at SMS receive free or reduced lunch. 

The pedagogical teaching styles of the two teachers are very different. Ms. Canady’s 
teaching style can be described as an aggregate of high-demanding structure and a disciplined 
environment coupled with instruction that utilizes students’ lived and cultural experiences. She 
feels it is her responsibility to know and understand her students’ backgrounds and struggles, and 
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she says she uses this knowledge to help her students succeed. Irvine and Fraser (1998) used the 
term “warm demander” to describe teachers like Ms. Canady. Ms. Able describes her teaching 
style as “professional,” and she appeared to maintain both emotional and physical distance from 
her students. She required all students to use her prescribed procedures and techniques to solve 
problem, with the main to goal being to get the right answer.  

 
Theoretical Perspective 

The most prevalent mathematics classroom teaching pattern in American schools is the 
initiation-response-evaluation (IRE) pattern (Hiebert & Stigler, 2000). IRE is a teacher-centered 
pattern of teacher-initiated questions, student response, and teacher evaluation (Cazden, 2001). 
In classrooms where the IRE pattern is emphasized, teachers place little focus on having students 
explain their thinking, work through mathematical ideas openly, make conjectures, or develop 
consensus about mathematical ideas (Franke, Kazemi, & Battey, 2007). Mathematics educators 
have argued that an IRE teaching pattern limits students’ ability to fully understand and 
appreciate the complexities of mathematics because it emphasizes school-learned methods and 
rules (Boaler, 2000; Malloy & Malloy, 1998; Tate, 1995), without proper attention to meaningful 
understanding.   

This instructional pattern is well documented in mathematics classrooms that serve African 
American students (Lubienski, 2002; Lubienski, McGraw, & Strutchens, 2004; Strutchens, 
Lubienski, McGraw, & Westbrook, 2004; Strutchens & Silver, 2000). Describing teaching 
parallel to the IRE pattern, Tate (1995) says this “foreign pedagogy” (p.166) has negatively 
impacted African American students. Tate suggests this “foreign pedagogy” has attributed to: (a) 
African American students being tracked into remedial mathematics; (b) low numbers of African 
American students in college preparation or advanced mathematics courses; and (c) fewer 
opportunities for African American students to use technology in school mathematics. 

In contrast to the IRE teaching pattern, Franke, Kazemi, and Battey (2007) suggest 
mathematics teaching should be relational and multidimensional. In this sense, mathematics 
teaching takes the form of developing relationships between (a) students and teachers; (b) among 
students themselves and mathematics; and (c) engagement among students and teachers to 
develop mathematical understanding (Lampert, 2004). Mathematics teaching is multidimensional 
with respect to the interactions that occur between (a) teachers’ pedagogical content knowledge, 
(b) teachers’ beliefs about mathematics teaching and learning, (c) teacher understandings about 
students’ social and cultural contexts, and (d) creating an environment for mathematics learning 
(Lampert, 2004; Moschkovich, 2002). These interactions influence the ways teachers structure 
mathematics experiences for students.  

We contend that for African American students, experiencing mathematics teaching and 
learning as relational and multidimensional requires teachers to know and understand these 
students’ cultural background, prior experiences, and contexts. In doing this, we give credence to 
culturally relevant pedagogy. Ladson-Billings (1995) defined culturally relevant pedagogy as a 
pedagogy that fosters meaningful classroom experiences that affirms students’ backgrounds and 
prior knowledge. Culturally relevant pedagogy provides a framework for making connections 
between using contextual situations for mathematics teaching and learning, connecting to 
students’ experiences, and linking mathematics to students’ social and cultural ways of knowing.  

Culturally relevant pedagogy rests on three criteria: (a) students must experience academic 
success; (b) students must develop and/or maintain cultural competence; and (c) students must 
develop a critical consciousness. Culturally relevant teaching requires teachers to attend to 
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students’ academic, social and cultural understandings (Ladson-Billings, 1994, 1995, 2000). 
Consequently, mathematics teachers must demand, reinforce, and produce excellence in their 
students. Achieving excellence requires mathematics teachers to use students’ social and cultural 
backgrounds as a bridge for developing mathematical understanding. Culturally relevant 
teaching allows students to use mathematics to critique the cultural norms, values, mores, and 
institutions that produce and maintain social inequities (Ladson-Billings, 1994, 1995, & 2000).  

Culturally relevant teachers identify the resources that students bring to the mathematics 
classroom and these teachers construct experiences that utilize these resources to produce 
meaningful mathematical understanding (Gutiérrez, 2002). Therefore, effective culturally 
relevant mathematics teachers of African American students have strong mathematics content 
knowledge, pedagogical skills, and knowledge of African American cultural style and learning 
preferences. For this research, we used culturally relevant pedagogy as the foundation for 
examining the impact an IRE teaching pattern and a relational and multidimensional teaching 
pattern have on African American students.  
African American Students’ Learning Preferences 

In order to engage in culturally relevant pedagogy for African American students, 
mathematics teachers must have an understanding of African American culture and accept that 
African American culture is a significant socializing force for African American students.  
African American students’ mathematics identities are shaped by culture, learning preferences, 
and experiences with mathematics (Berry, 2003). Martin (2007) refers to mathematics identity as 
one’s belief about “(a) their ability to do mathematics, (b) the significance of mathematical 
knowledge, (c) the opportunities and barriers to enter mathematics fields, and (d) the motivation 
and persistence needed to obtain mathematics knowledge” (p. 19). The development of a positive 
mathematics identity is essential if students are to sustain an interest in mathematics and develop 
persistence with mathematics.  

Shade (1997) described the African American learning preference as a combination of 
holistic, relational, and field dependent learning styles. Holistic learners seek to synthesize 
divergent experiences in order to grasp the fundamentals of experiences. They are successful 
with content tied to a larger whole, and view cause and effect as separate entities. The kinesthetic 
mode is the principal mode of information induction; thus, concreteness is used to facilitate new 
learning (Shade 1997). Relational learning preference is characterized as freedom of movement, 
variation, creativity, divergent thinking, inductive reasoning, and focus on people. Field 
dependent learners require cues from the environment, prefer external structure, are people-
oriented, are intuitive thinkers, and remember material in a social context (Shade 1997). Taken 
together, learning preferences of holistic, relational, and field dependent learners are directly 
related to African American culture.   

Culture and ethnicity are frameworks for the development of learning preferences; however, 
other factors play a significant role in cultural and learning preferences (Irvine & York, 1995). 
The learning preferences of African American students suggest that these students should not 
only receive mathematics instruction that includes opportunities to learn mathematics in an 
abstract manner, but also instruction that embed relevant contexts, use concrete imagery, and 
provide experiences based on how mathematics concepts are related to each other. Teachers also 
need to understand the complexity of students’ experiences, which may lead to doing things with 
students that are not mathematics, such as interviewing them, having them write autobiographies, 
and discussing their interests (Ladson-Billings 1997). 
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NCTM Process Standards 
The NCTM Process Standards complement the learning preferences of African American 

students. Berry (2003) theorized the overlap between the NCTM Process Standards and African 
American learning preferences. The NCTM Process Standards are: Problem Solving, Reasoning 
and Proof, Communication, Connections, and Representation (NCTM 2000). Each of these 
standards focuses on how students should learn and use mathematics. The Problem Solving 
Standard is consistent with the learning preferences of African American students because it 
supports the notion that learners should have opportunities to experience mathematical problem 
solving in a social context and utilize various strategies to solve problems. The Reasoning and 
Proof Standard suggests that students make and investigate conjectures, develop and evaluate 
mathematical arguments, and select and use various types of reasoning and methods of proof 
(NCTM 2000). This standard aligns well with African American students’ preference for 
expressive individualism, experimentation, and divergent thinking. The Communication 
Standard proposes that students organize and consolidate their mathematics thinking, coherently 
communicate their mathematics ideas to others, analyze and evaluate the mathematical thinking 
and strategies of others, and use the language of mathematics to express mathematics ideas 
(NCTM 2000). Complementary to the Communication Standard is African American learners’ 
cultural and learning preferences towards oral expressions, social and affective emphasis 
(Boykin, 1986; Shade, 1997). 

The Connections Standard recommends that students interconnect mathematics ideas within 
mathematics and outside of mathematics, and understand how mathematics ideas relate to and 
build on one another to produce a coherent whole (NCTM 2000). The Connections Standard 
supports the holistic view of learning suggested by Shade (1997), because African American 
learners need contextual experiences that connect mathematical ideas within and outside of 
mathematics. The Representation Standard suggests that students create and use multiple 
representations to organize, record, and communicate mathematical ideas; select, apply, and 
translate among mathematical representations to solve problems; and use presentation to model 
and interpret physical, social and mathematical phenomena (NCTM 2000). Since African 
American learners have a propensity for verve, mathematics learning and teaching should be 
stimulating and interesting as well as offer opportunities for hands-on experiences that promote 
interactivity.  
 

Methodology 
There were a total of 100 students that participated in this study. Fifty one students (33 

African American and 18 White) were taught by Ms. Canady, and 49 students (30 African 
American and 19 White) were taught by Ms. Able. To access the impact of the two pedagogical 
styles on students’ mathematics learning, pre- and post-test were given to both groups of 
students. The tests were constructed from released items on the state mandated assessment. The 
pre- and post-tests were designed to be parallel to each other, with both having the same number 
and types of items. The tests were each composed of 10 items which consisted of a combination 
of multiple-choice open-ended problems. Both tests were reviewed by a mathematics educator, a 
mathematics education doctoral student, and a high school mathematics teacher for face validity. 

The six multiple choice items were adapted from the state assessment released items. The 
state assessment gave students choices of solution to a given addition of integers “naked numbers 
problem.” The pre- and post-test were adapted by giving students choice of whether the solution 
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would be positive, negative, neither, or unsure. In addition, the students were asked to explain 
their thinking. Figure 1 is representative of the multiple-choice items with directions.  

 
Using mental mathematics 
 circle positive for the problem(s) that will result in a positive answer,  
 circle negative for the problem(s) that will result in a negative answer, 
 circle neither for the problem(s) that will result in neither negative nor positive answer,  
 circle unsure for the problem(s) that you do not know what the result will be. 
 Explain your answers. 
1. 7824 +−    a. Positive     b. Negative     c. Neither     d. Unsure 
Explain your answer. 

 
Figure 1. An example of a multiple choice item with directions. 

 
On both the pre- and post-tests students analyzed the thinking of three persons who solved 

“naked numbers” problems. These problems were adapted from multiple choice items among the 
released items of the state assessment; the choices were reduced from five to three choices and 
were put into a context of solutions found by three students. Figure 2 represents an adapted 
problem that appeared on the pre-and post tests.  

 
This class was given the problem: )12(7 −+ . 
 Oren stated the answer is 5 because he subtracted. 
 Robert stated the answer is -19 because it is an addition problem but he put the negative 

in front because of -12. 
 Joe stated the answer is -5 because he said there are five more negatives than positives. 

Who is right? Why? 
 

Figure 2. Post-test analytical problem. 
 

Two open-ended items were on both tests. On the post-test, students were asked to solve, 
“Sam the snake slithers forward 4 feet and backwards 2 feet everyday. How many days will it 
take Sam to reach a rock 25 feet away from his starting point?”   

   The pre- and post-test measures were scored by two raters – one mathematics educator (one 
of the authors) and a high school mathematics teacher. The pre-and post-test measures were 
scored after the instructional units were completed. The raters used a sixteen-point rubric to rate 
the overall quality of the open-ended responses. For the items that required subjective ratings on 
the pre-test, the mean inter-rater correlation was .92. On the post-test, the mean inter-rater 
correlation was .96. These correlations were considered sufficiently high to provide reliable 
assessments of students’ performance on these measures. 
 

Results 
A two-way analysis of covariance (ANCOVA) was used to investigate the effectiveness of 

the two methods of instruction, controlling for group differences. Students were administered a 
pretest before the units were taught and a posttest after units were completed. The effect size was 
obtained to measure the amount of variance accounted for in achievement by the two types of 
teaching methods. 
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Prior to evaluating the different methods of instruction on student achievement, several 
assumptions underlying the two-way factorial ANCOVA were examined. Observations of 
skewness values and normal probability plots indicated that normality was satisfied. Levene’s 
test of homogeneity of variance indicated that the variances of the two groups were not 
significantly different; F(3, 96) = 0.16, p > 0.05. Linearity between the covariate and dependent 
variable was shown to be satisfied by a linear regression of posttest scores on pretest scores. 
Also, interaction between the group and pretest variables indicated the interaction term was 
insignificant (p > 0.05), supporting the assumption of homogeneous regression slopes. 

A two-way factorial ANCOVA indicated that the method of instruction students were 
exposed to had a statistically significant influence on their achievement, F(1, 96) = 13.06, p < 
0.05. Within each respective group, African American and White students’ scores were not 
statistically different. Parameter estimates indicate that, given two students with similar pretest 
scores, you can expect the student in the intervention group to have a score of 6.5 points higher 
than the student in the control group. Furthermore, the adjusted r-squared indicates 55 percent of 
the variance can be accounted for by group assignment. 
 

Discussion and Conclusion 
While the results of this study may not be generalizable, we can not discount the fact that Ms. 

Canady’s instruction appeared to have a strong impact on African American students learning of 
addition of integers. The reasons for this impact are hard to isolate but we speculate that the use 
of contexts for teaching addition of integers, students sharing and justifying their thinking, and 
Ms. Canady’s disposition of a “warm demander” positively impacted students’ motivation to do 
mathematics. Observations of both classrooms revealed that Ms. Canady’s classroom was more 
engaging and respecting of students’ perspectives. Hence, the difference might be found in the 
level of engagement of the students. The activities and engagement of Ms. Canady’s pedagogical 
practices are strongly correlated to relational and multidimensional teaching, which appears to 
complement the learning preferences of African American learners.  

The knowledge required for effective teaching is substantial. While having a solid foundation 
in mathematics content is essential, teachers must also be able to ascertain students’ 
understanding of the mathematics content, and have a firm grasp of curricular goals (Schoenfeld, 
2002). This means they must know and be able to teach problem-solving skills, represent 
mathematics concepts in multiple ways, connect mathematics concepts within mathematics and 
to other subjects, and be able to analyze students’ thinking about mathematics. Schoenfeld 
(2002) contended that this is a gross underestimation of the knowledge and skills required to be 
effective mathematics teachers. This knowledge alone will not have the sustaining impact 
necessary for long-term effects on the mathematics teaching and learning of African American 
students (Martin, 2007). Effective mathematics teachers of African American students must also 
possess the tenets of culturally relevant pedagogy. These teachers must be “warm demanders,” 
that is, they must demand academic excellence from their students while possessing culturally 
competence. Mathematics teachers of African American students must have knowledge of 
African American cultural style and learning preferences and how to use this knowledge to 
develop effective learning experiences in mathematic for African American students. 
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Many teachers find themselves challenged to teach mathematics to students who are also 
learning English. Research in English as a second language recommends the use of objects, 
pictures, gestures, and language supports to help English language learners (ELLs) develop 
language and content. For example pictures and gestures can be used to augment a story similar 
to enacting a play. However, how can a mathematics teacher utilize these practices? The 
purpose of this study was to describe how a teacher used language structure to support two ELLs 
and how these students used the language structure to develop their mathematical thinking. 
Findings of the study suggest that modeling language structures for students enables ELLs to 
participate in mathematical discourse and deepen their understanding of mathematics through 
oral communication.  
 

Introduction 
Mathematics educators facing the challenge of raising the performance levels of students and 

are forced to examine how to accomplish this within growing culturally and linguistically diverse 
populations (Gebhard, 2002). Adler (2001) and Barwell (2005) described the challenges that 
teachers and students face when students are learning mathematics in a language different from 
their home language. Limited proficiency in the academic language of mathematics appears to be 
one reason why students that appear fluent in social English still have difficulty in mathematics 
(Irujo, 2007).  

Words used in mathematics draw from two sources: everyday words with specific 
mathematical meanings and words specific to the domain (Irujo, 2007). A common strategy to 
decode the meaning of a word is to identify the root and build meaning from it. For example, 
triangle can be broken into the root angle and the prefix tri, which indicates three. Thus, triangle 
means three angles and describes a specific shape. However, individuals can not always discern 
the embodied concept when this strategy is applied to groups of words. A person who knows the 
meaning of least, common, and multiple may unpack the term least common multiple as the 
smallest familiar multiplication. This does not lead to a correct mathematical meaning and the 
individual may have difficulty understanding the concept embodied by the phrase. Interpreting 
academic mathematics language can be difficult for students with proficiency in English. 
However, these challenges compound when a student has limited English proficiency. The 
purpose of this research report is to describe how a teacher supported students who were gaining 
both proficiency in English and mathematics.  
 

Theoretical Framework 
Gee (1991) theorized that discourse is socially constructed by groups of people to 

communicate ideas and this discourse is defined by the distinct language, thought, and actions 
shared by individuals in the community. Thus, social interactions, class structure, and curriculum 
combine to create the unique discourse of a mathematics classroom (Yackel, 2001). This 
discourse is created by the teacher and the ability of students to express their thoughts. 
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Classrooms with native English speakers are diverse and not all students have the same ability to 
articulate their ideas. However, the classroom discourse changes significantly when it includes 
students who are learning English. The teacher may ignore these students and rely on outside 
support to translate the classroom discussion or change his or her discourse to make the 
discussion more accessible to English language learners (ELL).  

 Monitoring vocabulary is an obvious way to modify discourse (Irujo, 2007). To further help 
ELLs develop a deeper understanding of words, a teacher can link those words to pictures, 
symbols, and actions. The choice of words and how those words are linked to sensory 
experiences determines the degree to which an English language learner (ELL) can construct 
meaning. Two considerations in word choice are helpful. First, concrete words that link to 
sensory experience are easier for children to learn. Second, certain words are key to 
understanding content in a lesson. Emphasizing concrete word choice and highlighting key 
content words are helpful ways that teachers can modify their discourse.  

Echevarria, Vogt, and Short (2008) describe specific research-based techniques to help ELLs 
construct meaning in classrooms, including the use of objects, pictures, gestures, and language 
supports. The use of these techniques encourages ELLs to develop a vocabulary that goes 
beyond translating nouns from one language into another. For example, a rectangular prism is 
introduced by showing students several solids as examples with a discussion of their attributes. 
ELLs may learn to identify the shape with the term but the discussion of its attributes is often 
incomprehensible. However, if ELLs are given several solids to feel and provided language 
supports to describe its attributes (straight, flat, surface, edge, point, sharp, etc), they are more 
likely to appropriate descriptive language to characterize the rectangular prism’s attributes. The 
word bank provided in this example enables an ELL with appropriate words that do not solely 
rely on memorized vocabulary.  

Research and literature on instructing ELLs provide many examples of how the strategies 
described by Echevarria, Vogt, and Short (2008) can be infused in courses that focus on 
speaking, reading and writing. However, in mathematics there are fewer examples. The purpose 
of this study was to describe language supports that were used by a teacher to help ELLs gain 
proficiency in English and mathematics.  
 

Methods 
This study took place in a classroom in the western United States. 62% of the students in the 

school spoke English as a second language. During the previous year, Olson and Salsbury 
worked with teachers in the school to incorporate language structures into their mathematics 
instruction through professional development. Braun was both a teacher leader who planned 
professional development with a team (Olson, Salsbury, Braun, Colasanti, 2008) and a researcher 
who conducted semi-structured interviews with ELLs over 18 months. Braun was curious about 
how she used language structures to support the learning of ELLs in her classroom and 
collaborated with Olson and Salsbury to characterize her practices. 

Braun’s fifth grade classroom had 27 students. She had 14 ELLs one of whom we will call 
Shi. Shi moved to the United States from Nepal during the summer of 2008. His native language 
was Chinese. Even though Shi’s English was very limited, he found ways to communicate with 
other children, suggesting an outgoing personality. A second learner we will call Ricca. She 
moved to the United States from Mexico in 2006. Ricca participated in a larger study that 
examined how ELLs developed mathematical thinking while gaining English proficiency during 
the fourth grade. She spoke both conversational and academic English with hesitancy and 
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difficulty. During the study, we developed a good relationship with Ricca through the monthly 
small group meetings and she gradually increased her spoken language during the small group 
meetings. At the beginning of the 2008 school year, Ricca was an intermediate speaker. Even 
though Ricca had a good relationship with Braun, she seldom spoke to Braun or her peers. Ricca 
was quite shy and would only communicate when she felt secure in her environment and 
confident in her content knowledge.  

Qualitative methods with two case-studies (Merriam, 1998) were used to identify and 
describe the discursive practices that Braun used during her instruction. Data were collected from 
five sources during the fall semester. These sources included (a) reflections, (b) video recordings 
of classroom and small group instruction, (c) detailed lesson plans, (d) students’ written 
interactions recorded on a smart board, and (e) informal interviews. Constant comparative 
methods (Merriam) were used to code, analyze, and collapse the data to display in a conceptual 
matrix with illustrative examples in each cell. These examples were used to characterize Braun’s 
use of language structures.  
 

Results and Discussion 
Braun made three instructional decisions to encourage students’ vocalization of their 

mathematical thinking. First, she instituted a number talk at the beginning of the mathematics 
lessons a couple of times each week. During the number talk the students sat on a rug in front of 
a large sheet of paper. Braun wrote a problem on the paper that could be solved using mental 
arithmetic and after a short discussion, students thought about the problem silently, without 
paper and pencil. Then, Braun called on several students to share their solution strategy and 
recorded it on the paper using notation. Second, Braun wrote problems that would not be 
cognitively difficult for her fifth grade students. She wanted the students to be able to understand 
the process of a number talk which includes: mental math, sharing their thinking to the whole 
class and questioning each other. The third instructional decision was to provide students with a 
structure to share their strategy. This language structure was designed to provide students with 
limited English with the words necessary to enter a mathematical conversation. The language 
structure posted on the wall was, “I know __ x __ = __. This helped me solve __ x __ = __. The 
answer is ___.” The language structure allowed students to focus on sharing their reasoning and 
establishing group norms. This technique provided a scaffold from which students could discuss 
complex mathematical ideas. Braun wanted students to be successful within the number talk and 
create a learning community in which students felt safe in sharing their ideas. 

The following is an illustrative example of a typical number talk during the first month of 
school. Braun wrote 28 x 6 = on chart paper.  
 

1 
2 

Braun I have the problem 28 groups of 6 on the board. Who would like to 
make an estimate of the answer? Student A. 

3 
4 

Student A I know that the answer is going to be less than 180 because 28 is close 
to 30 and 30 times 6 equals 180. 

5 Braun Anyone else? 
6 Student B I know that the answer will be more than 120 because 20 times 6 equals 

120? 
7 
8 
9 

Braun Our answer should be between 120 minus 180 according the estimates 
from Student A and Student B try solving the problem. (Students sat 
quietly and solved the problem mentally. They took turns sharing their 
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10 
11 

answers until several were posted on the chart paper.) Who would like 
to share how they solved this problem? 

12 
13 
14 

Student C I split the 28 into a 20 and an 8. Then I multiplied 20 times 6. I know 20 
times 6 is 120 from Student B. Then I multiplied 8 times 6. I know 8 
times 6 is 48. 120 and 48 equals 168. My answer is 168. 

15 Braun Does anyone have questions for Student C? 
16 Student D How did you know that 8 times 6 is 48? 
17 
18 

Student C I know that 4 doubled is 8. I can multiply 4 times 6 which is 24 and 
then I need to double the answer. 24 and 24 is 48. 

19 Student D Ohhhh, I get it.  
20 Braun What strategy did Student C use and how do you know? 
21 Student A Splitting number because he split the 28 into a 20 and an 8. 

 
Braun initiated the number talk with a problem that students could easily solve (line 1) and 

engaged them in it mathematically by asking them to estimate the answer (line 2). Notice that 
students A and B use the language structure, I know that, followed by a reason (lines 3 and 4). 
Braun used the students’ estimation to define the boundaries of acceptable answers, setting the 
norm that students need to estimate an answer and that the answer should be within the 
boundaries. Student C shares her solution, stepping out of the language structure (line 12) to 
describe the strategy that she used. The student then moves back into the language structure, I 
know that, to finish her description of her strategy (lines 12 and 13). Braun encourages students 
to question each other (line 15) and a student asks a question (line 16). Student C further explains 
(lines 17 and 18) which leads to an insight (line 19). Braun then reinforces the naming of a 
strategy (line 20), bringing closure to the number talk. Braun reflected that “the student named 
the strategy, splitting numbers. This type of naming became important because naming strategies 
helped students during the share time to express the concept that they were applying to the 
problem. It also allowed them to decide whether their strategy was different from ones that other 
students had shared.” The teachers in her school decided to use consistent words for particular 
strategies. Here splitting is used to refer to the strategy of ‘breaking apart’. This was a conscious 
decision to help ELLs and learning disabled students who became confused with multiple labels 
for a strategy.  

During these early number talks, Shi watched and listened to other students during the 
beginning of the school year. He felt comfortable with one little girl and followed her lead 
through the daily routines. During number talks, Shi was able to figure out the answer to the 
problem, but he was unable to share his solutions or thinking with the rest of the class. After the 
first couple of weeks, he ventured to give the answer to the problem because he felt comfortable 
with numbers. However, with limited English he did not explain or share his solution strategy. 
Shi seemed to really enjoy math and felt comfortable with solving written problems. While there 
were times during the school day when Shi became uninterested in a lesson, this never occurred 
during math. Braun noted that Shi was engaged and appeared to use his background in math to 
build upon what the class was doing. He seemed to make connections to the ideas being taught. 
Like Shi, Ricca was also quiet. She kept her eyes on the speaker and watched Braun write on the 
chart paper. As both the structure of the number talk and the structure of the language became 
familiar, Ricca began sharing her thoughts using the language structure. Initially, when she tried 
to share her thinking during number talks, she became stuck and forgot her next step. After 30 
seconds of wait time, Braun would ask her if she wanted to think about the problem for a little 
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bit. Ricca always nodded shyly with relief. Occasionally Braun led the class back to the problem 
and asked Ricca if she was ready to share her thinking. She either finished expressing her steps 
or she asked for help from the class. When a peer helped her complete the problem by providing 
the needed language, Ricca listened intently trying to absorb everything that the student said. 
During the first quarter of the school year, Ricca shared her thinking only two or three times.  
During the second quarter, Braun introduced cluster problems as a strategy to help students solve 
more difficult problems mentally. Cluster problems were related to the original problem using 
the operations of multiplication or division. A combination of them could be used to solve the 
original problem often using the distributive property. For example, cluster problems related to 
28 x 6 could include the following: 20 x 6; 8 x 6; 120 ÷ 6; 48 ÷ 6. Braun encouraged students to 
use one of the cluster problems to find the solution and if they finished quickly to use a different 
one. Students shared a solution strategy using each of the cluster problems. Initially, Braun 
provided the cluster problems for students to use and later students generated their own set, first 
as a class and then independently.  

The following except illustrates how Ricca and Shi used language structures during number 
talk to share their mathematical thinking. Braun posted two problems, 184 ÷ 8 and ¾ of 24, on 
chart paper with four cluster problems (Figure 1). 
 
 
 
 
 
 
 

 
Figure 1. Two number talk problems posted on chart paper with four cluster problems. 

 
Braun began the number talk by asking students for answers to the four cluster problems and 
students quickly provided them. Following the routine, students thought quietly for about two 
minutes and Braun asked for solutions which were recorded on the chart paper. Braun then asked 
for a volunteer to share a solution strategy.  
 

1 
2 

Shi 160 divided by 8 is 20. 24 divided by 8 is 3. 160 and 24 is 184. 20 and 3 
is 23. Answer is 23. 

3 Braun Thank you, Shi, for sharing! 
4 Student E Shi, is learning English quickly. 

 
 Shi quickly raised his hand and began using a slight modification of the language structure (line 
1). Rather than beginning with, I know that, he simply stated the facts that he used, resembling 
the model provided by Student C (lines 12 to 14) in the previous example. As modeled by 
Student C, the classroom norm was to split the problem into two related cluster problems that 
were easy to solve mentally. Shi, following the classroom norm, articulated his answer to the 
cluster problem with the larger numbers (160 ÷ 8) before stating the answer to the cluster 
problem with smaller numbers (24 ÷ 8). Then he combined the pieces and stated his answer. 
Clearly, Shi followed the classroom norm that established an order for splitting numbers apart 
and used the language structure to articulate his mathematical thinking. His ability to 

184 ÷ 8  
Cluster problems to help:    160 ÷ 8    24 ÷ 8    11x 8    1x 8  
   
 ¾ of 24            
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communicate his thinking was recognized by a peer (line 4). From this peer student’s 
perspective, it was unusual for an ELL to gain fluency so quickly.  

After Shi’s explanation, Braun moved the discussion to the second problem. She had recently 
introduced fractions to the class and wondered how they would apply their understanding of 
fractions in a new number talk. Previously, students found fractional parts of sets using unit 
fractions (e.g., find 1/8 of 24).  
 

5 Braun Who would like to solve ¾ of 24? (Ricca raised her hand). Ricca. 
6 
7 

Ricca I know that 6 fours equals 24. And that 6 and 6 and 6 is 18. The answer 
is 18. 

8 Braun Three of the 4 groups of six is 18? 
9 Ricca Yes. 
10 Braun Questions? 
11 Student G Where did you get the six? (Ricca was silent.)  
12 Student H What was the question? 
13 Braun Where did Ricca get the 6? 
14 Ricca I divided (pause). I divided 24 by 4 is 6. 
15 Braun Student J, do you have a question? 
16 Student J No, I was going to help Ricca if she was stuck. 
17 
18 

Braun Oh, that was very nice of you. So, which number did Ricca use to 
divide the 24? 

19 Student K The 4 in the ¾’s. 
 
Ricca responded to Braun’s invitation to discuss a mathematical idea that students in the class 
were beginning to understand. Ricca used the provided language structure, beginning with I 
know that (line 6). Then, stated the facts and her answer. It is interesting to note that Ricca was 
developing multiple ways to express an idea through her use of equals as seen in her statements 
(lines 6 and 7). Her thinking is less transparent for the students in the classroom, prompting 
Student G to ask a question (line 11). Ricca needs more time to think about her response. 
Another student, taking advantage of the silence, asks his teacher to repeat the question (line 12). 
This seemed to give Ricca the time that she needed to explain her use of division (line 14) to find 
the size of four equal pieces of 24. Anticipating that Ricca may need help articulating her 
thinking, Student J is ready to help (line 16). This exchange illustrates the collaborative nature of 
the classroom in which students worked together to solve problems and explain their thinking. 
Braun decided at this point to intervene and bring closure to the problem (line 17 and 18). While 
many of the students may not fully understand how Ricca found three-fourths of 24, Ricca was 
able to articulate her strategy in a way that some students understood.  
 

Summary 
Shi and Ricca seldom spoke in the initial weeks of fifth grade. Shi was a beginning ELL 

student and did not know very many words. Ricca was classified as an intermediate ELL but was 
shy and lacked confidence in her mathematical thinking and ability to communicate in English. 
Like many ELLs they both listened intently to the other students during this silent receptive stage 
(Echevarria, Vogt, & Short, 2008). The number talks were ideal to support the language 
development and mathematical thinking of these ELLs. First, students were able to share their 
answer which was a single number. There was no expectation for an explanation and no 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

475 

judgment as to whether it was correct or incorrect. Thus, Shi and Ricca could provide a solution. 
If they made a mistake translating numbers into English, it was not an embarrassment for them. 
Second, the number talks were short (about ten minutes). The shortness of the number talks 
encouraged more intense concentration and focused listening to peers. Third, the language 
structure that Braun provided created a predictable pattern that they could follow and later use 
themselves. The early number talk problems were purposefully selected to pose little cognitive 
demand so that students could focus on articulating their reasoning using the language structure. 
Like many elementary school students, the students in Braun’s class naturally split numbers into 
pieces and manipulated the larger place values before the ones and tens. This became a 
classroom norm that the ELLs adopted.  

The use of a language structures helped the ELLs gain proficiency and confidence using 
English to express their thinking (Echevarria, Vogt, and Short, 2008). These structures also 
helped the two ELLs develop their mathematical thinking. Shi quickly used the distributive 
property to mentally solve a division problem and Ricca applied her understanding of fractions to 
find three-fourths of a set. Sfard (2008) illustrated the important role of discourse to the 
development of more sophisticated mathematical thinking. Providing language structures that are 
predictable and easily modified supported the ELLs’ emergent mathematical discourse, which in 
turn allowed them to explore mathematical ideas in collaboration with their peers and teacher.  
This study suggests that language structures may not only help ELLs but also all students 
learning mathematics. The language structures help students explain their ideas in concise ways 
that their peers can easily understand. In doing so, these structures may also help solve a 
quandary that many teachers face: What do I do when students ramble in incoherent ways while 
trying to explain their thinking to their classmates? More research is needed to describe how 
language structures and other supports described by Echevarria, Vogt, and Short (2008) support 
the learning of mathematics.  
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Despite recent process toward gender equity in mathematics and science education, the 
persistent underachievement among low-income African American girls remains a challenge.  
This presentation offers the preliminary outcomes of a longitudinal study examining the 
positionality of fifth grade students toward mathematics and science.  From the data speak 
diverse voices, voices of African American girls, their parents, their teachers, and their school 
counselors, and they tell how the girls regard themselves as learners of mathematics. 

 
Background 

The centrality of mathematics for advanced degrees and economic advancement has been 
widely acknowledged.  A comparison of the National Assessment of Educational Progress 
(NAEP) mathematics scores for students in fourth and eighth grade clearly demonstrates the 
difference in the mean achievement between Blacks, Hispanics, and Whites.   
 

NAEP Mathematics 5th (1996) 5th (2000) 8th (1996) 8th (2000) 
Blacks 243 247 280 274 
Hispanics 251 253 287 283 
Whites 282 286 310 308 

 
Results of the Scholastic Achievement Test (SAT) mathematics exam reveal a gap of about 100 
points between the lower-scoring Blacks and the higher scoring Whites.  The gap that begins in 
fourth grade only gets larger as the years of schooling pass (Bennett, Bridglall, Cauce, Everson, 
Gordon, Lee, et al, 2004).  Although research has been conducted on the African American 
student achievement (Foster & Peele, 1999; Murrell, 2002), girls and mathematics education 
(Kerr & Kurpius, 2004), and the impact of socioeconomic status on student learning, little is 
known about the relationship between teacher expectations and African American girls’ self-
perception as science and mathematics learners. 
 

Theoretical Perspective 
Positionality, rooted in feminist scholarship, has been used to describe an individual’s self-

perceived social location that informs that individual’s world-view.  According to positionality 
theory, an individual’s position in relationship networks defines that individual and also 
determines the amount of individual power (Cooks, 2003; Harley et al., 2002).  According to 
feminist scholars, positionality is present in the classroom where power dynamics among 
teachers and students are affected by gender and racial differences (Johnson-Bailey, 2002).  This 
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position determines the level of power individuals possess and, if internalized, impacts their 
access to opportunities.  Positional factors have been shown to affect knowledge construction, 
power, and relationships in and out of the classroom (Maher & Thompson Tetreault, 2001).  
Therefore, the researchers posited that African American girls’ constructed cultural, gender, and 
class identities dictate their positionalities in relation to mathematics learning.  

African American girls must negotiate both race and gender to succeed in school (Picken, 
2002).  “Living in the context of a larger African American community presents more choices, 
yet African American women still have to contend with devaluing messages about who they are, 
and who they will become, especially if they are poor or working class” (Tatum, 2003, p. 57).  

Scholarship on positionality indicates that a teacher’s positionality may affect teaching 
practices as well as students’ experiences (Cooks, 2003; Rehm & Allison, 2006).  The teacher’s 
tendency toward certain behaviors with culturally diverse students, such as being open to cultural 
differences or tying to correct such differences, is a product of a teacher’s views on diversity.  
Positionality is a salient element of all classroom dynamics.  School personnel spend more time 
addressing the social skills of African American girls (speech and dress patterns), and less time 
promoting their academic skills. This is exacerbated for low-income African American girls 
(Morris, 2007). 

Research is therefore needed to explore how the positionalities of teachers, counselors, and 
parents impact African American girls’ positionality in relation to mathematics and science 
learning. The presenters are engaged in a three-year study funded by the National Science 
Foundation to investigate African American girls positionality toward science and mathematics.  

 
Research Questions 

The primary research questions under study are as follows: 
1. How do African American middle school girls position themselves as mathematics and 

science learners in relation to their gender and ethnic identities?   
2. How do parents, teachers, counselors, and administrators position African American 

girls in relation to the girls’ interest and achievement in mathematics and science 
education? 

For this conference, the presenters will focus the component of the research questions that 
address mathematics. 
 

Method 
The research participants were recruited from local elementary schools where the researchers 

had previously established working relationships.  Thirty African American girls in the fifth 
grade were asked to join a cohort of female students who would be observed during their fifth 
grade and the two years following.  Participants were drawn from the probable population at a 
neighborhood middle school where there was in place a magnet program for mathematics and 
science.  The girls were asked to share their reflections on school experiences in mathematics 
and science.  Of the three schools, one school was considered as “parallel”, rather than “control,” 
given that the study was not designed to test interventions.  This school was already rich in 
community involvement, a situation atypical for the community, which is generally of low 
economic status.  

Preliminary data sources included semi-structured interviews with teachers of mathematics 
and science content areas, parents, and counselors, and focus groups with the girls. All 
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interviews were conducted at the schools. Interviewers were members of the research team, 
doctoral students and post-doctoral researchers in education areas. 

Records of student grades and state tests scores were collected.  During the summer, an 
institute was held for parents, teachers, and counselors from two of the schools.  Data from the 
first cohort included observation, interview, and field notes, videotapes of classroom lessons, 
focus groups, and the summer institute.  There is an advisory Board comprised of community 
members.  During the second year, a new cohort of thirty fifth-grade girls was added to the 
study, comprising the second cohort. 

Initial analysis was conducted using grounded theory, beginning with inductive analysis.  
The data was analyzed according to the data source, be it girls or teachers, parents or counselors. 
Hatch’s (2000) inductive analysis method was used to analyze the data. Inductive analysis is a 
search for patterns of meaning in the data that guides the researcher to make general statements 
regarding the phenomenon being studied.  Triangulation of the data was achieved by member 
checking, peer review, and confirmatory analysis using a review of the literature. 

 
Results 

Triangulation of the data was achieved in part through the literature reviewed on African 
American girls and mathematics and science learning (Butler & Lakes, 2003; Foster & Peele, 
1999; Kerr & Kurpius, 2004; Murrell, 2002; Tutweiler, 2005).  Consistencies between this 
literature and the researchers’ finding regarding African American girls’ positionality in 
education provide some authenticity of representation, or a confirmation between what the 
researchers believed to have observed and what was actually observed. 
Responses of the teachers  

During interviews teachers reported their observations of African American girls in classes in 
mathematics and science.  They report that reading and mathematics are areas in which girls 
excel, but they are better in areas that involve language.  They credit the boys in their classes as 
being more interested in science and mathematics than are the girls.  Teachers hypothesized that 
the girls typically viewed math and science as a male domain.  As one teacher explained, 

I think some girls kind of think that science is more, or a guy thing, cause like, 
you know. . .  Of a lot of their experiences, like you know, who invented this or 
who invented that, it’s a lot of guys, to the point where they don’t feel like they fit 
in.   

Teachers acknowledged that the mathematics instruction is based on rote memory, skills and 
computation, with less focus on higher order thinking, problem solving or hands-on activities, at 
the same time they are aware that their students would be more successful with hands-on 
experiences in the classroom.  One teacher believed that among the resources that would 
influence mathematics skill development would be, “Definitely hands-on, definitely giving them 
something where they can feel it, touch it.”   

Observing that parental involvement was important to the girls’ success, teachers note the 
significance of the home environment.  Girls did better when the parents were supportive and the 
student was motivated.  Early focus on school subject areas made a difference, especially when 
the work was taught in an earlier grade.  Otherwise, teachers felt as if they had to start over at the 
beginning.  Strategies that worked included group work and peer coaching, as did scaffolding of 
information.  However, teachers believed that few of their female students would pursue 
mathematics in higher education or their careers. 
Responses of the Parents 
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Analysis of the data revealed that parents were indeed directly or indirectly involved in their 
daughter’s mathematics and learning.  To the extent that they viewed themselves as mathematics 
learners, parents were directly involved with their child’s homework.  Regardless, they were 
involved in setting up and monitoring homework time.  Indirect parent involvement manifested 
itself in several ways. Parents were in communication with their daughter’s teacher, were willing 
to seek resources to help their daughter in problem areas, and were sources of encouragement. 

Another major finding focuses on parents’ knowledge of their children and their learning 
process.  They understand their children’s learning process and the importance of teacher 
influence and teaching methods on learning.  In terms of their daughters’ engagement in 
mathematics instruction, they stated that they wanted teachers to make learning interesting, fun, 
understandable, applicable to real life, and hands-on.  
Responses of the Girls 

In their focus groups, the girls described their mathematics classes.  In these rooms, the 
students worked on problems presented by their teacher or from their textbook.  Their tools were 
paper, book, and pencils.  The students listened, wrote, and answered questions posed by the 
teacher.  Sometimes they worked on the problem solution with their team, and sometimes they 
worked alone or with the teacher’s help.  

To the girls, mathematics is a subject that is sometimes difficult and challenging, and 
sometimes it is easy.  What’s easy is, “the multiplication, the division, and . . .that’s about it,” to 
one girl.  What’s hard is “ . . .to understand what you are doing.” The girls note that a student 
who is good in math is one who studies and works hard.  When asked to visualize somebody 
doing mathematics, the girls said “ . . .knowing the steps and doing it right.”  “It looks like they 
are counting in their heads.”  The students believed that to be proficient in mathematics would 
require a great deal more schooling, perhaps even a college degree.   

However, the girls did have moments of confidence when they knew the answer to the 
question or they got back a paper with a high score on it.  When they knew the answer, they 
raised their hand quickly.  Sometimes they would be so excited that they would shout out the 
information, but they knew that they might get in trouble for doing so.  All of the girls preferred 
to be called on when they knew the answer.  When they didn’t know the answer, they were 
“embarrassed” or “nervous” or “scared.”  One fear was that their fellow students would think 
that they had not been “working hard or studying.”  As the girls struggled with their ignorance 
for a particular question, the teachers let another one help her or moved on to another student for 
the answer. 
Responses of the Counselors 

The outcomes of the study revealed that the counselors demonstrated low levels of awareness 
of their biases towards the students.  Additionally it was found that the participants did not see 
themselves as advocates or agents for social change.  Moreover, they did not understand their 
role in the advancement of mathematics and science learning for these students.  For example, 
one counselor talked about the potential for her students to go to college, but she did not see 
herself as an agent of change for these students.  Although another counselor stated, “There’s a 
big world out there; they can do anything they want to,” she also viewed the position of poverty 
as an obstacle to the girls’ attendance at a four-year college, explaining that there are not many 
scholarships available to families of limited means. 

All of the counselors evidenced an understanding of effective ways to engage students in 
mathematics and science, especially the importance of instruction with hands-on activities.  Two 
of the counselors discussed utilizing prior knowledge and the girls’ interests to increase student 
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engagement and success in mathematics.  They pointed out the motivation created by success. 
“When you’re successful at something it makes you want to do it more . . .success breeds 
motivation.”  Counselors recognized the positive effect of parental involvement, and they noted a 
need for role models.  “I think we see ourselves looking for someone like us.” 

Counselors are uncertain about their role in facilitating mathematics and science achievement 
in the girls.  One counselor tried to make connections between the girls who were interested in 
the same things, who had similar career aspirations, but she saw her position as being little 
involved in the mathematics setting.  Overall, it appeared that these counselors might 
unintentionally play a gate-keeping role in the way in which they position African American 
girls and place limitation on their potential.  Their view of the obstacles faced by the students 
blocks a vision of a counselor taking a larger role in the students’ mathematics experiences.  

  
Discussion 

This study began by studying the girls, but the grounded theory revealed that the teachers’ 
positionality toward mathematics is a critical component of any work regarding the achievement 
of girls in that subject.  Among the strategies recommended for closing the Achievement Gap in 
mathematics is setting high standards (Bennett, 2004).  What the teacher envisions for the girls’ 
futures influences instruction. Teachers who see themselves as strong mathematicians are more 
confident about developing that capacity in their students.  If they doubt that they can be a 
positive role model in mathematics, they can provide examples of others who are models of 
achievement, of female African American mathematicians and scientists. 

One implication for the professional development of counselors and teachers working with 
African American girls is that the educators can address the girls’ needs better when their own 
positionality is uncovered.  This understanding could be advanced in the professional 
development context.  Additionally, guidance counselors could be encouraged and taught to play 
a more active role advising and encouraging the girls’ participation in mathematics. 

All of the adult respondents noted that more hands-on instruction would benefit the 
mathematics learning of the students.  Teachers need more training in providing this type of 
instruction.  Moreover, they could be taught to look forward, taking a positive stance about 
teaching the girls what they will need for the future, rather than focusing on the deficits in their 
students’ background knowledge.  

We acknowledge that the girls are aware of how they are being positioned.  They look to 
their teachers, parents, and counselors, for guidance and support to help them be successful.  
They want to be the kind of student that is regarded as capable and industrious.  They know that 
boundaries for their horizons are deeply influenced by these important players in their 
educational lives.   
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Mathematics anxiety is prevalent in America and has been an important topic of researchers for 
educators in the past several decades.  This paper describes ways mathematics anxiety levels 
subsided as a result of preservice teachers’ engagement with social issues in a new course, Math 
for Social Analysis, designed to emphasize equity and social justice.  Further, we make the case 
that contrasting models for studying mathematics anxiety generally fall into one of two 
predominant groups: deficit models and situated models. Our research raises new challenges to 
deficit models based on our observations that mathematics anxiety is situated within the 
classroom dynamics. 
 

Introduction 
Mathematics anxiety is prevalent in America and has been an important topic of research for 

educators in the past several decades.  Ma (1999) found a significant relationship between 
anxiety in mathematics and achievement in mathematics was significant, as did other researchers 
(e.g., Satake and Amato, 1995). Mathematics anxiety is widespread in the U.S., including among 
preservice teachers (e.g., Buhlman & Young, 1982; Burns, 1998; Levine, 1996). This is 
problematic because, for example, mathematics anxiety among preservice teachers is associated 
with apprehension when faced with the prospect of teaching mathematics (Brady & Bowd, 2005; 
Gresham, 2008). Bursal and Paxnokas (2006) suggested nearly half of preservice teachers having 
higher mathematics anxiety believe they will not be able to effectively teach mathematics. Brush 
(1981) found mathematics anxious teachers tend to revert to traditional methods of teaching 
mathematics with a focus on basic skills, ignoring mathematical concepts. 

We did not originally set out in our research to examine mathematics anxiety; however, the 
topic became salient in our research in a new mathematics course for elementary and middle 
grades preservice teachers. The course, Elementary and Middle Grades Mathematics for Social 
Analysis [Math for Social Analysis], incorporates National Council of Teachers of Mathematics 
[NCTM] Standards-based (2000) mathematics content and instructional approaches and uses 
relevant social issues to provide contexts for preservice teachers’ learning of mathematics. 
Beginning with an overarching goal to understand preservice teachers’ assessments of their 
learning and experiences in the course, numerous references to mathematics anxiety emerged. 
This paper describes ways mathematics anxiety levels subsided as a result of preservice teachers’ 
engagement with the social issues.  Further, we make the case that contrasting models for 
studying mathematics anxiety generally fall into one of two predominant groups: deficit models 
and situated models. Our research raises new challenges to deficit models based on our 
observations that mathematics anxiety is situated within the dynamics of the classroom. 

 
Math for Social Analysis 

The Math for Social Analysis course is one component of the Mathematics Education in the 
Public Interest [MEPI] project.i The MEPI project has as its key objectives to support equity and 
social justice in mathematics education. 
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Math for Social Analysis is unique because we integrate mathematics, critical pedagogy and 
citizenship. In our course, preservice teachers and faculty identify social issues of personal or 
professional interest. Examples include rainforest depletion rates, poverty, and child labor. The 
preservice teachers identify and use multiple mathematical methods to better understand both the 
relevant mathematical content and the social issue. Each classroom unit of study or semester 
project includes actions which contribute to positive social change.  

 
Methodology 

Results presented in this paper are based on research conducted in a medium-sized public 
institution located in southeastern U.S. We conducted open ended interviews with 14 White 
female preservice teachers enrolled in Math for Social Analysis in spring 2008. We asked 
preservice teachers to share their past experiences with mathematics and their thoughts 
concerning the course, mathematics as a discipline, and teaching mathematics in the future.  

 
Results 

Our data analysis revealed an emergent theme which showed that Math for Social Analysis 
proved beneficial in reducing mathematics anxiety among our preservice teachers. For preservice 
teachers, a focus on social issues in the mathematics classroom: (1) Increased the utility of 
mathematics, (2) Redirected attention away from anxiety, and (3) Built confidence to teach. 
1. Increased Utility of Mathematics 

You say “math” and people get psyched out...because math is one of those high anxiety 
subjects….Being able to answer why it is really important is really going to help some 
kids….All the word problems in math books I’ve ever seen are situations that are not gonna 
happen….By finding something that matters to the kids and something that they want to 
learn, where math is more of a tool to better understand it and not a means to get an answer, 
is going to help. (Megan) 
Megan’s reflections are similar to those of several other students in Math for Social Analysis. 

According to some preservice teachers, the course led to decreased feelings of mathematics 
anxiety. Several expressed developing improved attitudes as a result of learning new relevance 
for mathematics. A focus on social issues gave new meaning to the mathematics. 
2. Redirected Attention 

I hated [math]. I never really liked math….I just don’t think I was very good at it….Math for 
Social Analysis—I like the class a lot just because it gives a different spin. I kind of wish that 
math had been taught to me differently...like incorporating all the social stuff and hands-on 
learning ….When we did the whole rain forest ... I was like, oh my gosh, that many 
trees…but I’m learning math at the same time. (Amanda)     
Some preservice teachers found their attention was redirected away from their mathematics 

anxiety and negative attitudes as they became immersed in social issues. In focusing on the 
social issues, they were at times surprised when they realized they were learning mathematics 
since they were feeling no anxiety. 
3. Built Confidence to Teach 

I realized in my senior year of my Bachelor’s degree I would have to…[teach] math and that 
scared me. So a few years down the road I came back [to school for a graduate degree] and 
yes, [I] can teach math—I can do it now….[Math for Social Analysis has] shown me not only 
can I do it, but there are better ways….I want to take some of the social issues and make 
[math] relevant. (Janet) 
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Janet is not alone in finding her fears to teach mathematics were eliminated or greatly 
reduced. Some preservice teachers enjoyed learning mathematics in the context of social issues 
and no longer dreaded or feared mathematics or teaching mathematics. 

 
Discussion 

In reviewing previous research on mathematics anxiety, we observed that much of it seems to 
fall within two predominant groupings—one based on a deficit model and the other based on a 
situated model. 

Deficit models treat mathematics anxiety as a fixed, measurable quantity located inside the 
individual. Surveys are often used to evaluate the level of mathematics anxiety, and solutions to 
reducing anxiety often aim to improve the psychological or emotional state of the person. For 
example, Furner (2004) believes bibliotherapy is beneficial in overcoming mathematics anxiety. 
In bibliotherapy, books help educators guide the emotional development of their students as the 
students connect with the characters in a story. New books for children focus on mathematics 
anxiety so children do not feel isolated and alone with their fear of mathematics. Bibliotherapy is 
a form of psychological counseling that requires meaningful follow up discussion to be 
beneficial.  

Another deficit model solution proposed by researchers is systematic desensitization (Furner, 
1996; Hembree, 1990; Trent, 1985; Olson & Gillingham, 1980). This requires a gradual 
exposure of the mathematics anxious student to the mathematical concepts that are causing the 
student stress. Students are then taught appropriate coping skills.  Sgoutas-Emch and Johnson 
(1998) recommend journal writing as an effective method to reduce anxiety, where the student 
can freely express feelings about mathematics. Hypnotherapy and cognitive skills training are 
additional techniques used to reduce test and mathematics anxiety.  These methods require 
extensive training and counseling sessions to be effective, which may prove too costly and 
inconvenient for most students.   

The problem with deficit models is that by identifying the problems within the individual, the 
models largely fail to consider, for example, the ways mathematics is socially constructed in the 
classroom or the ways mathematics as a discipline may be flawed. Situated models contextualize 
mathematics anxiety, contending that individuals’ mathematics anxiety cannot be understood as 
separate from their experiences within the classroom or from the nature of the mathematics. 
People generally are not mathematics anxious prior to attending school (Williams, 1988). 
Research has suggested mathematics anxiety can be caused by teaching methodologies that do 
not encourage reasoning and understanding (Greenwood, 1984) and may also be a product of 
students’ lack of mathematical understanding (Butterworth, 1999). To reduce mathematics 
anxiety, Cohen and Leung (2004) demonstrated the benefits of the reformed methods of teaching 
mathematics, as cited by the NCTM Standards (1989, 2000). However, Alsup (2004) indicated 
the particular instructional strategies used may not be as important in reducing preservice 
teachers’ mathematics anxiety as the instructor’s ability to communicate and clarify 
mathematical ideas, and the interconnectedness of mathematical concepts, while maintaining a 
calm and reassuring disposition.  

Our research demonstrates a mathematics course with a focus on social issues can reduce 
mathematics anxiety among preservice teachers. We surmise from our research that situated 
models for examining mathematics anxiety may be more appropriate. By incorporating social 
issues into mathematics, this transformed the nature and relevance of the mathematics itself, 
thereby improving conditions for preservice teachers to engage with the discipline. 
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Conclusion 

We find it encouraging that mathematics anxiety can be reduced when preservice teachers 
learn mathematics in the context of social issues. Further research is needed that uses a situated 
model to examine mathematics anxiety. As previously indicated, we did not originally set out in 
our research to examine mathematics anxiety; therefore, interview questions were not explicitly 
intended to reveal preservice teachers’ mathematics anxiety levels. To test the validity of the 
results presented in this paper, additional research is needed investigating mathematics anxiety in 
classrooms infusing social issues into the curriculum.  

 
Endnotes 

i The Mathematics Education in the Public Interest project is funded by the National Science 
Foundation, award number DUE-0837467. 
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ACCESS TO MATHEMATICS: A POSSESSIVE INVESTMENT IN WHITENESS 
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A number of papers and articles call for more attention to race/racialized experience in the 

work of mathematics educators (see Martin, 2009; DiME, 2007). One way to interpret this call is 
to focus more on researching people of color. Another way to view it is to critique whiteness as 
invisible, neutral, or normal, and to make known privileges that come with this status. This shifts 
a researcher’s lens to the perpetrators or oppressors of racism. However in doing this, it is 
important to expose systematic, structural, and institutional forms of racism. While individual 
racism has a face and can be quite explicit, institutional racism can be difficult to represent 
tangibly. Many governmental programs privilege whites even though they purport to be race-
neutral. Lipsitz (1995) calls this the possessive investment in whiteness. One way of exposing 
this is by examining profits or advantages that racism affords whites over minorities while noting 
the processes that allow that advantage to take place. Perlo (1996) illustrates this by analyzing 
the exploitation of people of color through cumulative wage differentials for African American 
and Hispanic workers as compared to whites. 

Employing a similar framework, this paper analyzes the wage-earning differential due to 
differences in mathematics coursework by ethnic/racial groups. These differentials are reported 
across 3 time points, 1982, 1992, and 2004. Of course, issues such as SES, gender, and 
geographic location are important, but they are not included for the purposes of this paper on 
racial differences. 

 
Whiteness 

Lipsitz (1995) states that “a fictive identity of “whiteness” appeared in law as an abstraction, 
and it became actualized in everyday life.” Much like Black is a cultural construction based on 
skin color, not biology, whiteness developed out of the reality of slavery and segregation giving 
groups unequal access to citizenship, immigration, and property. By giving whites a privileged 
position in relation to the “other”, European Americans united into a fictitious community. 
Whiteness is a constantly shifting boundary separating those who are entitled to certain 
privileges from those whose exploitation is justified by not being white. 

While many think of race in a Black/white binary, groups such as Jews, Native Americans, 
Asians, and Latinos have proved more difficult to classify in the racial hierarchy. In the 1840s 
and 1850s, California had debates about the status of Mexicans and Chinese. There were some 
Mexicans with considerable wealth and partners with whites, while the Chinese were exploited 
for work on the railroads and the field. It was decided that Mexicans would be considered white 
and the Chinese the same as Blacks and Indians. That decision determined who could become 
citizens, own land, marry whites, and other basic rights (Almaguer, 1994). To complicate things 
further, though Mexican Americans were considered white legally, they were denied rights and 
privileges that whiteness bestowed (Foley, 2002). Despite being ruled as white in courts, the 
government added a category of Mexican on the 1930 census, counting only 4% of Mexicans as 
white. This prompted the League of United Latin American Citizens (LULAC) to attempt to 
establish Mexicans as whites and considered it an insult to be counted Black or a “colored race”. 
The organization turned its back on civil rights battles of the 1940s and 1950s with statements 
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such as “tell these Negores that we are not going to permit our manhood and womanhood to 
mingle with them on an equal social basis” (Haney-Lopez, 2006, quoting Marquez, pp. 33). 

In contrast to LULAC’s stance, the Chicano/a movement of the 1960s, rejected LULAC’s 
assimilation strategies. This movement found common cause with Blacks, Native Americans 
Chinese, and Vietnamese. They rejected whiteness and all it came to mean. The response from 
whites has been “Why do you insist on being different? Why do you have to be Mexican or 
Chicano? Why can’t you just be American” (Foley, 2002). The lure of whiteness and all that it 
entails has been a contested boundary for those in the Latino community, some seek it out others 
reject it. Now, Mexican Americans are not considered white and Chinese Americans are 
conditionally white at times, not at others, but clearly different from Blacks and Native 
Americans. 

From 1878 to 1909, the courts in the U.S. heard twelve naturalization cases of persons 
seeking citizenship. Eleven of those cases were barred from citizenship including persons from 
China, Japan, Hawaii, as well as two mixed race applicants. The cases were argued based on 
reasoning of common knowledge, skin color, and the subdivision of the human race into five 
groups; Mongolian, Negro, Caucasian, Indian, and Malay (Haney-Lopez, 2006). White skin 
itself was not enough to not guarantee one’s property rights in whiteness (Harris, 1993). The 
courts later ruled that not even all Caucasians were white, cementing the cultural construction of 
whiteness (Foley, 2002). 

Many ethnic groups have sought out equalization through citizenship, but when African 
American citizens still had to sit at the back of the bus and couldn’t vote, assimilation became 
the goal. And when the 1940 census stopped distinguishing foreign-born versus native-born 
whites, official assimilation as white became a possibility. As “not-yet-white” ethnic immigrants 
strive to assimilate as a way to attain whiteness, “immigrants of color always attempt to distance 
themselves from dark identities (blackness) when they enter the United States” (Bonilla-Silva, 
2003, p. 271). For many immigrant groups the path to whiteness became not so much about 
losing one’s culture as becoming agreeing to the idea that Blacks were culturally and biologically 
inferior to whites, “Only when the lesson of racial estrangement is learned, is assimilation 
complete” (Morrison, 1997, p. 57). While there are certainly still markers for some (e.g. accents, 
dress, and cultural practices) that lead to prejudices, the fiction of whiteness brings real 
opportunities and access to particular people. 

 
White Privilege 

White privilege is a result of the institutional and structural investments given to whites. 
Lipsitz (1995) coined the term possessive investment in whiteness over a decade ago. In this 
paper, he discusses federal policies in the United States that authorized attacks on Native 
Americans, restricting naturalized citizenship to “White” immigrants, slavery, and segregation. 
Many have discussed the legal challenges that weakened the Supreme Court’s decision in Brown 
vs. the Board of Education (Bell, 1979), but these past policies are still with us today through 
more covert yet racist systems. Many policies seem neutral, yet their effect is anything but that.  

One example is the Federal Housing Administration’s (FHA) loan practices. From a 
confidential city survey to destroying housing in city centers affecting twice the percentage of 
African-Americans compared to whites in the 50s and 60s, these housing practices have shifting 
loan money and therefore future investment in real estate away from communities of color and 
towards whites since 1934. These practices served to drive up prices in white suburban 
communities, keeping people of color from benefiting. The development of highway systems as 
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well as public policy cutting political precincts in half, served to reduce the political power of 
African Americans allowing garbage dumps and incinerators to be located in communities of 
color (Logan & Molotch, 1987). More recently, studies have shown that African Americans are 
60% more likely than whites to be turned down for loans (controlling for credit scores), will be 
judged on dividend income more often, disqualified for loans at almost 3 times as much, and will 
receive conventional financing at ¼ the rate (Massey, 1994; Orfield & Ashkinaze, 1991). In fact, 
in some cases, high income Blacks were turned down at a higher rate than low income whites 
(Campen, 1991). Although these practices are not termed “Affirmative Action” they benefit 
whites at the detriment to Blacks. 

In addition, tax policies of the 80s made taxation on goods and services higher than it was for 
profits from investments. Again, by connecting this to the above investment in whites owning 
their own homes and profiting from raised home values, whites will necessarily benefit from 
lowered taxes on investments. Similarly, Proposition 13 in California granted tax relief to 
property owners and reduced funds by $13 billion a year for public education and other social 
services (McClatchy, 1991). Businesses avoided between $3.3 billion and $8.6 billion in taxes 
per year (UC Focus, 1993). 

Educationally, these same advantages have been invested in whites. Funding in schools is 
one way that whites maintain privileges. While the history of Brown versus the Board of 
Education is well know, the fact that we are now at similar levels of segregation in schools to the 
1960s mean the problems of yesterday are still here (Orfield et al., 2004). Policies of school 
funding tied mostly to local property taxes have maintained differential funding for suburban 
schools at levels twice that for urban schools (Kozol, 1991). This well documented difference 
impacts teacher quality, curricula, building conditions as well as numerous other educational 
issues. Deficit ideologies of teachers are also well documented and affect students of color 
because they are framed as the other, similar to the prior discussion of those not included in 
whiteness (Perry, 1993). Additionally, outdated representations in history textbooks of Native 
Americans as a romanticized and almost dead people and slavery and civil rights issues for 
African Americans as a thing of the past, reproduce the appearance of neutral policies (Kivel, 
2002). During the history of the U.S., the population of Native Americans went from 12 million 
to 237,000 and whites expropriated 97.5% of their land (Churchill, 1994). Yet, we don’t call this 
genocide in textbooks nor do we have representations of current day Native Americans in 
schools. The magnitude of those numbers should give one pause. These educational issues 
privilege the schooling of whites by providing more funding, not having to face advantages we 
live with today connected to a history fraught with killing and taking another people’s lands, and 
avoiding cultural deficit ideologies by maintaining the white norm. 

Despite these investments in whites – generated through slavery and segregation and 
augmented by social reforms – a poll notes that 70% of whites believe that African Americans 
“have the same opportunities to live a middle-class life” (Orfield & Ashkinaze, 1991). There are 
numerous other policies such as social security, the GI bill, the college draft deferment, and 
legacy admissions at universities (Conley, 1999; Kivel, 2002). These forms of Affirmative 
Action for whites serve to guarantee that whites will continue to benefit from historic 
advantages. Meanwhile the attack on Affirmation Action counters policy trying to balance the 
playing field from such “neutral policies.” 
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Exploitation of People of Color 
Centuries of bestowing land, education, and stored wealth in the form of social security to 

whites means that whites born today begin their lives with more familial wealth stored in houses, 
educational attainment, and investments. Policies that place wealth in the hands of certain groups 
and take it away from other groups are a form of exploitation. The profits are essentially the 
benefits of racism to whites. Perlo (1996, p. 170) calculates the profits from racism as the “wage 
differentials against African Americans, Hispanics, etc., multiplied by the number of workers 
employed in private enterprises.” He contends that although the median differential in 1991 
against black workers overall was 32%, the difference for skilled craft workers was 25%. 
However, within each skill level, black workers tend to be consigned to the worst jobs – risking 
their health. This, along with the practice of categorizing the same occupations whites work at 
lower level for people of color, convince him to use the median differential for the calculation 
reasoning that there is a cost for subjecting Blacks to health risks and the devaluation of jobs for 
people of color. 

Given this framing, Perlo (1996) calculates that the total profits of racism in 1947 were 56 
billion dollars (in 1995 dollars). That number rose to 88 billion in 1972, 112 billion in 1980, and 
197 billion in 1992. African Americans were exploited for 48, 60, 74, and 107 billion dollars in 
those years, while Latinos were exploited for 8, 28, 34, and 84 billion dollars. These numbers do 
not include the exploitation of white women or whites in poverty, even though they are certainly 
exploited by the white elite. Even so, these numbers speak to a widening divide between an 
investment in whites and people of color. They are a symbol of centuries of supposedly “neutral” 
policies, investing through education, home ownership, and maintenance of wealth in 
advantaging whites on the backs of African Americans and Latinos. 

 
Mathematics Education’s Investment in Whiteness 

We can calculate a similar statistic for mathematics education’s investment in whites. 
Through the availability of AP classes in suburban schools, tracking students of color into lower 
mathematics coursework, and counselor’s referring students to less advanced coursework 
different access and opportunities are available to students of color (Oakes, 2003). In addition, 
deficit ideologies of teachers create negative and sometimes hostile environments for students, 
when some teachers don’t believe that students of color have the intellectual ability to think 
abstractly (Perry, 1993). This could produce what Smith and others have found to be racial 
microaggressions that lead to racial battle fatigue leading to psychological, emotional, and 
physiological consequences in the classroom (Smith et al., 2007). These processes serve to 
reduce mathematics coursework, college opportunities and earning potential for people of color. 

In this paper, I calculate the exploitation of people of color, using a similar formula to Perlo, 
due to different mathematics coursework. This serves as a representation of the investment in 
whiteness that mathematics education continues to reproduce. 

 
Methods 

The data used in this study were taken from national databases: High School and Beyond 
1980 (and follow-ups), National Education Longitudinal Study (NELS) 1988 (and follow-ups), 
Education Longitudinal Study 2002 (and follow-ups), Current Population Survey (CPS) 1972–
2005. This paper presents a secondary analysis of these data with respect to mathematics course 
completion. All dollar amounts are adjusted to 2008 dollars. 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

492 

Though race is a constantly changing phenomenon, the data used in this study positions them 
as fixed groups (due to its use in the national datasets). Also, these national datasets mix 
ethnicity with race, but the data are presented using the terms from the survey, however 
problematic they may be. 
The equation for the average yearly income for each ethnic/racial group is as follows: 

% completed calculus x average earnings by mathematics coursework 
% completed trigonometry/algebra III x average earnings by mathematics coursework 
% completed algebra II x average earnings by mathematics coursework 
% completed algebra I/geometry x average earnings by mathematics coursework 
% completed low academic/no math x average earnings by mathematics coursework 
+ % dropouts x average earnings for dropouts 

Similarly taking this and multiplying it by the number of students each year gives the total 
investment by each ethnic/racial group. 

 
Results 

The results begin with data across 1982, 1992, and 2004 on the highest level of mathematics 
completed by racial/ethnic group. In addition, I included dropouts since the dataset only included 
the highest level of mathematics completed for high school graduates. The analysis then shifts to 
the income levels ten years after graduation by mathematics achieved and by race/ethnicity. 
These data are then used to calculate the investment in whites over students of color, ten years 
after graduation, over a lifetime, and across generations. I want to caution readers in that these 
numbers should be seen as approximations since, as with all national datasets, survey questions 
can change over time, under or over estimate results, and have missing data. Still the results 
speak to major differences. 

Table 1 shows the highest level of mathematics completed for high school graduates in 1982, 
1992, and 2004 by ethnic/racial group. The right column also presents the status dropout rate. 
The dropout rates are a major underestimate, but use the only data available across all three years 
(for an understanding of the problems with dropout rates in national datasets see Orfield et al., 
2004). 

Hispanics, American Indians, and Blacks took advanced mathematics at lower rates across 
years and were more likely to take no mathematics than Asians and whites. While this data could 
be used to reaffirm students of color lack of interest in mathematics, cultural deficit theories, or a 
discussion of racial “gaps”, I urge readers to remember the literature on whiteness and privilege 
cited earlier in understanding that these are institutional differences generated over the history of 
this country to advantage whites and that a number of other factors need to be considered as well. 
First, in urban schools researchers have documented the lack of AP mathematics and science 
courses available. Even if students of color wanted to take this coursework, it is not available to 
many, often because they do not have teachers certified to teach AP mathematics. Also, tracking 
has routed students of color to lower levels of mathematics for decades (Oakes, 2003). One more 
factor among many is that counselors steer students of color away from college preparatory 
courses. These three factors, though there are many more, speak to differences due to 
institutional racism, access to higher quality mathematics instruction to whites, rather than 
cultural myths of students of color. 
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Table 1. Highest Mathematics Completed by Year, Ethnicity/Race, and Average Yearly Earnings 
10 Years after High School Graduation 

 Graduates 

 
Advanced Middle 

Low 
Academic 
/No Math 

Dropouts 

Year and Ethnicity/Race Calculus Trig/algebra 
III Alg 2 Alg 1/Geo   

1982       
White 6.8% 22.9 18.9 30.9 20.5 8.8 
Asian/Pacific Islander 15.4 37.6 19.1 17.2 10.6 2.2 
Black 2 11.2 18.5 27.7 40.6 11.3 
Hispanic 2.6 11.3 13.8 33.1 39.1 16.8 
American Indian/ Native 
Alaskan (AI/NA) 2.3 8.6 13.4 27.8 48 25.1 
1992       
White 11.5 28.9 26.9 20.8 11.9 4.3 
Asian/Pacific Islander 22.1 32.4 23.9 12.5 9.2 4.6 
Black 6.9 18.7 23.5 32 18.9 7.6 
Hispanic 5.0 23.9 26.3 30.9 14.2 10.9 
AI/NA 1.0 13.7 28 28.5 28.9 18.2 
2004       
White 16.2 39.1 23.8 16.4 4.6 4.7 
Asian/Pacific Islander 33.8 35.5 17.5 11.1 2.1 4.6 
Black 4.9 36.3 31.5 18.7 6.6 10.5 
Hispanic 7.0 28.1 31.9 26.5 6.4 13.4 
AI/NA 5.4 16.8 40.8 23.7 13.3 15.2 
Avg. Earnings by Math 
Coursework (2008 
dollars) 

42,625 
 

39,581 
 

35,014 
 

30,447 
 

28,163 
 

23928 
 

 
Using the mathematics coursework data and the average earnings 10 years after graduation 

(2008 dollars), I calculated the average earnings by ethnicity/race. Multiplying the percent of 
whites who completed calculus in 1982 (6.8%) by the average income of that group of students 
ten years later ($46,625) along with the percent who completed Trigonometry/Advanced Algebra 
(22.9%) by their income ($39,581) and so forth results in the average wage earned for whites 
across mathematics course work completed and dropouts. In doing this across years for each 
ethnic/racial group the calculations result in the average earnings ten years after graduation (or 
not). The numbers for these calculations can be seen in the first column of table 2. This gives a 
sense for the earning potential for different groups according to mathematics coursework. 

In Table 2, I present the total investment for each ethnic/racial group based on the number of 
students in each high school class multiplied by their average earnings. To compare the 
investment with that of whites, I used the same number of students (as each ethnic/racial group) 
multiplied by the average earnings for whites. The last column compares total and adjusted 
investments, represents the financial advantages given to whites through mathematics 
preparation (rounded to the nearest million). This does not include statistics for people of color 
earning lower wages with the same education working in the same job, SES, or other factors that 
would make these differentials greater. Therefore, these calculations should be considered an 
underestimate. 
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Table 2. Annual Earnings due to Mathematics Coursework and Total Investment, by Year and 
Ethnicity/Race 

Year and Ethnicity/Race  

Average 
Earnings from 
Mathematics 
Coursework  
(2008 dollars) 

Percent of High 
School 
Population 

Total Investment 
Based on 
Mathematics 
Coursework 
(millions)  

Adjusted 
Investment for 
whites with 
same Percent 
Population 
(millions) 

Net Investment 
in whites 
(millions) 

1982      
White 33,129 79.9% 119,507 -- -- 
Asian/Pacific Islander 36,187 1.3 2,124 1,944 -179 
Black 29,830 11.6 15,623 17,350 1,728 
Hispanic 28,753 6.3 8,179 9,423 1,244 
AI/NA 29,458 1.0 1,330 1,496 166 

1992      
White 34,887 72.7% 91,804 -- -- 
Asian/Pacific Islander 36,533 4.5 5,951 5,683 -268 
Black 32,021 11.9 13,793 15,027 1,234 
Hispanic 30,862 10.0 11,171 12,628 1,457 
AI/NA 31,107 1.2 1,351 1,515 164 

2004      
White 36,405 62.3% 91,907 -- -- 
Asian/Pacific Islander 38,289 4.5% 6,982 6,639 -344 
Black 33,481 13.3% 18,044 19,621 1,576 
Hispanic 32,215 15.0% 19,581 22,128 2,547 
AI/NA 32,771 0.9% 1,195 1,328 133 

 
There is a surplus in favor of Asians (see table 2). However, whites having more access and 

opportunity to take mathematics courses than African Americans results in yearly advantages of 
1.23-1.73 billion dollars. For Hispanics the range is from 1.24-2.55 billion dollars, in part due to 
an increase in population. And finally, for Alaskan Indian/Native American the range is from 
133-166 million dollars. This accumulation of wealth in favor of whites over Native Americans 
is for less than 50,000 high school students. These numbers are for only one year of work, ten 
years after high school, and do not include the years in between the dates included. 

Over the course of the 23-year span included in this study, using the average yearly 
advantage (see column 1 in table 3), whites are advantaged over Blacks (38.4 billion dollars), 
Hispanics (41.1 billion dollars), and Native Americans (3.84 billion dollars). For a typical 40-
year work-life the totals range from 6.67 to 71.4 billion dollars. This means for the life of one 
high school class, the effects of differential mathematics access results in over 144 billion dollars 
invested in white students. Notice as well that Asians still show advantages over whites totaling 
5.69 (23-year span) and 9.90 (40-year work-life) billion dollars. Importantly, these numbers do 
not consider that differentials at one point are more likely to grow due to raises, accumulated 
income, and interest. 
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Table 3. Average Investment in Whites over 23-year Span and 40-year Work-life 

Investment in whites over  
Average (over 1982, 
1992, & 2004 in 
millions) 

Cumulative over 23 
years (1982-2004) 

Work-life 
(40 years) Work-life * 23 years 

Asian/Pacific Islander -247 -5,693 -9,901 -227,724 
Black 1,670 38,414 66,808 1,536,588 
Hispanic 1,785 41,077 71,438 1,643,093 
AI/NA 166 3,837 6,674 153,507 

Total 844 83,329 144,921 3,333,188 
 
The last column in table 3 reports the aggregate investment for the 23 years of high school 

students across an estimated 40-year work-life. The total advantage for whites is over 3 trillion 
dollars. This number more or less represents the investment in a generation of mathematics 
students over their careers. However, it does not include wage differentials afforded whites that 
would likely advantage whites even over Asians. 

 
Discussion 

These differences should be appalling. This makes the work we do as mathematics educators 
so crucial in challenging so called neutral policies, in bringing more AP courses to urban and 
poor communities, and merely helping teachers care for, expect more from, and push students of 
color to take more mathematics. 

Approaching this issue generationally, we can see how income, home investments, 
educational attainment, and mathematics knowledge serve as huge advantages passed on to 
whites. This historical perspective allows a framing of achievement of Latinos and African-
Americans despite numerous obstacles. This different framing moves us out of thinking about 
deficits and failures to achievement, successes, and the struggle to be educated. 

While many are looking at mathematics education from an economic perspective as far as 
competitiveness in the global market, we haven’t invested enough in African Americans, 
Latinos, and Native Americans. There are plenty of children to be educated that we are not 
reaching. While an economic outlook is one slant on this issue, the differential in investment 
poses a moral problem more than any other. Why do we as a society allow differential funding to 
schools? Why do we allow students to be put in lower tracks robbing them of access to higher-
level mathematics? How can we begin to address such glaring inequities? The answer may be 
that these policies privilege whites and many are not ready to give up these advantages. 

Another perspective might ask, is all of this mathematics, and everything it gives access to, 
necessary for college admission and citizenship more generally. Although the incomes are 
different, this could be due more to college admission than using mathematics in careers, which 
implicates a false gatekeeper. Bob Moses termed access to mathematics as the next civil rights 
issue and according to this analysis, he is certainly right. But maybe the mathematics required for 
higher education is merely keeping some from further educational opportunities. The policies of 
Harvard and Stanford in not counting high school work in calculus, though for a very different 
reason than educational access, might signify a first step towards slowly lowering the gate for 
students of color. 
 

Conclusion 
These results indicate that we invest considerably more in whites than Blacks, Hispanics, and 

American Indians showing the systematic racism that educational institutions reproduce. The 
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numbers indicate one way that historic and current mathematics education practices serve as an 
investment advantaging whites. In another sense, it raises the need of informing parents of color 
of the importance to seek out access to mathematics for children. As currently constructed, it 
serves as a gatekeeper to universities, mathematical careers as well as economic capital and 
independence. 
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How do I commit myself to do work that is predicated on a belief in the power of the 
mind, when African-American intellectual inferiority is so much a part of the taken-for-
granted notions of the larger society that individuals who purport to be acting on my 
behalf, routinely register doubts about my intellectual competence (Perry, 2003, p. 5)? 
 

Introduction/Purpose of the Study 
     Perry’s quote is a stark articulation of the dilemma that continues to surround African 
American children and adolescents in the United States. Lemons-Smith (2008) similarly poses, 
what really prohibits schools and teachers from providing cognitively demanding, high-quality 
instruction for all students, regardless of race, class, gender, language, culture, or other 
characteristics? It is a question that lies at the heart of educational underachievement broadly, 
and specifically within the discipline of mathematics education. Over the last decade or so much 
has been written regarding the mathematics education experiences of African American students 
(Berry, 2005; Hilliard, 1995; Ladson-Billings, 1997; Martin, 2000; Moody, 2004; Stinson, 2006; 
Tate, 1995; Walker, 2006; Walker & McCoy, 1997). These scholars have attempted to give voice 
to Black students and those who teach them – two groups who are often silenced or superficially 
addressed within the context of mathematics education research. These scholars’ work does not 
subscribe to entrenched deficit theories nor provide artificial prescriptions or strategies for 
“fixing” the mathematics performance of African American learners. Rather, they provide a 
culturally embedded perspective of African American students and their engagement in the 
mathematics teaching and learning process.  
     This paper describes a case study that looked critically at the connection between African 
American students’ K-12 mathematics experiences and how they view the discipline of 
mathematics and themselves as learners of mathematics. Specifically, this paper focuses on one 
African American student who participated in the study. I will begin by discussing the theoretical 
framework and study context. Then, I will present excerpts of the student’s narratives to illustrate 
how she perceived her mathematics experiences, views about mathematics, and views about 
herself as a learner of mathematics. The student’s narrative reflects her voice, and therefore is in 
first person. Brief school and teacher background information precede the narrative. 

 
Theoretical Framework 

     This study sought to provide a voice to African American students and their perspectives and 
experiences in mathematics. Given the historical silencing and negative representation of African 
Americans in education and society generally, Critical Race Theory was selected as the lens 
through which to view and affirm their life stories. Critical Race Theory has at least five defining 
themes: (a) the centrality and intersection of race and racism, (b) the challenge to dominant 
ideology, (c) the commitment to social justice, (d) the centrality of experiential knowledge, and 
(e) the interdisciplinary perspective (Solorzano & Yosso, 2001).  
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     Within education Critical Race Theory challenges the dominant ideology of race and racism 
and its interplay within school structures, processes, and discourses (Solorzano & Yasso, 2001). 
Critical Race Theory provided the context for considering how the African American students in 
this study negotiated their K-12 mathematics experiences. 

 
Methods 

     How are K-12 mathematics experiences connected to one’s mathematics-related views?  
Specifically, views about the discipline itself and oneself as a learner of mathematics. The study 
consisted of ten African American undergraduates, one of which is the focus of this paper 
(Andrea). Participants represent a convenience sample and were solicited from various minority 
organizations on a university campus. Participants’ attitudes toward mathematics, performance, 
and grades in mathematics were not a criterion for selection.  
     Data sources consisted of semi-structured interviews, which were audio taped and lasted 
about three hours, and handwritten autobiographies. The interviews and autobiographies solicited 
information about (a) the participants’ academic and personal histories, (b) experiences in the 
mathematics classroom as it relates to curriculum, instruction, and classroom culture, and (c) 
views about mathematics, school, and oneself as a learner of mathematics. Interpretational 
analysis (Gall, Borg, & Gall, 1996) was used to analyze the transcribed interviews and 
autobiographies. The data analysis involved open coding in which common and divergent 
participant responses were identified. From these responses themes that encompassed and 
summarized the data were established. These themes were central in describing the connection 
between African American students’ mathematics experiences and mathematics-related views. 

 
The Case of Andrea 

     Andrea is nineteen year-old biochemistry major. She received her K-12 schooling in 
public, majority White schools. The demographic composition of Andrea’s math  
teachers was: High school (all White males); middle school (Two White males, a White  
female); and elementary school (all White females). 
Andrea: In Her Own Words 

For the most part I like math. I like it because I’m good at it. It’s not just that I get good 
grades, but also because I understand it. I can explain it to other people and make them 
understand it too. You don’t really realize how much you understand something until you 
try to teach it to someone. Then you realize you really know this stuff. I didn’t really 
focus on math until the sixth grade when I tested into the Extended Learning Program 
(gifted). Since the sixth grade I’ve been the only African American in my math classes. 
At first being the only African American didn’t bother me because I was young, but as I 
got older I started realizing that the students didn’t think I was as smart as them. Nor did 
the teachers expect as much of me. I could tell that by how they interacted with me. My 
teachers seemed to make me work harder than my white classmates. Even though I was a 
good math student, my teachers didn’t really call on me much. In many instances if I was 
called upon and gave the right answer, my teachers’ reaction was exaggerated, as if they 
didn’t expect me to respond correctly. I found this particularly odd given the level of 
math courses I was enrolled in. They acted as if I was in remedial math. My peers would 
seem surprised if I scored an A on an assignment. I guess because I was black they 
thought I was dumb or something. I enjoyed participating in the minority math and 
science summer program. It was cool being around other smart minorities like me. No 
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one questioned your ability. Everyone was on equal footing. I felt as though most of my 
math teachers held lowered expectations for me. If I asked them a question they would go 
back to the very basics and explain it to me as if I were stupid. It was as if I didn’t know 
that a negative times a negative is a positive. If a white student asked a question they 
would explain it to them assuming they understood the basics. They didn’t insult them by 
reviewing pre-algebra concepts. My teachers lowered expectations made me want to try 
harder. Since they don’t think I’m as smart as the next white person, I’m just going to 
show them. I vividly recall my ninth-grade teacher making race-related comments and 
jokes that were inappropriate and made me feel uncomfortable. I don’t feel that I received 
the same quality and quantity of instruction as my white classmates. When I asked for 
help they’d half explain it or wouldn’t explain it and pointed me to the book. Whereas, 
when white students asked for help they’d explain it with no questions asked. It’s like 
they expected me to work harder even though they didn’t expect much of me. If a white 
student made a C or D on a math assignment the teacher would tell them they needed to 
get their grade up. If I made the same grade they wouldn’t say anything. It’s as if they 
thought a C or D was the best I was capable of doing. Their expectations of me were set 
from day one. Sometimes when I got a problem right my math teacher’s reaction would 
be exaggerated. It was so transparent. No one was really hostile toward me or outright 
rude, but I was just there. They didn’t ignore me, but they didn’t acknowledge me. They 
would listen to what I had to say, but it wasn’t valued as much. The expression on their 
faces was different when they were listening to white students. It’s like they were 
listening differently, more attentively.  

 
Results/Discussion 

     In considering how Andrea’s mathematics experiences are connected to her mathematics-
related views, the following three themes emerged: (a) teacher characteristics, (b) self-
positioning, and (c) resiliency. In this section I will discuss each of these themes. 
Teacher Characteristics 

Analysis of Andrea’s interview and autobiography revealed generally negative perspectives 
about her mathematics teachers and instruction. Andrea’s depiction of her mathematics teachers 
is interesting when considered within the context of Gloria Ladson-Billings’ work on culturally 
relevant teaching. Ladson-Billings (1995) asserts that culturally relevant teachers exhibit the 
following broad qualities with respect to the underlying propositions: (a)  Conceptions of self 
and others suggests that culturally relevant teachers hold high expectations for all students and 
believe all students are capable of achieving academic excellence; (b) social relations infers that 
culturally relevant teachers establish and maintain positive teacher-student relationships and 
classroom learning community as well as are passionate about teaching and view it as a service 
to the community; and (c) conceptions of knowledge suggests that culturally relevant teachers 
view knowledge as fluid and facilitate students’ ability to construct their own understanding. 
Ladson-Billings’ work illuminates an instructional ideology for facilitating the academic success 
and cultural competence of African American students. Hence, it is salient for contextualizing 
Andrea’s mathematics teachers. As it relates to culturally relevant instruction her teachers 
receive a grade of “F.”  Their conceptions of knowledge, conceptions of self and others, and 
social relations do not demonstrate a commitment to providing equitable mathematics instruction 
to all students. It is interesting to note that during Andrea’s K-12 mathematics career all of her 
mathematics teachers were White. Certainly race is not a determinant in whether or not one 
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demonstrates the qualities of a culturally relevant teacher; however the observation is striking. 
Embarking on this line of thought raises questions about the broader impact of teacher and 
school demographics. To what extent are those demographics linked to the existence or absence 
of culturally relevant teaching? What other dynamics account for Andrea’s experiences in 
mathematics?   
     In addressing these and other questions related to Andrea’s experiences, one must also 
consider the very personal nature of perceptions. The personal nature of perceptions is evidenced 
in the two other themes revealed in the data: self-positioning and resiliency. 
Self-Positioning  

Despite the absence of mathematics teachers that can be defined as culturally relevant, 
Andrea expressed generally positive views about the discipline of mathematics and herself as a 
learner of mathematics. While this is true for Andrea, it is often not the case for students of color. 
Her interviews and narrative suggests that the way in which she positions herself within a macro 
and micro context is a contributing factor in how she views mathematics and herself. In several 
instances she noted that school was only a small piece of her life, who she was, and relegated it 
to micro status. In contrast, she drew heavily upon home, family, and external forces in shaping 
her belief system. Perhaps if school had been assigned a more prominent position in Andrea’s 
being, the lack of culturally relevant teachers may have yielded a more significant impact. That 
self-positioning is also implicitly linked to the third theme – resiliency.   
Resiliency  

Despite encountering less than empowering teachers Andrea successfully negotiated 
schooling structures and excelled in the mathematics classroom. She preserved and developed a 
strong mathematics background. She explicitly contributed her ability to do so to strong family 
and extended family support. This support appears to be a key factor in her resiliency and ability 
to challenge the persistent myths and stereotypes surrounding African Americans in 
mathematics. Rejecting widely held notions of deficiency enabled Andrea to embrace positive 
views about mathematics and herself as a learner of mathematics.  
     Andrea did not reflect the more popular theories related to African American achievement. 
For example, she did not view her academic personas and success as “acting white” (Fordham & 
Ogbu, 1986). In addition, her perspectives did not reflect stereotype threat (Steele, 2003). That is, 
she did not rebuff characteristics not typically associated with African Americans. Andrea held a 
positive self-concept and did not view her success in mathematics as incongruent with her racial 
identity. Hence, that positive self-concept facilitated her resiliency and ability to combat 
messages of inadequacy. 

 
Concluding Thoughts 

     In considering how one’s K-12 mathematics experiences are connected to their views about 
mathematics and themselves as learners of mathematics, teacher characteristics, self-positioning, 
and resiliency emerged as salient themes. I opened this paper with the quote: “How do I commit 
myself to do work that is predicated on a belief in the power of the mind, when African-
American intellectual inferiority is so much a part of the taken-for-granted notions of the larger 
society that individuals who purport to be acting on my behalf, routinely register doubts about 
my intellectual competence (Perry, 2003, p. 5)?” I would argue that Andrea was successful in 
rejecting persistent notions of inferiority and excelling in mathematics. Her positive self-concept, 
affirmative internal dialogue, and strong support system provided the foundation for resisting 
institutional barriers and perceptions set forth. I would argue that Andrea is the rule, not the 
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exception and success in mathematics is a norm associated with African Americans. Hence, 
additional research that provides counter narratives to disaffirming messages about African 
Americans in mathematics is warranted. Collectively, researchers, schools, teachers, and students 
can articulate a counter discourse that acknowledges the pursuit of excellence in mathematics is 
an endeavor that can be accomplished by ALL.  
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Through use of an activity theory (AT) analytic and explanatory frame, we examine and 
articulate the ways in which one teacher, April Lincoln, a mathematics teacher in a large urban 
school, consistently facilitates reading strategies in her Algebra I classroom. After mapping 
April’s practice onto the AT framework, we will focus our discussion on the relationship between 
three key components of the activity system – subject, mediating tools, and object – with 
particular attention to April’s personal history as a struggling reader and how this experience 
appears to influence her pedagogical choices. 
 

Introduction 
There is a movement underway in the mathematics education research community that seeks 

to better understand students’ mathematics schooling experiences by examining these 
experiences through sociocultural and historical perspectives (Atweh, Forgasz, & Nebres, 2001; 
Boaler, 2000; Martin, 2000, 2007; Nasir & Cobb, 2007; Secada, Fennema, & Adajian, 1995; 
Yackel & Cobb, 1996). A guiding tenet of this movement is the acknowledgement that the 
learning and teaching of mathematics is not ‘culture-free’; a complex mix of historical, political, 
and cultural forces determine that students at specific intersections of societal communities 
(racial, ethnic, economic, linguistic, geographical) experience mathematics differently than 
students positioned at other intersections, and these differential experiences contribute to 
differences in performance on measures of mathematics achievement and competence. A thread 
of this work focuses on examining teachers’ mathematics instructional practices from 
sociocultural perspectives and seeks to conceptualize and study mathematics learning 
environments that are equitable and responsive to the needs and experiences of all learners. Of 
particular interest to many are the ways mathematics teachers in urban schools engineer effective 
mathematics learning environments in school contexts that are often characterized as challenging 
and difficult due to history of low academic achievement as measured by students’ performance 
on standardized assessments. Through use of an activity theory (AT) analytic and explanatory 
frame, we examine and articulate the ways in which one teacher, April Lincoln, a mathematics 
teacher in a large urban school, consistently facilitates reading strategies in her Algebra I 
classroom. After mapping April’s practice onto the AT framework, we will focus our discussion 
on the relationship between three key components of the AT map – subject, mediating tools, and 
object – with particular attention to April’s personal history as a struggling reader and how this 
experience appears to influence her pedagogical choices. 

 
Theoretical Framework 

Activity Theory 
Activity theory is an analytic and explanatory framework that is useful for research of human 

behavior (Engerstrom, 1987). This framework first emerged from the scholarship of Vygotsky, 
Leont’ ev, and Luria in Russia in the cultural-historical school of psychology (Minick, 1997). 
Nardi (1996) contends that research using AT can shed light on the complex experiential unity of 
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individual cognition and social activity; furthermore, AT is perceived as a useful framework to 
view and understand the complexities of mathematics classrooms in varying contexts (Radford, 
Bardino, & Sebena, 2007; Walshaw & Anthony, 2008, Anthony & Clark, 2008). The particular 
and unique characteristics of U.S. urban schools, namely high enrollments of minoritized 
students, historical trends of low performance as measured by standardized assessments (and, 
consequently, a palpable assessment culture), high teacher attrition, and the consistent cycle of 
instructional and curricular ‘reforms’, demand that teacher practice be examined in ways that 
more fully acknowledge the complexities of teaching in these contexts. In that the AT framework 
is designed to explain activity through a broad range of intertwined influences, we found it 
particularly useful in our efforts to examine mathematics teachers practice in urban schools. 

An activity system is the unit of analysis in activity theory. The minimum elements of an 
activity system, according to Engestrom (1987), is an object, subject, mediating tools (including 
psychological tools), rules, community and division of labor (Figure 1). The “subject” is the 
individual or group of individuals involved in the activity, the “object” is the motivating problem 
or reasons behind why the subject participates in the activity, and it is what connects individual 
action to collective activity. The “tool” includes people and artifacts that act as psychological 
tools, mediating activity between the subject and the object. The rules, community, and division 
of labor components add the historical aspects of mediation that Vygotsky omitted from his work 
(Engestrom, 1999). Subjects are members of social groups or “communities” that have explicit 
and implicit “rules” or norms that provide guidance to acceptable interactions among system 
participants. Rules and mediating artifacts that are accepted by the community mediate relations 
between the subject and the communities they are a part of. “Division of labor” refers to the tasks 
and responsibilities that are constantly negotiated among participants of the activity system (Cole 
& Engestrom, 1993). By considering the influences of rules, community, and division of labor on 
an activity, Engestrom’s model includes both historical and situated aspects of human activity. 
The model also represents the motive behind situation-bound actions that individuals within the 
activity system are a part of (Engestrom, 1987). The “outcome” of the system refers to the 
outcomes or results of the activity. 
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Figure 1. Representation of an activity system. Engestrom, Y. (1987).  
 
Teachers’ Personal History as Mediating Tool 

A powerful aspect of examining mathematics teacher’s practice through the AT framework is 
its capacity to broaden traditional notions of the resources and tools mathematics teachers draw 
on and use to do their work. When mathematics instructional practice is viewed through 
sociocultural and sociohistorical lenses, ‘non-mathematical’ resources and tools, namely 
knowledge of students’ lived experiences and community histories, as well as teachers’ personal 
experiences and community memberships, must be examined side-by-side with more traditional 
physical and intellectual resources (i.e., teachers’ mathematical knowledge, teachers’ general 
pedagogical knowledge, teachers’ content-specific pedagogical knowledge, curriculum 
materials). Wenger (1998) states that teachers are far more than “representatives of the institution 
and upholders of curricular demands” (p. 276); they are doorways into the adult world. Wenger 
(1998) contends, “Teachers… constitute learning resources, not only through their pedagogical 
or institutional roles, but also (and perhaps primarily) through their own membership in relevant 
communities of practice… This type of lived authenticity brings into the subject matter the 
concerns, sense of purpose, identification, and emotion”(p. 276). In keeping with this 
perspective, teachers’ lived experiences and community memberships (such as gender, as 
members of various ethnic and racial groups in racialized societies, as once young students of 
mathematics, as local community members) serve as mediating tools that they employ in their 
efforts to teach mathematics. Through implicit and explicit means, and through their personal 
story, teachers communicate to their students what it means to construct a healthy mathematical 
identity (Martin, 2000, Clark, Johnson, & Chazan, 2009). Minoritized students in the U.S., 
particularly African American and Latino students, are engaged in a unique, continuous process 
of negotiating multiple traditions, cultural frames, and identities, some of which arguably have 
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been perceived and/or constructed as incompatible, in an effort to function in U.S. society 
(Boykin, 1986; Du Bois, 1903). It is reasonable to believe, therefore, that teachers, particularly 
mathematics teachers of marginalized, minoritized students, play an important role in assisting 
their students negotiate and reconcile (Wenger, 1998) real or perceived conflicts or dilemmas in 
their identity formation in general and their mathematics identity formation in particular. 

 
The Case Studies of Urban Algebra I Teachers Project 

In 2004, the University of Maryland’s Center for Mathematics Education with funding from 
the National Science Foundation embarked on the Case Studies of Urban Algebra I Teachers 
Project through the Mid-Atlantic Center for Mathematics Teaching and Learning. The main 
purpose of the project was to document the practices, instruction, and perspectives of ‘well 
respected’ teachers of algebra in two urban high schools that were mainly comprised of large 
populations of African American and Latino students. The focus of this paper, April Lincoln, a 
teacher at Erasmus High School, is one of six mathematics teachers participating in the project. 
All teachers in the study were African American except for one African American male. The 
range of teaching experience across teachers was vast – two years to over 20 years. 

The research team structured observation and interview protocols around three main themes: 
1) teacher’s “sense of purpose” of teaching mathematics, 2) the teaching of algebraic concepts, 
and 3) the teaching of data analysis. Each teacher was observed roughly 30 times across the three 
themes (most of which were videotaped) and interviewed eight times over the course of a year.  
Erasmus High School 

At the time of data collection (2005), Erasmus High School enrolled approximately 2000 
students in grades nine through twelve. Forty-five percent of Erasmus students were African 
American, 43% were Hispanic, 7% were White, and 5% were Asian. In 2005, 27% of Erasmus 
students scored at or above the ‘percent proficient’ cut score on the mathematics portion of the 
state mandated assessment. Thirty-five percent of students scored at or above the ‘percent 
proficient’ cut score in reading during the same year. Student mobility was considered ‘high’ at 
Erasmus during 2005, with 20% of students enrolling in school after the start of the school year 
and 17% leaving Erasmus before the end of the school year. In 2005, 31% of Erasmus classes 
were taught by teachers that did not have highly qualified teaching status. Attendance rates have 
been historically high at Erasmus and approximately 76% of 9th graders entering Erasmus in 
2001 (4 years prior to projected graduation year) graduated. (It should be noted that by 2008, 
student performance in mathematics and reading increased dramatically to over 75% of students 
at or above ‘percent proficient’ in both areas.) 
 

Data Analysis Methods 
Data analysis techniques utilized in the development of this case study included traditional 

case study methods that consisted of an iterative process that proceeded from more general to 
more specific observations (Creswell, 1998). The authors individually studied and coded 
interviews and observations and identified instances that map onto the AT framework. In some 
cases, relevant instances did map cleanly onto an element of the AT framework; in other cases 
the authors did not agree on the how a particular instance should be coded. In the latter case, the 
authors negotiated until an adequate agreement was reached.  

We first present a short biography of April Lincoln, followed by discussion of elements of 
the activity system that structured April’s efforts to facilitate reading strategies in her algebra 
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classroom. We conclude with a discussion of our interpretation of how April’s experiences as a 
struggling reader may influence her commitment and capacity to engage in this practice.  
 

April Lincoln 
April Lincoln is an African American female in her late forties at the time of data collection. 

She described herself as being a very quiet and shy person, and, throughout her interviews, 
projected a sense of modesty and humility. Initially, it was one of her professors that suggested 
she should consider pursuing a career in teaching mathematics and April commented that she 
was ‘shocked’ by his recommendation. She did not follow his suggestion upon graduation from 
college and began working in private industry. During her career in private industry, one of 
April’s children said to her one day “Mom, you act like a teacher”. April stated that, “A light 
went off in my head” at that moment and, as a result, April started teaching kindergarten at the 
local YMCA. After teaching kindergarten for a few years, April began teaching middle school. 
After two years at the middle school, she began teaching mathematics at Erasmus High School. 
At the beginning of this study, April was entering her fifth year at Erasmus. 

April described her performance as a school student as mixed – she excelled in mathematics 
but and struggled in courses that demanded considerable amounts of reading and writing. She 
repeatedly mentioned that mathematics was the only subject matter that she felt competent and 
powerful. Despite her challenges with reading and writing, April enrolled in graduate school to 
pursue a master’s degree and, after experiencing continued difficulty in reading and writing, was 
diagnosed with a reading disability. April’s reading difficulty lead to problems with her reading 
the consent form to participate in the research project which resulted in the interviewer reviewing 
the document for April. April also experienced difficulty reading and comprehending the 
prompts associated with this research project. 

April projected a very empathetic character and appeared to have a deep sense of concern for 
her students. April viewed her students as an extension of her children and approached teaching 
them with her parental instinct and the same level of concern she has for children. She strongly 
believed that she must better prepare her students to read in order for them to pass the 
mathematics portion of the high school assessment because “it is all they do is read and write” 
(Interview, September 28, 2005).  

 
Activity Theory Activity System: Reading Strategies in the Mathematics Classroom 
Research exploring the prevalence of reading strategies in secondary classrooms indicate that 

few mathematics teachers view incorporate reading strategies into their practice for a host of 
reasons (Davis & Gerber, 1994), however April was committed to incorporating reading 
strategies in her algebra class. Of the six teachers in the study, April’s classes enrolled the 
highest percentage of students identified as having learning or behavioral difficulties, resulting in 
many students with Individualized Learning Plans (IEPs). In April’s classes with large numbers 
of students with IEPs, an additional teacher from the Special Education department was assigned 
to support April in class. April stated, “I’ve taken two reading classes. And my whole task this 
year is to get them to do more reading in mathematics…the [high school graduation test] is 
nothing but reading and writing, so my whole thing this whole year, we gonna read, we going to 
write, we going to explain. And uhm… that’s what I’m pushing them to do…” (Interview, 
November 16, 2005). We witnessed three types of reading strategies in April’s classroom during 
the year of data collection: 1) explicitly attending to words that have multiple meanings inside 
and outside of mathematics classroom, 2) identifying root words of key mathematics vocabulary 
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to find meaning, and 3) utilizing problem solving heuristics that explicitly contain a ‘step’ related 
to reading comprehension. Table 1 contains elements of the activity system related to April’s 
facilitation of these strategies in her classroom. 
 
Table 1. Activity System Elements Related to April’s Facilitation of Reading Strategies  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Discussion 

Our analysis of the activity system around April’s facilitation of reading strategies in her 
class suggest that a primary mediating tool was her concern that her students would perform 
poorly on the state assessment due to their reading struggles. Additional mediating tools surfaced 
in our analysis, including April’s personal struggles as a reader. April was very candid and open 
with students about her reading struggles, and described to students supports and techniques she 
used in her daily life to function. It was evident that April felt it important for students to know 
of her struggles and her story, and how she has managed to be resilient, successful, and highly 
functional despite the challenges she faced. Her story complicates notions of the skills, 
knowledge, and resources effective teachers must possess. As representatives of academic 
excellence and upholders of curricular demands, it is not common in teacher education circles to 
consider that some teachers have overcome considerable learning challenges and use these 
experiences as instructional resources. Had April not been a struggling reader, would she have 
consistently incorporated reading strategies in her classroom?  Our interpretation suggests that 
her experiences were a significant mediating tool between her and her facilitation of reading 
strategies in her algebra classroom. There was no evidence that other teachers in her school were 
engaging in similar strategies. 

April’s story, however, leaves many critical questions to explore, including: 
- Is it important for students who may have a history of low performance on standardized 
measures of mathematics achievement to be exposed to resilient teachers who have overcome 
adversities? 
- Can this exposure support struggling students’ mathematics identity formation? 

Element Elements in April’s practice 

Object Facilitation of reading strategies in the mathematics classroom 

Subject April Lincoln, resource teacher, students 

Mediating tools 

 
High school graduation assessment, algebra curriculum 
guidelines, April’s experiences as struggling reader, students’ 
achievement history, April’s reading courses, students’ 
behavioral problems 
 

Rules Pacing schedule for algebra curriculum guides, students’ IEPs  

Community  Other Algebra teachers, school administrators, other teachers in 
school 

Division of labor April Lincoln, resource teacher, reading support classes  
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- Does April’s story simply reify characterizations of mathematics teachers in urban schools as 
low quality and poorly prepared or does her experience actually position her as better qualified in 
these particular contexts than teachers that may not have had her experience? 
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By examining statistical data only, it seems that women are making great strides in 

overcoming their under-representation in mathematics (Monroe et al., 2008). However, statistics 
do not tell the entire story. Qualitative studies (see Monroe et al., 2008; MIT Report, 1999) 
suggest that women still face barriers in academia. Therefore, the research study described in this 
poster will focus on qualitatively exploring graduate mathematics departments that have a history 
of producing women mathematicians. By examining the recruiting and educational practices 
within these communities and linking those practices to students’ and faculty member’s 
perceptions and experiences within their departments, the study hopes to reveal successful 
practices for producing women mathematicians.  

In an attempt to examine the practices and environment of a mathematics department, the 
researcher has employed both the “Communities of Practice” (Wenger, McDermott, & Snyder, 
1998) and “Stewards of the Discipline” (Golde, 2006) frameworks. A community of practice is a 
“group of people who share a concern, a set of problems, or a passion about a topic, and who 
deepen their knowledge and expertise in this area by interacting on an ongoing basis” (Wenger et 
al., 2002, p. 4) while the stewards of the discipline framework focuses on what it means to 
pursue Ph.D.s. The two frameworks will be combined with gender issues from research.  

These frameworks will provide a glimpse into mathematics graduate programs with high 
percentages of women. It is important to examine the departments because at this level math 
becomes a choice. Women and men either choose to study it or they choose not to. The 
frameworks will help us to understand why specific educational environments are appealing to 
large numbers of women choosing to study mathematics. If either of these frameworks is 
successful at helping us understand the highest level of education for women, it may be 
beneficial to examine mathematics classrooms at the K-12 level using this type of framework for 
improving women’s participation in mathematics at all levels.  

This poster will demonstrate how the communities of practice framework is related to the 
stewards of the discipline and how it will be used in the analysis of the data. The poster will also 
show how research-based gender issues will be superimposed with the frameworks. There will 
be examples from the data analysis to help exemplify the use of the two frameworks.  
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This poster presents the development and implementation of an activity in which community 
college students engaged with a standard algebra topic in the context of hip-hop music. Inspired 
by an article in The New Yorker, the authors developed an activity in which students used data to 
explore the question “Has Timbaland surpassed the music production record of Dr. Dre?”. The 
poster presents the motivation for creating a context of interest to students, the collaborative 
effort to develop and implement the activity, student work, student interviews, and a student 
written article in the college newspaper. We also provide the curriculum and graphs created by 
students and instructors, and summaries of our reflections for other instructors who might to 
pursue similar work. 
 

Background and Motivation 
Teaching Algebra at a community college is about providing students with opportunities to 

develop conceptual understanding and procedural fluency, but it is also about helping them 
develop motivation for learning and identities as students who are capable in math. We teach in a 
context in which a student-centered, reform-oriented, Algebra curriculum has been developed, 
Lesson Study is an important part of professional development, and concerns about educational 
equity shape our work. In this context, we created the Hip Hop activity as a replacement activity 
in the Algebra curriculum, with the goal of providing students a relevant context in which to 
learn about lines of best fit (LOBF). 
 

Mathematical Context: Algebra and Linear Regression 
Linear functions constitute a major focus of our curriculum, including the use of LOBF to 

model data. Our Algebra course also aims at general learning outcomes, including 
communication, problem solving, and multiple representations. In this activity, students  
organized “raw data” (number of songs each man produced) in tables and graphs, and they used 
lines of best fit to model the data. Then they predicted when Timbaland surpasses Dre, and when 
Timbaland’s production reached twice that of Dr. Dre. In an extension activity, LOBF were used 
to motivate solving systems of linear equations. 
 

Implementation, Reflections, and Future Work 
The activity was implemented in both authors’ classrooms with similar results. Unlike some 

activities we have implemented, here students had significant knowledge of this context, and 
they eagerly suggested other quantities that could be used to compare the relative success of 
these producers. Some students struggled to organize the raw data, construct lines of best fit, and 
write the equations of the lines, likely because they lacked experience with such activities. 
However, the group work and whole class discussion components of the activity served as 
important sites for learning about linear equations, rates, graphs, estimation and prediction. 
Different groups necessarily graphed different lines, but were able to make similar predictions 
about future production and to interpret the slopes of lines as production rates. Future versions of 
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the activity will include the examination of different quantities that measure relative success, as 
well as the investigation of other contexts and questions generated by students. 
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This study examined the identities of mathematics literacy workers of the Young People’s Project 
(YPP) Chicago within the context of their mathematics literacy work.  YPP Chicago is a youth-
led organization and mathematics initiative that is an outgrowth of and in partnership with 
Robert Moses’ Algebra Project.  Wenger’s (1998) framework, communites of practice (COP), 
was utilized in this study.  Through the data, I found that there were several identitites 
constructed by MLWs and CMLWs due to their engagement within this COP.  CMLWs and 
MLWs themselves as change agents, doers of mathematics, and an authority and role model in 
flagway trainings.   

 
In the past two decades there has been a major emphasis to increase understanding of rural and urban 

youths in mathematics. Proficiency in mathematics has become a fundamental requirement for students 
taking advanced mathematics courses in schools and “more influential on income at age 24 than 30 
years ago” (Carpenter & Bottoms, 2003). As urban schools work toward improving student achievement 
in a variety of disciplines, like mathematics, some scholars have suggested a possible avenue for 
improving student outcome – allowing students to take a more active role in the mathematics teaching 
process. Research has shown that student involvement in school change impacts student learning (Mitra, 
2003), youth development and produces new identities (Mitra, 2004).  

Wenger’s communities of practice espouses that learning requires extensive participation within a 
community where its members are engaged in a set of relationships over time. Communities of practice 
exist all around us, they are an important part of our everyday life, and individuals are part of a number 
of them both implicitly and explicitly. There are three dimensions of communities of practice: (1) 
mutual engagement, (2) joint enterprise, and (3) shared repertoire. Moreover, there are three modes of 
belonging in identity formation: (1) engagement, (2) imagination, and (3) alignment. For this study, the 
workshop training was the context for the community of practice. Through these modes of belonging, I 
was interested understanding mathematics literacy workers’ formed their identities. The perspectives 
that guided this work were as follows: (1) Learning occurs by doing or through practices in social 
activity (Lave & Wenger, 1991); (2) Identity formation occurs in a social context and is contingent on 
ones levels of engagement in that context. I engaged participants in mathematical tasks and prompts to 
solicit their interpretations of how they were influenced by their work in YPP overall and the workshop 
training in particular. This paper describes how CMLWs and MLWs came to understand their own 
construction of identity as a result of their community outreach work and participation in the workshop 
training. 

Results from data revealed a wide variety of experiences that influenced how mathematics 
literacy workers came to their work at YPP. Each of the participants’ identity were constructed 
differently through various aspects of the outreach work they engaged in and the way they felt it 
came through in their overall purpose with the Young People’s Project Chicago. Each 
participant’s identity was displayed through very specific goals they had for themselves and for 
others in doing the outreach work. One of the ways that identity was constructed was 
mathematics literacy workers defined as authoritative figures. Math literacy workers as an 
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authority were defined by participants aspiring to be role models, capable of shaping how 
children saw mathematics, and demonstrating a high level of understanding among peers. 
Mathematics literacy workers also saw themselves as change agents, capable of changing how 
others perceived mathematics in their community. 
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This theoretical paper demonstrates that gender gaps in performance on the SAT I quantitative 
section (about one third of a standard deviation) have little to do with college readiness, but 
rather are due to the misaligned content of the instrument as well as the environment in which 
the exam is administered. The findings of this research have far-reaching implications for the 
design and administration of standardized mathematics tests and in particular for the SAT, 
which is used for determining admission to many colleges as well as the awarding of 
scholarships.  
 

Introduction 
Performance differences between the sexes across mathematical content areas, problem 

types, and various instruments have been previously documented (Gallagher & Kaufman, 2005; 
Hyde, Fennema, & Lamon, 1990; McGraw, Lubienski, & Strutchens, 2006; Willingham & Cole, 
1997) and generally attributed to biological and/or sociological influences. Also it has been 
demonstrated that stereotype threat can contribute to performance gaps by causing females to 
falter in the face of complex numerical reasoning tasks or to forego tedious calculations and opt 
to guess at an answer while their male counterparts are unaffected (Quinn & Spencer, 2001; 
Spencer, Steele, & Quinn; 1998). Since the SAT I is supposedly designed to predict the success 
of college freshmen, students’ scores play a significant role in many institutions’ admissions and 
scholarship decisions. However, the disparity in scores between college-bound males and 
females, particularly on the quantitative section, leads to inequities in terms of access. It is 
asserted here that the conditions under which the high-stakes SAT I is administered are 
conducive to stereotype threat. Further, this paper argues that the predictive validity of the SAT I 
quantitative section is questionable because it includes a significant amount of content that not 
only favors males, but also is not reflective of first-year college mathematical subject matter.  

 
Theoretical Perspectives 

This literature review examines possible reasons for divergence in performance (biological 
and sociological), differences between the sexes’ performance in particular mathematical content 
areas and problem types, differences in use of mathematical problem-solving strategies, and 
stereotype threat’s effect on performance. The review then examines the validity of the SAT 
quantitative section in predicting college success.  
Possible Reasons for Divergence In Performance  

The literature shows three main lines of reasoning to explain the differences in male and 
female performance on mathematical tasks: biological and sociological (covered here) and 
psychological (covered later in the section on stereotype threat). While biological arguments 
have in recent literature largely been discredited, they still exert an influence in contemporary 
discourse and thus cannot be ignored.  
Biological 

In terms of sex differences in performance on cognitive tests, arguments have been made that 
males for biological reasons have a higher aptitude for mathematics than females, which would 
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account for performance gaps on tests such as the SAT I quantitative section. Hormones may 
play a role in enhancing some abilities, as levels of testosterone in males have been shown to be 
causally linked to spatial-skills performance (Janowsky, Oviatt, & Orwoll, 1994), and female-to-
male transsexuals have demonstrated marked increases in their spatial abilities after being given 
large amounts of testosterone (Van Goozen, Cohen-Kettenis, Gooren, Frijda, & Van De Pol, 
1995).  

Another line of reasoning is that males have greater variability in mathematical performance 
than females which leads to more males at the far right of the statistical distribution (e.g., at high 
levels of performance) than females. Studies conducted in the late 1970s and early 1980s with 
nearly 50,000 junior high students who had taken the SAT I quantitative section as part of talent 
searches, revealed that boys exhibited a “substantial” sex difference in mathematical reasoning, 
and further suggested, because the participants were adolescents, that genetic differences (e.g., 
deficiencies in female genetics) were the reason for this difference (Benbow & Stanley, 1980; 
1983). Feingold (1992) found that 12th-grade males also exhibited more variable performance 
than females on the SAT I quantitative section, and suggested that this greater variability, 
combined with the medium effect size of central tendencies favoring males (moderate 
differences in average scores between the sexes), could lead to even greater effect sizes in the 
right tails of the ability distributions for the sexes (larger differences in average scores for high-
ability males and females).  

However, this domination by males at the far right of the ability distribution (e.g., at the high 
end of ability in mathematics performance) has diminished over the last two decades in the U.S. 
and internationally (Brody & Mills, 2005; Feingold, 1994; Monastersky, 2005; Willingham & 
Cole, 1997), which suggests that sociocultural factors may play a role in gender differences in 
achievement. In general, current evidence for a purely biological basis for differences in 
mathematical performance between the sexes has been described as “weak, at best” (Wilder, 
1997, p. 14). 
Sociological 

A different argument is that sex-related differences in mathematics performance are due 
mainly to environmental influences. In this view, differential socialization of boys and girls via 
prejudicial treatment, social norms, and the expectations of parents, teachers, and fellow 
students, results in the divergent development of boys and girls and sex-role stereotyping (Baker 
& Jones, D. P., 1992; Eccles & Jacobs, 1986; Fennema & Peterson, 1985). 

For example, in the area of spatial abilities (where males have a documented edge), it has 
been shown that taking part in related activities (especially those specific to completing spatial 
tasks) is essential to the development of the spatial ability, and that females tend to participate in 
these learning situations less often than males (Baenninger & Newcombe, 1989). Further, it has 
been demonstrated that when females are given the opportunity to train with visual-spatial tasks, 
their performance improves (Vasta, Knott, & Gaze, 1996). In addition, international studies have 
shown that sex differences in performance on mathematics tasks decrease as females are 
provided more access to advanced training and better jobs (Baker & Jones, D. P., 1992).  

Therefore, the evidence suggests that sex differences in mathematics performance are not 
immutable. Instead, rather than a dichotomy of nature (biological) or nurture (sociological) as 
possible reasons for divergence in performance, it would seem that differences in performance 
are a result of a unique and complex blending of influences and opportunities. 
Differences between The Sexes’ Performance In Particular Mathematical Content Areas And 
Problem Types  
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Sixth- and seventh-grade girls perform better in problems of number sense, problems of 
estimation, and those that involve patterns, while their male counterparts perform better in 
geometry and ratio/proportion, and on problems that employ figures (Lane, Wang, & Magone, 
1996). These differences in performance continue through high school—for example, studies of 
students taking college entrance exams (e.g., the SAT and ACT) revealed that females perform 
better on algebra items that involve familiar algorithms or computation, while males perform 
better in geometry, mathematical reasoning, word problems, and items including figures, graphs, 
or tables (Doolittle & Cleary, 1987; Harris & Carlton, 1993).  

In a review of studies up to 1985, the observed trend was that among high school students, 
males were somewhat better than females in solving word problems, and females were better or 
at least equal in computational skills (Stage, Kreinberg, Eccles, & Becker, 1985). A 1990 meta-
analysis of 100 studies revealed “a slight female superiority in computation, no gender difference 
in understanding of concepts, and a slight male superiority in problem solving” (Hyde, Fennema, 
& Lamon, 1990, p. 147). Further, despite relatively similar male and female mathematical 
abilities at the elementary level, males’ ability in geometry seems to accelerate past and beyond 
that of females by the end of high school (Leahy & Guo, 2001). 

Differences in the ability of spatial visualization may be the key to differences in 
mathematical trajectories for the sexes. Males have been shown to outperform females on 
geometric tasks involving spatial visualization, but males and females exhibit roughly equal 
performance in logical reasoning ability and in the use of geometric problem-solving strategies 
(Battista, 1990). Males exceed females by some of the largest differences in performance on 
items that involve mental rotation of three-dimensional objects (Casey, Nuttal, Pezaris, & 
Benbow, 1995; Willingham & Cole, 1997), and also perform better on items based on 
measurement of two-dimensional and three-dimensional objects (perimeter, area, surface area, 
volume), which also involve spatial visualization (Garner & Engelhard, 1999; Li, Cohen, & 
Ibarra, 2004).  

Higher ability in spatial visualization may also play a role in a higher ability to retrieve 
mathematics facts. College males (undergraduates from the 1996–97 academic year) have been 
shown to be faster at math-fact retrieval on an achievement test (the Computer-based Academic 
Assessment System, now known as the Cognitive Aptitude Assessment System) (Royer, 
Tronsky, Chan, Jackson, & Marchant, 1999). It has been suggested that this higher retrieval 
speed may be linked to males having greater flexibility in their choice of problem-solving 
strategies, because they have the option of employing a spatial approach that might be more 
appropriate for some items. On the same items, someone with limited spatial ability would be 
forced to rely upon a perhaps less effective approach (Casey et al., 1995).  

Another possibility to explain the difference in male and female mathematics performance is 
that math-fact retrieval ability itself plays a pivotal role in solving more complex problems that 
require more cognitive load. That is, those who can retrieve information more quickly or more 
effectively would perform better on items requiring recall of a mixture of concepts and/or 
procedures (Paek, 2002; Royer et al., 1999). Further, it has been demonstrated that on SAT I 
quantitative items, males take less time to solve problems than females (Paek, 2002). But, 
regardless of whether math-fact retrieval ability is an effect that favors males (due to higher 
ability in spatial visualization) or is the cause for their better performance on certain mathematics 
tasks, it certainly would provide an advantage on a timed test. 
Differences in Use Of Mathematical Problem-Solving Strategies 
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A study of high school students working problems from the quantitative section of the SAT I 
(Gallagher, 1992) found that females were more apt to rely on standard algorithms traditionally 
presented in classrooms, while males were more inclined to use insight. Females demonstrated 
less prior knowledge than males and used fewer mathematical strategies on SAT mathematics 
items, even when both groups had similar backgrounds in terms of mathematics courses taken 
and grades received (Byrnes & Takahira, 1993; Paek, 2002). It has also been shown that on SAT 
mathematics items, males use unconventional strategies (including logic, estimation, or insight) 
significantly more often than females, and females use conventional strategies (such as an 
algorithm, assigning values to variables, or “plugging in” numbers to a formula) significantly 
more often than males (Gallagher & De Lisi, 1994; Paek, 2002). 

These findings would certainly tend to suggest that males would have the advantage in 
situations where problems cannot be solved by the more traditional strategies presented in 
school, and would help to explain why females generally have better grades in school but 
underperform on tests such as the SAT I quantitative section. One study that used course grades 
rather than standardized tests to measure differences in mathematics achievement between the 
sexes noted that “when differences are found, they almost always favor girls, and these 
differences are quite consistent across samples of varying selectivity for junior high through 
university mathematics courses” (Kimball, 1989, p.199). The study’s findings, which are 
contrary to male and female achievement patterns on the SAT I quantitative section, suggest that 
situational variables (such as the testing environment or method of administration) might play a 
role in performance gaps between males and females. 
Stereotype Threat’s Effect on Performance 

A landmark study that introduced the term stereotype threat (Steele & Aronson, 1995) 
suggests a plausible explanation for some of the differences in male and female mathematics 
achievement when measured by classroom test grades and by standardized tests. Stereotype 
threat is defined in the study as a feeling of “being at risk of confirming, as self-characteristic, a 
negative stereotype about one’s group” and further, stereotype threat “may interfere with the 
intellectual functioning of these students [affected by stereotype threat], particularly during 
standardized tests” (Steele & Aronson, 1995, p. 797). The initial study focused on black students 
who were found to be burdened by the stereotype of having less ability than white students in 
terms of general intellectual aptitude.  

Steele and Aronson’s findings are relevant to this study of performance gaps between the 
sexes on standardized mathematics tests, because females may also deal with stereotype threat. 
In particular, females are susceptible to the stereotype threat that they are publicly perceived to 
be less able in mathematics than males. Steele and Aronson note the broad applicability of 
stereotype threat: “This threat can befall anyone with a group identity about which some negative 
stereotype exists, and for the person to be threatened in this way, he [or she] need not even 
believe this stereotype” (Steele & Aronson, 1995, p. 798).  

In a later experiment, the effects of stereotype threat on female mathematics performance 
was confirmed among college females who excelled at math and identified strongly with the 
subject (Spencer et al., 1998). In that study, on an extremely difficult test (composed from the 
advanced GRE in mathematics), females underperformed compared to males when informed 
before they took the test of historic sex differences in test performance, but females achieved as 
well as males when told that the test was gender-insensitive. The results of the experiment 
contradicted the hypothesis of female genetic deficiency suggested previously by Benbow and 
Stanley in the early 1980s (Spencer et al., 1998). Additionally, the experiment’s findings 
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confirmed what Steele had concluded in an earlier study: that “stereotype threat may be a 
possible source of bias in standardized tests, a bias that arises not from item content but from 
group differences in the threat that societal stereotypes attach to test performance” (Steele, 1997, 
p. 622).  
The Effects of Priming Stereotype Threat  

Stereotype threat can be primed in various ways. One is the condition of evaluative scrutiny. 
In this situation test-takers know their results will be available to others, such as parents, 
teachers, administrators, or colleges. On a standardized test such as the SAT, some degree of 
evaluative scrutiny is always present. Another way to induce stereotype threat is the condition of 
identity salience. This condition can be thought of as “the likelihood that the identity will be 
invoked in diverse situations” (Hogg, Terry, & White, 1995, p. 257). Participating in a mixed 
testing environment (for example, males and females together) or having to identify one’s sex 
prior to a standardized test, as is the norm, can invoke identity salience.  

The effects of these two causes of identity salience have been measured in studies conducted 
by the Educational Testing Service (commonly known as ETS) and the College Board. In one 
experiment, researchers administered the mathematics section of the Graduate Record Exam 
general test to males and females on an individual basis (GRE Board, 1999). In this study, the 
gap in scores between males and females was less than half of the gap from the regular 
administration of the GRE general test (d =.40 versus d =.97) that same year, in which students 
tested in a mixed environment. 

Another study measured the effect on performance of identifying one’s sex before a test 
(College Board, 1998a). The experiment focused on students taking the Advanced Placement 
Calculus AB exam. For those who indicated their sex on a standard background information 
sheet before the test, the performance gap effect size (d = .41) between males and females was 
more than triple that for the males and females who identified their sex after the test (d = .12). 
This study, along with the ETS study, clearly demonstrates that the condition of identity salience, 
while subtle in nature, can play a major role in inducing stereotype threat. 
The SAT and Its Present Validity in Predicting College Success 

Approximately 92 % of four-year institutions require SAT/ACT scores from potential 
students and 75% routinely use these scores in making decisions on admissions (College Board, 
2002). However, in Hyde, Fennema, and Lamon’s 1990 meta-analysis of gender differences in 
mathematics performance on various instruments (100 studies total), the effect size favoring 
males was by far the greatest on the SAT I, and this performance gap persists today.  

The College Board has offered various reasons for differences in the performance of males 
and females on the SAT I quantitative section. Essentially, the College Board suggests that 
females are generally less prepared than males in terms of mathematics (College Board, 1998b). 
However, the validity of the exam is suspect, in terms of gender, as it has been demonstrated that 
the SAT I quantitative section consistently under-predicts the college success of females 
compared to males. Studies have shown that while males consistently score higher (a third of a 
standard deviation) than females with similar mathematical backgrounds on the SAT I 
quantitative section, females perform on par with males, later, in like college mathematics 
courses (Bridgeman and Wendler, 1991; Wainer and Steinberg, 1992). 

One reason for the lack of predictive validity with the SAT I quantitative section may lie with 
the content of the exam, which is seemingly not well-aligned with college readiness standards. 
Approximately 40% of the test is devoted to geometry, measurement, and data analysis items 
(Achieve, 2007), content strands where 12th-grade males tend to outperform their female 
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counterparts on the NAEP (McGraw et al., 2006). However, the typical core curriculum 
mathematics course required for students at universities is college algebra or its equivalent, a 
mathematical area where women perform on par with men (McGraw et al., 2006). Further, a 
recent national curriculum survey of post-secondary mathematics instructors (ACT, 2007) 
revealed that algebra skills were ranked as the most important, while measurement, geometry, 
and probability/statistics skills were considered least important for success in college. 

Also, in another study on college readiness (AAU & Pew Charitable Trust, 2003), the content 
strands of geometry and measurement accounted for only seven out of 81 mathematics standards 
for success in college (the rest covered by algebra) and probability/statistics was not considered a 
necessary prerequisite for entry-level mathematics courses. Therefore, since the SAT I 
quantitative section contains a large percentage of items that are for the most part considered 
irrelevant to college freshman success and tend to favor males over females, the fact that the 
exam over-predicts the future success of males while under-predicting the same for females 
should not be unexpected. 

 
Conclusion 

Evidence to date suggests that performance gaps between males and females on standardized 
mathematics tests, such as the SAT I quantitative section, are influenced by a complex mix of 
sociological, psychological, and (to a lesser extent) biological factors unique to each individual. 
However, the typical core curriculum mathematics course required by universities is college 
algebra or its equivalent, a content area where females perform on par with males (according to 
NAEP data). Yet, a large percentage of the SAT I quantitative section is devoted to other content 
areas which are not essential to freshmen success and favor males (also according to NAEP 
data), which in combination with a testing environment conducive to stereotype threat potentially 
lead to existing sex differences in performance on the exam.  

Since high-stakes decisions involving admissions to colleges and awarding of scholarships 
are often based on the results of this single testing instrument, the College Board should 
reexamine the content of the exam to ensure that it is aligned with and accurately reflects the 
topics necessary for early college success in mathematics. Further, in order to lessen the effects 
of stereotype threat, ETS should consider shifting the administration of the SAT I to 
individualized (or same sex) testing and moving identification of one’s sex to after or well in 
advance of the exam. 
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This research report examines patterns in middle-grades boys’ and girls’ written problem 
solving strategies for a mathematical task involving proportional reasoning. The students 
participating in this study attend a coeducational charter middle school with single-sex 
classrooms. 119 6th grade students’ responses are analyzed by gender according to the solution 
strategy they used to arrive at their final response to the task. 42.7% of participating girls’ 
responses are classified as either using a purely multiplicative strategy, as evidencing emergent 
proportional reasoning, or as evidencing mature proportional reasoning. 60.5% of participating 
boys’ responses are thus classified. 52.5% of girls are classified as relying on a purely additive 
strategy for their final response, as compared with 29.5% of boys. 
 

Objectives/Purposes of this Study 
This research report examines patterns in middle-grades boys’ and girls’ problem solving 

strategies for a mathematical task involving proportional reasoning. The students participating in 
this study attend a coeducational charter school with single-sex classrooms. All of the students in 
this study attended 6th, 7th, or 8th grade mathematics classes (6th grade mathematics, pre-algebra, 
or algebra) in single-sex classrooms. Instruction in single-sex classrooms is a mandate of the 
charter for this school, formed by parents seeking an alternative to local public middle schools. 
The research reported in this paper is part of a more broad investigation of the impacts of single-
sex middle-grades education on mathematics learning, mathematics achievement, student 
academic self-concept, and parent, teacher, and student perspectives of the experience of being 
educated at this charter school. For this paper, we are looking specifically at the written and, in 
some cases, video-recorded solution strategies of girls and boys as they attempt a mathematical 
task centered on proportional reasoning. 
 

Perspectives/Theoretical Framework 
Equity issues in mathematics education are currently receiving much attention, as evidenced 

in part by the NCTM Board of Directors’ emphasis on equity as a strategic priority and by the 
upcoming special issue of JRME on equity in mathematics education. Of the many aspects of 
equity to consider, this research report proposal contributes to understandings in mathematics 
education about gender and mathematical thinking. Much of the work in the mathematics 
education research community on gender and mathematics thinking focuses on a narrow, 
restrictive view of mathematics achievement by using mathematical performance on 
standardized tests to compare girls and boys. While such studies can provide insight about 
certain questions regarding girls’ and boys’ mathematical performance, one of the problematic 
issues with basing findings on students’ mathematical performance on a standardized test is that 
results from such studies are easily (mis-)extrapolated to include implications about not just 
performance, but achievement, ability, and talent. In addition, findings resting on outcomes from 
an assessment in which answers are coded either right or wrong disregards students’ thinking 
about the mathematical tasks on the assessment. 
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Research Questions 
1. How do girls’ strategies for solving a mathematical task compare to other girls’ 

strategies? 
2. How do boys’ strategies for solving a mathematical task compare to other boys’ 

strategies? 
3. How do the girls’ strategies for solving a mathematical task compare to boys’ strategies? 
 

Modes of Inquiry 
Participants 

The initial phase of this research involved selecting a sample of students to participate in a 
videoed task-based interview. 23 students (12 girls, 11 boys) were selected for this task, in which 
students attempted to solve and explain their strategies for solving a mathematical task involving 
proportional reasoning. Following these task-based interviews, a total of 162 students, grades 6-
8, participated in writing responses to the mathematical task. Table 1 shows the distribution of 
these 162 students across gender and grade level. The reason there are so many 6th graders 
relative to the 7th and 8th grade students is that the school has decided on a growth process 
whereby new classes are added at the 6th grade level.  
 
Table 1. School Student Population by Grade and Gender 
 Girls Boys Total 
6th grade 61 58 119 
7th/8th grade 24 19 43 
Total 85 77 162 
 
For the school’s first year, there were about 20 6th graders, 20 7th graders, and 20 8th graders. At 
the time of our data collection, there were still about 20 7th graders and 20 8th graders, but a 
larger class of 6th graders had been admitted. Because there are so many more 6th graders than 7th 
and 8th graders, the data in this paper concentrate on 6th grade students. 
Contexts 

Students participating in this research attend a public coeducational charter school in the 
southeast. Classes at this charter school are conducted in single-sex classrooms (the one 
exception is 8th grade geometry, which is coeducational and offered before school so as to not 
violate the school’s charter). The school currently has approximately 220 students in grades 6 
through 8, and class sizes are at most 20, with class sizes from 15-20 being habitual. Thus, this 
charter middle school is atypical from local public middle schools in both school and class size. 
Further, this charter middle school has a homogenous student population both in terms of race 
and SES; more than 90% of the students are white and no students qualify for free and reduced 
lunches. Though this school is not representative of local public schools, it does offer a rare 
glimpse into single-sex education in non-private settings in the U.S.  
Data Collection 

The data of primary focus for this paper (written responses to a mathematical task) were 
collected in May, 2008, near the end of the academic year. Students participating in a task-based 
interview (in October, 2007) were selected by their mathematics teachers; researchers asked 
teachers to select several students in each of their classes. Upon completion of the initial analysis 
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of these interviews, researchers distributed the task in written form and asked all students to 
respond to the task. Participating students responded to this problem: 

 
The capacity of an elevator is either 20 children or 15 adults. If 12 children are currently in 
the elevator, how many adults can still get in? (Johnson & Herr, 2001) 
 

This particular problem was chosen for several reasons: first, this problem addresses one of the 
main ‘big ideas’ of middle grades mathematics, proportional reasoning. Second, this problem 
allows for many distinct solution strategies. Third, students only using the traditional algorithm 
of setting up two equal ratios and cross-multiplying to solve for the unknown quantity will not 
arrive at the correct response if they use only the numbers given in the problem. This is because 
the information given in the problem relates to the full capacity of the elevator and the capacity 
that is occupied, but the problem asks for the capacity still available for use. The fact that, when 
students only use numbers given in the problem with a traditional algorithm, they do not arrive at 
the correct answer facilitates analysis, as discussed below. Fourth, the context of the problem is 
one to which the participating students can all relate and which has a high degree of gender 
neutrality (no names are used, no one in the problem is referred to by gender, and both women 
and men frequently use elevators). 
 

Analysis 
The student responses were analyzed in two ways: responses were first analyzed separately 

by gender and responses were sorted according to the students’ final answer. There were some 
students who did not have a clear final answer, and there were some students who offered an 
answer with no written strategy. The remaining task attempts were put into categories coinciding 
with the students’ final answer. For instance, all the 6th grade girls whose final response was 6 
adults were placed into the same category. Once the range of final answers from 6th grade girls 
was established, each of the strategies leading to these final answers was examined, with 
researchers tracing students’ thinking according to the sequencing of the work on the page and 
the flow of the mathematical computations. In several cases, there were also illustrations which 
frequently gave insight into students’ thought processes. During this phase of analysis, 
researchers articulated students’ strategies for each response and noted similarities and 
differences in students’ strategies. 

The second level of analysis occurred across final answers, and focused on the spectrum of 
student solution strategy from purely additive reasoning to appropriate use of proportional 
reasoning. This spectrum is based on Lamon’s (2005) work on levels of sophistication of student 
solution strategies. While we do not explicitly place students’ work samples in different levels of 
sophistication, we do place them on a spectrum from additive to multiplicative strategies, using a 
four-part scale: purely additive strategies, emergent proportional reasoning, purely multiplicative 
strategies, and mature proportional reasoning. This scale is admittedly problematic in a sense 
because the scale uses both strategies and reasoning as sorting variables. The rationale for this is 
that a student’s use of a multiplicative strategy (such as setting up a proportion and cross 
multiplying) is not necessarily indicative of proportional reasoning. Such students could have 
simply followed a memorized procedure. Thus, only those papers with clearly articulated 
reasoning and clear strategies are placed in the categories of emergent proportional reasoning or 
mature proportional reasoning. 
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Results 
Tables 2 and 3 show the results of the analysis of final responses by gender. Of the 61 6th 

grade girls, there were 11 different final responses. Of the 58 6th grade boys, there were also 11 
different final responses. Looking at the 6th grade as a whole, of the 119 students, there were 15 
different final responses to the question.  
 
Table 2. Distribution of 6th Grade Girls’ Responses (n = 61) 
Final Response (# 
of adults) 

Number of Each 
Response 

Strategies for each response 

No work/rationale 4 (6.6%) 1 attempt at a multiplicative strategy, 3 papers have 
no work 

8 or 3 1 (1.6%) 1, an additive strategy 
4.6 1 (1.6%) 1, attempts a multiplicative strategy 
23 6 (9.8%) Additive strategies; several multiplicative strategies 

attempted and rejected 
9 9 (14.8%) All multiplicative strategies 
8 7 (11.5%) Additive strategies, although several multiplicative 

strategies attempted 
7 10 (16.4%) All additive strategies 
6 5 (8.2%) All strategies used proportions 
5 2 (3.3%) 2 purely additive strategies 
4 7 (11.5%) 1 purely additive strategy; 6 strategies involving 

multiplicative reasoning; 2 strategies using a 2:1 
ratio 

3 7 (11.5%) Additive strategies; several multiplicative strategies 
attempted and rejected 

2 2 (3.3%) 2 proportions attempted 
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Table 3. Distribution of 6th Grade Boys’ Responses (n = 58) 
Final Response Number of Each Response Strategies for Each Response 
Unclear 4 (6.9%) Mainly strategies involving multiplication and 

division; some additive strategies 
No 
work/rationale 

2 (3.4%)  

25 1 (1.7%) 1 multiplicative strategy 
13 1 (1.7%) 1 additive strategy 
9 4 (6.9%) 4 multiplicative strategies 
8 5 (8.6%) 3 additive-only strategies 
7 7 (12.1%) 5 additive-only strategies 
6 10 (17.2%) Multiplicative strategies; two strategies used 

LCM (15,20); one strategy assigned a weight 
for children 

5 4 (6.9%) 1 multiplicative strategy; 4 additive strategies 
4 8 (13.8%) 4 strategies using a 2:1 ratio 
3 9 (15.5%) 5 multiplicative strategies, 3 additive strategies 
2 2 (3.4%) 1 strategy using a 3:1 ratio 
1.666… 1 (1.7%) Divided 20 by 12 
 
In Tables 2 and 3, the category of no work/rationale means that the student states a response but 
there is no mathematical work shown and no written rationale for the response. This category 
does not include those students who show mathematical work but do not give a written rationale. 
 
Table 4. Strategy Classification of Girls and Boys 
Response Classification Girls (n = 61)* Boys (n = 58)* 
No work/rationale 3 (4.9) 4 (6.6) 
Purely additive 32 (52.5) 18 (29.5) 
Emergent Proportional Reasoning 12 (19.7) 18 (29.5) 
Purely multiplicative 9 (14.8) 13 (22.4) 
Mature Proportional Reasoning 5 (8.2) 5 (8.6) 
*Quantities in parentheses indicate percentages. 
 

In Table 4, the category ‘No work/rationale’ corresponds to the same category for Tables 2 
and 3. That is, these papers gave a response but showed no work and stated no rationale for their 
response. The category ‘Purely additive’ refers to the strategy the student relied on to get their 
final response. As will be discussed in the presentation, there are several students in this category 
that attempted strategies involving multiplication and/or division, but ultimately resorted to 
strategies using only addition/subtraction for their final response. ‘Emergent Proportional 
Reasoning’ papers were classified as such because of their images, their words, and their use of 
ratios. These students indicated that they were aware of the necessity for ratios but were not quite 
sure how to find and/or use meaningful ratios for this problem. Several of these students assigned 
arbitrary ratios (like 2:1) and solved the problem using this assigned ratio. Many of these 
students indicated uncertainty in their response, but none resorted to purely additive strategies. 
‘Purely multiplicative’ strategies are those whose responses include setting up a proportion and 
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cross-multiplying to solve, or calculating a ratio and using multiplication to get a response. Many 
of these students got a response of 9 adults. Those students whose work is classified as ‘Mature 
Proportional Reasoning’ indicated an understanding of the process they were doing and what 
their results meant; further, their process was appropriate to responding to the question—that is, 
it made sense mathematically. This category of ‘mature’ does not mean that this is the highest 
level of proportional reasoning possible; rather, it indicates that, from the student work samples 
in this study, these responses were making sense of the problem. 
 

Discussion/Conclusion 
There are many ways to analyze student work samples. In addition to the analyses above, we 

could also group student work according to the specific strategy employed, sorting those students 
who assigned a ratio of 2:1, for instance, in one group and those students who subtracted 12 from 
15 in another. We could also analyze according to the strength of the rationale or reasoning 
indicated; this could help with the issue of hidden non-reasoning in the purely multiplicative 
category in Table 4. The problem with this type of analysis is that very few papers, particularly 
boys’ papers, used words or other indications of their reasoning. On the other hand, many girls 
who used purely additive strategies still explained their thought process in words. In our 
presentation, we will share several examples of both girls’ and boys’ work for each category in 
Table 4. 

The selection of the task became important to the types of analyses we could do and the 
insights we could get from those analyses. The fact that students who set up a proportion and 
solve (usually getting a response of 9 adults) do not get the correct result helped us to distinguish 
between students who were reasoning about whether their result made sense and those who were 
not. If you figure that more than half of the capacity of the elevator is already taken up, then it 
becomes clear that fewer than half of 15 (7 1/2) adults can still get on. That is one reason why 
students using multiplicative strategies are not necessarily assigned a category indicating 
proportional reasoning. Indeed, several student papers classified as emergent proportional 
reasoning evidenced a higher level of reasoning than many papers classified as multiplicative. 
Thus, the results in Table 4 should not be viewed as a spectrum from lower sophistication levels 
to higher sophistication levels.  

Returning to our original questions for this study, comparisons of girls’ and boys’ strategies, 
we can see that 57.4% of the girls either showed no work or used purely additive strategies to 
arrive at their final response. By contrast, about 36.1% of boys either showed no work or relied 
on purely additive strategies for their final response. Some of the students who ultimately used 
additive strategies also attempted a multiplicative strategy but abandoned it; even still, this 
discrepancy between the portion of girls relying on purely additive strategies for their final 
response and the portion of boys doing so is the most striking discrepancy in our results.  

Though more comparable, there is still a discrepancy between the percent of girls classified 
as emergent or mature in proportional reasoning and that of boys (girls had 27.9% so classified 
as compared to 38.1% of boys).  Of the ten papers classified as Mature Proportional Reasoning, 
only 2, both of whom were girls, set up a proportion to solve the problem.  

Findings from this study, involving student work samples from just one problem, are clearly 
not generalizable. We can make some inferences for these students for this mathematical context, 
but applying results from this study more broadly is problematic. Our results point to the 
importance of mathematical communication and having these students articulate their reasoning 
and their rationales. We say this because students clearly indicating some degree of proportional 
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reasoning were also thinking about the problem in reasoned ways. Further, it could be that those 
strategies classified as purely multiplicative involved some degree of reasoning beyond 
following an algorithm; just because this reasoning was not evidenced on paper does not 
necessarily mean that the reasoning was not present at all.  

Many questions remain: why did so many more girls use additive strategies to get their final 
response? What level of reasoning was evidenced in students’ discarded strategies? How was the 
use of imagery related to gender and to reasoning level? What are the strengths and limitations of 
this kind of methodology for understanding students’ reasoning more broadly than student 
standardized performance? We will share our reflections on these questions and invite discussion 
on these issues during our presentation. 

 
References 

Johnson, K. & Herr. T. (2001). Problem solving strategies: Crossing the river with dogs and 
other mathematical adventures (2nd ed). Emeryville, CA: Key Curriculum Press.  

Lamon, S. (2005). Teaching fractions and ratios for understanding (2nd ed). Mahwah, NJ: 
Lawrence Erlbaum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

532 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

533 

THE ROLE OF ADVISING IN THE ACADEMIC DECISIONS OF WOMEN 
MATHEMATICS MAJORS AT A LIBERAL ARTS COLLEGE 

 
Katrina Piatek-Jimenez 

Central Michigan University 
k.p.j@cmich.edu 

Katherine Alzaatreh 
Central Michigan University 

solle1ka@cmich.edu 
 

Research suggests that the support of “significant others” such as family, teachers, and 
professors plays a large role in women’s participation in non-traditionally female careers. Using 
the method of case studies, we discuss the experiences of three undergraduate women 
mathematics majors at a small liberal arts college and describe the role “significant others” 
played in the development of their mathematics identities and their choices as undergraduates. 
Furthermore, we emphasize the role advising by college faculty played in these women’s 
knowledge of career options and how this has influenced their future career plans. 
 

Introduction 
Research shows that the support of “significant others” plays a large role in women’s 

participation in non-traditionally female careers. Women who are successful in mathematics and 
who pursue mathematical careers often cite having a family member who served as a role-model 
in mathematics or feel that they were directly encouraged in mathematics by family members or 
teachers beginning at a relatively young age (Fox & Soller, 2001; Zelden & Pajares, 2000). 
Furthermore, women who choose to leave the field of mathematics often describe a lack of 
mentoring or advising from their university professors (Herzig, 2004; Stage & Maple, 1996). 

It is likely that the feedback women receive from significant people in their lives plays a 
rolein the development of their mathematics identity, i.e. their tendency to identify as a 
“mathematics person.” Carlone and Johnson (2007) have developed a framework in which they 
use the concept of one’s science identity as a lens for interpreting the science experiences and 
choices made by successful women of color in science. These scholars view one’s science 
identity as consisting of three overlapping dimensions: competence, performance, and 
recognition. The dimension referred to as recognition is developed from both one recognizing 
herself, as well as one being recognized by others, as a science person. These scholars’ work 
suggests that “recognition by others” played a critical role in these women’s science identities 
and career paths.  

It is clear from the literature that the encouragement and recognition of others plays an 
important role in the choices and career decisions of women in non-traditionally female careers. 
In this paper we describe a case study of three undergraduate women mathematics students at a 
small liberal arts college in the Midwest. We discuss how support from their professors and other 
significant people in their lives have influenced the development of their mathematics identities 
and their choices as undergraduates. We further note the role advising played in their knowledge 
of career options and how this has influenced their future career plans. 

The study described in this paper is part of a larger study being conducted to look at what 
motivates undergraduate women mathematics majors to choose to earn a Bachelor’s degree in 
mathematics and what factors influences their future career choices. Although participants from 
the larger study are from universities of differing types, we found that the emphasis on faculty 
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advising at the small liberal arts school was worthy of closer investigation. As such, this paper 
focuses specifically on these women’s experiences. 

 
Method 

The participants in this study were undergraduate women mathematics majors at a small 
liberal arts college in the Midwest. All of the participants had either junior or senior class 
standing at the time of the interviews and were earning non-teaching, mathematics degrees. 
Given the small size of the college, all students at this school fitting these criteria were invited to 
participate in this study. We had approximately a 50% participation rate. 

The main source of data for this study was a series of three in-depth, phenomologically-based 
interviews with each of the participants. “In this approach interviewers use, primarily, open-
ended questions. Their major task is to build upon and explore their participants’ responses to 
those questions” (Seidman, 1998, p. 9). We followed the Three-Interview Series protocol as 
suggested by Seidman (1998). During the first interview, we collected data on the participant’s 
pre-college mathematics experiences. The second interview consisted of learning about the 
participant’s mathematical experiences while in college. During the third interview, we asked the 
participants to reflect on their past experiences with mathematics and explored how these 
experiences may be influencing their future career goals. In addition to the data collected through 
the interviews, we also collected information about these students’ college grades and ACT/SAT 
scores. The purpose of collecting this data was to compare their perceived academic achievement 
with their actual academic records. Previous research suggests that women frequently 
underestimate their accomplishments (Fox & Soller, 2001). 

All of the interviews were audio and video-recorded. After the interviews were transcribed, 
each of the two researchers independently analyzed the transcripts and created profiles for the 
participants (Seidman, 1998). Once the profiles were created, we noted common themes 
emerging from the data and developed a coding scheme grounded in the data (Strauss & Corbin, 
1998). This collaborative method allowed for researcher triangulation. Once the codes were 
agreed upon, the primary investigator coded and analyzed all of the data with respect to these 
themes. Because only one researcher conducted the final coding, consistency in coding between 
researchers is not a concern. 

 
Results 

In this paper we will mostly focus on the role that advising played (or did not play) in these 
women’s academic and career decisions. Furthermore, we will be utilizing the word “advising” 
rather loosely. The term “advising” may reference advice that these students received from 
family members, teachers, professors or other significant people in their lives. Moreover, 
advising may be done either formally or informally through casual interactions. 

At this particular liberal arts college, formal advising is taken quite seriously. All incoming 
freshmen are assigned an academic advisor. If the student has chosen a major prior to beginning 
his or her college career, the student is assigned an advisor in that department. Otherwise, the 
student is encouraged to select one or two academic areas that they might have an interest in and 
the administration then assigns the student to an advisor in one of these disciplines. The role of 
this advisor is critical because each semester before the students are able to sign up for their 
classes for the following semester, they must meet with their advisor and have the advisor sign 
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off on their choice of courses for the following semester. This method ensures that students are 
receiving proper advising with respect to their course selections. 

We will now describe each student’s case separately, focusing specifically on the role that 
significant others in their lives played with respect to the development of their mathematics 
identities, their choices with regards to mathematics, and their future career plans. 
The Case of Paige 

Paige developed a strong mathematics identity at a young age. As early as freshman year of 
high school, Paige knew that she would major in mathematics. She claims that she probably 
knew it subconsciously even before that. Mathematics was always considered “her subject” and 
she knew mathematics was what she wanted to do. She admits, however, “I didn’t know what I 
was going to do with it, but I knew I was going to be a math major.”  

Many teachers encouraged Paige in mathematics through the years and in high school Paige 
remembers being the “math person” amongst her group of friends, but the person who clearly 
contributed the most to her mathematics identity was her mother. Paige recalls that her earliest 
memory of mathematics was her mother using candy to help her learn arithmetic. As the years 
went on, her mother continued to support her and encourage her in mathematics. Her mother felt 
that she, herself, was strong in mathematics and was happy to see her daughter choose such a 
field because she felt Paige would have more opportunities going into a non-traditional discipline 
for women. Paige claims that she never really received discouragement from doing mathematics 
from anyone, and jokes, “I’m pretty sure my mom would hurt them if they [did].” 

Because Paige was so far advanced in mathematics, she had completed Calculus I by the end 
of her sophomore year in high school. For her junior and senior years of high school she 
commuted to the local community college for her mathematics courses. Her instructor at the 
community college was very supportive and even encouraged her one semester to take both 
Calculus III and Differential Equations at the same time. 

When Paige began college as a freshman, she was already taking junior level mathematics 
courses. Both she and her mother were a little concerned about her taking such advanced courses 
as a freshman, but she had already completed all the freshman and sophomore level courses by 
then. During her first semester at college, she took a 300-level Linear Algebra course. She 
remembers feeling behind because she had not taken the “introduction to proofs” course yet, 
which was only offered during the winter semester, and the instructor did a number of proofs in 
the Linear Algebra class. Though this was a difficult transition for her, she remembers the 
professor never treating her like she was unable do it. Because this college is a small school, all 
of the mathematics professors know who the students are. Therefore, the professor knew that she 
was simply a freshman in a junior-level class and that she had just not taken the “proofs” course 
yet. He provided encouragement and positive feedback to her to ensure her that this was the 
source of her difficulties in the course. 

Paige feels like her experience as a mathematics major was a positive one. She enjoyed her 
mathematics classes more than any of her other classes, for the most part, even though she claims 
she spent much longer doing homework for her mathematics classes than her other classes. 
Through her time in college, Paige decided that she preferred applied mathematics to pure 
mathematics, and she especially enjoyed statistics. As a result, Paige has decided to go to 
graduate school to earn a Master’s degree in statistics. At the time of the interviews, she had 
been accepted to a number of programs but had not yet decided which program she would 
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choose. After earning her Master’s degree, Paige plans to find a job working for a company as a 
statistical consultant. 

Initially, Paige had no idea of what to do with her degree in mathematics. She admits, “I 
know there’s a bunch of … hidden jobs where it doesn’t say Bachelor’s in math or whatever on 
the requirements… but I don’t know what I would actually be eligible for.” Once she decided 
that she wanted a career in statistics, Paige started looking into possible jobs by searching the 
internet and claims that she realized that to get a good job in statistics, she would need to get a 
Master’s degree. 

At the beginning of her junior year, Paige says that she was encouraged by her professors to 
apply for REU programs for that summer. An REU (Research Experiences for Undergraduates) 
is an NSF-funded program in which undergraduate students are funded to spend their summer 
doing research. There are currently 57 REU programs in the mathematical sciences and these 
programs tend to be very competitive. Paige ended up participating in an REU program in 
statistics. Her particular project was done in collaboration with a company to help them solve a 
real-life problem, which allowed Paige to contribute to mathematics in a real way. Prior to this, 
Paige had already decided that she wanted to leave academia and be in the “real world” and she 
felt like this REU experience really gave her a taste of this. The experience helped her to decide 
that working for a statistical company would be a good career for her. She claims, “I didn’t know 
that you could do statistical modeling before I did this.” 

In addition to being encouraged to participate in an REU by the mathematics faculty, Paige 
also has received substantial encouragement and support from her advisor in applying for 
graduate school. He advised her to apply to a wide range of programs, including some really 
prestigious ones. This made Paige feel really good because she said that even though he was 
encouraging her to have a “back up,” by suggesting that she apply to some competitive programs 
too, it demonstrated to her that he saw her as being a strong candidate. 

Although Paige spoke of both advantages and disadvantages of attending a small college, she 
feels like some of the advantages were that she got to know her professors really well. She says 
that she talks with her mathematics professors at least once a week, but not about mathematics. 
They talk more about what REU or graduate programs that she has gotten into. She feels like the 
professors have shown a sincere interest in her. The mathematics faculty also host a dinner once 
a year for all the mathematics majors, but Paige has always had a conflict and has not been able 
to attend. Paige says that she liked her experiences as a mathematics major on this campus and 
really appreciated that everyone in the mathematics department knew her. She further makes a 
point to emphasize that they did not just know of her, but they knew her personality, too. 
The Case of Mandy 

Unlike Paige, Mandy did not decide to be a mathematics major until sometime during 
college. In all actuality, Mandy never really consciously made the decision to major in 
mathematics; she sort of just “fell into a math major,” as she puts it. When beginning college, 
Mandy did not know what to major in. Because she had expressed an interest in mathematics, the 
college gave her an advisor in the mathematics department. Each semester her advisor 
encouraged her to take more mathematics (and science) classes. By the end of her sophomore 
year, she was required to choose a major. She had never expected to major in mathematics, but at 
this point she had already completed so many courses for that degree that she decided that it just 
seemed natural for her to choose that as her major. 
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Though no one in her family has earned a degree in mathematics before, Mandy’s family has 
definitely shown an interest in working with numbers, since many of her family members are 
accountants or engineers. Mandy claims that often at her parents’ house, she, her sisters, and her 
parents all fight over the puzzles in the newspaper. She says they all enjoy Sudoku and jigsaw 
puzzles as well. Despite her family’s interest in such things, Mandy credits her interest in 
mathematics to the teachers that she had in high school, especially her A.P. Calculus teacher. 
During her last two years of high school is when Mandy feels like her interest in mathematics 
really began to develop. 

Mandy took Calculus II her first semester in college. This class went really well for her since 
she had learned most of the material in her A.P. Calculus class in high school. She recalls, “I 
think it was helpful and kind of kept my confidence up in my math ability.” During her 
sophomore year of college, Mandy had a similar experience to Paige in that she took a proof-
based course in cryptography prior to having taken the “introduction to proofs” course. She 
remembers studying with a friend a lot in that class and they both worked with the professor a lot 
since neither had learned how to write proofs before. Mandy recalls that the professor knew they 
were both in this predicament and feels like he went out of his way to help the two of them be 
successful in that class. 

Mandy has had both good and bad experiences with some of her mathematics classes and 
admits to sometimes thinking about switching her major. At the same time, she figures that she is 
so close to finishing her degree in mathematics, she may as well just keep going. She says 
though that sometimes she is not even sure she likes mathematics anymore. She explains that one 
reason she feels this way is because she does not know what she can do with a major in 
mathematics. She believes that the biggest challenge of being a mathematics major is not 
knowing what to do with the degree afterwards. Mandy feels like with other disciplines it is more 
clear-cut; all of her friends know what they are going to do with their degrees after they graduate. 
She says it is also hard because when people ask her what she is going to do with her degree, she 
has to tell them that she still does not know. 

Although this is frustrating to her, Mandy was completing her junior year at the time of the 
interviews, and is hopeful that she will figure out what she wants to do when the time comes. Her 
advisor suggested that she apply to REUs to get ideas of what she might like to do. She applied 
to four of them. At the time of the interviews, she had heard back from two of them and had been 
accepted to both. She has decided to participate in an REU that has a focus in using mathematics 
to model biology. At this point, Mandy does know that she does not want to focus on pure 
mathematics, but would rather apply mathematics to other disciplines, so she feels like this 
program will be a good fit for her. Mandy recalls that when she told her advisor in the 
mathematics department that she got into one of the REUs, he told all of the other mathematics 
professors the news. She was amazed at how excited he was for her and remembers thinking, 
“Oh wow, dude, they’re awfully excited.” 

Being accepted into this REU has really made a difference in Mandy’s mathematics identity. 
When asked, Mandy says that she would not say that she is “good” at mathematics, just “okay.” 
She admits though that now that she has gotten into some REUs, it has made her feel more 
confident with her mathematics abilities. “I’m not sure if math is for me; if I should continue 
with it. But I guess like having something to do for the summer makes me feel like I can 
succeed, so I think that’s helping a lot.” She also says that she thinks the mathematics professors 
at her college would say that she is good at mathematics.  
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Mandy says that she really likes the professors in the mathematics department and claims that 
this is part of the reason she decided to major in mathematics. She says the professors are all 
very approachable and personable and that they all know her name. This makes her feel more 
comfortable to ask questions in class and to ask them for letters of recommendation. They give 
her advice on what classes to take and have encouraged her to apply for REUs for the summer. 
Mandy says that she drops by the mathematics faculty offices at least once a week and peeks her 
head in just to say “hi” to the professors. She also thinks it is really neat that her advisor 
sometimes tells her stories from when he was an undergraduate and that once she went to his 
house for a game-night as an event through her church. 
The Case of Nicole 

Nicole became interested in mathematics as early as elementary school. She claims that none 
of her K-12 teachers were ever really an influence on her. Rather, Nicole believes that her father, 
a high school mathematics teacher, played the largest role in her interest in mathematics. She 
remembers him bringing home puzzles and logic games for her to do as a child. Nicole is very 
close with her father and considers him to be her biggest role model. This gave her a close 
connection to mathematics at a young age. 

By fifth grade, Nicole was put a year ahead in mathematics and by eighth grade she was 
being bussed to the high school to take a high school geometry course. During her senior year of 
high school, Nicole took Calculus I and II at the local college. She remembers this being the first 
time mathematics was ever difficult for her. She explains though that she did not think of this as 
a bad experience, but simply as an adjustment. It was actually during her senior year of high 
school that Nicole made the decision to major in mathematics. Prior to that, she had thought 
about majoring in one of the sciences, like biology. When she began taking mathematics classes 
at the college level, however, she really enjoyed them. She felt like she received a lot of 
encouragement from her father on this decision.  

Nicole has a strong mathematics identity and considers herself to be good at mathematics. 
She claims that the material in mathematics classes can be challenging, but then follows up by 
saying, “I didn’t really have a lot of trouble with getting grades and that kind of thing. But I think 
other people maybe had trouble with that.” She says that she knows mathematics is a challenging 
subject for most people, but that it is not extremely challenging for her.  

When thinking about specific classes, Nicole remembers certain mathematics classes that she 
did not enjoy very much, but thinking back on her entire college experience as a mathematics 
major, she claims, “It was all a good experience.” The thing that Nicole enjoys the most about 
being a mathematics major is the feeling of being able to do well in mathematics classes, and 
being able to do something that most people are not good at. She feels like there really was not 
anything she did not enjoy about the experience. “Even when it was hard I, I wouldn’t say that I 
was not enjoying it.” 

Unlike the other two participants, Nicole did not communicate much with her mathematics 
professors outside of class. She claims that she normally only went to office hours about once a 
semester. Nicole claims that she did not go very often because she really did not have the need to 
go; she generally did not have specific questions to ask. She also says that she would not 
consider any of her mathematics professors as mentors to her since she did not communicate 
with them much and did not ask them for help with decisions.  

Similar to the other two participants, however, Nicole initially did not really know what she 
wanted to do after college. She claims there are so many things one can do with a mathematics 
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degree that it is overwhelming. At the same time, she seemed very unclear as to what those 
careers might be. Her father had discouraged her from becoming a high school mathematics 
teacher in their home state because of job instability, and she really did not know where to go 
from there. She had thought about a lot of different career options, such as engineering, physics, 
or veterinarian school. She decided though that careers in engineering and physics would be 
boring and that she wanted a career with more public interaction. As for veterinarian school, 
Nicole knew that veterinarian school is really hard to get into and felt like she had not taken the 
right classes to get in. In the end, she decided that she wanted to stick with mathematics.  

One day while on Facebook, Nicole saw an advertisement for a program called “Math for 
America.” The program consists of one year of schooling, which would conclude with her 
earning an MAT. After that she would be required to teach in New York City public schools for 
four years. The program also has professional development opportunities and hosts social 
activities. Since Nicole really did not know what else to do after graduation, she decided to apply 
for this program. She felt like this program would be good for her because she would be able to 
earn her Master’s degree for free, plus the program pays quite well. Also, she would not have to 
commit to a life-long career now, since she really did not know what she wanted to do with her 
life yet. 

Originally, Nicole was determined not to go into teaching. She had thought if she ever went 
into teaching, she would teach at the college level. She says that she definitely does not see 
herself remaining as a public school teacher for a long period of time. Nicole sees this 
opportunity as just that, an opportunity, and does not see this program as leading to a future 
career. At one point Nicole says she almost sees it as being “a big, long camp.” It almost appears 
that she is using this program as a way of putting off trying to decide what to do with her degree. 

Despite her uncertainty with what she wants to do with her life, Nicole really never has asked 
for advice or guidance from her professors. She has asked for letters of recommendation once 
she had decided where to apply, but did not solicit advice prior to that. Even with her father, she 
often told him what she was thinking about doing, but he never gave her much advice or further 
suggestions of what else she could do. She really feels like she made most of her decisions all on 
her own, and she appears to be happy with that.  

It is interesting that though all three participants were students in the same department, 
Nicole did not utilize the advising that was clearly available to her the same way as the other two 
did. Nicole had the same advisor as Paige, and Mandy had a different advisor, so we know that 
the difference is not a result of an over-zealous advisor. Furthermore, of the three participants, 
Nicole had the highest mathematics grades, highest college GPA, and highest ACT/SAT scores, 
so we doubt that the professors did not show interest in advising her. From conversations with 
her, we believe that the lack of advising she received was completely her choice. 

 
Discussion 

From our data, we can see that “significant others” played a large part in the development of 
these women’s mathematics identities. Each of these women began developing a strong 
mathematics identity prior to entering college, which seemed to formulate as a combination of 
being successful in mathematics and being perceived as good at mathematics by others. While in 
college, all three of these women felt like their mathematics professors viewed them as high 
achieving, which contributed to their views of themselves as a “mathematics person.” Some of 
the women even spoke of their achievements, such as their acceptance into an REU program or a 
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Master’s program, as a form of being recognized by others as someone successful in 
mathematics. 

The role that meaningful others played in these women’s development of their mathematics 
identities is consistent with the findings of Carlone and Johnson (2007) who determined that 
recognition by others was a key factor in the formation of science identities of women of color. 
Furthermore, Adhikari and colleagues (1997) found that the women in their study were more 
likely than men to report valuing the support of others as important to their success in 
mathematics. Because women are often socialized to want to please people, it may not be 
surprising that women tend to place a large emphasis on the recognition and support of others in 
the development of their mathematics identities. 

Although the mathematics faculty at this liberal arts college played a large role in the 
development of these women’s mathematics identities, there is another critical role that they 
played for two of these students. The faculty provided useful suggestions that helped these 
women determine what career options were available to them. All of the participants clearly 
stated that originally they did not know what they could do with a degree in mathematics other 
than teach. Furthermore, they had each made a conscious decision that they did not want to 
pursue K-12 teaching. The two participants who utilized the advising available to them were able 
to expand their knowledge about future career options, leading them to more informed and 
purposeful future career decisions. The participant who did not utilize faculty advising chose to 
pursue teaching despite her initial decision against it. This choice appeared to be more of a 
“stalling tactic” until she figured out better what other career options were available to her. 

It is not uncommon for college students graduating with degrees in mathematics to not know 
what career options in mathematics are available to them. Piatek-Jimenez (2008) found that 
senior-level mathematics majors often are not aware of many potential careers and that they had 
a very shallow understanding of the careers that they were aware of. Therefore, regardless 
whether or not a student has a strong mathematics identity, if he or she does not know what 
careers exist, it will be difficult to enter a career in mathematics. Consequently, it is important 
for students not only to receive encouragement in mathematics but also to obtain career advising. 
Furthermore, our work suggests that more research programs, such as REUs, and internships in 
industry would serve the discipline of mathematics well in retaining our majors in the field. 
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Gender differences were examined in spatial understandings of 70 females and 53 males who 
studied the Moon through observations, journaling, and geometric spatial modeling. 
Understanding was measured through analysis of pre/post-test results of a Lunar Phases 
Concept Inventory (LPCI) and a Geometric Spatial Assessment (GSA). Results showed both 
genders making gains on five of eight science LPCI domains and on three of four mathematics 
LPCI domains. Males scored significantly higher than females on the Geometric Spatial 
Visualization LPCI domain items. Females made gains on GSA domains, Periodic Patterns and 
Cardinal Directions, while males made only Periodic Patterns gains. The GSA filtered out 
understanding that might normally be missed.  

 
Background 

This research concerns an examination of gender differences in geometric spatial 
understanding of 123 middle school students after participation in an inquiry unit. The lessons 
within this unit were adapted from an integrated mathematics and science curriculum called 
Realistic Explorations in Astronomical Learning (REAL).  

 
Objective and Theory 

Research has shown that students have difficulty understanding the cause of lunar phases 
(Abell, Martini, & George, 2001; Baxter, 1989; Lightman & Sadler, 1993; Trundle, Atwood, & 
Christopher, 2002; Zeilik & Bisard, 2000). “Instructors believe they have successfully taught 
lunar phases, only to find that the majority of students cannot answer questions related to the 
concept” (Lindell & Olsen, 2002, p. 1). The most common misconception of the cause of phases 
is the belief that the Earth casts a shadow upon the Moon. Fanetti (2001) stated that there was a 
correlation between students’ ignorance of Moon-size, Earth-size, and Earth-Moon distance that 
feeds this misconception. Some researchers examined links between students’ understanding of 
phases and spatial ability. For example, Reynolds’ (1990) and Wellner’s (1995) claimed that 
students were more likely to report a correct cause of phases when they had well-developed 
spatial skills. Others reported findings connecting spatial ability to success on assessments, such 
as the Force Concept Inventory (Hake, 2002) and molecular rotation exams in Chemistry (Pribyl 
& Bodner, 1987).  

Mathematics education literature has well documented that males outperform females on 
assessment tasks that focus on spatial visualization (Ben-Chaim, Lappan, & Houang, 1988; 
Battista, 1990; Casey, Nuttall, Pezaris, & Benbow, 1995). Sex differences with regard to spatial 
ability were found in preadolescent children by Kerns and Berenbaum (1991). “Boys again 
performed better than girls on all tests. The sex difference was significant on Geometric Forms, 
Mirror Images, and 3D Mental Rotations” (p. 391). Linn and Petersen (1985) determined that 
males outperformed females at all age levels on mental rotation tasks and to a lesser extent on 
spatial perception tasks. Black (2005) “hypothesized that mental rotation is the most important in 
understanding Earth science concepts that are associated with common misconceptions” and 
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stated that “humans are handicapped by their single vantage point from Earth of the moving 
bodies in outer space” (p. 403). 

Therefore, based on this mathematics education literature, if males have better spatial skills 
than females, then males should show higher scores on science assessments that have spatial 
components. Few studies speak directly to gender differences on lunar phases assessments.  

I claim that one cannot completely understand lunar phases without a developed 
understanding of four mathematical spatial concepts. The four mathematical concepts are defined 
within the context of its relation to lunar understanding. They are: (a) geometric spatial 
visualization (visualizing the geometric spatial features of the Moon/Earth/Sun system as it 
appears in space above/below/within the Moon/Earth/Sun plane), (b) spatial projection 
(projecting one’s self into a different Earthly location and visualizing from that global 
perspective), (c) cardinal directions (documenting an object’s vector direction from a given 
position, i.e. North, South, East, West, etc.), and (d) periodic patterns (occurring at regular 
intervals of time and/or space, i.e. periodicity of celestial orbits, phases, percent illuminated). 

The first spatial term, geometric spatial visualization, has a mental rotation component since 
as one visualizes the Moon/Earth/Sun three-body system in space above/below/within, one must 
also manipulate and consider the motion of the system itself. The second spatial identity, spatial 
projection, not only includes the idea of visualizing the environment from one’s own reference 
point, but also visualizing the environment of another from their reference point. Spatial 
projection also has a mental rotation derivative since one must also mentally manipulate the 
movement of the sky throughout a day’s viewing due to the rotation of the Earth on its axis. 
The final two mathematical terms that are instrumental in understanding lunar related concepts 
are cardinal directions and periodic patterns. Learners must be able to distinguish cardinal 
directions in order to document an object’s vector direction in space as a function of time from a 
given position. The final mathematical term is that of periodic patterns. For this paper, 
periodicity comprises the idea of something occurring at regular intervals of time and/or space. 
Within the lunar context, some examples of periodic patterns materialize in lunar orbital cycles, 
illumination, and in altitude angles.  

Giedd, Blumenthal, Jeffries, Rajapakse, Vaituzis, Liu, Berry, Tobin, Nelson, and Castellanos 
(1999) conducted a study with 145 normal children where their brains were scanned using 
magnetic resonance imaging at two-year intervals. The researchers found that although 95 
percent of each child’s brain structure was formed by the age of 6, a second wave of brain 
development occurred in preteens just prior to puberty (age 11 in girls, and 12 in boys). Giedd et. 
al (1999) as cited in Bryce and Blown (2007) showed in their research that “different anatomical 
regions of the brain mature differently in childhood and typically by several years, e.g. favoring 
earlier development in girls for those areas which handle verbal fluency, handwriting, and face 
recognition; favoring earlier development in boys for those which handle spatial and mechanical 
reasoning, and visual targeting” (Bryce and Blown, p. 1657). These varied rates of brain 
development in girls and boys are of particular interest since the subjects in my study were of 
this preteen age where this newfound wave of brain development occurs. The following study 
was conducted with 123 US preteen (average age of 12), seventh graders.  

Methodology 
This paper reports the effect gender has on measurable learning via an integrated 

mathematics and science, inquiry Moon unit adapted from a NASA/IDEAS funded curriculum 
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called Realistic Explorations in Astronomical Learning (Wilhelm & Wilhelm, 2007). A veteran 
female teacher enacted the unit within her seventh-grade science classrooms with 70 females and 
53 males during the Fall 2007 term. All lessons and activities were drawn from the REAL 
curriculum to accommodate the school district’s mathematics objectives regarding using two-
dimensional representations of three-dimensional objects to visualize and solve problems; and 
applying geometric ideas and relationships in areas outside mathematics, such as science. The 
district’s science objectives concerning the relationship of the Earth’s movement and the Moon’s 
orbit to the observed cyclical phases of the Moon were also addressed. 

In this seven week unit, which purposefully included spatial geometric activities, students 
explored the lunar phases through observation, journaling, sketching, two- and three-dimensional 
modeling, and classroom discussions. The lunar unit began with students conducting daily Moon 
observations. Students were expected to record in a journal at least two sentences per daily entry 
to communicate what they viewed regarding the Moon and sky. Further explorations focused on 
geometric configurations and scaling of the Earth/Moon/Sun system, where students modeled 
these geometries in both two and three dimensions. In-class lessons were conducted where 
students, working in groups, used modeling techniques and ratio concepts to discover the number 
of Earth diameters between the Earth and the Moon. The general method of teaching was 
inquiry-based, and most student groups were self-selected and gender-mixed.  

After daily Moon observations had ceased, student journals were completed and a guest 
instructor guided the students through a “Moon finale”. The Moon finale was a hands-on 
modeling activity in which students were asked to create the geometric configuration of the Earth 
and Moon (Styrofoam balls), given a fixed Sun (overhead projector light), for a number of 
chosen Moon’s phases. This three-dimensional (3-D) modeling was followed with a two-
dimensional (2-D) drawing activity where students represented their 3-D configurations within a 
2-D (paper and pencil) space.  

This study was quantitative where data collection involved the administration of the Lunar 
Phases Concept Inventory (Lindell & Olsen, 2002) and the Geometric Spatial Assessment 
(Wilhelm, Ganesh, Sherrod & Ji, 2007), pre- and post-implementation. The LPCI assesses eight 
science and four mathematics domains (see Table 1). 

 
Table 1. LPCI Domains 
Scientific Domains Mathematical Domains 
A-Periodicity of Moon’s orbit Periodic Patterns 
B-Periodicity of phases Periodic Patterns 
C-Moon’s direction around Earth  Geometric Spatial Visualization, 

Spatial projection 
D-Moon Motion Cardinal directions  
E-Phase and Earth/Moon/Sun positions Geometric spatial visualization 
F-Phase-sky location-time Cardinal directions  
G-Cause of phases Geometric spatial visualization 
H-Phase effect with location change Spatial projection  
 
This research focused on the development in students’ mathematical and scientific content 

knowledge from pre- to post-implementation. Questions pursued were:  
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1) What lunar-related mathematics and science content knowledge will be developed by 
students through inquiry experiences?  

2) What gender differences will be observed in learned, lunar-related mathematics and 
science content knowledge? 

The GSA (a 16-item, multiple choice test) was administered pre and post implementation for 
the purpose of filtering out mathematical spatial understandings of the same four math domains 
shown in table 1, but not posed within a lunar context. Example GSA test items are shown in 
figure 1. 

 
Figure 1. Example Geometric Spatial Assessment Test Items – Items 2 & 3, 5, and 11 that assess 
math domains periodic patterns, cardinal directions, and geometric spatial visualization, 
respectively. 

 
Data & Analysis 

LPCI Results 
The LPCI pretest was given to 53 males and 70 females prior to any observations and the 

posttest was administered seven weeks after the initial lunar viewing. The mean pretest score 
was 31.2% correct and the mean posttest score was 52.9% correct. A repeated measures 
ANOVA revealed a significant increase in the mean values from pre to post on overall test 
scores, F(1,122) = 288.5, p < 0.001, partial η2 = 0.703. A one-way ANOVA showed no 
significant difference between groups on the pre-LPCI scores, F(1, 122) = 3.816, p = 0.053. Both 
groups made similar significant overall gains from pre to post. The significant percentage gain 
score for males and females were 23.6% and 20.2%, respectively. A one-way ANOVA showed a 
significant difference between groups on the post-LPCI scores, F(1, 122) = 10.133, p = 0.002, 
mainly due to males scoring 24.8% higher than females on domain E (science-phase and 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

546 

Sun/Earth/Moon positions, mathematics-geometric spatial visualization) of the posttest (see 
Table 2).  

To test for significant differences from pre to post on individual domains, a repeated measure 
ANOVA was conducted. Results showed males and females making similar significant gains on 
science domains: A (period of orbit), B (period of phase cycle), C (direction of orbit), and G 
(cause of phases); and on mathematics domains: periodic patterns and spatial projection (Tables 
2&3).  

The largest gender gap was found to exist within the LPCI-domain E (science-Phase-
Earth/Moon/Sun positions, math-geometric spatial visualization). No significant increase in 
understanding by any group was observed on concept domains F (science-Phase-sky location-
time, math-cardinal direction), D (science-Moon motion, math-cardinal direction), or H 
(science-Phase effect with location change, math-spatial projection). 

 
Table 2. Percentage Correct on Pre-Post LPCI by Science Domain 
Science Domain  All %   Male %   Female %  
 Correct 

Pre 
(SD) 

Correct 
Post 
(SD) 

Gain Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain 

A 28.5 
(34.5) 

70.3 
(37.2) 

41.8** 32.1 
(36.8) 

80.2 
(33.0) 

48.1** 25.7 
(32.7) 

62.9 
(38.7) 

37.2** 

B 43.4 
(31.3) 

59.4 
(27.2) 

16.0** 50.9 
(28.2) 

62.3 
(27.0) 

11.4* 37.6 
(32.6) 

57.1 
(27.3) 

19.5** 

C 54.5 
(40.0) 

92.7 
(21.9) 

38.2** 51.9 
(37.9) 

93.4 
(19.7) 

41.5** 56.4 
(41.6) 

92.1 
(23.5) 

35.7** 

D 35.7 
(33.0) 

41.1 
(38.4) 

5.4 36.8 
(32.7) 

46.2 
(37.8) 

9.4 35.0 
(33.3) 

37.1 
(38.7) 

2.1 

E 25.8 
(27.9) 

60.7 
(32.5) 

34.9** 29.6 
(31.1) 

74.8 
(29.9) 

45.2** 22.9 50.0 27.1** 

F 7.9 
(14.2) 

7.3 
(15.1) 

-0.6 8.8 
(14.8) 

5.0 
(12.0) 

-3.8 7.1 
(13.8) 

9.1 
(17.0) 

2.0 

G 22.0 
(28.7) 

50.0 
(38.9) 

28.0** 26.4 
(30.3) 

58.8 
(40.1) 

32.4** 18.6 
(27.1) 

43.6 
(37.0) 

25.0** 

H 38.6 
(32.5) 

43.9 
(29.0) 

5.3 38.7 
(30.4) 

37.7 
(29.3) 

-1.0 38.6 
(34.2) 

48.6 
(28.2) 

10.0 

*p < 0.05; **p < 0.001 
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Table 3. Percentage Correct on Pre-Post LPCI by Mathematics Domain 
Mathematics 
Domain 

 All %   Male %    Female %  

 Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain 

A, B – Periodic 
Patterns 

35.9 
(25.2) 

64.8 
(25.2) 

28.9** 41.5 
(25.2) 

71.2 
(22.9) 

29.7** 31.7 
(24.7) 

60  
(25.9) 

28.3** 

C, E, G – 
Geometric 
Spatial 
Visualization 

34.1 
(20.6) 

67.8 
(21.5) 

33.7** 36.0 
(24.6) 

75.6 
(20.9) 

39.6** 32.6 
(17.1) 

61.9 
(20.2) 

29.3** 

D, F – Cardinal 
Directions 

21.8 
(16.8) 

24.2 
(20.4) 

2.4 22.8 
(16.9) 

25.6 
(19.3) 

2.8  21.1 
(16.8) 

23.1 
(21.3) 

2.0 

C, H – Spatial 
Projection 

46.5 
(26.3) 

68.3 
(18.1) 

21.8** 45.3 
(24.0) 

65.6 
(16.4) 

20.3** 47.5 
(28.0) 

70.4 
(19.2) 

22.9** 

** p < 0.001 

GSA Results 
The purpose of the GSA was to filter out spatial understandings that were not posed within a 

lunar context. The GSA pretest was given to 54 males and 67 females prior to any observations 
and the posttest was administered eleven weeks after the initial lunar viewing. The mean pretest 
score was 49.4% correct and the mean posttest score was 56.2% correct. A repeated measures 
ANOVA revealed a significant increase in the mean values from pre to post on overall scores, 
F(1,120) = 21.29, p < 0.001, partial η2 = 0.151.  

A one-way ANOVA showed a significant difference between gender groups on the pre-GSA 
scores, F(1, 120) = 6.322, p = 0.013. The significant percentage gain scores from pre to post for 
males and females were 5.8% and 7.5%, respectively. A one-way ANOVA showed no 
significant difference between groups on the post-GSA scores, F(1, 120) = 3.125, p = 0.08.  

To test for significant differences from pre to post on individual GSA domains, a repeated 
measure ANOVA was conducted (Table 4). Results showed males and females making similar 
gains on geometric spatial visualization and spatial projection, although neither was significant. 
However, with genders combined, there was a significant increase in means from pre to post for 
geometric spatial visualization. Males and females achieved significant gains on periodicity 
where males made a 7.9% gain while females scored a 10.5% gain. Females’ gain score nearly 
doubled that of males’ for cardinal direction (males-insignificant 7% gain; females-significant 
12% gain). While the interaction effect between gender and time was not significant, one cannot 
help but notice a closing gap from pre to post between males and females. Although females 
scored lower than males on every pre-GSA domain, females made gains that brought each of 
their post-domain items up to or beyond those of the males’ pre-scores.  

There appears to be inconsistency when comparing the results of the LPCI- and GSA-
mathematics domains. For example, all LPCI mathematics domains showed both groups making 
significant gains from pre to post except for the math domain, cardinal direction. However, 
females made significant gains from pre to post on the GSA-domain, cardinal direction. In order 
to understand how this might be possible, one must examine the LPCI items that have the 
embedded cardinal direction domain. For example, LPCI item-1 requests the learner to consider 
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a waxing crescent Moon in the sky immediately after sunset. One would need to know the Sun 
had just set in the west and that since the crescent Moon was still visible, it would be close to 
setting in the western sky as well. In order to choose the correct response, the learner would have 
to take into account the moving setting Sun and Moon, and realize the rise and set times of a 
waxing crescent Moon. The GSA did its job of filtering out the mathematics of only cardinal 
direction (i.e., not posed within a lunar context) and assisted in showing measurable 
understanding of this concept whereas the LPCI did not.  
 
Table 4. Percentage Correct on Pre-Post by GSA Domain 
Mathematics 
Domain 

 All %   Male %   Female %  

 Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain Correct 
Pre 
(SD) 

Correct 
Post 
(SD) 

Gain 

Periodic 
Patterns 

52.9 
(23.3) 

62.2 
(25.2) 

9.3** 58.8 
(22.8) 

66.7 
(24.3) 

7.9* 48.1  
(22.7) 

58.6  
(25.6) 

10.5* 

Geometric 
Spatial 
Visualization 

55.8 
(29.9) 

61.8 
(28.3) 

6.0* 58.8 
(28.0) 

64.8 
(30.5) 

6.0 53.3  
(31.3) 

59.3  
(26.4) 

6.0 

Cardinal 
Directions 

46.5 
(27.3) 

56.2 
(26.3) 

9.7* 49.5 
(29.3) 

56.5 
(26.2) 

7.0 44.0  
(25.4) 

56.0  
(26.5) 

12.0* 

Spatial 
Projection 

42.6 
(23.2) 

44.6 
(23.7) 

2.0 45.8 
(23.7) 

48.2 
(24.2) 

2.4 39.9 
(22.6) 

41.8  
(23.2) 

1.9 

*p < 0.05; **p < 0.001 

The other apparent contradiction concerns spatial projection. Both genders made significant 
gains from pre to post on this LPCI-domain. However, the GSA-domain of spatial projection 
showed neither males nor females scoring significantly higher from pre to post. Upon 
examination of the GSA questions assessing this domain, it was found that the questions did not 
appropriately filter out the spatial projection concept. For example, GSA test item-13 requests 
the learner to consider two boats approaching a Texas flag (one approaching from the east and 
the other from the west). “The captain on the boat approaching from the east saw the star on the 
Texas flag to be on the right side of the flag, what side of the flag would the captain of the other 
boat observe?”  This question not only had the spatial projection domain embedded, but also 
cardinal direction. The question was easily modified by replacing east/west with right/left. 

 
Conclusions and Importance 

No significant increase in understanding by any groups was observed on concept domains F 
(science - Phase – sky location-time; math - cardinal direction), D (science - Moon motion; math 
- cardinal direction), and H (science - effect of lunar phase with change in Earthly location; 
math – spatial direction). This needs to be considered as the integrated unit within the REAL 
curriculum is modified. 

This research indicates that mathematics and science learning of lunar related concepts can 
be significantly improved by both sexes in an inquiry environment. Even though the males 
scored significantly higher (from pre to post) than females on the LPCI domains concerning 
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geometric spatial visualization, both groups made the highest gain scores in this LPCI 
mathematics domain. Males and females made similar significant gains on science domains: A 
(period of Moon’s orbit around Earth), B (period of Moon’s cycle of phases), C (direction of 
Moon’s orbit), and G (cause of lunar phases), and on LPCI mathematics domains: periodic 
patterns and spatial projection. The LPCI pre-tests showed no significant difference between 
gender groups at the α = 0.05 level; however, the LPCI post-tests did show a significant 
difference between groups. This significant difference between groups was mainly due to science 
domain E (phase and Sun/Earth/Moon positions) where males scored an 18.1% higher gain score 
than females, and due to the mathematics domain, geometric spatial visualization, where males 
scored a 10.3% higher gain score than females. More research is needed to better understand 
why males seem to perform significantly better than females on this particular domain, but this 
finding also seems to be consistent with the Bishop (1996) research results. Perhaps this finding 
can be explained by the faster maturation rate (during these particular years of development) of 
the male brain’s anatomical regions which handle spatial visual reasoning as reported by Giedd 
et. al (1999). Both males and females achieved significant gain scores on the GSA periodic 
patterns domain, while only females scored significantly higher from pre to post on GSA 
cardinal direction domain. Females had scored significantly lower than the males on the pre-
GSA, but the gap narrowed by the time of post-GSA where no significant difference between 
gender groups was observed. 

This research is unique because it will further the literature concerning students’ lunar related 
mathematical and scientific understandings, especially regarding gender differences. The 
development of the GSA helped to filter out understanding that might normally be missed within 
a science classroom.  
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Although studies have documented student difficulties with similarity, a gap exists between 
documented visual insights of younger children and the quantitative inadequacies of older ones. 
This study investigated the intermediate strategies used by middle school students to construct 
rectangular and non-rectangular similar figures. Seven types of construction strategies were 
identified which indicate that multiple types of reasoning were used. Results suggest that visual 
perception is not entirely primitive and the consideration of visual perception as a powerful 
indicator and supportive extender of conceptual understanding is warranted. Experiences with 
scaling complex figures may encourage students to bridge intuitions and numeric strategies.  
 

Rationale and Purpose of the Study 
Research studies have shown repeatedly that similarity is one of the most difficult contexts for 

proportional reasoning (e.g. Kaput & West, 1994). Even young students have useful visual 
intuitions about proportion (e.g. Lehrer et al., 2002). However, studies also document the 
quantitative inadequacies of the older ones (Hart, 1988). Karplus, Pulos, & Stage (1983) 
highlighted this disconnect by documenting that students struggle to remember and utilize 
procedures and symbolism for numeric strategies, which seem to replace rather than extend visual 
perceptions and intuition. Studies have been done to characterize the nature of this student 
difficulty (Chazan, 1987), but the gap remains. 

In strictly numerical contexts for proportional reasoning, this gap between useful intuitions and 
mature proportional reasoning has been narrowed, and work has been done to identify intermediate 
qualitative strategies such as building up, norming, or unitizing (Lamon, 2007). The identification 
of these strategies gives us some power to hypothesize about intermediate conceptions of 
similarity; however, these strategies are not entirely translatable to a geometric context.  Given the 
position of similarity at the crossroads of geometric and proportional reasoning, it is likely that the 
progression of students from visual to proportional thinker (Cramer & Post, 1993) can be better 
described if, in addition to attending to numeric proportional reasoning, we acknowledge that 
students also bring geometric and spatial understanding (van Hiele, 1986) to bear on similarity 
tasks. In a review of middle-grades texts, it was found that similarity tasks often include only 
simple polygons such as rectangles or triangles (Lo, Cox & Mingus, 2006). In further study (Cox, 
Lo & Mingus, 2007), it was hypothesized that scaling these figures did not help students 
understand the continuous all-directional nature of scaling but instead focused on isolated instances 
of scaling.  

Although the research literature suggests that students struggle to develop abilities to reason 
proportionally and to make sense of similarity, the fact remains that some students actually do 
develop these abilities.  How these students advance from using visual and additive reasoning 
strategies to using multiplicative proportional reasoning on similarity tasks is an open question. 
Before we can study the transition, however, we must admit that we have only incomplete theories 
about what intermediate student strategies would look like on these tasks. Lamon (1993) argues for 
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research that identifies the ideas that students have that contribute to proportional reasoning, and 
investigates the contexts and models that “offer more explanatory power” (p. 42) to students in 
their work.  

This study is focused on identifying and describing potential extenders for visual intuitions 
about scale by analyzing the strategies that students use during clinical interview to construct 
similar figures. Results are shared here in answer to the questions:  
1. What strategies do students use to construct similar figures and what types of geometric and 
numeric reasoning are indicated by these strategies? 
2. How does the complexity of the figure to be constructed influence student reasoning about 
construction? 
 

Theoretical Perspective 
This study assumes a constructivist perspective on the inquiry into student conceptions and the 

modeling process. This has two implications for the study at hand. First, there is the direct 
implication that without observations of students themselves, no theory can stand apart from the 
limitations of the mathematical understanding and biases of the researcher (Cobb & Steffe, 1983). 
By observing students interacting with the ideas behind the theory, we open the theory up to the 
unexpected (Cobb & Steffe, 1983). Thus, the method of clinical interview (Cobb & Steffe, 1983) 
was chosen as the primary method of data collection. 

 The second implication is in registering the significance of the data that are collected. It is 
possible to have as a goal the empirical vetting of a theory, marking instances where the predictive 
power is great and where it is not. However, another goal, responds to Vergnaud’s (1987) 
challenge to “understand better the processes by which students learn, construct or discover 
mathematics and to help teachers, curriculum and test devisers, and other actors in mathematics 
education to make better decisions” (as quoted in Confrey & Kazak, 2006, p. 311). 
 

Theoretical Framework 
Proportional reasoning has been investigated through two major types of tasks: comparison 

tasks and missing value tasks (Lamon, 1993, 2007). Lamon (1993) outlined a conceptual 
progression for the development of proportional reasoning that stemmed from visual and intuitive 
solutions growing through successful preproportional strategies up into mature proportional 
reasoning. This progression was useful in describing and organizing the numeric strategies that 
were used by students during interviews. However, because students begin with a visual intuition 
about similarity, it is insufficient to focus only on instances of numerical proportional reasoning in 
student strategies. In order to capture other forms of reasoning that students may use on similarity 
tasks, it was imperative that a geometric lens also be used. van Hiele’s descriptions of reasoning at 
levels 0 and 1 provided such a lens while analyzing student strategies on these tasks.  
 

Methodology 
Population 

A population of students in a Midwestern, urban school district was identified to target racial, 
economical, and academic diversity. The inclusion of diversity in the sample for study was not 
intended to highlight differences between groups of students, but rather to ensure that a broader 
extent of prior student experience and knowledge is included in the results. For example, students 
from urban areas may have significantly different experiences related to geometric proportionality 
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(such as reading bus maps) that influence conceptions of scale or correspondence. Alternatively, 
lower socio-economic status may indicate a more limited access to technology, photographic or 
otherwise, and a different repertoire of imagery that others take for granted. Furthermore, because 
the majority of student data related to research on proportion and similarity are more than a decade 
old (Lamon, 2007), it is likely that technological advances, such as the availability of publishing 
software, photo enlargement machines, and multi-dimensional video gaming systems may alter 
potential student imagery and visual acuity, and provide a more fertile ground for developing 
quantitative strategies.  
Data Collection 

An assessment, the revised Similarity Perception Test (rSPT), was administered to a group of 
91 seventh-grade students for sampling purposes. This instrument provided information about 
students’ visual perception of shape, correspondence, and size transformation and helped to divide 
students into subgroups according to their responses. A stratified purposeful sample (n=21) that 
included the most common as well as unique response patterns was selected for task-based 
interviews. This method of sampling intentionally included individuals who exhibited varying 
abilities, perceptions, and strategies.  

During the interview, students were given up to six construction tasks. Each task involved one 
of three different shapes shown in Figure 1: a rectangle with an embedded square, an L-shape, or a 
heart. Students were asked to draw an enlarged or shrunken version of the figure with a given scale 
factor (k) and in most cases were given a scale factor, generally 2. All students started with the 
rectangle with the embedded square task. If successful, students were given another version of the 
task. In this case, students were asked to draw another version of the figure “somewhere in the 
middle” of the original size and the size of the image.  It was notable that many students applied 
different strategies to scaling the rectangle and scaling the square embedded in the rectangle. Thus, 
during analysis, tasks involving this figure were analyzed in two distinct parts: scaling the 
rectangle (Double Rectangle/Middle Rectangle) and scaling the embedded square (Embedded 
Square (k)/Embedded Square(M)).  
 

 
Figure 1. Figures depicted in construction tasks. 

 
Data Analysis 

Interviews were transcribed using Transana (Fassnacht & Woods, 2005), a software package 
used to transcribe and organize data. Student constructions, including drawings and measurements, 
were all digitally scanned. Analysis started with individual responses to individual tasks. It is 
possible that one student used two distinct strategies on one task. In this event, both strategies were 
analyzed separately. Descriptions of each strategy used by each student on each assigned task were 
written. All of the strategies used by an individual student were compared, noting similarities and 
differences in particular uses. Then, all of the strategies used on each individual task were 
compared in the same way. In order to validate these general descriptions and types, they were 
compared again to original student responses and revised when necessary. General strategy types 
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were then devised to organize the strategies. The theoretical framework described above also 
helped to order the types with respect to the sophistication of implied reasoning.  
 

Results 
In this section, I will provide the results relevant to the research questions stated earlier. I will 

first describe the seven identified types of construction strategies. Although defined here, there is 
not space here to elaborate on each of the strategies observed. More detailed illustrations will be 
provided during the presentation. Second, I will present an overview of the strategies used on each 
of the tasks to gain insight into how the figure may influence the strategies selected and reasoning 
used. 
Strategy Types  

Seven construction strategy types were observed in this study: Avoidance (AV), Additive, 
Visual, Betweening, Pattern Building (PB), Unitizing, and the Functional Scaling strategy (FS). 
Two of the seven strategy types, Avoidance and Additive, were similar to strategies documented for 
proportional reasoning. Reponses that indicated no meaningful engagement with the problem were 
considered indicative of an avoidance strategy. Responses that featured students scaling lengths 
using a constant additive approach were considered indicative of a classical additive strategy 
resembling those documented by Lamon (1993) and many others.   

There were other strategy types described in the literature that diverged from standard in the 
case of similarity. For example, a visual strategy was identified by Lamon (1993) as a primitive 
approach to proportional reasoning and was aligned with the additive strategy as non-constructive. 
However, in the context of similarity, there was cause to differentiate this strategy more from an 
additive approach. The main distinction between additive and visual strategies is that visual 
strategies in this context can indicate sophisticated conceptions of proportional growth, and can be 
quite constructive. While it is true that for some students, a visual strategy is more akin to a guess, 
this is certainly not the case for all students. Visual strategies can incorporate a range of simple to 
sophisticated concept imagery regarding the constant of proportion, correspondence, and dilation. 
The additive strategy is more accurately depicted as primitive and non-constructive. 

Elaine’s construction of an enlarged heart in Figure 2 is an illustration of how intuitive 
conceptions of proportional growth can be constructive. In this image, the original heart was traced 
and a larger version was constructed around the outside like a frame. Elaine’s image was 
reasonably similar to the smaller original heart and was based on only visual measurements. “All I 
did was look at the heart; the design of what it was drawn. I looked at it while I was drawing, too. I 
was trying to make it exactly like it was.”  

 
Figure 2. Elaine scales the heart. 
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Elaine’s concept imagery related to dilation was robust and did not occur accidentally or by 
chance. This was not the only instance where Elaine demonstrated her intuitions about geometric 
proportion and dilation, which were remarkably reliable. Elaine’s drawings, Figure 2 included, 
illustrated intuitions she has about correspondence and the implications of this intuition on the way 
she visualized scaling. The correspondence lines between the two hearts that Elaine drew in Figure 
2 were not constant in length. While not made explicit during the interview, this might illustrate an 
informal understanding of proportion—the distance between corresponding points on the original 
and image depends multiplicatively on the distance the original is from the point of dilation. Elaine 
suggested in another situation that when this distance was held constant, the result was visually 
displeasing to her and that the original and scaled figures did not look like the same shape. This 
type of intuition was not evident when a student took an additive approach and accepted the result. 

In some cases, it was apparent that students were making use of visual judgment to mediate 
numeric strategies. This combination of numeric and visual reasoning was indicative of a new type 
of strategy, Betweening, which is characterized by the remediation, both during and post-
construction, of a numeric strategy so that it conforms to visual expectations. Betweening was used 
primarily, though not exclusively, to remediate a constant additive construction. Students, noticing 
distortion in their constructions, adjusted side lengths so that they varied by different additive 
amounts.  

Pattern-building is an umbrella term for the use of oral or written patterns without indicating 
an understanding of the functional nature of the scale factor. In the context of construction, three 
pattern-building strategies were observed: Angle-matching, Median Length Finding, and Tiling. 
All of these strategies require the use of existing angles, lengths and shapes as tools in constructing 
a new shape. In the case of Median Finding, the lengths of a shape become numeric tools by which 
a student can interpolate intermediate lengths of similar figures. In all three cases there were 
limitations of the applicability and reliability of the strategy.  

Unitizing and Functional Scaling were the most sophisticated strategies observed. Unitizing, as 
observed in this study, is closely related to tiling, but differs in that a student acts on lengths as 
units rather than entire figures. In addition, it is not limited to use with figures that tile the plane. 
Students using the Functional Scaling strategy multiplied select original lengths (dimensional, 
secondary, and space) by the identified or indicated scale factor to determine corresponding image 
lengths before construction. Students knew how long the lengths would be before they even began 
drawing them. This is not always the case when students used pattern-building strategies or even 
unitizing strategies.  
Overview of Strategy Use 

If a student was successful with a given strategy, it is possible to imagine that they would 
continue to use this strategy regardless of the figure they were constructing. This was not the case. 
Students who were successful using a Functional Scaling strategy on the first task did not 
necessarily do so on all of the tasks. In fact, most (n=17) students were able to apply the 
Functional Scaling strategy on the double rectangle task yet only four out of twenty-one students 
used Functional Scaling exclusively. As the figures became more complex and as the scale factors 
were changed from whole numbers to non-whole numbers to numbers less than 1, fewer students 
applied the strategy and began to use other types tempered by visual judgment. At the point where 
the strategy broke down, students utilized less sophisticated strategies, or made modifications to 
their constructions using visual judgment. Visual judgment, used in concert with other strategies, 
was used as a tool for mathematical reflection and evaluation.  
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For example, Andre applied the strategy on three out of five tasks, but resorted to a visual 
strategy when embedding the square in the medium rectangle and when scaling the heart figure. 
Andre’s drawing of the embedded square is shown in Figure 3. His difficulty is more related to 
spatial reasoning rather than a lack of proportional reasoning. He applied a scale factor (1.5) 
functionally to all edges of whole-number lengths, but did not transfer that strategy to the space 
between the square and the rectangle. All attempts at placing the square within the rectangle 
were done visually, and the square changed in dimension to accommodate his visualization as he 
made three attempts at moving the location—each attempt shown in this figure. 

 

 
Figure 3. Andre attempts embedded square (M). 

 
This leads us to the second research question regarding the influence of the complexity of the 

figure. In Figure 4, profiles of the strategies used on each task are compared. When organized by 
task rather than individuals, the strategy profiles are also varied in both unexpected and expected 
ways. For example, the two L-shape tasks should have skewed results. Only students who 
indicated using an additive strategy on some or all of their previous responses were asked to double 
the L-shape. Thus, it is expected that the profile for this task would be skewed toward less 
sophisticated strategies. Only students who had shown proficiency on other tasks or who finished 
tasks more quickly were asked to reduce the size of the L-shape. Thus, it is expected that the 
profile for this task would be skewed toward more sophisticated strategies. In fact, neither skew is 
observed. Reducing the L-shape inspired the greatest variety of strategies with no single strategy 
dominating student responses. Doubling the L-shape did have the highest frequency of additive 
strategy use, but this is to be expected. A few students used a visual approach, but students tended 
to favor the Functional Scaling strategy—even if, like Chris, they did not use Functional Scaling 
on previous tasks. 
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Figure 4. Summary of strategy by task. 

 
The tasks incorporating whole scale factors (DR, L-shape [Double], Embedded Square 

[Double]) are clustered at the top end when the profiles are ranked according to the percentage of 
students utilizing the functional scaling strategy. As the scale factors change to non-whole 
numbers, fewer students utilized this strategy in lieu of a variety of other strategies. A smaller 
percentage of students (42%) utilized the functional scaling strategy on the Medium Rectangle 
(MR) task, a task that is different from the DR task only in scale factor. No students avoided 
solving the DR task, but this behavior emerged in the MR profile along with the pattern building 
strategy. Pattern building emerged as a strategy on the MR task even though it was not used on the 
DR task; it was a strategy used by students to reduce the L-shape but not to double it. In fact, on 
the L-shape Reduction task, a task that incorporated non-whole factors less than 1, there was much 
variety in student strategies. No particular strategy type seemed more prevalent than any other. 

On the other end of the proposed spectrum were students who utilized a visual strategy. The 
number of students who utilized a visual strategy did not seem to be impacted by a non-whole 
scale factor. On tasks where students used whole and non-whole factors to scale the same figure, 
the frequencies of visual strategies were remarkably close. However, more variation is noticed 
when tasks of differing figure type are compared. Very few students used visual strategies to scale 
each of the rectangles, but 40% of students used a visual strategy on the heart task, 27% of students 
used a visual strategy to embed squares inside the double rectangle, and 36% to embed squares 
inside the medium rectangle.  
 

Discussion 
To return to the original research questions regarding the strategies students choose to use 

when constructing similar figures and the influence of the complexity of the figures on reasoning 
used, two conclusions are possible. First, students in this study used a variety of construction 
strategies that have not been previously classified according to existing research frameworks 
including some that seemed to mediate numeric strategies with visual judgment or reasoning. The 
seven types of strategies are related to the literature on intermediate strategies for proportional 
reasoning, but as hypothesized, indicate as well the use of geometric and spatial reasoning.  
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Second, the complexity of the figures to be scaled did influence the strategies and reasoning 
types used by students. Depending on the nature of the figure being constructed, students were 
required to attend to a variety of characteristics including angles and different lengths of different 
varieties. The three figures (rectangle with embedded square, L-shape, and heart) used incorporate 
primary, secondary, and gap lengths. Primary and secondary lengths are both measurements of 
drawn lines within the figure, generally edges. A primary length is a length that defines the height 
or width of the entire figure. In the case of the rectangle, all four edges were defined as primary 
because they frame the figure and determine both horizontal width and vertical height. All other 
lengths including edges or drawn lines within the figure are secondary. A gap length measures the 
width of a gap in the figure not represented by a drawn line.  

By increasing the complexity of the figures in the interview protocol, it was possible to 
manipulate the characteristics that students are required to attend to. One interpretation of the 
variance in the use of visual strategies is based on this complexity. As the lengths to be scaled 
became more oriented toward secondary and space lengths and away from primary lengths, the 
visual strategy was used more frequently. Furthermore, students who began with a numeric 
strategy—whether additive or multiplicative—utilized their visual judgment to mediate these 
strategies when the resulting image did not match their expectations. 

These conclusions suggest that visual perception is not entirely guess-related or primitive in 
this context for proportional reasoning. Two implications follow. First, the consideration of visual 
perception as a powerful indicator and supportive extender of conceptual understanding in this area 
might be warranted. Second, there is strong evidence that providing students with complex figures 
to scale may encourage students to mathematise their visual perceptions and increase their ability 
to attend to the quantifiable features of shape and the numeric relationships between then. 
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The Spatial Operational Capacity (SOC) framework (Yakimanskaya, 1991; van Niekerk, 1997) 
guides a long-range design research study to develop spatial skills in elementary-age 
childrenusing Geocadabra, a dynamic computer interface. Learners engage in activities that 
move among 3-D models, 2-D conventional and semiotic (abstract) representations, and verbal 
descriptions of figures. In this presentation, we focus on children’s development of top-view 
coding as they engage in activities that move among the SOC representations, their extension of 
this knowledge to invent non-conventional numeric coding systems and their spontaneous 
connections to their daily mathematics programs. Social-constructivist instructional approaches 
undergird the classroom ecology. 
  

Introduction 
This paper, written in the voice of researcher, A, demonstrates how 3rd and 4th grade children 

developed mastery at top-view coding to create assembly puzzles to challenge each other and 
invented their own coding systems to account for holes and overhangs in figures they constructed 
using loose cubes and Soma pieces (Weisstein, 1999). We share how they continued to use the 
coding to create assembly diagrams for 3-D figures and recognized connections to other strands 
in their everyday mathematics curriculum. The ongoing study is conducted in a dual-language 
urban elementary school within one of the largest public school districts in the mid-southwestern 
United States.  

 
Theoretical Frameworks and Perspectives 

Spatial Visualization 
The National Research Council’s report, Learning to Think Spatially (2006), identifies spatial 

thinking as a significant gap in the K-12 curriculum, which, they claim, is presumed throughout 
but is formally and systematically taught nowhere. They believe that spatial thinking is the start 
of successful thinking and problem solving, an integral part of mathematical and scientific 
literacy. The National Council of Teachers of Mathematics’ Principles and Standards for School 
Mathematics (NCTM, 2000) supports this view. In their early years of schooling, students should 
develop visualization skills through hands-on experiences with a variety of geometric objects and 
use technology to dynamically transform simulations of two- and three-dimensional objects. 
Later, they should analyze and draw perspective views, count component parts, and describe 
attributes that cannot be seen but can be inferred. Students need to learn to physically and 
mentally transform objects in systematic ways as they develop spatial knowledge. From a purely 
academic perspective, the importance of visual processing has been documented by researchers 
who have examined students’ performance in higher-level mathematics. For example, Tall et al 
(2001) found that to be successful in abstract axiomatic mathematics, students should be 
proficient in both symbolic and visual cognition; Dreyfus (1991) calls for integration across 
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algebraic, visual and verbal abilities; and, Presmeg (1992) believes that imagistic processing is 
an essential component in one’s development of abstraction and generalization.  
Spatial Operational Capacity Framework 

The spatial operation capacity (SOC) framework (Yakimanskaya, 1991; van Niekerk, 1997) 
that guides our study exposes children to multiple representations through activities that require 
them to act on a variety of physical and mental objects and transformations to develop the skills 
necessary for solving spatial problems.  
 

 

 

 

 

 

 

 
 

 
Figure 1. Multiple representations within 3-D visualization. 

 
The SOC model (see Figure 1) uses:  

 full-scale figures, that, in our study, are created from loose cubes or Soma figures, made from 
27 unit cubes glued together in different 3-cube or 4-cube arrangements (see Figure 2);  

 conventional-graphic 2-D pictures that resemble the 3-D figures; 
 semiotic representations (Freudenthal, 1991) such as front, top and side views or numeric 

top-view codings that do not obviously resemble the 3-D figures; and 
 verbal descriptions using appropriate mathematical language (Sack & Vazquez, 2008). 

 
 

 
 

 
 

Figure 2. The Soma set can be made by gluing unit cubes together. 
 
We also utilize a dynamic computer interface, Geocadabra (Lecluse, 2005), a tool that was 

not available when the SOC framework was originally developed. Through the Geocadabra 
Construction Box module, complex, multi-cube structures can be viewed as two-dimensional 
conventional representations or as top, side and front views or numeric top-view diagrams (see 
Figure 3). Whereas one can move around a three-dimensional model to see it from other vantage 
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points, one may see various views of a dynamic computer-generated figure through its ability to 
be rotated in real time. The Geocadabra computer interface serves as a mediator of knowledge 
(Borba & Villarreal, 2005) rather than as a unique form of representation.  
Design Research Methodology and Data Sources 

Instructional decisions are guided by the design research methodology of Cobb, Confrey, 
diSessa, Lehrer, and Schauble (2003). Our intent is to support and give an account of young 
children’s development of spatial reasoning and ultimately to create curricular resources that 
may be integrated into the elementary-level mathematics curriculum. Each lesson we enact is 
part of a design experiment in which the research team hypothesizes learning outcomes, designs 
instructional activities to support the outcomes, and enacts the lesson. Social constructivist 
approaches provide us access to student understanding in that we encourage verbal explanation 
and justification orally and where appropriate, in writing. During the retrospective analysis 
following each lesson, the research team determines the actual outcomes and then plans the next 
lesson, which may be an iteration of the last lesson to improve the outcomes, a rejection of the 
last lesson if it failed to produce adequate progress toward the desired outcomes, or a change in 
direction if unexpected, but interesting, outcomes arose that are deemed worthy of more 
attention. Data sources include formal and informal interviews, video-recordings and 
transcriptions, field notes, student products and lesson notes.  

 
 

 

 
 
 
 
 
 

 
 

Figure 3.  The Geocadabra Construction Box. 
 
Context and Classroom Ecology 

During the 2007-2008 academic year, teacher-researcher A, teacher B, and co-teacher C 
formed the research team that worked with a third-grade and then a fourth-grade group of 
children weekly (one hour per group) in teacher B’s classroom during an after-school program. 
English and Spanish parent/guardian and student consent-to-participate forms were sent home to 
parents of all after-school third and fourth graders. All respondents were accepted into the 
program. Teacher B had taught mathematics and science to all fourth-grade participants during 
their entire third-grade year. Due to staffing changes for the third-grade class, she taught all core 
subjects to half of the school’s third-grade students. Consequently, some of the third-grade 
participants in the after-school SOC program were not her students during the school day. 
However, all participants became attuned to her behavioral and communal expectations very 
quickly during the first month of the research program. She expected all students to develop 
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independence by asking each other for help or support before asking the teacher, and to treat 
each other respectfully. Students expressed their understandings, justifications, confusions or 
frustrations safely in front of their peers. We rarely gave away answers or explanations. Students 
constructed meaning and representations for themselves. Furthermore, our design incorporated 
learning experiences that challenged each child according to particular readiness, interest and 
learning profile. Our strong attention to differentiated instruction ensured “processes and 
procedures that ensure effective learning for varied individuals” (Tomlinson & McTighe, 2006, 
p. 3). This environment supported problem-solving and fostered creativity in our participants 
while as researchers we were able to make sense of student understanding of 3-D structures. 

The stimuli presented to students began with simple reproductions of any of the given SOC 
representations into any or all of the others using single Soma figures. Later we concentrated on 
figures assembled with combinations of Soma figures together with rigid, congruent 
transformations. Activities included various game components and tasks using Geocadabra in 
which students had to identify the individual Soma figure(s) that made up the figure, or (de)code 
a top-view mapping to (re-)construct an assembly of Soma figures.   

In the next section, we focus on how the children’s interest in top-view coding led to 
invention and connections to other aspects of their daily mathematics work. 
 

Results 
Over the course of six lessons spanning November-December, 2007, students worked with 

the Geocadabra Construction Box to master numeric top-view coding of 2-D conventional 
images. Students initially rebuilt the figures shown in a customized manual (van Niekerk, 2008) 
using loose cubes and then created the complete structure on the computer using Geocadabra. 
For an example, see Figure 4. They coordinated the top-view codings with the 2-D figures that 
emerged on the computer’s screen. To check for understanding, we de-selected “Hide spatial 
model.” The student then entered his or her predicted top-view coding on the screen and then 
clicked to un-hide the computer figure to compare with the printed 2-D figure.  

 
 
Build the following figure and its mirror image 
on your screen. Write the correct numbers in 
the grid next to the figure. 

 
 
 
 
 
 
 

 

Geocadabra screen for this task: 

 
Figure 4. Mirror image task 

 
A custom-created Geocadabra module, the Extended Construction Box, allowed students to 

construct figures with spaces and overhangs (see Figure 5). One places individual cubes or 
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linked combinations of cubes along axial lines in a 3-dimensional octant. We challenged the 
children to create a numeric top-view coding system that included holes and overhangs since we 
were not aware of a conventional coding system of this nature. In this problem setting, students 
tested each other’s invented codings to see if they could re-create the corresponding 3-D figures; 
challenged each other and offered suggestions for improvement in writing, to engage the verbal 
representation; and, compared and rated the invented codings. These activities provided the 
children opportunities to tackle open-ended problems without known solutions.  

We had discovered that our students ascribed to two different but conceptually appropriate 
interpretations of the conventional top-view coding system (as in the original Construction Box). 
For example, in Figure 6, some children said that the 2 in the front left position represented a 
stack of 2 cubes. Others said that the 2 represented a cube on the second level, implicitly 
knowing that there is a cube (or a stack of cubes) supporting that cube from below. These 
interpretations came into conflict when students tried to decode someone else’s invented coding 
for structures with empty spaces or overhangs especially if one’s initial interpretation of a grid 
number was different from the coder’s interpretation. For example, one student used (↑2), where 
the arrow meant one empty space and two cubes above the empty space, which aligns with the 
first interpretation described above. Another used (**3) to mean two empty spaces and one cube  

 

 

 
 
 
 
 
 

Figure 5. Extended Construction Box, student-created task card, coding and 3D figure. 
 
on the third level. His coding sprang from the second interpretation of the conventional coding 
described above. The plethora of invented codings created class-wide confusion. Our video clips 
show how Teacher B and the class negotiated to select and refine a new class-wide convention 
that reflected the conventional coding and included holes and overhangs. Examples of various 
student-created codings are shown in Figure 8. Sarah’s code (Fig. 8(c)) was selected with a 
modification to change the square to a circle to denote the number of empty spaces. 

 
 

 
 
 
 
Figure 6. Conventional coding system developed through the Construction Box. 
 

1
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The traditional and class-wide coding conventions continued to be used to create assembly 
plans for multi-Soma figures. By presenting this as a puzzle-creation and solving activity, the 
children challenged each other and checked each other’s work against the task cards they created 
using the Extended Construction Box. They set their own levels of difficulty and carefully 
recorded their assembly diagrams carefully. See Figure 7 for examples of student work. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Student-created task cards and assembly puzzles. 
 
For the end-of-year party, we decided to order a cake designed by the children, by combining 

all seven Soma figures into a rectangular base shape. Considering factor pairs, they determined 
possible dimensions for the base. Everyone was successful creating patterns on 3x8 or 4x6 bases. 
Vena, a third-grader, believed she would be able to construct a figure on a 2x12 base. We 
encouraged her to explain why this was not possible. She simply shrugged. When the program 
resumed the following year, Vena immediately returned to her self-created problem of building 
the cake on a 2x12 base. She generally finds mathematics difficult but this problem is hers and 
she will probably wrestle with it until she convinces herself that it cannot be solved. In separate 
incidents, Sarah (third grade) and Debra (fourth grade) noticed that Somas #1, #5, #6 and #7 all 
had the same 3-square footprint and that these pieces could be interchanged within their cakes to 
produce many more different patterns. This observation became an opportunity for the two 
groups to transfer to their academic class-work. They successfully completed tabular 
representations to show how many different permutations these interchanges would produce. In 
our presentation, we will share examples of students’ assembly diagrams and a video-clip of a 
particularly interesting “cake” in which the ends of the student’s rectangular base rotate up to 
lock into the 27-unit cube. 

 
Discussion/Conclusions 

Re-invention and Invention 
In this learning environment, through small-group and whole-class discussion, students 

formalized, or re-invented concepts that later became the foundation for further mathematization. 
Although these concepts may be new to these students, they generally constitute age-old 
mathematics that form the basis of school mathematics curricula. Freudenthal uses the term “re-
invention” (1973, p. 120), sometimes known as discovery-based instruction for this approach to 
learning mathematics. Through debate and negotiation, the children adopted a particular system 
to be the class-wide convention for all to use. More than re-inventing mathematics, our students 
invented a new mathematical coding system. Our confidence in managing such an approach 
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comes from cumulative years of providing our students opportunities to share problem-solving 
strategies and solutions with their peers in order to deepen their knowledge of the concepts at 
hand.   
Connections to Classroom Concepts 

The permutations connection that arose out of the cake-designing activity is one example of 
how our activities integrated with classroom-mathematics concepts. Others include figures 
created using loose cubes or Soma figures that exhibited repeated or step-wise patterns. These 
presented opportunities for children to calculate how many unit cubes were in the structure. 
Finding the total number cubes by in multiple ways, such as by horizontal and then vertical 
slicing, developed students’ number and spatial senses symbiotically. A final check was 
established by looking at the totals of the numbers in the top-view coding grids. These activities 
helped establish a foundation for the concept of volume. When the children returned the 
following year, we extended the permutation connection from the cake activity to finding and 
representing as many 24-cube rectangular boxes as possible. We expected students’ records-of-
action to be tables showing length, width and height, but they immediately reverted to drawing 
their figures using top-view numeric coding. They all agreed that the numbers in the top-view 
grid represented the heights of the boxes. In reflection, the connection to volume was implicit 
during our first year of the study, especially when the children were developing mastery with 
conventional top-view coding. Now in our second year of the study, as we work with a much 
larger group of third-graders, we are making the volume and top-view grid connection explicit 
by asking “how many” in almost every activity. We concur with Tall et al (2001), Dreyfus 
(1991) and Presmeg (1992) in the importance of integrating spatial visualization with symbolic 
forms at the concept-development stage of mathematical learning. 
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 (a) Maddie’s code (b) Eliot’s code 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) Sarah’s code (d) Gary’s code 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Top-view numeric coding systems to represent holes in cube figures. 
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ELEMENTARY PRESERVICE TEACHERS’ AREA CONCEPTIONS INVOLVING 
THE NOTION OF PERIMETER 
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This study investigated elementary preservice teachers’ conceptions about the area of 
parallelograms through the processes of shearing and squashing. When asked to compare areas 
of parallelograms, the preservice teachers revealed two opposite misconceptions along with lack 
of a dynamic understanding of the quantity of area: 1) increasing perimeter decreases area and 
2) increasing perimeter increases area. 
 

Introduction 
When asked about the area of a two-dimensional shape, do you first focus on the boundary of 

the shape or the region that the shape covers, or both? Regardless of whether the question is 
about the area or the perimeter, both the boundary and the region covered may be in our primary 
consideration rather than either of them in an exclusive manner. Interestingly, when asked to 
compare areas of parallelograms, many of the elementary preservice teachers in our mathematics 
content course paid attention to the boundaries, more specifically, to the changes in the 
boundaries from a related rectangular shape. Similarly, in response to the question about the 
perimeter of a shape, many of the preservice teachers attempted to change the shape so that they 
could easily produce the area and use the changed shape to find the perimeter measure. This 
paper shows elementary preservice teachers’ various attempts to relate area and perimeter.  

 
Lessons Taught and Theoretical Background 

This study is based on the lessons for the second mathematics content course that is required 
for those who pursue or major in elementary education (K-8). The author taught two sections of 
the course where 43 students attended in total. Most of these students were learning the school 
geometry that was planned and instructed especially for elementary preservice teachers for the 
first time.   

We began by describing how the topic of area measurement was introduced in our 
mathematics content course for elementary preservice teachers and what research results 
contributed to shaping our lesson. The preservice teachers in the course were first asked to find 
the area of a 3cm by 4cm rectangle. Every student answered 12i and many of them justified the 
answer using the area formula length×width or base×height. The use of the area formula, 
especially starting with the area formula from the very beginning stages of the topic, has been 
criticized as leading to difficulties and poor understanding of area measurement (Zacharos, 
2006). Three salient shortcomings were reported with respect to the use of the area formula 
(Baturo & Nason, 1996): reinforcing the perception of area based on the boundary of a shape; 
avoidance of generating the unit of area; and likely disregarding of the array notion of 
multiplication due to the dominant notion of multiplication as repeated addition. Along with 

                                                 
∗ I would like to thank Diane Dowd for her reading of this manuscript. 
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these concerns, three research ideas affected our lesson plans: (1) Schwartz’s idea of area as an 
attribute of a quantity: “The confounding of these two attributes [perimeter and area] of shape is 
a serious obstacle to the learning of area measure” (Schwartz, 1996, p.9); (2) Simon and Blume’s 
idea of the quantitative reasoning involved in the evaluation of the area of a rectangle: 
“Important aspects of this [quantitative] reasoning include the anticipation of a rectangular array 
of units as the structure of the area quantity” (Simon & Blume, 1994, p. 472); and (3) Steffe’s 
idea of multiplicative reasoning as a way to coordinate two levels of units (Steffe, 1994).  
Area of a Rectangle 

To address the preservice teachers’ dominant use of the area formula when justifying their 
answer of 12, the instructor started her instruction on the topic of area by focusing on the 
following questions: Why do you multiply 3 by 4 to determine the area? Where can you see the 
answer of 12? What does your answer refer to? These questions intended to encourage the 
preservice teachers to generate a unit of area while differentiating it from a unit of length and to 
produce the measurement of area based on a multiplicative way of thinking (Figure 1).  

 
• There are four rows and each row has three 

squares.   
• There are four rows of three 1 by 1 squares.  
• 12 is the number of squares.  
• When 4 is multiplied by 3 to find the area, 

3 represents the number of squares in each 
row. 

 
 

Area of a Triangle 
Based on the conceptual understanding of the area of a rectangle, our preservice teachers 

were asked to produce the area measure of a triangle and explain why they need to know the 
length of the segment perpendicular to the base of the triangle in order to produce the area 
(Figure 2).  
 
 
 
 
 
 
 
 
Area of a Parallelogram 

The preservice teachers were then asked to find a way to determine the areas of 
parallelograms by relating the parallelograms to rectangular shapes. One student produced a 
rectangle that shares one side with a given parallelogram by applying a moving and combining 
principle (Figure 3).  

 
 

3cm 

4cm 

Figure 1 

Figure 2 

Figure 3 
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As another way to relate a rectangle to a parallelogram for finding the area measure, a 
shearing process was introduced using toothpicks. The shearing process is illustrated in 
Beckmann’s textbook (2008) as follows: “Start with a polygon, pick one of its sides, and then 
imagine slicing the polygon into extremely thin (really, infinitesimally thin) strips that are 
parallel to the chosen side. Now imagine giving those thin strips a push from the side, so that the 
chosen side remains in place, but the thin strips slide over, remaining parallel to the chosen side 
and remaining the same distance from the chosen side throughout the sliding process” (p. 601). 
According to Cavalieri’s principle for areas, the sheared shape has the same area as the original 
shape.   
 

Emergence of the Notion of Area Measurement with a Concern about Perimeter 
Our preservice teachers seemed to have no problem in recognizing that changing a 

rectangular shape into a parallelogram that is not a rectangle through the shearing process results 
in preserving the area but changing the perimeter. However, many of the preservice teachers had 
difficulty implementing the inverse way of shearing, which is transforming a parallelogram that 
is not a rectangle into a rectangular shape. They desired to keep the perimeter of the 
parallelogram when shearing, which is referred to as squashingii.   

Such a way of confounding shearing and squashing seemed to lead them to conjure up the 
same A-same B intuitive ruleiii with respect to the process of squashing. That is, assuming that  
shearing preserves the area of shapes, they proceeded to the process of squashing and concluded 
that if a shape is changing while preserving its perimeter, the changed shape must have the same 
area as the original (Figure 4).   
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

In addition, many of the preservice teachers showed a perception that area determines 
perimeter, which is the opposite of the above idea that perimeter determines area. In response to 
the question about determining the perimeter of a shape, they seemed comfortable using a same 
A-same B intuitive rule. That is, they changed a given shape into the one that has the same area 

Preserving the area Shearing in mind 

Same perimeter results in same area 

Preserving the area 

Preserving the perimeter (Squashing) 

Figure 4 
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as the original and determined the perimeter of the changed shape (e.g., Figure 5), or they 
calculated the perimeter by applying the procedure they would have followed to determine the 
area of the shape (e.g., Figure 6).  

 
Investigating Changes in Area by Looking at Changes in Perimeter 

In order to further investigate preservice teachers’ conception of the relationship between 
perimeter and area, we proposed the following problem to the students in our mathematics 
content course for elementary preservice teachers.  

Arial, Kathy and Sue were planning to create a shape for planting on an 
empty plot. They were told to make a shape using a 3-foot long stick. Arial 
created her region by sliding the stick slightly toward the right, as shown at 
left below; Kathy made one by sliding her stick using a zigzag motion, as 
shown in the center; and Sue created a rectangle by sliding her stick straight 
forward, as shown at right below. When sliding their sticks, all of the girls 
kept their sticks parallel to the line l. The girls were wondering which region 
(if any) has a larger area than the other. Elaborate your reasoning as you 
comment on the girls’ wondering about the regions. [Note: The stick is 
represented by the horizontal segment show below line l.  This stick was slid 
directly upward, as shown in this picture, or upward and to the left or right, to 
get each girl’s shape. It began on line l, ended up on the upper line that is 

l

SueKathyArial

Figure 5 

Figure 6 
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parallel to line l, and remained parallel to line l throughout its journey.] 
We found a group of preservice teachers had difficulty visualizing using the given stick to 

create two-dimensional shapes. Many of the preservice teachers in the group thought each shape 
itself represented the 3-foot long stick. This kind of response suggests a static perspective of area 
(Baturo & Nason, 1996), which is perceiving area as an amount of region that is enclosed within 
a boundary. In other words, the boundary of the shape is needed to determine the region for 
which the area is being asked, so the preservice teachers would need to have the boundary 
specified before investigating areas of each shape.  

There was another big group of preservice teachers who attempted to compare the areas of 
the shapes based on a relationship between the boundaries of the shapes. Interestingly, two 
opposite ways of thinking emerged: “Increasing or preserving the perimeter decreases the area” 
vs. “Increasing the perimeter increases the area”. Let’s closely look at theses two ways of 
reasoning.  

 
Argument 1:  Increasing or preserving the perimeter decreases the area 

• Anne: “Sue’s stick [rectangular shape] would be a bigger area because it is fattest. The 
more you shorten the height the less the area is. Below (Figure 7), each shape has a base 
of 7 but the height changes every time because it is getting more slanted. This causes the 
area shrink.” 

 
 
 
 

 
 
 
 
 
 

• Molly: “Kathy’s [zigzag shape] is smaller because it is zigzagged. … Kathy’s stick got 
much thinner and therefore having a smaller area in those smaller parts.” 

 
Both Anne and Molly’s reasoning suggests that they are perceiving that (1) shape gets 

thinner as its sides become slanted and (2) a thinner shape has a smaller area than a thicker 
shape. However, they also took opposite positions in that Anne seems to have preserved the 
perimeter while Molly seems to view it as having changed. That is, Anne implemented 
squashing, instead of shearing, with respect to Sue’s plot [or rectangular shape] in order to 
produce Arial’s shape [a parallelogram that is not a rectangle]. On the other hand, Molly seemed 
to employ the shearing process properly, in that she did not express any view of the height 
decreasing. Anne and Molly’s mentioning about being thinner as the rectangular shape slanted 
indicates they may have viewed the width of the shape as a segment that is perpendicular to each 
slanted side, and this view of a thinner width caused them to determine that Arial’s area was 
smaller than Sue’s. Notice that the term width can be interpreted two ways in a parallelogram 
(Figure 8).  

Figure 7 
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Suppose a student perceives a parallelogram as getting “thinner” through the shearing 
process as it becomes more slanted. That may suggest the student is focusing on the segment that 
is perpendicular to the slanted sides of the parallelogram as the width of the parallelogram (e.g., 
Figure 8 (b)). In that case, the student is likely to think the thinner shape has the smaller area 
unless the student notices that the two measures—of the “thinner” perpendicular width and a 
slanted side—will be used to determine the area. On the other hand, if a student sees the width of 
a parallelogram in terms of the segment that maintains the distance between the two slanted 
sides, she or he would not have trouble noticing that the degree of the slant does not affect the 
area unless the student confounds shearing and squashing. 
 

Argument 2:  Increasing the perimeter increases the area 
• Crystal: “Kathy [zigzag shape] has a larger area than the others. All 3 sticks are covering 

the same distance. However, Kathy’s if you were to lay it out straight is much longer than 
the other two. They all have the same width, but different length so Katy’s has a larger 
area.” 

• Maggie: “Sue [rectangular shape] would have the smallest area because the shortest 
distance between two points is a straight line. We calculate the area of their plots by 
multiplying 3 by the length of their plot (Kathy we would have to use segments). So the 3 
is constant. Arial’s [parallelogram that is not a rectangle] length is a little longer because 
she goes at a diagonal. Lastly Kathy’s length would be the longest because she zigzags 
back and forth. So it would go smallest to largest area respectively, Sue, Arial, and 
Kathy.” 

• Joel: “Arial’s area is bigger than Sue’s area because the line a is 
bigger than line b in my picture [shown at the right, Figure9]. The 
area of a is 21×  whereas the area of b is 11×  which is less. As for 
Kathy the same logic should hold for her as well and she should be 
bigger than the other 2, so long that the width of all the lines are the 
same.”  

                                                                                      
All of the students holding Argument 2 focused on the changes of the lengths of each shape. 

By length, they meant the side or the measurement of the side of each shape that goes from the 
line l to the other line that is parallel to l. It is interesting that they all considered the width as 
remaining the same in every shape; that is, unlike the previous group of the students who thought 

(a) The width is a segment that maintains 
the distance between the slanted sides 

(b) The width is a segment that is 
perpendicular to a slanted side 

Figure 8 

Figure 9 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

575 

increasing or preserving the perimeter decreases the area, they were not concerned about the 
shapes getting “thinner” as they become more slanted. Therefore, the lengths became the only 
factor they considered to compare the areas between the shapes. They reached conclusions about 
the area comparison only by looking at the lengths of the sides that are not width, the given 3 
feet, and by squashing the shapes into a rectangular shape. Joel’s drawing clearly shows his 
confounding of shearing and squashing.  

 
Results 

This study researched elementary preservice teachers’ conceptions about area through 
investigating their ability to implement the shearing process and to differentiate it from the 
squashing process. Three different ways of confounding shearing and squashing were found. The 
following table summarizes how those ways of thinking led the preservice teachers to mistakenly 
both conceive the areas of parallelograms and relate the areas to the perimeters.  

 
Original 

shape 
What is the width 
of the new shape? 

What is considered 
in order to 

determine the area 
of the new shape? 

Which process is 
being intended, 

shearing or 
squashing? 

Misconception 
involved in 
the process 
employed. 

 
 
 
    
 

 

 

 

- Mixing squashing 
and shearing    
- The width of the 
sheared strip was 
changed but the 
same height was 
assumed for the area 
comparison. 

Preserving the 
perimeter 
decreases the 
area. 

  

- Shearing   
- The conception of 
the width of the 
sheared strip 
changed. 

Increasing the 
perimeter 
decreases the 
area. 

  

- Squashing   
- The width of the 
sheared strip was 
preserved. 

Increasing the 
perimeter 
increases the 
area. 

 
 

Discussion 
This study shows that investigating the shearing and squashing process while differentiating 

them can provide a good ground for students to develop a dynamic and static perspective of area 
at the same time. Baturo and Nason (1996) argued that “Area needs to be considered from two 
perspectives, namely static (a description of something at a certain point in time) or dynamic (a 
mapping or function from one thing to anther). … Underlying this dynamic perspective of area is 
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the notion of the definite integral of differential calculus. However, the dynamic perspective is 
often not included in curriculum documents, thus limiting students’ understanding of area.” (p. 
238-239). Many of our elementary preservice teachers had difficulty implementing the shearing 
process flexibly. We suggest that it may be due to an inability to generate two-dimensional 
shapes (plots shown in the stick-plot problem, especially the zigzag plot) using a one-
dimensional attribute (the given definite length of stick) because the study reveals that our 
preservice elementary teachers do not have a good picture in their minds of what is to be sheared. 
In addition, confounding of and difficulty in differentiating the shearing and the squashing 
indicate that our preservice teachers’ perspectives of area are inflexible in that the squashing 
process requires them to perceive area through reasoning about the perimeter, whereas shearing 
permits them to conceive perimeter through reasoning about the area. The impact of balancing 
these two perspectives of area on preservice teachers’ conceptual understanding of area 
measurement needs to be investigated further.  
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The ability to estimate is a fundamental real-world skill where strategy flexibility is particularly 
critical. Here, we consider the role of students’ prior knowledge of estimation strategies in the 
effectiveness of interventions designed to promote strategy flexibility across two recent studies 
with 5th and 6th grade students. Results indicated that students who exhibited high fluency at 
pretest were more likely to increase use of estimation strategies that led to more accurate 
estimates, while students with less fluency adopted strategies that were easiest to implement.  
 

Introduction 
Estimation is a critically useful skill in everyday life and in mathematics, as encapsulated in the 

“Adding It Up” report from the National Research Council: “The curriculum should provide 
opportunities for students to develop and use techniques for mental arithmetic and estimation as a 
means of promoting deeper number sense” (2001, p. 415). Unfortunately, current instructional 
methods have not been particularly effective at supporting estimation knowledge. It is well 
documented that a large majority of students have difficulty estimating the answers to problems in 
their heads (e.g., Reys, Bestgen, Rybolt, & Wyatt, 1980). Given the challenges of mentally 
computing estimates, it is especially important to have a broad repertoire of estimation strategies 
and to select the most appropriate (often, computationally easiest) strategy for a given problem and 
goal. Thus, students’ difficulties with computational estimation partially results from a lack of 
strategy flexibility in this domain.  

Strategy flexibility is defined as (1) knowledge of multiple strategies and (2) adaptive use of 
strategies, based on accuracy and efficiency. Knowledge of multiple strategies has clear benefits 
for learning and performance; for example, learners with knowledge of multiple strategies at 
pretest are more likely to learn from instructional interventions (e.g., Alibali, 1999). People who 
know multiple strategies also learn to choose among them based on their accuracy efficiency; 
adaptive choice is a fundamental feature of problem-solving expertise and is also a fundamental 
mechanism supporting learning and development (Siegler, 1996).  
Flexibility and Strategies for Estimation 

There are numerous strategies that can be used to compute estimates. Of particular interest here 
are students’ knowledge of and use of three strategies for estimating two-digit multiplication 
problems. One commonly taught strategy is round both, which involves rounding both numbers to 
the nearest multiple of ten. Another strategy that can be used is round one, which involves 
rounding only one number to the nearest ten. Finally, a third strategy that we explore here is 
truncation, or trunc, which involves covering up or ignoring the ones digits and multiplying the 
tens digits and subsequently adding two zeros to the resulting product. Note that trunc is a less 
familiar strategy than the other two, but it is relatively easy and fast and has been advocated for by 
researchers on computational estimation for these reasons (e.g., Sowder & Wheeler, 1989).  

Flexibility in estimation includes choosing the most appropriate strategy for computing an 
estimate for a given problem. Choosing an appropriate strategy in estimation is complicated by the 
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presence of multiple, at times competing goals. On the one hand, it may be desirable to generate an 
estimate that is close to the exact answer. However, on the other hand, one may seek to compute an 
estimate using the strategy that is computational easiest. Ease is particularly important for 
estimation because one often must estimate mentally. (Note that it could be argued that ease of 
computation is a subjective and individual judgment; however, in our prior work with middle- 
school students (Star & Rittle-Johnson, in press), we have shown that trunc and round one are both 
easier (e.g., faster) strategies to implement than round both.) 

The studies described here explore the development of students’ flexibility for computing 
estimates. We were interested in students’ learning of round both, round one, and trunc, and when 
and how students began to use these strategies to optimize for ease and/or for proximity for given 
problems. 
Prior Knowledge and Flexibility 

In our prior work, we have identified interventions that reliably lead to gains in flexibility. Our 
interventions built upon cognitive-science research suggesting that comparing multiple examples is 
a fundamental pathway to flexible, transferable knowledge (e.g., Gentner, Loewenstein, & 
Thompson, 2003). However, in a recent study, it became clear that students’ prior knowledge may 
impact the effectiveness of interventions designed to promote flexibility (Rittle-Johnson, Star, & 
Durkin, 2008). We found that students who were not initially familiar with one of the target 
problem-solving strategies learned less if they were exposed to multiple strategies simultaneously, 
rather than sequentially. This study raised an interesting question that is not well explored in the 
existing literature on flexibility. If an instructional goal is to promote flexibility, then is it more 
effective to teach novice students multiple strategies from the beginning, or should learners 
develop initial fluency with one strategy before increasing their repertoire to include multiple 
strategies? 

Our prior work would suggest that learners need initial familiarity with one strategy before 
they can become flexible in the use of multiple strategies (Rittle-Johnson et al., 2008). Research on 
analogical reasoning also provides indirect support for this position: learning from comparing 
unfamiliar examples is often difficult for young children (e.g., Gentner, Loewenstein, & Hung, 
2007) and for college students who do not receive additional instructional support (Schwartz & 
Bransford, 1998). 
Present Studies 

The goal of the present paper was to continue our exploration of the role of prior knowledge in 
the effectiveness of interventions designed to promote flexibility, this time in the case of 
computational estimation. In Study 1, 65 fifth graders began the study as fluent users of the round 
both strategy, while in the Study 2, 157 5th and 6th graders began the study with moderate to low 
prior knowledge of strategies for computing mental estimates. Note that elsewhere we report on the 
effects of the intervention on improving flexibility (Star & Rittle-Johnson, in press); here, our 
interest is in prior knowledge and flexibility.  
 

Method 
Participants 

In both Study 1 and Study 2, participants were 5th and 6th grade students. Study 1 was 
conducted in an urban, private school (School A), and Study 2 was conducted in the same school 
as well as in a small, rural school (School B).  
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In Study 1, students in four classes of 5th graders (n = 65; 33 girls) participated. Students’ 
mean age was 10.88. The fifth grade was comprised of a majority of Caucasian students and 25% 
minority students, of whom 18% were African-American. Approximately 10% of students at 
School A receive financial aid. All students were taught by the same mathematics teacher and had 
received some prior instruction on estimating answers to multiplication problems. 

In Study 2, participants were fifth- and sixth-grade students from two schools. In School A, 69 
fifth-grade students participated (32 girls). There were four fifth-grade mathematics classes (all 
taught by the same teacher) at the school. Students’ mean age was 10.6 years; a majority were 
Caucasian (23% minority, with 13% African-American). At School B, 45 fifth graders and 46 sixth 
graders participated. At School B, 5th grade students’ mean age was 10.7 years (range: 10.0 years 
to 11.8 years) while sixth grade students’ mean age was 11.8 years (range: 11.0 years to 13.1 
years). There were two fifth grade classes (taught by the same teacher) and two sixth grade classes 
(taught by the same teacher). Most of participating students were Caucasian. Approximately 36% 
of students at School B received financial aid. Across schools in Study 2, teachers had not taught 
computational estimation in any of the classes, although some students had received limited 
instruction on computational estimation in previous grades. Three students were dropped from 
Study 2 because they were absent from school and missed more than one intervention session. 
Thus the analysis below for Study 2 includes data from a total of 157 students. 
Materials 

Intervention. The interventions in Study 1 and Study 2 were largely the same. Students were 
presented with a packet of worked examples, showing hypothetical students’ estimates and 
estimation strategies for multiplying two-digit integers. The worked examples focused on the three 
estimation strategies discussed above. Each packet contained 32 worked examples, with questions 
at the bottom of each page prompting students to reflect on the estimation strategy or strategies 
demonstrated on that page. In addition, practice problems were integrated into each packet, where 
students were asked to compute estimates and answer questions about their choice of strategy. 
Students also received a brief whole-class lesson and a brief homework assignment each day.  

Assessment. The assessments for Study 1 and Study 2 were very similar. Within a study, the 
same assessment was used as an individual pretest and posttest and was designed to assess 
procedural knowledge, flexibility, and conceptual knowledge. The procedural knowledge measure 
assessed knowledge of how to estimate, using both whole-number multiplication problems (six 
problems, such as 12 x 24 and 113 x 27) and transfer problems that involved decimal numbers or 
division (six problems, such as 1.19 x 2.39 and 102 ÷ 9). Flexibility was assessed in two ways. 
First, flexible use of strategies was assessed by examining students’ strategy use on the six whole-
number multiplication problems. Second, flexible knowledge of strategies was assessed by items 
designed to tap students’ ability to recognize, implement, and evaluate multiple strategies for 
computing estimates. Flexibility knowledge items fell into three categories: (a) Knowledge of 
multiple strategies; two questions asked students to compute estimates in three different ways; (b) 
Recognize and evaluate ease of use; two questions assessed whether students knew which 
strategies were computationally easier to implement; and (c) Recognize and evaluate closeness of 
estimate; four questions assessed whether students knew which strategies resulted in an estimate 
that was most proximal to the exact value. Finally, conceptual knowledge items assessed students’ 
knowledge of core concepts related to estimation. The items focused on definitions of estimation as 
well as acceptance of multiple strategies of estimation and multiple values of estimates and were 
modified from past research (Sowder, 1992; Sowder & Wheeler, 1989). 
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Procedure 
In both Studies 1 and 2, the study occurred during one week of students’ regular mathematics 

class. The procedures for the two studies were very similar. On the first day, students completed a 
30-minute written pretest and then were provided with a 10-minute introduction lesson by a 
member of the research team. On Days 2 and 3, students were divided into pairs to work on the 
intervention packet. During the partner work, the pairs of students were asked to first explain their 
answers to the explanation prompts verbally to one another and then write down a summary of 
their answer on the packet. At the conclusion of each class, students were given the same brief 
homework assignment to practice estimating. In Study 1, students received a wrap-up lesson and 
completed the posttest on Day 4. In Study 2, students received the wrap-up lesson on Day 4 and 
completed the posttest on Day 5. Students in Study 2 were given additional time to work on the 
packets because they were expected to need more time given that they were less familiar with the 
target content.  
 

Results 
We begin by describing students’ prior knowledge of estimation strategies at pretest and then 

explore the extent that students’ prior knowledge impacted the development of strategy flexibility.  
Knowledge and Strategies at Pretest 

Measures of conceptual knowledge, procedural knowledge, and flexibility. In Study 1, 
students’ scores at pretest were quite high on all measures, indicating substantial knowledge of 
estimation strategies prior to our intervention. At pretest, students had quite advanced levels of 
both procedural knowledge of estimation and procedural flexibility, as well as some conceptual 
knowledge of estimation. In contrast, students in Study 2 began the study with substantially less 
knowledge of estimation strategies and concepts. For example, Study 2 students on average were 
able to generate accurate estimates for 4 or 5 of the 12 pretest procedural knowledge items, 
whereas students in Study 1 on average were able to generate accurate estimates for 12 of these 
items.  

Students’ strategies on familiar procedural knowledge items. Differences in prior knowledge 
could also be seen in students’ estimation strategies at pretest on the whole-number multiplication 
problems. In Study 1, almost all students began with considerable fluency with the round both 
strategy; 92% of participants used round both on at least one problem. Over one-third of Study 1 
students were also familiar with round one. In contrast, only 49% of students in Study 2 used 
round both on any problem at pretest, and only 17% used round one.  
Flexibility Knowledge at Posttest 

In both Studies 1 and 2, students made gains in their flexibility knowledge as well as in 
procedural and conceptual knowledge. The similar gains in flexibility knowledge came about 
despite the stark differences in prior knowledge of estimation. In Study 1, students’ scores on the 
flexibility knowledge measure rose from 73% to 89%, while in Study 2 the gains were from 46% 
to 68%.  

However, looking more closely at the three subscales in the flexibility knowledge measure, a 
more complex picture of the differences between Study 1 and Study 2 emerged. First, consider the 
multiple ways subscale, which assessed students’ knowledge of multiple strategies for generating 
estimates. Study 1 students’ score rose from 75% to 92%, while Study 2 students’ scores improved 
much more dramatically, from 24% to 62%. For example, one question in this subscale asked 
students to generate an estimate for 12 x 36 in three different ways. At pretest, 77% of Study 1 
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students were able to generate an estimate for this problem in at least two ways; at posttest, 98% 
were able to do so. On the same problem, only 11% of Study 2 students were able to generate an 
estimate in at least two ways at pretest, while 45% were able to do at posttest. Study 1 students 
were almost at ceiling at pretest in their knowledge of multiple strategies, while Study 2, who 
began the study knowing fewer strategies, experienced much more substantial gains. 

A somewhat different picture emerged when examining the ease subscale, which assessed 
students’ knowledge of which strategies led to estimates that were the easiest to compute. 
Students’ scores on the ease subscale were comparable at pretest across the two studies, but Study 
1 students’ scores grew substantially from 62% to 89% while Study 2 students’ gains were more 
moderate, from 58% to 72%. For example, one question on this subscale asked students to evaluate 
whether round both or round one was easiest to use for computing an estimate for 27 x 39. (Round 
both, 30 x 40, is easier to mentally compute than round one, 27 x 40.) Study 1 students’ scores on 
this item grew from 67% correct to 91% correct, while Study 2 students’ scores grew only from 
70% correct to 73% correct. The other question on the ease subscale asked students to evaluate 
whether round both or trunc was easiest to use for computing an estimate for 172 x 234. (Trunc, or 
1█ █ x 2█ █, is easier than round both, 170 x 230.) Study 1 students’ scores on this problem grew 
from 59% to 86% correct, and Study 2 students’ scores went up comparably, from 45% to 71%. 
Students in both studies made comparable gains in their recognition of the relative ease of the trunc 
strategy, but Study 1 students made greater strides in their ability to identify the relative ease of 
round one.  

Finally, consider students’ evaluation of which strategies provided more proximal (i.e., closer) 
estimates. Students’ gains from the two studies were quite similar, from 76% to 86% (Study 1) and 
from 56% to 69% (Study 2). Thus, students in both studies made similar strides in their ability to 
evaluate strategies based on which yields the closer estimate. For example, students were asked to 
evaluate (without computing the exact value) whether round both or round one gave the closer 
estimate for 34 x 42 and 9 x 48 (round one is closer for both problems; 92% and 83% of Study 1 
students answered these two questions correctly at posttest, as compared to 74% and 65% of Study 
2 students at posttest) and whether round both or trunc gives a closer estimate for 21 x 39 (round 
both is closer; 86% correct at posttest in Study 1 and 72% correct in Study 2) and 31 x 73 (round 
both and trunc give the same estimate; 96% correct at posttest in Study 1 and 66% correct in Study 
2). While Study 1 students’ performance was higher on all of these items in this subscale, gains 
from pre- to posttest were quite similar for Study 1 and Study 2 students, indicating similar growth 
in students’ ability to think about estimation strategies and proximity. 

Our comparison of students’ scores on the independent measure of flexibility knowledge 
suggests the following with respect to the role of prior knowledge in the development of flexibility. 
First, students with low prior knowledge in Study 2 made the greatest gains in their knowledge of 
multiple strategies. Study 2 students began with relatively little knowledge of strategies other than 
round both, and as a result of the study, increased their knowledge of round both as well as trunc 
and round one. Second, in addition to learning new strategies, Study 2 students also gained an 
appreciation of the relative ease of trunc over round both for some problems. In contrast, Study 1 
students made relatively small gains in their knowledge of new strategies (likely due to a ceiling 
effect), but showed superior performance on all subscales and greater gains on questions relating to 
which strategies were easiest for computing estimates for given problems.  
Flexibility Use at Posttest 
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To further explore the role of prior knowledge in the development of flexibility, we examined 
students’ use of estimation strategies on the whole-number multiplication problems at posttest. 
Below we consider students’ use of multiple strategies, as well as their ability to select the most 
appropriate strategy for a given problem on the posttest. 

Use of multiple strategies. Study 1 students chose to use round both quite frequently on the 
posttest. Recall that 92% of Study 1 students used round both on at least one pretest problem; 
100% of students used this strategy on at least one problem on the posttest. Use of round one on 
the posttest also increased; 51% of students used this strategy on at least one posttest problem. 
Interestingly, use of trunc fell among Study 1 students; while 14% of students used trunc on at 
least one problem at pretest, only 5% did so at posttest. Among Study 2 students, use of round both 
jumped to 77% of students at posttest, from 49% of students at pretest. Similarly, use of round one 
increased to 17% of students, and use of trunc increased to 23% of students. In addition, Study 1 
students were more likely to use multiple strategies on the posttest. 53% of participants used at 
least two of the three target strategies (trunc, round one, round two) on at least one problem on the 
posttest, as compared to only 29% of Study 2 students.  

Choice of appropriate strategies. In addition to use of multiple strategies, we also considered 
whether students switched to a more appropriate strategy on a given problem. Of interest were two 
potential switches that students could have made. 

First, students could have switched from round both to round one on problems where round 
one was more appropriate. On two problems, round one was easier to implement than round both. 
In addition, for problems 1 and 2 in Study 2, round one yields a closer estimate than round both. 
To what extent did students in Studies 1 and 2 who used round both on problems 1 and 2 at pretest 
switch to round one at posttest? For this analysis, we only considered those students who showed 
some fluency with round both at pretest -- those who used this strategy on at least one pretest item 
(92% of Study 1 students and 49% of Study 2 students). Within this subset of participants, 25% of 
Study 1 students switched from round both to round one on problem 1 and/or 2, as compared to 
only 5% of Study 1 students. 

Second, we also investigated whether students switched from round both to trunc on problems 
where trunc was appropriate. In our prior work, we have shown that trunc is easier to implement 
than round both (Star & Rittle-Johnson, in press). We coded whether students switched from round 
both (at pretest) to trunc (at posttest) on problems where trunc was easiest. As above, we only 
considered students who showed some fluency with round both at pretest. Results indicated that 
only 3% of Study 1 students switched from round both to trunc on one or more problems, while 
19% of Study 2 students made this switch. Note that our interpretation of students’ decision to 
switch or not to switch to trunc is complicated by the fact that, while trunc is easier to implement 
in problems 3-6, round both produces the most proximal estimate on problems 4, 5, and 6 (and the 
same estimate as trunc on problem 3). Study 1 students’ reluctance to switch to trunc can be seen 
either as a reflection of these students’ prioritization of proximity goals or their strong preference 
for round both in spite of the greater ease of trunc. 
 

Discussion 
The goal of the present paper was to explore the role of students’ prior knowledge of 

estimation strategies in the development of strategy flexibility. We report the results of two very 
similar studies, conducted with students with quite different prior knowledge profiles. Study 1 
students began with significant fluency with the round both strategy, while Study 2 students had 
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substantially less fluency with round both or with any estimation strategy. Our results indicated 
that prior knowledge did impact the development of flexibility, but in rather complex ways that 
these studies did not fully explicate, as we elaborate below.  

First, there is some evidence that prior knowledge can be a boon to the development of strategy 
flexibility. Students from both studies made comparable gains on the independent measure of 
flexibility, but Study 1 students made greater improvements in their ability to identify the relative 
ease of round one. Although Study 1 students relied heavily on round both at pretest, they also 
showed greater familiarity with round one than did Study 2 students, which likely supported their 
ability to learn the relative merits of round both and round one in terms of ease. These results are 
consistent with our prior work suggesting that learners may need initial familiarity with one 
strategy before they can become flexible with multiple strategies (Rittle-Johnson et al., 2008). In 
addition to these gains in terms of flexibility knowledge, Study 1 students also were superior in 
flexibility use. Study 1 students used a greater diversity of strategies on posttest estimation 
problems, and they were more likely to switch from round both to round one on posttest problems 
1 and 2—problems where round one is the most appropriate strategy.  

However, in other ways, the impact of significant prior knowledge was not as widespread as 
we might have hypothesized. Students with lower prior knowledge made greater gains in their 
knowledge of multiple strategies and made comparable gains in learning the relative merits of the 
trunc strategy in terms of ease and closeness. In addition, Study 2 students were more likely to 
switch strategies from round both to trunc, which we interpret as a choice to optimize strategies 
based on ease of computation.  

These findings have important implications for the assessment of flexibility and for 
interventions designed to promote flexibility. First, our results underscore the value of including 
measures of both knowledge and use in assessing flexibility. Our prior work indicates that 
knowledge develops prior to use (Star & Rittle-Johnson, 2008), suggesting the importance of 
knowledge measures to tap emerging flexibility. Similarly, in the present study, our investigation 
of students’ strategy use showed that Study 1 students used a limited repertoire of strategies for 
solving posttest problems, yet our independent flexibility measures indicated that these students 
did develop sophisticated knowledge about the relative ease and closeness of various estimation 
strategies that was not reflected in their strategy choices.  

Second, when considering the role of prior knowledge in the development of strategy 
flexibility, there are intuitive explanations for how prior knowledge can help or can hinder 
learning. On the one hand, students with high prior knowledge may be reluctant to adopt new 
strategies, given their fluency with (and likely preference for) a small set of known strategies. On 
the other hand, students with minimal prior knowledge may be overloaded by attempts to teach 
multiple strategies (and the pros and cons of each) at the onset of learning. Our results do not fall 
into one or the other side of this issue. Rather, an important take-away is that students’ prior 
knowledge plays an important role in the development of strategy flexibility but in ways that are 
subtle and not completely understood. In particular, prior knowledge did not make students more 
or less willing to learn about or to adopt new strategies, but rather prior knowledge served as a 
filter through which students attend to or failed to attend to strategic information about problem 
solving methods. Study 1 students, who already possessed an easy-to-implement strategy for 
computing estimates, seemed driven to switch because of the proximity appeal of round one, while 
Study 2 students, who did not have an easily executable strategy at pretest, were attracted to the 
ease of execution offered by trunc.  
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In conclusion, our results indicate that prior knowledge plays an important but complex and 
nuanced role in the development of strategy flexibility. Flexibility can and should be an 
instructional goal for all students, but efforts to promote this outcome must carefully consider 
students’ prior knowledge and the ways that such knowledge might promote or hinder students’ 
knowledge of multiple strategies and their ability to select the most appropriate strategy for a given 
problem. 
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In this paper we present a case study where middle school children, working in an after-school 
setting, develop knowledge (a) about their community and (b) about mathematics and use digital 
media to create and share literacy-based and mathematics-based digital stories as community 
service—that is, as a way of sharing knowledge with, and for the benefit of, others outside of 
educational settings. 
 

Introduction 
The role of community in education, and the sharing of knowledge as community service, is 

not a new idea. Educational institutions typically develop programs that encourage school-
community and school-home connections. For example, the Ontario Ministry of Education has 
published booklets such as Helping your Child Learn Math – A Parent’s Guide and Helping your 
Child with Reading and Writing – A Guide for Parents that help make home-school connections. 
Also, all Ontario high school students are required to complete a minimum of 40 hours of 
community involvement activities as part of the requirements for an Ontario Secondary School 
Diploma. In addition, high school students in Ontario can apply two co-operative education 
credits towards their core graduation requirements. However, despite such programs, it is 
probably fair to say that for the most part students see and experience their learning as a school-
based activity, done within and for school, rather than for the purpose of sharing their knowledge 
with or for the benefit of others.  

There are important implications for education if we view knowledge generated in 
educational settings as something to be shared with others in our community: (a) it enhances a 
sense of audience, motivating and giving purpose to student learning; (b) it increases the 
importance of skills needed to communicate with wider audiences; (c) it provides an opportunity 
for students to give voice to the things that concern them; (d) it creates school-community links 
by opening public windows into school learning; (e) it creates self-community links; and (f) it 
creates a setting for a meaningful application of the multimodal broadcasting capacities of digital 
media.  

Theoretical Perspective: Narrative and Agency/Identity 
The case study positions middle school students as community storytellers of personal 

learning and growth, and offers opportunities for them to experience “narrative reconstruction” 
as they reflect on their lives, their learning, their choices, their past experiences and their goals 
for the future (Hull, 2003, p. 232). As Hull points out, “The ability to render one’s world as 
changeable and oneself as an agent able to direct that change is integrally linked to acts of self-
representation through writing” (p. 232). When adolescents are given opportunities to share their 
“identity texts” with peers, family, teachers and the general public through media, they are likely 
to make gains in self-confidence, self-esteem and a sense of community belonging through 
positive feedback (Cummins, Brown & Sayers, 2007). Hull (2003) urges collaboration among 
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educators, researchers, and community organizations to “find space and time to think 
expansively about the interface of literacy, youth culture, multi-media, and identity” (p. 233).  

There is ample research on the role of narrative in the construction of personal agency and 
identity (cf. Ochs & Capps, 2001). Bruner’s (1994) studies of narrative indicate that changes in 
conceptions and representations of self are typically associated with “turning points” in personal 
narratives. Bruner identifies turning points as “thickly agentive … whose construction results in 
increasing the realism and drama of the Self” (p. 50). There is a dialogical relationship between 
narrative and self: to shape our narrative is to shape ourselves, and vice versa. There is also a 
dialogical relationship between narrative/identity and community. Narratives are social artifacts 
and “the narrated self is constructed with and responsive to other people” (Miller & Goodnow, 
1991, p. 172). Stories change depending on the audience, and a personal knowledge story aimed 
for a school-based audience can change when the audience is the wider community. When the 
audience is the community, the narrative becomes more of a public performance. Hull & Katz 
(2006) note “the power of public performance in generating especially intense moments of self-
enactment” (p.47). Digital (unlike oral or solely print-based) stories potentially enhance the 
power of narrative to transform as they can be easily broadcast, creating a stronger sense of 
audience and performance.  

In this research we also consider parallels between the arts and mathematics: between what 
makes for “a favourite book or movie” and what makes for “a favourite math idea or activity”. 
This leads us to look to the performing arts to understand students’ repertoires for organising and 
expressing the mathematical ideas they seek to communicate to one another and to their worlds 
outside of the classroom (Gadanidis & Borba, 2008; Gadanidis, Hughes & Borba, 2008). 
Bauman & Briggs (1990) suggest that digital stories, because they are forms of social interaction, 
are best analyzed from a framework that recognizes the dialectical relationship between 
performance and its wider social context. Hull & Katz (2006) add that “digital stories, because 
they of necessity layer multiple media and modes, complicate our understandings of textual 
performance as it is linked to the development of identity and agency” (p.47).  

It should be noted that the knowledge shared by students is framed as “identity texts” 
(Cummins et al, 2005). That is, they are seen less as impersonal documentaries of knowledge and 
more as personal narratives of experience. The goal is to give students voice and agency in the 
context of community, and thus provide opportunities for students not only to learn subject 
matter but also to explore its and their place in the world around them. Thus, even stories that 
seem to be subject-based, like a new way of understanding a mathematical concept or problem, 
can also be seen as identity texts. Students who engage in developing a conceptual understanding 
of mathematics are also engaging in developing their mathematical identities (who they are and 
what they do when doing mathematics) as well as their view of mathematics (what mathematics 
is and how/why one engages with it). And when students author stories about experience and 
share them with the wider world, they are developing their identities within community.  

 
Methodology 

Setting for the Study   
The case study involved twelve middle school students at the Alderville First Nation 

Learning Centre, which had a lab of 10 desktop computers. Two additional laptops were 
provided by the research team for student use. Photo Story 3, a free download from 
www.microsoft.com, was installed on all computers. 
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The students typically attended a daily afterschool program organized by the Alderville First 
Nation Student Services, from 3:30 to 5:30, where they worked on homework and other 
educational activities. The research team was made up of two researchers and one research 
assistant. At least one of the researchers and the research assistant were present at all sessions. 
Also present at all sessions was one of the teachers from the Alderville First Nation Student 
Services and an educational assistant.  

The twelve students participated in an afterschool program in which activities were designed 
by the research team, consisting of seven two-hour sessions and a culminating public 
performance of their work. During the first four sessions, students learned about and created 
digital stories of (a) various Alderville First Nation themes (like the Black Oak Savannah 
ecological sanctuary or the life of Ojibway marathon runner Fred Simpson) and (b) their 
experiences with rich mathematical tasks. Then students worked for three sessions to write 
poems and song lyrics based on the themes of their digital stories. They also worked with 
Aboriginal recording artists Tracy Bone, J.C. Campbell and Dave Mowat to add melodies to 
their poems and turn them into songs. In the last evening of the program, the students and 
recording artists performed the songs and digital stories for the students’ community, at the 
Alderville Community Centre.  

In this research we purposely involved students in the creation of both digital stories about 
their community and digital stories about their mathematics experiences. We assumed that 
students would have a better sense of story in the context of their community compared to the 
context of mathematics, and we wanted to draw parallels between the two contexts, to help 
students transfer their narrative skills about community to their mathematical storytelling. To 
reinforce this paralleling, we used George Ella Lyon’s “Where I’m from” poem as a model for 
telling personal stories about community and about mathematics.  
Data Collection and Analysis 

Given that the case study involves only seven two-hour sessions with students, this research 
is exploratory in nature. Our general research interest in this case study is to investigate the 
elements that come into play when an educational program orients learning as community 
service and to develop a nascent conceptualization of “learning as community service”. More 
specifically, we are interested in: (a) how community-oriented learning shapes what students 
learn and how they communicate their knowledge, and (b) how the public performances of 
students’ knowledge shape the relationship between the educational institutions and the 
community. 

We used a case study method, which is suitable for collecting in-depth stories of teaching and 
learning. The case study method is also appropriate for studying a ‘bounded system’ (that is, the 
thoughts and actions of participating students or the learning/community connection of a particular 
education setting) so as to understand it as it functions under natural conditions (Stake, 2000). The 
12 students (along with the researchers, teachers, and recording artists) constituted a case. As well, 
individual students, and their digital stories, were considered as individual cases. The analysis was 
qualitative, in keeping with the established practice of in-depth studies of classroom-based learning 
and case studies in general (Stake, 2000). Case study data consisted of (a) field notes, (b) students’ 
writing, (c) interviews with students, (d) interviews with one of the teachers, (e) interviews with 
one of the recording artists, (f) the digital stories created by students, and (g) the lyrics written by 
students. Because of the complex blending of multimodal data elements, we used the digital 
storytelling analysis method of Hull and Katz (2006) of developing a “pictorial and textual 
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representation of those elements” (p.41)—that is, columns of the spoken words from recordings 
juxtaposed with original written text, the images from digital stories, and data from interviews, field 
notes and lyrics. This facilitated the “qualitative analysis of patterns” (p.41). The analytic methods 
included thematic coding (Miles, 1994) and critical discourse analysis (Fairclough, 1995). The data was 
read and coded for major themes and sub-themes across data sources, and the codes were revised and 
expanded as more themes emerged. In the authoring of the digital stories, we were particularly 
interested in moments that might be interpreted as “turning points” (Bruner, 1994) in the 
representation of identity and/or the conceptual understanding of subject-based knowledge. Part of 
the analytic process was to use 
“turning point” moments to 
construct narrative lines, based on 
diverse sources of data (Hull & 
Katz, 2006). Like Hull and Katz 
(2006), who also researched cases 
of digital storytelling, we relied on 
the work of linguistic 
anthropologists Bauman and 
Briggs (1990) and their “agent-
centred” view of verbal 
performance (pp. 67-71), and 
adapted their framework to 
characterize the ways in which 
speakers can establish textual 
authority. A cross case analysis was 
conducted to compare/contrast 
the cases of individual students and 
to compare/contrast digital stories 
about Alderville and about 
mathematics.  

 

Findings and Discussion 
A more complete discussion 

will be provided at the PMENA 
conference. Given the space 
restriction, we limit our 
discussion to a subset of the 
results. We will discuss the case 
study in terms of three themes 
that are evident in the data 
collected and are also key ideas 
in our theoretical approach: 
identity, community and turning 
points.  
 
 

Figure 1. Alderville song. 
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Identity 
Alderville. Aboriginal identity was a theme identified by the Alderville Student Services 

staff. There were significant problems here twenty years ago. The language was lost, there was 
really no tradition and there were a lot of social problems that went along with that. So this 
community has really worked at it. In the last 15 years there has been a real momentum. There is 
a real effort to bring some of that back. And it translates into I think they have a better sense of 
who they are and because of that they want to achieve, not necessarily be a straight A student but 
be proud of who they are. One of the recording artists commented on the students’ sense of 
identity as aboriginal children. 

It educated me. I was never brought up in the culture. I’m just learning myself. So they know 
a lot more than I do. I learned a lot through their lyrics, about things they do in their 
community and how proud they are, and it really brings me a lot of joy and hope for our 
future because they are so proud of who they are because when I was young, the years that I 
was young and in school I didn’t feel as proud.. I was very moved by the kids and how proud 
they are of their community, very proud of it.  

In the song I’m from a place that is peaceful (see Figure 1), the students describe some of the 
Alderville themes we discussed in Session 1: the Black Oak Savanna, the wild rice harvest, the 
cenotaph erected to honour the Alderville soldiers who died in First World War, and the 
marathon runner Fred Simpson. Some of the pictures that students used to create their digital 
stories were part of the historical archive of one of the Alderville councilors. Many of these 
pictures were used to illustrate the themes in the song. Not all of the students were familiar with 
all of these themes, and not all to the same degree.  

I think most of them know about the Black Oak Savanna, that it’s a protected area, and it’s 
important to the community. They wouldn’t be able to tell you what grows there, how big it 
is, all the details but they know something, they have an idea. They all know about the Pow 
Wow, some traditions. Some families get really involved with it. Five of them have outfits 
and they dance the Pow Wow. They have been brought up to know that. About half of them 
are strongly involved with different traditions that are going on in the community. These kids 
would feel quite comfortable talking to you about what the traditions are. Maybe a little less 
about Fred Simpson, they would know a little less about him. On Remembrance Day I lay 
down a wreath on behalf of Student Services, every year since I started working here and a 
lot of the kids would be there, doing the drumming or they are coming with their parents. 
Now the kids from Roseneath would know more, they have a native liaison there, but not all 
the others. So they were learning. They were learning and sharing.  
Mathematics. The authoring of “Where I’m from” digital stories and poems about Alderville 

set the stage for students writing similar poems about mathematics experiences (see Figure 2). 
Students responded well to a mathematics that involved hands-on activities and dramatic 
interpretations of concepts and ideas. In the sum of odd numbers activity, students used linking 
cubes to represent odd numbers as a growing L pattern. The fitting of consecutive Ls to form a 
growing square offered students a visual and tangible representation of the proof that the sum of 
the first N odd numbers in NxN. They used a similar pattern to explore the sums of consecutive 
even numbers. In the spherical geometry activity, they also used balloons to model a sphere and 
used pens to draw lines on the balloons to explore straight and parallel lines on a sphere. 
Students also used drama to communicate some of their ideas. One of the Alderville Student 
Services staff commented: 
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It’s no surprise to me that kids will respond more to hands-on, dramatic interpretations of 
math, as opposed to math out of the textbook. We did none of that but we did a lot of drama, 
using the computers, trying to access math in a different way. So that’s quite interesting. 

Parents reported that students enjoyed the math sessions. “The parents thought that the kids 
seemed like they were really 
enjoying it. They were looking 
forward to it. ‘Oh, my child really 
likes math’. 

The mathematics activities 
also involved problem solving and 
opportunities to explore and 
experience complex mathematics. 
The sum of odd numbers activity, 
which can also be found in upper 
high school mathematics 
(sequences and series), was made 
accessible to middle school 
students through the use of 
concrete materials. The spherical 
geometry activity is one that is 
typically not in the public school 
mathematics curriculum. Although 
we live on a sphere, the geometry 
of school mathematics is typically 
limited to flat surfaces. The 
combination of complex and 
imaginative mathematics offered 
students new ways of looking at 
what mathematics is and what it 
means to do mathematics. One of 
the student services staff noted: 

I think they learned to be open 
to new ideas. I think that’s 
always a good thing. They’re 
receptive to let’s give it a try. I 
like to see that in our kids, 
they’re willing, to give it a 
shot. And they were at least 
willing to look at the idea of 
math in this way. They didn’t 
really question it. They 
showed up, and ‘alright, what 
are we doing tonight?’ 

One of the recording artists 
commented:  

Figure 2. Math song. 
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But I look at it different now. I look at math totally differently. I was looking at one of the 
towels upstairs and they have lines and I was thinking about parallel lines (laughter). It 
makes me look at the world and things differently. 

Community 
When asked what role community service played in the program for students, one of the 

student services staff commented that “I honestly believe that that’s the biggest part of what we 
did.”  

One of the recording artists expressed the opinion that the experience would have a lasting 
effect on the community. “They’ll be talking about this with their friends and their families. And 
they talk about it to other people.”  

In the evening following the 7th and last session of the program, students, along with the 
performance artists, performed their songs for their community at the Alderville Community 
Centre. Videos of their performance are available at http://www.edu.uwo.ca/mpc/alderville.html. 
It should be noted that our initial community service plan was that students would create digital 
stories and share these through the project website. However, our intent to share students’ work 
beyond the classroom setting also meant that we were open to opportunities that emerged to 
share students’ work in other ways. The opportunities that emerged included the following: Dave 
Mowat, who was our local resource for the history of the Alderville First Nation was also a 
recording artist; the research assistant on the project had both a mathematics and a music 
background; we had recently worked with aboriginal recording artist Tracy Bone on another 
project; the Alderville Learning Centre was adjacent to the Alderville Community Centre, which 
had a stage and sound system; and one of the researchers (second author) has a drama 
background.  
Turning Points 
We identified a number of turning points during the course of the project. 
o The performative pull of community oriented learning. As discussed above, our initial plan 

was for students to create digital stories and share these through a website. Our community 
focus led us to unexpected community collaborations that expanded the project’s 
performative orientation. 

o Seeing math differently. The mathematics activities and their integration with the arts help 
shift teachers’, students’ and recording artists’ views of math. This shift is evident in the 
poems and digital stories authored by the students, where mathematics incorporates 
playfulness and imagination. As one of the recording artists commented, “I look at it 
different now. I look at math totally differently.”  

o Strengthening identity. Although the (Alderville or mathematical) themes expressed in the 
poems and songs came from various individuals, the final product was appropriated by all 
students. As one of the recording artists commented, “It educated me. I was very moved by 
the kids and how proud they are of their community, very proud of it.”  

o New relationship for the community. The project created a new relationship between two 
universities and a First Nation community. Past research relationships with the community 
focused on research based on surveys. As one of the teachers commented, “This is something 
different that we haven’t done before. We’ve partnered before but we’ve never had a 
university come in and try that with the kids and it was really a lot of fun. People are sick and 
tired of doing surveys.” 
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o Raised expectations of what students can do. The teachers expressed surprise at both the 
artistic and mathematical ability of students. One teacher commented, “I was surprised with 
the lyrics they came up with … the way they looked at math and music and how they 
incorporated them.” 

 
Looking Ahead 

 The learning as community service focus of the Alderville First Nation project, although 
small in scope, offers some potential for new ideas in mathematics education. The community 
focus, and the community as audience for school learning, has the potential of drawing 
classroom teaching and learning towards performative directions. One question in our minds is 
how the methods of this project might be used in the more structured environments or regular 
classrooms. Towards this end, we are presently using the methods of this project in mathematics 
classrooms in a K-8 elementary school, over a more extended period of time and with seven 
different classrooms. 
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In this research we take the view (as an elementary school teacher noted) that mathematics “can 
be discussed with your family and friends just like you would a favourite book or new movie”. 
Such a view—rather uncommon in our culture, where mathematical ideas are rarely shared or 
discussed beyond the confines of mathematics classrooms or communities of mathematicians—
leads us to consider parallels between the arts (whose aesthetic qualities support social and 
imaginative interactions) and mathematics: between what makes for “a favourite book or 
movie” and what makes for “a favourite math idea or activity.” It also leads us to look to the 
performing arts to understand students’ repertoires for organising and expressing the 
mathematical ideas they seek to communicate to one another and to their world outside of the 
classroom.  

 
Introduction 

When parents ask children “What did you do in math today?” it is not uncommon for 
children to reply: “Nothing” or “I don’t know”, or to mention a topic like integers or geometry, 
without elaborating. To change this situation, we imagine that we would need to work on at least 
two fronts, which we discuss below: (a) mathematics experiences worth talking about, and (b) 
skills for communicating mathematics beyond the classroom. 
Mathematics Worth Talking About 

In our experience in mathematics classrooms, as teachers and as researchers, we have found 
that mathematics activities that have a low floor and a high ceiling often tend to create 
mathematics experiences worth talking about. By a low floor we mean that the mathematics 
knowledge prerequisites for engaging with the activity are kept to a minimum. By a high ceiling 
we mean that the mathematics activities lead to or can be extended to include much more 
complex mathematical ideas and relationships. For example, the L pattern shown in Figure 1 can 
be used as a starting point for exploring the following questions, which (a) range from patterning 
in grade 2 to the study of sequences and series in grade 11, and (b) for the most part can be made 
accessible to younger students using concrete representations (Gadanidis, Hughes & Borba, 
2008): 

• How does the pattern grow, and what would the 10th stage look like? 
• Notice that the first 5 stages fit together to form a 5x5 square. What is interesting about 

this? 
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• If we were to construct the first 10 stages, how many blocks would we need? 
• What is the sum of the first 5 odd numbers? The first 10? The first N? 
• What if we added 1 block to each stage? What changes? 
• If we were to construct the first 10 stages of this new pattern, how many blocks would we 

need? 
• What is the sum of the first 5 even numbers? The first 10? The first N? 

Figure 1. L pattern. 
 
Gadanidis and Borba (2008) have looked at mathematics through a performing arts lens, using the 
performance model by Boorstin (1990) for analyzing movies. Boorstin suggests that we get three 
distinct pleasures from watching a movie, which we will paraphrase to suit our mathematics 
context: (a) the pleasure of experiencing the new, the wonderful and the surprising in mathematics; 
(b) the pleasure of experiencing emotional mathematical moments (either our own, or vicariously, 
those of others); and (c) the visceral pleasure of sensing mathematical beauty. 

The pleasure of experiencing the new, the wonderful and the surprising in mathematics. The L 
pattern activity offers a number of surprises. Isn’t it neat that the pattern also represents the odd 
numbers? Isn’t it neat that the sums of these odd numbers are square numbers, and that these can 
be represented physically as squares? Isn’t it neat that we can also add the odd numbers by pairing 
the first with the last, the second with the second last, and so forth? And this world can grow, by 
imagining variations on the original pattern.  

The pleasure of experiencing emotional mathematical moments (either our own, or vicariously, 
those of others). Students who engage with this activity become excited about the patterns they are 
noticing and share their ideas and their excitement with others. Students may also experience 
moments of frustration or anxiety, or other feelings, and share these feelings as well. One student 
commented, “I felt like I was a lot younger because I haven’t played with these blocks for a very 
long time.” Another said, “I liked this more because I was more challenged than regular math.” We 
can imagine a classroom where emotional moments become visible and valued, making 
mathematics more of a human (thinking + feeling) endeavour.  

The visceral pleasure of sensing mathematical beauty. We recently did the L patterns activity 
with 180 elementary preservice teachers in an auditorium setting (using blocks in small groups). 
When we showed them a digital simulation of the Ls fitting together, there was an audible visceral 
reaction from the teachers (“ooh”, “ah”, and laughter). We witnessed a similar reaction in a fourth-
grade classroom. Zwicky (2003), commenting on this square pattern formed by the Ls—this visual 
proof that the sum of the first N odd numbers is N2—says that such patterns draw our attention, 
and invite us to “Look at things like this” (p. 38). Sinclair (2001) notes that an aesthetic math 
experience often involves a sense of pattern or a sense of fit. 
Communicating Mathematics beyond the Classroom 

Our research objective is to explore the concept of elementary school students as 
“performance mathematicians” (Gadanidis & Borba, 2008; Gadanidis, Hughes & Borba, 2008). 

•  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  
•  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  
•  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  
•  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  
•  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  •  
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Our research questions are: (1) how might classroom mathematical ideas and experiences be 
structured to increase their performative potential? (2) how might (a) performance arts methods 
and (b) digital communication affordances (like the multimodal nature of new media and the 
read/write capabilities of wikis) be used by students for organizing and expressing the 
mathematical ideas they seek to communicate to one another and to the wider world? We intend 
to create a parallel between the classroom focus on performance and the methods and 
methodology of our research, by relying on performance ethnography methods (Denzin, 2003, 
2006; Dicks, Mason, Coffey & Atkinson, 2005; Madison, 2006; McCall, 2000). 

When we see a movie we like or read a book we enjoy, we typically share our experience 
with others. When we do this, we don’t retell the whole story. Rather, we might share what was 
new or fresh about the story, how the plot’s turns might have surprised us, and how the movie or 
book made us feel. In other words, we concisely relate some of the pleasures of the experience 
identified by Boorstin. In our work with students, we aim to focus students’ retelling (or 
performance) of math experiences on the pleasures of (a) the mathematically new, wonderful and 
surprising, (b) their emotional moments, and (c) the sensing of mathematical beauty. 
 

Examples of Math Performances 
The construct of “students as performance mathematicians” is new in mathematics education 

and offers a fresh perspective on what school mathematics might be and how students might 
experience the subject. Some mathematical films do exist (like the 1960’s short films produced 
by filmmaker René Jodoin at the National Film Board of Canada: Spheres (Jodoin, 1969), Dance 
Squared (Jodoin, 1961) and Notes on a Triangle (Jodoin, 1966)) and some mathematical songs 
are used in schools (like Zero, My Hero by Schoolhouse Rock (Schoolhouse Rock, 1973)). There 
do exist popular movies about mathematicians, such as Good Will Hunting and A Beautiful 
Mind; however, these movies are not performances of mathematics but rather narratives of the 
social adventures of mathematicians. Some digital examples of student “artistic” mathematical 
performances can be found on the Web, particularly images of geometry art (typically using 
tessellations), and student-produced mathematical videos that are just starting to appear on the 
Web (on YouTube, for example). For the most part, however, it is fair to say that the idea of 
students creating mathematical performances—digital or otherwise—as a way of communicating 
their ideas within the classroom and to the world beyond is new. In today’s mathematics 
classrooms “mathematical performance” is associated with testing and standards and “digital 
mathematics” is associated with using technology to model mathematical concepts or with 
eLearning, not with students’ aesthetic experiences and artistic expressions of mathematics.  

A recent venue for math performances is the Canada-wide Math Performance Festival 
(available at http://mathfest.ca). Below we briefly describe and discuss three math performances 
submitted to the Festival. 
Little Quad’s Quest 
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Little Quad’s Quest (available at http://www.edu.uwo.ca/mathscene/lq/lq1.html) is a five-
part shadow theatre performance created by a class of fifth-grade students. Little Quad, the 
protagonist, is in search of his identity. All of 
Little Quad’s quadrilateral friends (Square, 
Rectangle, Rhombus and Trapezoid), unlike 
Little Quad, have their own special names.  

How do we find instructional time to help 
students create such performances? Creating a 
performance like Little Quad’s Quest takes 
much longer than ‘covering’ the concept of quadrilaterals in a more typical fashion. However, 
the process of creating such a performance integrates mathematics concepts with language arts, 
visual arts, and drama. The extra time spent is valuable and meaningful instructional time. 
Perhaps more importantly, such settings offer students opportunities to think creatively and 
imaginatively about mathematical concepts. They also afford personal and emotional 
connections to mathematical ideas.  
Measuring the Millimetres to YouMeasuring the Millimetres to You (available at  
http://www.edu.uwo.ca/mathscene/pst/pst5.html) is a 
song written and performed by preservice teachers at 
The University of Western Ontario. In this romantic 
ballad, two friends are saddened because of the great 
distance (100,000 mm) that separates them. Then, 
they realize that 100,000 mm is the same as 10,000 
cm. And, if they divide by 10 and by 10 again, they 
are really not that far apart: only 100 m. 
This song provides insights into the Metric system in 
ways that are humourous, emotional and difficult to forget. 
Now I’m a Trapezoid 

Now I’m a Trapezoid (available at 
http://www.edu.uwo.ca/mathscene/geometry/g
eo1.html) is a song by a triangle that lost her 
head. Saddened by this loss, the triangle 
laments that it’s now a trapezoid. The song is 
one of three songs in a Geometry Idol contest 
setting. The second song is Triangles Rock, 
and the third song is Hexagon. 

A triangle loses its ‘head’ and becomes a 
trapezoid. Does this view of shapes and their 
relationships make a difference, for students, 
for teachers, for you? How might the student who sings the song see triangles and trapezoids 
differently? How might she ‘feel’ differently about these shapes, and about mathematics in 
general? What if the triangle lost all three of its vertices? What might it become? What if the 
triangle was created by cutting vertices off of another shape: what might this shape have been? 

 
Methodology 

Setting 
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The study is, at the time of writing, in progress and involves seven teachers and students in 
grades 2, 5 and 8. The study uses mathematics activities that engage their imagination and 
motivate them to share their learning with others. Starting with the same core mathematical ideas 
(one of which is the L pattern exploration discussed above), teachers work with the project team 
to develop activities suitable for students at the different grade levels (2, 5 and 8). Students are 
provided with models and opportunities to ‘perform’ (communicate) complex mathematical 
ideas in compelling ways, using the Arts (story, drama, poetry, song, and artwork). Some models 
we have used so far include: (a) retelling experiences that students find surprising, (b) 
embedding the core activity in a fairy tale (where the Big Bad Wolf tempts Little Red Riding 
Hood with chocolate bar pieces in the shape of Ls), (c) rewriting George Ella Lyon’s poem 
Where I’m From, using their math experiences as a base to write I’m From Math, and putting 
some of the poems to music to create songs. 
Timeline 

 
Table 1 

Research Plan for January to May of 2009 
2009 DATES DESCRIPTION NOTES 

January Full-day math/planning session  
• Teachers engage in (1) doing mathematics 

and (2) in artistically performing what 
they have learned/experienced 

• Teachers collaboratively plan the first set 
of activities 

 

January-March  Teachers engage students in the first set of 
activities 
• Each activity consist of 3-5 math classes 

(or approximately 3-5 hours of 
mathematics instruction) 

• Students are provided with models and 
opportunities for communicating their 
ideas and knowledge in artistic ways 

The research team will 
observe classroom 
activities and may also 
assist with instruction as 
needed by the teachers. 

End of March Half-day math/planning/reflection session  
• Teachers reflect on classroom experiences 
• Teachers engage in doing more 

mathematics 
• Teachers collaboratively plan the second 

set of activities 

 

March-April Teachers engage students in the second set of 
activities 
• The activities consist of five math classes 

(or approximately 5 hours of mathematics 
instruction) 

• Students are provided with models and 
opportunities for communicating their 

The research team will 
observe classroom 
activities and may also 
assist with instruction as 
needed by the teachers. 
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ideas and knowledge in artistic ways 
May Public performance 

• Students perform their math performances 
during a afternoon where parents and the 
public are invited 

Half-day math/planning/reflection session  
• Teachers reflect on classroom experiences 
• Research team presents preliminary data 

analysis for discussion and feedback 
• Teachers and research team create a 

performance to communicate some of the 
ideas and/or results of the project 

 

 
The research team, in collaboration with the teachers in the study, will design mathematical 

experiences that afford students opportunities to engage imaginatively with mathematics. Such 
mathematics “activities” are treated as drafts, to be adapted for use in each classroom and then 
revised based on teacher/researcher reflection for future use. The culminating student task in 
each activity will be the creation of a mathematical performance that depicts some of the 
mathematical and aesthetic qualities of students’ real or imagined experiences. We are thinking 
about a performance mindset that spends proportionally longer on exploration (called rehearsal 
in theatre) that is not about “getting it right” but about exploring the possibilities of the text, 
stage, setting and characters. This approach to learning borrows from Frye (1988, 1990) whose 
understanding of the aesthetic was located in such considerations as “what if” “let’s pretend” – 
those aspects of the psyche not usually valued at anything but the earliest levels of education. 
The performances will in some cases be created by individual students, in some cases by small 
groups, and in other cases by a whole class. The performances may take the form of a poem, 
reader’s theatre, role play, improvisation, song, drawing or painting, or a combination of some of 
these forms. These live performances will occur in the classes and also at a culminating 
afternoon, where parents and the public will be invited to attend. All performances will be 
videotaped, and some (with student and parental permission) may also be shared publicly 
through the Math Performance Festival website. 

Ethnographic data will be collected through classroom observation and field notes, audio or 
video recording of selected classroom activities, and individual and focus group interviews of 
students and teachers. 

We intend to create a parallel between the classroom focus on performance and the methods 
and methodology of our research, by relying on performance ethnography methods (Denzin, 
2003, 2006; Dicks, Mason, Coffey & Atkinson, 2005; Madison, 2006; McCall, 2000). The 
research team will use content analyses (Berg, 2004) of research data to build up piece by piece 
coherent, data-centred “stories” (Emerson, Fretz & Shaw, 1995). McCall (2000) (building on the 
work of Emerson et al) suggests that in writing an ethnographic performance script, the 
researcher “must read and reread their field notes or transcripts” to “create and elaborate analytic 
themes” and “organize some of these into a coherent story” (p. 427). Our ethnographic 
performances will take either digital form, for example, as video recordings of the performances 
we script, cast and perform, or as multimedia stories using digital storytelling tools like Photo 
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Story or iPhoto, which use zooming and panning on still pictures accompanied by narration 
and/or music. These ethnographic performances will then be shared with teachers and students, 
thus returning these “stories” to the classrooms from which they emerged (McCall, 2000; 
Denzin, 2003). We also intend to post our performance ethnography scripts in the project wiki 
and encourage teachers and students to edit these scripts to add their own interpretations of 
events—to add their own voices, perspectives and stories, leading to the creation of new digital 
performances. We will also invite teachers and students to become cast members in these 
performances. 

An ethnographic approach is appropriate for our research as we seek to enter into “close and 
relatively prolonged interaction with people … in their everyday (classroom) lives” (Tedlock, 
2000, p. 456) in order to investigate a community of mathematical performance in each of the 
schools as well as their relationships of participants across schools, and over a three-year period. 
The reliance on performance for (a) students to communicate mathematical ideas and (b) 
researchers to communicate research ideas about mathematics teaching and learning in a 
performance-rich setting provides a way of communicating about mathematics and mathematics 
research more publicly, bringing mathematics to the world beyond the classroom and 
mathematics education research beyond the scholarly community. This paralleling of methods of 
doing and researching mathematics will also serve to build a performance community of 
students, teachers and researchers. In this sense, the researchers are immersing themselves and 
their methods in the performance tools and methods of the subjects of their study.  
 

Findings and Discussion 
The study is currently in progress and some of the classroom activities are underway. 

However, we do not have sufficient data on which to report at this stage. The project will be 
completed by June 2009 and we will be able to provide details of the findings at the 2009 
PMENA Conference. 
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This paper describes preliminary analysis from data obtained during the common planning time 
for a team of 7th grade mathematics teachers. The focus of the planning time was primarily about 
what the teachers were going to teach that day or in the near future. Later in the semester we 
began to see changes in this focus towards discussions about tasks, students, and activities that 
would best suit the needs of various groups of students.  
 

Curriculum standards are sweeping across the education landscape (Sandholtz, Ogawa, & 
Scribner, 2004). In the last two decades, state level interventions have encouraged the adoption of 
standards (Marzano & Kendall, 1997; Ravitch, 1996; Tucker & Codding, 2001), due to federal 
mandates such as No Child Left Behind (2001). Most states have launched some form of standards-
based instruction with the expectation that the reform would improve student achievement and 
equality of educational opportunity (Berger, 2000; Buttram & Waters, 1997; Sirotnik & Kimball, 
1999; Sutton & Krueger, 1997). According to Pappano (2007) teachers need collaboration to help 
them implement standards-based instruction. 

Teacher collaboration is a primary factor in teachers’ ability to implement change in their 
instruction towards more effective pedagogical strategies (Briscoe & Peters, 1997; Gajda & 
Koliba, 2008). Collaboration serves as a catalyst to teachers’ abilities to reflect on their practice, 
is vital to continuous teacher learning (Riley, 2001), helps teachers find the courage to take risks 
in their practice through developing and providing new learning experiences for their students, 
and fosters growth in teachers’ pedagogical and content knowledge (Briscoe & Peters, 1997). 
These differences caused by increased collaboration aid teachers in working towards more 
inquiry-based, or standards-based, instruction. 

It is important for researchers to understand that collaboration is necessary but it alone is not 
sufficient for teacher change and learning (Briscoe & Peters, 1997). Collaboration can certainly 
help facilitate teacher change, but to create an environment that is conducive to change, teachers’ 
individual commitment to change is equally important (Briscoe & Peters, 1997). Teacher 
collaboration should include active learning in which teachers engage in activities such as 
observing other classes, collaborative planning, and reviewing student work together (Garet, 
Porter, Desimone, Birman, & Yoon, 2001). These characteristics have a positive relationship “to 
changes in teachers’ knowledge and skills and changes in practice” (Graham, 2007, p. 6).  

Principals and other school administrators have tried to promote collaboration by giving 
teachers additional time to plan together during school hours (DuFour, 2004). However, most of 
the research on common planning time has focused on elementary, special education, language 
arts, and science teachers. However, mathematics teachers are also increasing their use of 
common planning. This paper describes preliminary analysis of a research study that answers the 
question: What do 7th grade mathematics teachers focus on when they plan collaboratively? 
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Relevant Literature 
Several researchers have examined the effectiveness of collaboration, including common 

planning (Briscoe & Peters, 1997; Graham, 2007; Shachar & Shmuelevitz, 1997; Tonso, Jung, & 
Colombo, 2006). This planning should have a focus on students and student learning in order to 
be successful (Tonso, Jung, & Colombo, 2006). One way to make sure that planning is focused 
on student learning is to use specific techniques to engage teachers in reflection of their practice. 
Smith (2001) uses a reflective teaching cycle in her professional development with teachers. This 
cycle includes building teacher knowledge, planning a lesson, observing implementation, and 
reflecting on the lesson. Briscoe and Peters (1997) describe collaboration that shapes teacher 
change using three assertions that resemble Smith’s approach. The first assertion, similar to 
building knowledge and planning a lesson, is brainstorming. This is an important process that 
assists teachers to learn content and pedagogical knowledge from one another. Assertion two, 
like observing, provides teachers with the knowledge that a colleague would be there to try 
similar activities and discuss successes and failures provided teachers with courage to take risks 
they would not otherwise have taken. Finally, the third assertion, like reflection, is that teachers 
should participate in meetings that provide a valuable opportunity to consider what worked and 
what did not. These experiences rejuvenated teachers and encouraged them to continue to use 
problem-centered activities (Briscoe & Peters, 1997). 

Shachar and Shmuelevitz (1997) also use a method of collaboration similar to the reflective 
teaching cycle. In their research, teachers engaged “in cooperative planning of lessons, 
implementation of plans by one teacher in the group while the others made systematic 
observations, followed by a feedback session based on the observations made during the lesson” 
(Shachar & Shmuelevitz, 1997, p. 58). The researchers found that the teachers who reported 
effective collaboration had a higher level of self-efficacy and efficacy in their ability to promote 
students’ social relations in the classroom. 

 
Conceptual Framework 

Brown, Arbaugh, Allen, and Koe (2000) identified three ways teachers address issues related to 
mathematics content during common planning time: (1) Scope and Sequence; (2) Talk about 
Tasks; and (3) Working through Tasks. Scope and Sequence is the time teachers spend discussing 
mathematics topics taught and the order in which they are taught. Talking about Tasks refers to the 
time teachers spend discussing specific tasks or activities that were or would be used in instruction. 
Finally, Working through Tasks is the time teachers spend actually working through a task as a 
student would. The study reported that teachers spent the majority of their time taking about tasks, 
describing and reflecting upon ones they had already used including a focus on student difficulties 
with the tasks. The teachers spent a moderate amount of time discussing past and future issues of 
scope and sequence and a minimal amount of time working through tasks. When the teachers did 
focus on working through tasks, a mathematics educator initiated and led the conversation.  

 
Methodology 

The research is being conducted in the context of Project ISMAC (Improving Students’ 
Mathematical Achievement through a Professional Learning Community), a school-based 
professional development project designed to increase teachers’ mathematical content and 
pedagogical knowledge, while building a mathematics education community among the entire 
mathematics department at College Middle School, one mathematics educator, and two graduate 
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students. The project includes professional development workshops, the facilitation of weekly 
grade-level planning meetings, demonstration lessons, and classroom observations. This paper 
focuses on work with a team of 7th grade mathematics teachers during their weekly grade-level 
planning meetings. 

College Middle School is a small urban school enrolling approximately 640 students. In 7th 
grade, there are two math teachers, Ms. Bell and Mr. Williams, and one special education 
teacher, Mr. Sanders. The special education teacher supports a classroom teacher during two 
periods and independently teaches one mathematics class with six students. The classroom 
teachers instruct five mathematics classes of 20 – 25 students and are provided with one period 
for planning. Common planning of mathematics occurs on Wednesday. 
 During the 2008-2009 school year, we facilitated 14 planning and collaborative meetings. 
During the meetings we wrote field notes and audio-recorded the conversations. A common set 
of field notes constituted the data for this report. We used the categories established by Brown et. 
al. (2000) to initially organize the data. 

 
Findings 

There are many topics this team of 7th grade mathematics teachers talked about during 
collaborative planning. They talked about non-planning as well as planning topics. Non-planning 
topics include professional growth or concerns, expectations for students, and classroom 
management and students issues. What follows are the planning topics they discussed using 
Brown et. al. (2000) three categories: (1) scope and sequence, (2) talking about tasks, and (3) 
working through tasks. 
Scope and Sequence 

The scope and sequence discussions were typically teacher initiated and dominated the focus 
of most meetings. Teachers focused attention on two main topics: pacing and presentation of the 
lesson. The teachers would concentrate their efforts on unit pacing and what they would be 
teaching that day. These discussions were based on the state unit previews and curriculum maps, 
what topics would be on the next district assessment, and what was in their instructional 
materials, i.e. book, unit, and page number. On at least two occasions, one of the teachers 
expressed anxiety over thinking too far into the future because she may forget what we 
discussed. 

The teachers were concerned about how to preview lessons, use mathematical reflections, 
modify tasks, and talk about vocabulary. They concentrated on gaps in student knowledge, 
questioning, and what mathematical procedures and methods would be the most effective. 
However, these comments were rarely supported by rigorous observations of student thinking. 
Instead, the teachers defended their ideas by expressing opinions about how the students were 
feeling or why they were not succeeding on the tasks and assessments. 
Talking about Tasks 

Mathematical tasks are defined as mathematics problems or activities that students will 
engage in during a lesson. When the teachers focused on mathematical tasks or activities, it was 
generally to talk about what they would be using for their lessons that day or week. They would 
only discuss how to use tasks after we prompted them. In only one case did a teacher talk about a 
task he completed with his class. 

In the beginning of the fall semester, the teachers would show what they had found from 
instructional resources or had been given from other teachers. They also relied on the researchers 
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as additional sources for classroom activities. Their discussions did not include questions about 
the mathematical goals of the tasks, how the students would approach the task, what the students 
would have problems with, or what questions the teachers could use to support student learning. 
In the beginning of the semester, the only time the teachers spoke about these things was when 
one of the researchers introduced them into the dialogue. As time progressed, the teachers began 
to take on more responsibility for these types of discussions. 

The two classroom teachers, Ms. Bell and Mr. Williams each started approaching the 
mathematical tasks in different ways. In September, Ms. Bell talked about her warm up problems 
by saying what they were and what she would tell the students. By November, she spoke about 
what her warm up problems by not only showing what they were, but how she expected her 
students to use different models to solve the problems. In the beginning, Mr. Williams was using 
tasks from other teachers or getting suggestions and lesson plans from the researchers. By mid-
October, Mr. Williams was bringing his own ideas to the meetings. He had begun to read his 
instructional materials and think about what activities would be most appropriate for his students. 
However, the researchers still worked to press Mr. Williams on the mathematical goals of the 
tasks to help clarify the content, and to think about appropriate questioning and student thinking. 
Working through Tasks 

There was only one instance of the teachers working through tasks. This was prompted by 
the district secondary math coach as she previewed an upcoming unit on Geometric 
constructions. The mathematics coach wanted the teachers to explore the constructions as a 
student would. Unfortunately, Mr. Williams and Mr. Sanders were more concerned with finding 
the answer using procedures and having the necessary tools to teach the lesson. In contrast, Ms. 
Bell tried to work through the investigation, but we ran out of time. It was unclear if this session 
was really about working through the task as a student would, but it was the closest we could 
find in this category. 

 
Discussion 

The research on teacher collaboration suggests that when teachers are provided with 
opportunities to plan and review student work together they are more likely to deepen their 
content knowledge and change pedagogical practices. In our study, the teachers used their 
common planning time to foster collaboration and learning. Although we used the categories 
developed by Brown and her colleagues (2000), our findings differed in several ways. 

We found that teachers spent most of their planning time talking about scope and sequence in 
general, and what they were going to teach in particular. The teachers were very concerned about 
the pacing, the sequence of contents, and less interested in choosing inquiry-based activities. 
This concern may be due to pressures from the state and district for the school to make Adequate 
Yearly Progress (NCLB, 2001) – something the school has not met in the last six years. As the 
district continues to push the use of a mandatory pacing guide, teachers are less inclined to 
consider student thinking and using inquiry-based activities because these decisions may not 
align with mandated materials. 

Whereas Brown et al (2000) reported teachers focusing on the past, present, and future, our 
data shows the common planning focus very much in the present. The teachers did not spend 
time reflecting on past lessons or tasks to assess their students’ understanding of the material or 
to think about possible changes that would make the activities more successful in the future. 
Research says that effective collaboration should focus on student thinking and learning 
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(Pappano, 2007; Tonso, Jung, & Colombo, 2006). Ms. Bell and Mr. Williams chose 
mathematical topics and tasks based on state and district resources. They did not work through 
the tasks to determine the level of difficulty, the appropriateness, or the potential problems the 
activities could cause for their students. Similar to Brown et al’s (2000) observations, the only 
time the teachers talked about how the tasks would be used and how their students would react 
was when a researcher asked them. Otherwise, the teachers were trying to figure out what they 
considered to be the best way to present the material instead of starting from student thinking to 
figure out how to build on their students’ knowledge and experience to facilitate learning. 

We are starting to see changes in the teachers’ focus during common planning time. This was 
accomplished in part through our facilitation of deeper discussions as we asked teachers to 
predict what their students would struggle with and why. They are realizing that by focusing 
more on student thinking, they can stay true to the district guides and textbook. They are also 
working to modify mathematical tasks to best suit their classes’ needs, but these observations 
remain largely about groups of students instead of individuals. Thus, teachers can make more 
progress towards improving instruction by considering particular student’s thinking when 
planning. 

Teachers may need support in learning how to effectively use common planning time, and 
one way to do this is to have a facilitator present who can ask questions, probe the teachers 
thinking, and lead them into talking about tasks and doing tasks. We will conduct further 
research to understand our role in this process and how we may best support the teachers in 
focusing their common planning time on matters that will more directly impact their students’ 
learning. Further research also needs to be done to understand the depth of teacher change and 
their movement towards discussions about tasks and working through tasks.  
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TYPES OF REPRESENTATIONS VALUED IN A HONG KONG EIGHTH-GRADE 
MATHEMATICS CLASSROOM 
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Background 
The significance of linking and translating among multiple representations (e.g symbolic, 

graphical, numerical, and matrix) has been paid a great deal of attention over the past few 
decades because this mathematical practice enables students to look at different facets of 
intricate mathematical concepts in depth (Arcavi, 1995; Keller & Hirsch, 1998; Knuth, 2000).  

In this study, data for one Hong Kong classroom, which is a subset of data collected as part 
of the Learner’s Perspective Study (LPS) (Clarke, Keitel, & Shimizu, 2006), will be analyzed to 
examine how different types of representations can be practiced in the classroom. Specifically, I 
will analyze the data to address the following questions: 1) how does the teacher employ 
different types of representations related to systems of linear equations when problem solving 
within different contexts; and 2) what affect does teacher-preference for one type of 
representation have on students’ choices to make use of different representations in problem 
solving?  

Methodology 
A comparative case study will be employed during the Spring of 2009 to explore how a 

teacher utilizes different types of representations in varying problem contexts and how this 
practice influences students’ choice of representations in solving systems of linear equations. 
Eleven consecutive lesson transcripts will be examined and a coding scheme will be developed 
to specifically identify instances of the following: (a) different type of representations being 
used, (b) evidence of students and/or the teacher connecting and translating among multiple 
representations, and (c) different problem contexts involved in the classroom. In addition, five 
different student post-lesson interviews and three interviews with the teacher will be analyzed in 
terms of which types of representations are viewed as important for understanding concepts.  

 
Analysis and Findings 

Analysis will provide information about the impact of a teacher’s portrait of representation 
on students’ understanding of mathematical concepts. This study will provide useful implications 
for teachers and researchers because, although Hong Kong classroom culture may differ from 
that in the U.S., the practices can be employed as catalysts for discussion and reflection on the 
practices of the U.S. classrooms and the values that underlie them (c.f., Clarke et al., 2006). 
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In this paper we present findings across multiple data sources of how young learners (ages 8-12) 
often interpret probability distributions within the context of a probability microworld 
environment. We provide a brief description of the software, followed by details about several 
research observations made in multiple investigations of student explorations with this 
probability simulation package. The paper concludes with a discussion of a next generation 
innovation for representing a theoretical probability distribution in the software. 
 

Introductory probability lessons typically attempt to build from at least one of two primary 
student intuitions: 1) the concept of equiprobable outcomes, 2) and the law of large numbers 
(Batanero, Henry, & Parzysz, 2005). Breaking sample spaces into equiprobable outcomes and 
viewing the probability of an event as a part-to-whole proportion is the primary paradigm known 
as the classical approach. This approach does not apply well to inherently non-uniform or 
continuous situations, and the combinatorial techniques can sometimes be difficult for young 
learners (see Jones, Langrall, & Mooney, 2007 for synthesis of research on student’s 
understanding of sample spaces via combinatorial reasoning). In contrast, the frequentist 
approach appeals to the law of large numbers by describing the probability of an event as being a 
limiting proportion of a large number of quasi-identical trials. With access to more advanced 
technologies, teachers are encouraged to use an empirical or frequentist introduction to 
probability through computer simulations (e.g., Batanero, Henry, & Parzysz, 2005; Jones et al, 
2007). This approach gives little guidance for neither interpreting probability for a single or 
small numbers of trials, nor few guarantees for relative frequencies in the long run. 

The pseudorandom number generators in technology tools use a function dependent on a 
defined distribution as the basis for its input to generate subsequent “random” outputs. Thus, in a 
technology environment, students can model probabilistic situations based on assumptions about 
a theoretical distribution, simulate an experiment to generate a large amount of data, and 
manipulate and represent the data in various ways that would be nearly impossible to do within 
the time constraints of school curriculum and instruction. Thus, technology offers a rich medium 
for designing tools and studying students’ reasoning about theoretical probability distributions as 
well as empirical distributions from simulated data, and many researchers have designed various 
software environments and studied students’ learning of probability. Several of these researchers 
have documented how students are able to make connections between distributions of data from 
a simulation and the theoretical distribution described in the model with particular attention to 
the effect of the number of trials (e.g., Abrahamson & Wilensky, 2007; Konold, Harradine, & 
Kazak, 2007; Pratt 2000; Stohl & Tarr, 2002). 

In this paper, we are focusing on the specific designs used in Probability Explorer and, in 
accord with suggestions from Clements (2007) concerning iterative curricula and tool design 
research, we are taking a retrospective examination across several studies. We are specifically 
interested in how students’ have interpreted theoretical probability distributions within 
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simulation environments. Others have used computer tools to examine students’ thinking about 
probability distributions in two-stage experiments or compound events that relied on 
combinatorial reasoning (e.g., Kazak, 2006; Abrahamson & Wilensky, 2007; Konold et al, 
2007). Our focus is thus on students’ thinking about a probability distribution with one-stage 
experiments or simple events. In such contexts, how do students interpret probability 
distributions when using Probability Explorer? 

 
Modeling a Theoretical Probability Distribution in Probability Explorer 

The current version of Probability Explorer (PE, Stohl, 2002, v.2.01) was a result of prior 
iterative research and design studies (Drier, 2000a, 2000b, 2001; Stohl & Tarr, 2002). PE is 
designed to allow students to explore the numerical representations of an underlying probability 
distribution as well as the numerical and graphical representations of the distribution of results 
from repeated trials (Drier, 2000a, 2001). A probability distribution is currently represented in 
PE with a finite set of outcomes, each of which has an integer “weight”. Various numerical 
representations of this distribution can be accessed through a “Weight Tool” that allows students 
to examine and create distributions that build from part-to-part and part-to-whole reasoning (see 
Figure 1). Traditional scenarios of fair coins, dice, and bag of marbles are easily represented; 
bias coins and dice and several real world scenarios (such as the weather) can also be 
represented. To conduct a simulation, students decide the possible outcomes for a simple 
experiment, how many of these to combine into a compound experiment (1, 2, or 3), the number 
of trials to conduct, how to arrange data, and which graphical or numerical representations to 
view for analysis (Figure 1). In addition, all data representations update dynamically after each 
trial to facilitate students analyzing data during a simulation, rather than only viewing 
representations of data in an aggregate static form (Drier, 2000a). 

 

 
Figure 1. Screenshot of probability distribution in Weight Tool  

and empirical distribution from sample of 50 trials. 
  

As an experiment is being defined, the probability distribution is stored, and can be altered, 
through a Weight Tool (Figure 1). The metaphor of “weight” was used to help students understand 
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the process of assigning probabilities to an outcome. “Heavier” outcomes are more likely to occur, 
while “lighter” outcomes are less likely to occur. Weight is measured in units of whole numbers. 
To facilitate the instantiation of the “weighting” process, students can click on an object in the 
Weight Tool to increase its weight. Each click corresponds to an increase of one in the weight. By 
default, students view the distribution of weights as a count. This view of the distribution will 
allow them to think about the part-to-part relationship between the outcomes. This level of thinking 
is also aligned with children’s early fractional thinking when they only consider the “parts” of a 
fraction (numerator) rather than the “part” in relationship to its “whole” (denominator). A part-to-
part display is also similar to the concept of odds and can be useful for distinguishing between the 
odds and probability of an event. Because theoretical probabilities rely on both “part” and “whole,” 
the weights can be displayed with fractions and percents.  

Exploring Probability Distributions 
In several prior and on-going studies with students ages 8-14 (e.g., Drier, 2000a, 2000b; 

Stohl & Tarr 2002; Tarr, Lee, & Rider, 2006; Weber et al, 2008) it has been observed that many 
students use similar approaches to interpret the probability distribution. In each of these studies, 
students were working in small groups (2-3 students per computer) with Probability Explorer. 
Students’ interactions with the software and each other in the primary studies were videotaped 
and analyzed for critical events (Powell, Francisco, & Maher, 2003). A constant comparative 
method (Strauss & Corbin, 1990) was then utilized to look for patterns in critical events within 
the individual studies, followed by an interpretation cycle across the different studies (Lesh & 
Lehrer, 2000). Each example presented represents similar activities observed across studies. 
What is the Role of a Probability Distribution?  

In the current design of PE, most tasks in which students initially design an experiment 
involve an equiprobable distribution (e.g., fair coin, fair die, choosing up to 8 possible 
outcomes), in which the Weight Tool defaults to assigning Weights of 1 to each outcome. The 
most common ways that students interpret an equiprobable distribution is to state that the 
chances are “50-50”, even when there are more than two equiprobable outcomes. When pressed 
on this interpretation, many students use language such as “no difference”, or “equally likely” or 
“all fair” or “anything can happen”. These vague expressions seem to indicate their awareness of 
equal probabilities but give no real indication of how they perceive the role of a distribution in a 
simulation. Thus, it is important to consider ways in which students interpret distributions in the 
context of a simulation of equiprobable as well as nonequiprobable distributions. Two common 
interpretations have been found to be prevalent: 

1) Students often imagine a hypothetical experiment where the sample size is equal to the 
total weight and they explain that the empirical distribution should be equal, or almost equal, 
to the assigned weights. For example, Carmella (age 9) designed an experiment with two 
equiprobable outcomes, the sun and the rain.  

Carmella:  It means that if you were to press this [points to the “run” button] twice, then 
one of them would be the sun and one of them would be the rain, most likely. 

Teacher:  Most likely. Okay and why is that most likely? 
Carmella:  Because the weight is one and one. And then the total weight would be two. 

And one is divided, and two is divided into one. And that's most likely 
because there is no guarantee. 
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2) Students often describe the weights in terms of an imaginary box or bucket filled with the 
number of each items equal to each assigned weight. For example, when Jasmine (age 9) 
designed a weather situation where it would be twice as likely to be sunny than to rain, after a lot 
of struggles, she assigned 24 to “lightening” and 48 to “sun.”  

Teacher:  48 and 24. So what do these numbers mean here? 48 over 72? 
Jasmine:  Forty-eight over 72 …Oh, there are 72 suns and lightening bolts put in the 

box. Forty-eight of them are suns. Twenty-four of them are lightening bolts. 
And children put in that many because they think out of 72 days … there are 
going to be 48 sunny days and 24 thundering days. 

Of course Jasmine also used the first strategy to apply the distribution to an imagined empirical 
situation. Neither of these strategies is surprising, as it is common for students to describe the 
probability of an event in both ways, the first representing a typical empirical probability 
interpretation, and the second a classical counting approach to computing probability.  

In many studies, when conducting a simulation where a total weight is known from the 
Weight Tool or suggested from the task context (e.g. knowing there are n marbles in a bag but 
not the exact distribution of colors of marbles), students gravitate towards using the total weight 
(or n) for an initial sample size. Then, when these same students are conducting simulations with 
a hidden Weight Tool and the experiment suggests no integer weights or a total weight (e.g., 
many fish in a pond), students often are faced with a dilemma and do not know what sample size 
to choose for their experimentation. At this point a teacher or peer typically has to tell them they 
need to choose a sample size, or one is suggested. 

Students readily accept a strong tie between the Weight Tool and trial results. This is a strong 
start in forming intuitions about the connections between the theoretical distribution and 
empirical data. Students are not surprised by some variation between samples and their 
expectations based on the Weight Tool. However, a big question is what tolerance do they have 
for this variation? How do they form intuitions about this variability? In fact, in many studies, 
observing surprising variations provoked students’ playful exploration (see Lee, 2005). 

A key lesson learned is that the integer values in the Weight Tool are highly suggestive to 
students, both in interpretation and sample size choice for running a simulation. And it may be 
these interpretations that drive student expectations for a rather close match between the 
empirical data and the distribution of weights. 
Modeling Situations with the Weight Tool 

When modeling a situation, it is not uncommon to observe students using an additive 
approach to create an equivalence relation of different sets of weights for a situation. For 
example, if given a real bag of marbles with 4 red and 6 green, students would initially believe 
that weights of 1 and 3 could be used in PE to model this situation since 6-4 = 3-1. As students 
gain more experience or are old enough to readily apply multiplicative reasoning, they will 
correctly use weights proportional to the context or to a different set of weights. In addition, 
when asked to create an equivalent experiment including setting a new Weight Tool distribution 
using weights different from a previous experiment, students will often alter the order in which 
possible outcomes are entered in the Weight Tool but correctly maintain the proportionality.  

Of real interest is that regardless of a students’ maturity in weight equivalence reasoning, 
they appear to expect that equivalent distributions should give similar empirical results. Students 
often realize after collecting empirical data that their “equivalent” weights designed with additive 
reasoning do not correctly model the context. For example, Brandon and Manuel (age 11) used 
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the Weight Tool to create a model (Pink: 4, Yellow: 2, Blue: 4) for a spinner with pink and blue 
sectors each 40% and the yellow sector of 20%. They subsequently ran several trials to collect 
data from their spinner experiment, used the pie graph, decimals and percentsto analyze data and 
test the “goodness” of their model. They most often ran multiple sets of 100 trials and 
occasionally a larger number of trials. After Brandon and Manuel were convinced that their 4:2:4 
model was accurate, a teacher challenged them to design a model of the spinner using a total 
weight of 50. Manuel typed in 20:10:20 in the Weight Tool. Brandon claimed, “that’s not right” 
and Manuel said, “I bet you a billion dollars it is.” The teacher–researcher asked Manuel to 
convince Brandon that 20:10:20 could be used to model the spinner. Manuel struggled to explain 
how the weight model was in proportion to the original weights of 4:2:4 or the spinner regions. 
Brandon decided to run simulations in PE to “see if it still comes close, as long as we have the 
same percentages.” He first ran 100 trials with the pie graph and data table open and after 60 
trials said, “That looks pretty right.” When the 100 trials were complete [showing a 34:23:43 
distribution] he said, “Okay, that’s right.” Brandon continued to run sets of 50 and 100 trials and 
compare percentages of the theoretical distribution in the Weight Tool with the empirical data 
shown in the pie graph and data table. Brandon ran several sets of 50 and 100 trials before he 
was convinced that the empirical data supported the weights of 20:10:20 to model the spinner. 

A key lesson learned is that students seek relatively stable and similar repeated empirical 
results, in graphical and numerical form, as a means of comparing the goodness of a model of a 
probability distribution and for comparing the equivalence of models.  
What Does a Weight of Zero Do?  

Since the Weight Tool uses whole numbers to model a distribution, students are often faced 
with situations when zero is used. Some students seem to be able to connect this with empirical 
results where that outcome does not, or could not occur. For example, Jasmine had designed an 
experiment with four different icons (tails, circle, hexagon, volleyball) with weights of 1. When 
asked if they each had the same chance, she used the Weight Tool to illustrate her thinking.  

Jasmine:  They each have one. But they wouldn’t have the same chance if someone did [she 
changed the 1 under the tails to a 0] that. Then there would never be any of those 
[tails]. Or how about this? [she changed the zero under tails to be a two] now it’s 
more likely to get the tails because there are two out of five. But there’s only one 
circle, one hexagon, one volleyball out of five. 

However, many students do not initially interpret a weight of zero as meaning the associated 
outcome is absolutely impossible, just highly unlikely. These students willingly run relatively 
large samples in search of this outcome occurring and are surprised when it does not happen. For 
example, Dean and Lydia (8 years old) were modeling a situation where they were choosing 
whether to play soccer or baseball. When asked to design the chances so they were certain to 
play soccer no matter how many times they ran the experiment, they gave the soccer ball a 
weight of 12 and the baseball a weight of 0. Looking over at their screen, Jon turned to his 
computer and used weights of 19 and 0. When asked if the different computers would give 
different results since they used different weights, Jon thought his weight of 19 made him “more 
certain” to get a soccer ball than the other computer. Dean promptly said “it doesn’t matter since 
we both gave baseball 0.” After 100 trials and all soccer balls, Lydia was surprised and then, 
after a pause, noted “it doesn’t matter what number you use as long as you give it all to the 
soccer ball.” Similarly, Amanda thought if she used one and zero as the weights for heads and 
tails in a coin toss, there would be more heads, but that a “few tails” could occur. She ran a 
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simulation with these weights and after about 400 trials decided tails would not occur because 
“it’s like there are none in the bucket.”  

Some of the students’ initial interpretations of a weight of 0 demonstrate that the number 
zero itself may be too abstract to interpret in a meaningful way. One possible interpretation is 
that students think that the mere listing of the outcome in the Weight Tool asserts its possibility. 
But how is this possibility coordinated with a weight of zero? What if students are envisioning 
the weights as the “usual” distribution of outcomes in a sample of size equal to the total weight, 
but being random means, to them, that there is some variation in these sets. It is in these 
variations where any outcome listed in the Weight Tool can occur. So a zero weight may be 
interpreted as the outcome not occurring in the “usual” sample, but the mere listing of the 
outcome makes it a candidate for appearance in the random “errors”. Note that this would mean 
a subtle but real separation of probability and variation. 

It is also worth noting that when building the distribution in the Weight Tool via placing 
marbles in a bag, students have never been observed in believing, say, a yellow marble will 
possibly occur if they do not place a yellow marble in the bag, even though a yellow marble is 
listed with a zero probability in the Weight Tool after construction. So whatever students are 
thinking, it seems to change if they construct weights via a more physical representation. 

A key lesson learned is that a weight of zero is not directly interpreted as an impossible 
outcome, although a physical representation (bag of marbles) seems to eliminate this difficulty. 
In addition, the expectation that an outcome with zero as a weight can occur with a small chance 
may be related to students’ imagination, and expectation, of a hypothetical experiment with 
results similar, but not exactly, like a probability distribution.  

 
Reflections on Design Improvements for Modeling a Probability Distribution 

The results from the various studies using PE can inform the next iterative cycle of design. 
Specifically, what Weight Tool redesigns may better help students coordinate representations of 
the probability distribution with those of the empirical results? The first response may be to keep 
the Weight Tool essentially the same, but to add on the ability to view the distribution in the 
same bar or pie chart as is available for the empirical results. Being able to watch a static pie 
chart of the theoretical distribution beside the wiggly, slowly stabilizing pie chart of results from 
a running simulation would probably prove to be quite useful to a student in solidifying 
connections between the two via some governing law of large numbers. However, students’ 
interpretations may be artifacts of the design of the Weight Tool using whole number weights. 

Since the bag of marbles has shown promise in being a powerful metaphor, we would like to 
draw from the strengths of that, but we want students to move beyond (or avoid altogether) a 
total weight approach to their experimentation. Thus, we would need so many marbles that 
counting the total would be impossible, even as we maintain the appropriate ratios of subset 
cardinalities. Not only would this approach hopefully discourage the thought that a particular 
sample size is optimal, but it may even suggest the desirability of a large sample size.  

The current Weight Tool was designed based on research of students’ tendency to relate 
probability in terms of part-to-part relationships rather than part-to-whole. Thus, an initial 
conjecture for the design was to have weights displayed and entered in part-to-part format. While 
that early design was built to help students where they may be starting, we also need to consider 
a design for the Weight Tool that is robust enough to lead the students where they are going—
inferential statistics. An issue of particular importance to statistics is developing a successful 
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transition from different representations (relative frequency tables, etc.) of discrete sample 
spaces to those (density functions, etc.) of continuous spaces (Lee, 1999).  

 
Granular Approach to Probability Distributions 

In upgrading Probability Explorer, we propose a granular density paradigm to replace the 
integer Weight Tool. A unit amount of “sand” will contain grains, each grain being equally likely 
to be selected in a trial. Thus, the primary concepts of equiprobable and large numbers are 
integrated in all scenarios. As a student decides on the n possible outcomes for the sample space, 
the Distribution Tool will default to n bins of equal width. The content of each bin represents the 
probability for that outcome. A unit volume of sand will be in a large container with the goal of 
redistributing it to the bins below to assign a probability to each outcome. The user has the 
option of auto-distributing the sand equally to all bins or manually “pouring” an amount of sand 
into each bin (Figure 2), either through typing in numerical values or manually operating the 
spigot. When the Run button is pressed to execute a number of trials, for each trial, a grain of 
sand will be randomly picked and illuminated.  

 

  
Figure 2. Redistributing sand into bins.    Figure 3. Redistributing sand as bricks. 
 

To build off the powerful metaphor of ”marbles in a bag”, the unit of sand can also be 
discretized into “bricks” that can be distributed to the bins by either dragging a brick, clicking on 
the outcome icon to auto-move a brick, or typing in a numerical value to indicate the quantity of 
bricks to place in an outcome bin (Figure 3). In order to stay true to our desires to give students 
access to the ability to model a probability distribution in a part-to-part manner, the bricks allow 
a user to conceive of the total sand as divisible into a small number of equal parts. Distributing 
bricks of sand then becomes a partitioning task of sharing r bricks among n outcomes. Of course, 
we recognize the potential for n bricks to also promote a total weight approach to experiments. 
However, the bricks can be “broken” back into sand grains. Thus, whether the sand is contained 
in “bricks” or not, the entire probability distribution is made up of a very large number of tiny 
grains of sand. We believe this large number will reduce the total weight approach in students’ 
data collection and may be suggestive of collecting large sample sizes.  

As students become more sophisticated in their use of the sand bins, they will be able to drag 
the bin dividers to adjust the width of a bin. This can be done prior to redistributing sand from 
the unit container or after sand has been poured. In the later case, students should notice that the 
amount of sand in each bin is invariant. We conjecture that having the bins being adjustable in 
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width can strengthen the notion of probability being stored in area with height being a byproduct 
of density. This step from the discrete to the continuous, with this move from storing 
distributions as a finite set of numbers to storing them in density functions, is quite weak in most 
curricula. The granular density paradigm may provide a nice tool for this transition. Further 
design and research will help us know. 
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This paper reports results of a study in which models and modeling perspectives were used to 
investigate what it means for university students—graduate students in education—to develop 
meaningful understandings of foundation-level statistics concepts and skills. Our research 
findings indicate that while graduate students in education can be very capable of earning 
excellent grades in introductory statistics courses, their actual understandings of the course 
materials tend to be quite shallow. Results indicate that most of the students participating in the 
study were essentially unable to use statistics to evaluate, describe, or otherwise make sense of 
data or the relationships between them. 
 

Why Focus on Data Modeling? 
Most future-oriented statements of mathematics curriculum goals identify data modeling as a 

topic that should be receiving priority attention. At the same time, for a wide range of students 
from elementary school through graduate school modern data modeling concepts and tools are 
becoming both accessible and empowering. One reason that data modeling is so accessible is that 
many of these concepts, skills, and abilities involve straightforward extensions of basic ideas in 
elementary mathematics. The second is that new technologies for model conceptualization, 
design, representation, and communication have strongly impacted both the capabilities and 
accessibility of data-driven models as “reflection tools” (Hamilton, Lesh, Lester, & Yoon, 2007) 
for supporting the development of mathematical knowledge. 

As we enter the 21st century, these same types of next-generation technologies are also 
changing the nature of work in many industries at ever-increasing rates. These two developments 
(in tools for schools and tools for work) have caused us to adapt the designs of our statistics 
courses in the following ways: 

 
• We mean to introduce the kind of problem solving situations in which some beyond-

school type of “mathematical thinking” is needed for success (Lesh, Caylor, & Gupta, in 
press). 

• We encourage deep and reflective thinking about the levels and types of “mathematical 
thinking” that are needed in those kinds of problems (Lesh, Hamilton, & Kaput, 2007). 

• We want to extend the ways that these concepts and abilities can be thought about, 
learned, documented, and assessed (Lesh & Lamon, 1994).  

 
Tools on the drawing boards now may be expected to deliver unforeseeable potentials and 

innovations with unique and new requirements for modeling expertise. At a time when we 
should be striving to help our students to prepare for a dynamic and technologically demanding 
future, many of our best graduate students in education (as well as students in the other sciences) 
emerge with only the most superficial “cook book” conceptions of relevant statistics concepts 
and procedures.  
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What Theoretical Framework Supports Our Research? 
As many readers will recognize, the theoretical framework for our work is known as a 

models and modeling perspective on mathematical problem solving, learning, and teaching 
(MMP). Details about MMP have been described in a variety of recent publications (e.g. Lesh & 
Doerr, 2003). In the context of the research reported here, one of the most important 
characteristics of MMP is its emphasis on the fact that, in virtually every area of learning or 
problem solving where researchers have investigated differences between effective and 
ineffective learners or problem solvers, the results typically indicate that the more effective 
people not only do things differently, but they also see (or interpret) things differently. For 
example, expert teachers not only do things right, but they also do the right things—at the right 
time, for the right reasons, and with the right people.  

Consequently, because judgments about when, where, why, and how to do things depend on 
how experiences are interpreted, and because mathematical and scientific interpretations tend to 
be referred to as models, MMP treats the development of powerful interpretation systems as one 
of the most important characteristics of what it means to develop expertise in many fields–
including teaching and researching mathematics and science education for all citizens. The 
primary goal of our MMP research is to develop models of teachers’ and students’ modeling 
abilities because these models are expected to be embodied in useful tools. As those tools are 
subsequently shared, tested, revised or rejected, then so will the underlying models, resulting in 
fundamental changes in our understandings of learning and teaching in the mathematical 
sciences. 
 

What Students were Involved in the Project? 
The project involved 108 graduate students at two large research universities in the 

midwestern United States. Students participating in the study had just completed their first 
course in “quantitative methods” for their doctoral degrees in education and the information we 
report includes only results from students who had earned A’s or B’s in the course. In order to 
focus on students who were users of (not specialists in) quantitative research methodologies, we 
also eliminated from the study any students whose primary studies were mathematics education, 
science education, or research design.  

The course that the students had just completed was a traditionally taught course that covered 
statistics concepts corresponding to the left hand column of Table 1. The course covered topics 
ranging from means and standard deviations up through correlation, regression, hypothesis 
testing, and analysis of variance. The right hand side of Table 1 corresponds to topics and 
coverage in an introductory statistics course that we are developing. In order to gather base-line 
data relative to traditionally taught students’ understandings, skills, and fluency in using statistics 
to understand data we introduced these students to the types of modeling and analysis tasks that 
we use in our experimental classrooms. 
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Table 1. A Comparison of Topics Emphasized in Traditional Statistics Textbooks and the 
“Big Ideas” Currently Emphasized in Data Modeling Approaches to Statistics 

Traditional Approaches Topics Emphasized in Data Modeling Approaches 
• Variables and graphs  
• Frequency distributions 
• Measures of central 

tendency: mean, 
median, mode 

• Measures of dispersion: 
standard deviations and 
variance 

• Probability theory 
• Binomial, normal, 

Poisson distributions 
• Sampling theory 
• Estimation theory 
• Hypothesis testing 
• Chi-squared test 
• Curve fitting 
• Correlation theory 
• Analysis of variance 

• Measuring the expected occurrence of uncertain events 
(probability) 

• Quantifying qualitative information (or in other ways 
organizing, systematizing, or mathematizing information) 

• Transforming data (making comparisons or combinations) 
• Operationally defining quantities or characteristics that 

cannot be measured directly 
• Aggregating qualitatively different types of information 
• Operationally defining “centers” and central tendencies 

for collections of data 
• Operationally defining “spread” for data collections 
• Developing complex rules from simple rules 
• Developing rules to describe patterns or trends (e.g., to 

make predictions) 
• Measuring unaccounted variation (error) 
• Measuring relationships between two data sets 

(correlation) 
• Developing rules to describe how well data fit known 

distributions 
• Sorting out sources of variation (analysis of variance) 
• Comparing collections of data  (testing hypotheses) 

 
Which Research Methodologies Were Used? 

The type of whole-class teaching interviews that we used were developed and refined in a 
series of NSF-supported projects that have come to be known collectively as The Rational 
Number Project (e.g., Post, Lesh, Cramer, Behr, & Harel, 1993). Whole-class teaching 
interviews are specialized versions of the kind of teaching experiment methodologies that 
mathematics educators pioneered during the 1970s (Kelly & Lesh, 2000). They were intended to 
focus in on many of the kinds of understandings that had emerged in past research when 
investigators were administering Piaget-style clinical interview—but this interview method was 
also intended to be scalable for use with larger numbers of students. To accomplish these goals, 
students were asked to record their answers to our questions as they do on most paper-and-pencil 
tests; however, the questions were presented to the class-as-a-whole by an experienced 
interviewer who used brief oral descriptions, concrete materials, computer-generated graphics, 
and other media designed to support the questions.   

Many of the questions in the whole-class teaching interviews were based in contexts that 
involved model-eliciting activities (MEAs). As the name suggests, MEAs are activities in which 
learners create products which involve the development of models (or conceptual tools that 
embody models), rather than producing short mathematical solutions to previously mathematized 
textbook word problems. In general, MEAs are designed to be simulations of “real life” and 
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authentic (to the students) problem solving situations which usually require sixty to ninety 
minutes for students to complete. Solution processes generally involve a series of modeling 
cycles in which current ways of thinking are iteratively expressed, tested, and revised or 
refined—so that auditable trails of documentation are automatically generated as the process 
progresses and which reveal important information about the nature of students’ evolving ways 
of thinking.  

When MEAs are extended across ninety-minute periods, students have a sufficient amount of 
time to go through multiple cycles in which they express  test  revise their current ways of 
thinking. However, when MEAs were used as the contexts for whole-class clinical interviews, 
students had only a few minutes to respond to each problem or problem situation. So while the 
students being tested had the typical MEA benefits of being presented with authentic problems 
rich with data, they did not enjoy the usual concomitant benefits of multiple modeling cycles and 
peer collaboration.  
 

Results and Discussion 
The whole-class interviews revealed that more than 80% of the students expressed the strong 

opinion that “The main thing I need to know from my statistics courses is how to calculate 
correct answers for the kind of problems that are in [my textbook].” Paradoxically, most of these 
same students also said that they themselves didn’t plan to do any such calculations for their own 
dissertation studies, “I’ll get someone else (who is good at statistics, but doesn’t need to know 
details about my study) to tell me which SPSS program to use, how to plug in my numbers, and 
what the results mean.” In other words, most of these students really were not expecting to be 
anything more than intelligent consumers of statistics routines and results that would be provided 
and interpreted by others (i.e., quantitative analysis experts) who were not expected to be 
familiar with details about the relevant studies.  

Less than 10% of the students exhibited more than superficial understandings of the fact that 
all computational formulas presuppose models—models that are based upon assumptions that 
may or may not be appropriate for a given situation. Nor were those students aware of the fact 
that small changes in underlying models and assumptions applied to data can often lead to large 
differences in results and analyses. Due to space limitations, we next turn to one only of the 
many assessment iterations included in our study and use it to illustrate the following general 
findings of this research project: 
 

• Few of the students were able to estimate the magnitude of biases introduced by 
inappropriate coding or aggregating information. 

• Few students were able to estimate the consequences of inappropriate thinking about (and 
measuring) basic constructs such as distances, centers, and spread. 

• Few students were able to visualize or describe how different computational formulas are 
related to one another. 

• Few students were able to visualize or describe how different computational formulas 
may be based in completely different ways of thinking about (and measuring) basic 
constructs.  
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• Few students were able to modularize or unpack formulas in order to show how different 
constructs (such as correlations and regression lines) are related to one another—or how 
components of these formulas corresponded to basic.  

• Most students chose to use procedures that they judged to be (politically?) “correct” 
rather than choosing procedures whose relationships to the given situations were 
reasonable. 

 
For the most part the students in this study simply were not aware of implicit assumptions 

that their choices of procedures presupposed. Virtually all of our results point to the fact that 
most of these students believed choosing appropriate data acquisition and analysis methods was 
basically a multiple-choice problem where the possible choices would be listed in their statistics 
text—rather than collecting data and choosing analytical tools based upon considered and 
reasonable assumptions (models) of the situation at hand.            

We administered an established MEA, the “Test Scores Problem” (c.f., Lesh, 1987, p. 326) to 
the students in our studies in order to gain a useful window into participants’ understandings of 
the statistics and statistical tools that they had apparently mastered the semester before. In The 
Test Scores Problem, students are presented with a table of data that provides a number 
describing the quantity of work each student-artist has produced as well as a value that describes 
the quality of the work. In the MEA, the story goes like this 

 
… the chairman of the art department explains the system ... “The quantity score 
focuses on "product objectives." We count how many projects each student 
completes satisfactorily. The quality score focuses on "process objectives." We 
count how many different tools and techniques each student uses.” (Lesh, 1987, p. 
326)  

 
In our tests, the interviewer briefly displayed and described the given information about both 

quality scores and quantity scores that were earned by students in an art class. Next the 
interviewer briefly described five suggestions that “students in another class” had made about 
ways to combine these quality and quantity scores to obtain an overall achievement score for 
students in the art class. The five suggestions were: 

 
• Combine the scores using Sums:  Quality + Quantity 
• Combine the scores using Differences:  Quality – Quantity  
• Combine the scores using Products:  Quality x Quantity (i.e., Total Quality) 
• Combine the scores using Quotients: Quality ÷ Quantity (i.e., Quality-per-Unit-of-

Quantity) 
• Combine the scores using Vector Sums: the square root of (Quality2  + Quantity2). 

 
The interviewer then quickly discussed the graphs shown in Figure 1—and pointed out the 

equivalence classes that are formed when each of the preceding combinations is used to calculate 
overall achievement scores. Finally, the interviewer showed Figure 1F and asked the students 
whether they thought that it would be okay to use such a diagram to assign overall scores to the 
art students—instead of assigning scores using an algebraic or arithmetic formula. 
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Figure 1. Equivalence classes corresponding to six different ways of combining scores 
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D. Equivalence based on 
multiplication 

E. Equivalence based on 
division 

F. Equivalence based on 
locations 

 
More than half of the students thought that Figure 10F was not an appropriate way to solve 

the problem, and almost all of the students thought that “the more quantitative methods” were 
going to be “more correct.” Even more interestingly, over half of the students expressed the view 
that, if methods like the one shown in Figure 1 are used, then you are no longer doing 
quantitative research. Yet, Figures 1A-E clearly showed how qualitative assumptions underlie 
even the simplest quantitative methods. The students interviewed appeared to be almost 
completely unaware of the fact that “choosing a computational procedure” involves “describing a 
situation mathematically”—and that these descriptions are based on relational assumptions that 
are the most important factors determining the appropriateness of employing the procedures 
associated with them. 

 
Conclusions 

Even though the 108 students who participated in our studies had earned A’s or B’s in an 
introductory statistics course that they had just completed, their performances on the MEA-type 
questions that we posed demonstrated that their understandings were severely restricted. Their 
understandings were apparently excellent as long as questions they responded to involved 
standard word problems in which the relevant data were presented in forms that fit the 
computational procedures that the students were expected to use—and  as long as the choice as 
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to computational procedures only depended on “knowing rules for [course curriculum-based] 
socially acceptable behavior.”  

These A-grade students were not at all adept at developing their own mathematical 
descriptions of problem situations. They had little awareness of alternative ways to 
“operationally define” constructs such as centrality, variation, distance, or other relevant metrics 
that underlie the computational formulas that they appeared to have learned. They were 
remarkably challenged in describing and visualizing how different computational formulas are 
related to one another. They were not able to deconstruct formulaic representations or discuss 
how different constructs (such as correlations and regression lines, or two-sample hypothesis 
tests and analyses of variation) are related to one another—nor how components of these 
formulas correspond to basic statistical concerns. 

As another telling example, consider that throughout the statistics courses that these students 
had completed, they had been allowed to develop their own one-page “formula sheets” where 
they could write notes to themselves about any of the facts or formulas that they thought that 
they might need to use on tests. We also allowed the students to use their “formula sheets” 
during our interviews to serve as scaffolds for their reasoning and explanations. After the 
interviews had been completed, we collected and analyzed these formula sheets and scored them 
according to how much they emphasized “conceptual simplicity” relative to “procedural 
simplicity.” The results of this analysis showed that most of the formulas that the majority of 
students used were focused primarily on procedural rather than conceptual simplicity. 
Furthermore, the extent to which students emphasized conceptual simplicity was strongly 
correlated (.48) with high performance on the MEA interview questions.  

In some ways, results of the preceding study seem somewhat paradoxical especially when 
juxtaposed with results that we have reported in past publications (Lesh & Harel, 2003; Lesh, 
Yoon & Zawojewski, 2007; Lesh, Caylor & Gupta, in press; Lesh, Middleton, Gupta & Caylor, 
in press). On the one hand our past research has shown that when classroom learning curricula 
emphasize model eliciting activities then average-ability students routinely invent more powerful 
ideas, procedures, and explanations than their past performances on tests suggest that they could 
be taught. In a related manner, the results reported here suggest that when model eliciting 
activities are used as contexts for assessing students’ understandings of important data modeling 
ideas, the meanings that many high-achieving students have developed are often seemed to be 
remarkably narrow and shallow. 

Two primary facts may help explain this apparent discrepancy. First, when students engage 
in model-eliciting activities, their solutions typically evolve through several modeling cycles. 
Therefore, the final responses that MEA students produce can be similar to the “nth” draft of a 
paper that an academician might write: while the first draft may be seriously lacking, the 
processes of product evolution and adaptation can result in an excellent and insightful nth 
revision. In contrast the evidence generated in typical classroom assessments tends to be 
students’ 1st and only iteration of problem solution—because traditional word problems seldom 
if ever provide students with the types of data or the expressed challenge that would cause and 
assist them in assessing the plausibility and sensibility of alternative ways of thinking about the 
problem. 

Second, the word problems contained in most textbooks and tests mainly require students to 
know rules about when and how to use a list of routine procedures. As such, students are seldom 
required to develop their own mathematical descriptions of situations; they are seldom required 
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to access the assumptions that underlie alternative operational assumptions; and they are most 
often asked to know about which rules are to be used when to demonstrate the algorithmic, rules-
based, “correct” solutions. In this way, dogmatic and formula-driven solutions are imposed on 
situations where they do not fit, and alternative means for describing, analyzing, and assessing 
problem situations remain uninvestigated. 

This important distinction between  “choosing a correct computational procedure” and 
“developing a sensible mathematical description” is probably the most essential difference 
between the types of data modeling that we emphasize in this paper and introductory statistics as 
it is taught in traditional courses. In courses that employ MEA-like, open-ended, and 
“generative” (Stroup, Ares, & Hurford, 2005) learning activities, students tend to develop much 
deeper understandings of the important mathematical relationships inherent in the system under 
investigation. Adding to our concerns, this distinction tends to become even more important 
when technology-based tools are central to statistics instruction. In this case, when modern 
technological tools become primary instructional foci, then problem-solving goals are even more 
likely to seem to be about choosing and using correct algorithmic routines, about punching in the 
right numbers, and about stating results in ways that “just seem to fit” with the status quo. 
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This article demonstrates that a famous task found in probability research is multivalent (i.e., 
has many interpretations). More specifically, the multivalence of the sequence, likelihood, 
experiment, and question elements will be the main focus of this investigation. Further, this 
article demonstrates that certain individuals answer the famous task according to an 
interpretation not in accord with researchers’ intended interpretation of the task. Utilization of a 
novel theoretical framework, the Task Interpretation Framework (TIF), will aid in investigating 
unintended interpretations of the task.  

 
Introduction 

Certain prior research on the comparative likelihood task (Kahneman & Tversky; 1972; 
Konold, 1989, 1991, 1995; Konold, Pollatsek, Well, Hendrickson & Lipson, 1991; Konold, 
Pollatsek, Well, Lohmeier & Lipson, 1993; Lecoutre, 1992; Tversky & Kahneman, 1974), 
hereafter denoted the CLT, consists of interpretations and hypotheses based on multivalent 
elements of CLT responses. In a general sense, elements of the CLT response are interpreted by 
researchers, whereas elements of the task are interpreted by respondents. However, it is possible 
for researchers to attempt to interpret responses for evidence of how respondents interpret the 
task. Motivated by the notion that respondents may have interpreted that task differently than 
intended and interested in the interpretation of the task by respondents, the author proposes a 
focal shift in mathematics education research concerning the CLT. Instead of continuing to base 
research on multivalent elements of CLT responses, the author creates a new theoretical 
framework, the Task Interpretation Framework (or TIF), with which to analyse CLT responses 
based on multivalent elements of the CLT. In doing so, it will be demonstrated that certain 
individuals do not respond to the task they are presented. 

 
Task Interpretation Framework (TIF) 

Multivalent Elements of the CLT 
The CLT is multivalent. However, the degrees of freedom of the CLT dictate the 

multivalence be examined in terms of different elements of the task. Specific to this research, 
four elements of the task—sequence, likelihood, experiment, and question—will be investigated, 
and will be described below in accordance with an example of the CLT seen in Figure 1.  

 
Which of the following sequences is the least likely to occur from flipping a fair 

coin five times. Justify your response.  
a) THTTT b) THHTH c) HHHTT d) HTHTH e) equally likely 

Figure 1. CLT example for elemental examination. 
 

Sequence element. Consider the four sequences presented in the CLT: While each of the 
sequences can, and is intended to, be seen as a sequence of heads and tails for five flips of a coin 
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(i.e., THTTT interpreted as: tail on the first flip, then head on the second flip, and then tail on the 
third, fourth and fifth flips), the four sequences may be interpreted in other ways. For example, 
THTTT, THHTH, HHHTT, and HTHTH are, concurrently with the first interpretation, 
sequences with a ratio of four tails to one head, three heads to two tails, three heads to two tails, 
and three heads to two tails, respectively. From this interpretation, the sequence THTTT has a 
different ratio of heads to tails (4:1) than the sequences THHTH, HHHTT, and HTHTH (3:2). As 
such, THTTT is different than the others. The ratio of heads to tails is not the only plausible 
interpretation of the sequences presented in the CLT. There are other attributes associated with 
sequences of heads and tails derived from flipping a fair coin that may also be concurrently 
employed when interpreting sequences.  

The number of switches (or alterations), the length of the longest run, and the combination of 
the two attributes (i.e., switches & longest run) are examined. As such, the sequences of THTTT, 
THHTH, HHHTT, and HTHTH, which coexist with the ratio of heads to tails interpretation, also 
coexist as: (1) sequences that have two switches, three switches, one switch, and four switches, 
respectively; (2) sequences that have a longest run of three, two, three, and one, respectively; and 
(3) sequences that have two switches and a longest run of three, three switches and longest run of 
two, one switch and a longest run of three, and four switches with a longest run of one, 
respectively. As evidenced, there exist a variety of meanings for the sequences of H’s and T’s 
that are seen in the sequence element of the CLT. The sequence element of the CLT is 
multivalent. 

Likelihood element. Similar to the sequence element of the task, the likelihood element of the 
task is multivalent. First, there is the colloquial use of the word likelihood. For example, ‘in all 
likelihood Jim has passed his exam.’ In this particular use of the word ‘in all likelihood’ implies 
that it is probable, or perhaps very probable, that Jim will have passed his exam. That being said, 
‘very probable’ is yet another colloquial usage of the notion of probability, which can be closely 
connected to ‘certainty.’ This procedure, of changing from one colloquial word for probability or 
likelihood to another adds to the multivalence of the task. Further, there is tremendous usage of 
colloquial terms for probability in the English lexicon, and usage of these words begins at a very 
young age also adding to the multivalence of the task. As such, the multivalence of the colloquial 
representations of likelihood may bring high levels of coexistence of interpretations to the 
likelihood component of the CLT.  

The second non-colloquial domain of usage for the word likelihood is in the field of 
probability, or in a more general sense the field of mathematics. The precise nature of 
mathematics may, at first, appear to clarify the coexistence of multiple interpretations; however, 
the usage of likelihood is not as precise as one may expect. Likelihood, within the domain of 
mathematics is seen more as a synonym for words such as: probability, degree of certainty, or 
frequency. However, there is a particular distinction when likelihood is used in the formal sense 
in mathematics. “The concept [likelihood] differs from that of probability in that a probability 
refers to the occurrence of future events, while a likelihood refers to past events with known 
outcomes” (Wesstein, 2008). Thus, usage of likelihood and probability as synonyms, formal or 
informal, will not recognize an inherent temporal distinction, i.e., the coexistence of multiple 
interpretations. Further compounding the temporal multivalence of the likelihood element, the 
task employs an informal representation of likelihood, yet expects formal use of likelihood in 
completing the task.  
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Experiment element. The experiment element for the CLT is the flipping of a fair coin five 
times, and as will be shown, contains a number of coexisting interpretations. While the 
experiment may not appear as a source of much confusion, there exist a number of plausible 
interpretations. More specifically, the derivation of the four particular sequences is one manner 
in which it can be shown that the experiment element of the CLT is multivalent, because 
interpretations of how the sequences were derived for the task are not entirely clear. The 
sequences could have been derived from: flipping one coin twenty times, or twenty coins all at 
once. There are other plausible combinations of coin flips and coins: five coins flipped at once 
on four separate occasions, four sets of five different coins flipped all at once, four different 
coins flipped one at a time for five times simultaneously, four different coins flipped 
subsequently one at a time for five times, or four sets of five coins flipped simultaneously or 
subsequently one at a time. Given coin flips are independent events it would not matter how the 
outcomes were derived; however, it must be recognized that independence is one of the key 
elements being examined in the implementation of the CLT. As such, it is plausible that an 
individual answering the task may be influenced by the derivation of sequences. 

The temporal notion of the likelihood element also influences the experimental element of 
the CLT. Individuals’ who interpret likelihood in reference to past events will be aligned with an 
a-posteriori (or frequentist) perspective to the experiment, whereas individuals who interpret 
likelihood as probability will be aligned with an a priori (or classical) perspective to the 
experiment. Thus, the coexistence of the experiment ‘having been’ conducted and ‘to be’ 
conducted also exists in the experimental element of the task. 

As shown, the sequence element of the task, the likelihood element of the task, and the 
experiment element of the task are multivalent. However, the argumentation presented above is 
all based on the assumption that the question posed in the task is being appropriately interpreted. 
As such, the question element of the CLT is now investigated. 

Question element. There are viable, coexisting interpretations of the question posed in the 
CLT. For example, the question does ask the subject to determine which of the sequences 
presented is least likely to occur, but sequences presented may be pitted against the other three 
sequences in the task for likelihood comparison, or may be pitted against all thirty-two possible 
outcomes for five flips of a fair coin. That said, the coexisting interpretations do not have to be 
based solely on the question element of the task. The multivalence of the question element of the 
task can also be derived from the answer, likelihood, and experiment elements of the task, 
whether treated in some sort of unison or singularly. Alternatively stated, and as an example, an 
unintended interpretation of the sequence element of the task implies an unintended 
interpretation of the question element of the task: If a subject interprets the sequences of heads 
and tails as a ratio interpretation, that individual is answering an unintended interpretation of the 
question element of the task. As another example, if an individual interprets likelihood in an 
unintended manner, then they are also not interpreting the question element of the task in an 
intended manner. The task of achieving the intended interpretation for the question element is 
based on achieving intended interpretations for the answer, likelihood, experiment, and question 
elements, treated singularly or in some type of inter-elemental arrangement. Given the 
argumentation for the multivalence of the elements of the CLT, the author contends that the 
question element of the CLT is perilously multivalent. Probabilistically stated, the chances of 
answering the CLT as the researchers intended is unlikely. Alternatively stated, it is likely that a 
subject answering the CLT is answering an unintended interpretation of the task. 
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Research Method 
To determine which interpretation has occurred for an individual completing the CLT, 

inferences can be made by examining responses made by the individuals who have completed 
the task. Consider an individual who after completing the task comments, ‘One of the four 
sequences had a different number of heads to tails.’ The author contends that it is more likely 
that the individual has interpreted the sequence element of the task in terms of a ratio 
interpretation. Further, and as another example, the reading of an individual who comments ‘the 
longer the run of tails the less likely the sequence’ causes the author to infer that it is more likely 
the individual interpreted the sequence element of the task in terms of the length of runs.  

Examination of CLT responses not only provides insight into the interpretation used in an 
individual’s completion of the task, but also provides the opportunity to determine whether or 
not an individual’s interpretation matches the intended interpretation of the researcher 
implementing the task. The researcher, knowing the intended interpretation of the task, is able to 
determine—by the reading of responses made by subjects who have completed the task—
whether or not the subject’s interpretation aligns with the intended interpretation of the 
researcher.  

 
Participants 

Participants in this study were 56 prospective elementary teachers enrolled in a methods for 
teaching elementary mathematics course, which is a course in the teacher certification program. 
The 56 participants consist of members from two different classes who were taught by two 
different instructors. In both classes the variation of the CLT was presented prior to the 
introduction of probability content in the course. 
 

Task 
Participants were presented with the following iteration of the CLT seen in Figure 2. 

Which of the following sequences is the least likely to occur from flipping a fair 
coin five times: a) HHTTH b) HHHHT c) THHHT d) HTHTH e) THHTH f) all five 
sequences are equally likely to occur 

Figure 2. CLT utilized. 
 

Results 
While there were six choices available to the participants, responses fell into only four of the 

six categories. 27 of the 56 participants (approximately 48%) “correctly” chose that all sequences 
were equally likely to occur, and 29 of the 56 participants (approximately 52%) “incorrectly” 
chose that HHHHT was the least likely sequence to occur. Further, nine of the participants 
“incorrectly” chose the sequence HTHTH least likely to occur, and one individual “incorrectly” 
chose the sequence THHHT as least likely to occur. No participants chose sequences HHTTH or 
THHTH. 

Analysis of Results 
Likelihood Element Multivalence 

Sample response justifications for multivalence of the likelihood element.  
Barney: All five sequences are equally likely to occur because when you flip a coin it is 
random so you cannot predict whether it will turn heads or tails so all these sequences 
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have an equal chance of occurring. 
Catie: F) because it is RANDOM!!!!! 

Analysing Catie and Barney’s responses via the TIF demonstrates an interesting relationship 
between randomness and likelihood: their responses evidence the likelihood element of the CLT 
is multivalent. As found in Lecoutre’s (1992) research random events are considered 
equiprobable, yet here it is demonstrated that sequences are equiprobable because the process is 
random. As such, claims made regarding probability could be substituted for randomness and, 
similarly, claims for randomness could be substituted for probability without contestation. As a 
result, there exists a concurrency of interpretations with the term likelihood, thus the likelihood 
element. 
Question Element Multivalence 

Not necessarily evident from an examination of purely numerical results, the multivalence of 
the question element appears in many of the sample responses justifications presented. Further, 
different responses are aligned with different multivalent elements of the CLT, as earlier 
hypothesized. In fact, and according to the inter-elemental argument posed in the TIF 
presentation, each of the responses evidencing multivalence in the experiment, likelihood, and 
sequence elements are also evidencing the multivalence of the question element. Nevertheless, 
examples of the multivalence of the question element were evidenced. 

Sample response justification for multivalence of the question element. 
Tawnie: Letter T is the least likely to occur for A, B, C, and D. If you count them, T is 
the least. Because in A there’s 5 letters, but T only has two or one so it is the least likely 
to occur. 

Tawnie’s response shows that the intended interpretation of the CLT was not achieved and, 
thus, it can be argued that the intended question was not answered. That said, the intended 
interpretation of the CLT was not achieved in other responses, yet the evidence of such is more 
nuanced because it plays on the other multivalent elements of the task, not the question element 
as seen with Tawnie’s response. Nevertheless, Tawnie’s response that the letter T is least likely 
to occur evidences the question element of the task is multivalent. 
Experiment Element Multivalence 

Sample response justification for multivalence of the experiment element. 
Monah: …it all depends on the coin thrower. Coin throwing is really random 
Oliver: You have to think of all the possible things that could happen like the wind could 
change how much it flips. How it lands also depends on it if it bounces. 
Ronald: I think it really depends on how you flip the coin, or where it lands 
Nina: because coins rarely flip h, then t, then h repeatedly 
Paloma: I was flipping a coin earlier, and it always landed on tails 
Quentin: I flipped a coin lots of times and I never got 4 heads in a row. 

Monah, Oliver, and Ronald all allude to the experiment element of the CLT. The coin 
thrower, how the coin is flipped, and certain physical factors such as wind and where the coin 
lands, are taken into consideration in their answering the CLT. Given the classical interpretation 
is a priori probability, the intended interpretation of the task does not mean for any of the 
physical characteristics of the experiment to be take into consideration. As such, it can be argued 
that they too are not answering the intended interpretation of the task. In fact, given the intended 
interpretation of the CLT uses the classical interpretation of probability, the responses of Nina, 
which is indicative of a propensity interpretation of probability (i.e, probability is a physical 
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propensity), does not meet the intended interpretation; and, as such, it can be argued that the 
subjects are not answering the intended question. Similarly, Paloma and Quentin adopt a 
different theoretical interpretation of probability—the frequentist perspective—than the intended 
classical interpretation; and, as such, are also not answering the intended interpretation of the 
task. The unintended interpretations presented all indicate that the experiment element of the TIF 
is multivalent. 
Sequence Element Multivalence 

From the analysis of results the majority of ‘incorrect’ responses were based on the 
multivalence of the sequence element. However, two particular interpretations (seen in prior 
research, e.g., Kahneman and Tversky, 1972) of the sequence element—the ratio of heads to tails 
and the perceived randomness determined by pattern or lack thereof—dominated the response 
justifications. As such, the response verifications for multivalence of the sequence element are 
further categorized into (1) the ratio interpretation, and (2) the perceived randomness 
interpretation. 
Sequence Element Multivalence: Ratio interpretation 

Sample response justification for multivalence of the sequence element: Ratio. 
Francine: It’s most unlikely to have four heads and one tail because there is a 50% 
chance. 
Gerard: It has the “most uneven” amount of heads and tails.  
Hannah: B, it’s the only one with one T and four Hs, the rest have 3 Hs and 2 Ts. 

Approximately 52% of the participants incorrectly answered that the sequence HHHHT was 
least likely to occur. That said, reasons for why HHHHT was considered least likely fell into two 
distinct subcategories. The responses of Francine, Gerard, and Hannah (and others) exemplify 
the ratio of heads to tails being used as a clue (e.g., B, it’s the only one with one T and four Hs, 
the rest have 3 Hs and 2 Ts.), which has been seen in prior research (e.g., Kahneman & Tversky, 
1974).  

Batanero and Serrano’s (1999) found “that students had a greater difficulty in recognizing 
run properties than frequency properties [which] indicates that the similarity between the 
observed and expected frequencies may be more important than the run lengths in students’ 
deciding whether a sequence is random” (p. 562). As such, a second subcategory of reasons for 
HHHHT being the least likely sequence to occur used the population ratio, but, arguably, in a 
more subtle manner because runs involve ratio implicitly. 

Sample response justifications for multivalence of the sequence element: Runs. 
Dianne: the chances of getting the same one four times is least likely. 
Evan:  because it is hard to get one consecutive side to be flipped repeatedly. 
Uri: B —because it is unlikely that you will flip heads 4 times and then one tails. But 
you could also say F because anything is possible. But my final answer is B 

Dianne mentioned, “the chances of getting the same one four times is least likely.” In this 
instance there is recognition of the ratio of head to tails, but ratio is not, necessarily, at the crux 
of the explanation. Dianne’s comments are related to the length of the run of heads seen in the 
HHHHT sequence, four heads in a row. While the response is normatively incorrect, it can be 
inferred from Dianne and Evan’s explanations that the interpretation of the sequence element of 
the task being used to answer the question posed are not the intended interpretation because the 
sequence is being interpreted in terms of runs. The interpretation of the sequence via runs and 
not the ratio of heads to tails demonstrates alternative unintended interpretations, and bolsters 
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Cox and Mouw’s (1992) findings that disruption of one aspect of the representativeness 
heuristic, such as the population ratio, did not exclude the other, i.e., the appearance of 
randomness, being used as a clue, and, further, demonstrates the multivalence of the sequence 
element.  
Sequence Element Multivalence: Perceived Randomness Interpretation 

The use of length of run based on the ratio of heads to tails found in the responses of Dianne 
and Evan is connected to the perceived randomness of the sequence. Also, from the responses of 
Dianne and Evan (and others) it is inferred that interpreting the sequence element of the task by 
the appearance of randomness is also connected to likelihood element. More specifically, 
sequences that appear more random (i.e., had less of a pattern) are considered to be more likely 
to occur, and sequences that are considered less random (i.e., were more patterned) were 
considered less likely to occur, represented in prior research as not being equally representative 
yet equally likely (e.g., Tversky & Kahneman, 1974). While this connection between the 
appearance of randomness (via runs) and likelihood is seen in responses for HHHHT as least 
likely, the connection between randomness and likelihood is also seen in the responses for the 
sequence HTHTH being least likely to occur, as shown next. 

Sample response justifications for HTHTH. 
Igor: Usually, when you flip a coin, the answer won’t usually be in a pattern. It would 
most likely be random. 
Justine: Because its kind of odd for it to land in a pattern like that. Usually, it’s a 
totally random sequence of heads or tails. 
Ken: D because when something is random it doesn’t usually go in a pattern. 

Research has shown (e.g., Falk, 1981) that randomness was perceived through frequent 
switches and short runs. It appears from the justifications of Igor, Justine, and Ken, that a perfect 
alteration of heads and tails—the highest possible number of switches and the smallest possible 
runs—does not appear random. The sequence HTHTH did not appear random because it is 
patterned. The appearance of pattern implies a lack of randomness, and the lack of randomness 
implies that it is less likely to occur. As such, a perfect alteration of heads to tails demotes the 
likelihood of the pattern causing it to be the least likely to occur. 

 
Conclusion 

In a general sense, the results evidence the multivalence of the CLT. More specifically, the 
results evidence the multivalence of the likelihood, experiment, question, and sequence elements 
of the CLT. Further, and also evidenced in the results, there is reason to suspect that certain 
individuals responses may be answering a question other than the one they were originally 
posed; and, thus, it becomes understandable that an individual may answer that one of the 
sequences presented in the CLT is least (or most) likely to occur.  
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This article examines middle and high school student thinking about an effect of sample size task 
related to coin tosses. The analysis identifies common justification categories for incorrect 
responses as well as correct responses. These results are then discussed using a lens of in and 
out of school mathematical thinking. 
 

Objectives 
This article presents empirical findings about student thinking about a mathematical task 

related to the concept of effects of sample size. I present results about student thinking and then 
discuss these results in terms of the relationship between in- and out- of school mathematical 
thinking. 

 
Perspectives 

Over the last three decades, a variety of researchers have examined the ways that children 
solve problems differently in school or out of school contexts. The comparison has been framed 
as a contrast between formal and informal (Scribner & Cole, 1973), written or oral (Carraher, 
Carraher, & Schliemann, 1987), school and street (Nunes, Carraher, & Schliemann, 1993), or 
school and everyday (Brenner & Moschkovich, 2002; Saxe, 1988). The central tenet of these 
contrasts is that “school represents a specialized set of educational experiences which are 
discontinuous from those encountered in everyday life and…requires and promotes ways of 
learning and thinking which often run counter to those nurtured in practical daily activities" 
(Scribner & Cole, 1973, p553). For instance, Boaler (1999) describes how students used a high 
degree of precision in completing a classroom task about carpeting a space, alongside an 
admission that they would have done it differently in the “real world.” 

The notion of in and out of school mathematical thinking is tightly connected to a related 
notion of mathematical identity (Martin, 2000). Learning to do mathematics, in school, can be 
viewed as a process of being socialized to participate in that mathematics classroom (Cobb, 
Wood, & Yackel, 1993). The emerging literature on identity focuses on students’ self-
understandings, and the understandings that are assigned to them, about their relationships to 
mathematics (Horn, 2008). One implication of a focus on students’ relationships to mathematics 
is the posing of problems that refer to contexts that are relevant to students’ out of school 
experiences (Nasir, 2002). The mathematics identity literature typically investigates how 
students are self-positioned, or positioned by others, in relation to the mathematical task at hand 
(Cobb, Gresalfi, & Hodge, 2008; Horn, 2008, Martin, 2000). However, we should also examine 
the ways that students, or teachers, position the mathematical tasks, within a context of a 
mathematics classroom. This paper examines middle and high school student thinking about an 
effect of sample space task and discusses these results using a lens of in and out of school 
mathematical thinking. 
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Effect of Sample Size 
The empirical law of large numbers, in informal terms, states that if a probabilistic 

experiment is repeated over and over, a large number of times, the relative frequency of an event 
will approach its theoretical probability. Alternatively stated, as more trials are repeated, the 
experimental mean of a random variable approaches its theoretical mean. The earliest version of 
this law was proved by Jacob Bernoulli in the 17th century and proved in a more general form by 
Kolmogorov in the 20th century. For example, although a particular casino game might have only 
a very slight edge in the house’s favor, like 51%, the more times that the game is played, the 
closer the casino’s earnings will be to 51% of all of the bets placed. Similarly, the more times 
one tosses a coin, the closer the relative frequency of tails will be to ½.  

Adults have been shown to maintain beliefs in a different law, the “law of small numbers” 
(Tversky & Kahneman, 1972), by which the empirical law of large numbers is applied to small 
samples of data. For instance, Kahneman and Tversky (1972), in what has become a classic task, 
posed the following problem to college students: “There are two hospitals, one small and one 
large, and over the period of a year, each hospital records the number of days on which more 
than 60% of the babies born are boys. Is either hospital more likely to yield such days, or should 
one expect the two hospitals to yield the same number of such days?” Results included only 20% 
of their undergraduate sample choosing the correct answer, the smaller hospital, while 56% said 
that the two hospitals would yield about the same number of such days.  

Kahneman and Tversky explained these results as an instance of the representativeness 
heuristic, by which people determine the probability of an event based on how closely it 
resembles the same parameter in the parent population. Since births generate boys about half the 
time, people typically indicate that there should be roughly an equal number of boys and girls 
born in each hospital, regardless of the sample size of hospitals. Bar-Hillel (1982) replicated the 
hospital problem with college students and obtained similar results. However, when she 
increased the parameter of 60% frequency of born baby boys to higher percentages, like 70%, 
80% or 100%, more students chose the smaller hospital as more likely to have such yields.  

Sampling or frequency distributions. The hospital problem can be framed in two different 
ways, as a sampling distribution or as a frequency distribution (Sedlmeier & Gigrenzer, 1997). 
The sampling distribution format was used by Kahneman and Tversky (1972) as well as Bar-
Hillel (1982), meaning that students consider the span of a year and to determine which of the 
hospitals would be more likely to have days in which 60% of the births were boys. In the 
frequency format, students are asked which hospital would be more likely, on a single day, to 
have 60% of its babies born boys. Sedlmeier and Gigerenzer (1997) aggregated results of studies 
that use alternate forms of this task and found that people are more likely to attend to the effect 
of sample size when the task is framed in terms of frequency distributions.  

School students’ thinking about sampling. School age children, even when facing the task in 
the frequency distribution format, also have difficulty with the concept that smaller samples are 
more likely to be non-representative than larger samples. Watson and Moritz (2000) adapted the 
hospital problem to a frequency distribution version involving schools, and still, most of the 
students (61%, n=41) said that both samples were as likely to occur. Fischbein and Schnarch 
(1997) posed a sampling distribution version of the hospital problem to middle and high school 
students and found that the students’ seeming lack of attention to the significance of sample size 
was more prevalent among older students than younger students. More of the older students 
committed this error than did the younger students.  
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Fischbein and Schnarch (1997) also presented students with a second sampling task. They 
asked students to compare the likelihood of getting at least two heads on three tosses of a coin 
with the likelihood of getting at least two hundred heads on three hundred tosses of a coin. 
Again, their results showed that a higher proportion of the older students (11th graders and 
undergraduates) indicated that these would be equally likely.  

Fischbein and Schnarch’s counterintuitive results can be explained in terms of a more 
developed ratio schema among older school age students. Tirosh and Stavy (2000) elaborate this 
explanation by describing student thinking on this task in terms of the Same A Same B intuitive 
rule. If the two systems or objects are equal in terms of a quality A, students often indicate that 
those two objects will also be equal in terms of a second quality B. In this case, since there is an 
equal ratio of tails to total coin tosses, 2:3 and 200:300, (Same A), students reason that Same A 
implies equal probabilities (Same B). The hypothesis is that since older students are more adept 
proportional thinkers, they are more apt to use that strategy in tackling tasks such as these. In 
gathering the data described in this article, I posed an effect of sample size task in frequency 
format with the primary aim of further investigating Fischbein and Schnarch’s surprising results.  

 
Methods 

This task was part of a larger study (Rubel, 2002), whose main objectives were to explore 
student thinking about a variety of probabilistic constructs. In this article, I address one discrete 
subset of that study, captured by the following research question: When given frequency 
information, what reasoning do middle and high school students use in comparing the likelihoods 
of two events?  Students were asked to respond to the following prompt: 

Determine which is more likely, and explain your answer: 
a) getting 7 tails on 10 tosses of a coin 
b) getting 700 tails on 1000 tosses of a coin 
c) they are equally likely 

Data Collection Procedures 
The sample was a convenience sample of 173 students in grades 5, 7, 9, and 11 at an 

academically rigorous, independent boys’ school in New York City. I was a teacher at this 
school and was familiar to study participants. I visited each of the twelve represented 
mathematics classes and presented students with information about the process of educational 
research and the nature of this particular study. Students could choose to opt out of participating 
in the study, and were given an opportunity to ask questions about the research. Students 
completed the Probability Inventory during a regular mathematics period. Responses were 
initially aggregated according to the students’ answers, and then were categorized a second time 
in terms of justification type. 

The second phase of data gathering was the clinical interviewing of 33 of the 173 students, 
stratified to represent each of the age groups and classes (five 5th graders, seven 7th graders, 
twelve 9th graders, and nine 11th graders). These interviewees were selected primarily on the 
basis of their responses to the Probability Inventory, so as to ensure the representation of a 
variety of common answers and justification types to different tasks. Interviews were conducted 
by the researcher within a week of a student’s completion of the Inventory; each interview lasted 
between twenty-five and forty-five minutes. 
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Interviews were semi-structured, with the primary goal of gaining greater detail about the 
specific student’s thinking by using “How did you get this?” or “Why does this work?” types of 
questions.  

 
Results 

Nearly all of the students’ responses (95%) can be divided into two categories, that 7 tails 
out of 10 tosses is more likely, the correct answer, or that the two events are equally likely, the 
common misconception.  

 
Table 1 
Distribution of Responses 

 Grade 5 
(n=36) 

Grade 7 
(n=45) 

Grade 9 
(n=50) 

Grade 11 
(n=42) 

Total 
(n=173) 

7 tails out of 
10 tosses is 
more likely 

17% 
(6) 

13% 
(6) 

22% 
(11) 

40% 
(17) 

23% 
(40) 

Equally 
likely 

78% 
(28) 

87% 
(39) 

68% 
(34) 

55% 
(23) 

72% 
(124) 

 
Only 40 students (23% of the sample) indicated that 7 tails out of 10 tosses is more likely. 

Students used one of the three justifications for this response, described here in order of 
decreasing frequency. Many students explained their thinking with some form of the empirical 
law of large numbers.  For instance, one student wrote, “It is easier to get a large number out of a 
small number than a large number out of a large number.” The second most frequent justification 
was that 7 tails out of 10 is more likely since seven is many fewer tails than 700.  Finally, the 
third justification category related to exactness. These students reasoned that 7 tails out of 10 is 
more likely since there are eleven possible numbers of tails on 10 tosses, whereas there are 1001 
possible numbers of tails on 1000 tosses. 

As shown in Table 1, nearly three-quarters of the sample, 124 of 173 students answered that 
7 tails out of 10 tosses is as likely as 700 tails out of 1000 tosses.  Unlike Fischbein and 
Schnarch’s results, this response was not more common among the older students. Students’ 
justifications to this incorrect answer belonged to two categories. Most of these students offered 
justifications for their choice based on equal ratios, equal fractions, or equal percentages, using 
Same A Same B thinking (Tirosh & Stavy, 1999). However, other students used the 50-50 
approach (Rubel, 2007), by which they over-generalized the 50% likelihood of a specific 
outcome in the single event case to an outcome of a broader, compound case. In other words, 
these students indicated that 7 tails on 10 tosses is as likely as 700 tails out of 1000 tosses 
because both situations are “50-50.” 

 
Discussion 

In addition to the written component of my study, I also conducted cognitive clinical 
interviews with 33 of the students. In the course of conducting these interviews, I noticed that 
students often had multiple, contrasting approaches to the same problem and that they 
themselves characterized those approaches as in-school or “mathematical” versus out-of-school 
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or “real world.” In the next section, I give two examples of this phenomenon, using excerpts 
from interviews with two students about this particular task. 

On the written component of the study, Kendall, a 7th grader, penned that 7 tails out of 10 
tosses is as likely as 700 tails out of 1000 tosses. However, in his interview, Kendall revealed 
additional ideas about this task. 
Kendall:  “I have to say that even though both reduce to the same fraction, it would be more 

likely that you’d get 7 out of 10 because then your chances – actually, well, if you’re 
going more likely, probably 7 out of 10 because the higher you go up, the less 
chance you have of being that precise. You know what I’m saying?” 

Researcher: “ Not exactly.” 
Kendall:  “If I flipped a coin ten times, I’d think, again, not on paper, this is more real life, 

there’s probably more of a chance than what you can do on paper. Ten times, there’s 
more of a chance of getting 7. If you flip it 1000 times, getting 700 is, I mean it’s 
possible. For some reason 7 out of 10 just jumps out at me.” 

Researcher: “Were you thinking about this since last week?” 
Kendall:  “That’s not what I wrote. I’ve been thinking about it, what would be more likely. My 

strategy here is on paper.” (Note: in the interview, Kendall had previously mentioned 
answering questions “the math way.”) 

Researcher: “The math way?” 
Kendall:  “If someone just came up to me and asked me this, I would definitely say 7 out of 10 

because 700 out of 1000 just seems like more.” (long pause) 
Researcher: “You’re a basketball player, right? Do you ever take free throws and keep track of 

how many you make?” 
Kendall:  “Yes. The larger number you get, the larger the amount of error. With the free throw 

analogy, it’s not too hard to get 7 out of 10. In real life, it would be hard to keep up 
that, I want to say, ratio.  

Later in the interview, with respect to a similar task about effect of sample space, Kendall 
explained, “It’s easier to get 7 out of 10 in real life. But if you reduce them it’s 7 out of 10. In 
real life, if I was betting, I would not bet on 700 out of 1000.” 
Researcher: “What if it were a question on a math test?” 
Kendall:  “The way I answered it on this. I’d say if you put it into a fraction, it’s 7 out of 10. 

On paper, it makes more sense doing it this way. Usually in math, there’s one 
answer. 7 out of 10 is seven tenths. 700 out of 1000 is seven tenths, and I know 
that’s correct. That’s how I would answer on a math test.” 

This Kendall example demonstrates the significance of a student’s beliefs about 
mathematics and what it means to do mathematics in school. While Kendall explained in his 
interview the exactness justification as well as the empirical law of large numbers, he 
characterized those methods as being appropriate for outside of the classroom. Even in the face 
of these ways of thinking about the effects of sample size, Kendall maintained that the incorrect 
solution, the one that demonstrated that both fractions are equal, was the appropriate solution for 
a mathematics classroom. 

In another interview, with 11th grader, Ned, we gain some additional insight to such 
categories of conflicting answers. Ned described the conflict as being between a concise, 
numerical way of answering the question with an imprecise comparison. 
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Ned:  “The pure math is that they’re the same thing. The probability of 7 out of 10 is the 
same as 70 out of 100. It’s like 7 tenths. But if you actually do it 1000 times, it gets 
less likely to get 700. It’s like the Fight Club; if you have enough stuff, it’s harder to 
do it. 

Researcher: “How’s it like the Fight Club?” 
Ned:  “Because he always says, over a long enough timeline, everything goes to zero or 

something like that. But it’s kind of the same thing. On a long enough span, it’s 
going to be harder to get this percentage.” 

Researcher: “So, are you sticking with this answer?” 
Ned:  “There are two ways to look at it. I chose this way.” 
Researcher: “How do you choose if there are two answers?” 
Ned:  “The way where you say divide 7 by 10 or 700 by 1000. It’s always gonna be this – 

there’s no gray. It’s less easy to prove the other way, even though I understand that 
there’s another way to look at this.” 

Researcher: “Let me change the question. How about comparing getting 10 tails out of 10 tosses 
with 1000 tails out of 1000 tosses?” 

Ned:  (pause) “That’s more like the other way.” 
Researcher: “What about your way: 10 out of 10 is the same as 1000 out of 1000. 
Ned:  “Obviously, they’re not. Obviously, it’s not the same: 1 out of 1 or 1000 out of 1000. 

So from thinking about it, it’s not the same possibility. But on paper, it is. (pause) 
Ok, so 700 out of 1000 tails and 7 out of 10 tails. How much more likely is 7 out of 
10?” 

Researcher: “You said they were equally likely.” 
Ned:  “I know, on paper, they’re equally likely. But if you’re going to say one is more 

likely, then how much more likely? I want to know how much more. If you can’t 
figure it out, then the way you can figure it out is the way I did it.” 

Ned positioned the erroneous Same A Same B approach as being “pure math,” and then 
continued to describe an analysis of the situation using the empirical law of large numbers. He 
seemed to accept the fact that he had indicated two conflicting answers to the same question. 
Then, in response to an alternate task, selected as way to initiate cognitive conflict (Borovcnik & 
Peard, 1996), similar to Kendall, he categorizes the Same A Same B approach as being the way 
to proceed “on paper.” When I push him to reconcile this conflict, he persists that “on paper,” the 
two frequencies are equally likely. The mathematical argument posed by the empirical law of 
large numbers did not allow him to quantify the likelihoods of either frequency, and 
quantification seems to be a necessary component of correct thinking “on paper,” or in school.  

 
Conclusions 

The interview segments dealing with effects of sample size items contained a common 
theme: there were instances of students at all grade levels who differentiated between a “math 
answer” and a “real world” answer to a single question. In the case of this particular task, the 
“math answer” was the incorrect answer, that 7 tails out of 10 tosses would be as likely as 700 
tails out of 1000 tosses because of equal ratios. Even though these students’ expressed “real 
world” answers that were, in fact, well aligned with normative mathematics, they favored the 
incorrect “math answer” because it involved an arithmetic operation.  
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On paper, it seemed that these students all had the common Same A Same B misconception, 
that equal ratios imply equivalent probabilities, as discussed by Tirosh and Stavy (2000) and 
Fischbein and Schnarch (1997). Yet when interviewed, these students revealed a great deal more 
thinking about the problem than appeared on the written page. This phenomenon has some clear 
assessment implications. Mathematics teachers, and certainly states and school districts, assess 
learning and understanding by evaluating students’ written responses to pencil and paper tasks. 
Implicit in that process is the assumption that students will write what makes most sense as an 
answer to the given question. However, the results reported in this article demonstrate that it is 
not only possible, but likely, that students have multiple, conflicting responses to a given task, 
especially when that task is contextualized in terms of a real world phenomenon. This study has 
shown that students’ beliefs about school mathematics, and their sense of what it means to do 
mathematics in school, can operate as a filtering mechanism by which they designate which 
ideas are appropriate for written, school responses. 

Bringing relevant contexts into the teaching of mathematics is assumed to be useful in that it 
serves as a way for students to view mathematics as being pertinent to their lives and also that it 
enhances understanding by facilitating sense making of the various connections between the 
problem context and corresponding mathematical models or representations. However, the 
results reported in this article caution us to be careful about these assumptions. 

Even more interesting, though, is the question as to why students view a distinction between 
thinking in the “real world” and thinking in a mathematics classroom. We typically categorize 
school mathematics tasks as being either context free or related to the “real world.” But since the 
“real world” mathematics tasks that we pose in the classroom are typically stripped of most of 
their contextual features, perhaps we have inadvertently given students a clear message that the 
thinking that one does in mathematics classrooms is very different from the thinking one does 
outside of school. 

 
Notes 

Preparation of this article was made possible, in part, by the National Science Foundation under 
Grant No. 0742614. Any opinions, findings, and conclusions or recommendations expressed in 
this material are those of the author(s) and do not necessarily reflect the views of the National 
Science Foundation.  
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The need to think statistically stems from the presence of variation. Statistical thinking embodies 
understanding of how and why to engage in statistical problem-solving processes and 
understanding of the fundamental concepts that underlie these processes (Ben-Zvi & Garfield, 
2004). Variation plays a crucial role throughout statistical problem solving. This paper 
describes experienced secondary statistics teachers’ conceptions of statistical variation,   
articulated across design, data-centric and modeling perspectives. Results reveal that these 
advanced learners of statistics hold three distinctly different types of conceptions of variation: 
Expected but Explainable and Controllable, Noise in Signal and Noise, and Expectation and 
Deviation from Expectation.  
 

Variation and Statistics 
Statisticians view students’ development of statistical thinking as fundamental to statistics 

education (e.g., Cobb & Moore, 1997). In general terms, statistical thinking includes knowing 
why statistical processes are needed and how to engage in the general process of formulating a 
statistical question, collecting and analyzing data to address the question, and interpreting results 
to answer the question (Ben-Zvi & Garfield, 2004). Throughout statistical investigation, 
variation plays a crucial role (Franklin et al., 2007). Failure to acknowledge variation or to 
anticipate possible sources of variation can render a statistical study meaningless before data 
collection begins. Identifying potential sources of variation allows some of those sources to be 
controlled through methods chosen to collect data and thereby increases the likelihood that 
effects of or relationships among variables of interest can be determined. Variation also plays a 
central role in the analysis and interpretation of data. Measuring variation and accounting for 
variability in the selection of distributions or models to fit the data allows assessment of whether 
independent factors affect dependent factors in ways beyond chance expectation. Variation 
precludes deterministic conclusions about relationships between independent and dependent 
factors from being made, leaving only probabilistically conditioned statements for interpreting 
results about populations of interest. The primacy of variation in statistics leads some 
statisticians to view statistics as the study of variation (e.g., Fisher, 1925).  

The concept of statistical variation is central to the study of statistics and as such warrants 
attention by statistics education researchers. Reflective of the widespread role of variation in 
statistics, researchers have studied learners’ reasoning about variation in a variety of statistical 
areas. Synthesizing this body of work, Shaughnessy (2007) identifies and describes eight 
variation conception types for how learners view variation. Some conception types are limited to 
particular contexts, such as time-series settings for “variability as change over time”, and other 
types represent developing views of variation. For example, focus on individual data values, such 
as extremes and outliers, typifies the conception type of “variability in particular values”. 
Students with this view of variation do not exhibit an aggregate view of data and distribution—a 
view fundamental to sophisticated statistical reasoning like making inferences from data (Konold 
& Higgins, 2002). The types of conceptions of variation identified by Shaughnessy are important 
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for educators to recognize students’ potentially limiting views of variation and students’ views of 
variation in particular areas of statistics. Of equal importance are holistic images of advanced 
learners’ conceptions of variation across multiple areas of statistics to inform developmental 
paths. This study provides an image of mature learners’ conceptions by explicating the 
conceptions of statistical variation exhibited by experienced secondary statistics teachers.  

 
Conceptual Frameworks: Perspectives for Reasoning about Variation and SOLO 

The breadth of learners’ reasoning about variation can be captured by looking at their 
reasoning from three perspectives. In this study, Prodromou and Pratt’s (2006) descriptions of 
data-centric and modeling perspectives for reasoning about distribution have been expanded and 
modified to describe perspectives for reasoning about variation. Addition of the design 
perspective is warranted by the types of thinking associated with reasoning about variation in 
consideration of design. Thinking associated with design includes strategic thinking to plan and 
anticipate problems within practical constraints and noticing and acknowledging variation, 
particularly during selection of investigative strategies (Wild & Pfannkuch, 1999).  

Reasoning about variation from the design perspective entails using context to identify the 
nature of and potential sources of variation and considering design strategies to control variation 
from some of those sources. Reasoning from the data-centric perspective includes measuring, 
describing, and representing variation while exploring characteristics of distributions and using 
those representations to make informal comparisons about the relationships among data and 
variables. Reasoning about variation from the modeling perspective incorporates modeling 
patterns of variability in data or modeling patterns of variability in characteristics of data to 
reason about relationships among data and variables for the purposes of making predictions or 
inferences from data.  

The perspectives provide a framework for considering the breadth of learners’ reasoning 
about variation; the Structure of the Observed Learning Outcome (SOLO) (Biggs & Collis, 
1982) provides a framework for considering the sophistication of that reasoning. SOLO is an 
empirically-derived, neo-Piagetian model of cognitive development that can both describe 
cognitive development and describe the complexity and cogency of knowledge that results from 
learning in response to tasks designed to assess understanding (Cantwell & Scevak, 2004). There 
exists a cycle of three levels of response to describe understanding and cognitive growth:  
unistructural, multistructural, and relational (Biggs & Collis, 1982). For this study, SOLO 
provided a useful lens to design tasks to elicit conceptions and complex reasoning indicative of 
relational reasoning about variation. In particular, the tasks were designed to reveal relational 
reasoning within each perspective and across perspectives. The relational level corresponds with 
responses that exhibit integrated reasoning about variation from a particular perspective and 
integrated reasoning about variation across the three perspectives. In contrast, the unistructural 
level corresponds with responses that focus on a single aspect of variation, and the 
multistructural level corresponds with responses that focus on two or more disconnected aspects.  

  
Data and Data Analysis 

Sixteen teachers with a variety of statistical learning and teaching experiences participated in 
this study. Participants taught statistics for a median of 9.5 years and were selected for their 
leadership roles in statistics education. The primary source of data for determining teachers’ 
conceptions of variation was a 90- to 120-minute semi-structured interview. During the 
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interview, teachers responded to a set of tasks that required them to reason about variation. Each 
task statement was purposefully vague to allow teachers to approach the task from design, data-
centric, or modeling perspectives—approaches that provided insights into aspects of variation 
that seemed to be most prominent for them. The collection of open-ended tasks contained tasks 
that many teachers are not likely to have encountered previously; however, the tasks are 
approachable with introductory-level statistics knowledge.  

Discussion of conception types centers on teachers’ responses to the Consultant Task, part of 
which is shown in Figure 1. The questions and order of questions used with any one teacher were 
determined by the direction taken by the teacher in response to the task statement. By providing 
no information about how administrators selected exams, teachers could respond that the 
samples might be biased, which would lead into reasoning from the design perspective. Because 
the only summary measures included in the statement are the average scores for each sample, 
teachers could request additional information about the data to form a conclusion, leading into 
reasoning from the data-centric perspective. By presenting information about means and asking 
for a comparison between consultants, teachers could respond by suggesting that they would 
conduct a test of inference to form a conclusion, which would lead into reasoning from the 
modeling perspective. 

 
To improve students’ test scores on state assessments, administrators from a large school district 
require students to take practice exams. Two outside consultants create and score the open-ended 
questions from these exams. Although both consultants use the same rubric to score student 
responses, the administrators suspect that the consultants do not interpret and apply the rubric in 
the same way, resulting in differences in scores between the exams scored by the two 
consultants. The consultants’ contract with the district is up for renewal, and the administrators 
are trying to decide if they should renew the contract. They decide to use the most recent practice 
exam to compare the scores assigned from each consultant and to decide whether there is a 
difference in the way the exams were scored. The administrators select 50 exams scored by the 
first consultant and 50 exams scored by the second consultant. They find that the average score 
for the 50 exams scored by the first consultant was 9.7 (out of a possible 15 points), while the 
average score for the 50 exams scored by the second consultant was 10.3 (out of a possible 15 
points). What should the administrators conclude about the scores assigned by these two 
consultants? 

Figure 1. The consultant task. 
 

After teachers described their strategies for analyzing the administrators’ data, they were 
given standard deviations and dotplots of the data separately to elicit additional reasoning from 
the data-centric and modeling perspectives. From the summary measures, teachers were asked to 
describe the distributions they would expect to inform how they described variation and 
interpreted standard deviation. The task was designed with a discrepancy between summary 
measures and dotplots; one of Consultant Two’s test scores was “misentered”—a value of 150 
for a score of 15. The summary measures were calculated using the value of 150, but the dotplot 
only displayed scores on the interval from 0 to 15. Teachers were asked to estimate values for the 
mean and standard deviation of the data displayed in the dotplot and to explain how they 
estimated the values to inform how they used data to reason about variation. They also were 
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asked to reason about what the administrators could conclude, which allowed them to reason 
about variation within each distribution and between distributions using summary measures and 
graphical representations of the data. Teachers had additional opportunities to reason about 
variation from the data-centric perspective in response to additional questions related to the 
corrected summary measures and dotplot for Consultant Two’s scores and questions related to 
size-15 samples. Teachers’ responses to two additional tasks, the Caliper Task and the 
Handwriting Task, further informed the way teachers viewed variation from the design, data-
centric, and modeling perspectives. 

Teachers’ interviews were video-recorded, and recordings were transcribed and annotated 
and subsequently used in analysis. A table was created for each teacher, with columns labeled by 
perspective and containing a list of indicators of reasoning from each perspective. Any time a 
teacher exhibited reasoning about variation from one or more perspectives, the passage was 
copied and pasted from the transcript to the column with the corresponding perspective and 
indicator in the teacher’s table. Using the constant comparative method articulated by Glaser and 
Strauss (1967), teachers’ responses were coded using indicators of reasoning about variation 
from individual perspectives. Teachers’ responses were reread and coded to consider the need for 
further refinement of the list of indicators. During the course of revisiting teachers’ responses to 
tasks, different patterns of reasoning associated with different conceptions of variation began to 
emerge from the data. As continued comparisons were made through multiple additional passes 
through the coded data, distinguishing features of different conceptions were delineated. 
Analysis continued until there no longer existed any conflicts for describing teachers’ 
conceptions of variation. 

 
Results: Types of Conceptions of Variation 

Three types of conceptions of statistical variation emerged from data analysis: Expected but 
Explainable and Controllable (EEC), Noise in Signal and Noise (NSN), and Expectation and 
Deviation from Expectation (EDE).  
Conception: Expected but Explainable and Controllable (EEC) 

Individuals with EEC conceptions of variation see variation as omnipresent, explainable, and 
controllable. Their sense of variation’s omnipresence leads them to expect variation in statistical 
settings, and their view of variation as controllable focuses on design strategies for both 
observational and experimental studies. Their view of variation as explainable aligns with their 
focus on context to identify factors that potentially contribute variability in data and with their 
attraction to experimental designs that allow them to determine causes for variation to establish 
cause-and-effect relationships.  

A view of variation as explainable may be at the heart of privileging experiments over 
observational studies. A primary advantage of experiments is the capacity to establish cause-and-
effect relationships, which provide stronger explanations for variability in data than association 
alone. Haley, one of the two teachers in the study who exhibited EEC conceptions, has a strong 
affinity for experiments. Haley seems to be dissatisfied with the limited inferences that she can 
make from data in the Consultant Task study, which is an observational study. She observes, “I 
don’t understand, if you do a difference of two means, what’s that going to prove?” (Haley, 
Lines 44-46). Haley seems to expect the administrators to want more information than a 
comparison of means allows—she may be looking for a potential cause for variability in 
improved scores or alternatively for a potential cause for variability in the form of changed 
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scores. She notes the administrators’ stated goal of improving scores and suggests that their 
design will yield little information towards achieving their goal: “They want—what—what is 
their goal…they’re trying to get to improve students’ test scores on the state assessment…The 
consultants’ contract—see I’m not quite sure how that’s going to…show improvement. There’s 
no treatment there” (Haley, Lines 58-69). Haley notes that no treatment exists for determining 
how to improve scores—the administrators did not design an experiment. She seems to struggle 
with a design that appears to provide no explanatory power for how to improve scores. Haley’s 
critique of the methods employed by others (in this case the administrators) and subsequent 
consideration of alternative designs that achieve greater explanatory power are characteristic of 
those with EEC conceptions.  

Strategies to control variation are not limited to experimental design. Individuals with EEC 
conceptions also recommend control strategies for observational studies, including the analog to 
blocking in experimental design: stratified sampling. For example, when Isaac is asked how he 
would design the Consultant Task study, he suggests selecting a stratified sample in order to 
sample exams over the entire interval of scores from 0 to 15. He observes that one advantage of a 
stratified random sample over a simple random sample is precisely this dispersed effect. Using a 
stratified sample, he controls variation by imposing greater variation on each set of exams but 
(presumably) reduces variation overall by considering each stratum separately. Isaac even states 
that his goal is control: “If I could get a stratified sample, then I could in a sense control that 
[sample] distribution” (Isaac, Lines 287-288).  

As the examples from Haley and Isaac suggest, individuals with EEC conceptions of 
variation seek to collect data in ways that allow them to discover patterns and relationships in 
data, with a preference for establishing cause-and-effect relationships. They use their knowledge 
of context to implement designs that allow them to control and to explain variation, and they 
tend to do these things naturally and without prompting. The totality of and tightly interwoven 
nature of reasoning about design issues is unique to those with EEC conceptions of variation.  

When individuals with EEC conceptions reason from the data-centric perspective, they tend 
to view data through a lens of expectation—expectation for random variation if they properly 
control and explain variation. In the absence of apparent random variability, they seek 
explanations for aberrations in data. For example, when Isaac has the value of the standard 
deviation computed with the value of 150 for Consultant Two’s scores, he immediately looks for 
an explanation for the magnitude of the value: “the explanation that leaps to mind is that 
somebody’s just flipping a coin here” (Isaac, Lines 493-494). As Isaac’s reaction may suggest, 
when individuals with EEC conceptions reason from the data-centric perspective, their reasoning 
often contains elements reminiscent of their reasoning from the design perspective. In working 
with data, they compare the characteristics and relationships they see with their expectation for 
randomness. When they reason about variation from the modeling perspective, they tend to view 
models through a relationship lens. They model patterns of variability to capture relationships 
among data or among variables and evaluate models according to the extent to which 
relationships are captured. They also use models to determine or confirm the strength or 
significance of the relationships among data or among variables.  
Conception: Noise in Signal and Noise (NSN) 

Central to NSN conceptions of variation are views of summary measures, data patterns, and 
relationships among variables as signals that are sometimes lost within noisy data. Everett and 
Cheyenne, the two teachers in this study with NSN conceptions of variation, see variation as the 
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noise in data for data that does not precisely match underlying parameters, patterns, and 
relationships and thus interferes with identifying signals. Their view of variation as noise focuses 
their attention on exploring data; their desire to find patterns and relationships focuses their 
attention on aggregate features of data distributions while simultaneously considering individual 
datum  that do not clearly fit the patterns and relationships.  

Individuals with NSN conceptions of variation see data exploration as a necessary precursor 
to inference. They explore data to identify potential signals and to gauge the magnitude of noise 
in data before attempting to establish the significance of signals. In response to reading the 
Consultant Task, Cheyenne and Everett both reject making any decision from the means alone. 
Cheyenne indicates that:  

I would have liked to have taken a look at, um, I guess I’m a graphical person. I like to 
see the, the spread of the distribution to see what it is. Just looking at the means without 
knowing anything else about the distribution isn’t gonna help an awful lot in making the 
decision. (Cheyenne, Lines 61-65)  

Through stating a need to see the “spread of the distribution,” Cheyenne seems to refer to a 
“distribution around” (Konold & Pollatsek, 2002) a signal for each distribution to determine the 
strength of each signal and to compare consultants’ data distributions. Everett also notes that he 
would “need to know about the distribution of scores” (Everett, Line 105). Both Cheyenne and 
Everett mention that an observed difference of 0.6 in consultants’ average scores does not seem 
to indicate a problem; without additional information, they hesitate to conclude any difference 
exists. What distinguishes Everett’s and Cheyenne’s reasoning is their desire to have information 
about the distributions and not just information about specific characteristics of the data, namely 
values for measures of variation like standard deviations.  

Both Cheyenne and Everett exhibit revealing indicators of their conceptions as they reason 
while exploring data. They explicitly, thoroughly, and flexibly consider variation, in addition to 
center and shape, when they view data through the lens of distribution. They use the same 
distributional characteristics to compare distributions, considering variation within and between 
distributions while contemplating the relationship between data and the populations from which 
data are drawn. No single characteristic in reasoning about data appears to be exclusive to those 
with NSN conceptions, but the totality of their facility in reasoning about and from data and their 
continued focus on data to reason about variation is unique to those with NSN conceptions of 
variation. 

Individuals with NSN conceptions reason about variation from the design perspective using a 
lens of control. They seek to control variability in data to strengthen signals and to increase the 
probability for identifying signals of interest. In their design considerations, Cheyenne and 
Everett do not focus on expectation or explanation. Their desire is to reduce noise in data to 
isolate a signal in data. Individuals with NSN conceptions tend to reason from the modeling 
perspective either in conjunction with or subsequent to reasoning from the data-centric 
perspective. They tend to use models as signals or in determining the significance of a signal, but 
they typically wait to do so until after they have thoroughly explored data. For example, in 
addition to considering summary measures, Everett suggests comparing size-15 samples by 
considering the likelihood of observing particular distributions of scores if the 30 scores were 
repeatedly combined and randomly divided into two groups. He proposes this data-based 
exploration before he considers conducting a formal parametric test of inference. Similar to how 
Everett sought to determine the relationship between consultants’ scores, individuals with NSN 
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conceptions tend to view models through the lens of relationships, searching for patterns and 
relationships among data values or among variables.  
Conception: Expectation and Deviation from Expectation (EDE) 

Views of variation as EDE were most prevalent among the teachers in this study. The most 
distinctive feature of EDE conceptions is variation juxtaposed with expectation. Those with EDE 
conceptions often approach statistical situations with some hypothesized expectation stemming 
from their statistical question or from the context in which their question is set—expectation for 
particular outcomes or measures (including variability), parameter values, patterns of variability, 
or relationships among variables. In addition to expected amounts of variation, they view 
variation as deviation from expected outcomes or measures, of statistics from parameters, of 
observed data from expected patterns, or of observed data from expected relationships.  

Individuals with EDE conceptions of variation approach inferential settings with expectations 
for relationships among data and among variables, including relationships between statistics and 
parameters. They attempt to determine if observed statistics are probable given their stated 
expectations. Every teacher with an EDE view of variation suggested conducting a t-test in their 
initial analysis of the Consultant Task data. For example, Blake suggests using a t-test to 
compare means and to establish if one mean is significantly higher than the other. For Blake, the 
question is not whether a difference exists—he expects to see a difference—but whether the 
observed difference in means deviates from his expectation of zero with low probability. 

You can see that it’s nine point seven versus a ten point three, we can obviously, uh, do 
some sort of t-test or something like that on it to, to see if that result is significant… We 
got the one score was ten point three. We could, everybody could see that that was 
higher. The issue and the statistic—from a person who’s trained in statistics is it 
significantly higher. (Blake, Lines 56-66) 

Although Blake does not explicitly acknowledge that he uses a theoretical t- distribution to 
model the situation, he later notes that “the t-test is a nice approximation to the model we’re 
seeing” (Blake, Line 170). He clarifies that to him significance means “not reasonably attributed 
to chance” (Blake, Line 70). Focus on the difference in means and determining whether the 
difference deviates significantly from expectation seems to dominate Blake’s initial 
considerations for analysis and the initial analysis considerations for others with EDE 
conceptions. They invoke comparisons of sample characteristics with theoretical models. 

Characteristic of reasoning that distinguishes EDE conceptions of variation from other 
conceptions is the totality of reliance on expectation and use of models to develop a sense of 
expectation, to examine deviation from expectation, and to decide whether there is too much 
deviation from expectation. Individuals with EDE conceptions seem to naturally incorporate 
models into their reasoning, and they are most adept at reasoning about variation from the 
modeling perspective.  

Individuals with EDE conceptions of variation view design through the lens of control, 
attempting to design studies that control variability to minimize deviation from expectation and 
to increase the probability for detecting significant deviations from expectation. They reason 
from the data-centric perspective using a lens of expectation as they explore data to gain a sense 
of expectation or to explore whether data conforms to expectation. For example, some sense of 
expectation for standard deviations can be formed from reading the Consultant Task description. 
The range is 15, which suggests that the standard deviation must be less than 15. Dustin’s and 
Hudson’s strong reactions to a standard deviation value of 20.2 for Consultant Two’s scores 
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certainly suggest that the value significantly deviated from their expectations. Hudson says, 
“holy moly!” (Hudson, Line 563), and Dustin reacts, “Yowza” (Dustin, Line 326). Their strong 
reactions and the reactions of several others with EDE conceptions were the strongest external 
reactions in response to the large standard deviation value. Characteristic of EDE conceptions, 
their affinity for expectation is revealed in their reasoning from multiple perspectives. 
 

Discussion 
This study sought to answer the question of what conceptions of statistical variation 

experienced secondary statistics teachers, as mature learners, exhibit. Three types of conceptions 
were observed. Individuals with EEC conceptions see variation as something that needs to be 
controlled and explained and hence tend to focus their attention on issues of design. In contrast, 
individuals who harbor NSN conceptions see variation as something that needs to be explored, 
which manifests in strong consideration of variation during exploratory data analysis. Individuals 
who conceive of variation as EDE see variation as something that can be expected and modeled, 
and their reasoning is typified by a focus on models, particularly models related to inference. As 
their different foci of design, exploratory data analysis, and inference might suggest, individuals 
with EEC, NSN, and EDE conceptions view variation from primarily the design, data-centric, 
and modeling perspectives, respectively. The ways in which they reason about variation differ in 
relation to constructs associated with each perspective. These three types of conceptions reveal 
identifiably unique views of variation yet do not appear to form a hierarchy with regard to 
understanding. In a portion of the study not reported here, it was shown that at least one teacher 
with each conception exhibited reasoning consistent with robust understanding of variation. 
Several teachers exhibited what appears to be superficial and at times faulty reasoning about 
variation suggestive of one of the three types of conceptions of variation. Their conceptions 
appear to still be developing. This study presents mature learners’ views of variation. When 
considered in tandem with results from prior research, this study offers images of what learners’ 
developing conceptions might develop into and may offer insights into how instruction can be 
designed to facilitate that development. 
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This article will demonstrate that when probabilities are based on the perceived randomness of 
sequences of outcomes, the probabilities are in accord with, or model, a subjective-sample-
space. Further, it will be demonstrated that an individuals’ subjective-sample-space is 
partitioned according to the individuals’ interpretation of the sequence of outcomes. Through the 
employment of a novel theoretical framework, which aligns individuals’ verbal descriptions of 
events with more appropriate set descriptions of those events, it will be revealed that certain 
individuals’ respond to the task of comparing sequences of outcomes via a subjective-sample-
space partitioned according to switches. To achieve the above mentioned goals, respondents are 
presented with different sequences of heads and tails, derived from flipping a fair coin five times, 
and asked to consider the sequences chances of occurrence.  
 

Introduction 
A variety of research in psychology (e.g., Kahneman & Tversky; 1972, Tversky & 

Kahneman, 1974) and mathematics education (e.g., Batanero & Serrano, 1998; Borovcnik & 
Bentz, 1991; Chernoff, 2008; Falk, 1981; Green, 1983; Hirsch & O’Donnell, 2001; Konold, 
1989, 1991, 1995; Konold, Pollatsek, Well, Hendrickson & Lipson, 1991; Konold, Pollatsek, 
Well, Lohmeier & Lipson, 1993; Lecoutre, 1992; Rubel 2006; Shaughnessy, 1977) is derived 
from presenting individuals with sequences of outcomes and asking said individuals to consider 
their chances of occurrence. More specifically, three (theoretical or cognitive) models—Tversky 
and Kahneman’s (1972) representativeness heuristic, Konold’s (1989) outcome approach, and 
Lecoutre’s (1992) equiprobability bias—which were developed to account for responses to (what 
will be denoted here as) the comparative likelihood task, have subsequently dominated the 
research literature. In general, this article contributes to research in mathematics education 
(presented above) by introducing a new model to account for responses to the comparative 
likelihood task. In specific, the main objective of this article is to demonstrate that certain 
individuals answer the comparative likelihood task according to a subjective partition of the 
sample space (i.e., via a subjective-sample-space), which is based on an individuals’ 
interpretation of the sequence of outcomes.  

 
Theoretical Considerations 

Individuals, when responding to the comparative likelihood task, reason in (at least) one of 
three ways: normative, heuristic, and informal. Correct responses are associated with normative 
reasoning, while incorrect responses are associated with heuristic and informal reasoning. As 
mentioned, certain models have been developed to account for incorrect responses. More 
specifically, representativeness (Kahneman & Tversky, 1972) was developed to account 
incorrect responses derived from heuristic reasoning, the equiprobability bias (Lecoutre, 1992) 
was developed to account for correct responses also derived from heuristic reasoning, and the 
outcome approach (Konold, 1989) was developed to account for incorrect responses derived 
from informal probabilistic reasoning.  
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Heuristic Reasoning 
The representativeness heuristic. In examining how “people replace the laws of chance by 

heuristics” (Kahneman & Tversky, 1972, p. 430), the authors produced an initial investigation 
into the representativeness heuristic. According to their findings, an individual who follows the 
representativeness heuristic “evaluates the probability of an uncertain event, or a sample, by the 
degree to which it is: (i) similar in essential properties to its parent population; and (ii) reflects 
the salient features of the process by which it is generated” (p. 431). Alternatively stated, and 
more specifically related to the comparative likelihood task, the determinants of 
representativeness were broken down into two particular features: similarities between the 
sample and its parent population and apparent randomness. The authors theorized that events are 
considered more probable when appearing more representative; and, similarly, events are 
considered less probable when appearing less representative. Kahneman and Tversky (1972) 
presented individuals with birth sequences that were considered equally likely, but were 
hypothesized by the authors to not be “equally representative” (p. 432). Of the three sequences 
presented—GBGBBG, BGBBBB and BBBGGG—the sequence BGBBBB was considered less 
likely than GBGBBG because BGBBBB does not reflect the ratio of boys to girls found in the 
parent population. Further, BBBGGG was deemed less likely than GBGBBG because BBBGGG 
did not reflect the random nature associated with the birthing of boys and girls in a family.  

The equiprobability bias. Lecoutre’s (1992) research led to another bias, which should, 
according to her, “be added to the list” (p. 558) of heuristics and biases from psychology. More 
specifically, Lecoutre’s research was based on interpreting comparative likelihood task responses 
that involved a relationship between randomness and equiprobability. Lecoutre (1992) declared, 
“random events are thought to be equiprobable ‘by nature’” (p. 557). For example, in the 
comparative likelihood task the two sequences of coin flips HHTTH and HHHTH would be 
considered equally likely, because flipping a coin is a random process and thus “the two results 
to compare are equiprobable because it is a matter of chance” (p. 561). 
Informal Reasoning 

The outcome approach. “A model of informal reasoning under conditions of uncertainty, the 
outcome approach, was developed to account for the nonnormative responses of a subset of 16 
undergraduates who were interviewed” (Konold, 1989, p. 59). Application of the outcome 
approach demonstrated that incomprehensible statements could be accounted for with a new 
interpretation of how subjects were reasoning about probability (Konold, 1991). In essence, 
Konold recognized that normative interpretations and heuristic interpretations of probability did 
not capture the multivalence associated with the comparative likelihood task, and probability in 
general. Konold (1995) went further and claimed that multiple models—normative, heuristic, 
and informal—could conflict in responding to a question such as the comparative likelihood task. 
Konold et al. (1991), in examining for consistencies over different problems, found “switching 
among alternative perspective[s] of uncertainty” (p. 360). Further complicating the matter, 
“different perspectives can be employed almost simultaneously in the same situation” (p. 360) 
because “people use a variety of frameworks and beliefs concerning uncertainty” (p. 361). To 
explicate their point, Konold et al. (1993) gave students a most likely version of the comparative 
likelihood task followed by a least likely version. It was found that for the most likely version 
some subjects answered using the outcome approach, but for the least likely version subjects 
answered using the representativeness heuristic. Having demonstrated individuals’ ability to 
have different problems cue different knowledge Konold et al. (1993) concluded, “in one 
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problem, a person may appear to reason correctly, but in another, this same person may reason in 
ways that are at variance with probabilistic and statistical theory” (p. 393). 

 
Abductive Reasoning Considerations 

Consider, for the moment, the following situation: If one studies hard, then one will get good 
grades. Just because one achieves good grades does not necessarily mean that one studied hard. 
For example, one may have gotten good grades because one cheated. Thus, it is more appropriate 
to declare that if one gets good grades the most probable or best explanation is that one has 
studied hard, which may or may not be the case. In other words, the observation of good grades 
does mean that one cannot declare with certainty that studying hard is the appropriate rule used 
for explanation. However, through abductive reasoning one can hypothesize that studying hard 
was the reason for the good grades; and if the hypothesis were true, then the achievement of 
good grades would follow suit. Consequently, there would then exist reason to suspect that 
studying hard, the hypothesis is true. Similar approaches have been used to develop the 
representativeness heuristic, outcome approach, and equiprobability bias.  

Abduction, also widely known as inference to best explanation, can be characterized as 
developing a good or the best hypothesis in order to explain observations. In general, facts are 
used as a starting point, a particular hypothesis—derived from inferences and used to best 
explain the facts observed—is presented, and if it is the case that if the hypothesis were true it 
would best or most likely explain the observed facts, there exists reason to suspect the theory 
hypothesized is true (Lipton, 1991). However, one cannot declare for certain that an individual is 
in fact answering the comparative likelihood task with, for example, the representativeness 
heuristic. Further, it cannot be claimed with certainty that individuals, any individuals, employ 
any of the cognitive models known when answering the comparative likelihood task. 
Hypotheses, like the representativeness heuristic, the outcome approach, and the equiprobability 
bias can be seen as (1) models hypothesized to explain observed results, and (2) as new research 
created through the abduction process when analyzing comparative likelihood task responses. 
Nevertheless, the models discussed have garnered enough support that they saturate comparative 
likelihood task research literature; and, moreover, the saturation has occurred to such a degree 
that often the models are misconstrued as matter-of-fact in declarations such as, “the student was 
using the outcome approach.” 
 

A New Model: The Subjective-sample-space 
The application of personal theories or informal conceptions is found in many areas of 

probability education research, including sample space. For example, “to justify the probabilities 
for the outcomes of dice games, learners construct informal sample spaces” (Speiser & Walter, 
2001, p. 61). The inferred structure of personal sample spaces has been used to demonstrate 
particular anomalies found in probability education research. Speiser and Walter demonstrated 
that certain individuals found, for example, the outcome (5,6) for the experiment of rolling two 
dice to be as likely as the outcome (6,6). Further, researchers extrapolated the lack of 
discernment between pairs to all outcomes (e.g., (3,4) and (4,3)). Consequently, researchers 
hypothesized—and then concluded—that the sample space employed by certain individuals 
answering the question consisted of 21 possible outcomes and not 36 outcomes, because 
individuals treated the outcome (5,6) and (6,5) as one outcome. Alternatively stated, responses to 
the task explicated a certain structure of the personal sample space used when answering the 
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task. Similarly, the subjective-sample-space models a more nuanced structure of sample space, 
partitioned according to an individuals’ interpretation of the sequence of outcomes, used when 
answering the comparative likelihood task. 

 
Task and Participants 

Participants in this study were 239 prospective teachers. More specifically, there were 163 
prospective elementary teachers enrolled in a methods for teaching elementary mathematics 
course; and 76 prospective secondary teachers enrolled in a methods for teaching secondary 
mathematics course. The 163 elementary teachers consist of students in five different classes 
over two different years, taught by two different instructors. The 76 secondary teachers consist of 
two classes taught by the same instructor in two different years. In all instances, the task (seen in 
Figure 1) was presented prior to the introduction of probability to the course. 

 
Which of the following sequences is least likely to result from flipping a fair coin five times. 

Provide reasoning for your response. (A) H H T T H (B) H H H T T (C) T H H H T 
(D) H T H T H (E) T H H T H (F) All sequences are equally likely to occur 

Figure 1. Comparative likelihood task implemented in the study. 
 

Results 
Of the 239 participants who took part in the study approximately 82 percent (197/239) 

correctly chose that each of the sequences presented were equally likely to occur. For elementary 
teachers the percentage was approximately 81 percent (132/163), and for secondary teachers the 
percentage was approximately 86 percent (65/76). Alternatively, the 42 participants (roughly 
eighteen percent) that chose a normatively incorrect answer to the comparative likelihood task 
were comprised of 8, 13, and 20 participants who chose HHHTT, THHHT, and HTHTH as least 
likely, respectively. For elementary teachers 8, 7, and 16 chose HHHTT, THHHT, and HTHTH 
as least likely, respectively. For secondary teachers 0, 6, and 4 chose HHHTT, THHHT, and 
HTHTH as least likely, respectively. Also of note, within the five normatively incorrect 
responses to the task, one participant chose HHTTH least likely and zero participants chose 
THHTH as least likely.  

 
Theoretical Framework 

“Alternative set descriptions of the sample space can act as an investigative lens for research 
on the comparative likelihood task” (Chernoff, 2008, p. 313). More specifically, Chernoff 
introduced three alternative set partitions of the sample space—based on switches, runs, and 
switches and longest run organizations of the sample space’s elements—as theoretical 
frameworks for comparative likelihood task responses. Chernoff’s switches partitions of the 
sample space will be employed as the theoretical framework for analysis of results.  

 
Analysis of Results 

The analysis of results is (recognizing contextual limitations) restricted to response 
justifications of the 20 respondents (e denotes elementary teacher, s denotes secondary teacher) 
who chose sequence HTHTH least likely to occur. 
Response Justifications for HTHTH as Least Likely 
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Response justifications (1): pattern v. randomness & likelihood. 
(e) Claire: 1st choice: (F) All have the same likelihood of occurring is what I think. It’s 
random. 2nd choice: (D) The chances of a nice tidy pattern like these seems unlikely. 
(e) Michael: It’s all pretty random but HTHTH seems too perfectly organised.  
(e) Sayid: It’s hard to find a pattern, so the ones that are the most random are most likely 
to happen 
(e) Sun: I think it’s not likely for it to follow a pattern. 
(e) Aaron: I think it’s [HTHTH] least likely because it has a pattern. 
(e) Ana: random flipping does not produce neat patterns like this. 
(s) Eko: c is least likely as it is patterned. Patterns are less likely to arise from random 
events, but b would be the second less likely as there are 3H in a row, but it is not highly 
unlikely, just more so than a and e 
(s) Jin: I would think the odds of getting a perfect HTHTH pattern are slim (at least one 
letter would be off most of the time) 

The italicized portions of the response justifications presented above evidence a connection 
between pattern versus randomness (read: lack of pattern) and likelihood for all eight individuals. 
However, individuals’ responses, while alluding to randomness, are in fact discussing the 
appearance or perception of randomness found in the sequences. For example, Aaron’s response 
indicates that HTHTH is least likely because it has a pattern. Further evidenced from the 
responses and in accord with Kahneman and Tversky’s (1972) assertion and conclusion, the 
more patterned (i.e., less random) the sequence the less likely its occurrence, and the less 
patterned (i.e., more random) the sequence the more likely its occurrence. For example, and 
according to Sayid, “the ones that are most random [read: least patterned] are most likely to 
happen.” Whereas the other seven responses (e.g., Sun’s response: “I think it’s not likely for it to 
follow a pattern”) demonstrate that a neater or tidier the pattern means the less likely the chances 
of occurrence. 

Response justifications (2): switches & likelihood. 
(e) Kate: I believe there is a 50/50 chance that the first flip will be a heads or a tails. 
Therefore, I believe that D is least likely to occur b/c the odds of flip a coin from heads 
to tails is fairly slim. 
(e) Ben: I think HTHTH is low percent because it appears alternately. 
(e) Ethan: In my opinion, ‘D’ is the least likely occur because it is hard that different 
sides continually appear. 
(e) Penny: it’s least likely that every flip will alternate between heads/tails. However, 
I think all sequences are equally likely to occur. 

The emboldened portions of the response justifications presented above evidence a 
connection between switches and likelihood. More specifically, each of the four responses 
evidence that the perfect alteration of heads and tails (e.g., HTHTH), that is the maximum 
number of switches possible for a sequence, would correspond to the least likely of the 
sequences to occur. According to Penny, “it’s least likely that every flip will alternate between 
heads/tails.” The connection between switches and perceived randomness seen in the 
justifications above aligns with previous research results (e.g., Falk, 1981), which demonstrated 
frequent switches were indicative of the appearance of randomness. 

Response justifications (3): pattern v. randomness & likelihood & switches. 
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(e) John: D is least likely to occur because the chances of having the coin land on the 
opposite side each time to create a pattern of HTHTH are very slim, the longer the 
pattern the less likely it will be. Also, to get 3 H’s in a row [sequence B] is probably next 
least likely.  
(e) Hurley: Although there is a 50% chance of getting a H or a T. It is very unlikely that 
you can get a sequence of alternating sides randomly. The probability of this sequence 
happening would be the least likely. 
(e) Jack: With D, an alternating sequence could occur but not necessarily in this order, H 
+ T are more likely to occur at a more random interval.   
(e) Sawyer: (D) is least likely to occur because with a 50/50 chance it is unlikely that 
the results will be alternating H/T with each coin flip. It is more likely that the results 
would be random. 
(e) Juliet: I believe that D is the least likely answer because it is too perfect of a pattern. 
Even though there is a 50/50 chance of the coin coming up heads or tails, it is very 
unlikely that it would rotate between the two each flip. 
(e) Tom: because the others are more random they are more likely, but to alternate 1 and 
1 each time no, that’s like orchestrated fairness…doesn’t happen it has to be guided. 
 (s) Rose: If a coin is flipped five times, the chance of it going from head to tails, head 
to tails…is not likely. Rather, the coin will likely go from tails and head randomly. 
 (s) Bernard: Although not impossible, I think c (the alternating HTHTH) is least likely 
to occur b’cuz flipping a coin is a random act and option c is not. 

Whereas the first set of response justifications evidenced a relationship between the 
appearance of randomness (determined through pattern or lack thereof) and likelihood, and 
whereas the second set of response justifications evidenced a relationship between switches and 
likelihood, the third set of response justifications evidence a relationship between (1) the 
appearance of randomness (derived from presence or absence of pattern), (2) likelihood, and (3) 
switches (or alterations). More specifically, the italicized portions above evidence a connection 
between randomness and likelihood, the emboldened portions evidence a connection between 
switches and likelihood, and the italicized and emboldened portions evidence the relationship 
between appearance of randomness, likelihood, and switches. For example, Hurley declares (in 
part), “It is very unlikely that you can get a sequence of alternating sides randomly.” In Hurley’s 
response, for example, the low likelihood, while connected to the perceived absence of 
randomness due to the pattern, is being determined by the alteration of the coin from heads to 
tails. In fact, and for all eight responses shown above, the likelihood of the sequence is derived 
from the absence of presence of pattern, also known as perceived randomness. However, the 
perceived randomness is derived from the alteration or switches of the sequence. As such, and 
syllogistically, it is contended that the switches attribute of the sequence element is being 
employed to determine the likelihood of the sequence. Alternatively stated, it is contended that a 
subjective-sample-space partitioned according to the switches attribute of the sequence, in this 
instance, is how subjects are interpreting the sequence element of the comparative likelihood task 
and subsequently responding to the task. 

The justifications provided in participants’ responses indicate that the subjective-sample-
space they are describing corresponds to an entirely different partition of the sample space than 
responses are conventionally and traditionally pitted against. According to Chernoff (2008), 
based upon the verbal descriptions presented, a more appropriate or natural set description, 
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corresponding to the verbal descriptions given, would be to partition the sample space according 
to switches, as shown in Table 1. When the response that HTHTH is least likely is pitted against 
the switches partition of the sample space, the response can be considered correct, in that 
HTHTH is the least likely sequence to occur, because n(4switches)<n(3switches)=n(1switch)< 
n(2switches). In other words, the event of alternating sides every time does have the least 
number of outcomes when compared to all of the other sequences, and, thus, would be least 
likely. As such, and through an alternative interpretation, all eight people represented in 
Response justifications (3) can be seen as ‘correctly’ answering the task. For example, Rose can 
be interpreted as correct in declaring that “if a coin is flipped five times, the chance of it going 
from head to tails, head to tails…is not likely.” Further, the responses from Response 
justifications (2) when pitted against the switches partition of the sample space can also be 
considered as correct in their answering of the task. Thus, 12 out of 20—the claim for 20 out 20 
cannot be made because what the ‘pattern’ is derived from was not able to be determined in 
Response justifications (1)—response justifications for HTHTH being least likely to occur can be 
considered correct when pitted against the switches partition of the sample space. 

 
Table 1. The Sample Space Partitioned According to Switches (Denoted S) 

0 Switch 1Switch 2Switche
s 

3Switche
s 

4Switche
s 

HHHHH HHHTT HHTHH HHTHT HTHTH 
TTTTT TTTHH TTHTT TTHTH THTHT 
 TTHHH HHTTH HTHHT  
 HHTTT TTHHT THTTH  
 HHHHT HTTHH THHTH  
 TTTTH THHTT HTTHT  
 THHHH HHHTH THTHH  
 HTTTT TTTHT HTHTT  
  HTHHH   
  THTTT   
  THHHT   
  HTTTH   

n(0S) = 2 n(1S) = 8 n(2S) = 12 n(3S) = 8 n(4S) = 2 
 

Conclusion and Discussion 
If it were the case that individuals are employing a subjective-sample-space partitioned 

according to the switches attribute of the sequence element, then individuals would think that a 
perfect alteration for the sequence (i.e., HTHTH) is least likely to occur, which was evidenced 
through Chernoff’s (2008) switches partition of the sample space. As such, there exists reason to 
accept the claim that the employment of a subjective-sample-space under conditions of 
uncertainty, in this instance organized according to switches, is taking place when answering the 
comparative likelihood task, which lends support to the main objective of the article: To 
demonstrate that certain individuals answer the task according to a subjective-sample-space 
partitioned according to their interpretation of the sequence element of the comparative 
likelihood task. However, when abduction is used as a mode of reasoning, minor premises, such 
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as the representativeness heuristic, outcome approach, equiprobability bias, and subjective-
sample-space, cannot be declared with certainty. As such, despite conclusions presented, none of 
the assertions made in this research, nor in related prior research, can be declared with 
certainty…quite fitting for research in probability.  
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When participants in inquiry refer to an object, they may, unbeknown to them, construct the 
object differently. They thus tacitly attribute different idiosyncratic senses for their respective 
constructions and consequently draw different inferences regarding the phenomenon under 
investigation. A single person, too, may shift between alternative constructions of a 
mathematical object, assigning them different senses, thus arriving at apparently competing 
conclusions. Only upon acknowledging the different constructions can the person begin to 
explore whether and how the differing conclusions are in fact complementary. Building on 
empirical data of students engaged in interview-based tutorial activities targeting fundamental 
probability notions, we explicate breakdowns such false-contradiction introduces into learning 
processes yet suggest opportunities such ambiguity fosters. 
 

‘Seeing as....’ is not part of perception. And for that reason it is like seeing and again not like. 
(Wittgenstein, 1953) 

 
Objectives 

Objects per se do not carry any meaning—all meaning is mentally constructed. The same 
principle holds for classroom learning materials, be these plastic tokens, spatial–numerical 
diagrams, or symbolic inscriptions. Yet this fundamental tenet of phenomenology and 
constructivism—that meanings of objects are mediated by implicit mental structures and are 
anyhow transparent in the ongoing Dasein of goal-oriented activity—may be difficult for a 
teacher to bear in mind let alone apply successfully in the real-time contingencies of engaged 
mathematics discourse. Moreover, students are often unaware of the constructed nature of their 
own mathematical perception of objects and therefore do not differentiate between objects per se 
(the distal stimuli) and their personal constructions of these objects (the proximal stimuli) 
(Wittgenstein, 1953). Consequently, teachers and students may be explicitly speaking about the 
same object yet implicitly ascribing to it diverging meanings and related inferential implications, 
and therefore their communication fidelity is a priori compromised (e.g., Borovcnik & Bentz, 
1991). Nevertheless, a teacher can be well aware that two or more students are seeing a 
mathematical object differently even though they are using similar lexical labels to index the 
same object, and a skilled teacher can capitalize on these covert ambiguities to orchestrate 
productive discursive negotiations (Moschkovich, 2008). Still, teachers cannot always interpret, 
monitor, foster, or amend students’ idiosyncratic constructions so that they accord sufficiently 
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with normative constructions (i.e., so that the meanings are taken-as-shared, Cobb, 2005). Thus, 
covert communication breakdowns in classroom discourse may be more ubiquitous than one 
might expect, with interlocutors bearing personal meanings that overlap just enough to preclude 
overt breakdown. 

Yet is such covert polysemy and the communication breakdowns it engenders necessarily 
detrimental to learning? Here we wish to argue that some covert semiotic “fuzziness” may in fact 
ultimately support collaborative learning, because it enables interlocutors the ostensible 
intersubjectivity requisite of mutually supportive discourse, even as they are seeing objects 
differently. Specifically, when students construct differently a semiotic artifact under joint 
inquiry, they may contribute to a conversation different mathematically valid assertions precisely 
because they are not cognizant of their different constructions. For example, if you and I are 
gazing at an array of six dots, I may see it as two rows of three dots each even as you see it as 
three columns of two dots each. Referring to the array, I might say that, “It is two times three,” 
but then you might disagree that, “It is three times two.” Notably the “it” in each of our 
respective utterances does not refer to the “objective” array itself but to our respective mental 
constructions of the array. Sorting out disagreement over the meaning of objects thus becomes an 
opportunity to co-examine the semiotic elements implicit to the conversation, e.g., the unitized 
groups of dots in the array. Namely, the conversation may shift from arguing over some ill-
defined mistaken-as-shared ‘it’ to speaking about how we are seeing ‘it,’ i.e., to figuring it out. 
So doing, we may discover the semiotic contingencies of our respective statements and formulate 
a mathematical assertion that reconciles their respective meanings in the form of the targeted 
mathematical content of the instructional activity, e.g., we may discover that “2 x 3 = 3 x 2.”  

This paper examines excerpts from one-to-one interview-based conversations between a 
researcher and three students, in which the students each sustained throughout a tutorial activity 
two different framings of a single iconic artifact, which they had been guided to construct so as 
to model a mathematical system under inquiry. Each framing of the object implied a different 
expectation for the behavior of this system, and the students’ expectations shifted with their 
framing of the object. We argue that both mental constructions of the object were mathematically 
correct, if naively worded, and that the students were able to reconcile these constructions 
successfully only if they were aware of the contingency of their assertions on their implicit 
framings of the object. We further submit that the ambiguity of the object ultimately supported 
these students’ learning, because it elicited the two key idea elements of the targeted 
mathematical notion and juxtaposed them for reflection. That is, embedding key idea elements of 
a targeted mathematical notion within a single semiotic artifact instantiated these elements as co-
present in the problem space, thus honing a generative confusion that supported the conjoining of 
these idea elements into the targeted conceptual composite. Thus we support embracing diverse 
perspectives, in line with the conference theme. 
 

Theoretical Framework 
In his Philosophical Investigations, Wittgenstein (1953) sets out by describing a Tower-of-

Babel scene, in which construction workers are able to collaborate only because they share 
referents for their otherwise arbitrary verbal utterances. Thus, if I ask for a “brick” and you hand 
me a brick, we are capable of co-constructing an artifact, but if you instead handed me a bucket, 
the premise of our collaboration would be compromised. Yet along with my frustration resulting 
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from this patent miscommunication, we maintain, I may gain a useful realization of the language 
game underlying human intersubjectivity. Namely, as language breaks down, its normatively 
obscure equipmentality is disclosed for scrutiny (Heidegger, 1962). To the extent that language, 
writ large, is the internalized vehicle of human reasoning (Vygotsky, 1934/1962), understanding 
its semiotic mediation of “objective” situations may be instrumental to reflecting on one’s 
learning process, which necessarily requires the adoption of cultural forms of seeing and 
referring to aspects of one’s personal, unreified phenomenology (Bamberger & diSessa, 2003; 
Goodwin, 1994; Stevens & Hall, 1998). 

In the brick-vs.-bucket communication breakdown, above, one and the same verbal utterance, 
“brick,” differentially referred to two objects in the joint perceptual field. Yet inherent to this 
miscommunication is that one and the same object was interpreted differentially—the object that 
you saw as a brick, I saw as a bucket. Such flagrantly conflicted constructions of distal stimuli, 
though reserved for rhetorical effect in philosophical discourse, may nevertheless underlie—if in 
a more nuanced caliber—challenges inherent to instructional discourse. In the case of the 
disciplines where unequivocal definitions are paramount to the production of texts (in the 
continental, multi-modal sense of ‘text’), it thus becomes important to monitor for shared 
meanings of objects. 

Note that the sense that interlocutors ascribe to objects are not necessarily personally 
available-it is not the case that students are consistently conscious of how they are seeing an 
object, even as they are capable of describing what the object means in the context of 
disciplinary discourse, such as problem solving. Indeed, idiosyncratic constructions of objects 
may be by-and-large inaccessible (‘cognitively impenetrable,’ Pylyshyn, 1973), unlike meanings, 
which may be verbally couched as rationalized inferences pertaining to a phenomenon under 
inquiry. Nevertheless, the very rationale of scholarly inquiry into students’ understanding of 
instructional materials is the identification and articulation of their personal constructions of 
objects. This problematique of an analytic endeavor to name the ineffable psychological facets of 
human discourse has been treated before: 

We do not claim to make clear and explicit what the users of the unclear expression had 
unconsciously in mind all along. We do not expose hidden meanings, as the words ‘analysis’ 
and ‘explication’ would suggest; we supply lacks. We fix on the particular functions of the 
unclear expression that make it worthy troubling about, and then devise a substitute, clear 
and couched in terms of our liking, that fills those functions. (Quine, 1960, pp. 258-259) 

Whereas ambiguity of discourse readily suggests intersubjective situations, Quine orients us 
toward intrasubjective situations. Namely, by virtue of referring to an object by two different 
labels, one perforce brings out different meanings, demonstrating a phenomenon Quine called 
intrasubjective stimulus synonymy. For example, “For each speaker, ‘Bachelor’ and ‘Unmarried 
man’ are stimulus-synonymous without having the same meaning in any acceptable defined 
sense of ‘meaning’” (Quine, 1960, p. 46). 

In this paper, however, we present cases of intrasubjective stimulus polysemy and discuss 
their consequences for mathematical learning. Namely, we demonstrate how an individual 
student’s competing perceptual constructions of a mathematical semiotic artifact initially create 
cognitive conflict between two inferences that are in fact both mathematically correct. These 
inferences appear to the student as conflicting, rather than complementary, because the student 
tacitly equates the objective artifact with its perceptual construction. We highlight the 
indispensable role of instructional designers and mathematics teachers in both eliciting from 
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students each of the apparently conflicting inferences and facilitating discourse that aims at 
exposing the different perceptual constructions underlying each inference. The vocabulary, 
constructs, and definitions necessarily generated so as to achieve these disambiguations are 
pivotal aims of the instructional process, because these discursive tools help students synthesize 
(Schön, 1981) tacit and mathematical views of the instructional materials. Yet what are the 
implications of this thesis for teachers’ practice? 

Guiding students to construe mathematical objects in accord with disciplinary norms is 
generally an asymmetric process, in which a teacher enables a student to see things as she does 
and any alternative construction falls by the wayside (Goodwin, 1994; Stevens & Hall, 1998). 
Yet for some disciplinary content topics, multiple views of problems are intrinsic to 
mathematical discourse, so that fostering such ambiguity in classroom discourse may play a 
nurturing, rather than an obstructing role. For example, a sequence of coin tosses—Heads, Tails, 
Heads, Tails (HTHT)—may be construed as one of sixteen equiprobable elemental events in the 
sample space of the four-coin-flips experiment (1/16) or, alternatively, as the aggregate event “2 
Heads and 2 Tails in any order” that has a 6/16 chance of occurring (on the contingency of 
mathematical definitions on social contract, see Barnes, Henry, & Bloor, 1996; Ernest, 2008; 
Weisstein, 2006). A student may sense that one must decide between these two mathematically 
valid constructions, thinking that HTHT cannot have both 1/16 and 6/16 chances of occurring. 
Namely, this student would experience a need to decide whether the object—the distal stimulus 
presented by the inscription “HTHT”—has this value or that value for the property of likelihood, 
where in fact the student is implicitly referring to different percepts but not articulating the 
implications of attending or not attending to the internal order of the four singleton events 
(Abrahamson, 2009). 

Indeed, in this paper, we present empirical data to argue that one challenge inherent to 
supporting students’ sense making processes is that students are liable to implicitly equate 
mental constructions with objects per se and thus experience difficulty accepting, let alone 
reconciling, any competing meanings they may attribute to these objects. That is, when the 
students think they must make up their mind with respect to the assertions they express about a 
mathematical object, in fact these different assertions are not necessarily mutually exclusive but 
possibly complementary, because each assertion refers to a different mental construction of one 
and the same object. Differentiating these assertions on the basis of their underlying perpetual 
constructions is crucial for conceptual development in those cases where both assertions are 
conceptually pertinent. For example, acknowledging the ambiguity of HTHT may help a student 
understand that the probability of an aggregate event is the sum total of the probabilities of its 
elemental events (1/16 + 1/16 + 1/16 + 1/16 + 1/16 + 1/16 = 6/16). 
 

Background, Methods, and Research Focus 
The episodes analyzed herein come from a larger corpus of data collected over a succession 

of cumulative studies conducted as part of the Seeing Chance project to understand and promote 
probability learning (Embodied Design Research Laboratory, UC Berkeley). Specifically, we 
examine the behavior of 3 out of 28 middle-school participants in Abrahamson (2009). The study 
took place in a private school in the SF East Bay area (33% on financial aid; 10% minority 
students), and all three focus students for this paper were ranked by their mathematics teachers as 
high achieving. The phenomenon of intrasubjective stimulus polysemy that we examine here was 
typical of all students, yet it elicited longer, richer, and more articulated deliberations from the 
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older and higher-achieving students—perhaps because these students were more self-monitoring 
and self-exacting in their mathematical reasoning—and hence these study participants help us 
understand what may be a ubiquitous phenomenon characteristic of all students. Each student 
participated in a semi-structured clinical interview that lasted about one hour. 

The project was conducted in the design-based research approach, which typically examines 
some conjecture as to an underlying mechanism inherent to a hypothetical learning phenomenon 
by creating empirical contexts in which to examine this conjecture (Confrey, 2005). Emerging 
from study cycles of design, empirical implementation, and analysis, in which the researchers 
tune the learning environment and, reciprocally, their emerging understandings of learning 
phenomena, are new instructional materials or principles as well as ‘ontological innovations’ 
(diSessa & Cobb, 2004), theoretical constructs that capture consistent patterns that the 
researchers discover in the empirical data. This paper is about intrasubjective stimulus polysemy, 
an ontological innovation that we are proposing. 

Central to the interview was a set of instructional materials designed to elicit students’ 
population-to-sample informal inferences, which are mathematically correct though only 
qualitative and unwarranted by mathematical argumentation. Students are then guided to 
construct the expanded sample space of this experiment as a means of creating a context for the 
dyad to discuss differences in how natural perceptual inclination and formal mathematical 
analysis couch inferences with regard to probabilistic behavior of random generators. Here we 
will introduce only those materials that feature in the data under inquiry. The interview begins by 
showing participants a tub containing many green and blue marbles of equal numbers as well as 
a marbles scooper (see Figure 1a), a utensil for drawing out of the box a sample with a precise 
number of marbles that are spatially arranged in a particular permutation. Strictly speaking, this 
is a hypergeometric (without replacement) problem, yet the large population-to-sample ratio 
enables us to treat it as an approximation for the binomial. Participants are asked to offer their 
guess for the distribution of outcomes in a hypothetical experiment with this random generator. 
Next, participants are given a set of blank cards with a 2-by-2 table structurally resembling the 
scooper (see Figure 1b) and are guided to construct the sample space of the experiment and 
assemble in the form of the combinations tower (see Figure 1c). 

 

 

 
 
 

  
a.   b.  c. 

Figure 1. (a) The marble scooper; (b) one of many cards for conducting combinatorial analysis of 
the experiment; and (c) the combinations tower—an assembly of the sample space in a format 
designed to resonate with students’ inferences for the experiment.  
 

Whereas students by-and-large guessed correctly that the plurality of experimental outcomes 
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would be of type “2 green and 2 blue [in any order]” (hence 2g2b), they experienced difficulty in 
appreciating why analytic attention to the order of the four singleton events in each scoop may 
be advantageous to supporting their guess. Nevertheless, once they had completed constructing 
the combinations tower, participants appropriated this structure as a warrant for their guess by 
indexing the relatively greater number of 2g2b elemental events as compared to other aggregate 
events. In previous publications we attributed students’ reluctance to attend to the combinations’ 
internal order to a tension between tacit and mathematical constructions of the sample: whereas 
students naturally couch the experiment in terms of five (aggregate) events (no green, 1 green, 2 
green, 3 green, and 4 green), combinatorial analysis requires attention also to the internal order 
of the four singleton events and therefore produces sixteen (elemental) events.  

The current study focused on interview episodes in which participants switch between 
aggregate- and elemental-event constructions of a compound-event card containing four 
singleton events. We compared these episodes in an attempt to explore for relations between the 
participants’ awareness of their constructions and their success in coordinating the tacit and 
mathematical formulations of the anticipated experimental outcome distribution.  
 

Results and Analyses 
Table 1, below, offers a preview of our results. For rhetorical clarity, we use the familiar 

duck-rabbit ambiguous figure. (Joseph Jastrow popularized it in the late 19th century so as to 
illustrate perceptual agency in constructing distal stimuli.) If a viewer is asked to infer the eating 
habits of this ambiguous creature, yet the viewer is unaware that his mental construction of the 
image keeps shifting (“duck…no, rabbit!”), then the viewer will not understand his vacillating 
inferences (“fish…no, carrots!”) and will take this inconsistency as marking confusion. If, 
however, the viewer can label each mental construction of this object as well as their critical 
disambiguating features (“beak…ears”), then the viewer will be equanimous with respect to his 
conflicting inferences (cf. Tsal & Kolbet, 1985). 

 
Table 1. Inferential Reasoning for an Overtly Ambiguous Figure 

Distal Object 
Disambiguating 

Features Proximal Object Inference for Diet 

 

Beak Duck Fish 

Ears Rabbit Carrots 

 
Table 2, below, presents the less familiar case, from probability studies, of a compound event 

as an ambiguous figure. A viewer who attends to the particular configuration of green and blue 
cells in this object may construct it as one of sixteen unique equiprobable elemental events in the 
sample space. However, a viewer who ignores the internal order of cells in this object and 
constructs it as 2g2b may interpret it as the aggregate event most likely to occur in the marbles-
scooping experiment. If, however, the viewer is unaware of her shifting personal constructions, 
she will interpret her shifting inferences as marking confusion. 
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Table 2. Inferential Reasoning for a Covertly Ambiguous Figure  

Distal Object 
Disambiguating 

Features Proximal Object 
Inference for 
Distribution 

    

Order Elemental event Equiprobable 

Number Aggregate event Heteroprobable 

 
Each of the following three 6th-grade students, Lavi, Sima, and Razi, identified the completed 

combinations tower as resonating with their mathematically correct guesses for the outcome 
distribution of the marbles-scooping experiment. However, subsequent discussion suggested that 
their insight was unstably based on a global perception of relations among the combinations-
tower columns and that they were still struggling to align their insight with the ambiguous 
construction of the combinations tower’s constituent elements. 
Lavi: “My Mind’s Going Back and Forth” 

The interviewer lifts out of the sample space two cards—one of the 3g1b cards and the 4g 
card—and asks Lavi to compare their likelihoods. The following conversation ensues: 

Lavi:  There’s only four [ways] for getting three [3g1b]. I guess it wouldn’t be chance…Oh, 
I guess it would be chance. And then there’s only one way that there can be four [4g].  

Res.: So, what do you mean [by] “It’s not chance” and “It is chance?”  
Lavi: Ah, I don’t know, that thought just kind of [popped] into my mind and I just let it 

come out.  
When Lavi says, “It wouldn’t be chance,” he is viewing the individual cards as representing 
heteroprobable aggregate events whose chance is indexed by the number of permutations in their 
respective columns. When he says, “It would be chance,” he is viewing these same cards as 
equiprobable elemental events for which only chance, not logic, would cause greater frequency.  
The compound event is thus a physical object imbued with different mathematical constructions, 
and Lavi alternately refers to these competing constructions. However, he does not appear to 
realize that he is shifting his point of view, so he is confused. 

The interviewer repeats the question for another pair of cards. Lavi asks whether he should 
take these cards to mean “a specific card or an amount of each color” and claims that all 
“specific cards” are equally likely. The interviewer asks Lavi to compare the cards on the basis 
of “the amount,” i.e., to ignore placement. After some hesitation, Lavi nevertheless asserts, “It is 
chance,” invoking the randomness of the sampling device (on the ‘equiprobability bias,’ see Falk 
& Lann, 2008; LeCoutre, 1992). Throughout a subsequent series of questions, Lavi vacillates 
between viewing individual cards as “ducks” or “rabbits,” coming just short of reconciliation.  
Sima: Stuck on Rabbit 

Like Lavi, Sima begins by articulating the equiprobability of the sixteen compound events. 
She creates the term “color-wise” to refer to the groups and “place-wise” to refer to individual 
cards and states that “color-wise” the groups have different probabilities but place-wise “they’re 
equivalent.” Yet, once the interviewer asks her to compare two cards selected from different 
columns, she maintains that they have different likelihoods. Subsequently, she appears to 
experience difficulty in dislodging from the aggregate view and returning to the elemental 
view—she is “stuck on rabbit” and insists that any 2g2b card is more likely than any 3g1b card. 
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Only after the interviewer simulates random sampling from these sixteen cards and refers back to 
the initial experiment is Sima able to reassume equiprobability.  
Razi: Chooses Rabbit 

Like Lavi and Sima, Razy articulates that specific cards are equally likely yet that viewing 
them by the “number of each color” makes some cards more likely than others. She appears to 
command greater fluency than Lavi and Sima in shifting between the competing constructions of 
the events, yet she incurs greater difficulty in articulating the implications of each view for the 
outcome distribution.  

Razi: The majority of the scoops would come out with two blues and two greens. 
Res.: A moment  ago you told me that each pattern has the same likelihood to show up. Is 

their a contradiction here? 
Razi: Yes and no. Before I said “each specific pattern.” Now I’m saying each pattern with 

two blues and two greens…. 
Res.: But do you still hold to the fact that each exact pattern has the same chance? 
Razi: I am not sure. 

Finally, when asked to compare another two cards, Razi becomes entrenched in the aggregate 
view. It appears that whereas Razi understands that there are two ways to see the object, she feels 
she must choose between “duck” and “rabbit.”  
 

Conclusion 
Students’ awareness of their perceptual constructions of ambiguous mathematical objects—

their intrasubjective stimulus polysemy—impacts their capacity to generate domain-specific 
constructs and, in turn, to coordinate tacit and analytic formulations of situated phenomena 
toward deep conceptual understanding. We have demonstrated this relation for the case of the 
binomial and will continue to pursue our conjecture as it plays out in the learning of other 
mathematical concepts.  
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This paper revisits the authors’ study of parts of the works of Watson, Kelly, Callingham and 
Shaughnessy (2003) in a different environment. It explores the notions that some Mexican 
students hold about statistics variability in chance setting. The study attempts to answer the 
question: Is it reasonable to classify students’ answers according to the level in which they 
consider randomness, structure and variation? A questionnaire was administered to 327 middle 
school students, 214 high school students, and 74 college students. The analysis were carried out 
under; “Pre-structural”, “Extreme values”, “Structure”, “Realist appearance”, and 
“relational” categories. The results indicate a positive correlation between students’ 
educational levels and the categories reported in some literatures. 

 
Introduction and Background 

One of the first empirical research studies on variation in chance setting was carried out by 
Shaughnessy, Watson, Moritz and Reading (1999), in which the following questions were asked: 
1) what are students’ understandings of variability or spread? 2) How can we begin to measure 
students’ understanding of variability or spread? To answer the question, the Gumball task* was 
modified in such a way as to reveal thinking patterns of students in variability.  

It was observed that students’ understanding of centers increases with age while their 
understanding of variability oscillates through the grades. The results buttress the hypothesis that 
“there is considerable focus on ‘centers’ in the curriculum throughout school mathematics”. 

In an experiment carried out by Watson and Kelly (2003) to explore the thinking and 
progress of students of grades 3 to 9 after some studies  on statistics variation, students were 
asked to predict the possible outcomes of repeated trials of a 50 – 50 spinner. The results among 
others show “a monotonic decline over the grades in the ability to provide reasonable variation” 
(p. 391); there is a strong tendency to conclude that the above was “in strict accordance with 
theoretical probability”. As a result, a lesson for teaching of probability was drawn: Expectation 
must be balanced by variation (p. 393).  

Shaughnessy, Canada and Ciancetta (2003) explored the thinking of 84 students of middle 
school with three tasks which involved repetitive tests. One of the tasks is similar to question 6 
of the present work. It was observed that students tend to neglect variability in the context of 
chance and probability, in the tasks. The reason for this was attributed to the manner in which 
probability was introduced to the students in their school. 

A questionnaire devised to assess students’ understanding of variation by Watson et al. 
(2003) includes items in sampling variation, displaying variation, chance variation, measuring 
variation, and sources of variation. A coding scheme based on the SOLO taxonomy of Biggs and 
Collis (1991) was elaborated for that study, and a sample of 746, students in grades 3, 5, 7, and 9 
were examined. One of their objectives was “to develop a scale to measure students’ 
understanding of variation in the context of chance and data curriculum” (p. 15). They suggested, 
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among others, for future research that “Trialing the questionnaire with other students, for 
example in other cultural settings” (p. 19). That suggestion accounts for this work which, in this 
case, studies Mexican students. However, we have followed another trend of analysis. 
 

Conceptual Framework 
In this work, the concept of variation in chance settings is considered and elaborated within 

three important stages: the perception of the randomness, the consciousness of the probabilistic 
structure underlying a situation in a chance context and the understanding of the relation of this 
structure with the empirical data.  A student is said to be disorder, dispersion or randomness, 
centered in if he believes that in a random situation “any data/thing can occur”, that is to say, that 
any data can be obtained. In this case the fact that there is an underlying structure in the data 
generated is ignored.  On the other hand a student is said to be structure centered if he expects 
the data generated to have a particular or regular pattern that conforms to a theoretical 
distribution (in this case- uniform or binomial), ignoring the randomness. Lastly a student is 
variation centered if he recognizes both the randomness or dispersion and the structure.  

In a way of hypothesis a three stage model of evolution of the thinking of the intuitive notion 
of variation in random situations is supposed. In the first stage the answers are disorder centered, 
that is they show only the perception of the randomness in the data of a chance situation. Later 
they change to become structure centered, when they give evidence of the search expectation of 
a regular patterned data and, in the third stage and the last stage when answers appear the 
students consider both the randomness and structure. This last stage is divided in two sub-
divisions; in the first, the answers do not give any evidence of establishing relationships between 
randomness and regularity, in the other, they do.  

Do students’ answers pass through the stages of: disorder, structure, and variation while 
students construct their notions of statistical variation? 

Below, data are explored and elements are sought to support the hypothesis made. 
 

Methodology 
Participants 

Several groups of students of three levels of the Mexico City’s educational systems were 
polled; 327 students from Middle School, 214 from High School and 74 from College.  
Instruments 

A questionnaire of 12 items was designed, most of which were picked from the 
questionnaires of Watson et al. (2003), while other were the slightly modified version of the 
same. In this report we will analyze three items, labeled 6, 10 and 11. We will present and 
describe them briefly. 

 
 
 
 
 
 
 
Item 6. Imagine you threw the dice 60 times. Fill in the table below to show how many times each number 
might come up.  
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Number on Dice Number of times it might 
come up 

1  
2  
3  
4  
5  
6  

Total 60 

Why do you think these numbers are reasonable? 

Figure 1. Problem 6. 

Figure 1 shows problem 6. Since this item asks students to suggest a distribution of frequencies 
of throwing a fair die 60 times, this is a prediction problem: what do you think it might happen?  

When one solves this problem it is needed using statistic intuition as well as randomness, 
probability and variability notions. A disorder centered student will notice only the random nature 
of the experiment and would answer “any data can occur” or “we can not know”. This kind of 
answers is valid but not convenient, since ignore the probabilistic structure inherent to the 
experiment.  

A structure centered student will tend to answer with the expectation; these answers are valid 
as well, but also inconvenient due to the low probability of such result.   

“There is, in our brain, a constant tension between the general and specific” (Tal, 2001, p.69). 
Some variation centered students will notice this tension and solve it by filling out the table with 
specific numbers different to the mean. Nevertheless, this approach is still incomplete, in the same 
way that answering with the mean is: the low probability of particular outcomes. Some other 
variation centered students will be able to solve this tension trying to capture the highest 
probability possible by an interval around the mean. 

 
Item 10: There is an urn containing 3 balls, each one marked with a letter (A, B, and C). John picks up 

randomly a ball, writes in a board its letter, and then he replaces it to the urn. John repeats 30 times the experiment. 
Which one of the following boards do you think John got? Put a mark (a tick) under the board you think is the 
correct one. 

 

BallFrequency
A12
B7
C11

Total30

[]Board 1

       

BallFrequency
A10
B10
C10

Total30

[]Board 2

       

BallFrequency
A11
B18
C1

Total30

[]Board 3

 

Why did you choose the board? 
Figure 2. Problem 10. 

The problem presented in figure 2, poses to students an informal hypothesis test with three 
hypotheses to contrast: board 1 is right, board 2 is right and board 3 is right. To make a choice, 
students should discard options to keep the most adequate one. Intuition is valuable in this case 
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in order to judge each board as a real outcome and decide how likely it is. Board 2 has the 
highest probability to occur, but this probability is still too low and do not consider the variation 
concerning the randomness. Board 3 shows a very atypical behavior, since ball C appeared only 
once and B 18 times. Thus, board 1 is the most reasonable choice. 

This approach appeals to common sense as well as abstraction: board 3 represents the class 
of outcomes with extreme values, and classified as disorder center answers; board 2 represents 
the existence of structure in random experiences and considered structure centered answers; 
board 1 represents the class of real outcomes, in which it can be found a reasonable relation 
between structure and variability: it is realistic. 

The item 11, (fig. 3) is analogous to item 10. In this case graph A is structure centered 
(corresponds to a theoretical binomial distribution and ignores randomness); graph B is disorder 
centered (does not reflect the binomial structure of the experience) and graph 3 is variation 
centered (shows an adequate balance between randomness and structure). The ideal answer is to 
identify graphs A and B as made up and C as real. 
Procedures 

 Questionnaires were applied to the students by the teacher of each of the groups in the case 
of Middle and High School. One of the researchers applied the questionnaire to college students. 

To classify the answers, the following codification, similar in some aspects to that used by 
Watson et al. (2003) and based on SOLO hierarchical cycles proposed by Biggs and Collis 
(1991), was employed: “Realist Appearance” (RA), is used to classify the answers to question 6 
if an individual gives a distribution of frequencies, totaled 60 and whose elements fall in an 
interval of 4 to 16 (90% of confidence), a few college students proposed intervals around the 
mean and those answers were coded RA (See Trujillo, 2008 for details). Also RA is used to 
classify an answer of an individual if table one is chosen as answer to question 10. Lastly an 
answer is classified as RA if I-I-R sequence is chosen in question 11: where “I-I-R” means 
“Invented, Invented, Realist”. “Without variation” (WV), is used to classify an answer if a 
uniform distribution is given in question 6 and also if table 2 in question 10 is selected as an 
answer to that question. 

 



Vol. 5  675 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

1 
2 1 

2 Item 11. Three classes did 50 spins of the above spinner many times and the results for the 
number of times it landed on the part numbered 2 were recorded. In some cases, the results were 
just made up without actually doing the experiment. Can you identify what classes made up the 
results without doing the experiment? 

 

0 10 20 30 40 50

Class_A

Class A Dot Plot

 
0 10 20 30 40 50

Class_B

Class B Dot Plot

 

 

0 10 20 30 40 50

Class_C

Class C Dot Plot

 
a) Do you think class A’s results are made up or really from the experiment? Explain 
b) Do you think class A’s results are made up or really from the experiment? Explain 
c) Do you think class A’s results are made up or really from the experiment? Explain 

Figure 3. Problem 10. 

Lastly an answer is classify as WV if R-I-I sequence is followed in question 11: where “R-I-
I-” means “Realist, Invented, Invented” 

In conclusion, “Extreme values” (EV) is used to classify the answers to question 6 if a 
distribution whose elements, at least one, is out of the range of 4 and 16, is given. Finally EV 
describes the answers if table 3 is selected as answer to question 10 and if the sequence I-R-I is 
followed in question 11. I-R-I means “Invented, Realist, Invented”, while NR means “No 
Response or Inconsistent”. Some Middle and High school students gave answers to item 6 
totaling a number different to 60; those were coded as Pre-Structural answers (PS). 

 
Results 

The data contained in the questionnaire have been organized to see if it is in agreement with 
the hypothesis. Simply put: Does statistics variation thinking begin with perception of 
disorderliness, then structure and finally an integration of both in a notion of statistical variation? 
If yes, majority of younger students are expected to incline towards choosing “extreme values”. 
On the contrary, it is expected that majority of older students will choose “without variation” or 
“realistic appearance”. The answers to questions 6 and 10 support to a greater extent these 
expectations. 
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Figure 4.  Relative frequencies of types of distribution proposed by students in response to 
question 6. 

 
Notice in Figure 4 that some Middle and High School students gave answers coded ‘pre-

structural’ (17 % and 10%, respectively). It could also be observed in graph 1, that the 
distributions, classified as “extreme values” were proposed with higher frequency by students of 
the Middle School (34%) than students of high school (14%) and only by a small proportion of 
College students (3%). On the other hand the distributions classified as ‘without variation’ were 
proposed with higher frequency as scholar level increases: 29% on High School, 50% on Middle 
School and 69% College students. The frequencies of distributions classified as “Realistic 
Appearance” follow an increasing trend: 18% Middle School, 20% High School and 27% 
College. A remarkable fact is the appearance of intervals as answers between College students 
(3%), for example, one subject answers: 

O1, O2, O3, O4, O5, O6 in such a way that Oi ∈{0,…,60} y ∑
=

=
6

1
60

i
Oi  But I think that Oi = 

10 ± 1 or 2. We have a ‘big’ number of repetitions so the trend would begins to arise 
having in each line a number close to 10, supposing a fair die, it is equally probable any 
outcome 
 
It could be observed in Figure 5 that the distribution of the of answers coded as ‘extreme 

values’ follows a monotonic decreasing behavior (19% Middle School, 7% High School, 4% 
College). It is important clarify that the answers coded as EV among College students 
correspond to the choice of every board as a possible outcome. In the case of answers coded as 
‘without variation’, lowest and highest scholar levels have similar proportions (47% Middle 
School and 49% College) while High School students propose answers of this kind in a 
proportion of 64%. This may be explained by the frequencies of the category ´realistic 
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Figure 5. Relative frequencies of types of distribution proposed by students in response to 
question 10. 

 
appearance’: 30% Middle school, 26% High School and 46% College. These proportions agree 
with our hypothesis. 

With reference to sub questions of the 11th question, the data were organized as follows: III 
– mean ‘Invented, Invented, Invented’ and IIR –‘Invented, Invented, Realist’, etc.  

With reference to the variation evolution model, it is expected that the students of the middle 
school, accept as realistic the “extreme values”. That is, greater frequencies of “*R*” was 
expected of the students of the middle school, where “*R*” = {IRI, IRR, RRI, RRR}. Also 
students of high school and college should tend to accept as realist the option “**R” = {IIR, IRR, 
RIR, RRR}. As can be observed, these expectations were fulfilled to a greater extent. 

 

 
Figure 6. Relative frequencies of types of distribution proposed by students in response to 
question 11. 

 
The options “*R*” and “**R” are focus of attention in the following. The response “*R*”, 

except RRR, was chosen by greater number of students of Middle school than those of High 
school. On the other hand the response “**R”, except IRR, was chosen by greater number of 
students of High school that those of Middle school. The IRI and IRR have a diminished 
frequency throughout the grades, which implied greater acceptability of without variation in the 
question 6, as realistic, among the students of Middle school. 
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The choice of RIR between the two levels is significant; this is possibly due to the fact that 
greater number of students of Middle school accept as realistic, the distribution with extreme 
values. 

College students respond IIR, the ideal answer, in greater proportion than any other answer 
or group (31%).  
 

Discussions and Conclusions 
The results obtained in this work are consistent with the hypothesis that students’ answers 

pass through the stages of: disorder, structure, and variation. Younger students (Middle school 
ones) tend to notice principally randomness in chance experiences, thus their answers reflect this 
trend. High school students are strongly anchored on centers may be due to statistics formal 
instruction, which –in Mexico- has a great emphasis on central measures and neglect variability. 
College students answers tend to be mostly of the category ‘without variation’, but ´realistic 
appearance’ answers have an important proportion and some cases are classified as ‘relational’  

Students are observed to have the tendency of proposing definite numbers and distributions 
instead of a range of number and a class number of distributions. An important proportion of 
High school and college students attempt to mix the disorder and structure in question 6; except a 
few of them, they do this proposing a definite distribution, thereby giving a distribution less 
probable than the uniform distribution. They were unable to imagine an interval that would form 
a class of distributions. On items 10 and 11, which ask students identify plausible outcomes, a 
greater proportion of subjects are able to differentiate possible of reasonable outcomes and 
discard events with too low probability, than in item 6. This can be due to the fact that problems 
10 and 11 do not demand students abandon their idea that prediction consists always in a single 
number result. 

This tendency of thinking in isolated events, instead of a multiple ones could be also 
attributed to the manner in which courses of probability and statistics are developed. Even 
though the explanations above revealed the inadequacies in the courses of statistics, it is 
important to look for cognitive reasons that impede a better understanding of variability. 

The three stages earlier discussed: disorder, structure and variation could be characterized 
through important stages as follow: Recognition of chance, which was observed by Piaget as a 
very important stage. The second state is the creation of instruments to deal with chance; this 
mean that all possible results are considered thereby determining the probability of a particular 
result. The third stage is a combination of disorder and structure through a refined knowledge of 
probability on: a) a general concepts of events; b) the use of instruments of probability in order. 

 The magical explanation for a phenomenon is discarded when an event is perceived as a 
chance. The game of chance is therefore seen as a product of interaction of multiple causes 
(Borel) or as an interaction of independent processes (Piaget). When a student admits the 
existence of chance and see a phenomenon as chance, it is natural that such a student will 
respond that any event can occur, predicting only disorderliness and irregularity. Probability 
therefore provides a tool that allows one to see structure behind disorderliness. This is witnessed 
at least in the games of chance. The number of possible results, favorable and its quotient and 
combinatorial are elements of structure. The students tend to think that the structures determined 
are not free for all (and indeed they are not) and they serve to make predictions. But the nature of 
those predictions is far from what the students can believe. The illusion therefore to a process of 
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overcoming of the powers of the disorder, being created that can be adjusted and controlled with 
the aid of probability. 

To be variation minded, one must be able to know the structure (the average, the uniform 
distribution, etc.) and take into consideration the randomness, dispersion or irregularity of the 
phenomenon. These two aspects are integrated in proposing an interval of the expected values 
whose length is determined according to the probability with which the prediction is desired, and 
that, therefore, it settles down beforehand. To achieve the aforementioned, knowledge of 
confidence interval is useful and desired. Despite college students do know the concept of 
confidence interval just a few of them were able to suitably integrate the dispersion with the 
structure.   

John Tukey (1986) once asked: “What have statisticians been forgetting in principle?” And 
he answered himself: “That the history of statistics has involved –indeed, very nearly consisted 
of – successive enforced retreats from certainty. Each step of that retreat has brought further 
gains…” (p. 588). When a student pass from giving a determined single event to proposing a 
range of results in prediction problems in a certain way he or she retreats from certainty and 
started to have statistics thinking. 
_______________________________ 

Endnotes 
1 This work was sponsored through grant 45063-H by CONACYT (National Council of 

Science and Technology), México. 
* The Gumball task asks students to predict the number of red candies in a sample of 10 

candies from a population of 50 red, 30 blue, and 20 yellow candies. This task is one of the 
problems of the 1996 NAEP (National Assessment Educational Project) of USA.  
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Ordinary problems using standard algorithms do not enable students to understand 

probabilistic situations meaningfully. Like in other branches of mathematics, students learning 
probability need to be involved in authentic situations that motivate their way of thinking. 
Littlewood (1953) declared that a good mathematics riddle (or joke in his words) is worth more 
than a dozen fair exercises. Probability is very much connected to every day life, but the 
synthesis between determinism and uncertainty makes it difficult to understand. The theoretical 
models used in explaining probabilistic thinking sometimes contradict intuition, which is based 
on every day experiences. Our experiences are deterministic, not continuous, and usually not 
guided (Rokni, 2001). Using guided experiences concerning probabilistic situations which derive 
from authentic problems may result in meaningful understanding of probabilistic principles. 

 
The Research Question 

What are the sources of mistakes in solving probabilistic problems and how does experience 
help lead to meaningful understanding of the correct answers. 
Subjects 

16 pre-service junior high school teachers.  
Instrument 

A questionnaire with three authentic situation probabilistic problems:  
a. What is the probability of finding at least two people whose birthdays are on the same 

date, among 30 random participants?   
b. There are three doors. Behind one door there is a prize. You are asked to guess where the 

prize is. After you guess, one of the other two doors is opened and you see that the space 
is empty. Now you are given the opportunity to change your guess to the remaining door. 
Will this increase your chance of winning? If so, what is the probability? 

c. You have 2 discs: one is red on both sides and the other is red on one side and blue on the 
other. You choose one disc at random, put it on the table and you see red. What is the 
probability that the other side of this disc is also red?   

Procedure   
Step I 
a. 15 of the 16 participants wrote that the probability of finding at least 2 people whose 

birthday is on the same date is very small and may be 30/365, because there are 365 days 
in a year. Only one gave the correct answer based on previous learning of such a 
situation. 

b. All the participants wrote that changing the guess does not increase the probability. The 
only difference is that the probability changes from 1/3 to ½ in both cases. 

c. 15 of the 16 participants wrote that the probability that the other side is red is ½, because 
there are only 2 discs, one with red on both sides. Only one participant (not the same one 
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who answered item (a) correctly) gave the correct answer using an intuitive explanation 
based on 4 sides. 

Step II 
After sharing the results with the subjects, the researcher gave intuitive-logical explanations 
using demonstration and modeling for the 3 problems. 

Step III 
Some of the participants experienced cognitive dissonance after hearing the explanation because 
it did not fit their intuition and/or past experience. 
The researcher then performed 3 experiments, one for each question above. The students 
participated directly and individually in all the experiments:   

a. Collecting birthday data. 
b. Simulating the 3 door game. 
c. Playing a game with 2 discs. 

Results 
After step 3 (the direct experience), all 16 participants were convinced about the correct 

answer and changed their way of thinking about uncertainty. 
 

References 
Littlewood, J. E. (1953). A mathematician's miscellany. London: Methuen. 
Rokni, F. (2001). Intuition in probability. Paper presented at Math 630/2: Theory and Intuition in 

Probability.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol. 5  683 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

JUSTIFICATION AND CONSENSUS: MATHEMATICAL REFERENTS AND 
PIVOTAL CUES IN DIVERGENT PROBLEM-SOLVING APPROACHES 

 
Janet G. Walter 

Brigham Young University 
jwalter@mathed.byu.edu 

 
Divergent solution approaches in problem-solving emerge in classrooms that support students’ 
enactments of personal agency and small-group collaborative inquiry. University honors 
calculus students, engaged in building new mathematical understandings, chose specific 
mathematical referents to substantiate and justify divergent solution approaches to a task 
especially created to elicit student-generated, meaningful and essential mathematics for finding 
the volume of a solid of revolution. During class presentations of solution approaches, pivotal 
cues indicated a change in, or a support for, specific reasoning. Justification was grounded in 
personally meaningful mathematical referents and was a means for building mathematical 
consensus among students.  

 
Introduction 

Classrooms where student inquiry and question-posing are essential elements in mathematics 
learning present unique opportunities to evidence how mathematical meanings and consensus 
about those meanings develop when different solution approaches in problem-solving emerge. In 
the context of such a thinking classroom, we characterize four diverse, student-invented solution 
approaches for finding the volume of a solid of revolution. Our analyses feature the language and 
notations students choose in building two of those solution approaches, made evident in public 
presentations to the class, that support mathematical consensus in a thinking classroom. Our 
purpose is to understand how students reason and build convincing arguments and provide 
justifications that help others understand divergent solution approaches.  

 
Theoretical Perspectives 

The mathematical work of students engaged in problem-solving may differ greatly between 
individuals as well as between groups of students. Indeed, Goffman (1959) recognized that 
“working consensus established in one interaction setting will be quite different in content from 
the working consensus established in a different type of setting” (p. 10). In particular, if 
construction of ideas in transitioning from concrete or empirical meanings toward abstraction 
(Pijls, Dekker & Van Hout-Wolters, 2007; Rivera, 2007), depends, in part, on explanation and 
critical examination of one’s ideas, then retrospective traces of the “way points” (Dimond & 
Walter, 2006) in mathematics learning may be distinct not only for individuals, but for different 
learning groups as well. In other words, one may look back at the developmental work in 
different groups’ solution paths and reasonably expect variance in those solution paths. 

Individual and collaborative choices in problem-solving may be reflections of the inherent 
individual characteristic of personal agency. We view personal agency in terms of 
the requirement, responsibility and freedom to choose based on prior experiences and 
imagination, with concern not only for one’s own understandings of mathematics, but with 
mindful awareness of the impact one’s actions and choices may have on others… Because 
people build understanding from experience, it is essential that they have opportunities to 
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make personal choices that will foster learning in particular, perhaps unanticipated, ways 
as they explore mathematics and develop a sense of self as actor and participant. The 
exercise of agency is what makes mathematical thinking possible. (Walter & Gerson, 
2007, p. 209) 

We assert that the exercise of personal agency within a community of mathematics learners is 
made evident as students act and interact, for example, in pursuit of mathematical certainty 
during problem solving. Powell (2004) defined agency in mathematical learning as learners’ 
individual initiative to define, redefine, build on or go beyond specificities of mathematical 
situations on which they have been invited to work. We agree with perspectives of personal 
agency which hold that in order to have the ability to initiate an act a person must be able to 
make choices based on perception and available information (Bandura, 1997; Holland, Skinner, 
Lachicotte Jr, Cain, & Delmouzou, 1998; Skovsmose, 2005a). Furthermore, the exercise of 
personal agency “is manifest in the direction of attention” (Dewey, 1913/2007, p. 8). Such 
perspectives of personal agency have implications for learning. Dewey noted that thinking is 
“something to be tried” and that  learning is “an active, personally conducted affair” (1916/1944, 
p. 335) which occurs when a person’s “established powers are redirected through intelligent 
effort...to arouse the person to clearer recognition of purpose and to a more thoughtful 
consideration of means of accomplishment” (1913/2007, p. 58-59). Acts of purposeful choice in 
learning may be seen as fundamental, intellectual tryings directed toward building understanding 
(Brown, 2005; Kohn, 1998; Rogers, 1969; Walter & Gerson, 2007). As such, the choices 
students make are creative acts that direct or redirect established and emerging powers toward 
the development of mathematical meaning, thinking and learning.  

Skovsmose (2005b) noted that there are ethical demands associated with action and 
responsibility. Mathematics classroom conditions that constrain intellectual tryings by students 
constrain the exercise of personal agency as well as the exercise of temporally extended agential 
authority in groups. Synthesizing personal agency with socially constituted conditions, Bratman 
(2007) suggested that agency may include individual self-governance, intention, planning, and 
temporally extended agential authority. In our work, temporally extended agential authority 
emerges when individuals exercise personal agency over time in collaborative pursuit of 
collective goals. Our perspective on agency underscores social aspects of agency in learning, 
beyond individual choice and responsibility, and allows us to recognize the critical roles and 
effects of personal agency enacted by learners working in groups. Indeed, the exercise of 
personal agency is the genesis of creative acts that shape, and in turn are influenced within, the 
milieu of lived experience.  

Goffman (1959) described performance as “all the activity of a given participant on a given 
occasion which serves to influence in any way any of the other participants” (p. 15). We use 
performance as Goffman did because we are interested in how students’ mathematical tryings 
influence one another and the group effort. We suggest that performance in a learning 
community may be characterized as “an observable, flexible, synchronous process of reasoning, 
presenting and organizing one’s thoughts…[and] begins with an individual choosing to act, 
which may influence and include actions of the group” (Walter & Gerson, 2007, p. 206). 

Interaction was defined  by Goffman (1959) as “the reciprocal influence of individuals upon 
one another’s actions when in one another’s immediate physical presence” (p. 15). A decade 
later, Blumer (1969) viewed interaction as  “a flowing process in which each participant is 
guiding his action in the light of the action of the other suggest[ing] its many potentialities for 
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divergent direction” (p. 110). Divergent direction, from our perspective, encompasses the 
potential for different solution approaches in mathematical problem solving.  

In student-thinking centered, investigatory task-based classrooms, all three grounding 
attributes of our theoretical perspective (personal agency, performance, and interaction) are 
elemental in student endeavors. Against such a background, we arrived at our initial research 
question. 

 
Research Questions 

How do university students collectively develop mathematical methods for solving 
problems? In particular, within the context of our study, we look at how university students 
collaboratively develop mathematical methods for finding the volume of a solid of revolution 
when no prior instruction on solution methods was given. How do these students reason to build 
convincing arguments and provide justifications that are meaningful for others who are trying to 
understand divergent solution approaches? 

 
Methodology 

Eighteen second-semester honors calculus students, comprising four groups, worked 
collaboratively on tasks during two-hour class sessions three times per week. Tasks were 
designed to foster creativity while eliciting conceptually important mathematics as part of a 3-
semester teaching experiment at a large private university in the mountain-west region of the 
United States. Pedagogical decisions were based on the progress and direction of inquiry by 
students, rather than by textbook organization. During these particular sessions, students worked 
on one task, the Gel-Pack Mug Task (Figure 1) without prior instruction on solution approaches. 
This task was especially created to elicit student-generated, meaningful and essential 
mathematics for finding the volume of a solid of revolution. Although these second-semester 
calculus students had prior experience with integration techniques and applications, finding 
volumes of solids of revolution was a new topic. Our analysis here focuses primarily on students’ 
public performances of their small-group invented solutions for the Gel-Pack Mug Task. 

 
A cold mug consists of a gel pack sandwiched by two cylinders. For manufacturing reasons, we 
make the gel pack parabolic in cross-section. We are interested in knowing the volume of the gel. 
For your information, the height of the gel pack is 12 cm. The gel is filled up to the 11 cm mark. 
The top of the gel pack needs to be 2 cm wide at the top. The inside radius of the mug is 8 cm. 

 

Figure 1. Gel-pack mug task. 
Each class session was videotaped. Videotape captured and preserved a detailed chronology 

of interactions, discourse, and mathematical work of groups of 4 to 6 students seated at large 
hexagonal tables. In addition, whole class discussions and presentations by individual students or 
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small groups of students were also videotaped. Transcripts of videotaped student discourse were 
created and verified by research team members including graduate and undergraduate research-
mentored students. Transcripts are verbatim texts of student utterances. These transcripts were 
then memoed to record insights and relationships between events and further annotated to reflect 
gestures, intonations, pauses, and other student activity during student conversations. 
Interpretations and inferences were substantiated by constant comparison of all data sources, 
including the videotaped evolution of student written work and notations, homework 
assignments and completed task write-ups.  

In a microlinguistic analysis of student discourse, open and axial coding (Strauss & Corbin, 
1998) highlighted differences in students’ solution approaches and supported the identification 
and characterization of the mathematical referents students chose to substantiate and justify their 
work. Open coding included repeated searches of the video and transcript for student language 
and notations that indicated student attempts at justification, argumentation, consensus, and 
proof. Axial coding of students’ presentations revealed what we call pivotal cues in students’ 
reasoning. Pivotal cues indicated a change in, or a support for, specific reasoning through the use 
of morphemes such as because, but, is, like, mean, need, so, then and want. Mathematical 
referents also surfaced during open and axial coding of students’ problem-solving approaches. 
We defined these emergent mathematical referents as taken-as-shared mathematical objects to 
which students appealed during consensus building while problem-solving or during public 
performance presentations of their work. Personal and temporally extended agential authority 
was evident in the use of pronouns, such as “I” and “we” and language which indicated 
individual and collective decision-making. 

Transcript excerpts presented here are from the three, two-hour class periods that students 
worked on the Gel-Pack Mug Task. Each excerpt includes, in columns from left to right, video 
timecodes for ease in referencing particular events and for a sense of temporal breadth (for 
example D1_1 29:36 would indicate the first day (D1) of student work on the task during the 
first hour of that class session at twenty-nine minutes thirty seconds into the video), speaker 
name, transcript, transcript annotations to clarify student discourse and performances, and coding 
from analysis to support interpretive narrative following each excerpt.  

 
Data and Analysis 

Here, we present brief analyses of two of the four diverse, student-invented solution 
approaches for the gel-pack task. We begin by noting that all four groups of students came to the 
conclusion, via different approaches, that the volume of the gel-pack was � 

264π cm3

. 
Retrospective traces of each group’s work revealed that two groups, students at Table 1 (T1) and 
students at Table 3 (T3), chose to develop what might be identified as traditional calculus 
methods to find the desired volume. T1 chose to approach the problem with the shell method and 
T3 developed the washer method. If students had prior experiences with second-semester 
calculus content, the graphic presentation of the cross section of the mug may be seen by some as 
suggestive of these two approaches. 

However, students seated at Table 2 (T2) and those at Table 4 (T4) invented distinct, rather 
unconventional methods for solving the task. Five students at T2, Eric, Justin, Daniel, Jamie, and 
Julie, developed what they termed the “ratios” method. During small-group problem-solving 
Justin responded (D1_1 29:36) to Eric by offering a speculative question (Walter, 2004).  
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D1_1  
29:36 

Justin What if you did this? What if you 
took like kind of saying what you’re 
saying, if you took the ratio of the 
difference between [pause] of how 
these two apply to each other. I 
don’t know what I’m saying. And 
then find the volume of the cylinder 
and apply the ratio to that. 

[“ratio of the 
difference 
between”/ratio 
of parabolic 
area to 
circumscribed 
rectangular 
area] 

[extended agential 
authority/mindful 
awareness of Eric’s 
prior suggestion] 

29:54 Eric I wonder if that would work.  [personal agency] 
 

In the ratios method, T2 found that the area of the rectangle circumscribing the parabola was 

22� 

cm2

. They set up and evaluated 
� 

11 (1− x 2)
−1

1

∫ dx =14.666  cm2

 to determine the area of one of 

the parabolic faces represented in the cross-section of the gel-pack mug. and then calculated the 

ratio of the parabolic area to the area of the rectangle (see Figure 1), 
� 

14.666 
22

= .666
−

. The 

rectangle, if rotated around the y-axis at a distance from the y-axis equal to the interior radius of 
the mug, would form the 11 cm high, double-walled cylinder containing the gel-pack. The 
double-walled cylinder volume, 1244.07 � 

cm3

, was found by determining the volume of the 
entire cup at a height of 11 cm and then subtracting the volume of the 11 cm high interior 
cylinder of the cup (D1_1 32:03). During their small group work, and again in public 
presentation of their solution, T2 stated that the ratio of the area of the parabola to the area of the 
rectangle would be equal to the ratio of the volume of the gel pack to the volume of the cylinder. 
Hence, T2 multiplied the area ratio by the volume of the cylinder or “shell containing the gel-
pack” to find the volume of the gel-pack (Figure 1). 

Meanwhile, students at T4, Danielle, Derrick, Paul and Nels, with remarkable creative 
insight, invented a method which, unknown to them, demonstrated the Second Theorem of 
Pappus. The students proceeded, in a compelling manner, to justify to the class their use of 
specific mathematical referents in their approach to solving the problem. The following is an 
excerpt from Derrick’s portion of the group’s performance. 

 
D3_1 
8:32 
 

Derrick As we understand, by 
finding a volume, like, to 
find volume it’s like 
length times width times 
height 

[writes V=L x W x H] [we/pronoun/ 
extended agential 
authority] 
[like/conjunction] 
[volume of right 
prism/mathematical 
referent] 

8:45  And for us, our length 
times width, I call it the 
base of our object, so that 
was the base of our object, 
the length times width 

[draws a rectangle 
around L x W and writes 
“base” below] 

[us/our/pronoun/ 
extended agential 
authority] 
[I/personal agency]  
[it/that/parabolic face 
of the right prism] 
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[so/adverb] 
8:58  So all we needed to do 

was take that, that 
fourteen point six six six 
six six seven and multiply 
it times a height 

[writes 
� 

V = 14.666667( ) H( )  on 
the board] 

[so/adverb] 
[we/extended agential 
authority] 
[needed to 
do/mathematical 
necessity] 
[that/pronoun/ 
parabolic base area] 

9:59  So we stretched that out [points to the gel-pack 
parabolic prism he had 
drawn–see Figure 2] 

[so/adverb] 
[kinesthetic 
deformation of gel-
pack]  

10:01  That's just like taking the 
mug and chopping it in 
half right there and 
stretching it out 

[with a chopping motion 
draws a vertical line 
segment across the 
sketched washer, or top 
view, cross-section of 
the gel-pack] 

[like/adjective] 
[process/what we 
have] 

10:06  And so... so we took this 
middle radius, the average 
radius  

[draws a circle 
representing an average 
circumference on the 
washer cross-section 
already drawn on the 
whiteboard] 

[so/conjunction/ 
process] 
[we/extended agential 
authority] 

10:14  ‘cause this is 8 [draws and labels an 
inner radius 8] 

[‘cause/conjunction] 
[backing for average 
radius] 

10:16  and that’s 10 [draws and labels an 
outer radius 10] 

 

10:18  So we took the radius at 9  [so/conjunction/proce
ss] 

10:21  And we figured out why 
we did that.  

[sketches an isosceles 
trapezoid with base 
lengths 8 and 10 units] 

[we/pronoun/ 
extended agential 
authority] 
[nested mathematical 
referent] 

10:22  Because if you really 
stretch it out,  

[a longitudinal cross 
section of the gel-pack] 

[because/conjunction] 
[kinesthetic 
deformation of gel-
pack] 

10:24  it looks like this [points to isosceles 
trapezoid] 

[nested mathematical 
referent] 

10:27  and there's space 
unaccounted for 

[points to a region 
outside the left leg of the 

[identifies tensions 
between 
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trapezoid]. mathematical 
referents] 

10:29  But if we do it in the 
middle 

[average circumference] 
[draws the median– a 
segment connecting the 
midpoints of the legs of 
the trapezoid] 

[we/pronoun] 
[process] 

10:34  then it makes up for that 
extra space 

[superimposes on the 
trapezoid a rectangle 
with length dimension 
equivalent to the length 
of the median and height 
equivalent to the height 
of the trapezoid, Fig. 2 

[then/adverb] 
[resolves tension, 
reconciles rectangular 
and trapezoidal 
referents] 

  Does that make sense?  [checks for whole-
class consensus] 

 
 

 
Figure 2. T4 mathematical referents and demonstration of second theorem of Pappus. 

 
T4 recognized a parabolic right prism in the structural deformation of the gel-pack. They 

chose to use the formula for the volume of a prism as a mathematical referent in their invented 
solution demonstrating the Second Theorem of Pappus. The isosceles trapezoid was a nested 
mathematical referent to resolve tension between rectangular and parabolic right prisms and to 
justify the use of the average radius of the gel-pack for the height of the right-prism gel-pack.  

 
Discussion 

These students flexibly used pivotal cues, mathematical referents, and collaboratively created 
notations to meaningfully relate prior experiences with developmental reasoning and 
mathematical inferences. Pivotal cues note emphases and direction of attention in problem-
solving. Selected pivotal cues and purposes as used by these students are presented in Figure 3. 
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Adverb Adjective Conjunction Pronoun 
So (in the way that 
follows; in the way 
that precedes) 
Like (resembling 
closely, similar to; in 
the same way as; as if) 
Then (immediately or 
soon afterward; next 
in order of time or 
place; as a 
consequence) 

So (true as stated 
or reported) 
Like (of the same 
form; similar, 
analogous; bearing 
resemblance; 
equivalent; 
possessing the 
same or almost the 
same 
characteristic)  

So (in order that; 
with the result 
that; on the 
condition that) 
Like (as if, in the 
same way as) 
Because or 
‘cause 
(for the reason 
that; due to the 
fact that; since) 

I (self as agent)  
We (nominative plural 
of I representing a 
collective viewpoint 
and temporally 
extended agential 
authority) 
You (second person 
singular or plural; 
people being 
addressed) 

Figure 3. Selected pivotal cues in students’ presentations of solution approaches. 
 
In these students’ work, justification was grounded in personally meaningful mathematical 

referents and was a means for building mathematical consensus. In subsequent problem solving, 
each student in the class chose to appropriately and efficiently utilize the Second Theorem of 
Pappus. We see enacted personal agency and extended agential authority as fundamental for 
creativity and meaning in students’ mathematics. Our analysis expands our awareness of 
students’ use of pivotal cues and mathematical referents in problem-solving. Additionally, we 
gain fine-grained insight into students’ choices for personal instantiations and justifications that 
ground mathematical inferences. In turn, we begin to recognize more fully how students build 
convincing justifications for their understandings of mathematical concepts and processes. 
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The LieCal Project longitudinally investigates the effects of the Connected Mathematics 
Program (CMP) and more traditional middle school curricula (non-CMP) on students’ learning 
of algebra. To ascertain the curricular effects, we must attend to aspects of teaching that 
influence students’ learning opportunities. In this paper, we particularly focused on the 
mathematical tasks to understand the instructional experiences provided when using CMP and 
Non-CMP curricula. We found that teachers in CMP classrooms implemented significantly more 
cognitively demanding tasks than teachers in Non-CMP classrooms. Also, teachers are much 
more likely to encourage multiple strategies in CMP classrooms than in Non-CMP classrooms.  

Purpose 
One of the major goals of educational research, curriculum development, and instructional 

improvement is to improve students’ learning. Advocates of mathematics education reform often 
attempt to change classroom practice, and hence, students’ learning, by means of changes in 
curricula (NCTM, 1989; Howson, Keitel, & Kilpatrick, 1981; Senk & Thompson, 2003). 
Historically, curriculum has been used as a means to convey what students should learn (NCTM, 
1989) and it has also been used to serve as agents for instructional improvement (Ball & Cohen, 
1996). However, curriculum does not always influence classroom instruction (Ball & Cohen, 
1996; Fullan & Pomfret, 1977). One of the important factors is how teachers interpret and use 
the curriculum materials in classroom. The purpose of this study is to examine the kinds of 
learning provided by classroom instruction using Standards-based and and more traditional 
middle school curricula mathematics curricula.  
  

Background and Theoretical Considerations 
Standards-Based Mathematics Curriculum 

In the late 1980s and early 1990s, the National Council of Teachers of Mathematics (NCTM) 
published its Standards documents, which provided recommendations for reforming and 
improving K-12 school mathematics. In the Standards and related documents, the discussions of 
goals for mathematics education emphasize the importance of thinking, understanding, 
reasoning, and problem solving, with an emphasis on connections, applications, and 
communication (e.g., NCTM, 1989, 2000). This view stands in contrast to a more conventional 
view of the goals for mathematics education, which emphasizes the memorization and recitation 



Vol. 5  693 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

of decontextualized facts, rules, and procedures, with the subsequent application of well-
rehearsed procedures to solve routine problems. 

With extensive support from the National Science Foundation, a number of Standards-based 
school mathematics curricula were developed in the United States and implemented to align with 
the recommendations in the Standards (see Senk and Thompson, 2003 or NRC, 2004 for details). 
The Connected Mathematics Program (CMP) is one of the Standards-based school mathematics 
curricula developed with the support of the U.S. National Science Foundation. The CMP 
curriculum is a complete middle-school mathematics program. The intent of CMP is to build 
students’ understanding in the four mathematical strands of number and operation, geometry and 
measurement, data analysis and probability, and algebra through explorations of real-world 
situations and problems (Lappan et al., 2002). Because NSF-funded curricula like CMP claim to 
have different learning goals and also look very different from commercially developed 
mathematics curricula, a natural question is: What learning opportunities will a Standards-based 
curriculum like CMP provide that are different from the learning opportunities provided by more 
traditional middle school curricula?  
LieCal Project 

 The study reported in this paper was conducted as part of a large project titled the 
Longitudinal Investigation of the Effect of Curriculum on Algebra Learning (LieCal Project). 
The LieCal Project is designed to longitudinally compare the effects of the Connected 
Mathematics Program (CMP) to the effects of more traditional middle school curricula (hereafter 
called Non-CMP curricula) on students’ learning of algebra. The LieCal Project is being 
conducted in 16 middle schools and 10 high schools of an urban school district serving a diverse 
student population. At the start of the project, 27 of the 51 middle schools in the school district 
had adopted the CMP curriculum while the remaining 24 middle schools were using other 
curricula. Eight CMP schools were randomly selected from the 27 schools that had adopted the 
CMP curriculum. After the eight CMP schools were selected, eight Non-CMP schools were 
chosen based on comparable ethnicity, family incomes, accessibility of resources, and state and 
district test results. A total of 725 CMP students from 26 classes and a total of 698 Non-CMP 
students from 24 classes participated in the study, and these 1,423 students were followed for 
three years from grades 6 to 8 and into grade 9.   

The goal of teaching is to help students learn. To understand the impact of Standards-based 
curricula, then, we must attend to aspects of teaching that appear to have potential to influence 
students’ learning opportunities. Specifically, to help us understand the differences between the 
instructional experiences provided when teachers use CMP and Non-CMP curricula, in this 
paper we focused particularly on the instructional tasks posed and implemented by the teachers. 
Instructional Tasks 

Researchers have developed different paradigms and methods that can be used to identify 
important features of classroom instruction (e.g., see Koehler & Grouws, 1992; Porter & Brophy, 
1988; Shulman, 1986). Instructional tasks have been identified as an important construct to study 
classroom instruction (Doyle, 1983; Stein et al., 1996). The term "instructional tasks" has been 
referred to by other researchers as "academic tasks,” or as "mathematical tasks" (e.g., Cai & 
Lester, 2005; Doyle, 1983; Hiebert & Wearne, 1993; Stein et al., 1996). Mathematical tasks can 
be defined broadly as projects, questions, problems, constructions, applications, or exercises in 
which students engage. Mathematical tasks provide intellectual environments within which 
students can learn and develop mathematical thinking. Tasks help regulate not only students' 
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attention to particular aspects of content, but also their ways of processing information. 
However, only "worthwhile problems" give students the chance to solidify and extend what they 
know and to stimulate mathematics learning (NCTM, 1991). In the classroom, students' actual 
opportunities to learn depend on the type of mathematical tasks presented and implemented. 
Regardless of the context, for a task to be worthwhile, it should be intriguing and it should 
provide a level of challenge that invites speculation and hard work. Most importantly, 
worthwhile mathematical tasks should direct students toward explicit learning goals by 
encouraging them to investigate important mathematical ideas and ways of thinking. The NCTM 
Standards (1991, 2000) recommend that students should be exposed to truly problematic tasks in 
classrooms so that they can practice mathematical sense making. Doyle (1988) argues that tasks 
with different cognitive demands are likely to induce different kinds of learning. Mathematical 
tasks that are truly problematic have the potential to provide the intellectual contexts for students' 
rich mathematical development. Such tasks can promote students' conceptual understanding, 
foster their ability to reason and communicate mathematically, and capture students' interests and 
curiosity (NCTM, 1991).  

Worthwhile mathematical tasks alone do not guarantee students' learning. They are 
important, but not sufficient, for effective mathematics instruction because teachers may not 
implement worthwhile tasks as they were intended. Stein et al. (1996) found that only about 50% 
of the tasks that were set up to require students to apply procedures with meaningful connections 
were actually implemented that way. In our LieCal project, we analyzed three distinct categories 
of mathematical problems: those that appeared in the CMP and Non-CMP textbooks, those that 
were posed and implemented during classroom instruction, and those that were assigned as 
homework. In this paper, we report only the results from our analysis of the instructional tasks 
implemented in the classroom. 

 
Methodological Considerations 

CMP and Non-CMP Curricula 
We have conducted detailed analyses of the CMP and Non-CMP curricula, with a focus on 

the algebra strand. Our preliminary analysis showed remarkable differences between the CMP 
and Non-CMP curricula. CMP can be characterized as a problem-based curriculum. Take the 
introduction to equation solving as an example. In one of the Non-CMP curricula, equation 
solving is introduced symbolically using the additive property (add or subtract the same quantity 
on both side of the equation, the equality holds) and the multiplicative property (multiple or 
divide a non-zero quantity on both sides of an equation, the equality holds). On the other hand, in 
the CMP curriculum, the introduction to equation solving is situated within real-life contexts that 
are used to help students understand the meaning of each step of the equation solving process 
(Nie, Cai, & Moyer, 2009).  

The extent of the differences is also illustrated in Figure 1 below. Using a scheme developed 
by Stein et al. (1996), we classified the mathematical tasks in the CMP curriculum and one of the 
Non-CMP curricula into four increasingly demanding categories of cognition: memorization, 
procedures without connections, procedures with connections, and doing mathematics. As Figure 
1 shows, significantly more tasks in the CMP curriculum than in the Non-CMP curriculum are 
higher-level tasks (procedures with connections and doing mathematics) (χ2(3, N = 3311) = 
759.52, p < .0001). 
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Figure 1. Percentages of various tasks in CMP and Non-CMP curricula. 

 
Classroom Observations 

As we indicated above, the research reported in this paper is part of a longitudinal study of 
the effect of curriculum on the algebraic thinking of approximately 1400 middle school students 
from 16 schools in a single urban district as they progressed from grades 6-8. The data was 
collected over a three-year period during 620 classroom observations. Approximately half of the 
observations were of teachers using the CMP curriculum. The other half were observations of 
teachers using Non-CMP curricula. Two retired mathematics teachers conducted and coded all 
the observations. The coders received extensive training that included frequent checks for 
reliability and validity throughout the three years. Over the course of the 6th-grade year, for 
example, we checked the reliability of the observers’ coding three times. These three sessions 
revealed that the reliability of the coding done by the two specialists was quite high. The 
reliability achieved during the three sessions averaged 79% perfect agreement using the criterion 
that the observers’ coded responses were considered equivalent only if they were identical (i.e., 
perfect match). The reliability averaged 95% using the following criteria: (a) If an item or sub-
item was "scored" using an ordinal scale, then the specialists’ coded responses were considered 
equivalent if they differed by at most one unit; (b) If an item or sub-item (e.g. representation) 
was "scored" by choosing from a list of alternatives all the words/phrases that characterize it, 
then the specialists’ coded responses were considered equivalent if they had at least one choice 
in common (e.g. symbolic and pictorial vs. pictorial).  

Each coder observed and coded about 100 algebra-related lessons each year: half in CMP 
classes and half in Non-CMP classes. Each class was observed four times, during two 
consecutive lessons in the fall and two in the spring. The coders recorded extensive information 
about each lesson in a 28-page project-developed observation instrument.  

During each observation, the observer made a minute-by-minute record of the lessons on 
lined sheets. This record was used later to code the lesson. One section of the observation 
instrument is devoted to the analysis and coding of the mathematical tasks in the lessons. 
Instructional tasks were analyzed from three perspectives: (1) as intended by the author, (2) as 
set up by the teacher, and (3) as actually implemented by the teacher with students. The 
observers in the project coded each of the instructional tasks along four dimensions within each 
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of the three perspectives: (1) Setting; (2) Solution Strategies; (3) Representations; and 
(4) Cognitive Demand. These dimensions are described in the results section.   

 
Results 

In this paper, we only report the results from the analysis of the tasks actually implemented 
by the teacher with students. In addition, the difference patterns between the tasks from CMP 
and Non-CMP classrooms are similar across the three middle school grade levels (6th- to 8th 
grades). Therefore, we aggregated the tasks data from all three grades. A total of 646 
instructional tasks from about 300 CMP lessons and 744 tasks from about 300 Non-CMP lessons 
were identified. 
Settings 

We classified the classroom settings in which teachers implemented instructional tasks into 
three types: whole classroom, small group work, or individual work. The same tasks in a lesson 
could be implemented in different settings. Nearly 80% of the tasks in CMP lessons and 80% of 
the tasks in Non-CMP lessons were implemented in a whole classroom setting. About 20% of the 
tasks in the CMP lessons and 8% of the tasks in the Non-CMP lessons were implemented in 
small group settings. These two percentages are significantly different (z = 7.03, p < .001). On 
the other hand, a significantly larger percentage of the tasks in Non-CMP lessons (57%) than in 
CMP lessons (41%) were implemented in an individual work setting (z = 5.89, p < .001).   
Solution Strategies 

We examined whether the instructional tasks implemented in the classrooms were solved 
using multiple approaches or a single approach. Figure 2 below shows the percentage of tasks 
that were solved using multiple solution strategies and the percentage of tasks that were solved 
using a single solution strategy in both CMP and Non-CMP classrooms. A Chi-square test shows 
that while a larger percentage of the tasks implemented in CMP classroom were solved using 
multiple solution strategies, a larger percentage of the tasks implemented in Non-CMP 
classrooms were solved using a single solution strategy (χ2(1, N = 1390) = 122.49, p < .0001).  

 

 
Figure 2. The distribution of solution strategies in CMP and Non-CMP classrooms. 
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Representations 
The representations used to solve each problem were classified into 7 categories: 

(1) symbolic, (2) written words, (3) pictorial, (4) tabular, (5) graphical, (6) verbal, and 
(7) physical manipulatives. Table 1 below shows the percentage of tasks implemented in CMP 
and Non-CMP lessons using each of the representations. The solution to an implemented task 
can involve multiple representations. Only a small proportion of the tasks implemented in CMP 
and Non-CMP lessons were represented with physical manipulatives. The most frequently used 
representations of implemented tasks in both the CMP and Non-CMP lessons were symbolic, 
and the proportion of the tasks that were represented using symbolic representations in Non-
CMP lessons was greater than that in CMP lessons (z = 6.16, p < .001). Compared to the use of 
symbolic representations, the proportion of using other representations is much smaller in both 
CMP and Non-CMP lessons. We compared the frequencies with which written words, pictorial, 
tabular, graphical, and verbal were used to represent implemented tasks in both CMP and Non-
CMP lessons.  We found that the proportion of the instructional tasks that were represented using 
each of these representations (written words, pictorial, tabular, graphical, or verbal) in CMP 
lessons was greater than that in Non-CMP lessons (z = 3.80 – 8.78, p < .001).  
 

Table 1. Percentages of Tasks With Each of the Representations      
          Written                         Physical 
       Symbolic  Words   Pictorial     Tabular     Graph    Verbal Manipulatives  
CMP (n=646)  78 20 30 26 23 20 4 
Non-CMP (n=744)  90 12 15 8 8 6 3  
   
Cognitive Demand 

Using a scheme developed by Stein et al. (1996), we also classified the instructional tasks 
from CMP and Non-CMP classrooms into four increasingly demanding categories of cognition: 
memorization, procedures without connections, procedures with connections, and doing 
mathematics.  
 
 
 
 
 
 
 

 
 
 

Figure 3. Instructional tasks implemented in CMP and Non-CMP classrooms. 
 

Figure 3 illustrates the percentage distributions of the cognitive demand of the instructional 
tasks implemented in CMP and Non-CMP classrooms. A chi-square test shows that the CMP and 
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Non-CMP percentage distributions are significantly different (χ2(3, N = 1390) = 209.42, p < 
.0001). The difference is due to the fact that there was a larger percentage of high cognitive 
demand tasks (procedures with connection or doing mathematics) implemented in CMP 
classrooms than in Non-CMP classrooms (z = 13.79, p < .001). On the other hand, there was a 
larger percentage of low cognitive demand tasks (procedures without connection or 
memorization) implemented in Non-CMP classrooms than in CMP classrooms. 

 
Discussion 

The research reported in this paper is part of a larger longitudinal study conducted in the 
LieCal Project. The LieCal project was designed to provide (1) A profile of the intended 
treatment of algebra in the CMP curriculum with a contrasting profile of the intended treatment 
of algebra in the Non-CMP curricula; (2) a profile of classroom experiences that CMP students 
and teachers undergo, with a contrasting profile of experiences in Non-CMP classrooms; and (3) 
a profile of student performance resulting from the use of the CMP curriculum, with a 
contrasting profile of student performance resulting from the use of Non-CMP curricula. In this 
paper, we analyzed a single aspect of the classroom experiences that CMP and Non-CMP 
students and teachers underwent, namely the instructional tasks implemented in the two types of 
classrooms. The initial analysis of the implemented instructional tasks clearly showed 
remarkable differences between CMP and Non-CMP classroom instruction. Instructional tasks 
are more likely to be implemented in small group settings in CMP classrooms than in Non-CMP 
classrooms, and vice versa for the tasks implemented in individual settings. The instructional 
tasks implemented in CMP classrooms were more than three times likely to be solved using 
multiple solution strategies than they were in Non-CMP classrooms. While solutions of 
instructional tasks in Non-CMP classrooms were more likely to be represented using symbols, 
solutions of instructional tasks in CMP classrooms were more likely to be represented using 
written words, pictorial representations, graphs, tables, or verbal representations. In addition, 
CMP teachers were more than three times as likely to implement high-level tasks during 
classroom instruction than Non-CMP teachers.  

The findings of this study not only show the importance of examining the instructional 
experiences of students using CMP and Non-CMP curricula, but it also shows the power of 
focusing on instructional tasks to reveal the instructional differences. Recall that our analysis of 
the mathematical problems in the CMP and Non-CMP curricula showed that significantly more 
tasks in the CMP curriculum than in the Non-CMP curriculum are high level tasks (procedures 
with connections and doing mathematics). Thus it is reasonable to infer that the differences in 
setting, strategy, representation, and cognitive level of the tasks implemented in CMP and Non-
CMP classrooms reflect the differences between the mathematical problems in the CMP and 
Non-CMP curricula.  

The striking and clear differences between CMP and Non-CMP classrooms are of great 
interest and importance in our longitudinal investigation of the impact of curriculum on students’ 
learning. As part of the parent study, we also collected large-scale, longitudinal student 
achievement data. In our presentation, we will identify and present important linkages between 
students’ classroom experiences and their learning outcomes.   
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This paper reports an ongoing study that is aimed at developing an instrument for measuring 
two particular problem-solving dispositions: (a) impulsive disposition refers to students’ 
proclivity to spontaneously proceed with an action that comes to mind, and (b) analytic 
disposition refers to the tendency to analyze the problem situation. The instrument is under 
development and consists of likelihood-to-act items in which participants indicate on a scale of 1 
to 5 how likely they are to take a particular action in a given situation. The instrument was 
administered to 318 college students, mainly pre-service teachers. Statistical analysis indicates 
that likelihood-to-act items are reliable and that the current version of the instrument has room 
for further improvement.  

 
Motivation for the Study 

For many mathematics students, “doing mathematics means following rules laid down by the 
teacher, knowing mathematics means remembering and applying the correct rule when the 
teacher asks a question, and mathematical truth is determined when the answer is ratified by the 
teacher” (Lampert, 1990, p. 31). Students with such beliefs tend to exhibit dispositions such as 
“waiting to be told what to do,” “doing whatever first comes to mind,” and “diving into the first 
approach that comes to mind” (Watson & Mason, 2007, p. 207). In this paper, we use the term 
impulsive disposition to mean the tendency to “spontaneously proceed with an action that comes 
to mind without analyzing the problem situation and without considering the relevance of the 
anticipated action to the problem situation” (Lim, 2008a, p. 49). 

Some problem-solving episodes found in mathematics education literature can be interpreted 
as instantiations of impulsive dispositions. For example, consider the following missing-value 
problem that was posed by Cramer, Post and Currier (1993) to pre-service teachers: Sue and 
Julie were running equally fast around a track. Sue started first. When she had run 9 laps, Julie 
had run 3 laps. When Julie completed 15 laps, how many laps had Sue run? Thirty-two out of 33 
pre-service teachers solved this problem by setting up a proportion such as 9/3 = x/15. These pre-
service teachers are considered impulsive if they had applied the proportion algorithm without 
analyzing the problem situation. In fact, Lim (2008b) found that after a course on rational 
numbers and algebraic reasoning pre-service teachers, on average, performed better on all four 
direct-proportional problems but worse on all three non-direct-proportional problems. 

As mathematics educators, we are interested in helping students advance from impulsive 
disposition to analytic disposition, in which a student “attempts to understand the problem 
statement, studies the constraints, identifies a goal, imagines what-if scenarios, and/or considers 
alternatives” (Lim, 2008a, p. 45). To track this advancement, we need to identify where a student 
stands in terms of his or her disposition. In other words, we need an efficient and reliable 
instrument that can “measure” students’ impulsive disposition and analytic disposition. In the 
field of mathematics education, it appears that no such instrument has been developed. In this 
paper we present a few theoretical constructs related to impulsive disposition, overview the 
literature associated with assessing cognitive constructs through the use of survey, report our 
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research process, and discuss the results that we have obtained.  
 

Theoretical Constructs Related to Impulsive Disposition 
Psychological perspective. In terms of cognitive tempo or response style, a person may be 

classified as either impulsive or reflective. Kagan, Rosman, Day, Albert, and Phillips (1964) 
constructed the Matching Familiar Figures Test to measure children’s cognitive tempo. An 
impulsive is one whose response time is faster than the median and whose accuracy rate is below 
the median, whereas a reflective is one whose response time is slower than the median and 
whose accuracy rate is above the median. Nietfeld and Bosma (2003) describe impulsives as 
“individuals who act without much forethought, are spontaneous, and take more risks in 
everyday activities” (p. 119) whereas reflectives are “more cautious, intent upon correctness or 
accuracy, and take more time to ponder situations” (p. 119). In their study on consistency in 
cognitive responses among adults across academic tasks, Nietfeld and Bosma found moderate 
positive correlations for response styles among the three types of tasks they investigated: verbal, 
mathematical, and spatial. The mathematical tasks used in their study were two-digit addition or 
subtraction problems arranged in a traditional vertical format. Although such tasks are 
appropriate for measuring cognitive tempo along a speed-accuracy continuum, they are not 
appropriate for measuring disposition along an impulsive-analytic continuum. Whereas an 
impulsive tempo is characterized by a fast but inaccurate response, an impulsive disposition is 
characterized by “diving into the first approach that comes to mind” and not necessarily by how 
fast an approach comes to mind.  

Problem-solving perspective. Schoenfeld (1985) has identified four categories of cognition 
that provide a framework for analyzing problem-solving behaviors: (a) mathematical knowledge 
base, (b) use of heuristics, (c) monitoring and control, and (d) beliefs about mathematics and 
doing mathematics. Impulsive disposition can be regarded as an externalization of certain beliefs 
such as “there is only one correct way to solve any mathematics problem—usually the rule the 
teacher has most recently demonstrated to the class” (Schoenfeld, 1992, p.359). Impulsive 
disposition can also be considered as a lack of metacognition—a term introduced by Flavell 
(1976) as “the active monitoring and consequent regulation and orchestration of these processes 
in relation to the cognitive objects or data on which they bear, usually in the service of some 
concrete goal or objective” (p. 232).  

Teaching-learning perspective. According to Harel (2008), mathematics consists of two 
complementary sets: (a) ways of understanding refer to the products of mental acts while doing 
mathematics; they include definitions, theorems, proofs, problems, and solutions, and (b) ways of 
thinking refer to the characteristics of the mental acts while doing mathematics. Harel (2007) 
stipulates that “students develop ways of thinking only through the construction of ways of 
understanding, and the ways of understanding they produce are determined by the ways of 
thinking they possess” (p. 272). According to this principle, it is counter-productive to help 
students develop ways of understanding without helping them develop ways of thinking, and 
vice versa. Hence, students should be provided opportunities to engage in mental acts (e.g., 
generalizing, justifying, problem-solving, symbolizing, computing, generalizing, predicting, etc.) 
that can advance both their ways of understanding and ways of thinking. Lim (2008a) identifies 
impulsive anticipation and analytic anticipation as two ways of thinking in the context of 
problem solving. An important goal of mathematics education is to help students advance from 
undesirable ways of thinking (e.g., impulsive disposition, authoritative proof scheme) to 
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desirable ways of thinking (e.g., analytic disposition, deductive proof scheme).  
 

Means for Assessing Impulsive Disposition and Analytic Disposition 
One useful way to measure cognitive and psychological constructs is through the use of 

survey development. The use of surveys can be very informative, as they allow for the 
quantification of the constructs under study. With such quantification, we can investigate group 
differences on those constructs and assess how those constructs associate with other behavioral 
measures. Examples of the use of such measures in the psychological literature are vast, ranging 
from the measurement of social problem solving (D’Zurilla, Nezu, & Maydeu-Olivares, 2002) to 
the measurement of decision making styles (Nygren, 2000).  

Nygren (2000) constructed the Decision Making Styles Inventory, which measures the 
degree to which a person makes everyday decisions using an analytical approach, an intuitive 
approach and an approach which minimizes regret. Analytical decision making involves 
considering every aspect of the problem before making a decision whereas intuitive decision 
making involves a reliance on one’s gut feeling. These two constructs are analogous to analytic 
disposition and impulsive disposition. 

The goal of this project was to develop a measure of mathematical disposition. We wanted to 
demonstrate the internal consistency reliability of the survey items. In addition, we wanted to see 
how well the items in each subscale are inter-correlated, and how well the two items in each 
impulsive-analytic pair are correlated. Finally, we wanted to assess how scores on such a 
measure are related to self-reported academic performance in mathematical classes and the 
participant’s teacher training program.  
 

Research Process 
Instrument design, testing, and refining are an elaborate process involving multiple cycles.  

Survey Development 
The initial instrument designed to assess impulsive disposition was a multiple-choice test on 

ratios and proportions. Students have a tendency to overuse proportional strategies for solving 
missing-value problems (Van Dooren, De Bock, Hessels, Janssens, & Vershaffel, 2005). The 
items were designed to determine whether students inappropriately use a proportion to solve 
missing-value problems that do not involve a direct-proportional situation (e.g., an additive 
situation, an inverse-proportional situation) or inappropriately use a ratio to compare “non-rate” 
quantities (e.g., the size of a person’s palm, the magnitude of a project in terms of worker-hours).  

In subsequent versions multiple-choice items were used for students to choose the action that 
they would most likely perform in a given scenario. The format was eventually changed from a 
multiple-choice test to a likelihood-to-act survey which takes less time for students to complete.  

The likelihood-to-act survey developed for this ongoing study has undergone two revisions. 
The first two exploratory versions were administered to about 70 pre-service middle-school 
teachers and 14 graduate students (mainly in-service teachers) respectively in courses taught by 
the first author. The version reported in this paper consists of nine pairs of likelihood-to-act 
items, sequenced from A to R. Four pairs (A-J, N-E, O-F, and I-R) involve equation solving; two 
pairs (B-K and L-C) involve word problems; two pairs (D-M and Q-H) involve fraction division 
and fraction addition respectively; and one pair (G-P) involves geometry. Figure 1 shows 3 pair 
of such items. 

Two versions of the likelihood-to-act survey were used in this study. All the items in Version 
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1 are considered “specific” items in that a specific scenario is provided. The nine impulsive-
disposition items are based on specific mathematical rules, formulas, or procedures that are 
supposedly familiar to students.  

 
Figure 1. Three pairs of “specific” likelihood-to-act problems in Version 1. 

 
Version 2 differs from Version 1 in that it contains 2 pairs of “general” items (see Figure 2); 

the remaining 7 pairs are identical to those in Version 1. “General” items were found to be less 
reliable in the pilot testing of an earlier version based on a small sample of 14 students. Version 
2 was developed to verify this finding. Note that Pair I’-R’ is analogous to Pair I-R, but Pair G’-
P’ is substantially different from Pair G-P. 

 

 
Figure 2. Two pairs of general likelihood-to-act problems in Version 2.  
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Data Collection and Analysis 
A survey was administered in 13 mathematics classes in the final week of classes of the Fall 

2008 semester. To encourage participation, a participant in each class was randomly selected to 
win a $10 gift voucher. The survey is comprised of two parts: (a) 18 likelihood-to-act items, and 
(b) either 18 need-for-cognition items or 18 belief-attitude-confidence-in-algebra items (these 
items are not discussed in this paper). 318 students were administered the survey, with 257 
participants from 10 classes taking Version 1 and 61 participants from 3 classes taking Version 2 
of the likelihood-to-act part.  

Inter-item correlations were computed using Pearson correlations for the nine impulsive-
disposition items and the nine analytic-disposition items. Items that are not significantly 
correlated with other items in the same category were analyzed to see if they could be improved 
or should be excluded from the next version of the instrument. Because the items were paired, 
the correlation between the impulsive-disposition item and analytic-disposition item in each pair 
was also determined. The reliability for each sub-scale of seven common items was determined 
using Cronbach’s Alpha coefficient based on all 318 individuals. To assess the validity of each 
subscale, we also performed a 4×3 analysis of variance—four programs (Early Childhood to 
Grade 4 Generalist program, Grades 4-8 Generalist program, Grades 4-8 Math Specialist 
program, and B.S. Math program) by three self-reported grade-point-averages for mathematics 
courses (A, B, and C or below). 

 
Results and Discussion 

Reliability of the likelihood to act measure. To compute the reliability of the likelihood-to-act 
subscales, we used the seven pairs of items common to both versions to create a larger sample—
318 individuals. Missing data on any of these items for these 318 students were imputed. At 
most, one item had seven missing item responses. The Cronbach’s Alpha estimate of internal 
consistency reliability for the seven impulsive-disposition items was 0.64, (95% Confidence 
Interval: 0.58, 0.70). The reliability of the seven analytical items was 0.63 (95% Confidence 
Interval: 0.56, 0.69). While these reliability estimates are not very high, it should be noted that 
each subscale has only seven items. It is well known from classical test theory that the addition 
of items tends to increase test score reliability. For the next phase, we will focus on developing 
and testing additional items, s well as improving existing items.  

Impulsive-disposition items. The correlations among the nine general impulsive-disposition 
items in Version 1 are presented in Table 1 (ignore the two specific items, G’ and I’, for the time 
being). By excluding items L, N, and I, all the correlations among the six remaining items (A, B, 
D, O, Q, and G) are significant with p < 0.01. Items L, N, and I will be replaced in the next 
version of the instrument. The strong correlations among items A, B, D, O, Q, and G suggest that 
impulsive disposition is a trait that cuts across the four domains: equation-solving (A and O), 
word problem (D and Q), fractions (B), and geometry (G). 
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Table 1 
Correlations among the Nine Impulsive-Disposition Items 

Item A B L D N O Q G I G’ I’ 
A 1           
B 0.32** 1          
L 0.15** 0.15** 1         
D 0.37** 0.26** 0.18** 1        
N 0.13* 0.17** 0.21** 0.10 1       
O 0.30** 0.30** 0.14* 0.29** 0.22** 1      
Q 0.25** 0.17** 0.09 0.15** 0.12* 0.21** 1     
G 0.24** 0.31** 0.13* 0.19** 0.17** 0.28** 0.23** 1    
I 0.02 0.15* 0.09 0.14* 0.26** 0.22** -0.04 0.18** 1   
G’ 0.34** 0.18 0.42** 0.07 0.36** 0.02 0.25 - - 1  
I’ 0.47** 0.42** 0.28* 0.29* 0.09 0.49** 0.33** - - 0.19 1 
Note. The p-values for the correlation of 0.29 for I’ and D is lower than that for the 
correlation of 0.29 for O and D because the sample size was 61 for I’ and D (Version 2) and 
315 for O and D (Versions 1 and 2).  
*p < .05. **p < .01.  
 
As for Version 2 (G’ and I’ instead of G and I), we should retain items A, B, D, O, Q, and I’ 

and replace items L, N, and G’. Interestingly, the general item I’ appears to be better correlations 
than the specific item I. A probable explanation is that the participants might have difficulty 
interpreting Item I because of the equation 103x⋅102y = 1000⋅103x and the meaning of log10.  

Analytic-disposition items. The correlations among the 11 analytic-disposition items shown 
in Table 2 are generally less significant when compared to those in Table 1. This finding 
suggests that the analytic-disposition items are not as effective as the impulsive-disposition 
items. Items C, E, P, R, P’ and R’ have to be excluded in order for the remaining correlations to 
be significant. However, items J, K, M, F and H can remain intact for the next version. Hence, 
the individual items in these five pairs, A-J, B-K, D-M, O-F, and Q-H, seem to be reliable. 
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Table 2 
Correlations among the 9 Analytic-Disposition Items 

Item J K C M E F H P R  P’ R’ 
J 1           
K 0.28** 1          
C 0.05 0.14* 1         
M 0.31** 0.41** 0.07 1        
E 0.17** 0.05 0.08 0.08 1       
F 0.22** 0.16** 0.21** 0.17** 0.19** 1      
H 0.26** 0.39** 0.00 0.43** 0.07 0.23** 1     
P 0.02 0.09 0.14* 0.19** 0.12* 0.10 0.06 1    
R 0.21** 0.18** 0.10 0.14* 0.23** 0.08 0.08 0.34** 1   
P’ -0.01 -0.14 0.21 -0.05 0.35** 0.06 -0.33** - - 1  
R’ 0.20 0.07 0.44** 0.09 0.15 0.31* -0.01 - - 0.35** 1 
Note. *p < .05, **p < .01.  

 
Correlation between the two items in each pair. The last column in Table 3 shows the 

correlation between the impulsive-disposition item and the analytic-disposition item in each pair. 
A significant negative correlation in Pair Q-H indicates that this pair of items differentiates 
impulsive disposition from analytic disposition. The significant positive correlations in Pair L-C 
and in Pair I-R mean that these two pairs of items should not be used in the next version. Note 
that the five good pairs (A-J, B-K, D-M, O-F, and Q-H) have either negative correlations or very 
small positive correlations. The lack of significant negative correlations suggests the possibility 
that impulsive disposition and analytic disposition are not necessarily mutually exclusive. In 
other words, a person may have two competing dispositions for the same problem situation.  

 
Table 3 

Comparing the Two Items in Each Pair 
 Mean for the 

impulsive item 
Mean for the 
analytic item 

Difference 
betw. the two 

means 

Correlation 
betw. the two 

items 
Pair A-J 3.62 3.53 0.10 0.02 
Pair B-K 3.66 3.53 0.12 -0.10 
Pair L-C 3.34 3.55 -0.21 0.19* 
Pair D-M 4.19 3.21 0.99 -0.00 
Pair N-E 3.14 3.55 -0.40 0.10 
Pair O-F 3.77 3.53 0.24 0.04 
Pair Q-H 4.00 3.33 0.67 -0.16** 
Pair G-P 3.40 3.84 -0.44 0.12 
Pair I-R 3.77 4.09 -0.32 0.14* 
Pair G’-
P’ 3.86 4.07 -0.21 

0.24 

Pair I’-R’ 3.37 4.28 -0.91 0.16 
Note. *p < .05, **p < .01. 
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Association between training program, self-reported mathematics grade, and likelihood-to-
act scores. To assess the validity of the likelihood-to-act measure, we also performed a 4 
(programs) by 3 (self-reported numerical grade) analysis of variance on the analytical and 
impulsive composite scores. For the analytical subscale, there was a main effect for program 
(F(3,270) = 8.233, p < 0.001, η2 = 0.08). Interestingly, elementary-school generalists (EC-4 
program) had higher analytical scores than middle-school math specialists (4-8 Math program) 
and mathematics majors (B.S. Math program). Middle-school generalists (4-8 Generalists 
program) also had higher analytical scores than mathematics major. An interaction between self-
reported grade and training program emerged only for the 4-8 Math program. Surprisingly, 
individuals in the 4-8 Math training program who reported a letter grade of B had higher 
analytical scores than those who self-reported a letter grade of A in their math coursework.  

A similar analysis was performed for scores on the impulsive-disposition measure. There was 
a main effect for training program (F(3,270) = 4.872, p = 0.003, η2 = 0.05). Math majors had 
higher impulsive-disposition scores than did all other groups. There were no differences among 
the other groups. There was no main effect for self-reported grade and no interaction between 
self-reported grade and training program. In summary, these results seem to suggest that students 
with increased exposure to traditional math coursework are less analytical and more impulsive.   

 
Conclusion 

The findings obtained in this study confirm the viability of using likelihood-to-act items to 
measure impulsive disposition and analytic disposition. Five out of eleven pairs of items have 
high inter-correlations and will be retained in the next version. The weaker items will be refined 
for the next version of the instrument. The reliability for the two subscales are 0.64 and 0.63. Our 
goal is to continue improving the instrument until a reliability of at least 0.75 is obtained.  

Analytic-disposition items were found to be slightly less reliable than impulsive-disposition 
items due in large part to the former being typically less clear than the latter. The specific 
procedure or rule to which students are drawn can be stated explicitly in an impulsive-disposition 
item, but not in an analytic-disposition item. There is insufficient evidence in this study to 
support the claim that general items are not as reliable as specific item. Results from the 4-by-3 
analysis of variance reveal an unexpected phenomenon. Students in more advanced but 
traditional math programs (i.e., B.S. program) were found to have lower analytic-disposition 
scores than those in the less advanced but reform-oriented mathematics programs (i.e., EC-4 
program and 4-8 Generalists program). Future research is needed to account for this 
phenomenon. 

One of the advantages of the likelihood-to-act survey is that it takes less time for students to 
complete than a mathematics test. Whereas students need to solve a problem in order to arrive at 
an answer choice in a test item, students only need to understand the problem statement and the 
action for consideration in a likelihood-to-act item to choose from a scale of 1 to 5 the likelihood 
level. Another advantage is that participants are less likely to feel threatened because the 
instrument, as a survey, is not perceived as an assessment of their mathematical knowledge.  

However, like any survey, what participants say they will do may differ from what they 
actually do in a mathematics assessment or in a problem-solving situation. This raises the issue 
of the validity of the likelihood-to-act survey. Another limitation of the instrument is that an 
impulsive item is effective only if the students are familiar with the particular rule, formula or 
procedure that is mentioned in the item. For example, Item B will not be valid if it is 
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administered to an elementary student who has not learned how to set up a proportion. Hence, 
the validity of a likelihood-to-act survey is limited to the group of students for which it is 
designed.  

The likelihood-to-act items developed in this study were aimed at measuring impulsive 
disposition and analytic disposition. The idea of asking participants to indicate their likelihood to 
act may be extended to measure other dispositions such as waiting to be told what to do, relying 
on the teacher, consulting with peers, and so forth.  
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Comparison word problems have proven to be difficult for students to solve. Previous studies 
investigated students’ solution strategies and described the mental models they used while 
working on these problems, although subsequent studies questioned the accuracy of some of 
these models. This study investigates the solution strategies that 210 undergraduate students 
used as they solved comparison problems. It also uses interviews with 27 students to describe the 
mental models that tend to lead to correct solutions and explores the role that equality plays in 
these models. 
 

Introduction 
Thirty years ago, Kaput and Clement (1979) noted that undergraduate students had difficulty 

solving the following problem:  
 
Write an equation using the variables S and P to represent the following statement: 
‘There are six times as many students as professors at this university. Use S for the 
number of students and P for the number of professors” (p. 288). 
  
Frequently, college students wrote 6S = P as the solution instead of S = 6P, an example of a 

reversal error. Students had even more difficulty solving problems in which both coefficients in 
the algebraic expression were not 1. Furthermore, the reversal error was prevalent not only when 
students were translating words into an equation, but also when they constructed an equation 
based on a diagram or table of values. 

We will refer to problems in which students are asked to translate these types of relational 
statements as SP-type problems. These can be seen as an extension of a class of word problems 
called compare problems, which have been classified (e.g. Riley, Greeno & Heller, 1983) and 
studied from a cognitive perspective; while SP-type problems involve writing an equation, 
compare problems involve computing a value. 

In a pilot study, Weinberg (2007) found that students who were successful at solving SP-type 
problems seemed to use several strategies that had not been previously reported. The pilot data 
suggested that students’ strategies depended on the specific task they were asked to complete and 
were associated with their conceptions of equality. The goal of the study reported here is to 
elaborate on the results from the pilot study and to describe students’ problem-solving strategies 
and mental models as they solve SP-type problems. 

 
Theoretical Perspectives 

Several researchers have attempted to understand why compare problems are so difficult for 
students. Lewis and Mayer (1987) describe a “consistency hypothesis,” which posits that 
students’ approach to solving problems is affected by the word order of the problem. Several 
researchers (e.g. Verschaffel, 1994) have verified that students have more difficulty and are more 
prone to make reversal errors when the problem is posed in a way similar to the language used in 
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most SP-type problems. 
Clement (1982) interviewed students as they solved SP-type problems and described three 

strategies/mental models. Some students appeared to syntactically translate the words into 
symbols, matching symbols to the order of the words. Another group of students appeared to 
think of the letter as a label (e.g. S stands for “students”) and the coefficient as an adjective 
describing the number of objects. The third group of students viewed the multiplication as a 
“hypothetical operation,” operating on the two variable quantities to make them equal to each 
other. Other researchers (e.g. Hegarty, Mayer & Monk, 1995) have described a direct translation 
approach and a problem model approach, with the former corresponding to Clement’s syntactic 
model and the latter describing strategies in which the students formed a meaningful mental 
model. MacGregor and Stacey (1993) cast doubt on Clement’s descriptions, concluding that 
using a letter as a label was a “post hoc explanation of an equation arising from a model formed 
without conscious intervention” (p. 230). In addition, they provided data that appeared to refute 
the hypothesis that students frequently used direct translation, proposing that all students were 
constructing some kind of mental model. They echoed Rosnick and Clement’s (1980) suggestion 
that students’ conceptions of equality may also play a role in the way they solve SP-type 
problems, although no subsequent research has explicitly addressed this perspective. 

Several researchers have described the problem-solving process as involving multiple steps. 
For example, English and Halford (1995) describe three steps: constructing a problem-text 
model, a problem-situation model, and a mathematical model. In order to describe mental models 
and ideas of equality, this study focuses on students’ problem-situation models (a student’s 
mental representation of the situation) and the interaction with their corresponding mathematical 
models. 

Previous research has suggested that a problem’s word order affects students’ responses. 
Similarly, MacGregor and Stacey (1993) noted that students construct mental models when 
words are ordered in a variety of ways in the problem. Although the present study does not focus 
on the problem-text model, it uses word problems in which the word order both matches and 
fails to match the order of the symbols in the corresponding algebraic representation.  

Word problems are situated in a particular task, and different activities involving the same 
problem situation may cause students to use different strategies and form different mental 
models. While students are prone to making reversal errors when writing equations, it is possible 
that their underlying mental models may still allow them to complete other mathematical tasks. 
Consequently, this study presents word problem situations using three common activities: 
writing an equation, writing a function, and computing a value.  

In order to investigate students’ conceptions of equality, the study targets three misuses of 
the equals sign: the idea that equality is directional (e.g. not recognizing that factoring is 
equivalent to the distributive property), “run-on” equality (i.e. using the equals sign to connect a 
string of computations), and the equals sign as a directive to perform an operation (rather than 
indicating an equivalence). 
 

Research Questions 
1. Are students more successful and less prone to making reversal errors on SP-type word 

problems when the specific task varies? 
2. When solving SP-type word problems, do students’ strategies vary depending on the 

specific task and the number of coefficients? Do students use these strategies consistently 
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across multiple problems or formats? 
3. What strategies do students use successfully on each kind of task and problem, and what 

are the underlying mental models upon which these strategies are based? 
4. Are students’ conceptions of equality and the equals sign related to either their success on 

comparison problems or the strategies they use to solve them? 
 

Methodology 
Students in nine sections of first- and second-semester Calculus classes (n = 210) at a 

northeastern comprehensive college completed a written assessment with four word problems 
and ten equality problems.  

Two of the word problems involved situations that could be described by an algebraic 
expression with one coefficient that isn’t 1 (e.g. 6p = s) while the others required two coefficients 
(e.g. 3p = 4c); one of the latter situations was presented in a diagram rather than words. In one of 
the 1-coefficient problems, the sentence described the coefficient before it described the two 
variable quantities, while in the other the coefficient was described between the quantities; this 
was done in order to increase the consistency between the word ordering and algebraic 
representation. Students were randomly assigned one of three formats for each problem: writing 
an equation to represent the statement (R-format), writing an equation that allows them to predict 
the value of one quantity if they knew the value of the other (F-format), or computing the value 
of one quantity if they knew the value of the other (V-format). 

The ten equality problems presented students with equations and asked them to decide 
whether they were correct. Four of the equations were “run-on” expressions (e.g. 2+3 = 5+2 = 7), 
with two incorporating derivatives and two using arithmetic. Two of the equations expressed 
relationships that could be seen as “backwards” (e.g., ac+ab = a(b+c)), one equated an 
expression with an integer multiple of itself (i.e., 2x+12 = x+6), and the remaining equations 
served as “filler” problems. 

All students were invited to participate in an open-ended interview. Fifty-seven students 
volunteered, and 27 students were selected in random order; the interviews were videotaped and 
transcribed. In the interview, each student was asked to explain their reasoning on each of the 
problems. If students had originally seen an R- or F-format problem, they were asked to compute 
a value; students who had originally seen a V-format problem were asked to create an equation. 
If a student found the correct equation quickly, they were told that other students had arrived at a 
different answer and were presented with an equation that incorporated a reversal error. 
 

Results 
Students’ performance by format is shown in  
 
Table 2. Students were more likely to find a correct value than write a correct equation or a 

function (p = 8.58 x 10-42) and were more likely to write a correct function than a correct 
equation (p = .0076). Similarly, students were less likely to make a reversal error when finding a 
value than when writing an equation or a function (p = 6.11 x 10-22), although were not more 
likely to make this error on an R-form than an F-form (p = .099). Students who had both a V-
form and R- or F-form on their collection of problems (168 students) were more successful with 
the V-form problems: 69 of these students correctly computed a value but were unable to write 
an equation or find a function.  
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Table 2 
Performance by Form 

 R-format F-format V-format Overall 
Percent of responses that were correct 36% 47% 90% 58% 
Percent of responses with a reversal error 37% 31% <1% 23% 

 
Students’ performance by problem is shown in  
Table 3. As in previous studies, students were more likely to produce a correct answer on the 

1-coefficient problems than the 2-coefficient problems (p = 2.17 x 10-10). In contrast to previous 
studies, students were not more likely to make reversal errors on 2-coefficient problems (p = .08). 
However, 8% of students’ responses on the 2-coefficient problems were in an additive form with 
the coefficients paired with the incorrect variables (e.g. 4p+3c), which may account for some of 
this difference.  

 
Table 3 

Performance by Problem-Type 
 1-coefficient 2-coefficient Overall 
Percent of responses that were correct 69% 48% 58% 
Percent of responses with a reversal error 26% 21% 23% 

 
The strategies students used varied widely between the four problems and the three forms. 

While a complete discussion of the ways students used each strategy is beyond the scope of this 
paper, four strategies stood out for being associated with correct answers or suggesting 
previously undocumented mental models: ratio, proportion, stepwise, and functional. 
Ratio 

An answer was coded as a ratio if it only consisted of a formal ratio (e.g., 3c:4p) or a 
fraction; typically if the ratio symbol were to be replaced with an equals sign, the student would 
have made a reversal error. This strategy was used in 24 responses, 21 of which were from an R-
form, and 23 of which were 2-coefficient problems. In several interviews, students who had 
made a reversal error when writing an equation acknowledged that they were using the equals 
sign to represent a ratio, suggesting they were using the equals sign as indicating a comparison: 

Interviewer: Okay. So then this [points to 3t = 5s]—was this an equals sign or a ratio 
sign? 

Student:  This should be a ratio [writes a colon over the equals sign]—three trucks for 
every five sedans, 15 trucks for every 25 sedans. 

Proportion 
An answer was coded as a proportion if the student set up an explicit proportion (e.g. c/3 = 

p/4). Students used this strategy to solve 82 out of the 840 word problems. Most of these 
responses occurred when students were computing values (64 problems) and on the 2-coefficient 
problems (67 problems). This was a highly effective strategy, leading to correct answers on 95% 
of the problems with which it was used. 

In interviews, proportional strategies suggested a mental model of systematic comparison. 
That is, the student used the colon (or equals sign) to show that two groups of objects were 
connected, and that changing one of the groups resulted in a corresponding change in the other 
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group. The student from the previous example above explained this reasoning: 
Student:  I set t equal to trucks then s equals to sedans, then it says 3 times, or there 

are three trucks, 3t, for every five sedans, 5s. [points to 3t = 5s].  
Interviewer: Okay, so what if there were, let’s say, 15 trucks. How many sedans should 

there be?  
Student:  Um... that’s three times five, five times five [writes x5 below the 3t and the 

5s] so that would be 25? [writes 15t = 25s]  
Interviewer:  Okay, so 25 sedans? I see... and so—you plugged the 15 in here, and did 

three times 15? [points to 3t = 5s]  
Student:  Three times five. You said there were 15 trucks? 
Interviewer: Yeah  
Student:  So you multiply that times five [points to 3t] and that times five [points to 

5s] because you’re doing the same... it’s by the same amount you’re 
multiplying this by. 

Stepwise 
An answer was coded as stepwise if a student performed two sequential arithmetic operations 

to produce an answer. This typically involved partitioning a group of objects into smaller equal-
sized sub-groups. For example, here is one student’s explanation for this strategy: 

What I wanted to do first is find the number of groups of five sedans, and divide that, or 
get that out of the total. So I divided [165] by five and got 33 groups of five in 165 cars. 
So if there’s 33 groups of five sedans, and then three trucks for every five sedans, I got 
three times the 33 groups of five to get 99 trucks. 
Out of the 840 word problems students solved, 56 were solved using this strategy. Most of 

these responses occurred when students were computing values (53 problems), and all were used 
on the 2-coefficient problems. As with the proportional strategy, the stepwise strategy also led to 
correct answers on 95% of the problems on which it was used. 

In interviews, the stepwise strategy suggested a mental model of partitioning and 
substituting, which involves three mental steps. Students described partitioning a group of 
objects into smaller, equal-sized groups by one ratio term, reconceptualizing the group as a 
scaling constant, and then reversing the partitioning by multiplying the scaling constant by the 
other ratio term. 
Functional 

While the stepwise strategy involved transforming one quantity into another via two steps, an 
answer was coded as functional if the student transformed one variable quantity into another in a 
single step: 

Student:  Well... or would it be... three-fourths? Three-fourths the cows as there are 
pigs, so... yeah…  

Interviewer: So you’re saying this [4/3 p  =  c] might be three-fourths instead of four over 
three?  

Student:  Yeah, I think three-fourths, just cause there’s four pigs, so you’d be four 
times three-fourths equals the three cows, so it would be... [writes ¾ p  =  c].  

Although students used this strategy on all three forms, they used it most frequently when 
computing a value (75 out of 180 functional responses); they used it slightly more frequently on 
the 1-coefficient problems than the 2-coefficient problems (104 times vs. 76 times). In interviews, 
the functional strategy suggested a mental model of transforming. In contrast to manipulating 
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two quantities so that they are equal in number (a strategy that Clement (1982) refers to as 
operational), the student typically described changing one quantity into another, sometimes 
describing a transformation of the actual objects (such as cows or pigs) themselves. 

It is possible that students who used a single-step transformation in their written work were 
first writing an equation (such as 3p = 4c) and then simply “pushing symbols” (yielding c = ¾ p; 
such written responses were coded as functional-translation). However, students were 
significantly more likely to make a reversal error on a functional-translation response than a 
functional response (p = 1.2 x 10-4), which suggests a different underlying mental model. 

The proportion, stepwise, and functional strategies were the only three strategies that 
students tended to use repeatedly on written problems (primarily on the 2-coefficient problems). 
This suggests that these strategies may be based on a relatively well-defined mental model that 
these students viewed as useful. Other students used a wide variety of strategies, frequently using 
different strategies on problems that were presented in the same format or same number of 
coefficients. For example, only 57 out of 210 students used the same strategy on the two 1-
coefficient problems. Out of the 210 students, 68 saw these problems in the same format, and 
only 30 used the same strategy on both.  
Equations 

Students routinely misidentified two types of expressions as correct: those involving several 
computations connected by equals signs (“run-on” expressions) and an equation in which the 
quantity on one side was a multiple of the quantity on the other side (see  

Table 4). 
 

Table 4 
Student Responses to Equations 

Expression Percent identifying it as correct 
� 

f (x) = 2x 3 = f '(x) = 6x 2

 88% 

� 

g(x) = x 2 = g'(x) = 2x

 83% 
� 

2 + 3 = 5 + 2 = 7  66% 
� 

5 × 4 = 20 + 3 = 23  36% 
� 

2x +12 = 6 + x  37% 
 
In the interviews, several students reversed their decision, identifying some of the run-on 

expressions as incorrect. However, most of these students did not identify all of the expressions 
as incorrect; frequently students would identify all but the first derivative expression as incorrect. 
These students typically identified the two derivative expressions as “the power rule” and read 
the arithmetic expressions from left to right, simply asserting that they were correct. Several 
students expressed the idea that the run-on equations could be both true and untrue: 

Student:  If you just take it five doesn’t equal seven and seven, but if you want to say 
two plus three equals five, plus two equals seven, take that separately, that’s 
true, but I was just looking at it as five doesn’t equal seven...  

Interviewer: So in some readings it might be true, and in others...  
Student:  Yeah.  
Students gave multiple reasons for interpreting the fifth expression as correct. Some students 

interpreted it as a problem to be solved instead of a statement indicating that the two sides were 
equal. For example, one student noted: “That’s just a problem you would solve. It’s not really 
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right or wrong, it depends what x is.” Other students suggested that you could operate on one 
side to obtain the other, although you might need to take the multiplication into account. For 
example, one student asserted that the expression was correct because, “If I take the 2 out, then x 
plus 6 equals 6 plus x.” 

Surprisingly, students who said that one of the run-on expressions was correct were not more 
likely to say that any of the other four were correct, suggesting that students may view the equals 
sign as serving different roles in each of these four expressions. Similarly, there was no 
association between students’ responses on the fifth expression and their answers on the four 
run-on expressions. 

Students’ responses on the equality problems were compared with their performance on the 
word problems. There was a significant relationship between getting the run-on arithmetic 
questions correct and getting two of the word problems correct. However, there were no other 
significant associations, and there were no associations between performance on the equality 
questions and the word problems. 

Taken together, these results suggest that students don’t have a single conception of equality 
or the equals sign. Rather, they view the equals sign as representing a variety of relationships and 
operations. Because their conception of equality is flexible and varies depending on the situation, 
there is no association between a specific conception (such as a connector for related 
mathematical expressions) and their response on another problem. 
  

Discussion 
The results of this study provide additional support for the solution strategies previously 

suggested by Weinberg (2007): proportional, stepwise, and functional. In addition to providing 
quantitative evidence for the prevalence of these strategies, the study describes new mental 
models that appear to underlie the strategies. The study also explores the potential connection 
between problem solving and specific conceptions of equality as well as describing the ways 
students use the equals sign as part of their mental models. 

The proportional and stepwise strategies led to successful solutions and prevented reversal 
errors. Both of these strategies involve forms of proportional reasoning. This suggests that it may 
be beneficial to further investigate students’ conceptions of proportions at the undergraduate 
level and to attend to the continued development of this type of reasoning. 

In addition to describing these strategies, the results suggest several mental models that 
students may use when working on comparison word problems: systematic comparison, 
partitioning and substituting, and transforming. These add to Clement’s (1982) description of 
operative reasoning, in which students manipulate both sides of the equals sign to create a true 
equality. The data suggest that these models may be robust for some students in that they 
(successfully) used them on multiple problems. 

There appeared to be no connection between problem solving strategies and the three 
conceptions of equality used in the equations on the written assessment. However, equality and 
the equals sign play a different role in each of these models. In the transforming model, it 
represents an action (much like the role of the equals button on a calculator). In the partitioning 
model, it doesn’t play a significant role, as it is not usually written as part of the solution. In the 
operative model, the equals sign represents a true equality. In contrast, the equals sign represents 
a comparison in the proportional model. However, this comparison is systematic and supports 
correct computations.  
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In addition, these models support Clement’s (1982) conjecture that students were using literal 
symbols (i.e. letter representations of variables) as labels instead of true quantities; thus “6s” may 
represent “six students” instead of “six times the quantity s”. Clement hypothesized that students 
were using the equals sign as an equivalence relationship. However, when we observe students 
working within their self-constructed representational systems, we see that the label conception 
of literal symbols can support productive solution strategies by using alternate interpretations of 
the equals sign. 

While these conceptions of equality or literal symbols may not match the standard way 
mathematicians use them, difficulties with SP-type problems may originate when students 
attempt to use properties of their (non-standard) representational systems simultaneously with 
properties of our standard system. For example, they may use the literal symbol as a label and be 
able to compute a correct answer, but they arrive at erroneous conclusions if they attempt to 
substitute a value for the symbol or interpret the two sides of the equals sign as being equivalent. 

In addition to helping students develop an understanding of proportional reasoning, this study 
suggests that we should help students understand the standard meaning of algebraic notation and 
reconcile their mental models and use of symbols with this notation. While there have been 
numerous studies of students’ conceptions of these ideas at the K-12 level, it is important to 
further develop our understanding of undergraduate students’ conceptions so that we can help 
them build robust conceptions of algebra and become successful problem solvers. 
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This study investigated how students with mathematics learning disabilities (MD) or at-risk for 
MD developed their multiplicative reasoning skills from intuitive strategies to advanced 
strategies through a teaching experiment. The participants consisted of two fifth graders with 
MD and one at-risk. A micro-genetic approach with a single subject design was used. 
Investigators coded and analyzed five strategies children used. Results showed that the 
participants had fewer strategies than normal-achieving students, but they improved their 
performance throughout the teaching experiment. The participants increased their use of double 
counting and direct retrieval, and decreased their use of unitary counting during the 
intervention. 
 

Approximately 5% to 8% of school aged children have math disabilities (MD), as defined by 
poor performance in class and poor standardized test scores (Geary, 1990). Individual variability 
is one of the most striking features of children’s reasoning (Siegler, 2007). Low achieving 
students usually have fewer strategies than high achieving students, and use less advanced 
strategies more frequently than high achieving peers on a variety of reasoning tasks (Siegler, 
2007). The purpose of this paper is to explore how students with MD develop their strategies of 
multiplicative reasoning through a teaching experiment.  

 
Framework 

Studies on children’s strategic development help people understand how students with MD 
gradually fall behind their peers by comparing the strategic development of children with and 
without MD (Geary, 1990). While developing additive reasoning, for example, children normally 
progress from “count all” (i.e., they simply count the two addends from 1) to “counting on” (i.e., 
they start counting from the first addend) and “count large” (i.e., they count from the larger 
addend), and eventually to verbal retrieval (Siegler & Shrager, 1984); however, although both 
students with and without MD equivalently develop various counting strategies at first and 
second grades, only students with MD continue to have difficulty in shifting to retrieving correct 
answers after third grade (Geary, 1990; Geary & Brown, 1991).  

However, children’s strategic development for multiplication is still much less understood 
than for addition (Lemaire & Sielger, 1985; Kouba, 1989), especially for students with MD. In 
multiplicative reasoning, one composite unit is distributed across the other, and children need to 
be able to coordinate the two quantities (Steffe, 1994). Although normal achieving children in 
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kindergarten can solve some multiplicative problems by directly modeling the problem context 
and counting all the items one by one (Downton, 2008; Kouba, 1989; Mulligan & Mitchelmore, 
1997), it takes time for them to establish a real conceptual understanding of multiplicative 
reasoning, which is an invariant relationship between two quantities (Piaget, 1965; Vergnaud, 
1983).  

Early studies (Anghileri, 1989; Brown, 1992; Kouba, 1989; Mulligan & Mitchelmore, 1997; 
Steffe, 1988) have identified a variety of strategies normal-achieving students use for 
multiplicative reasoning. These studies have also provided evidence that children’s solution 
strategies begin generally with direct modeling and unitary counting; progress to skip counting, 
double counting, repeated addition or subtraction; and then, to the use of known multiplication or 
division facts (Downton, 2008). The general strategic developmental pattern is demonstrated in 
Figure 1 according to Kouba’s data.  
 

 
Figure 1. Normal achieving students’ multiplicative strategic development (Kouba, 1989). 
 
Direct representation and skip counting are two strategies of unitary counting, as they address 

only one number/counting sequence. Direct representation is at the most basic level (Anghileri, 
1989). Kouba (1989) described direct representation as an activity where “children used physical 
materials to model the problem and some form of one-by-one counting in calculating the 
answer” (p.152, Kouba). Skip counting is a strategy in which children count by multiples, such 
as counting “five, ten, fifteen, twenty, twenty five, thirty” for solving “six groups of five” 
(Kouba). However, skip counting does not suggest a child is able to coordinates the two 
quantities by tracking two counting sequences. An indicator that students are not coordinating the 
two quantities is that children often do not know where to stop counting (Kouba). 

Children’s shifting to double counting is a milestone of their development of multiplicative 
reasoning. Double counting indicates the transition from a unitary counting stage to a binary 
counting stage (Vergnaud, 1983), where children explicitly keep track of two quantities while 
counting two number sequences. For example, double counting occurs when a child count “1, 2, 
3, 4, 5” with one hand, then counts “1” with the second hand; and then the child continues count 
“6, 7, 8, 9, 10” with the first hand, then counts “2” with the second hand. Double counting is “an 
advance over the more basic direct representation because it requires more abstract processing 
and involves integrating two counting sequences” (p.152, Kouba, 1989). However, no study has 
investigated whether or not children with MD have double counting strategies.  

Afterwards, additive or subtractive strategy occurs when the child exhibits use of repeated 
addition or subtraction to solve a problem (Kouba, 1989); for example, a child clearly states: 
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“three plus three plus three plus three” to solve “three times four.”  And eventually, normal 
achieving students shift to recalled number facts, which is the highest strategy people use. Kouba 
explained that this strategy is being used when “the child obtained the answer by remembering 
the appropriate multiplication or division combination” (p.153, Kouba). Unfortunately, little 
research has explored if children with MD have the same problems in direct retrieval in 
multiplication as in addition. 

Little is known about how students with MD make their transition from less advanced 
strategies to advanced strategies in multiplicative reasoning. As such, the purpose of this paper 
was to explore how a teaching experiment effected on the multiplicative reasoning strategic 
development for students with MD. Specifically, (1) what strategies students with MD or at-risk 
used in pretests; (2) did the teaching experiment improve students’ performance in solving 
multiplicative problems; (3) how did strategic development occur during the teaching 
experiment? 

 
Method 

Design  
Micro-genetic studies often employ single subject designs (Siegler, 2006). An adapted 

multiple probe design (Horner & Baer, 1978) across participants was employed in this study to 
establish a functional relationship between the teaching experiment and students’ performance 
and strategic changes. Specifically, when a stable baseline was observed for one student, 
treatment was introduced. When improvement for Child A was observed, Child B was 
introduced to treatment. And when improvement for Child B was observed, Child C was 
introduced to treatment. In this design, replication of treatment effects is demonstrated if changes 
in performance occur only when treatment is introduced.  

The independent variable was the sessions (the pretests and the teaching experiment). The 
primary dependent variable was students’ strategy use across the sessions. Students’ performance 
in solving multiplicative reasoning problems was also assessed before and during the last session 
of the teaching experiment.  
Procedure 

This study was conducted within the larger context of the NSF-funded, Nurturing 
Multiplicative Reasoning in Students with Learning Disabilities project (Xin, Si, & Tzur, 2008). 
Two fifth grade students with MD (Chad and Tina) and a student at-risk for MD (Megan) from 
an urban elementary school participated in this study. The pretest sessions involved five to six 
multiplicative problems such as “A platoon must have exactly 7 spaceships. The player received 
21 spaceships to begin the first game. How many full platoons can be made?” 

The third author, a professor in math education conducted the teaching experiment to the 
children. The activity was “Towers of Cubes.” The goal was for students to figure out the 
relationships between three quantities: the number of towers, the number of cubes in each tower, 
and the total number of cubes. Tasks involved multiplicative, partitive, and quotitive division 
questions such as “Please go and bring me 5 towers of 6 cubes. How many cubes do you have in 
all?” and “I have 12 cubes in 3 towers.  How many cubes are there in each tower?”  Although 
they varied from session to session based on an on-going assessment of students’ performance, 
all tasks shared the common nature of multiplicative reasoning. The instructor explicitly 
demonstrated double counting to students during the teaching experiment. During the last session 
of the teaching experiment, the instructor asked students to solve questions similar to those in the 
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pretests, such as “I have 30 cookies in 6 boxes. How many cookies do I have in each box?” Each 
session lasted 30-50 minutes. The discourse of the teaching experiment was videotaped and 
transcribed. 
Data Coding & Analysis  

Students’ strategies were coded according to a coding scheme investigators developed based 
on existing theoretical and empirical literature on solving multiplicative problems and the nature 
of students’ activities. Five general types of strategies were involved: unitary counting strategies, 
repetitive addition or subtraction, double counting, direct retrieval, and DK (don’t know). Inter-
rater reliability was checked by a team of graduate students who were unaware of the purpose of 
this study recoding 33% of the transcripts. The inter-rater reliability was 92%.   

Graphical presentation of data is important for micro-genetic studies (Sielger, 2006). By 
visually analyzing data, five dimensions of change were investigated: (1) source of change (what 
leads children to adopt new strategies); (2) path of change (the sequence of strategies children 
use while gaining competence); (3) rate of change (the amount of time or experience from the 
initial use of a strategy to consistent use of it); (4) breadth of change (how widely the new 
strategy is generalized to other problems); as well as (5) the variability of change (differences 
among children in the previous four dimensions).  

 
Results 

Students’ Multiplicative Problem Solving Performance 
All the participants increased their percent of accuracy in solving multiplicative problems 

from baseline to the last session of the intervention. Specifically, Chad improved his percentage 
correct from 44% on average of the pretests to 83.33 % during the last session of the teaching 
experiment; Megan improved her percentage correct from 55% to 87.5 %; and Tina improved 
from 40 % to 83.33%.  
Students’ Strategic Development  

Figure 2 represented the three students’ multiplicative strategies used during baseline and 
intervention. Generally, participants increased the types of strategies they used, and they also 
increased the frequency of advanced strategies used during intervention.  

Baseline. The baseline data across three students consistently demonstrated the students with 
MD used very few strategies, and the most frequently used strategy was unitary counting. Chad 
only used unitary counting strategies for 91.93% of the trials during pretest sessions, and he 
replied with not knowing how to solve the problem or what strategy to use for 8.19% of all trials. 
Similarly, unitary counting was the dominant strategy Tina used during the pretest sessions 
(77.77%); Tina also used repetitive addition strategy (11.11%) and of direct retrieval strategy 
(11.11%). Megan used more types of strategies than Tina and Chad, but unitary counting was 
also the dominant strategy for her. She used unitary counting strategies for 41.67% of all trials; 
she also used repeated addition/subtraction strategies (33.33%), direct retrieval strategies 
(16.67%), and replied with “don’t know” for 8.33% of the problems. Double counting strategy 
was not found in any of the three students. Compared to Figure 1 for normal-achieving students 
(Kouba, 1989), the participants had fewer strategies and more heavily rely on unitary counting.  

Teaching Experiment. The data from the teaching experiment suggested that students 
increased the variety of strategies they used; in particular, they increasingly used more advanced 
strategies. Specifically, double counting strategies appeared in the first session of the teaching 
experiment for Chad (14.28%) and Megan (7.14%), and in the third session for Tina with 
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40.91%. Double counting strategies consistently increased and became the most frequently used 
strategies in the last session across the three students (50% for Megan, 60% for Chad, and 33% 
for Tina). The appearance and increasing frequency of double counting strategies indicated that 
children explicitly mastered how to coordinate two quantities in multiplicative reasoning. 

In addition, all three children increased their frequency of the direct retrieval strategy used. 
Chad did not use this strategy during the pretests, but he began to employ it during the second 
session in teaching experiment (11.11%) and used it with 20% of the tasks during the last 
session. Similarly, Megan’s usage of the direct retrieval strategy increased to 21.43% in the last 
session of intervention and Tina increased to 16.67%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Three participants’ multiplicative strategic development 
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On the other hand, the graph suggested that the participants decreased their frequency of 
using the unitary counting strategies. Chad consistently decreased from 91.93% on the pretest 
sessions to 20% during the last session. Tina and Megan increased their frequencies of using 
unitary counting strategies at the beginning of the intervention (Tina increased to 90% in Session 
2, Megan increased to 68.75% in Session 2), but decreased the frequency of their usage of 
unitary counting strategies during the later sessions of the intervention (Tina decreased to 
16.67% and Megan decreased to 21.42% in the last session). Similarly, the students also 
decreased their frequency of using repeated addition/subtraction strategy during the teaching 
experiment.  

 
Discussion 

The purpose of this study was to explore how students with MD or at risk for failure in 
mathematics differed from normal achieving students in multiplicative strategy choice, and how 
these students shift from intuitive strategies to multiplicative reasoning strategies while receiving 
instruction to improve their multiplicative reasoning. Based on the limited data from the three 
students, the results suggested the students with MD and those at risk seemed to have fewer 
strategies and their strategies were less advanced than normal achieving students on the pretest 
sessions. Nevertheless, after the intervention, students improved their percentage correct in 
solving multiplicative problems; the frequencies of strategies the participants used changed as 
well. Five dimensions of change were discussed below according to the framework of micro-
genetic studies (Siegler, 2006).  

Regarding the path of change, the three participants demonstrated the similar pattern with 
which normal achieving students go through during the multiplicative reasoning strategic 
development; that is, beginning generally with counting by ones; then, transitioning to double 
counting, repeated addition or subtraction; and then, to recall of math facts. A short-term 
increase of their use of unitary counting was found before the participants consistently faded it 
out. Double counting increased robustly; direct retrieval also increased on a limited basis.  

Specifically, unitary counting was the most dominant strategy of all three participants during 
the baseline sessions (97.93% for Chad, 71.77% for Tina, and 41.67% for Megan). They did not 
use double counting at all, and used direct retrieval very rarely. These results suggest that the 
three participants could only keep track of one number sequence while in the fifth grade and that 
these students did not use double counting to keep track of two number sequences. Whereas 
early studies (Geary, 1990; Geary & Brown, 1991) found that the major problem for children 
with MD in additive reasoning was direct retrieval, the current results indicated that the 
participants with MD seem to have problems both in conceptual understanding and retrieval in 
multiplicative reasoning.  

The baseline data indicated a significant gap between students with and without MD. 
According to the data in Kouba’s (1989) study, normal-achieving students dominantly use 
unitary counting strategies at only grade one (97.23%); while they gradually decrease their 
frequency of employing the unitary counting to 66.16% of all strategies used at grade two and 
30.11% at the grade three (Figure 1). The pretest data in this study showed that the three 
participants used an extremely high percentage of unitary counting strategies. It seemed like that 
Chad was equivalent to the first-grade level normal students in strategic development; Tina 
seemed to be equivalent to the second-grade level and Megan was equivalent to the third-grade 
level. The differential strategy choice may explain why students with MD or at-risk for failure in 
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mathematics have lower performance in solving multiplicative problems than normal achieving 
students.  

The appearance of double counting strategy is an indicator that children conceptually 
understand the nature of multiplicative reasoning. Children coordinate two quantities by keeping 
track of two number sequences with double counting. The three participants consistently 
increased their use of double counting throughout the teaching experiment (i.e., up to 50% for 
Megan, 60% for Chad, and 33% for Tina). It is noteworthy that normal-achieving students 
usually increase the frequency of using double counting to 8.74% at Grade 2 and then decrease 
the use to 3.98% at Grade 3 (Figure 1, Kouba, 1989). This study suggested that double counting 
appears to be especially useful for children with MD. The explicit demonstrations of keeping 
track of two quantities strengthened the students’ conceptual understanding of multiplication and 
reduce their cognitive load when processing the problems. In addition, as the students with MD 
have difficulties in direct retrieving (Geary, 1990; Geary & Brown, 1991); double counting 
makes it especially suitable for them to explicitly demonstrate the coordination of two quantities, 
which is the core meaning of multiplication. 

Although the three participants increased their use of direct retrieval strategy, they did not get 
to the level at which normal-achieving fifth grader students perform. Normal-achieving third 
graders use direct retrieval strategy for 59.66% of all trials (data from Kouba, 1989), but Chad, 
Megan and Tina only used direct retrieval strategy for 20%, 21.43% and 16.67% of the last 
session of intervention, respectively. The limited increase indicated that students with MD may 
need special interventions to help them shift from counting into verbal retrieval 

For the source of change, an adapted multiple probe design across participants established a 
functional relationship between the teaching experiment and students’ strategic development. 
Thus it is the “towers and cubes” activity that helps students with MD to adopt new strategies. 
This activity provides students with manipulatives to solve multiplicative problems. The 
teacher’s demonstration of double counting seems to be effective in teaching students how to 
coordinate two number sequences, and it may explain the appearance of double counting 
strategy. During the teaching experiment, the instructor explicitly demonstrated the double 
counting in finding out the total number of cubes across a specific number of towers. The 
intervention also emphasized making distinctions between the unit of one (1’s) (e.g., total 
number of cubes) and the composite unit (e.g., a tower of 6). In all, through the “cubes and 
towers” game, children seem to conceptually develop multiplicative reasoning.  

As for the rate of change, the participants’ use of double counting strategy increased saliently 
as soon as the occurrence of first use of this strategy during the teaching experiment. The 
participants’ gaining of direct retrieval was slower than the change of double counting.  

For the breadth of change, the participants could solve problems with various semantic 
structures; the students were also able to successfully associate the real life problem context in 
the last session with the multiplicative scheme they learned in the “cubes and towers” problems, 
and use the advanced strategies (e.g., double counting) to solve problems within new contexts.  

And for the variability of change, the participants demonstrated some differential patterns 
from normal achieving students regarding strategic developmental level and transition pattern. 
Results also demonstrated individual differences among the three participants.  

In sum, this study revealed how three students with MD or at-risk for MD in mathematics 
progress in strategic choices during multiplicative reasoning instruction. Due to the limited 
generalization of single subject design, a group design study is underway. 
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Existing research on function composition has focused on students’ ability to solve function 
composition problems relative to the student’s conception of function. However, little research 
has examined the mental actions and understandings needed to understand and use function 
composition meaningfully when solving novel problems. This research addresses this gap, 
presenting a conceptual analysis of a typical function composition problem, along with the 
results of a study that investigated three precalculus students’ understanding and ability to use 
function composition to solve novel problems. 

Background 
Educational policymakers often agree on the importance of function composition in high 

school mathematics, advocating that students in grades 9 through 12 should be able to 
“understand and perform transformations such as arithmetically combining, composing, and 
inverting commonly used functions” (NCTM, 1989; NCTM, 2000).  However, despite 
agreement on the importance and desirability of students building a robust understanding of, and 
fluency using, function composition, little research has addressed students’ understanding of this 
idea. This study begins to close this research gap, analyzing student products and behaviors from 
task-based clinical interviews in an attempt to gain insights into students’ understanding of and 
ability to use function composition in novel contexts. 

Engelke, Oehrtman, & Carlson (2005) found that, in the case of composition problems that 
require students to find the value of a composition of two functions at a point, most students in 
their study were able to do so, provided the functions in question were defined algebraically. 
Engelke et al. (2005) conjectured that the relatively high levels of success in such problems were 
related to the fact that correctly solving these problems required only an action view of function 
(Dubinski & Harel, 1992). They further conjectured that the much lower student success rate 
(less than 50%) for problems presented using other representations (tabular, graphical, context) 
was the result of such representations requiring students to engage in process-level thinking 
about functions. In general, Engelke et al. found that students were most successful in solving 
function composition problems that could be solved using memorized algebraic procedures. 

Carlson, Oehrtman, & Engelke (in review) describe the importance of covariational 
reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002) and a process view of function in 
understanding function composition. For a student with an action view of functions, 
“composition is substituting a formula or expression for x.”  This is quite different from the 
mathematical reality of a student with a process view of function, for whom “composition is a 
coordination of two (or more) input-output processes; input is processed by one function and its 
output is processed by a second function.” 

The present study is part of a larger study that is investigating how precalculus students know 
and learn function composition, and the impact of students’ quantitative reasoning, covariational 
reasoning, problem solving abilities, and understanding of function on their ability to use 
function composition to solve novel problems. This report describes three students’ ability to use 
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function composition to help them solve static and dynamic problems defined using contextual, 
algebraic, tabular, and graphical representations. 

 
Brief Conceptual Analysis of Function Composition 

The theoretical perspective for this study emerged from conceptual analysis (von Glasersfeld, 
1995; Thompson, 2000) of function composition problems. This approach serves to highlight the 
mental actions and ways of thinking that are propitious to a robust understanding of function 
composition. Consider the following problem: 

A rock is thrown into a pond, creating a circular ripple that travels outward from the point of 
impact at 9 cm/second. Express the area enclosed by the ripple as a function of the elapsed 
time since the rock hit the water. 
To provide an ideal response to this problem, a student must perform a series of mental 

operations. First, the student must develop a mental image of the situation described in the 
problem. This mental image must then be made amenable to further mathematical activity. A key 
component of the process of reconceptualizing a problem in a way that makes it amenable to 
mathematical activity is what Thompson (1989) describes as quantification. This involves 
identifying an attribute of a situation, conceiving of that attribute in a way that admits a 
measurement process (which may or may not be explicit), and conceiving of the quantity, with 
appropriate units, that is the result of that measurement process. In this problem, the student must 
mentally construct quantities corresponding to the elapsed time since the rock hit the water, the 
radius of the circle formed by the ripple, and the area enclosed by the ripple. As a basis for 
quantification, the importance of the student’s initial mental image of the problem cannot be 
overstated. The attributes that the student uses to create quantities are not attributes of a problem 
external to the student, but rather are attributes of the problem as it exists in the mind of the 
student. 

A precalculus student attempting to solve this problem is likely to remember a formula for 
the area of a circle. As a result, a student’s first attempt to write a formula for the area enclosed 
by the ripple is likely to be � 

A = πr2

, where A represents the area enclosed by the ripple and r 
represents the radius of the circle formed by the ripple. However, the student has been asked to 
relate the area enclosed by the ripple with an elapsed time, rather than with a radius. A key to the 
student’s advancement toward a solution is the realization that his goal is to relate area and 
elapsed time. To progress further toward a correct solution, the student must construct a 
relationship between elapsed time and the radius of the circle formed by the ripple, a relationship 
similar to � 

r = 9t, where r is the radius (in centimeters) of the circle formed by the ripple and t is 
the elapsed time (in seconds) since the rock hit the surface of the water. 

Construction of the algebraic relationships � 

A = πr2

 and � 

r = 9t does not necessarily imply that 
the student has constructed a dynamic mental model of the problem situation. In fact the student 
might still possess only a static mental model; such a student might be able to answer a question 
like “What is the area of the circle 5 seconds after the rock hits the water?” while remaining 
unable to describe how the area of the circle varies as the elapsed time varies. The student may 
also still not be able to express a relationship between A and t using a single formula. The ability 
to describe how the area and elapsed time vary together requires that students reason about the 
values of two quantities and how they change in tandem, also referred to as covariational 
reasoning (Carlson, Jacobs, Coe, Larson, & Hsu, 2002). 
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The problem asked the student to relate the area of the circle and the elapsed time, and to use 
a function to express the relationship. To do so, the student must possess an understanding of the 
concept of function.  Specifically, to provide an ideal solution to this problem, the student must 
possess a process conception of function (Dubinsky & Harel, 1992). A key notion in building a 
process view of function is that a function is something that accepts input values and produces 
output values. Prior to constructing the composite function 

� 

A = g f t( )( ), the student must 
conceive of the output of f as being a suitable input for g. Only then can the student think about 
“connecting together” the two functions he previously constructed. After the student has 
mentally connected the functions f and g, the next step in the “ideal solution” is to think of the 
composite function as a single function (say h). A student who has conceptualized the composite 
function, h, as a single function is able to imagine two processes. The student can imagine the 
covariation of time and radius, and the covariation of radius and area.  He/she can imagine an 
amount of time being mapped to a radius and that resulting radius being mapped to an area.  
Typically the student speaks about time being converted to area through a series of two 
processes. 

Certain composition problems present added complexities that warrant further discussion. 
For example, consider a problem that prompts students to “express the area of a circle as a 
function of its circumference.”  Many of the mental actions required for the student to solve this 
problem are similar to those discussed above. However, this problem incorporates an additional 
source of complexity: it requires the student to invert a function prior to composing two 
functions. Inversion is necessary because a student is likely to remember the formulas � 

A = πr2

 
and � 

C = 2πr , where A, r, and C are the area, radius, and circumference of a circle, respectively. 
Written in this way, both formulas lend themselves to an interpretation of the radius as the input 
quantity, with area and circumference the output quantities. To conceive of a function that takes 
circumference as input and produces area as output, the student must first conceive of the inverse 
of the second relationship, before composing that inverse with the first formula to create a 
formula that gives area as a function of circumference. 

 
Methods and Setting 

This study occurred in the context of a precalculus course at a large public university in the 
southwestern United States. The subjects of this study were three volunteers from a section of the 
precalculus course that emphasized quantitative reasoning and covariational reasoning. This 
study consisted of pre-interviews with each student, a single teaching session focused on 
function composition, and post-interviews. All interviews and the teaching session were 
videotaped, and all written student products were retained. The videotapes of all interviews and 
the teaching session were reviewed and transcribed. The transcripts were analyzed in an attempt 
to gain insights into what the students might have been thinking. Conceptual analysis (von 
Glasersfeld, 1995; Thompson, 2000) was used in an attempt to answer the question, “What 
mental actions in the person I’m observing would explain the behavior I seem to be observing?” 

Clinical, semi-structured task-based interviews (Clement, 2000; Goldin, 2000) were a key 
source of data for this research. The pre-interview was designed to gain insights about student 
knowledge of function composition and ability to work novel function composition problems 
before participating in the teaching session. The interview included tasks related to functions 
defined by formulas, tables, and graphs. 
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The teaching session was designed to build on students’ knowledge of functions. Students 
were presented with a problem in which they were asked to develop a function relating two 
quantities that were not trivial to relate directly. Through interactions with each other and with 
the instructor, I intended that students build a conception of linking two processes together to 
create a composite function, which could then be explored, allowing students to reconceptualize 
this composite function as a single function. 

The final sections of the teaching session were intended to allow students to explore function 
composition using functions defined by tables and functions defined using graphs. The activities 
using functions defined by graphs included questions requiring students to consider the variation 
of the output of the composite function in response to changes over an interval of input values.  

The post-interview was designed to gain insights about student knowledge of function 
composition and ability to work novel function composition problems after participating in the 
teaching session. As in the pre-interview, the interview tasks included functions defined by 
formulas, tables, and graphs. The post-interviews included activities that asked a student to 
reason about dynamic variation of output quantities in response to changes in the input quantity. 

 
Results from Pre-Interviews 

In her pre-interview, Rachel did not make use of function composition to help her solve 
problems. For example, when asked to find the area of a square as a function of the perimeter, 
Rachel stated that she was “not that good at expressing things as functions yet”, but that she 
knew how to find the area of a square. She eventually drew a square, labeled each side of the 
square as x, and wrote 

� 

p = 4x. When asked about a formula for the area, she stated that it would 
be “x squared”. However, even after probing, she was unable to construct a formula that related 
the area of a square with its perimeter. 

Rachel was, however, able to meaningfully interpret function composition notation, despite 
claiming to have not seen it before and having been only briefly introduced to function notation. 
In a problem involving two functions defined using formulas, Rachel was able to find 

� 

g h 2( )( ), 
by finding 

� 

h 2( )= 5 and substituting 5 as the input to g, but she did not spontaneously use 
input/output language. When asked to use input/output language to explain what she had done, 
she stated: 

To do this problem, I was given… I needed to find g of h of 2, so the input of 
� 

h x( )= 3x −1  is 
2, so I would replace the x with 2 as the input, and then whatever I got would be the output, 
so 5 would be the output of the function h with the input of 2… um, and then basically once I 
got that, I was able to make the output of 

� 

h 2( ) the input of 
� 

g x( ). 
This pattern of reasoning appeared to continue when solving problems using other 
representations. When asked to use graphs of f and g to find 

� 

g f 2( )( ), Rachel coordinated input 
and output values, first finding 

� 

f 2( )= −2, and then finding 
� 

g −2( )=1. As she explained it, 
OK, well I know this line is f, so to find 

� 

f 2( ) I would find 2 on the x-axis, which is right 
here, so I know that 

� 

f 2( ) has an output of -2. So now it’s asking me to use the output of –

� 

f 2( ) as the input to g. So for this line g right here, I would find the input -2, which is right 
here, so I know that 

� 

g f 2( )( ) has an output of 1. 
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When questioned about how she was able to find output values that corresponded to given input 
values, Rachel indicated that she found the appropriate value on the x-axis, moving vertically 
until she intersected the graph of the function, and then moving horizontally until she intersected 
the y-axis to determine the appropriate output value. This suggested that Rachel understood 
graphs as coordinating values of input quantities with values of output quantities. 

Rachel was also able to solve problems involving composition using two functions defined in 
a table. When asked how she determined which function she evaluated first, Rachel indicated 
that it was because it was the part “in parentheses”, and clarified that she was using “order of 
operations” rules to make this decision. 

The second student, Alicia, solved all of the problems in the interview, but she was often not 
able to articulate the input and output quantities of composite functions. For example, when 
asked to express the area of a square as a function of the perimeter, Alicia immediately wrote the 
equations � 

A = s2

 and � 

P = 4s. She then solved for s in the second equation, “used substitution” 

(her own words), and wrote 
� 

A =
P
4

 
 
 

 
 
 

2

. Her solution to this problem did not use function notation, 

or the word function, or input/output language. When asked to write this relationship as a 

function, she wrote 
� 

A P
4

 
 
 

 
 
 =

P
4

 
 
 

 
 
 

2

. Asked to explain why she had written this function with 
� 

P
4

 as 

the input, she stated this was because “to get the side by itself, I’d have to divide 4 into the 
perimeter”. This suggests that Alicia was not thinking of a composite function but was still 
thinking of the function 

� 

A s( ), where in this case s was replaced by an expression equivalent to s. 
Even though she did not spontaneously use function composition in solving these problems, 

Alicia was able to make sense of problems that used function composition notation. For example, 
in a problem that required evaluation of composite functions defined by algebraic formulas, 
Alicia was able to quickly find the correct answer. Her explanation suggests that she solved this 
problem by thinking of 

� 

h 2( ) as the input to g: “This just means that you have to do 
� 

h 2( ) first, 
because 

� 

h 2( ) is the input to 
� 

g x( )”. When asked to explain why she chose to evaluate the 
functions in the order she did, Alicia stated that this was because of the “order of operations”, 
just as Rachel had stated in the previous interview. 

Alicia was also able to solve problems that required composition of functions defined by 
graphs or tables, using specific input values. For example, Alicia was able to explain how to find 

� 

g f 2( )( ) using the given graphs. She was also able to solve a series of three evaluations of 
function composition using functions defined by tables quickly and correctly. 

The third student, Hayley, demonstrated weaknesses in her function knowledge during her 
pre-interview. She was unable to make progress on problems asking her to express the area of a 
square as a function of its perimeter, or to express the diameter of a circle as a function of its 
area. Unlike Rachel and Alicia, Hayley was not able to use an “order of operations” 
interpretation to complete tasks that required her to interpret function composition notation. 
Instead, she demonstrated a detailed and consistent interpretation of function composition 
notation. She correctly interpreted the inner function as evaluating a function with a given input, 
but she interpreted the outer function as a command to multiply. Exactly what she was supposed 
to multiply varied. For example, one problem presented Hayley with two algebraically defined 
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functions, and required her to find 
� 

g h 2( )( ). She read this expression aloud as “g of h of 2”, but 
described the requested operations as “you’re multiplying the function g times the function h of 
2”. She then proceeded to find 

� 

h 2( ) correctly, and then she multiplied the result by the rule for 
function g, giving her an answer of 

� 

g h 2( )( )= 5x 2

. 
When asked to “use the graphs of f and g to evaluate 

� 

g f 2( )( )”, Hayley’s first question was 
“What point do you want me to use?”  Her subsequent response to the task suggested a lack of 
understanding of what information the graph of a function is intended to convey. The graph of g 
had one point labeled with its coordinates, (-2,1), and the graph of f had two points labeled with 
their coordinates, (2,-2) and (4,3). Hayley gave the written response 

� 

g f 2( )( )= −2,1( ) 2( ) 2,−2( ) 4,3( )[ ] , and gave the following explanation of her response: 
g is -2 and 1. Those are the points on the graph, so that’s right there, multiplied by f of 2, so 
you’re gonna multiply these two points by the number 2, and that’s why they’re in brackets. 
Presented with a table that defined two functions and asked to evaluate composite functions 

at specific input values, Hayley correctly evaluated the inner (first) function, but her second step 
was to multiply each of these numbers by the name (f or g) of the outer (second) function. This 
suggested a fragile understanding of function notation and function inputs and outputs. 

 
Results from Teaching Session 

The teaching session focused largely on the ripple problem described earlier. Working as a 
group, the students settled on quantities that were meaningful and measurable attributes of the 
problem. Having identified quantities, the students created useful formulas relating the values of 
the quantities. However, students’ descriptions of the formulas sometimes suggested that they 
had constructed vaguely defined quantities and incorrect quantitative relationships. For example, 
when explaining the correct formula, 

� 

f t( )= 0.7t, Hayley explained that using this formula “you 
take 0.7, because that’s the radius, and multiply it by the number of seconds”.  

The group members also voiced no concerns with the suggestion that to express the area of 
the circle as a function of the circle’s radius, they could write 

� 

A = g r( )= π (0.7t)2

. When probed, 
Alicia suggested, “You could just do � 

πr2

”. Hearing this, Hayley first wrote 
� 

A = g r( )= π (0.7)2

, 
suggesting that she thought of 0.7 as being the radius. This response suggests that Hayley, and 
perhaps other group members, were not visualizing the radius as a function of time, and hence 
they were not visualizing the quantity radius as varying with variations in time. 

When using the correct formulas to find the area inside the ripple 6 seconds after the rock hit 
the water, Alicia correctly described the input and output quantities of both functions, including a 
description of why she used the output of f as the input to g. Alicia consistently exhibited a better 
ability to talk about function input and output quantities than Hayley or Rachel did. 

When asked to use graphs of the functions f and g to find the area inside the ripple 6 seconds 
after the rock hit the water, Rachel did not refer to inputs or outputs; however, she did indicate 
with her finger how she would use the graph of radius as a function of time, locating � 

t = 6 
seconds on the input axis, moving up vertically until she reached the graph of the function, and 
then moving horizontally until she reached the output axis, where she could determine the radius.  

When asked to evaluate composite functions defined by tables, at a given input value, Alicia 
and Rachel were able to explain how they used the output value from the first function as the 
input value to the second function. However, Hayley exhibited difficulty similar to her pre-
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interview. Asked to evaluate 
� 

g g 1( )( ), Hayley correctly found that 
� 

g 1( )= 2, but used the word 
“multiply” to describe what she should do next, and was unsure whether she should multiply 2 
by g, or perhaps square 2, since she wanted to find 

� 

g g 1( )( ). With help from her groupmates, 
Hayley discovered the correct way to solve this problem, and commented that she was seeing the 
problem differently than she had before. 

The group was next asked to use the graphs of two functions to find the output of a 
composite function at various given input values. All three students were able to describe the 
process of using two graphs defined on the same set of axes to find specific outputs of a 
composite function, explaining how to find the output of the first function and use that value as 
the input to the second function. The students were much less successful in an activity in which 
they were asked to use graphs to evaluate the output of a composite function over an interval of 
input values. Since the students had all experienced success in evaluating composite functions at 
a specific input value, their failure to describe variations over an interval of input values suggests 
a weakness in their covariational reasoning ability, i.e., they were unable to attend to how the 
quantities changed together while imagining changes in the input variable.  

 
Results from Post-Interview Session 

 In her post-interview, Alicia was able to describe the input and output quantities for all of 
the functions used in the post-interview tasks. Alicia was also able to describe the output of the 
first function as becoming the input to the second function. This suggests that she had developed 
a more robust conception of functions as accepting inputs and producing outputs. 

Just as they had done during the pre-interview, both Alicia and Hayley described the input 
and output quantities of a composite function in a way that suggests they were still having 
difficulty conceptualizing the composite function as a single function. For example, when 

� 

h t( ) 
was defined as 

� 

g f t( )( ), both Alicia and Hayley stated that the input to h was 
� 

f t( ). 
Hayley showed a clear improvement in her ability to use input/output language to talk about 

functions and function composition over the instructional sequence. In her pre-interview she 
typically evaluated what she referred to as “the first function” and followed this with a 
“multiplication” by the second function. However, in her post-interview, Hayley consistently 
described using the output of the first function as the input to the second, suggesting that she had 
emerged with a process view of function and had acquired the ability to articulate what it means 
to compose two functions. 

Hayley also showed a significant improvement in her ability to make sense of a function 
defined by a graph. In the post-interview, she was able to perform evaluations of composite 
functions, including composite functions that required using the inverse of one of the graphically 
defined functions. She was able to use input/output language to describe what she was doing, and 
why she was doing it. However, she was still unable to determine how the output of a composite 
function varied over an interval of input values, suggesting a continuing weakness in Hayley’s 
covariational reasoning. 

In her post-interview, Rachel was successful on problems with real-life contexts or clear 
procedural solutions. However, she had difficulty completing tasks in situations that had neither 
a real-life context nor a clear procedural solution. For example, she remained unable to make 
meaningful progress when asked to “express the area of a square as a function of its perimeter”, a 
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problem that had also appeared in the pre-interview. She indicated that she didn’t understand 
why a person would want to do that, since you could just express it based on the length of the 
side of the square. 

 
Discussion 

All three students exhibited behavior that suggested weaknesses in their covariational 
reasoning, their quantitative reasoning, and their views of function. In many instances they 
exhibited a weak understanding of inputs and outputs of functions, and in some cases, the 
students acted in procedural ways suggestive of an action view of function, rather than a process 
view. All three students exhibited difficulty reasoning about the behavior of functions over an 
interval of input values. This suggests impoverished covariational reasoning, as students showed 
an inability to attend to the relationships between changing input and output quantities in 
function composition problems. 

In many cases, the students in this study also showed a tendency to define quantities based on 
attributes that were either not measurable or were not well defined. This suggests that these 
students would benefit from a curriculum that emphasizes conceiving and reasoning about 
quantities. 

Hayley exhibited behavior that suggests she had little understanding of what information the 
graph of a function conveys. During her pre-interview, her solutions for problems involving 
graphs were highly procedural, and suggested that her only understanding of graphs involved 
manipulating numbers that were used to label points on the graph. However, during her post-
interview, Hayley demonstrated dramatic improvement in her ability to make meaning of a 
graph. This suggests that for her and perhaps other students, it would be beneficial to engage 
students in tasks to support their understanding of the meaning of a function’s graph. 
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This study reports characteristics of participatory and anticipatory stages in the abstraction of 
mathematical conceptions. We carried out clinical task-based interviews with 71 secondary 
school students to obtain evidence of constructed mathematical conceptions and how they were 
used. We could distinguish both stages in different mathematical conceptions and, furthermore, 
two cognitive moments in the participatory stage. We argue that (a) the capacity of perceiving 
regularities in sets of particular cases is characteristic of reflection on activity-effect, and (b) the 
coordination of information provides the opportunity for changing the attention focus from the 
particular results to the structure of properties. 

 
Introduction 

Understanding how mathematical conceptions are constructed can help in thinking about 
teaching with the aim of encouraging learning. In this sense it is essential to have accurate 
descriptions of the processes by which mathematical knowledge is developed. This situation 
generates issues about what it means to know something about mathematical objects, and how 
the learner develops or constructs that knowledge (Dörfler, 2002). Cognitive theories based on 
Piagetian stances assume that mathematical conceptions reflect regularities from human actions 
and mental operations. In this perspective is generated the question of how to explain the way in 
which learners cognitively construct their mathematical conceptions. For our purposes and 
henceforth, “construction” refers to the emergence of a new structure through constructing 
actions (Monaghan, & Ozmantar, 2006; Simon, Tzur, Heinz, & Kinzel, 2004). Simon and his 
colleagues (Simon et al., 2004) postulate the existence of a mechanism that they call Reflection 
on Activity-Effect Relationship to explain this construction process. Taking into account the two 
phases of reflective abstraction (projection and reflection) described by Piaget (2001), Tzur & 
Simon (2004) point out that in the projection phase, where the actions become the objects of the 
reflection, learners sort activity-effect records in terms of an established goal distinguishing 
between records that get closer to their goal and those that do not. In the reflection phase, where 
a reorganization of knowledge takes place, learners reflect on the relationship between the 
activity and its effects.  

During the resolution of a problem, the student may call-up a mathematical conception 
already constructed (anticipatory stage), but in the case in which this conception there isn’t, 
student trigger some actions guided by a goal to obtain information to solve the problem 
(participatory stage). In this context, we adopt Simon et al.’s (2004) account of a construction 
process trying to provide empirical support to (i) the distinction between participatory stage and 
anticipatory stage in the abstraction of mathematical conceptions and (ii) a finer description of 
how proceeds the participatory stage. 
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Methodology 
Participants 

511 students in the last year of compulsory education (15-16 years old) solved a 
questionnaire with five mathematical problems in the domains of variability, divisibility and 
generalization. The analysis of the replies to the problems displayed students’ diverse behaviours 
while solving the problems from the perspective of how they used the different mathematical 
conceptions. These behaviours may be considered evidence of anticipatory and participatory 
stages in the construction of mathematical notions involved in the mathematical problems posed. 
To obtain further information about this phenomenon we conducted 40-minute task-based 
clinical interviews with 71 of these secondary students. The interviews were focused on how the 
mathematical conceptions were used during problem solving as a manifestation of the conception 
constructed. Data come from of audio-records and transcriptions of students’ justifications and 
their written replies to the five problems. Figure 1 shows an example of the problems used. 

 
Job offers for pizza delivery workers have appeared in a local newspaper. 
Pizza takeaway A pays each delivery worker 0.6 euros for each pizza delivered and a 
fixed sum of 60 euros a month. Pizza takeaway B pays 0.9 euros for each pizza delivered 
and a fixed sum of 24 euros a month.  
Which do you think is the better-paid job? 
Make a decision and explain why your choice is the better one. 

Figure 1. The job offer. 
 
The interviews were carried out after the students completed the questionnaire and the 

researchers undertook a first analysis of their replies. The aim of the clinical interview was to get 
the pupils to verbalise their thought-processes used in solving the problems (Goldin, 2000) in 
order to obtain evidence of how they generated some abstraction processes of mathematical 
conceptions or used them. The interviewer had a prior interview script constructed considering 
the characteristics of each problem and the type of answer given by the pupils. In any case, the 
interviewer could modify her questions in view of the pupil’s behaviour, in order to clarify or 
investigate more deeply the reasoning processes followed. 
Data Analysis 

The students’ responses to the problems and the interviews were analysed from a descriptive 
point of view using a constant-comparative methodology (Strauss & Corbin, 1994) and taking 
into account the way in which each pupil set up and used elements of mathematics knowledge as 
tools in order to interpret the situation and then make a decision (Llinares, & Roig, 2007). 
Characteristics of the abstraction process generated by the students were identified through the 
way in which they considered the variability of the quantities, the conditions that had to be 
fulfilled by these quantities and the way in which discerned generalities from the registers of 
particular data. We interpreted these characteristics from the process involving students’ goal-
directed activity and the reflection process (Clement, 2000). Next, we considered the 
characteristics and the interpretations generated according to the stage distinction from the effect 
of reflection on activity-effect relationship as a coordination of the available conceptions and 
identified two moments in the participatory stage with similar characteristics in the different 
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mathematical conceptions taking into account how students created records of experience, sorted 
and compared the records, and identified patterns in those records.  

 
Results 

Table 1 shows the results obtained from the combined analysis of the interviews and the 
answers of the questionnaire.  

 
Table 1. Percentages in Different Stages of the Abstraction Process 

 P1 P2 P3 P4 P5 71x5=355 

 n (%) n (%) n (%) n (%) n (%) n (%) 
Participatory stage 30 (42.2) 23 (32.4) 68 (95.8) 13 (18.3) 55 (77.4) 189 (53.2) 
Anticipatory stage 7 (9.9) 1 (1.4) 3 (4.2) 15 (21.1) 12 (16.9) 38 (10.7) 
Others 34 (47.9) 47 (66.2) 0 (0) 43 (60.6) 4 (5.7) 128 (36.1) 
Total 71 (100) 71 (100) 71 (100) 71 (100) 71 (100) 355 (100) 

 
More than 10% of students had anticipated the mathematical conception in the situation 

(anticipatory stage). On the other hand, 10.7% of students generated particular cases in order to 
obtain information about the situation (participatory stage). We identified during the interviews 
how some students coordinated information from particular cases and generated an answer which 
reflected a certain degree of generalisation which had not been present in their original written 
answers. This behaviour indicated a change of focus during interview lending to the generation 
of an abstraction that fits the reflection on activity-effect relationship mechanism, and revealed 
the existence of two cognitive moments in the participatory stage. We use some answers to 
problem 1 to explain these two moments: projection (generating a set of registers) and local 
anticipation (Reorganization, Identification of Regularities and Acceptance of the Generality). 
Projection: Generating a Set of Registers  

In nearly 20% of the total of 355 answers, the students created from the situation some type 
of set of registers, but had difficulty in coordinating the information available. In “The job offer” 
problem, 5.6% of pupils used particular cases to obtain information that might help in making a 
decision. A typical example of the procedure employed to create a set of registers was the 
following:  

- For 10 pizzas delivered, Earnings A = 66€ > Earnings B = 33€  A is better. 
- For 20 pizzas delivered, Earnings A = 72€ > Earnings B = 42€  A is better. 
- … 

Here the pupils centred their attention exclusively on the information provided by the set of 
particular cases. This kind of behaviour, using very low numbers of pizzas delivered, or focusing 
the attention on only some of the account in the situation, prevents the more or less explicit 
appearance of the existence of a change in the profitability of the offers as the number of pizzas 
increases. The following protocol shows an example of this kind of procedure. 

E19: What else did you do? In the end, what conclusion did you come to? 
A:  Well, I saw that in pizza takeaway A they pay better because you are 

guaranteed the 60 euros, so you don’t have to worry about delivering one 
pizza more or one less. 
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The consequence of using very low quantities is that in all cases job-offer A is considerably 
better than job-offer B. Student E19’s attention was centred on the six particular cases 
considered instead of on the information that could have been obtained by comparing the 
difference in earnings as the number of pizzas delivered increased.  
Local Anticipation: Identifying and Using a Regularity  

In the course of the interview some of the pupils coordinated the information derived from 
particular cases in response to prompts from the interviewer which allow them to identify a 
regularity. Sometimes they made inferences of a general kind from the situation, with no written 
trace of the activity carried out. On other occasions however the pupils wrote down registers 
which enabled them to investigate how to compare and relate the particular data, or generated a 
search for new information. In both cases they were coordinating the information.  

An example of this approaching is the way in which E11 perceived during the interview the 
change of profitability in total earnings, basing the conclusion on a single particular case he had 
constructed on the written answer paper. On paper, E11 calculated the monthly earnings at each 
of the pizza takeaways in the case of “20 pizzas delivered”, concluding that the better-paid job 
“is the one at pizza takeaway A because you earn just over twice as much as at B”. We had 
considered this kind of answer a manifestation of the Projection moment. During the interview, 
however, he indicated the following: 

E11: OK. Let’s start with the first one. Do you remember what it was about?  
A:   Yes, here it is … you have two job offers, in one it’s 6 cents for each pizza, 

and a fixed amount every month. In the other, the amount for … what they pay 
for each pizza you deliver, and then the fixed amount every month. And the 
other, the amount they pay for each pizza delivered is quite high, but the 
amount they pay every month is lower. I’ve given an example. I mean, imagine 
you have to deliver about 20 pizzas a month. So you multiply the 20 pizzas, the 
pizzas by 6 cents, which is the same as 12 plus 12 and then the 60 euros you 
get every month, that’s 72 altogether. In the other case 20 by 0.9 [by 9 cents] 
is 18, plus 24, that’s 42. So the difference is bigger. So my better offer was A. 
A was much better. 

E11:   You’d take A, then? 
A:   Yes. 
As the interview continued, the researcher asked him what would happen if a greater number 

of pizzas were delivered.  
E11:  And what do you think would happen if more pizzas were sold? 
A:   Yeah, that’s what I was going to tell you, that probably as the number of 

pizzas increased you would earn more with option B. But with the example 
I’ve given you the better offer is A. Maybe with 200 pizzas B is a better offer. 

This reply seems to show that E11 perceives the existence of a change of profitability in the 
offers as the number of pizzas delivered increases. To find out how he managed to perceive this 
change, i.e. how the abstraction was produced, the interviewer asked him to explain why he 
thought it might be possible to earn more in job B.  

E11:  Why do you think, then, why do you think you might be able to earn more in 
job B?  

A:   Because … because for each pizza, eh, you get 3 cents more than at the end of 
that … as you deliver more and more pizzas, you get, like, 3 cents for each 
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pizza. I mean, after a lot, that’s more, more money […] In the end, in the end 
… the more pizzas you deliver you get back the difference you’ve got here. 

In his answer E11 refers to the difference in the money paid by each pizza takeaway for each 
pizza delivered, saying “because for each pizza, eh, you get 3 cents more than at the end of that 
… as you deliver more and more pizzas, you get, like, 3 cents for each pizza. I mean, after a lot, 
that’s more, more money”. He therefore perceives that the difference between the fixed amounts 
offered by pizza takeaways A and B can be compensated by selling a large number of pizzas. 
This is possible due to the difference in payment for each pizza delivered, and E11 comes to this 
conclusion via a qualitative analysis of the data without having to carry out calculations for 
particular cases. The regularity lies in the fact that the difference between the two offers 
diminishes as the number of pizzas delivered increases (the earnings in A get closer and closer to 
those in B) and therefore there comes a point at which B is better than A (there has been a 
change of tendency in the profitability of the two offers). Another relevant aspect of this 
procedure is the way in which the identification of the regularity is triggered by the researcher’s 
prompt “What do you think would happen if more pizzas were sold?”. From a theoretical 
viewpoint the question functioned as a prompt which moved the pupil’s focus of attention from a 
single case of what a pizza-deliverer might earn towards a consideration of “how the difference 
between the two amounts earned might vary” depending on the number of pizzas delivered. We 
have called this change of attention-focus reflection, which makes it possible to identify the 
regularity by coordinating certain types of information as a consequence of the interviewer’s 
prompts.  

On the other hand, once a regularity (change of profitability) has been identified it can enable 
the students to look for the exact number of delivered pizzas that equals both offers. In this 
problem the characteristic of local anticipation lies in the “adjustment” of the decision and is 
revealed when the pupil considers particular cases approaching 120 (which is the number of 
pizzas delivered that makes the two offers the same in earnings). In his written answer, E22 drew 
up a table showing various particular cases and the earnings corresponding to each one for both 
job-offers. In the interview he explains the process he followed.  

A:   Look, in the first one they say there are two pizza takeaways, right? A and B, 
so in takeaway A they give you 60 euros a month, a fixed sum every month, 
and in B they give you 24, right? So if they give you more in one than in the 
other, but in … in the first one they give you 0.6 for every pizza you deliver, 
and in the second one 0.9, right? So that means that for every 10 pizzas you 
sell it’ll be 0.6 times 10, six euros, you move the decimal point, and here it’s 9 
euros. So for every 10 pizzas you sell … I mean, look, it’s here. From 20 to 40 
that’s 20, right? Well, you go on adding on, and here it says which will pay 
you better, right? Well, in the first one as it’s 60 euros, in the first one if you 
don’t sell many pizzas the chance is you’ll get quite a bit of money, right? I 
mean it’s quite a lot, a lot, a lot of money every month. But not in the second 
one. But in the second one you take more of a risk because you have to sell 
more pizzas. In the second one they give you more, less money every month, 
but they give you more money for every pizza you sell.  

E22:  Yes. 
A:   So when you get to 120 pizzas … 
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E22:  What did you do? Did you keep trying it, going up and up, seeing how many 
deliveries… 

A:   Sure, I went 1, 2, 3, 4, 5, right? I kept on multiplying it. 
E22:  Is that the number of pizzas? [pointing to the first row in the table] 
A:   The number of pizzas sold. 5, right? But I saw it was not enough, so I went on 

adding more and more.  
E22:  Fine.  
A:  I went on multiplying, and here I wrote an equation, right? 
E22:  Yes. 
A:   Say x is the number of pizzas you sell at 0.60, at 0.60 cents plus the money 

they give you every month, then you multiply, it might only be two pizzas. Two 
times 0.60, 1.20 plus 60 euros maybe, and so on. 

The particular cases used are organised in a table beginning with the case of “1 pizza 
delivered”, and increasing by one pizza at a time for the subsequent cases up to the case of “5 
pizzas delivered”. From 10 pizzas onwards, he uses the relation “for every 10 pizzas you sell it’ll 
be 0.6 times 10, six euros [Job-offer A], you move the decimal point, and here it’s 9 euros [Job-
offer B]”. This regularity is perceived from the comparison between the amounts paid for each 
pizza delivered. As he states in his written answer:  

- “Every ten pizzas sold in A mean 6€”  
- “Every ten pizzas sold in B mean 9€”  

The coordination of the information is revealed in the way he looks at the amounts earned for 
pizzas delivered (going up in tens of pizzas), together with the comparison between the fixed 
monthly amounts, which lead E22 to realise that job-offer B can be better than job-offer A (i.e. 
the regularity in the situation seen as a change of tendency). He is searching for the number of 
pizzas which will make the two offers the same by setting up new registers of particular cases, 
ten by ten. This “directed” search for the number that will indicate the change of tendency is a 
manifestation of the coordination of information, in which the particular cases are used as an 
iterative activity towards a pre-established goal. After calculating the case of 120 pizzas, E22 
states that “If you sell 120 pizzas you earn the same in both places, but if you are going to sell 
fewer pizzas you should choose A and if you think you will sell more you should choose B”.  

18A:  And in the end I went on doing that and with 120 pizzas you earn the same in 
both. So if 120 pizzas are sold you would earn the same in both. So you could 
take either. But from 120 onwards you’d earn more in B. So … 

19E:  So which of the two would you choose? 
20A: Personally, I’d take A because it’s difficult to sell 120 pizzas. The thing is … 

but if you want to take a risk and you think you’ll sell more, you’d take B. 
E22 therefore discerns the change of tendency which occurs as the number of pizzas 

delivered increases, and is able to use it to discover at what number of pizzas the two job-offers 
pay the same. At the end of the interview he states that “Personally, I’d take A because it’s 
difficult to sell 120 pizzas. The thing is…but if you want to take a risk and you think you’ll sell 
more, you’d take B” (line 20). The perception of the change of tendency and the use of this 
insight into the structure of the situation to find the number of pizzas at which the change occurs 
enables the pupil to make a decision and justify it appropriately.  
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Discussion 
The written answers and the interviews provided us with detailed information regarding 

different manifestations of the abstraction process and the use of mathematical conceptions in 
secondary-school pupils. The results obtained enabled us to zoom in describing the distinction 
between the participatory and the anticipatory stages as proposed by Simon et al. (2004), 
observing a wide range of behaviours in connection with the mechanism that Piaget called 
“transposing knowledge to a higher level” and “the reorganisation-reconstruction of  the 
knowledge at this level. We identified two different moments in the participatory stage and 
highlighted the importance of the prompts given during the interviews to students accede to 
anticipation. The use of different kinds of problems in the same study, together with a broad 
sample of pupils and the combination of questionnaire and post-reflection interviews made 
possible to amplify and complement previous characterisations of the abstraction process (Ellis, 
2007a; Hershkowitz, Schwartz, & Dreyfus, 2001; Sriraman, 2004). Our findings have enabled us 
to generate two ideas which may help to explain some aspects of the abstraction process. In the 
first place, the way in which activity-effect reflection reveals what route is followed from 
projection to local anticipation and, secondly, the two manifestations of  reflective abstraction in 
the process of problem solving.  

Progress from projection to local anticipation stage is based on the capacity to observe 
regularities (the effect of the activity) and coordinate information in the set of particular cases. 
The way in which learners use particular cases is evidence of the steps they take when they have 
not identified a previously-constructed mathematical structure (participatory stage). The use of 
particular cases is linked to the performance of cognitive actions such as comparing, relating or 
searching. This kind of actions leads the student to notice the effect of his/her activities and 
coordinate the information which in turn leads to a change in the learner’s attention-focus. Such 
prompted attention-changes, linked to cognitive actions, are what reflection consists of. A 
process of this nature has also been identified by Ellis (2007a, 2007b) via different kinds of 
generalisation tasks in which learners related and associated two situations or properties 
discernible in two situations, or used repeated acts to search for a relation. In these cases, the 
prompts proceed from the design of the task or from the interviewer. Our data have shown that in 
certain cases the existence of some kind of prompt or stimulus (made by the teacher/researcher 
or the task design) allow to student change through reflection and accede to anticipation 
(mathematical conception). These prompts favour the change of focus which is itself the 
beginning of the recognition of some kind of regularity in the set of data (effect of activity).  

We argue that it is possible to identify different aspects of the abstraction process using 
problems from different mathematical domains all of which provides evidence of the general 
nature of this model. The relationship between the participatory and anticipatory stages in the 
abstraction process (Piaget, 2001) and the actions of generalisation and the characteristics of 
what has been generalised (Ellis, 2007b), give greater strength to this way of understanding the 
abstraction process when learners think mathematically, and locate the focus of attention on the 
relation between the learner’s mental actions while abstracting, the outcome of these acts and 
their subsequent use. The results obtained therefore have implications with regard to the design 
of tasks to encourage the construction of an abstraction and the consolidation of the construction. 
In the first place, the role played by prompts (in the task itself or as made by the 
researcher/teacher during the interview) would seem to indicate that when abstraction-centred 
tasks are designed they should take into account the nature of the prompts which will help the 
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learners to coordinate the information and thus go on to local anticipation. This recommendation 
is compatible with that made by Tzur (2007) following a whole-class teaching experiment. 
Secondly, in order to give learners the opportunity change their attention-focus and begin to see a 
set of activity-effect registers as a unified object (the identification of the regularity and/or the 
general aspect) (Dörfler, 2002) it will be necessary to create opportunities for the development of 
language-items for the new construction. This characteristic of the task has also been considered 
relevant in designing tasks to consolidate a new construction (Monaghan, & Ozmantar, 2006). In 
any event, more research is evidently required to provide information that will be useful in 
reaching a clearer theoretical understanding of task-design, with all the obvious implications for 
the improvement of teaching methods. 
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This study examines the role of perturbations in students making sense of fractions. Steffe 

and Tzur (1994) define making sense as “(a) to construct ways and means of operating in a 
medium, based on current knowledge, in order to neutralize perturbations induced through social 
interactions and (b) to become explicitly aware of those potential ways and means of operating 
through a process of symbolization”(p.111). Therefore, in students’ mathematical sense-making, 
perturbations, social interactions and symbolization are important. In this presentation, I will 
discuss those three important contributors to learning, using a teaching segment taken from 
semester-long interactions (17 meetings) conducted with a pair of US 8th grade students. I will 
mainly focus on one of the students, Jasmine, and her actions and operations to discuss her 
perturbations, the ongoing social interactions, and her use of symbols.  

The particular problem that Jasmine attempted to solve was this: “A half-inch candy bar is 
cut into two parts. If one part is 13/3 as long as the other part, how long are the parts?” It took a 
total of 15 minutes for Jasmine and her partner to solve this problem. After analyzing the video-
recorded interactions among Jasmine, her partner, her teacher (me) and two observers as well as 
her written work, I inferred that Jasmine was perturbed three times: 1) At the start, she forgot the 
length of the whole candy bar but operated and produced results without using that information. 
A possible reason for not using 1/2 inch might be that until this problem, she had solved 
problems when the length of the candy bar was given as a whole number of inches. When the 
length of the candy bar was given as a fractional part of an inch, she unintentionally forgot this 
information and solved the problem with whatever was meaningful to her. She took 16/3 as the 
length of one of the 16 pieces of the whole candy bar and multiplied it by 13 and 3 to find the 
lengths of the two parts. She was in a state of perturbation after I (the teacher) reminded her that 
the length of the candy bar was 1/2 inch. 2) Throughout the interactions, it became clear that she 
had the question of “how can the same quantity (the whole candy bar) be 16/3 of the smaller part 
and at the same time sixteen pieces?” The way Jasmine produced 16/3 was notational in that she 
utilized the denominator of 13/3 to label the other part as 3/3. She then added the number of 
equal pieces in the two parts, 13 and 3 respectively, and said that the whole quantity would be 16 
thirds. It was not because 16/3 was 16 thirds of the 3/3 quantity but it was because all the equal 
pieces were given in thirds, e.g., 13/3 was given in thirds. She eliminated this perturbation by 
focusing her attention on the number of equal pieces (instead of using a multiplicative 
relationship of 16/3 of something is 1/2 an inch, what is the length of that quantity?) and wrote 
16 pieces = 1/2 inch. 3) Towards the end of the interactions, she did not realize that when she 
wrote 1/32*16 the result would be 1/2 inch, the length of the whole candy bar. In addition, when 
I analyzed the interactions, it seemed that she did not have a goal of finding the lengths of two 
parts when she wrote 1/32� 

×16/1.  
In the poster session, I will present the details of these perturbations and show how Jasmine 

proceeded in the context of the social interactions that occurred during teaching.  
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In this study, we observe students working in small teams as they engage in problem solving in a 
synchronous online environment to understand how they relate to one another, work 
collaboratively, and communicate their emergent understanding of the problem task without 
contemporaneous teacher intervention.  We present evidence that the students, using the 
computer as a cultural tool, actively engage in high forms of thinking and reasoning as well as 
engage in scaffolding as they co-construct mathematical interpretations and ideas. 
 

The data analyzed for this poster is a subset of a larger data corpus from the eMath Project.  
We are currently conducting our eMath Project with two groups of seniors from two different 
high schools, who meet in a virtual communication environment to solve open-ended 
mathematical tasks.  Our research question emerges from a grounded study in how students 
collaborate in a synchronous environment carried out without direct teacher intervention. By 
studying how students communicate and ultimately collaborate within an online environment 
without direct teacher intervention, we can gain knowledge on how to structure lessons, and 
more particularly, problem tasks, so as to optimize learning. The theoretical perspective that 
guides our collection and analysis of data includes sociocultural theory (Vygotsky, 1978), 
communication (Sfard, 2000), and notions of socially emergent cognition (Powell, 2006) and 
group cognition (Stahl, 2006).  This poster focuses on evidence of how the students 
communicate their emergent understanding of the problem tasks and coalesce as collaborative 
learners. 

The poster will display evidence of how the students coalesced into a team and collaborated 
in a virtual environment by presenting clips from the chat window and screen shots of the white 
board.  The screen shots display both edited text boxes and representations the students used to 
convince one another of their reasoning.  Over the course of 13 sessions it is evident that the 
students improved upon their collaborative skills within the chat window excerpts and 
whiteboard summaries. 
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We report on quantitative methods applied to a pair of hypotheses formed through teaching 
experiments. In particular, our research affirms conceptual distinctions between part-whole and 
partitive reasoning with fractions, as theorized in previous literature (e.g., Steffe, 2002). These 
distinctions include a developmental hurdle in moving from partitive reasoning with unit 
fractions to partitive reasoning with non-unit proper fractions. Whereas we concentrate on 
hypotheses arising from scheme theory and teaching experiments, findings relate to fractions 
concepts identified by researchers employing other methods and frameworks as well (e.g., 
Kieren, 1980; Mack, 2001).  
 

Objectives 
Teaching experiments with pairs of students provide opportunities for teachers to closely 

analyze students’ problem solving activities while taking into account student-student interaction 
(Steffe & Thompson, 2000). Based on students’ actions (including verbalizations) teachers can 
build models of students’ reasoning using schemes: hypothetical ways of operating that explain 
the students’ actions. Such models have produced numerous hypotheses with regard to students’ 
learning of fractions (e.g., Olive, 1999; Tzur, 1999; Steffe, 2002; Hackenberg, 2007). We 
examined some of these hypotheses in a quantitative study that afforded a much larger sample. 
We recognize that assessing student knowledge with written tests always comes with limitations, 
but Kilpatrick (2001) reminded us that, as mathematics education researchers, we are also 
obliged to quantitatively test hypotheses. 

Here, we report on results from our examination of one pair of hypotheses, which relate to 
three particular schemes: the part-whole fractional scheme, the partitive unit fractional scheme, 
and the partitive fractional scheme. We describe the schemes in more detail in a subsequent 
section. For now, we note that Steffe (2002) and Olive (1999) learned about these ways of 
operating from their work with children in the Fractions Project. They theorized that the schemes 
form a hierarchy (respective to the order listed above) in which each preceding scheme is 
reorganized to form the succeeding scheme. Based on this idea and our own work with children, 
we posit the following research hypotheses.  

1. In part-whole reasoning there are no operational differences between situations involving 
unit and non-unit proper fractions. 

2. In partitive reasoning there are operational differences between situations involving unit 
and non unit proper fractions; success with situations involving unit fractions precedes 
success in situations involving non-unit proper fractions.  

In reporting our results concerning these hypotheses, we can also report on the construction of 
fractional schemes in general, during grades 5 and 6.  
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Theoretical Framework 
Following Glasersfeld (1995), we define schemes as three-part structures, which include a set 

of perceived situations that activate the scheme (a trigger, or recognition template), a set of 
operations to act on the situation, and an expected result from operating. Glasersfeld defined 
operations—the active and therefore most important component of schemes—as mental actions 
abstracted through reflection on previous experience. For example, students might abstract 
partitioning operations from experiences in forming equal shares, folding paper, or otherwise 
creating equal parts from an existing whole. The partitioning operation results from reflection on 
the cognitive processes involved in completing such physical activities. Once a student has 
abstracted the operation, she can apply it to new situations, such as determining how to break a 
whole candy bar into five equal parts. Iteration—another operation important to working with 
fractions—involves creating copies of a unit. For example, a student might create three-fifths 
from one-fifth by iterating a one-fifth piece three times.  
Part-Whole Fractional Scheme 

Students who have constructed a part-whole fractional scheme conceive of fractions as so 
many pieces in the partitioned fraction out of so many pieces in the partitioned whole. This 
scheme relies upon operations of identifying (unitizing) a whole, partitioning the whole into 
equal pieces, and disembedding some number of pieces from the partitioned whole. However, “a 
child who has constructed [only] a part-whole fractional scheme is yet to construct unit fractions 
as iterable fractional units” (Steffe, 2003, p. 242). In other words, a fraction such as three-fifths 
means three pieces out of five equal pieces in the whole, but it is not yet understood as three 
iterations of one of the fifths. Consider the tasks illustrated in Figures 1a and 1b.  

 

 

 
Figures 1a and 1b.Task responses providing indication/counter-indication of part-whole 
fractional scheme. 

 
Note that one of the tasks involves a unit fraction, whereas the other involves a non-unit 

proper fraction. The part-whole fractional scheme, as abstracted from researcher interactions 
with children, theoretically operates on both cases in the same way. The response to the first task 
correctly indicates one out of six equal parts. On the other hand, the response to the second task 
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(by a different student) serves as counter-indication of a part-whole fractional scheme because 
the parts in the fraction are not equal in size to the unshaded parts of the bar.  
Partitive Unit Fractional Scheme 

Both a part-whole fractional scheme and a partitive unit fractional scheme generate fractional 
language, but the difference between the powers of the schemes is evident in resolving the task 
illustrated in Figure 2. Students with only a part-whole fractional scheme cannot determine the 
fraction because the whole is unpartitioned.  

 

 
Figure 2. Task response providing indication of a partitive unit fractional scheme. 

 
The response in Figure 2 indicates a partitive unit fractional scheme because the student 

seems to understand (note the mark on the left side of the large bar) that the unit fractional part 
(small bar) could be iterated four times to re-produce the whole (large bar) and that this number 
of iterations (four) determines the size of the unit fraction relative to the whole (one-fourth). The 
partitive unit fractional scheme, “establishes a one-to-many relation between the part and the 
partitioned whole” and involves “explicit use of fractional language to refer to that relation” 
(Steffe, 2002, p. 292). However, a partitive unit fractional scheme cannot be used to determine 
the fractional size of a non-unit fraction, because the iterations will not reproduce the whole 
(unless, of course, the fraction in question simplifies to a unit fraction; e.g., two-sixths). 
Partitive Fractional Scheme 

The partitive fractional scheme is a generalization of the partitive unit fractional scheme. 
Students can use the more general scheme to conceive of a proper fraction, such as three-fourths, 
as three of one-fourth of the whole. This involves producing composite fractions from unit 
fractions through iteration, while maintaining the relation between the unit fraction and the 
whole. It also involves units coordination at two levels (Steffe, 2002; Hackenberg, 2007), 
because the student must coordinate three-fourths as three iterations of the fractional unit and the 
whole as four iterations of the fractional unit. In order words, three-fourths is a unit of three 
fractional units, and the whole is a unit of four fractional units. Consider the coordinations 
indicated by the student response in Figure 3.  
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Figure 3. Task response providing indication of a partitive fractional scheme. 

 
The response provides indication of a partitive fractional scheme because the student identified 
the smaller bar as three iterations of a part that, when iterated four times, would reproduce the 
larger bar (the whole). 
Research on the Progression of Fractions Concepts 

Several teaching experiments contributed to the hierarchy of schemes presented above 
(Norton, 2008; Olive, 1999; Olive & Vomvoridi, 2006; Saenz-Ludlow, 1994; Tzur, 1999). 
Collectively, student progress reported in these studies affirms the theoretical hierarchy of 
schemes and provides some indication of development by grade level. Most students seem to 
develop part-whole fractional schemes by fifth grade, but other schemes often lag years behind 
or do not develop at all.  

Kieren (1980) identified part-whole relations as one of five subconstructs vital to the 
understanding of rational number. Although researchers agree that part-whole conceptions are 
fundamental to understanding fractions (Pitkethly & Hunting, 1996), “teaching efforts have 
focused almost exclusively on the part-whole construct of a fraction” (Streefland, 1991, p. 191) 
and this can lead to misconceptions. For example, Olive & Vomvoridi (2006) worked with a 
student named Tim who conceived of 1/n and n/n as the same thing because he could not 
consider 1/n apart from the whole before constructing a partitive unit fractional scheme (Olive & 
Vomvoridi, 2006). “Sparse conceptual structures limit students’ understanding; once these 
conceptual structures had been modified and enriched, Tim was able to function within the 
context of classroom instruction” (p. 44). 

Saenz-Ludlow (1994) emphasized the importance of developing a partitive conception of 
fractions when she referred to the need for students to understand fractions as quantities. This 
conception aligns with Mack’s description of fractions as “multiplicative size transformations” 
(2001, p. 269). It also aligns with the measurement and operation subconstructs identified by 
Kieren (1980), in which fractions are understood in terms of sizes relative to a specified whole, 
rather than a simple comparison of numbers of parts in the fraction and the whole. 

 
Methods 

Data and Assessment 
We administered pre-tests during each fall and post-tests during each spring as part of a two-

year professional development study, which took place from 2005 to 2007 in a low- to middle-
income small-town school in the mid-western United States. The study involved one fifth-grade 
classroom and one sixth-grade classroom for each of the two years, with no students involved in 
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both years. Students with missing data were removed for the present analysis, leaving 84 
students for the pre-test and 86 students for the post-test. Each test contained nine randomly-
ordered items: including items like those illustrated in Figures 1, 2, and 3. We paired the nine 
items across the two forms of the test so that only the numbers and respective sizes of the 
fractions changed (e.g., using a one-fifth bar instead of a one-fourth bar for the partitive unit 
item). We randomly assigned the tests so that each student took each form of the test once, either 
in the fall or spring.  

We designed the items as indicators of particular schemes. That is, responses to each item 
provided opportunities for students to enact particular ways of operating. When assessing student 
responses, two scorers looked at the students’ work on each single item, and inferred from all 
markings (e.g., written answers, drawn partitions, shading, calculations) whether there was 
indication that the student had operated in a way that is compatible with the particular scheme. 
Responses to each item were scored in the following way: 

0:  There was counter-indication that the student could operate in a manner 
compatible with the theorized scheme or operation. Counter indication might 
include incorrect responses and markings that are incompatible with actions 
that would fit the scheme. For example, the response illustrated in Figure 2b 
indicated that the student did not understand the importance of creating equal 
parts in the fraction and the whole.  

1:  There was strong indication that the student operated in a manner compatible 
with the theorized scheme or operation. Indications might include correct 
responses and partitions. For example, the mark and final answer in Figure 2 
indicate the student iterated the smaller bar four times within the larger bar to 
correctly determine the size of the unit fraction, ¼.  

Some items were initially scored as 0.5 and required further inference on the part of the scorers 
to select a final score of 0 or 1. For example, in response to the task illustrated in Figure 2, a 
student might have estimated the size of the fraction to be 1/5, with supporting marks indicating 
he had iterated the fractional stick 5 times. The two scorers reexamined such responses on a 
case-by-case basis to come to a consensus, and then used that consensus to inform decisions on 
similar, subsequent cases.  
Measures 

Part-whole fractional scheme (PWFS). Two items were used as indicators of students’ part-
whole fractional schemes. One item involved unit fractions (e.g., see Figure 1a) and the other 
item involved non-unit fractions (e.g., see Figure 1b). These items were used to test for students’ 
operational differences between situations involving unit and proper fractions (Hypothesis 1). 

Partitive fractional scheme. Two items were used as indicators of students’ partitive 
fractional schemes. One item involved unit fractions (e.g., see Figure 2) and was used as an 
indicator of a partitive unit fractional scheme (PUFS) and the other involved non-unit fractions 
(e.g., see Figure 3) and was used as an indicator of a partitive fractional scheme (PFS). The two 
items were used separately to test for students’ operational differences between situations 
involving unit and proper fractions (Hypothesis 2).  
Analysis 

Frequencies of student scores were entered into contingency tables and were analyzed using 
appropriate measures of association for ordinally scaled variables. Our hypotheses test both 
symmetrical and asymmetrical associations.  
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Hypothesis 1 was analyzed using a Binomial Test. In this case, a test for no operational 
differences is concerned with the distribution of students who did not get both items correct. In 
other words, if there are no operational differences then students should get both items correct or 
both items incorrect, and the distribution of those students missing one item should not reflect a 
bias toward either the unit or non-unit proper fraction items. 

Hypothesis 2 describes an asymmetrical situation in which partitive reasoning with unit 
fractions is hypothesized to precede partitive reasoning with non-unit proper fractions. In other 
words, one variable is an independent variable (e.g., partitive reasoning with non-unit fractions) 
and the other is a dependent variable (e.g., partitive reasoning with unit fractions). Somer’s D is 
an appropriate statistic for testing asymmetrical associations between two ordered variables 
(Siegel & Castellan, 1988) and was used for Hypothesis 2. Somer’s D is a measure comparing 
the number of agreements in order between two variables with the number of disagreements in 
order. Its value ranges from -1 to 1 with values closer to -1 and 1 indicating a stronger 
asymmetrical relationship. In the perfect relationship there would be no disagreements. Visually 
this would be seen in a contingency table as a staircase.  

 
Results 

Scheme Hierarchy 
We investigated the scheme hierarchy by examining the overall percent correct for each 

variable representing the different schemes (see Table 1). In this case, higher percentages were 
considered to be indicative of those schemes that are, in general, developmentally more stable for 
the particular grade level students considered; that is, the scheme develops earlier in the 
hierarchy. Based on the percentages, the schemes align as hypothesized, with the part-whole 
fractional scheme developing earlier, followed by the partitive unit fractional scheme, and then 
the partitive fractional scheme. 

 
Table 1  

Percent Correct for Each of the Items Associated with the Schemes 
Grade 5 

 Pre-test 
(N = 44) 

Post-test 
(N = 43) 

Scheme M SD M  SD 
Part-whole .58 .39 .82 .28 
Partitive unit fractional  .52 .50 .56 .50 
Partitive fractional  .27 .45 .58 .50 

Grade 6 
 Pre-test 

(N = 40) 
Post-test 
(N = 43) 

Scheme M SD M  SD 
Part-whole .78 .22 .79 .30 
Partitive unit fractional  .70 .46 .65 .48 
Partitive fractional  .48 .51 .56 .50 

 
Part-whole Reasoning 
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We hypothesized that when working in part-whole situations there are no operational 
differences for unit and proper fractions (Hypothesis 1). In other words, the PWFS develops for 
both situations at the same time. The number of students missing the unit fractional item 
compared to the non-unit item was found to be statistically the same for the pre-test (Binomial 
Test, p = .71) and the post-test (Binomial Test, p = .80) indicating that there is not sufficient 
evidence to reject the null hypothesis that there are no operational differences between situations 
involving unit and proper fractions (see Table 2). Because most students were successful with 
the part-whole items, it would be good to replicate this investigation with a younger sample of 
students in which an increased numbered of students would not have developed part-whole 
reasoning.  

 
Table 2 

Success in Non-Unit Part-Whole Situations by Success in Unit Part-Whole Situations 
 Part-whole 
 Pre  Post 
 0-Non-Unit 1-Non-Unit Total  0-Non-Unit 1-Non-Unit Total 

0-Unit 11 13 24  7 7 14 
1-Unit 16 44 60  9 63 72 

Totals 27 57 84  16 70 86 
Note. Binomial TestPRE, p = .71; Binomial TestPOST, p = .80. 

 
Partitive Reasoning 

We present frequencies for student success on the PUFS and PFS items in Table 3 for the 
pre- and post-test. We hypothesized that, for partitive reasoning, there would be operational 
differences between situations involving unit and proper fractions, and further, we would expect 
successful operations on unit fractions to precede operations on proper fractions (Hypothesis 2). 
We found a statistically significant direct relationship between PUFS and PFS for both the pre-
test (Somer’s D = .37, p < .001, one-tailed) and post-test (Somer’s D =.40. p < .001, one-tailed) 
indicating that, in general, for partitive reasoning there are operational differences between 
situations involving unit and proper fractions; and moreover, in general a PUFS tends to develop 
prior to a general PFS.  

 
Table 3 

Success in Non-Unit Partitive Situations by Success in Unit Partitive Situations 
 Partitive 
 Pre  Post 
 0-Non-Unit 1-Non-Unit Total  0-Non-Unit 1-Non-Unit Total 

0-Unit 28 5 33  23 11 34 
1-Unit 25 26 51  14 38 52 

Totals 53 31 84  37 49 86 
Note. DPRE = .37 (p < .001, one-tailed); DPOST = .40 (p < .001, one-tailed). 

 
 
 



Vol. 5  755 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

Conclusions 
We based our hypotheses on theoretical distinctions between part-whole and partitive 

reasoning with fractions. These distinctions arose from and are supported by several teaching 
experiments with children (Norton, 2008; Olive & Vomvoridi, 2006; Saenz-Ludlow, 1994), and 
they are indicated by the two names given to the partitive schemes. The present study affirms 
those distinctions by measuring significant differences between students’ performance on unit 
and non-unit partitive items, and by indicating no significant difference between students’ 
performance on unit and non-unit part-whole items.  

Our research findings imply that teachers should recognize that progressing from partitive 
reasoning with unit fractions to partitive reasoning with non-unit fractions may pose a 
developmental hurdle on par with the more obvious one of developing improper fractions. To the 
degree that our results generalize to students at other schools, our findings also indicate grade-
level development of fractional schemes, which might inform curricular design. 

Percentages of successful performance by students on the items support the theoretical 
hierarchy of schemes proposed by Steffe (2002) and Olive (1999) and affirmed by numerous 
teaching experiments. These percentages also indicate that most students have developed part-
whole reasoning before entering fifth grade and that most students develop partitive reasoning 
during fifth or sixth grade. This finding aligns with those of the teaching experiments described 
in the theoretical framework for our study. Indeed, comparing pre-test and post-test mean 
averages in Table 1, we find the largest increase on the PFS item, in fifth and sixth grades. 
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The present study evaluated the effectiveness of an instructional intervention (schema-based 
instruction with self-monitoring, SBI-SM) which emphasizes the mathematical structure of 
problems and also provides students with a heuristic to aid problem solving. One hundred forty 
eight seventh-grade students and their teachers participated in a 10-day intervention on learning 
to solve ratio and proportion word problems, with classrooms randomly assigned to SBI-SM or a 
control condition. Results indicated that students in SBI-SM treatment classes made greater 
gains than students in control classes on a problem solving measure, both at posttest and on a 
delayed posttest administered four months later. 

Introduction 
Reasoning with ratios and proportions is widely regarded as a critical bridge between the 

numerical, concrete mathematics of arithmetic and the abstraction that follows in algebra and 
higher mathematics. Recent mathematics education policy documents echo this sentiment by 
identifying proportional reasoning as a “capstone” of elementary mathematics (National Research 
Council, 2001) and as a foundational topic for further success in mathematics (National 
Mathematics Advisory Panel, 2008). US students’ difficulties in working with ratio and proportion 
are seen in both national and international assessments. On the 2003 TIMSS assessment, only 55% 
of US 8th graders were able to solve a routine proportion problem.  

The topics of ratio and proportion are frequently encountered in elementary and middle schools 
in the form of word problems. Word problem solving has proved to be a significant challenge for 
students, in part because it requires students to understand the language and factual information in 
the problem, identify relevant information in the problem to create an adequate mental 
representation, and generate, execute, and monitor a solution strategy. Yet despite their difficulty, 
word problems are critical in helping children connect different meanings, interpretations, and 
relationships to the mathematical operations.  

There is a rich history in the field of mathematics education of interventions designed to help 
students become more successful at understanding and being able to solve ratio and proportion 
word problems (Lesh, Post, & Behr, 1988; Behr, Harel, Post, & Lesh, 1992; Litwiller & Bright, 
2002; Lamon, 2007). Although research on ratio and proportion word problem solving was 
particularly prominent in the 1980s and early 1990s, scholars in mathematics education continue to 
explore ways to improve students’ learning of this important, yet challenging topic. All told, the 
mathematics education literature provides many compelling examples of methods and curricula 
that have the potential to enhance students’ performance and understanding of word problem 
solving in the domain of ratio and proportion (Behr, Harel, Post, & Lesh, 1992; Lamon, 2007).  

Despite the large literature on word problem solving with ratios and proportions, research on 
how to address low achieving students’ difficulties with word problem solving is somewhat 
conflicting. In the field of mathematics education, the approach advocated by the NCTM 
Standards (and that is used in most of the NSF-funded reform curricula) is a student-centered, 
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guided discovery approach for teaching students problem solving (NRC, 2001). However, 
recommendations for this kind of instructional approach are somewhat at odds with the literature 
on problem solving instruction for low achieving students in the field of special education, which 
has found that low achieving students benefit far more from direct instruction and practice at 
problem solving than competent problem solvers (National Mathematics Advisory Panel, 2008). In 
fact, research conducted in reform-oriented classrooms suggests that many low achieving students 
(particularly those with learning disabilities) may assume passive roles and may encounter 
difficulties with the cognitive load of the discovery-oriented activities and curricular materials 
(e.g., Baxter, Woodward, Voorhies, & Wong, 2002). Yet, despite the robust literature from special 
education in support of more direct instruction for low achieving students and those with learning 
disabilities, many in the mathematics education community have strong negative reactions to this 
instructional approach, in part because of perceived associations and historical links between direct 
instruction and the development of rote, inflexible knowledge. 

The goal of the present study was to design an instructional intervention to meet the diverse 
needs of students in classrooms using the research literatures from both special education and 
mathematics education. Our instructional intervention uses a type of direct instruction that involves 
explicit strategy instruction, which has strong support in the special education literature for 
increasing the performance of at-risk populations. However, our approach is carefully designed to 
address three critical concerns with the ways that direct instruction has sometimes been 
(mis)applied in mathematics instruction.  

First, one concern about some direct instructional approaches is that the same procedure (e.g., 
cross-multiplication) is used to solve all problems on a page. As such, students do not have the 
opportunity to compare and contrast (and thus learn to discriminate) among different types of 
problems and approaches, perhaps leading to exclusive reliance (and perhaps rote memorization, 
without understanding) on a small set of problem solving strategies. Our instructional approach 
(described below) addresses this concern by exposing students to multiple problem types and 
strategies and by encouraging reflection on the similarities and differences between problems types 
and strategies. There is growing evidence from both the education and psychological literature that 
exposure to multiple strategies facilitates students’ learning of mathematics (e.g., Rittle-Johnson & 
Star, 2007).  

A second concern about some direct problem solving instructional approaches is the use of 
superficial cues such as key words (e.g., in all suggests addition, left suggests subtraction, share 
suggest division; Lester, Garofalo, & Kroll, 1989) that students are encouraged to use to select an 
operation or a solution procedure (e.g., “cross multiply”). The use of keyword methods, focusing 
on surface level features, does not emphasize the meaning and structure of the problem and thus 
may not help students to reason and make sense of story situations to be able to successfully solve 
novel problems (e.g., Ben-Zeev & Star, 2001). Our approach moves away from keywords and 
superficial problem features and more explicitly focuses on helping students see the underlying 
mathematical structure of problems. 

A third concern about some direct instructional approaches is the reliance on a general problem 
solution method that involves the use of a heuristic and multiple strategies based on George 
Pólya’s seminal principles for problem solving. Pólya’s four-step problem solving model includes 
the following steps: understand the problem, devise a plan, carry out the plan, and look back and 
reflect. However, this method has come under scrutiny for several reasons, including the failure of 
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general heuristics to reliably lead to improvements in students’ word problem solving performance 
(Lesh & Zawojewski, 2007).  

Our instructional approach, schema-based instruction (SBI), which is intermediate in generality 
between key word approaches and general heuristic methods described above, addresses the above-
noted concerns with some aspects of direct instruction in that it entails specific problem solving 
strategies that are linked to particular types or classes of problems (e.g., ratio, proportion). 
Specifically, SBI in this study includes the following three features.  

First, our instructional model uses schema training to help students see the underlying 
mathematical structure of word problems, which is critical to effectively deploy content 
knowledge. Schema theory suggests that cognizance of the role of the mathematical structure 
(semantic structure) of a problem is critical to successful problem solution. Schemas are domain or 
context specific knowledge structures that organize knowledge and help the learner categorize 
various problem types to determine the most appropriate actions needed to solve the problem 
(Marshall, 1995). For example, organizing problems on the basis of structural features (e.g., rate 
problem, compare problem) rather than surface features (e.g., the problem’s cover story) can evoke 
the appropriate solution strategy.  

One way that problem solvers can access schema knowledge is through the use of schematic 
diagrams, which have been found to be particularly useful in highlighting underlying problem 
structure and is deemed by many to be central to mathematical problem solving (e.g., Stylianou & 
Silver, 2004). It is important to note that a schematic diagram is not merely a pictorial 
representation of the problem storyline that may focus on concrete, irrelevant details, but rather 
depicts the relationships between critical elements of the problem structure necessary for 
facilitating problem solution. Research on the effectiveness of schema training in isolation or 
combined with schematic representations has shown that it is effective for students of different 
ability levels (e.g., Jitendra, Griffin, Haria, Leh, Adams, & Kaduvetoor, 2007; Xin, Jitendra, & 
Deatline-Buchman, 2005).  

A second feature of our instructional approach is our focus on multiple solution strategies. 
Comparing and contrasting multiple strategies is a central feature of mathematics reform efforts 
(Silver et al., 2005) and is advocated in the National Council of Teachers of Mathematics (NCTM) 
Standards (2000). An emphasis on having students actively compare, reflect on, and discuss 
multiple solution methods is also identified as a key feature of expert mathematics instruction (e.g., 
Silver et al., 2005) and considered to be an important differentiating feature of teachers in countries 
that have performed well on international assessments such as TIMSS (Richland, Zur, & Holyoak, 
2007). Further, two recent studies by Rittle-Johnson and Star (2007; Star & Rittle-Johnson, in 
press) provide empirical evidence for improving student learning when instruction emphasizes and 
supports comparing and contrasting solutions. Students who learned to solve equations or to 
compute estimates by comparing and contrasting multiple solution methods outperformed students 
who were exposed to the same solution methods but presented sequentially.  

Finally, an additional feature of our instructional model is the use of student “think-alouds” to 
help in the development of self-monitoring skills, a critical component of metacognitive ability 
(e.g., Kramarski, Mevarech, & Arami, 2002). Teachers model how and when to use each problem 
solving strategy and work with students to reflect on the problem before solving it. Recent research 
suggests that instruction that includes a focus on metacognitive skills has an added positive effect 
on students’ mathematical problem solving performance (e.g., Kramarski, Mevarech, & Arami, 
2002). As such, our approach emphasizes self-monitoring, an important aspect of metacognitive 
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processes, by having students direct their problem solving behavior to focus on comprehending the 
problem, representing the problem, planning to solve the problem using appropriate strategies, and 
reflecting on the solution via the use of “think-alouds.”  
Purposes of the Present Study 

The primary purpose of the current study was to evaluate the effectiveness of schema based 
instruction on ratio and proportion word problem solving. The present study extended prior work 
of Jitendra and colleagues (e.g., Xin et al., 2005) on SBI-SM in the multiplicative domain in 
several ways. First, while Xin et al. exclusively focused on students with disabilities and low 
achieving students, we targeted students of diverse ability levels in general education classrooms. 
Second, we extended the focus of Xin et al. beyond ratio and proportion word problem solving to 
also include foundational concepts (ratios, equivalent fractions, rates, fraction and percents) 
involved in ratio and proportion problem solving. Third, in addition to the schematic diagrams for 
organizing information (as was used in Xin et al.), we also incorporated multiple solution strategies 
and flexible application of those strategies. Fourth, instruction was provided by classroom teachers, 
rather than by research assistants (as was done in Xin et al.).  

We hypothesized that students receiving SBI-SM instruction would make greater gains in 
problem solving performance than their peers receiving “business-as-usual” mathematics 
instruction (control condition). The following research questions were addressed in this study: (1) 
What are the differential effects of SBI-SM and control treatment on the acquisition of seventh 
grade students’ ratio and proportion word problem solving ability? (2) Is there a differential effect 
of the treatment (SBI-SM and control) on the maintenance of problem solving performance four 
months following the end of intervention? 
 

Method 
Participants 

Seventh grade students from eight classrooms and their teachers in a public, urban school 
participated in the study. For mathematics instruction, students in the school were grouped into 
classes based on three ability levels: Academic (high), Applied (average), and Essential (low). In 
the present study, each treatment group (SBI-SM and control) included two sections of average and 
one each of high and low ability classrooms to adequately represent the different levels in the 
school. The sample of 148 students (79 girls, 69 boys) included those who were present for both 
the pretest and posttest. The mean chronological age of students was 153 months. The sample was 
primarily Caucasian (54%), and minority students comprised 22% Hispanic, 22% African 
American, and 3% American Indian and Asian. Approximately 42% of students received free or 
subsidized lunch and 3% were English language learners. 

All six teachers at the participating school were responsible for teaching mathematics in the 
different ability level classrooms. The teachers (3 females and 3 males) were all Caucasian, with a 
mean of 8.58 years of experience teaching mathematics (range 2 to 28 years). Three of the teachers 
held secondary education certification, four had a master’s degree, and only three had a degree in 
mathematics.  
Design 

A pretest-intervention-posttest-retention test design was used. After matching classrooms in 
pairs on the basis of ability level, one classroom from each pair was randomly assigned to the SBI-
SM or control treatment.  
Materials and Measures 
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The SBI-SM intervention unit content provided the basis for solving problems involving ratios 
and proportions. We identified specific concepts and problem-solving skills by reviewing the 
textbook used in the 7th grade classrooms and appropriately mapping the relevant topics to the ratio 
and proportion unit. The unit included exercises to build an understanding of the concepts of ratios 
and rates that are critical to understanding proportions and for engaging in proportional reasoning 
as well as to solving ratio and proportion word problems.  

To assess mathematics competence on ratio and proportion problems, students completed a 
researcher-designed mathematical PS test prior to instruction (pretest), immediately following 
instruction (posttest), and four months following instruction (delayed posttest). The PS test 
consisted of 18 items derived from the 8th grade TIMSS, NAEP, and state assessments and 
assessed ratio and proportion concepts and word problem solving knowledge similar to the 
instructed content. Students had 40 minutes to complete the same 18-item test at pretest, posttest, 
and delayed posttest.  

Professional Development. Teachers assigned to the SBI-SM condition attended a 1-day 
session that described the goals of the study and how to mediate instruction and facilitate 
discussions and group activities. Teachers in the control condition attended one half-day training 
session that focused on the goals of the study and the importance of implementing the standard 
“business-as-usual” curriculum faithfully. 
Procedure 

Students in both conditions received instruction on ratio and proportion and were introduced to 
the same topics (i.e., ratios, rates, solving proportions, scale drawings, fractions, decimals, and 
percents) during the regularly scheduled mathematics instructional period for 40 minutes daily, 
five days per week, across 10 school days, delivered by their classroom teachers in their intact 
math classes. Lessons in both intervention and control classrooms were structured as follows: (a) 
students working individually to complete a review problem followed by the teacher reviewing it 
in a whole class format, (b) the teacher introducing the key concepts/skills using a series of 
examples, and then (c) assigning homework. Further, students in both conditions were allowed to 
use calculators. 

SBI-SM. For the SBI-SM condition, the researcher-designed unit replaced the students’ regular 
instruction on ratios and proportions. Lessons were scripted to provide a detailed teaching 
procedure (i.e., questions to ask, examples to present) for the purpose of ensuring consistency in 
implementing the critical content. However, rather than read the scripts verbatim, teachers were 
encouraged to be familiar with them and use their own explanations and elaborations to implement 
SBI-SM. To solve ratio and proportion problems, students were taught to identify the problem 
schema (ratio or proportion) and represent the features of the problem situation using schematic 
diagrams. Students first learned to interpret and elaborate on the main features of the problem 
situation. Next, they mapped the details of the problem onto the schema diagram. Finally, they 
solved ratio and proportion problems by applying an appropriate solution strategy (e.g., unit rate, 
equivalent fraction, or cross multiplication). The instructional approach encouraged students’ 
“think-alouds” to monitor and direct their problem-solving behavior along the following 
dimensions: (a) problem comprehension (e.g., Did I read and retell the problem to understand what 
is given and what must be solved?, Why is this a ratio problem?, How is this problem similar to or 
different from one I already solved?), (b) problem representation (e.g., What schematic diagram 
can help me adequately represent information in the problem to show the relation between 
quantities?), (c) planning (e.g., How can I set up the math equation? What solution strategy can I 
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use to solve this problem?), and (d) problem solution (e.g., Does the answer make sense? How can 
I verify the solution?)  

Control. Students in the control group received instruction from their teachers who used 
procedures outlined in the district-adopted mathematics textbook (Bailey et al., 2004). Each lesson 
in the chapter on Ratios and Proportions begins with a real-life application of the mathematics to 
introduce and motivate the day’s topic. The text then suggests a direct instruction approach for 
defining key concepts. Subsequently, several worked out examples are presented to expose 
students to the target problem types of the lesson, following by a period of guided practice.  
 

Results 
The mathematics problem solving data were first examined for initial group comparability on 

the problem solving pretest measure by contrasting the SBI-SM with the control treatment, using a 
2 group (SBI-SM, control) x 3 ability level (high, average, low) analysis of variance (ANOVA). 
Next, we assessed the acquisition and maintenance effects of the problem solving skill by 
conducting separate two-factor analysis of covariance (ANCOVA) with the problem solving 
pretest serving as a covariate for both the posttest and delayed posttest.  
Student Learning 

Results of the ANCOVA applied to the posttest scores demonstrated statistically significant 
main effects for group, F (1, 141) = 6.30, p = .01, and ability level, F (2, 141) = 16.53, p < .001. 
The pretest was found to be a significant covariate, F (1, 142) = 32.16, p < .001. The adjusted 
mean scores indicated that the SBI-SM group significantly outperformed the control group. A low 
medium effect size of .45 was found for SBI-SM when compared with control. Post-hoc analyses 
using the Bonferroni post hoc criterion for significance indicated that the mean problem solving 
scores for the ability levels were significantly different (High > Average > Low). No significant 
interaction between group and ability level was found, F (2, 141) = 2.01, p = 0.14.  

In addition, results from the delayed posttest administered four months following the 
completion of the intervention indicated statistically significant effects for group, F (1, 135) = 8.99, 
p < .01, and ability level, F (2, 135) = 24.16, p < .001. The pretest was found to be a significant 
covariate, F (1, 135) = 34.06, p < .001. The adjusted mean scores indicated that the SBI-SM group 
significantly outperformed the control group. A medium effect size of .56 was found for SBI-SM 
when compared with control. Post-hoc analyses using the Bonferroni post hoc criterion for 
significance indicated that the mean problem solving scores for the ability levels were significantly 
different (High > Average > Low). No significant interaction between group and ability level was 
found, F (2, 135) = 2.04, p = 0.13.  
 

Discussion 
This study replicates and extends prior work by Jitendra and colleagues and others on the 

effects of schema-based instruction on students’ learning of mathematics. The focus here was on 
ratio and proportion, a critically important but quite challenging content area for students. Our SBI-
SM approach is relatively unique in its synthesis of best practices from the at-times conflicting 
special education and mathematics education literatures. SBI-SM uses explicit strategy instruction, 
which has been shown by special education researchers to be effective with low achievers, but with 
an emphasis on multiple strategies and the underlying mathematical structure of word problems—
two features with strong foundation in the mathematics education and cognitive science research 
literatures.  
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Our research questions addressed the differential effects of SBI-SM and control treatment on 
the acquisition and maintenance of seventh grade students’ ratio and proportion word problem 
solving performance. Consistent with our prediction, we found a statistically significant difference 
in students’ problem-solving skills favoring the SBI-SM condition, suggesting that SBI-SM 
represents one promising approach to teaching ratio and proportion word problem solving skills. In 
addition, our results indicated that the benefits of SBI-SM persisted four months after the 
intervention. The effect sizes comparing the SBI-SM treatment with the control group were 0.45 
on the immediate posttest and 0.56 on the delayed posttest. It is important to note that our control 
group received instruction on the same topics and for the same duration of time as the SBI group. 
At the same time, the effects for SBI-SM were not mediated by ability level, suggesting that it may 
benefit a wide range of seventh grade students. In sum, our use of direct instruction, but modified 
to move students beyond rote memorization to developing deeper understanding of the 
mathematical problem structure and fostering flexible solution strategies, helped students in the 
SBI-SM group improve their problem solving performance and maintain it over time.  

A noteworthy feature of SBI-SM that future experimental research should investigate is its 
focus on multiple strategies. Prior work in special education has not encouraged the use of such an 
approach, particularly for low achieving students, because many special educators are skeptical of 
its benefits. One possible explanation for this skepticism among special educators is the inability of 
many low achieving students to meet the cognitive overload involved in learning multiple 
strategies (e.g., Baxter, Woodward, Voorhies, & Wong, 2002). Although ability level did not 
mediate the effects of SBI-SM in this study, visual inspection of the data suggests that, contrary to 
prior work in special education, the progress of students in the low ability classrooms was 
comparable to the performance of low achieving students in the control condition. This finding 
suggests that the cognitive overload of learning multiple strategies in SBI-SM may not necessarily 
be a concern, because it did not impede the learning of low achieving students in the SBI-SM 
condition.  

In conclusion, the focus on ratio and proportion problems in the present study extends into 
middle school and to students with diverse needs the prior work on word problem solving with 
students with disabilities or low achieving students in other mathematical domains from the 
elementary and middle school curriculum. The present findings suggest that students can benefit 
from instruction that emphasizes the underlying mathematical structure of word problems, an 
important feature of SBI-SM.  
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We report on a study that consisted of administering tests to 297 sixth grade students from 13 
different schools in Mexico. Pupils were asked to identify the quantity represented by common 
fractions (e.g., 1/2, 1/4, 1/3, 3/4). Results suggest that many students are finishing elementary 
school with a deficient understanding of fractions: some lagging behind so significantly that they 
have not developed understandings that allow them to readily and correctly interpret the 
quantitative meaning of the most common fraction notations, including “1/2.” We discuss the 
implications of these results for students’ opportunities to learn mathematics in middle school. 

Background 
Mathematics educators have long been concerned with the ways in which fractions are 

learned. According to several researchers, students must come to develop relatively sophisticated 
understandings of fractions in order to have access to important mathematical ideas, particularly 
those encompassed by the multiplicative field (Lamon, 2007; Thompson and Saldanha, 2003). In 
addition, studies based on written assessments administered to relatively large samples of 
students have identified the shortcomings of educational systems around the globe with respect 
to fraction instruction. For instance, several studies have documented the difficulties experienced 
by numerous students in grades 5 through 9 when identifying fractions on the number line (e.g., 
Gould, 2005; Hannula, 2003; Hart, 1989). In the case of the Mexican National Assessment of 
Educational Quality and Achievement (Backhoff, Andrade, Sánchez, Peon, & Bouzas, 2006) it 
was reported that 76.9% of Mexican sixth-grade students did not meet the probability 
criteria P ≥ .67 of being correct when answering items that involved identifying a fraction such 
as 3/5 on the number line.  

Studies based on assessing relatively large samples of students have typically been useful for 
gauging the existing limitations of fraction instruction in an educational system, and for 
measuring longitudinal change. However, these studies have rarely been helpful for developing 
strategies for improvement, particularly in terms of specifying instructional design and 
professional development challenges. 

The study that we report in this paper was conducted for the purpose of identifying how 
ready Mexican students finishing elementary school (educación primaria; sixth grade) were to 
learn the mathematical ideas prescribed in the National Curriculum for Middle Schools (grades 7 
to 9; Secretaría de Educación Pública, 2006). In particular, we were interested in documenting 

differences in how students made sense of a fraction notation of the kind “
� 

a
b

”, as a number that 

expresses quantity. We considered that the way in which a student made quantitative sense of 
these notations would be consequential in his or hers opportunities to learn the relatively 
sophisticated mathematical ideas encompassed by the multiplicative field as prescribed in the 
Middle School Curriculum (e.g., fractions, percents, decimals, ratios, rates, averages and 
quartiles). It is worth clarifying that such a consideration is consistent with the instructional tenet 
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that students who can attribute quantitatively sound meanings to the numbers that they encounter 
in instruction will have better opportunities to understand increasingly sophisticated 
mathematical ideas than those who do not (cf., National Council of Teachers of Mathematics, 
2000; Thompson, Philipp, Thompson, & Boyd, 1994). 

 Methodology  
The study was conducted in the spring of 2006. It consisted of administering a test to 297 

sixth grade students from 13 classrooms in different schools. The schools were selected from a 
pool of about 60, to which the research team had access. Some of those schools were in the 
highlands of the Mexican State of Chiapas and the rest on the south side of Mexico City. An 
effort was made to select classrooms with diverse student populations. As a consequence, the 
sample included classrooms that were in different kinds of schools (Table 1). 

Table 1. Classification of the 13 Classrooms that Formed the Sample by School Characteristics 
and by Classroom Size 
 Chiapas 

N=6 
Mexico City 

N=7 
  Chiapas  

N=6 
Mexico City 

N=7 
Urban Public 
Schools 3 6  

Bilingual 
Schools 

1 
(Spanish- 
Tzotzil) 

0 
Private Schools 1 1  
Rural Schools 2 0  
SES    Classroom size   
High 1 1  11-16 students 3 0 
Middle 1 3  20-25 students 2 4 
Low 4 3  28-33 students 1 3 

 
The great majority of the students (86.2%) were eleven or twelve years old at the time of the 

study. There were some students that were ten years old, and others that were older than twelve 
(Table 2). It is worth clarifying that, in Mexico, the presence of significantly over-aged students 
is common in elementary schools that serve children living in poverty.  

       Table 2. Distribution of the 297 Students in the Sample by Age 

Age 10 11 12 13 14 15 16 18 19 

N 3 
(1%) 

110 
(37%) 

146 
(49.2%) 

28 
(9.4%) 

2 
(0.7%) 

4 
(1.3%)  

2 
(0.7%) 

1 
(0.3%) 

1 
(0.3%) 

 
Prior to designing the test, the National Mathematics Curriculum for Seventh Grade (primer 

año de secundaria; Secretaría de Educación Pública, 2006) was examined (cf. Cardoso, 2008). 
The purpose of the examination was to identify the kinds of quantitative understandings about 
fractions that students would have had to develop in elementary school in order to be ready to 
engage meaningfully with the mathematical ideas prescribed for middle school.  

It became evident that the designers of the National Mathematics Curriculum for Seventh 
Grade did not assume that students who enter middle school would have mastered all the content 
prescribed in the Elementary School Curriculum. Instead, they chose to review parts of the 
elementary school curriculum content. For instance, the Middle School Curriculum indicates that 
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teachers should start instruction by helping students identify fractions on the number line, despite 
the fact that, according to the Mexican Elementary School Curriculum (Secretaría de Educación 
Pública, 1993), students would have already been taught to do so in fifth and sixth grades.  

Based on our examination of the Middle School Curriculum, we conjectured that students 
would have to enter middle school understanding, at least, the basic rationale of fraction 
notation; namely, that there is a numerator and a denominator, that each represents something in 
particular, and that together they express quantity. We also conjectured that students would have 
to be capable of correctly imagining the quantities represented by relatively common fraction 
inscriptions as expressing something that would be smaller than, as big as, or bigger than 1/2 and 
1. We concluded that without those understandings it would be unreasonable to expect students 
to meaningfully engage in instructional activities that involved identifying fractions on the 
number line, as well as others that would come latter in the curriculum.   

The test included 19 items. The first 6 involved comparing the fractional amount of milk 
contained in two milk cartons, in terms of one having more milk than the other, or of the two 
having the same amount. Students were shown the drawing of two milk cartons, each with a 
fraction inscription on the bottom (Figure 1). They were asked to mark the level of the milk in 
each carton, accordingly to the fraction shown, and to indicate which was fuller or if both had the 
same amount. The fractions that students compared were: 1/3 vs. 1/2; 3/4 vs. 1/4; 1/3 vs. 2/3; 2/4 
vs. 1/2; 4/9 vs. 3/4; 5/10 vs. 1/2. All the fractions were relatively common, and all the 
comparisons could be solved correctly by assessing each fraction inscription as representing a 
quantity that is smaller than, as big as, or bigger than 1/2. In addition, the items involved a 
familiar context for students (containers from which liquids are served), although it was probably 
a context in which pupils were not used to dealing with fraction inscriptions.  

 

Students were given a detailed explanation of what they had to do before solving the milk 
carton items. A real milk carton was used to give this explanation. Among other things, students 
were told about where the level of the milk would be when a milk carton was full (Figure 2). In 
addition, there were at least three adults2 present in every classroom in which the test was 
administered. These adults aided individual students who had doubts about what they were 
expected to do.  

The seventh item involved comparing the amount of milk that was used to make each of 
three cakes. Students were shown a picture of three identical drawings of cakes, each with one of 

 
Figure 1. One of the milk carton items. 

 

Figure 2. The level of the milk when 
the carton is full.  
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the following inscriptions on the bottom: 
� 

5
4

 of a liter, 
� 

8
9

 of a liter, � 

1 liter. Students were told that 

the inscriptions showed the amount of milk that was used to make each of the cakes, and were 
asked to mark the one in which they thought that the most milk was used.  

The remaining 12 items were more similar to typical school exercises. Six consisted of 
circles marked with a fraction inscription on the bottom (Figure 3). Students were asked to shade 
the area corresponding to the fraction shown. Those fractions were: 1/2, 2/4, 3/4, 1/3, 2/3, and 
3/3. The other six items consisted of rectangles marked with a fraction inscription on the bottom 
(Figure 4). Again students were asked to shade the area corresponding to the fraction shown. 
Those fractions were:  1/2, 1/4, 3/4, 1/8, 4/8, 8/8.  

 
 

 
The circle and rectangle items were included for the purpose of identifying possible 

differences in students’ performance when expressing fractional values using representations that 
are common in schools than when using representations that are not (such as milk cartons). We 
considered that if a student’s performance were to be very different in the two kinds of items, it 
could be reasonable to conjecture that a poor performance in the Milk Carton Items would be the 
result of the student’s difficulties to make sense of the activity. In contrast, if a student’s 
performance in both kinds of items were consistent—in general terms—it would be reasonable to 
consider that a student’s performance in the Milk Carton Items reflected his ways of making 
sense of fraction inscriptions as numbers that express quantity.  

Results 
A coding scheme composed of four categories was developed for classifying the tests. The 

scheme emerged from the analysis of the first 38 tests that were administered. The analysis 
involved searching out similarities and differences among the test responses that reflected 
possible similarities and differences in students’ quantitative understanding of fractions—
similarities and differences that would be important to account for in instruction. The four 
categories turned out to be useful for classifying 292 of the 297 tests that were administered. 
Each of these 292 tests was classified, without difficulty, as belonging to one and only one 
category. The 5 remaining tests (1.7%) were discarded because of inconsistencies (e.g., the test 
was not completed).  
Category A 

The tests that were classified into Category A (N=59; 20%) were those in which the students 
responded correctly all the Milk Carton Items (or all but one of them), as well as the Three Cakes 
Item and the Circle and Rectangle Item. These students’ responses suggested that they correctly 

 
Figure 3. One of the circle items. 

 
Figure 4. One of rectangle items. 
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imagined the quantities represented by relatively common fraction inscriptions as expressing 
something that would be smaller than, as big as, or bigger than 1/2 and 1. Generally speaking, 
these students seemed to be ready to engage in instruction involving identifying fractions on the 
number line.  
Category B 

The tests that were classified into Category B (N=57; 19.5%) were those in which the 
students responded correctly to all the Milk Carton Items (or all but one of them), as well as the 
Circle and the Rectangle Items, but that responded to the Three Cakes Item incorrectly. 
Specifically, all of them identified the cake with the inscription “1 liter” as the one in which the 
most milk was used.  

The responses on the tests that were classified into this category suggest that the students that 
answered them properly construed relatively common fraction inscriptions as expressing 
quantities smaller than, as big as, or bigger than 1/2. However, the responses also suggest that the 
students might have conceived of fraction inscriptions as expressions that always represent 
quantities that are smaller than or equal to 1. It is reasonable to conjecture that the students 
whose tests were classified into Category B may not have been prepared to engage, readily and 
meaningfully, in instruction involving the mathematical ideas prescribed for seventh grade in the 
Mexican Curriculum. In order to be prepared, they would have to be supported in understanding 
why and how a fraction inscription can, legitimately and soundly, express a quantity that is 
bigger than 1. 
Category C 

The tests that were classified into Category C (N=87; 29.7%) were those in which, 
throughout the Milk Carton, the Circle, and the Rectangle Items, the students consistently 

represented the fraction “
� 

1
2

” as “one half”, but misrepresented most of the other fraction 

inscriptions on the test (Figure 5). These students seemed to have had developed sound 
quantitative imagery about a limited number of fractional inscriptions (i.e., 1/2 and, in some 
cases, 1/4 and 3/4).  

 
The responses on the tests that were classified into this category (Category C) suggest that 

the students that provided them might have not yet developed an understanding of the system of 
fractional notation that would allow them to correctly construe fraction notations whose  

 

 
Figure 5. Representation of 1/3 as more than 
1/2 in a test classified into Category C.  
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quantitative meaning they did not previously know. An example of such an understanding would 
be to consistently conceptualize the denominator of a fraction as expressing a number of equal 
parts in which a whole was divided, and the numerator as a certain number of those parts. This 
was not something that the students whose tests were classified into Category C seemed to do. 
Instead, when encountering fraction notations whose meaning they did not previously know, 
these students seemed to conceptualize them following the same quantitative rationale they used 
for interpreting natural numbers: the bigger the number the bigger the amount it represents. For 
example, in the Three Cakes Item, many of these students chose the “8/9 Liter” cake as the one 
in which the most milk was used, probably because—in the natural number system—8 and 9 
represent larger quantities than 5 and 4, and than 1.  

It is reasonable to conjecture that the students whose tests were classified into Category C 
may not have been prepared to engage, readily and meaningfully, in instruction involving the 
mathematical ideas prescribed for seventh grade in the Mexican Curriculum. To be prepared, 
they would have to be supported in developing understandings about the quantitative rational of 
fraction notation that would allow them to, at least, correctly interpret relatively common 
fractions—whose meaning they did not previously know—as representing quantities that are 
smaller than, as big as, or bigger than 1/2 and 1. 
Category D 

The tests that were classified into Category D (N=88; 30.1%) were those in which, 
throughout the assessment, the students did not consistently represent any fraction correctly, 

including “
� 

1
2

” (Figure 6). The responses on the tests that were classified into this category 

suggest that the students that provided them might have not yet developed imagery about the 
quantitative meaning of fraction notations that would allow them to correctly construe them as 
symbols that express quantity—not even with respect to a limited number of inscriptions. Many 
of these students seemed to approach all fractions as symbols that followed the same quantitative 
rationale as natural numbers: the bigger the number bigger the amount it represents.  

 
It is reasonable to conjecture that the students whose tests were classified into Category D 

may not have been prepared to engage, readily and meaningfully, in instruction involving the 
mathematical ideas prescribed for seventh grade in the Mexican Curriculum. To be prepared, 

 

 
Figure 6. Representation of 2/4 as more than 
1/2 in a test classified into Category D. 
  



Vol. 5  771 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

they would have to be supported in developing understandings about the quantitative rationale of  
 

fraction notation that would allow them to, at least, correctly interpret relatively common 
fractions as representing quantities that are smaller than, as big as, or bigger than 1/2 and 1. 

Once the tests were coded, the distribution of students in each classroom—according to the 
four categories—was identified (Figure 7). It became apparent that there were important 
differences across classrooms, some with more than half of tests classified into Categories A and 
B, and others with only a few tests (or no) tests in these Categories. Six classrooms fell into the 
former group, of which five were in schools attended by students with high or middle SES. 
Seven fell in to the latter group, of which six were in schools attended by students with low SES 
(Figure 7). It also became apparent that, despite these differences, all the classrooms had students 
whose tests were classified into Categories C and D. These observations suggest that the problem 
of sixth grade students lagging behind in their quantitative understanding of fractions might be 
widespread across the Mexican Educational System, but more acute in schools attended by 
children of low income families. 

 

Figure 7. The thirteen classrooms by how the tests of its students were classified into the four 
categories, both in absolute terms (numbers inside the boxes) and proportionally (size of the 
boxes). The first letter on the label of each classroom indicates the school’s location (C: Chiapas; 
X: Mexico City); the second letter, the type of School (P: private; U: urban public; R: rural 
public); and the third letter, the typical SES of the students (H: high; M: middle; L: low).  

Conclusions 
Our results suggest that many students in the Mexican Educational System are entering 

middle school lagging behind in their understanding of fractions as numbers that express 
quantity. Some students are lagging behind significantly, to the point that they have not 
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developed understandings that allow them to interpret, readily and correctly, the quantitative 

meaning of the most common fraction inscriptions; in many cases, including “
� 

1
2

”. The results 

also suggest that the problem is widespread across the educational system, but more acute in 
socially and economically deprived contexts.  

Based on our results, it is reasonable to conjecture that the Mexican Educational System is 
facing a serious problem regarding mathematics instruction, at least instruction concerning the 
ideas encompassed by the multiplicative field. It seems that the system is being ineffective in 
supporting many pupils in developing the mathematical understandings that are necessary if they 
are to fulfill the learning goals that the system itself has established. As a consequence, many 
students are being asked to engage in instruction involving mathematical ideas that they are not 
ready to make sense of. This situation is likely to create frustrating learning experiences in 
mathematics classrooms for many students. In addition, it can limit students’ opportunities not 
only to learn the mathematical ideas prescribed for their grade level, but also to make sense of 
more basic notions.  

We are uncertain about how this problem could be solved at the systemic level. However, we 
believe that it would be worthwhile to develop instructional resources that help Mexican sixth 
grade teachers identify and respond to the particular challenges they face in their classrooms, 
regarding fraction instruction. In addition, it would be important to implement professional 
development programs that help Mexican sixth grade teachers learn about the challenges they 
face with respect to fraction instruction, and about the resources they can use to meet those 
challenges. 
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In this study, we consider the experience of two alternatively-certified teachers’ experiences in a 
professional development course. We looked at their abilities to interpret drawn representations 
and the impact they reported those abilities had on their teaching. We relied on interviews with 
the participants and videotapes of their professional development experience. Findings indicate 
that the teachers both made significant strides in their abilities to interpret drawn 
representations of fraction operations and in their reported use of them in their classrooms. 
 

Background 
A nationwide shortage of teachers combined with high turnover rates in the areas of special 

education, mathematics and science (Ingersoll, 2001), have resulted in a practice of recruitment 
of teachers from non-traditional backgrounds, especially in urban areas. While the interest in 
research on these teachers has risen, the research in this area is still minimal with questionable 
results. Nonetheless, results of studies suggest alternatively certified teachers are more willing to 
work in the critical needs areas with low-achieving students (Zeichner & Conklin, 2005).  

This influx of alternatively-certified teachers into mathematics classrooms creates particular 
challenges given that the vision of classroom mathematics has changed (NCTM, 2000) and these 
teachers are often sent into classrooms with little more than classroom management guidance. 
The mandates placed on schools through various national, state, and local accountability efforts 
have driven the need for teacher professional development (Hill & Ball, 2004), but that 
professional development is generally designed for teachers with traditional certification and 
backgrounds. Clearly, the need for professional development of alternatively certified teachers is 
also great, but little is known about the kinds of support they may need – particularly in their first 
few years – and whether professional development for regularly certified teachers is appropriate 
when the alternatively-certified teachers have not had previous opportunities to develop 
knowledge for teaching (Shulman, 1986; Ball, Lubienski, & Mewborn, 2001). Fortunately, much 
modern professional development has moved away from the traditional “make and take” model 
of professional development that focused on development of a single lesson to use in the 
classroom. Modern professional learning instead often seeks to develop the mathematical 
knowledge for teaching (Ball, Lubienski, & Mewborn, 2001) of the participating teachers – 
starting from wherever the teachers are in their current development. This means that these 
efforts seek to address teacher content knowledge, develop their teaching strategies, and explore 
student thinking.   

Built into this new vision of professional learning and relying on guidelines about high-
quality professional development (e.g., Elmore, 2002; Hawley & Valli, 1999; Hill, 2004), the 
InterMath approach provides teachers with a full semester-long hands-on learning experience 
designed to engage them in development of content knowledge and pedagogical knowledge 
simultaneously. To meet the professional development goals, InterMath engages teachers in 
mathematical problem solving and exploration through the use of software including Fraction 
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Bars (Orrill, undated), wikis, and spreadsheets with which teachers can model and analyze a 
variety of mathematical situations. In the InterMath class sessions, teachers begin to experience 
the learning environments advocated in reform documents (e.g., NCTM, 2000). For example, 
InterMath participants engage in problem-solving by using technology to model and solve a 
variety of open-ended problems. 

For this study, we developed an InterMath course focused on rational numbers. This topic 
was chosen because of the notorious need for professional development in this content area (e.g., 
Ball, Lubienski, & Mewborn, 2001; Ma, 1999), the necessity for students to develop strong 
rational number sense (Lamon, 2007), and its appropriateness for middle grades teachers, which 
was our population of interest. The InterMath – Rational Numbers course (IM) had three explicit 
goals: to raise participant awareness of referent units; to provide opportunities for participants to 
develop understandings of drawn representations for solving rational numbers problems; and 
development of proportional reasoning skills as they relate to ratio and fraction situations. To 
meet these goals, we designed the IM course to last 14 weeks with approximately 40 
instructional hours.  

The data reported here were collected as part of the NSF-funded Does it Work (DiW) project 
which was investigating three critical research questions: (1) What do teachers learn in 
professional development?; (2) How did teachers’ practice change as a result of the professional 
development?; and (3) How does teacher change impact student performance on assessments? 
The current study is concerned with the first research question – the impact of the professional 
development on teacher learning as it relates to this alternatively certified population. 
Specifically, we wanted to understand the impact of IM (http://intermath.coe.uga.edu) on 
teachers with emergent mathematical knowledge for teaching who have not taken traditional 
mathematics education courses. We considered to what extent a single professional development 
course can impact alternatively certified teachers’ learning and their reported practices. 

 
Framework 

Learning Environments 
For teachers who have never experienced learning standards-based ways, providing these 

opportunities to students is difficult (Goldsmith & Shifter, 1997). After all, these teachers “may 
not have useful images from their personal experiences to guide the creation of a focused and 
productive classroom culture that emphasizes inquiry and the exchange of ideas” (Goldsmith & 
Shifter, 1997, p. 25). However, certain learning experiences appear to impact teacher change. For 
example, teachers consistently report developing the most effective strategies and practices 
through experiences and collegial interactions (Wilson, Cooney, & Stinson, 2005).  

Research has shown that the learner-centered approach of the InterMath course allowed 
teacher participants to take “ownership of the content and investigations” (Polly, 2006, p. 15). 
While InterMath courses do not provide a prescription for teaching, the type of learning 
environment that InterMath offers teacher participants may affect the type of learning 
environments the teachers provide for their own students. These environments include student-
centered mathematical investigations with different learning media such as technology.  
Understanding and use of Drawn Representations  

Lesh, Post and Behr (1987) discussed understanding as the ability to “recognize the idea 
embedded in a variety of qualitatively different representational systems”, the ability to “flexibly 
manipulate the idea within given representational systems”, and whether one “can accurately 
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translate the idea from one system to another” (p. 36). The authors suggest that to support 
understanding, teachers need to be able to “diagnose a student’s learning difficulties, or to 
identify instructional opportunities, teachers can generate a variety of useful kinds of questions 
by presenting an idea in one representational mode and asking the student to illustrate, describe, 
or represent the idea in another mode” (p. 37).  

Lesh, Post and Behr (1987) identified manipulative models, static pictures, written symbols, 
spoken language, and real scripts as “five distinct types of representation systems that occur in 
mathematics learning and problem solving” (p. 34). The authors claim that while knowledge and 
facility with these representations are important, “translations among them, and transformations 
within them, also are important” (p. 34). Furthermore, the authors discuss that “good problem 
solvers tend to be sufficiently flexible in their use of a variety of relevant representational 
systems” (p. 38). This is critical because using mathematical representations may open the 
classroom to more novel student approaches to the problems, thus, creating a situation in which 
the teacher has to be able to reflexively interpret and respond to novel student thinking.  

 
Methodology 

 Data for this study included videotapes of each session of IM as well as participant “write-
ups” for each of 10 investigations. These write-ups outlined not only the solutions to the 
investigations, but also documented the approach(es) the participants took in working them. The 
teachers were also expected to create two lesson plans that incorporated InterMath-like 
approaches into their own classrooms. 

In addition to the InterMath assignments, the teachers were also asked to complete a pretest 
and a posttest. The assessments both drew from a bank of items comprised of those from the 
“Learning Mathematics for Teaching” middle grades instruments (LMT; SII/LMT, 2004) and 
items developed by the DiW team. The items developed by the DiW team had been validated 
through a nationwide effort that included 201 teachers that was further augmented by a set of 
over 25 videotaped cognitive interviews in which teachers described their approaches to solving 
the items developed by the DiW team. The DiW assessment reports performance using z-scores 
and forms are equated to allow measurement of growth over time. 

To further enhance our understanding of teacher learning in IM, we conducted cognitive 
interviews with a subset of the InterMath participants about items on the assessments. In this 
study, we present data from two teachers who participated in the InterMath course. Using 
mixture Rasch models, we analyzed our participants’ performance on the pretest and determined 
in which of two latent classes each participant belonged. These classes were statistically-
identified groups of teachers who shared some aspect of their approach to the items on the 
assessment. Both teachers were in the same latent class.   

Both teachers were interviewed after the pretest and the posttest. Each interview was 
videotaped using two cameras, one focused on the participant and the other focused on their 
hands to capture gestures and writing. The interviews were used to capture each participant’s 
discussion about a subset of the assessment items that were of particular interest to the 
researchers as they aligned with the explicit goals of the course and, for the most part, they relied 
on drawn representations.  

In addition to the pretest and posttest interviews, members of the research team also 
conducted weekly phone interviews with the InterMath participants. The purpose of the 
interviews was to gauge teacher perception of the content and teaching of the course. The 
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interviews also gained qualitative information about the teachers’ stated beliefs in regards to the 
teaching and learning of mathematics with respect to the three main foci of the course.  

The data were analyzed by a member of the research team to search for evidence of teacher 
learning – specifically in regards to the three main foci of the Rational Numbers Course: 
understanding of the referent unit, understanding of drawn representations of fraction and 
decimal operations, and proportional reasoning. Instances of participant discussion in either the 
professional development sessions or the interviews were analyzed in which the participants 
made direct comments to their learning and use of the referent unit, drawn representations, or 
proportional reasoning. The participants’ understanding and use of drawn representations are 
presented next. 
Participants 

The present study considers two IM participants. The two participants, whose pseudonyms 
are Brian and Corey, were African-American males teaching middle grades mathematics at the 
time of the study. Both teachers had alternative certifications and preparations in fields other 
than middle grades education. Brian was in his second year of teaching sixth grade while Corey 
was in his fifth year of teaching sixth, seventh, and eighth grades to low-achieving and special 
needs students.  

 
Findings 

Pre-InterMath Experience with Drawn Representations 
In our initial interviews with them, both Corey and Brian reported having limited prior 

experience teaching and learning with drawn representations. Corey, with more years of teaching 
experience, stated that although he had four years of teaching experience, this was his first year 
of “actually getting into drawing the lines and actually understanding numbers and operations.” 
Brian, a second-year teacher, discussed his experience of teaching with drawn representations in 
his first year of teaching as working with “a lot of plane figures, so rectangular prisms, triangular 
prisms, things like that.” Neither provided evidence that they considered the use of drawn 
representations as a means of modeling mathematical operations.  

Items on the pretest asked the participants to consider various models of rational number 
operations either in the context of student solutions or in the context of finding a solution to a 
given problem. When presented with number line representations for fraction subtraction, 
multiplication and division both Corey and Brian displayed confusion and (for Corey) an 
outright dislike for the representation. When asked why he did not like the number line to model 
fraction operations, Corey replied “Because it’s confusing.” He felt that using them to teach with 
would be “too confusing to [the students], because it doesn’t give them a real representation.” As 
he selected his answers on the items, it was apparent that he first found the answer using an 
algorithm and then found a representation to match that solution. Brian expressed that he was not 
familiar with modeling fraction operations on the number line and that modeling fraction 
division with any representation was difficult for him.  

Both Corey and Brian expressed general familiarity with array models and had used them for 
teaching. Corey, in particular, made reference to a “math seminar” he took in the previous school 
year on learning how to teach with the array model. However, even with this experience, Corey 
displayed limited ability to interpret array models. For example, in a problem presenting 
different correct array representations of the same fraction multiplication, Corey chose only two 
of the three drawings. He based his choice on the one representation that he understood best and 
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whether or not the other two could be rearranged to look like the representation with which he 
felt most comfortable. In contrast, Brian identified all of the array models as correct and even 
appeared to understand how the operation was modeled in each representation.  

Modeling fraction division with array models proved difficult for both participants. We saw 
this difficulty in a problem that asked the participants to select the representation that correctly 
modeled the quotient 2 as it related to the division situation. While Brian initially identified the 
correct representation, he talked himself away from this choice as he tried to make sense of the 
representation. Corey, on the other hand, did not find any of the possible representations correct 
because none of the possibilities represented two wholes – they only showed “parts of a whole.” 
Neither of the teachers understood what the answer, 2, was referring to – they both had a sense 
that it was two wholes rather than two parts of a divisor.  
InterMath Experiences 

Corey and Brian both reported that they chose to participate in the InterMath course to 
increase their repertoire of teaching strategies. Corey stated, “I’m always looking for different 
strategies and different ways to present material. So I’m always trying to learn. I just figured this 
is a great way to learn more strategies.” Brian focused on his students’ apparent trouble with 
rational number understanding stating, “I was actually most interested in the Fraction Bar 
software because I wanted to be able to have another resource . . . And I knew from last year that 
fractions was one of the most challenging subjects that my students had.”   

Throughout the InterMath course, both Corey and Brian were active participants, regularly 
sharing their thoughts and mathematical ideas with the class. Corey, through the InterMath 
investigations, started to have a new experience with number lines. “I usually use area models 
but just looking at some of the stuff that we’re doing, I’m starting to feel more comfortable with 
number lines, as far as fractions.” By the eighth week of the course, he shared that “number lines 
and pictures and everything else have actually helped me expand upon my instruction for my 
students.” Surprisingly, both participants expressed an interest in sharing one particular 
investigation that involved number line representations with their classes. 

While both participants reported finding the IM representations helpful for teaching their 
students, Brian appeared to be particularly affected by his experiences in the course with 
modeling operations through drawn representations. In the case of fraction division, an area he 
expressed having difficulty modeling prior to the course, he noted: “When we went over dividing 
fractions, I actually the next day went and modeled it for my kids the same way.” 
Unsurprisingly, he explained his pre-IM experience as “just looking at the numbers and, you 
know, flipping and doing that type of stuff, but never actually seen it modeled visually.” Like 
Brian, Corey reported that he was “taught the algorithm, and you go straight through it and I was 
comfortable.” However, the structure of IM, which included considerable group discussion, 
provided Corey with access to other teacher participants’ mathematical views. “It’s more than a 
few [problems] where somebody else has said or seen it a different way and thought it out and 
given a darn good explanation and those are the ones that I write down for later.”  

Both participants provided insight into their teaching through our interviews. Both stated that 
they were providing more discovery time for their students’ mathematical investigations and 
using questioning strategies. For example, in the eighth week of the InterMath course, Brian 
discussed his transition:  

“I think at the beginning [my teaching approach] was completely different and 
now I’ve really tried to adopt the same kind of approach in terms of asking 
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questions, especially last year, when they asked the questions, I’d answer them. 
I’d give them a straight up answer. . . . So I’m asking them questions to get them 
thinking about to access where that knowledge is. So I’ve really changed how I go 
about the execution of my lesson.”  

Corey also stated a similar desire to change his teaching approach: “Well, [the InterMath 
instructor] has a facilitating approach. . . .I’m kind of trying to continuing to emulate that in my 
classroom.”  
Post InterMath Experiences 

At the end of IM, Brian and Corey took the posttest and participated in another interview 
about that assessment. Both showed qualitative and quantitative improvement on their posttest 
after having completed IM. During the cognitive interviews, the participants demonstrated 
improvement in their discussion of the fraction operations problems with drawn representations. 
In his interview, Brian repeatedly referred back to his experience in IM as he discussed his 
solutions to different problems. Corey, who was particularly vocal about his dislike of the use of 
the number line representation before IM, demonstrated fluency and comfort with the 
representation on the posttest. 

Further, both Corey and Brian changed their latent class membership between the pretest and 
the posttest. Based on our earlier analyses of the meanings of the latent classes, this movement 
indicates a movement toward more reliance on referent unit knowledge in reasoning about the 
items on the assessment (Izsák, Orrill, Cohen, & Brown, in review). We interpreted these 
changes in their assessment performance as indication that the course increased their 
mathematical knowledge for teaching. Some of the posttest items on drawn representations were 
identical to the pretest items.  

As noted above, the two participants spoke qualitatively differently about those particular 
problems, indicating a different mathematical point of view and understanding of the 
representation and mathematical operation used. For example, Corey, who had shared his dislike 
of the number line model initially, was more confident and comfortable in the posttest noting 
only that he wished the number line had been labeled. He tied this to his teaching saying, “I’m a 
little – I’m a stickler on labels also because my children, they will draw something like this, 
when I actually want to see all the labels.” This statement also indicates a possible change in 
Corey’s pedagogical strategies. Before IM, he mentioned he would not use number lines to teach 
fraction multiplication to his students, however, his comment suggests that he not only taught 
with number lines during IM, but also required certain features of the number line model to be 
clear as he assessed his students’ work. Corey also explained that he used the array model to help 
him reason with the number line model stating that thinking about the array model “just gave me 
a concept of what I needed to be looking for on a number line.” Research suggests that while a 
teacher may be very proficient with one particular model of fraction operations, he/she have 
difficulty transforming (Lesh, Post & Behr, 1987) that understanding to a different model of the 
same operation (Orrill, Sexton, Lee, & Gerde, 2008). Corey’s statements suggest that he was at 
least beginning to find connections between the models that were important to his understanding. 
He also indicated that his work with representations was great and that, “it’s showing some 
dividends in my class.”  

Brian also provided evidence of increased flexibility in interpreting drawn representations 
and he attributed that flexibility to his experience in IM. For example when discussing 
representing fractions he remarked, “And then I remembered after learning it in the class I 
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focused more so on … having one whole and then breaking it into thirds and that third, breaking 
it into fourths.” Brian, like Corey, reported using the representations in his classroom. He 
stressed that he used them to help the students understand ideas rather than numbers, a focus he 
had before IM as well.  

 
Discussion 

The data reported here show that the IM experience had a positive impact on these two 
teachers both in terms of their mathematical knowledge for teaching and their teaching practice. 
While we would not claim that these results were typical for all InterMath participants, they are 
encouraging as a sign that a single course can have significant impact on teacher understanding 
of critical aspects of the content they teach.  

While IM did not provide a prescription for teaching, both Corey and Brian remarked on a 
number of occasions that they had used variations of the problems investigated in the course with 
their own students. Despite differences in the middle school populations they taught, both 
teachers reported finding the drawn representations practical and useful for supporting their 
students. Further, seeing representations modeled by the instructor in the InterMath course 
supported the teachers in making changes to their own teaching strategies.  

In a time of teacher shortages, especially in the area of mathematics, more and more 
administrators are turning to alternatively certified teachers. Such teachers may lack adequate 
background in their content knowledge or knowledge for teaching. Professional development is 
one way in which to help these teachers fill in some of these gaps, as is evidenced by this study. 
Here, two participants, provided evidence that they not only learned new teaching strategies but 
also deepened their mathematical content knowledge even though the professional development 
had not been differentiated for the alternatively certified teachers. To us, this suggests that using 
a hands-on approach with the instructor modeling desired teaching actions may provide one 
effective model for supporting alternatively certified teachers in building their vision of what 
school mathematics should be – one of the critical purposes professional development can serve 
(Sowder, 2007).  
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Interviews with 12 prospective elementary and middle school teachers focused on computation, 
problem-posing, visualization for problem-solving, and eliciting from participants explanations 
of the connections among these, particularly explanations that would be accessible to children 
learning about multiplication. We analyze the nature of participants’ conceptions and 
explanations and discuss implications for teacher preparation. 
 

Background 
In elementary schools, multiplication of two values is taught as a number of equivalent 

groups (multiplier) times the size of each group (multiplicand), with multiplier x multiplicand as 
the default order. (Harel, Behr, Post, & Lesh, 1994). Research with children up through middle 
school age, working with word problems, suggests that their choice-of-operation is strongly 
affected by the nature of the multiplier (Bell, Fischbein, & Taylor, 1984). For example, given 
two word problems with the same context but different number types may result in different 
choices: Suppose peanuts cost $2 per pound. (a) What is the cost for 3 pounds of peanuts? (b) 
What is the cost for ½ pound of peanuts? Students will often identify multiplication as the 
operation to use for (a) and division for use in (b) (Af Ekenstam & Greger, 1983). Fischbein and 
colleagues (1985) proposed an intuitive model to provide a theoretical account for this “non 
conservation of operations” (Greer, 1988): When the constraints of the underlying model are 
incongruent – for the learner – with the numerical data given in the problem, the choice of an 
inopportune arithmetic operation may occur. Though Marshall and colleagues (1989) proposed 
an instructional intervention based on semantic analysis to assist students in learning to match a 
situation to a useful schematic representation, researchers have expressed concern that such 
intervention may foster superficial strategies in solving world problems without helping learners 
to construct conceptual representations situated in the problems (Verschaffel & De Corte, 1993).  

Some studies and teaching experiments have approached the learning of multiplication 
through problem-posing rather than problem-solving tasks (Fischbein et al., 1985; Lowrie, 
2002). This work supposes that a generative connection to the task might support conceptual 
engagement during subsequent problem-solving. However, in some cases children’s performance 
on such tasks improved only when the numbers were whole (not fractions). In other studies, 
researchers have examined how learners connect their solving of word problems to acting on 
manipulatives to solve problems, in terms of units of quantity (Behr et al., 1997). Such studies 
have challenged the dominance in school curriculum of the use of a context-independent 
interpretation of 1-unit (Steffe, 1988). To generate a mental construct, a learner needs to re-
present the concept even in the absence of perceptual input (von Glaserfeld, 1982). Thus, neither 
students’ capability in algorithmic calculation nor their competence in acting on manipulative 
aids cued by problem context reaches the utmost goal of constructing conceptually rich mental 
schema. Several researchers have worked to describe and explain the process of formation of 
mental constructions into object-like cognitive entities, such as encapsulation (Asiala et al., 
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1991, after Piaget), reification (Sfard, 1989), and proceptual thinking (Gray & Tall, 1994). In 
each case, the role of making connections among object-like cognitive entities is central. 

 
Theoretical Perspective and Research Question 

Action-Process-Object-Scheme (APOS) theory (Asiala et al., 1991) describes a hierarchical 
relationship among types of mental structuring (action, process, object-like entity, and schema) 
in which learner awareness, perception of totality, and coordination of aspects of a concept 
(identified by researchers through a genetic decomposition of the concept) are salient features. A 
style of teaching associated with APOS theory aims to assist students to move from one level to 
another and to gradually stabilize a developing mental construct. Reification and proceptual 
theories pay significant attention to the use of symbolic representation. According to Sfard 
(2000), in the process of reification, naming and symbolizing (creating a signifier) is no less 
important than the cognitive entity (signified). Gray and Tall (1994) have asserted that a flexible 
use of mathematical symbolism may compress action/process into object/concept, which in turn 
may liberate more capacity for cognitive activity and advanced mathematical thinking. Both 
perspectives, reification and proceptual thinking, value procedural skills in which manipulation 
on symbolic representations plays a central role in the process of stabilizing a mental construct 
into a conceptually rich understanding.  

For a prospective teacher, the mathematical knowledge needed to teach is more than the 
knowledge needed to do mathematics (Shulman, 1986; Ball & Bass, 2000). Also important is a 
facility in packing and unpacking object-like understandings in order to supply explanation, and 
make sense of students’ thinking, both in planning for instruction and in-the-moment-of-teaching 
(Hill, Ball, & Schilling, 2008). In particular, we started from the hypothesis that understandings 
of multiplication by prospective K-8 teachers would be foregrounded if they were asked to 
describe a particular kind of connection: that between doing multiplication in response to: (a) a 
symbolic statement (decontextualized) and to (b) a word problem (contextualized).  

The study reported here sought to gain insight into the following questions: (1) What are the 
ways in which prospective grades K-8 teachers may perceive the isomorphic relationship 
between abstract structures (decontextualized mathematics problems) and concrete structures 
(contextualized or story problems) for fractions in simple multiplication? (2) What roles in 
problem-posing and problem-solving might fraction as APOS-object, and fraction multiplication 
as APOS-object (Asiala et al., 1991) play in understanding multiplication? 

 
Design and Setting 

The 12 women in this study were prospective grades K-8 teachers who had completed the 
first 2 of 3 semesters of teacher-preparatory mathematics at a comprehensive U.S. university. 
According to the instructors and textbook authors (Bennett & Nelson, 2000), the courses aimed 
to teach mathematics with conceptual understanding. One task-based interview with each 
participant (60 to 100 minutes each) formed the primary data for the study. The interview was 
framed in a preparing-for-mathematical-teaching context and was designed to bring to the 
surface participants’ understandings of multiplication. Specifically, each participant worked with 
four numerical prompts,  
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in interviews that followed five steps: (1) computation, (2) problem-posing, (3) visualization of 
problem-solving, (4) sketch for visualization, and (5) comparison of ideas and material generated 
in Steps 1 and 4. All interviews were audio and video recorded and transcribed. Analysis was 
phenomenological, using constant comparative methods. In recording researcher observations 
about participants’ interactions with tasks and in analyzing their responses we relied on Pirie and 
Kieren’s (1994) method for diagramming a person’s progressions through, and folding back 
among, layers of understanding (e.g., facets of action, process, object, and schema activity). We 
used these Pirie-Kieren models for participants’ problem-posing and associated problem-solving 
interactions so that the dynamic patterns emergent from the interviewees’ efforts could be 
classified into categories based on the nature of object-like entity understandings. 
 

Results 
During Step 1 of the interview, 8 of the 12 participants made no errors in computing 

numerical prompts. However, 4 of 12 confounded “multiply across” (e.g., a/b x x = a/b x x/1 = 
ax/b), with “cross multiply” (e.g., a/b x x = a/b x x/1 = bx/a, or a/b x x = a/b x x/x = ax/bx). Note 
that at the time of the interviews, all were enrolled in the third semester of their mathematics 
sequence and studying proportions, including “cross multiplying” to find the unknown value x, 
in a proportional equation like a/b = x/d. Though analysis of computational error was not the 
purpose of this study, participants’ procedural skills with decontextualized symbolic prompts in 
Step 1 may have mediated their efforts to identify isomorphisms in Step 5 of the interview. 
Subsequently, in Steps 2 through 5 of the interviews, five categories of object-like entities in 
concept building appeared to be problematic for participants: multiplier-as-operator, fraction-as-
multiplicand, fraction as only a part-whole-relation, fraction-as-multiplier, and fraction multiplier 
acting on a fraction multiplicand. 
Multiplier-as-operator  

All 12 participants posed a complete story and described in words or using a sketch the 
process of solving for prompt (a) 4 x 3. However, the nature of their understandings varied. In 
the following excerpt, the interviewer (denoted Int) and Ann (all names are pseudonyms) 
negotiated the personality of multiplier to act on the multiplicand.  

Ann: [4×3] probably means that I have four pieces of candy and I have three friends. If I 
were to say pretend you had three candies, or three piles of candy with one in each 
pile, so you would have three candies and I want to add four candies to each pile, 
then I would add 1,2,3,4, 1, 2, 3, 4…then I would end up with the same answer [as 
12 candies] and they would represent the same thing both three candies and four 
candies they are. I am representing candies all the way across. But in the problem 
that I gave I said that you have three friends and you are giving them each four 
pieces of candy so the numbers represent different things.  

Int: So in this case, what does the number three represent? 
Ann: kids, friends, people. 
Int: Four is four pieces of candy, and four candies times three people is? 
Ann: Twelve. 
Int: Candy or people? Have you ever thought about it? 
Ann: Yeah, I have never thought of that. Your answer is candy, you end up with 12 pieces 

of candy. I guess your three doesn’t matter like I thought it would. Okay then, the 
three would represent where you are putting them, like how you are separating them 
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so how many times you need to use them like when you, often times when you use 
multiplication you would say four candies and I need to give them to three people, it 
is just like adding four three times, in relation to addition. 

Int: Three groups of four? 
Ann: Exactly. So your three is your groups, your four is your number within those groups. 

The participant’s perception of multiplier 3 went from “three friends” to “three candies” and then 
to “three groups” (of four candies). Her struggle in identifying the nature of multiplier concurs 
with Steffe’s (1988) observation about the nature of unit in such contexts. The multiplier 3 is not 
just for 3 one-units as a number of groups, but also for 3 units (groups) of 4 one-units (candies). 
In the interview excerpt, Ann’s understanding of multiplier-as-operator with natural number may 
be seen as moving from shaky process toward object.   
Fraction-as-multiplicand 

 In working with (b) 4 x 5/6, two of the participants did not recall an appropriate property of 
positive integer as multiplier. Beth’s story for the prompt 4 x 3 was, “John has grouped four 
groups of three marbles in each group.” Here, the multiplier 4 played an explicit role as operator. 
However, Beth did not conserve the operation (Greer, 1988) in going from 4 x 3 to prompt (b) 4 
x 5/6. In Step 3, visualizing her problem-solving, for (b), Beth changed representations and 
rewrote the whole number multiplier as a fraction, 4 x 5/6 = 4/1x5/6 = 20/6 = 3 1/3, and altered 
its personality as multiplicative operator (see Figure 1). 
 
 
 
 
 
 
 
 

 
Beth: It helps to think about the four as a fraction, so like four over one. That helps 

because it puts it in, both in the same context.  
Int: So now we have, an integer times a fraction, any idea where to start? 
Beth: Um, well you have four wholes. So I am just going to go ahead and draw them 

here, four wholes. Then we have five [out of six], almost a whole. 
Int: Okay, now I would like you to compare your sketch to its numerical calculation. The 

number one and the number five-sixths, which one is bigger? 
Beth: One. So five-sixths is less than a whole, duh. Let’s try that one again. So this 

[sketch] is not good, we are just going to forget about that.  
Beth: Okay. We still have four wholes, correct? 

The interviewer drew Beth’s attention to her story for 4 x 3 and asked her to pose a story for (b) 
in an analogous way. When the multiplier is a whole number, the multiplication-as-repeated-
addition model can also work for a fractional multiplicand.  

Beth: Oh, could you have four groups of five-sixths, does that work? You would have 
four of these, so these are all like five-sixths? 

Int: Does it make more sense? 
Beth: I think so but I don’t know how to explain it… 

 
Figure 1. Beth’s Step 3, visualizing problem solving of 4 x 5/6. 
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Int: I have four groups. What is inside each group? 
Beth: Not even one, a part of one. 
Int: A part of one. How many ones? How many sixths… 
Beth: Hey, that works. 

As proposed by Fischbein et al. (1985), one of the values in 4×5/6 is incongruent to 4×3. In 
terms of unit types, the numerical prompt 4×5/6, thought of as 4(5(1/6(1))), is one more layer 
than 4×3, or 4(3(1)). We suspect Beth may not have chosen a useful arithmetic operation because 
of this incongruence. She may have had, at the time of the interview, a schema of fraction 
multiplication that was repeated action-based, essentially additive, and was the only schema she 
recalled in the moment. 
Fraction as Exclusively a Part-whole-relationship 

Most of the participants contextualized and visualized a fraction numerical prompt. However, 
7 of the 12 participants’ understandings of fraction seemed to be confined to the part-whole-
relationship personality. Kieren (1980) differentiated part-whole-relationship personality from 
measure personality for the rational number x/y. In the former, some whole is split up into y parts 
and x of these parts are taken. The latter sees 1/y as a unit to be used repeatedly to determine an 
x/y quantity. In the following excerpt, Cher’s conception of 5/6 included five out of six pieces 
but the idea of 5(1/6), that is of five units of size one-sixth did not appear to come to mind for 
her. 

Cher: 5/6… [means] something is divided into six portions, there is five remaining [of 6] 
Int: How about 6/5? 
Cher: 6/5, um there were two something that were divided into six [five] pieces, the  
remainder of what is left is one full one and one of the six [five]… 

An understanding of fractions that is exclusively part-whole could be a challenge for participants 
in tracing the connections between transformation of units in their problem-posing and problem-
solving visualization efforts – these multiplication algorithms are mainly based on measure 
personality. We saw some additional evidence to support this result in Daisy’s interview.  
 
 
 
 
 
 
 
 
 

Daisy: [For 5/6,] there are six pieces so five of them are colored in because it is five of 
the six pieces and that is where the 5/6 comes in, and then I did four of them for the 
four times the 5/6. So I know the 20 of the 24 pieces, are colored which would equal 
5/6, which doesn't help me out though because I am stuck at – Oh, what if I did four of 
them, one, 5/6 then I am left with 20/6 which could be reduced to 10/3 but then I don't 
know that leads me to so... 

Daisy’s understanding of fraction as part-whole-relation led her to see 4x5/6 as (4x5)/(4x6), or 20 
out of 24, which was inconsistent with her computation of 4x(5/6)=20/6=10/3. Mathematically, 
her computational procedure and sketch matched perfectly. Psychologically, she did not perceive 

 
Figure 2. Daisy’s visualizing problem solving of 4 x 5/6. 
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the personality of 6 in 5/6 and in 20/6 as one type of measuring unit, 1/6, derived from 
partitioning one into six equal parts, or as units of measure 1/6.  
Fraction-as-multiplier  

Several participants called on the symmetric property (axb=bxa) and said prompts (b) and (c) 
were “exactly the same.” The request to create a story where a fraction was a multiplier acting on 
a whole number, challenged participants’ belief in the symmetric property and was, ultimately, 
not fruitful during interviews. However, prompt (d) 3/4x2/5 involved only fractions, so fraction-
as-multiplier was required in some way. In posing a story and/or visualizing problem-solving for 
(d), 5 of the 12 participants used addition. Elda immediately posed a story for the prompt 4x5/6, 
but had five unsuccessful attempts on 3/4x5/6. Elda’s first attempt was: “If Megan was making a 
pasta dish and it asked for 3/4 cup of milk and 2/5 cup of salt. How many cups are needed to 
make the pasta dish?” She immediately realized what she posed involved the operation of 
addition rather than multiplication. She tried again: 

Elda: Megan’s pasta dish called for 3/4 cup of milk but she put in 2/5. How much did she 
forget to put in? 

Int: Did you mean to put 2/5 of the 3/4 cup?  
Elda: Like, she put in 3 tablespoons instead, how much did she put in? 

Later, she contextualized 2/5 as “2/5 cups,” though Elda may have tried to express 2/5 of the 3/4 
cup, in which “3 tablespoons” was about 2/5 of 3/4 cup in her sense. What Elda said might mean 
a mental structure where 2/5 acted on 3/4 to get “3 tablespoons,” or it could be her second 
attempt was another additive one (in this case, subtraction). In drawing the visualization of her 
problem solving, Elda tried three times, but each time her strategy involved addition only and 
Elda seemed to be aware that her attempts did not use multiplication.  
Fraction Multiplier Acting on a Fraction Multiplicand 

Flora created a story for prompt (d) 3/4x2/5 involving the concept of group size and number 
of groups where 3/4 was group size. However, instead of 2/5 as two groups of measure one-fifth, 
of something else (i.e., 2((1/5(1)) where the inner 1 represents one whole group of three-fourths), 
she used “two out of the five” groups. In her drawing, she had five groups of 3/4. She circled two 
of them and added them together to get 3/2 and said,  

Flora: So here are my five groups of three-fourth. And –  I want to add these two [groups 
of 3/4] together. So is, that’s the same as three and a half [3/4 x 2/1 =6/4 = 3/2] –  No. 
– Yeah. So that is it. So I need to say two-out-of-the-five somewhere.  

Flora saw that 2/5 was not an operator that acted on three-fourths but also clearly articulated 
understanding of fraction as part-whole: “I need to say two-out-of-the-five somewhere.” 

Gina also used part-whole relationship to assign context to the multiplier 2/5.  
 
 
 
 
 
 
 
 

 
 

 
Figure 3. Gina’s visualizing problem solving of 3/4 x 2/5. 



Vol. 5  789 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

Gina had five candy bars with four pieces in each candy bar and 20 pieces total. Instead of 2/5 
acting on 3/4, she had 2/5 act on 5 and 3/4 act on 4 1-units, i.e., 2/5(5(3/4(4(1)))), to have 6 out 
of 20 pieces as the contextualization for 3/4x2/5.  By doing so, there was no need to 
conceptualize a transformation of units like 1/5 (or 1/4), 1/20, or to form different unit types. 

 
Conclusion 

One can perform actions on an object, physically or mentally, as in Daisy’s sketch for 
visualizing problem solving of 4x5/6, and adopt symbols to represent it like “4x5/6=20/6=10/3,” 
without bringing to mind some properties in the process. An encapsulation of the incomplete 
process into a sort of pseudo object may lead to a “pseudostructural” conception (Sfard, 2000). 
We hypothesize that all of the 12 participants, like Elda, had experienced action of fraction 
multiplication. But they may not have had awareness of all key properties in the process, and 
therefore did not perceive the process as a totality. A pseudostructural object of fraction 
multiplication appeared to be sufficient for many to choose an appropriate operation for solving a 
given word problem. However, the visualization task called for de-encapsulation or unpacking of 
both number and operation, from object back to process and action.  

De Corte’s (1988) empirical study supported the claim of Fischbein et al. (1985) that 
children’s difficulties in solving multiplication word problems may arise when their underlying 
models are incongruent with the numerical data given in the problem. This study suggests that 
for adult prospective teachers, a complex version of incongruity is at work. In unpacking both 
understanding of number and of operations, several sites for incongruity emerge. Cognitively, for 
the same operation (multiplication) the fraction multiplicative structure is not congruent with 
whole number multiplicative structure. Teaching with emphasis either on identifying key 
features from word problems and procedural skills or on concrete experience is, although 
necessary, not sufficient for learners to construct complexly connected cognitive objects that can 
be untangled from multiple potential incongruities. This suggests that a richly connected and 
“unpackable” understanding of multiplication for positive rational numbers may require an 
equally complex constellation of ways to identify and respond to incongruity. That is, we suggest 
that this study offers empirical support for the assertion of many that mathematical discourse 
incorporating procedural skills, problem posing, visualization, and identifying isomorphic 
corresponding relationships can all play valuable roles in arousing learners’ awareness of actions 
and process, in reifying and encapsulating mental constructs into object-like entities, unpacking 
or de-encapsulating the same, and using symbolism flexibly to advance mathematical thinking.  

Finally, our experience in interviews with prompt (c) and its challenge to participants’ belief 
in the symmetric property leads us to the following suggestion for teacher-educators. In working 
with prospective teachers, consider working with the abovementioned constellation of activities 
in the context of multiplication of two fractions (as in prompt (d)) before situations with one 
fraction; and then address a similar constellation of activities in connecting and unpacking the 
ideas of fraction of and out of to move into the context of fraction as multiplier acting on whole 
number multiplicand (e.g., problems like prompt (c)).  
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Although many children can share a continuous whole with two or four people at a young age, 
students find sharing for three to be problematic. We present results from eight clinical 
interviews with students age four to eleven. Results show that students use various strategies as 
they attempt to share a continuous whole among three people. Many students relied on halving, 
quartering, or parallel cutting strategies. Older students created fair shares for three, often by 
referring to the “peace sign.” We conclude with a discussion of why students may find 
constructing thirds to be challenging and call for equipartitioning in the early grades. 

 
Introduction 

The purpose of this paper is to present findings from clinical interviews conducted with the 
Diagnostic E-Learning Trajectories Approach (DELTA) project. The goal of the DELTA project 
is to build diagnostic assessments for rational number reasoning concepts for grades K-8. While 
the larger project involves the study of seven strands of rational number reasoning 
(multiplication and division; area and volume; decimals and percents; fractions; ratio and rate; 
similarity and scaling; and equipartitioning), this paper focuses specifically on the 
equipartitioning strand. Based on extensive literature reviews and syntheses a progress variable 
and learning trajectory for equipartitioning were developed. The DELTA team has conducted a 
number of clinical interviews to test and refine our constructs using students from diverse racial 
and socio-economic backgrounds. This paper will report on a few students as they attempt to 
partition a circular region into thirds. 

 
Related Literature 

A learning trajectories view was chosen for our synthesis work of the partitioning research. 
Confrey et al. (2008) have defined a learning trajectory as: 

A researcher-conjectured, empirically-supported description of the ordered network of 
experiences a student encounters through instruction (i.e. activities, tasks, tools, forms of 
interaction and methods of evaluation), in order to move from informal ideas, through 
successive refinements of representation, articulation, and reflection, towards increasingly 
complex concepts over time.  

Confrey et al. (in preparation) note that learning trajectories are a useful construct for this work, 
“because of its potential to unpack complexity by revealing characteristics of gradual student 
learning over time” (p. 1-2). While all students do not progress along the same path, there are 
certain landmarks and obstacles that we consistently observe students encounter in 
equipartitioning  
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Equipartitioning is defined as the cognitive behaviors that lead to the creation of equal sized 
groups from a collection, or equal sized pieces from a continuous whole, and which result in fair 
shares (Confrey, 2008). Many students come to school with ideas about how to share a 
continuous whole (e.g., pizza, cookies, cake) and are able to transfer those ideas to 
equipartitioning tasks. These informal or out-of-school experiences contribute to students’ prior 
knowledge. One of the first landmarks students reach is the two-split. Previous research has 
shown that very young children, even pre-schoolers can use a two-split on a collection of items 
or on a continuous whole (Ball, 1993; Pothier and Sawada, 1983, 1990). Pothier and Sawada 
(1983) also identify a five-level framework of student’s partitioning behaviors, where level one, 
sharing, is the most primitive behavior and level five, composition, is a more complex behavior. 
Level four in their framework (oddness) is achieved when students realize that a two-split cannot 
be used to create fair shares for odd numbers. We have also found that students have trouble with 
odd splits, especially on a circular region. 

While our use of learning trajectories is a more global view of how equipartitioning is 
situated within the larger framework of rational number reasoning, progress variables show a 
progression of knowledge from less sophisticated to more sophisticated in specific cases (Wilson 
& Sloane, 2000). Based on Confrey’s synthesis work, the DELTA team has built a progress 
variable for equipartitioning (Table 1). Based on our review of the literature and empirical work 
with students, sharing a continuous whole among three and other odd numbers is placed at level 
1.6. Despite knowing that students have difficulty in creating thirds, few studies have focused 
specifically on the tensions students encounter as they attempt to create thirds. 

 
Table 1. Equipartitioning Progress Variable 
Case Description 

D 1.8 m objects shared among p people, m > p 
C 1.7 m objects shared among p people, p > m 
B 1.6 Splitting a continuous whole object into odd # of parts (n > 3) 
B 1.5 Splitting a continuous whole object among 2n people, n > 2, and 2n ≠ 2i 
B 1.4 Splitting continuous whole objects into three parts 
B 1.3 Splitting continuous whole objects into 2n shares, with n > 1 

A 1.2 Dealing discrete items among p = 3 - 5 people, with no remainder; mn objects, n = 
3, 4, or 5 

A, B 1.1 Partitioning using 2-split (continuous and discrete quantities) 
 

Method 
Participants 

Clinical interviews were conducted with eight elementary and middle school students. The 
sample consisted of one pre-school student (Lara), one 1st grade student (Wilson), two 2nd grade 
students (Ethan and Rhea), and four 6th grade students (Casey, Dora, Keisha, and Bobby). The 
pre-school and elementary participants were sampled using a convenience sampling technique 
(McMillan, 2004). The three middle school students attend a magnet school that participates in a 
university connections program with a local university.  
 
 



Vol. 5  794 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

Task 
In this interview, participants were asked to share circular birthday cakes (made out of play 

dough) fairly, for two, four, three and six pirates in succession. This order of partitions was 
suggested by previous research indicating that a) students first share by creating a two-split, and 
b) even splits are easier for children than odd splits because students can use a half as a 
benchmark split.  

At the beginning of the interview, participants were told that some pirates were having a 
birthday party and they needed help to share the birthday cakes fairly. Participants were then 
presented with a circular birthday cake (measuring 6 inches in diameter). A plastic knife and a 
straightedge were available for use during the interview. Each participant was asked the 
following questions: 
 Can you share the birthday cake fairly for two (four, three, or six depending on which 

partition the participant was working on) pirates? Show me how you would do it. 
 How do you know that each pirate got a fair share? 
 Could you show me one nth (half, fourth, third, or sixth depending on which partition the 

participant was working on) of the cake? 
 Is there another way to share the cake? 

Note that prior to sharing the circular birthday cake, participants had been asked to share 24 gold 
coins with two, four, and three pirates. They were also asked to share a rectangular birthday cake 
with two, four, three, and six pirates. 
Data Collection and Analysis 

The participant was interviewed using a clinical interview method (Opper, 1977; Ginsburg et 
al, 1983). A specified interview protocol was utilized, with additional questions and probes based 
on the behavior and responses of the participant. Data collection consisted of videotaping the 
interview and saving artifacts from the session. Relevant segments from the interview were 
transcribed for further analysis. 
 

Results 
Initial Attempts to Create Thirds 

In our work with students, they often times create fair shares for two or four pirates on their 
first attempt. In these interviews, two students made initial attempts to share for three pirates and 
realized that strategies they previously used would not be sufficient in this case. Lara began by 
doing a 2-split on the circle, as shown in the left side of Figure 1. After doing the 2-split, she 
hesitated about what to do next.  

L: There’s not enough play dough. 

I: There’s not enough play dough…hmm…Why is there not enough play dough? 

L: I can’t cut this one because this one…because this one won’t have a fair half. 

I: Ok. You can’t cut this one because… [Lara cuts the half piece in half again] 

L: This will be three, but this one has more [Lara places her hand over the larger piece] 

Lara knew that her goal was to create three equal-sized pieces, but was unable to meet that goal 
by starting with a 2-split. Ethan also knew that he needed to create equal-sized pieces. Earlier in 
the interview, when he shared a rectangle for three, he made two vertical (parallel) cuts. 
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Although Ethan displayed very strong conceptions for sharing a rectangle for two, three, and four 
pirates, the same did not hold true for the circle 

I: Can you share the birthday cake fairly with three pirates? 

E: No. [Shaking his head] 

I: You cannot…Why can’t you? 

E: Because the only way I would really think of it…because an odd number of 
people…umm…wouldn’t be equal. On the others I thought I could do it three ways and I did 
[Ethan makes the hash marks at the top of the circle—See Figure 2, right side] this, but then 
this would be a big one, this would be a small one, and this would be a small one [noting that 
if he were to cut it all of the pieces would not be the same size]. 

     
Figure 1. Initial attempts to share for three pirates (Lara, left; Ethan, right). 

 
Sharing for Three After Creating Fourths 

Three students shared the birthday cake by creating quarters and then sharing the remaining 
piece. Lara and Keisha both created quarters, deal out three pieces and note that the pirates can 
share the remaining piece. When asked if the pirates have a fair share, Lara notes that they do 
because they each have the same number of pieces.  

[Lara cuts the birthday cake into fourths and puts one piece to the side] 

L: We don’t need this piece. 

I: But what if we want to share the entire birthday cake? 

L: The first person can get this one [points to a piece], the second person can get this one 
[points to a piece], the next person can get this one [points to a piece] and they can all share 
this one. 

I: How can they all share that one? 

[Lara cuts the fourth piece into three unequal pieces] 

I: Does each pirate have a fair share? 

L: Yes 

I: How do you know? 

L: One, one, one [pointing to the three smaller pieces] 

I: What about these? [pointing to the three quarters] 

L: One, one, one. One, one, one. 
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Keisha also began by cutting the cake in fourths, and then hesitated and stated, 
K: Three is different. Like you would probably have some left over but then you could cut 
that. 

I: Oh ok. Show me how you would do it because you’ve got to use up all the pizza. I don’t 
have anywhere I could store it so the three of you would have to use it all up. 

K: So these right here will be for that person, that person, and that person [Keisha deals out 
three of the quarters] 

I: Ok 

K: You have this left over [referring to the remaining quarter] so you would just cut this into 
three different pieces but they’re kind of not the same shape. 

I: Not the same, uh oh 

K: Yeah 

I: Can we figure out a way to make them the same so they would get the same amount? 

K: Yeah you can probably just… 

I: How would you do that? 

K: I would think of something that’s this shape…then…like…how would you put that? 

Keisha then thinks about how she could possibly get three equal pieces of the remaining quarter. 
She notes that she thinks she could get two of the pieces to be the same but that one piece would 
look different. She concludes this segment by noting that three is hard because it is an odd 
number. 

Wilson also quarters the cake and deals out three of the quarters. When asked if he had used 
all of the cake, he notes that he has one piece left over. When asked if there was a way he could 
share the last piece so that no cake is left, Wilson cuts the last piece into four more pieces and 
deals out those pieces. Since he had four pieces, one pirate received two of the smaller pieces. 
When asked if each pirate got a fair share, he responded: 

W: No. Because this one has four. 

I: Can you think of any other way to share for three pirates? 

[Wilson takes the extra piece that he had given to one pirate and cuts it into three pieces and 
deals out each of the pieces.] 

Each pirate now has three pieces of cake (one quarter of the cake, plus two smaller pieces). 
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Figure 2. Sharing for three pirates after quartering the cake 

(Lara, Keisha, and Wilson respectively). 
 

Sharing for Three Using Parallel Cuts 
Although equipartitioning by making parallel cuts is sufficient for the rectangular birthday 

cake, students find that it does not work for the circular region. Rhea recognized that by making 
two parallel cuts she would have three pieces. When she was asked if each pirate had a fair share, 
Rhea responds: 

R: Yes. 

I: They do. 

R: Yes. 

I: How do you know that each pirate has a fair share? 

R: Wait, because this piece [referring to the largest piece] is bigger than this piece [she lays 
the larger piece on the top piece of the circle] and this piece [referring to the middle piece]. 
This piece has a big hump like a circle, but this piece [the middle piece] doesn’t, it’s flat. 

I: Can you think of another way to share the cake to make it fair? 

 

 
Figure 3. Parallel cuts (Rhea). 

 
As Rhea thinks out loud of how she may share the cake fairly, she notes that she could cut it in 
half but that would not work because it would give her two halves.  
Sharing for Three by Creating Equal-Sized Pieces 

Three of the four 6th grade students successfully created thirds on the circle. Two of the 
students (Bobby and Casey) specifically referred to using the “peace” sign to create thirds on a 
circle and immediately cut the birthday cake. Although Dora also created fair shares on the 
circle, her thinking and dialogue about how to create thirds was different from the other two 
students in this category. 
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D: It’s a little harder to measure on this, but you sort of have to get to the center. Then you 
have to sort of…it’s a little harder to measure the angles. 

[Dora uses a straight edge to find the center of the circle and then cuts a straight line from the 
center to the bottom of the circle] 

I: Tell me what you are thinking about the angles. 

D: Well…umm…cause you have to get like this…or something like that [Dora makes a radial 
cut on the circle to create the first third] and it’s a little harder to get that 
right…umm…because there’s no other marks on the circle and you have to kind of guess at 
the angle. 

I: So harder than what though? 

D: Harder than dividing it in half or getting fourths…Because for the half you just have to 
find halfway up and then cut across. For the fourth you just…umm…you make sure that 
you…then you just kind of turn it to make sure that the half is horizontal or vertical, 
whichever way you cut it. Then cut…like if it’s horizontal, cut vertically. 

 
Figure 4. Equipartitioning a circle for three pirates (Dora, Bobby, and Casey). 

 
For Bobby and Casey, the peace sign was a tool that they could use to create thirds. Dora however 

provides some interesting insights about constructing thirds. She notes that the angles are more 

difficult to construct because essentially she has no benchmark or reference point.  

 
Discussion 

A number of interesting issues arise from students’ work on this task. Throughout most of 
our interviews, students note that three is tricky, or that it will be difficult. But why is it that so 
many students find three so challenging? Students often state that three is an odd number. So the 
real question here is how does oddness affect equipartitioning behaviors. Students think of odd 
numbers as having “one left over.” So in the case of three, students recognize that cutting in half 
does not create enough pieces, but that cutting in half again leaves them with an extra piece. 
Even when three of the four pieces are dealt, students have difficulty handling the remaining 
piece. Students are limited in this task because they do not know how to construct a radial cut. 
When students construct halves or other powers of two, they can usually estimate the midpoint of 
a side or half of a circle. For thirds, these references are not as fruitful, they have to now locate 
the center of the circle and use it as a reference point. 

Because schools emphasize counting and number properties (e.g., even/oddness, part-part-
whole) extensively in the early grades and do not address equipartitioning, many students are 
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unable to use rational number reasoning to justify their behaviors. For example, Wilson noted 
that each pirate had a fair share because they each had the same number of pieces, although the 
smaller pieces he cut were different sizes. A tension exists for students between equipartitioning 
and counting. If counting continues to dominate students reasoning, they will be at a 
disadvantage when dealing with topics in rational number reasoning. 

We also found evidence that for students unfamiliar with the peace sign, sharing among six 
may lead to the invention of the radial cut earlier than among three. After splitting the circle in 
half, students are able to use the straight side of the half, locate the center (or the midpoint of that 
line) and then construct a linear cut. After using this strategy to successfully share among six, 
Keisha was able to return to her work on three and share the remaining fourth in three equal 
pieces. 

Each of the students in this study provided us with valuable information about how they 
think about thirds. Although creating thirds is an obstacle that most students encounter, we argue 
that they should have more experiences with equipartitioning early in schooling so that tensions 
between counting and rational number reasoning can be negotiated. Providing students with 
opportunities to engage in equipartitioning early in schools will better prepare them for 
multiplication, divisions, and fractions.  
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Introduction and Theoretical Framework 
Student solutions to mathematical problems reveal strategies they use as well as error 

patterns that reveal conceptions and misconceptions they have about a particular topic. We 
present an analysis of student solutions to a division with remainder problem (27÷4).   We were 
particularly intrigued by student performance on this particular computation problem because 
many students in grades 3-5 missed this problem in a pre and post test given as part of a larger 
professional development project. According to researchers division problem involving 
remainders is difficult because students do not fully understand the division concept or wrongly 
interpret computational results (Anghileri, 1996, 1999; Spinillo & Lautert, 2004; Li, 2001; 
Spinillo & Lautert, 2002; Silver, Shapiro & Deutsch, 1993; Squire, 2002).   
 

Method 
The data presented here is part of a larger three year professional development study.  A pre 

and post test was administered to129 children in grades 3-5 in a western State.  The post test 
results analysis on students’ solutions to the division problem with a remainder is presented here. 
The response samples were made, and analyzed in the following ways: 

• Performance was recorded and analyzed across the grades  
• Types of errors were identified, coded, and examined  
• Types of strategies were identified, coded, and studied for emergent trends 
• Different treatments of the remainder were recorded and examined. 

Findings 
In summary, students used seven different strategies, made five common errors, and treated 

the remainder in four ways as outlined below: 
 

STRATEGIES ERRORS REMAINDER 
Code Explanation Code Explanation Answer Treatment 
LD Traditional long division.  O1 Computational error. 6.75 As decimal 
DD Dividend is multiple of divisor. O2 No remainder indicated. 

4
36  As fraction 

EST Estimation O3 Wrong division. 6r3 As integer 
MF Result is multiple factor of 

divisor 
O4 Misread division symbol. Integer Increased quotient or  

dropped  remainder 
RAS Repeatedly add or subtract  O5 Order of answer reversed.   
DLG Dividend is dealt or dished out.     
PT Dividend is partitioned.     

 
The analysis reveals that 4th and 5th grade students used the standard algorithm, whereas 3rd 
graders used more pictorial representations to solve problems. This indicates the differentiated 
approach to the bare division problem, where the upper grades may treat it abstractly and lower 
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grades embed it within some context.  In addition, the types of strategies and errors that students 
made give us insight into different thinking patterns of students.   
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This poster reports results from a study of fifth grade students’ understanding of representing 
decimals as shaded parts of area. Evidence from students’ responses indicates that students may 
interpret and represent decimal notations in ways that reflect limited understandings of decimal 
notation. Educational implications are addressed.  
 

Rational number has long been described as hard to learn and hard to teach. Area model 
representations such as rectangular regions are often used to support students’ understanding of 
fraction notation. While area model representations can also be used to represent decimals, little 
is known about how upper elementary school students understand decimal notations as shaded 
parts of area. The goal of the present study was to systematically examine students’ 
representation of decimals as shaded parts of area.  

 
Methods 

Thirty-one fifth grade students drawn from 5 elementary schools in an urban area in Northern 
California were interviewed individually. Two of the interview tasks are the focus of this 
analysis. In each task, the student was presented with a rectangular region with a decimal 
notation written above it. The interviewer pointed the decimal notation and explained that the 
students’ task was to shade that part of the rectangle. Students were asked to explain their 
thinking. In task 1, the decimal notation was ‘0.3’. In task 2, the decimal notation was ‘0.7’.  

 
Results 

Across tasks, four patterns of responses emerged. As shown in Figure 1a, some students 
interpreted the decimal notation as representing an extremely small quantity and shaded a very 
small portion of the rectangular region. As shown in Figure 1b, other students interpreted the 
tenths digit of the decimal notation as representing the number of parts into which the whole 
should be divided (three in the case of ‘0.3’) and the ones digit as representing the number of 
parts that should be shaded (zero on the case of ‘0.3’). As shown in Figure 1c, still other students 
respected the relative magnitude of the decimal notation in shading; however, they did not 
partition the rectangular region into tenths and then consider how many parts to shade. Finally, 
as shown in Figure 1d, still other students partitioned the rectangular region into ten parts of 
approximately equal size and then shaded three of those parts.  

A B C D 

    
Figure 1. Patterns of responses on the ‘0.3’ task 

Discussion 
Finding from this student revealed the diverse ways that students may represent decimal notation as shaded 

parts of area. In my poster, I address implications for instruction. 



Vol. 5  803 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

FACTORS INFLUENCING A PROSPECTIVE MIDDLE SCHOOL TEACHER’S 
VALIDATION OF PROOFS: THE CASE OF MARY 

 
Filyet Asli Ersoz 

University of Georgia 
faersoz@uga.edu 

 
This case-study examined a prospective middle school teacher’s conceptions of proof and the 
arguments that she accepted as proofs. The factors influencing the prospective teacher’s 
decisions of whether an argument is a proof or not are highlighted in this paper. Some of these 
factors are familiarity with the statement and certainty about its truth, the closeness of the 
argument to the participant’s own proof and the context of the argument. 

Introduction 
Several mathematicians and mathematics educators advocate proof to be central to 

mathematics education (Ball et al., 2002; Carpenter, Franke, & Levi, 2003; Hanna, 1995; Knuth, 
2002a; NCTM, 2000). To accomplish this goal it is crucial for teachers to be well equipped to 
teach mathematical reasoning and proof. As Peressini et al. point out “the extent to which 
mathematical ideas such as proof and justification appear in classroom discourse will be 
influenced by both the teacher’s choice of task and the questions and comments she makes 
during class, which are, in turn, influenced by the teacher’s knowledge of proof” (Peressini et al., 
2004, p. 81). However, the results of studies concerning teachers’ conceptions of proof are not 
very promising. The goal of this study was to examine a pre-service middle school teacher’s 
conceptions of proof and analyze her process of validation of proofs (Selden & Selden, 2003) to 
provide insights into her understanding of a proof and what constitues a proof. 

Theoretical Perspective 
Previous research on teachers’ conceptions of proof has focused on pre-service elementary 

school teachers (e.g., Martin & Harel, 1989; Simon & Blume, 1996), in-service elementary 
school teachers (e.g., Ma, 1999), pre-service secondary school teachers (e.g., Jones, 1997), and 
in-service secondary school teachers (e.g., Knuth, 2002a, 2002b), as well as undergraduate 
mathematics majors (e.g., Harel & Sowder, 1998). A common conclusion of these studies is that 
teachers tend to accept empirical arguments as proofs (Knuth, 2002a; Ma, 1999; Martin & Harel, 
1989, Simon & Blume, 1996). In other words they rely on either evidence from examples 
(sometimes just one example) of direct measurements of quantities and numerical computations 
or perceptions to justify a claim. To evaluate arguments some teachers focus on the correctness 
of the algebraic manipulations or form of the argument as opposed to the nature of the argument 
(Knuth, 2002a), and others accept false proofs based on their ritualistic aspects (Martin & Harel, 
1989). Although teachers rate deductive arguments as valid proofs, they still may not find them 
convincing (Knuth, 2002a). Treating the proof a particular case as the proof for the general case 
is also common among teachers (Knuth, 2002a; Martin & Harel, 1989). Although familiarity of a 
statement influence the degree that secondary teachers are convinced of an argument (Knuth, 
2002a) this was not found to be a factor in Martin & Harel’s (1989) study. However, familiarity 
might be very subjective. Finally, Jones (2000) concluded that technical fluency does not 
necessarily mean richly connected subject knowledge.  
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Although past research informs us about teachers’ conceptions of proof and agrees that 
teachers tend to accept empirical arguments as proofs, there is still not a clear picture of the 
underlying reasons. Furthermore, as Harel and Sowder (1998) point out “despite its dominance, 
the inductive proof scheme phenomenon is not entirely understood” (p. 252). This paper uses the 
case of a pre-service middle school teacher to identify some factors that interfere with her 
acceptance of an invalid argument as a proof. 

Methods 
The case analyzed in this paper is one of three participants who had volunteered to be a part 

of a study investigating pre-service middle school teachers’ conceptions of proof. At the time of 
the study the participants were enrolled in a collegiate level mathematics content course designed 
for pre-service middle school teachers with a focus on geometry. Two of the objectives of the 
class as listed on the class website were to strengthen the understanding of and the ability to 
explain why various procedures and formulas in mathematics work and to promote the 
exploration and explanation of mathematical phenomena.  

One semi-structured interview (Bernard, 2002) was conducted with each participant and their 
written work was also kept as data source. Each interview started with questions trying to elicit 
participants’ knowledge and beliefs about the nature of proof and the role of proof in 
mathematics and mathematics education such as “What is your experience with proof?”, “What 
does it mean to prove something?” and “What is the role of proof in mathematics?” Next the 
participants were asked to prove that the interior angles of a triangle add up to 180 degrees. After  
that they were given arguments for the same statement and asked to evaluate those arguments  

(a) I tore up the angles of a triangle and put them together (as shown below). 
 
 
 
 
 
 
The angles came together as a straight line, which is 180 degrees. Therefore, the sum 
of the measures of the interior angles of a triangle is 180 degrees. 
 
(b) I tore up the angles of the obtuse triangle and put them together (as shown below). 
 
 
 
 
 
 
The angles came together as a straight line, which is 180 degrees. I also tried it for an 
acute triangle as well as a right triangle and the same thing happened. Therefore, the 
sum of the measures of the interior angles of a triangle is 180 degrees. 

a c

b

ca b
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      Figure 1. Two arguments about the sum of the interior angles of a triangle.  
and decide whether they were proofs or not. Two of the three arguments were analyzed for this 
study and they are given in Figure 1 (adopted from Knuth, 2002b). The following task was to ask 
the participants what they knew about the sum of the interior angles of other polygons and 
depending on their answer ask them to figure out an answer and/or prove their answer. The final 
task was to evaluate arguments for an algebraic statement in order to see if the different nature of 
the arguments would influence the way that the participants would evaluate them. The task 
which was taken from a study by Healy and Hoyles (2000) is given in Figure 2. 

To analyze the data I went through the entire transcript line by line and the corresponding 
written work and tried to make conjectures regarding what the participant was thinking. I 
identified the places where a particular theme was re-occurring and made sure that each 
conjecture was supported by other relevant things that the participant said throughout the 
interview. Eventually, I connected these conjectures to a general account of the participant’s 
thinking. 
 a

c a b cb
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Figure 2. Seven attempts at proving that the sum of two even numbers is always even. 

Results 
This paper reports results for one of the three participants in the overall study. Mary 

(pseudonym) was chosen because the interview with her seemed to offer richer data in terms of 
providing insights into and understanding complexities of a pre-service teacher’s conceptions of 
proof. Mary, with regards to her experience with proofs, said that she remembered learning them 
in high school geometry classes and also mentioned that they have done some simple proofs in 
their content class. She also mentioned her discomfort with proofs. 
Mary’s Conception of Proof 

According to Mary to prove something meant “to show it as a fact and true that it is that way 
for, in all situations that you say." She explained in response to a follow-up question that "if you 
are working in general terms, you can, you don’t have to test every situation because every 
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situation will follow within those boundaries." Mary seemed to believe that a proof establishes 
the truth of a statement and to have an understanding of the generality aspect of a proof. She 
indicated that proofs are important because once something in proven, in other words is shown to 
be true, then it can be used to solve other problems.  

During the interview Mary made a distinction between formal and informal proofs. Although 
she had a hard time articulating what she meant by formal proof, she referred to textbook proofs 
as being formal and having "a lot of formal and geometric terms." The way she thought of 
informal was "kids putting it kind of in their own words and being able to explain it but not 
necessarily using all the lingo and all the higher knowledge aspect." According to Mary, the 
ritual aspects of a proof and the level of the knowledge and the language used in a proof 
determined its being formal or informal. As it will be explained later, this distinction influenced 
her decisions when she evaluated an argument. 
Mary's Construction of Proofs 

When asked to prove that the sum of the interior angles of a triangle is 180 degrees, Mary 
was able to construct a valid mathematical proof using the parallel postulate and she concluded 
that her argument "proves that there is 180 degrees in a triangle.” When asked if her proof holds 
for all triangles she said “yes, because you can draw like, I mean if you wanted to, you could 
even draw like a right triangle (drew a new picture where the triangle formed was a right 
triangle), you know what I’m saying, so that one covers right triangles. That (pointed her first 
picture) is kind of like an almost an equilateral so you could even draw it to where you had like 
obtuse kinda stuff (drew another picture where the triangle formed was obtuse), it covers 
anything.” 

Without any further information about Mary it could be argued that since she drew extra 
triangles – right and obtuse – she didn’t understand the generality of her argument or that she 
needed to check her proof for different cases. However, since she said “it covers anything” it is 
also possible that she drew those extra triangles to illustrate the generality of her argument and 
convince the other person about this. In other words, she might be trying to say that it doesn’t 
matter which type of triangle you draw, the argument holds in any case. This interpretation is 
also supported by what she said later in the interview "you will still get the same thing because 
you’ll still get the same transversals just like that (moved her pen along the two transversals in 
her own second and third drawings) and the same alternate interior angles no matter what 
(pointed to the right and obtuse triangles that she had drawn) type of triangle you use."  

The next proof construction task was about the sum of the interior angles of other polygons. 
Mary said that they had derived the formula in one of her classes and correctly stated it as 
“180(n-2)” with n being the number of sides. When asked to prove it she talked about “patterns” 
and “testing it out on something that you already know like the triangle.” She tested it for the 
triangle and the pentagon. I tried to challenge her by asking how she would be sure that the 
formula gives the correct answer for a 12gon, she again referred to patterns. However, all of a 
sudden, she thought about drawing a pentagon and dividing it into three triangles and wrote 180 
into each triangle. She also demonstrated it for a polygon. When I challenged her about how she 
knew the relationship between the number of the triangles that she created and the number of the 
sides of a polygon, she said “just by following patterns” and explained that “at some point 
numbers get too big that you just can’t … you develop a pattern, a consistent pattern, then you 
can count on it (laughs).” Although Mary could remember a way to prove this statement, she 
didn't see the generality of that argument, hence relied on her knowledge of patterns for a proof 
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and at the time seemed to be satisfied with this argument.  
Mary’s Validation of Proofs 

When Mary was presented with the argument in Figure 1(a) her initial reaction was "I think 
that’s pretty similar to kind of what I did up there. I just didn’t cut anything. I just used the 
parallel postulate to say that." She further stated that it was "accurate" and accepted it as a proof. 
At the beginning of the interview Mary had said that “when you are trying to prove it or 
whatever you have to test more than one scenario” however she accepted this argument as a 
proof. It seems like this piece of knowledge was insufficient to help her see that the argument 
was “testing only one scenario.” One reason might be that she might not have really internalized 
what she said at the beginning or this argument might not have invoked that knowledge for her. 
On the other hand, she had also said that “if you are working in general terms, you can, you don’t 
have to test every situation” so she might not have refuted this argument as a proof because she 
might have viewed it as a “general argument.” This is plausible given that she thought that the 
argument was similar to what she had done. Nevertheless, she labeled it as informal since it 
didn't involve "any higher math."  

Although Mary thought that the first argument was a proof, after examining the argument in 
Figure 1(b) she seemed to change her mind about it. I think there are two important issues here. 
Although she thought that the second one was more complete she still did not realize why both 
of the arguments were empirical. On the other hand, she was aware of the fact that these 
arguments were not the same as the argument she provided herself (mathematically valid proof) 
however since she didn’t see those as invalid she named them as informal and as not having the 
“higher knowledge aspects” and as representing “a different level of thinking.” 

One of the factors that was influencing Mary’s decision about the first argument was the 
relationship she saw between the given argument and her own argument. As it became clear later 
in the interview another important factor which influenced her decision was her familiarity with 
this statement. Since she already was familiar with the statement and was confident about its 
truth, seeing just one case might have been enough for her: "As a mathematician for me or as a 
math teacher for me this (pointed the first argument) is plenty … I don’t think testing one thing 
when you are trying to figure something out is sufficient I guess, but once you already know like 
I already know it’s a proof or that it’s true then this (pointed the first argument) is enough cause I 
can be ok with that, but for a student like, if I was just trying to figure it out then I would say this 
(pointed the second argument) would help me a little more because I can actually see that for the 
different other types of triangles that it works also. … once you know that it’s true, I don’t think 
you need all the different examples to back it up but for the initial go at it I think I would want 
my student to be a little more thorough (pointed the second argument).” In other words, she 
already knew that the sum of the interior angles of a triangle is 180, so the presented argument 
was correct or “accurate” for her and being accurate might have been enough for it to be a proof. 

Next I presented her the problem about the even numbers accompanied with all the 
arguments. She first told that she liked Duncan’s answer and that it would be closest to what she 
would do. She also liked Yvonne's "visually because even numbers are always gonna have a 
pair” and thought that this was explained in words by Ceri. Consistent with the way she 
identified formal proofs before, she identified Arthur’s as the formal one. 

An important part of her discussion about these arguments was when she talked about 
Bonnie’s answer: “This (Bonnie’s), even though I used the same excuse of patterns, it’s, to me it 
doesn’t hold as much water. It’s not as, that, like not as valuable to me, just to show patterns 
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(pointed the examples in Bonnie’s answer), but I mean cause it works, it proves it, but I guess to 
a kid they are always gonna say, I mean there’s a million ifs, what if this number and this 
number.” The first time during the interview she said “I wouldn’t call Bonnie necessarily a 
proof” and added that “too many what ifs with this one but I agree with it that I agree with what 
she’s thinking that yeah anything any two even number that you add together is gonna be even. 
That’s what she is stating. She needs to go a little further, same as I did, but I couldn’t figure it 
out with those polygons.” 

Contrasting this episode with earlier episodes of her analysis of empirical geometrical 
arguments, it can be hypothesized that the nature of the algebraic argument made it possible for 
her to realize that it was empirical. Although it was not evident in the geometric case that the 
argument depended on the properties of a particular triangle, it was easier to realize for the 
algebraic case that the argument only involved numerical computations for a certain number of 
cases. Hence, Mary could conclude that it was not a proof. 

Discussion and Implications 
The case I analyzed in this paper shows there are criteria that one pre-service teacher used to 

evaluate arguments. Although she did not refute the empirical argument in Figure 1(a) as a proof, 
I don’t think that it can be concluded that she simply believed that showing that something is true 
for one case constitutes proof. According to Ma (1999) the teachers in her study “ignored the fact 
that a mathematical statement concerning an infinite number of cases cannot be proved by 
finitely many examples – no matter how many. It should be proved by a mathematical argument” 
(pp. 86-87). While this might be a reason for some teachers to accept empirical arguments as 
proofs, it doesn’t necessarily explain why the participant in this study did that in some cases. 
Whether Mary accepted empirical arguments or proofs or whether she provided an empirical 
argument when she was asked to prove something depended on other factors as well - factors 
other than whether she was aware of the fact that empirical evidence doesn’t constitute proof. 
She evaluated arguments according to her criteria of formal vs. informal and the level of thinking 
used in the argument. It also seemed like she treated arguments differently depending on whether 
she already knew that the statement was true or not. Furthermore, it was easier for her to realize 
that an algebraic empirical argument was not a proof as opposed to a similar geometric 
argument. This study shows that a teacher’s decision of whether an argument is a proof or not is 
not only influenced by whether s/he knows that the argument needs to show that the statement is 
true for all cases. There seems to be other factors which determine the evaluation of an argument 
by a pre-service middle school teacher. 

An implication of this study for research is that it provides a lens to look through when 
analyzing teachers’ validations of proofs. It points out several factors that researchers need to be 
aware of and take into account as they look into teacher’s conceptions of proof. There are also 
implications for teaching. Based on the results of this study, it is suggested that rather than trying 
to prove statements that they are already familiar with students might benefit more from working 
on statements the truths of which they’re not certain about. Furthermore, algebra might provide a 
better context to introduce proofs where students are more likely to differentiate non-proofs from 
proofs. 
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Researchers have found that students as young as elementary school can engage in 
mathematical reasoning. However, particular tasks tend to encourage this reasoning. This paper 
provides insight into the characteristics of tasks that lead to arguments that represent certain 
forms of reasoning. In this paper we report on arguments built by diverse student groups, of 
different ages, that were used to justify their solutions to problems from the fraction and 
counting strands of longitudinal and cross-sectional studies. 
 

Purposes of Study 
The National Council of Teachers of Mathematics (NCTM, 2000) Principles and Standards 

document suggests that a primary goal of mathematics education in grades K-12 is the 
development of reasoning and proof. The document calls for exposing students at all ages to 
different forms of reasoning, facilitating their ability to choose and use appropriate forms of 
reasoning, and encouraging them to develop and evaluate their own and others’ mathematical 
arguments and proofs. The focus on reasoning and proof is alighting to the elementary and 
middle-grades for good reason; reasoning and proof are the foundation of mathematical 
understanding and necessary for acquiring and communicating mathematical knowledge (Hanna 
& Jahnke, 1996; Polya, 1981; Stylianides, 2007; Hanna, 2000). While researchers have shown 
that children as young as eight and nine years old make conjectures, and justify their claims with 
sound arguments, we are only beginning to understand how students’ mathematical reasoning 
develops and what environments can best support the development of student reasoning (Yackel 
and Hanna , 2003). Through a combination of cross-cultural and longitudinal studies, we have 
observed that a mixture of environment/sociomathematical norms, teacher questioning that 
evokes meaningful support of conjectures, and well-designed tasks contribute to students’ 
success in building convincing arguments. In this paper we report on arguments that represent 
certain forms of reasoning across ages and from diverse student groups that were used in 
justifying solutions to problems from the fraction and counting strands of longitudinal and cross-
sectional studies. We found that certain tasks tended to elicit particular forms of reasoning across 
all age groups and populations.  
 

Theoretical Framework 
Stylianides (2007) defines proof as a mathematical argument that that builds upon statements 

or facts that are accepted by the community, utilizes various forms of reasoning shared by the 
community, and is communicated by a shared meaning of discourse. Other researchers stress the 
role of discourse in the mathematics classroom in reasoning and proof (Balacheff, 1991; Hanna, 
1991; Maher, 1995, in press). Thus the notion of proof is dependent upon the community in 
which it emerges. As students engage in reasoning and justify this reasoning to the community 
they begin to develop proofs. A well-defined, well-written task is the impetus from which 
reasoning emerges and therefore, task design is crucial (Doerr & English, 2006; Francisco and 
Maher, 2005; Henningsen & Stein, 1997; Maher, 2002; Maher & Martino, 1996; Stein, Grover, 
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& Henningsen, 1996). Further these tasks can elicit students building multiple representations, as 
well as, multiple strategies for solutions (Maher, 2002; Fransisco & Maher, 2005; Henningsen 
and Stein, 1997). Tasks that are open-ended and complex encourage students to rely on their own 
mathematical resources and make possible the building of new knowledge. In order to promote 
justifications and reasoning we recommend that students be given sufficient time to work with 
each other with minimal teacher interventions. We suggest, also, that students later revisit tasks 
and reflect on their prior work and the explanations of others (Maher, 2002; Maher & Martino, 
1996). When tasks are presented to students as strands of related problems that can be revisited 
over time and in different contexts, opportunities emerge to extend one’s ideas, build on the 
ideas of others, and construct convincing arguments.  
  

Method of Inquiry  
The episodes presented in this paper come from three data sets.1 The first is a year long study 

of students’ mathematical thinking that was conducted by researchers in a fourth grade 
classroom in a rural school in New Jersey. The second source of data is an informal after-school 
math program consisting of twenty-four sixth grade students that was conducted by researchers 
in a low socioeconomic urban community in New Jersey, drawn from a school consisting of 99% 
Latino and African American students2. The third source is a longitudinal study now completing 
its 20th year, in which students from a suburban community engaged in strands of mathematical 
investigations, as a context for research on the development of students’ reasoning and 
constructing of mathematical knowledge and understanding. The three series of sessions were 
videotaped with at least two cameras. This study uses data from the first seven 60 minute 
sessions from the fourth grade study and the first five 60-75 minute sessions from the sixth grade 
study. Data from the third study includes segments from sessions as fourth grade students 
investigated problems in counting and combinatorics. Because of space limitations, we give 
examples of two tasks, one from a strand on fractions and the other from cominatorics. The 
students in the first two studies worked collaboratively on tasks involving fraction relationships. 
Cuisenaire rods (see figure 1) were available and students were encouraged to build models. 
Many of the tasks were identical in both studies. The students in the third study worked on  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Staircase model of rods. 
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building towers using plastic cubes of two different colors (see figure 2). In all three studies 
students were encouraged to provide justification for their solutions and to challenge and 
question the explanations of others. 

The video data were transcribed and coded for forms of reasoning. Then, the data sets were 
compared, and similarities and differences were noted.  

 
Results 

For the purpose of this paper we focus on two tasks. Task 1, Rods, was posed to fourth and 
sixth graders during a session involving fractions: If I call the blue rod one, which rod can I call 
one half? Task 2, Towers, involved finding all possible towers of a particular height selecting 
from cubes available in two colors and was posed to students in grades 3 through high school. 
Students built arguments whose reasoning was both direct and indirect. In particular, for the 
Rods task, student reasoned using cases, contradiction and upper/lower bounds. For the Towers 
task, reasoning took the form of cases, induction, contradiction, and recursion. Numerous 
examples of the above forms of reasoning have been documented (Alston and Maher, 1993; 
Maher and Martino, 1996, 2000: Francisco and Maher, 2005; Maher, in press; Mueller and 
Maher, 2007, 2008). Here we offer representative examples that we regularly observe with a 
wide range of students from a variety of communities.  
Reasoning by Contradiction 

Students used reasoning by contradiction (also known as the indirect method; based on the 
agreement that whenever a statement is true, its contrapositive is also true) to convince their 
classmates that there was not a rod whose length was half of the blue rod and that they had built 
all of the towers of a given (n) height. 

Rods, Grade Four. While working on the task of finding half of the blue rod, a student used 
faulty, direct reasoning to name the yellow rod and purple rod one-half. David used a 
contradiction to show that the yellow rod and purple rod were not the same length and therefore 
could not be named one-half. He used a model of a purple rod and a yellow rod placed next to a 
blue rod and argued using the definition of one-half, explaining that in order to be called half of 
the blue rod the two rods would need to be the same length. Alan and Jessica built on David’s 
argument and together formulated a contradiction. 

Alan:  When you’re dividing things into halves, both halves have to be equal—in 
order to be consider half 

Jessica:  This isn’t half. Those two aren’t both even halves. 
Rods, Grade Six. In the sixth grade Chris reasoned using a contradiction by lining up a train 

of nine white rods next to a blue rod and explaining that nine is an odd number and therefore it 
cannot be halved. As Chris’ group members offered different arguments, he refined his 
contradiction five times. 

Chris: There is not a rod that is half of the blue rod because there’s nine little white 
rods, you can’t really divide that into a half, so you can’t really divide by 
two because you get a decimal or a remainder…”  

Towers, Grade Four. Stephanie approached the task by applying the procedure of 
constructing a tower and it’s “opposite” to find the 32 unique towers five cubes tall. When 
explaining her procedure to the class, Stephanie used a proof of contradiction to justify her 
thinking. 
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Stephanie:  With the two [red cubes] together you can make four [towers]. With one 
[yellow cube] in between you can make three [towers]. With two [yellow 
cubes] in between you can make two [towers]. With … three [yellow cubes] 
in between you can make one [tower], but you can’t make four in between 
or five in between [four or five yellow cubes between the two red cubes] 
…or anything else because you don’t have enough … because you can only 
use five blocks [towers of height five].  

Reasoning by Cases 
For the purpose of this study, critical events were coded as reasoning by cases when students 

defended an argument by defending separate instances. 
Rods, Grade Four. David offered an argument by cases to show that all of the rods could be 

organized as either odd or even based on whether or not they could be divided in half. He 
explained that the white, light green, yellow, black and blue rods were all “odd” since there was 
not a rod equal to half of their length. He then showed that the red, purple, dark green, brown, 
and orange rods were “even”, using a model to show that two purple rods are equivalent to the 
length of the brown rod and two yellow rods are equal to the length of the orange rod (in order to 
demonstrate that these rods had a half).  

 Rods, Grade Six. Justina explained that her strategy of showing that the blue rod does not 
have a rod that is equivalent to half of its length was to instead find all of the rods that do have a 
rod equal to half of their length. She drew all of the rods that have a half next to the two rods that 
make up the half, for example, two yellow rods lined up next to an orange rod. Justina explained 
that all of the rods in her diagram had a rod that was equivalent to half of their length. She listed 
all of the cases of these rod combinations and named them “singles”. Justina explained, “I was 
just making half of the color rods, I just made this picture, so like um, half of the orange was 
yellow, half of the brown was purple, half of dark green was light green, and the same for those 
two.” 

Towers, Grade Five. After constructing all possible towers four cubes tall when selecting 
from black and white plastic cubes, Stephanie was interviewed. She explained how she found 
patterns of towers and searched for duplicates. She then organized her groups of towers 
according to color categories (e.g., exactly one of a color and exactly two of a color adjacent to 
each other) in order to justify her count of 16 towers, thus she organized the towers by cases (see 
figure 2). Stephanie used this organization by cases to find all possible towers of heights three 
cubes tall, two cubes tall and one cube tall when selecting form two colors. 
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Figure 2. Stephanie’s extension of the tree diagram introduced during the interview. 

 
Reasoning using Upper and Lower Bounds 

When reasoning using upper and lower bounds, students displayed the part of the set that was 
greater than or equal to every element in the set (upper bound) and the part of the set that was 
less than or equal to every element (the lower bound) and established that there was not an 
element in the middle.  

Rods, Grade Four. David began the task of convincing his classmates that there was not a 
rod whose length was half of blue by offering an argument using upper and lower bounds.  

David:  I don’t think that you can do that because if you put two yellows that’d be 
too big, but then if you put two purples that’s uh, that’s uh, that’d be too 
short. 

The researcher asked David if there was any rod between the purple and the yellow, David 
replied, “I don’t think there is anything.” When asked to explain further, David showed that the 
purple rod was one white rod shorter than the yellow rod, and lined up the rods in a staircase 
pattern in order to illustrate that each rod was one white rod longer than the previous rod (see 
figure xx). He used this model to show that there is no rod that is shorter than the yellow rod or 
longer than the purple rod. 

Rods, Grade Six. In a whole class presentation, Dante explained that instead of using the 
model of nine white rods lined up next to the blue rod he used a model of a purple rod and a 
yellow rod. He used the model to show that the purple rod could not be considered to be half of 
the blue rod because the combination of two purple rods was not equivalent to the length of the 
blue rod (they were too short). Likewise, the yellow rod could not be named half of the blue rod 
because the combination of two yellow rods was not equivalent in length to the blue rod. He 
explained that the yellow rod was one white rod too long to be a half the length of the blue rod 
and the purple rod was one white rod too short. When asked why this persuaded him that there 
was not another rod whose length was half of the blue rod, Dante responded, “Because we tried 
all we can because if usually for the blue piece, it would usually be purple or yellow but yellow 

 Blue  Red 
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would be one um one white piece over it and the pink would be, I mean purple would be one 
white piece under it.”  

Chanel backed up Dante’s justification using a model that showed the discrepancy of one 
white rod, using two yellow rods as an upper bound and two purple rods as a lower bound., 
indicating: “this is blue and the yellow is a little, the yellow is a little bit more than a half and the 
purple is shorter than a half.” 
Reasoning Using an Inductive Argument  

Inductive reasoning was noted when students made generalizations based on individual 
instances or when the premises of an argument were believed to support the conclusion but did 
not ensure its truth. 

Towers, Grade Four. Milin also used cases to organize towers five-tall. He then used simpler 
problems of towers 4 high and 3 high to build on to towers five high. Next, he organized the 
towers by “families”, using the term “family” to explain the relationship from shorter to taller 
towers. While his partners based their arguments on number patterns and cases, Milin explained 
using an inductive argument. Milin’s explanation in each instance was based on building from a 
shorter tower exactly two towers that were one cube taller. For example, when asked to explain 
why from two towers he created four:  

Milin:  [pointing to his towers that were one cube high] Because – for each one of 
them, you could add one – No – two more – because there’s a black, I mean a 
blue, and a red- See for that you just put one more – for red you put a black on 
top and a red on top – I mean a blue on top instead of a black. And blue – you 
put a blue on top and a red on top – and you keep doing that  

Milin then explained, “… and for each one you keep on doing that and for 6 you’d get 64”.  
Rods, Grade Four. David extended the task of finding a rod whose length is equivalent to 

half of the blue rod by showing that some rods do have a rod that is equivalent to half of their 
length and some do not. Using the rod staircase he identified all of the rods as “even” or “odd” 
where odd rods do not have a rod equivalent to half of their length. Thus, David used inductive 
reasoning by generalizing his solution to show that all of the rods are either even (can be 
divisible by two) or odd (cannot be divisible by two). The class then discussed the possibility of 
“cutting” a rod in half to create a new rod and therefore finding half of “odd” rods. Michael used 
inductive reasoning to broaden the concept of cutting a rod in half to encompass the entire set of 
rods: 

Michael:  If you’re going to make a new rod, then you’d have to make a whole new set 
because there’d have to be a half of that rod, too. 

David reinforced Michael’s argument (also reasoning inductively) by explaining that each time a 
smaller rod was cut in half, it’s half would have to be cut in half and therefore a new set would 
emerge:  

David:  Well, what I told you. I thought that, uh, to cut it in half, too, but then I 
realized that, uh, that you would have to make a whole set…… And make a 
half for every one. 

 
Discussion  

 Our results indicate that both tasks, one dealing with fraction ideas and the other with 
combinatorics, elicited similar forms of reasoning at multiple grades levels, across different 
socioeconomic communities. While attending to both tasks students reasoned by contradiction, 
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cases, using upper and lower bounds, and inductively. Although one of the highlighted tasks 
focuses on fractional relationships and the other combinatorics, they share many characteristics. 

In both tasks, students were invited to use manipulative materials but could also approach the 
tasks with other representations. The building of models naturally led to student collaboration as 
students were eager to understand each other’s models. For both rods and tower tasks, students 
built models, providing for them a meaningful understanding of the problem. The varieties of 
representations that the students used to express their ideas were shared in open discussion with 
others. 

Both tasks were open-ended, challenging, and allowed for multiple entry points. They were 
novel such that a solution was not readily available and therefore students were encouraged to 
rely on their own resources. Students at all levels of mathematics could engage and realize 
success. Students had opportunities to be successful in building understanding and 
communicating that understanding in the arguments they built to support their solutions. Both 
tasks were open to multiple representations and multiple strategies for solutions. These multiple 
strategies elicited various forms of reasoning, as in the case of David, who justified his reasoning 
using three different forms of reasoning (cases, upper/lower bounds, and contradiction). 

In addition, the tasks were revisited which allowed students time to reflect on their previous 
justifications and those offered by their classmates. Thus, when revisiting the tasks students had 
a schema upon which to build and often revised their justifications and/or used different 
methods/forms of reasoning. 

We suggest that problems, such as these, be integrated into regular mathematics instruction 
and that students be asked to revisit the same or similar tasks, so that they can build on and 
extend their approaches, offering opportunities to experience a variety of ways of reasoning. 
Tasks such as these can serve to engage students in doing mathematics and building arguments. 
We suggest that strands of open ended tasks that elicit reasoning be integrated in the curriculum 
at all grade levels. 
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As part of a study on classroom communication and study habits in undergraduate real analysis, 
we investigate one professor’s use of concrete metaphors as an instructional tool. We offer a 
classification of the metaphors according to their function and properties as well as evidence 
regarding how students understood and used the metaphors in constructing their concept 
definitions and in constructing proofs. The present findings support these metaphors as an 
effective communicative and cognitive tool which the students applied appropriately to gain 
understanding. We also address the biological structural metaphor which these concrete 
metaphors introduced into the study of real analysis.  

 
Over time there has been a growing awareness among mathematicians and mathematics 

educators alike of the dynamic role intuitive understanding plays in mathematical understanding 
(Fischbein, 1987; Burton, 1999; Oehrtman, 2002). The definition of “intuition” in the context of 
mathematics is not well defined (Burton, 1999), but most agree that metaphor belongs in this 
category instead of in the realm of formal knowledge which is centered upon proof. Whatever 
role metaphor might play in formal mathematics, it is certainly integral to human 
communication. The real analysis classroom represents a primary intersection between the realm 
of formal mathematics and communication, so one might naturally ask what role metaphor can 
or should play in that context.  

Oehrtman (2002, 2003) conducted some of the only in depth research on metaphor and 
communication in the undergraduate classroom. He studied calculus students’ work on 
conceptually complex tasks and observed what metaphors the students employed most 
commonly. Students’ use of metaphor proved to be formative in problem solving, but at the same 
time problematic by often introducing misconceptions. His framework for understanding the role 
of metaphor in understanding was primarily informed by the work of Max Black who argues that 
metaphors can generate understanding by a dynamic interaction of different domains of 
knowledge. He calls this theory “interactionism” which posits that in metaphor the whole can be 
greater than the sum of its parts. Black argues that strong metaphors have two key attributes: 
emphasis and resonance (Black, 1962, as cited in Oehrtman, 2002). A metaphor has emphasis if 
the metaphorical context couldn’t be easily replaced with another without losing meaning. A 
metaphor has resonance if the parallels between the two contexts are strong enough to allow 
deep elaboration. Oehrtman references John Dewey’s theory of instrumentalism where students 
use “relevant tools are applied technologically against problematic aspects of situations” 
(Hickman, 1990, as cited in Oehrtman 2003) to establish the dual role of metaphors both for 
comprehension and for solving specific problems.  

 
Present Investigation 

During a larger study on classroom communication and study habits in an undergraduate 
Real Analysis (senior level, proof-based) course, the professor repeatedly used concrete 
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metaphors in her classroom explanations. She not only introduced these metaphors to explain 
concepts or proofs, but integrated them into her classroom language by repeatedly referring to 
them in later instruction. The full effect of such metaphors cannot be known because we cannot 
directly observe student thinking during class lectures nor can we understand how the class 
would be without these metaphorical explanations since they are integrated into this professor’s 
teaching style. However, in light of their repeated use as a tool of explanation, we investigate the 
students understanding of the metaphors themselves and their ability to relate them to the course 
material. In this way we hope to shed light on how students organized their understanding about 
the mathematics using these metaphors as a tool both to construct understanding and to solve 
problems which in this context meant to construct proofs.  

In order to gain insight into the students’ understanding and use of the metaphors, we 
pursued the following questions:  
• How well can the students recall the metaphors and understand how they apply to the 

concepts? Accordingly, how well do the students understand when the professor would 
reference the metaphors repeatedly over time to remind students of a given idea or point?  

• To what extent do students integrate these metaphors into their concept image or concept 
definition and use them to articulate or reason about a given concept?  

• What, if any, are the misconceptions that arise in student conceptions as a result of the 
metaphors provided?  

• What, if any, are the affective influences of the metaphors upon the students’ classroom 
experience and overall approach to the course?   

We borrow our theoretical framework from that of Oehrtman (2002) analyzing the metaphors in 
terms of Black’s classification of metaphors and seeking to gain some view into how students 
use metaphors as tools to construct understanding and build proofs according to Dewey’s theory.  

 
Methods 

The study observed the professor teaching first-semester undergraduate Analysis during two 
15-week semesters at a mid-sized (about 25,000 students) university in the southwest. The 
professor had taught for about 10 years and had taught undergraduate Analysis 2 times prior to 
the study. She has received several teaching awards and has a reputation among the students as a 
good but challenging teacher. The course content consisted of analysis on the Real number line 
covering the cardinality of infinite sets, limits of sequences, limits of functions, and continuity. 
Each course began with between 20 and 30 students and ended with between 15 and 20 students. 
Math majors made up most of the cohort because only they are required to take Analysis.  

We observed every class meeting keeping record of the written and verbal explanations and 
discussions. Each semester, we conducted weekly interviews with a set of 4-6 volunteers asking 
them to:  
• recall and explain portions of the classroom discussion,  

• give explanations of their understanding of specific concepts, definitions, or theorems,  

• write specifically chosen proofs to see their functional understanding of the concepts, and 
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• report their homework, study, and test preparation habits. 
All of the students interviewed were math majors. We also interviewed the professor regularly 
and she explained her plans for the classroom instruction, provided reasoning behind how she 
structured her explanations and her emphases, and related any interactions she had with the 
students which were particularly interesting or meaningful to her.  

To understand how students’ used the metaphors to construct their concept images, the 
interviews sometimes invited students to articulate their understanding of those concepts which 
had been explained using a concrete metaphor. Specifically we observed whether any extraneous 
aspects of the metaphor were carried over into the mathematics or whether the students would 
use the metaphor to articulate or recall the ideas. After that, usually at least one week after the 
metaphor was introduced, they were asked to explain the metaphor, its purpose, and the 
mathematical concept to which it was applied. This was intended to discover how well-formed 
the student’s understanding of the metaphor was and how effective the professor’s repeated 
reference to the metaphor might be.  

 
The Metaphors 

The extent to which the students would be expected to articulate the metaphor or use it 
significantly for sense-making depends upon the role the metaphor plays in the explanation and 
how closely linked it is to the concepts being presented. There were two major roles the 
metaphors played in the discussion. Some metaphors were used to either clarify the logical 
structure of the definitions or theorems or to guide the development of proofs regarding their 
logical structure. These metaphors generally lack emphasis, and have strong resonance in their 
logical structure and nothing else. This first category shall be referred to as logical metaphors. 
Other metaphors were actually used to demonstrate aspects of the concepts themselves or the 
structure of definitions. These metaphors on the whole had emphasis, but lacked deep resonance. 
This type shall be referred to as mathematical metaphors. The second category contains those 
metaphors most likely to be taken into the students’ concept images of specific concepts. Thus 
these are most likely to be used in recall, employed for sense-making, integrated into student 
language, and introduce misconceptions.   

Another form of metaphor appears in the classroom which has minimal conceptual influence. 
In describing the definition of a cluster point, the professor compared the points of a set to fire 
ants and said you do not want to be a cluster point for ants. This metaphor falls into the third 
category which merely introduced concrete language to make a compelling image, but based on 
which no conclusions were drawn. In this way, the metaphor may influence recall, but is less 
likely to be used for reasoning purposes. This use of metaphor is the source of the common 
historical perception which asserts that metaphors are primarily stylistic devices rather than 
reasoning devices. These could be called visual metaphors.  
Logical Metaphors 

One of the most prominent and well-explored examples of a logical metaphor from the 
classroom was that of the orange and white tigers. Two sets are defined to have the same 
cardinality if there exists a bijective (one-to-one and onto) function between them. However the 
professor reported finding that students would often think two sets did not have the same 
cardinality if they were presented with a function between them which was not bijective. This 
misconception hinges upon the students’ understanding of the quantifier “there exists” and the 
orange and white tiger metaphor seeks to clarify the role of this quantifier. The professor defines 
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that a forest is called “special” if there exists a white tiger in it. She then tells the students that 
someone goes into a forest and finds an orange tiger. She asks if this is enough evidence to say 
that the forest is not special. Similarly she explains that a function which is not bijective proves 
nothing about the relative cardinality of two sets 

Almost two weeks later on a homework problem, the students were asked to find a function 
between two sets of the same cardinality (the natural numbers and the even natural numbers) 
which is injective but not surjective. The students knew the two sets were the same size, so they 
thought no such function existed. She responded to the students’ belief by asking whether her 
finding a white tiger in a forest proved there were no orange tigers in the forest. One and a half 
months later, another student was working on a problem trying to disprove a “there exists” 
statement and the professor asked her, “How do I show there does not exist a white tiger?” The 
student then replied that, “You look at every single one.” The teacher repeatedly referred to the 
metaphor in the context of “there exists” proofs and it became integrated into her classroom 
language.  

During the second semester, the professor used the white tiger metaphor to explain a 
sequence convergence proof. She showed how each requirement of the definition was addressed 
in the proof using the language of the metaphor. The definition requires that for any epsilon, an 
index be found such that all terms of the sequence after that index are closer to the limit value 
than that epsilon. The professor expressed this by saying that whatever cage she gives the 
students, they must find a white tiger which fits in that cage. In this way, the analogy was 
extended to provide the students with a more global understanding of the structure of the proof.  

The professor also used logical metaphors to give clarification to the requirements placed 
upon definitions. The definition of the limit of a function at a point requires that the point be a 
cluster point or accumulation point. In her interviews, the professor emphasized how much she 
wanted the students to know the difference between a limit not existing at a point and when the 
limit definition simply doesn’t apply because the point in question is not a cluster point to begin 
with. In the classroom, she compared considering the limit at a non-cluster point to finding a 
tiger and trying to measure its RPM (revolutions per minute). She pointed out that since tigers 
have no wheels, then the question is irrelevant, just like the question of the limit of a function at 
a point which is not a cluster point. She later created a parallel metaphor to explain why the 
function must be defined at a point for it to be continuous at that point. She said that someone 
asked her if her dog likes her cat when in fact she has a dog, but no cat. Similarly one cannot 
determine if the limit of a function equals the value at the point if there is no value at the point. 
Here the logical metaphor works to motivate the need for a condition rather than explain the 
structure of the situation in question.  
Mathematical Metaphors 

There were several key metaphors which fit into this category. One example compared 
functions between two sets as arrows being shot by the elements of the first at the elements in the 
second. Even the language and diagrams used early in the course regarding functions call upon 
this metaphor by calling the co-domain the “target” and expressing f(a)=b by drawing an arrow 
from a to b. This language was then used to understand the concepts of one-to-one and onto. 
One-to-one was thus described to mean no one gets hit with two arrows while onto means that 
“everyone gets hit.” This portion of the metaphor gives an intuitive understanding of the two 
definitions which is relatively consistent, but the professor then employed the metaphor to 
explain how to prove that a function is onto. She points out that if onto means “everybody gets 
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hit,” then the proof must begin in the target, it must pick any element of the target and show that 
it “gets hit.” The professor follows up by asking the students what it means mathematically for 
that element to “get hit,” namely that f(a)=b. In this way, the metaphor was not only explanatory 
and concrete, but it was also made functional as it guided the construction of a proof.  

During the section of the course about sequences, the professor introduced two key 
sequences to help the students decide what a function tending to infinity should mean. One 
function was unbounded, but did not tend to infinity (1,2,1,3,1,4,1,5,…) while the other did tend 
to infinity, but was not monotonic (2,1,4,3,6,5,…). Both pairs of qualities were chosen by the 
professor because she had observed students falsely equating the two, namely that unbounded 
sequences tended to infinity and that sequences tending to infinity were monotonic. The 
professor built the metaphor around equating sequences that tended to infinity with mammals. 
The class came to refer to the former as the penguin sequence it looked like it had fur like a 
mammal, but in fact it was a bird. The second was deemed the platypus sequence because it had 
qualities most mammals don’t such as laying eggs and a bill, but in fact it was a mammal.  

A third mathematical metaphor was developed from a student’s comment during the second 
semester of the study. The professor introduced the definition of convergence of a sequence. This 
definition requires that for any epsilon greater than zero, there must exist a term in the sequence 
after which every term is closer to the limit than epsilon. As the class was discussing this 
definition on the first day it was introduced, one student compared the epsilon neighborhood of 
the limit to a party. He explained that it is not a party unless eventually everyone goes to the 
party. The professor seized upon this language and began to explain the definition in these terms 
elaborating the metaphor to include all of the key aspects of the mathematical definition. For two 
weeks thereafter, her classroom explanations regarding sequences always included some verbal 
reference to the party analogy.  

The final form of party metaphor was as follows: no matter how big your room is, it is only a 
party if after some time, everyone is at the party. We don’t care if there are a few stragglers at the 
beginning, but only finitely many people can be left outside of the party. Like the arrows 
metaphor, the professor used the metaphor to explain the general logic of a convergence proof 
both to motivate each next step and to correspond the pieces of the proof and the definition.  
Structural Metaphor 

The professor’s use of specific metaphors had a more universal role in the class beyond the 
specific concepts which they were used to explain. The most common arena from which the 
metaphors were built was biology. Biology was the structural metaphor which she used to guide 
her explanation of the concepts. The professor built her classroom instruction around key 
examples. Very often before a theorem was introduced or suggested, the professor invited the 
students to see if they could come up with an example of a convergent but unbounded sequence, 
a monotone and bounded sequence which is not convergent, a bounded sequence without a 
convergent subsequence, etc. all of which are impossible. From the students’ observations that 
they cannot in fact manufacture such an example, they discovered the theorems and went on to 
prove them. To the professor, classifying different sequences and functions according to their 
properties parallels classifying animals by their properties into species and families. This was 
also reflected in the classroom language which discussed the “behavior” of mathematical objects.  

 
Student Responses 

There were five major aspects of students’ understanding of the metaphors which were of 
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particular interest: recall, application, reasoning or articulating with the metaphor, 
misapplication, and affective response. Of the 7 students directly interviewed regarding the white 
and orange tiger metaphor, 5 students could correctly recall it. Some took a minute to reconstruct 
the logic, but once they knew the context, they could recall the metaphor and explain how it 
applied. Others could not remember to which specific concept it was originally applied, but 
could come up with another situation in which it would apply. As part of an ongoing study, one 
student was asked to recall the metaphor eight months after the class ended and once he 
remembered it was applied to bijections and cardinality, he could correctly explain it.  

One student in each semester spontaneously used “white tiger” language to talk about proof. 
The first referenced the metaphor to explain the relative difficulty of disproving a there exists 
statement (showing for every). “When you make a claim about for every, it is usually very 
difficult to say, you know: the white tiger thing. All the tigers in this forest are orange. Oh, 
really? You know, find them all and bring 'em here.” The fact that the student references this 
metaphor in the context of a “for every” proof constitutes an extension of the metaphor beyond 
its original application.  

The next semester, another student used the tiger metaphor when explaining rules for certain 
types of proofs:  

Student: “For these kind of proofs specifically I remember she said you use your scratch 
work and you look for the white tiger and then you show the white tiger in the proof.”  
Interviewer: “Okay and what kind of proofs are those?”  
Student: “Existence proofs.”  

 Of the five students who were asked to articulate their understanding of one-to-one and onto, 
three used the arrow metaphor’s terminology, primarily to talk about onto. When directly asked 
what metaphor she used, all of them recalled the arrow language. Two students pointed out that 
because onto means that “everything in the target gets hit,” proofs that a function is onto begin 
with an arbitrary element of the target rather than beginning with a point in the domain. In this 
way, the students not only had integrated the metaphor into their concept image of onto, but used 
the metaphor to guide the construction of proofs. 

All of the students interviewed referred to the penguin and platypus sequences under those 
names and understood that they were named for their curious properties that made them atypical 
examples. It was less common for students to directly be able to explain the logic which 
paralleled “mammals” to sequences which tends to infinity. All but one of the students recovered 
the metaphor either from direct memory or reconstruction from their knowledge of the two 
sequences. None of them gave evidence of using the metaphor to remember which sequence 
tended to infinity. However the names appeared integral to their memory of the sequences since 
some would recall a slightly different sequence which had parallel properties such as 
(2,1,3,2,4,3,…) for platypus or (0,1,0,2,0,3…) for penguin. Two of them were asked about these 
two sequences by name 8 months after their class ended, and they both could recall the basic 
behavior of the sequences, explain the metaphor, and explain why they were interesting 
examples (platypus shows that not every sequence tending to infinity is monotone and penguin 
shows not every unbounded sequence tends to infinity).  

Of the four students interviewed during the second semester about the definition of a 
sequence converging, three of them used “party” language to explain the definition and the other 
one could recall the metaphor when asked directly about it. One of them even extended the 
metaphor. He deemed the term after which the sequence was in the given epsilon neighborhood 
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as the “popular guy” because after he comes, everyone else goes to the “party.” He reported 
having explained the definition to several other people as they studied together which might 
mean he extended the metaphor for explanatory purposes. However none of the students were 
observed to use this terminology in proving the convergence of a specific sequence. One student 
used this language to explain the proof that limits are unique because we form two separate 
parties around the two limits. Also, only one student persisted in using this language after the 
test. The other students began to speak almost exclusively in more mathematical terms and the 
one who still used party language merely interchanged the terms “party” and “neighborhood,” 
but did not seem to use the metaphor for sense-making.  

Though the professor explained the party metaphor pointing out that it doesn’t matter how 
big the room is, most of the students during class discussion and during interviews either failed 
to address the arbitrarity of epsilon or only at the end of the definition that “it works for any 
epsilon you pick.” It could be that the party metaphor, being primarily concrete, fails to capture 
this aspect of the definition which led to this weakness in the students’ concept definitions. 
However any pictorial representation of the limit definition usually includes at most 3 specific 
epsilon neighborhoods. Thus it remains unclear whether the metaphor was a primary cause of 
this misunderstanding.  

Several students reported that the presence of the metaphors made the class much more 
enjoyable. There was a uniformly positive affective response to this mode of instruction, 
sometimes quite enthusiastic. One of the students, despite consistently not being able to recall the 
metaphors throughout the interviews, at the end of the class reported that they were one of his 
favorite parts of the course. When asked whether he ever actually referred to the metaphors when 
solving problems, he said he did not. “[I don’t use the metaphors] really on the test, just as I’m 
learning it. Like, if I understand I don’t have to think about the analogies, I guess, once I know 
what is going on.”  

Several students recognized the parallels between their study of analysis and biological 
classification. One student noted the appropriateness of biological metaphors because, “in a 
sense, what are we trying to do but categorize things... and so basically this is coming down to 
organization and classification, you know?” Another student similarly described their study of 
sequences and functions saying they, “classify and group [various examples] into like groups.”  

Discussion 
Alibert & Thomas (1991) explain that the sequential structure and presentation of proof often 

obscure the central ideas. Students may verify a proof to themselves by checking the validity of 
each line without gaining any global understanding. The professor used the tiger metaphor to 
point out the global structure of a convergence proof. At least one student then used this 
metaphor to develop his own proof scheme of “there exist” proofs and another was able to 
transfer the metaphor to disproving “for every” statements.  

The interviews provided evidence that the students did understand the metaphors which were 
presented in class as they applied to the mathematics. Moreover, even if they couldn’t recall the 
metaphor by itself, they could recall it in from context in which it was introduced. This implies 
that the professor’s integration of such metaphors into classroom language was an effective form 
of communication. Some of the metaphors proved very powerful for recall as evidenced by 
students being able to recall the penguin and platypus sequences months after the class was over, 
one without the names of the sequences being mentioned. There was evidence of students using 
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the metaphors for sense-making, namely that they extended the metaphors (tigers and party) or 
used them to organize their proof approaches (tigers and arrows). Most prominently the students 
reported a positive affective response to this mode of communication.  

The metaphors were primarily used as tools for the students to construct their understanding. 
None of the students were limited to explaining their understanding by the metaphor and would 
often acknowledge the less-formal nature of these explanations. The metaphors were not central 
to the student’s concept images because some of them only referenced the metaphor when 
specifically asked to. They used the metaphors less over time as their concept images were more 
fully developed. One student even reported directly that he only used the metaphors to gain 
initial understanding, and then left them behind. No direct evidence arose of students 
misapplying metaphors or bringing extraneous aspects of the metaphor into their mathematical 
understanding. All of this supports the characterization of these metaphors according to Dewey’s 
instrumentalism as tools the students used to mediate difficult situations, in this case building a 
strong concept definition or learning how to prove in the context of real analysis.   

These findings stand in contrast to those of Oehrtman (2002) who found that calculus 
students often used metaphors to reason about problems to the extent that they became 
mathematically incorrect. It is unclear however whether these differences can be attributed to the 
relative difference in mathematical sophistication between calculus and analysis students, the 
difference between a computational versus a proof-based course, or whether the fact that the 
metaphors in the present study were obviously non-mathematical helped the students to apply 
them properly. The logical metaphors in the present study were also much less susceptible to 
misapplication since they weren’t applied to the primary concepts being studied, and because 
they were primarily logical they had a very high degree of resonance.  

The present study thus affirms the possibility of effectively employing concrete metaphors in 
classroom discussion to help students construct their understanding of undergraduate analysis. 
Moreover, the use of biological metaphors appeared to implicitly provide students with a 
structural metaphor by which to think about analysis. This is one aspect of the overall model this 
professor used of which a more full description is forthcoming.  
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Justification is a practice central to mathematics and mathematics learning. In this paper, we 
report on results and issues related to justification that arose during the course of a professional 
development program, the Math ACCESS Project. Justification was one of the three themes 
central to the project. Data sources included records of project activities, pre-post assessments, 
and documentation of analyses and the issues that arose while conducting the analyses. Results 
suggest that the Math ACCESS Project advanced teachers’ understanding of justification, but 
that some important issues were left in an unsatisfactory state. Implications are discussed.   

 
Objectives and Purposes 

Justification is a central to doing and learning mathematics. This practice requires the 
articulation of reasoning and is facilitated significantly by the use of mathematical terminology 
and forms of expression. Students’ participation in practices of justification and argumentation 
expands their mathematical knowledge, as they identify and articulate their own reasoning and 
gain exposure to others’ arguments (Boaler, 1997; Hiebert et al., 1997; National Research 
Council, 2001; Wood, Williams & McNeal, 2006). In this sense, the practice of justification is a 
learning practice (Cohen & Ball, 2001). Justification is also a core activity in classrooms that 
support more equitable outcomes in mathematics (Hiebert et al., 1997; Boaler & Staples, 2008). 

Supporting student justification in classrooms, however, is challenging (Chazan, 2000; 
Stylianides, 2007) and researchers have documented that this important practice is absent from 
many classrooms (Jacobs et al., 2006). Fostering student justification requires a broad repertoire 
of pedagogical moves (Staples, 2008) supported by a commitment to this practice, appropriate 
classroom norms, and content knowledge (Knuth, 2002). A further difficulty is that what counts 
as a justification varies across settings (Stylianides, 2007). It depends on the community’s shared 
background and its purposes. Currently the field of mathematics education has an 
underdeveloped notion of justification (Stylianides, 2007). 

In this paper, we document the design and impact of a professional development program, 
the Math ACCESS (Academic Content and Communication Equals Student Success) Project. 
This on-going project has a unique focus – working with teachers in urban settings to understand 
the language demands of student participation in justification and higher-order thinking in 
mathematics classes. While important for all mathematics learners, the need for teachers to be 
able to organize instruction to foster student participation in justification is perhaps heightened in 
urban areas where students are more likely to be linguistically diverse and have received lower 
quality instruction at some point in their mathematics careers.  

Although there is no standard definition for justification, for the purposes of our work and 
this paper, we used as a working definition for justification the process of removing doubt about 
a claim using logical reasoning. We also draw on Toulmin’s (1958) framework of argumentation 
and see justifications as comprised of claims, warrants and evidence, either explicit or implicit.  

 



Vol. 5  828 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

Context 
The Math ACCESS Project was designed as a professional development experience for 

teachers of mathematics working in urban settings. The work was supported by a Teacher 
Quality Partnership Grant from the Connecticut State Department of Higher Education. The 
conceptual model guiding the professional development comprises three “pillars”: Appropriate/ 
Effective Use of Academic Language, Student Justification and Collective Building of 
Arguments, and Access by all Students. Each pillar addresses a core component of instruction 
that has a strong research base documenting its value for student engagement and learning, and 
promoting more equitable outcomes. In this paper, we focus on the second pillar, Student 
Justification, and document and discuss the relevant activities, outcomes and issues from our 
work with a group of teachers during the ACCESS Summer Institute. See Truxaw, Staples and 
Ewart (under review) for discussion of the first pillar, Academic Language. 

Given our goals and the requirements of the grant program, we organized the PD into two 
main components. The “instruction” comprised a one-week intensive summer institute (40 hours) 
during July and a half-day (5 hours) session in September. The “follow up” comprised a 
modified form of lesson study where teachers, organized in grade-band teams, collaborated to 
develop, implement, and debrief lessons that used pedagogical strategies related to each pillar. 
We briefly describe some of the institute activities, emphasizing those related to justification. 

Our work with respect to Justification and Collective Building of Argument focused on the 
need to provide students with opportunities to engage in sense-making (Hiebert et al., 1997) 
through explanation and justification. Teachers analyzed the cognitive demands of tasks (Stein, 
Smith, Henningsen, & Silver, 2000), modified existing tasks to prompt higher-order thinking, 
discussed the validity and completeness of student justifications (Toulmin,1958), examined the 
language demands of offering justifications (e.g., expressing a general statement), developed 
strategies for providing formative feedback on student written justifications, and worked in 
teams to write and implement lessons that promoted higher-order thinking and justification. For 
example, one activity engaged teachers in examining student work on a test item (from the State 
tets) that requested an explanation. Teachers analyzed the responses for the claims, warrants and 
evidence and discussed the validity, completeness, and merits of different responses. Note that 
this was not easy work. A prerequisite for this work was a clear understanding of the central 
mathematical ideas needed to solve the problem. 

The other two pillars were also critical to the justification work, as these pillars are mutually 
supportive. Related activities during the Summer Institute included attention to establishing 
productive classroom norms, providing multiple entry-points into justification tasks, and 
developing strategies to expand students’ math vocabulary and develop student command of 
certain phrases (e.g., at least, the least, for each person, for every person). For example, a series 
of activities involved unpacking language demands within mathematics curriculum materials, 
state testing materials, and student work samples. Participants subsequently learned to write 
language objectives for mathematics lesson plans (Echevarria, Vogt, & Short, 2004) that focused 
not only on vocabulary, but also functional language (Schleppegrell, 2007) (e.g., Students will 
continue to build an idea of what makes a good explanation by using a language frame: “____ is 
correct/incorrect because ____.”).  

To document the impact of the project and further our understanding of the practice of 
justification, we address the following research questions:  

1. What are the outcomes and effects of the ACCESS professional development activities 
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for participating teachers? 
2. What issues arise as teachers work on understanding the nature of justification and 

practices related to supporting student participation in justification? 
Twenty-four grades 4-9 teachers from one urban area participated in the ACCESS Summer 

Institute; 20 teachers continued the program during the academic year. Of the 24 teachers, 11 
teachers taught the single subject of mathematics (grades 7-9), 10 taught multiple subjects, 
including math (grades 4-7), and 3 teachers were special educations who worked in mathematics 
classrooms. Teaching experience ranged from 0 years to over 21 years. The first two authors did 
the majority of the instruction; all authors are supporting school-based follow-up activities.   

Data collection and analysis are ongoing as we are currently engaged in the academic year 
“follow up.” The remainder of the paper focuses on the results from the Summer Institute.  

 
Methods of Inquiry 

This study employed a mixed-methods design to investigate outcomes and effects of the 
ACCESS Summer Institute activities. Participants completed two pre-post assessments, one 
primarily targeted content knowledge and the other primarily targeted issues related to academic 
language (e.g., teachers’ awareness of the language demands of mathematics (specifically open-
ended prompts) and ability to generate strategies to promote academic language). Across these 
two assessments, five questions focused on justification, specifically teachers’ production of 
justifications and/or their analyses and evaluations of student justification.  
Instrument Development 

Content knowledge assessment. Items for the content knowledge survey were drawn from 
previously validated sources (e.g., CT State Department of Education; Healy & Hoyles, 2000; 
Learning Mathematics for Teaching Project; Hill, Ball, & Schilling, 2004)) and were selected by 
a team of mathematics educators to fit the content themes of the project, algebraic and 
proportional reasoning. The items were field tested for appropriateness and timing. The final 
instrument included 7 multiple-choice questions and 2 open-ended questions.   

Language assessment. The second assessment was developed specifically for this 
investigation to uncover participants’ growth related to supporting the development of students’ 
mathematics academic language, especially with attention to ELLs and higher order thinking. 
Following recommendations of Gable and Wolf (2001), content-validity was sought through the 
use of research literature and experts’ content validation (i.e., mathematics educators, linguistic 
experts, and methodological experts) that noted the adequacy of the items as representative of the 
specified key constructs. The final instrument included 6 open-ended questions related to 
language use, challenges, and strategies. The assessment also included 7 Likert-type questions 
asking participants to self-report on their perceived knowledge about and confidence in 
addressing various issues related to language and justification addressed during the PD. The 
content validity questionnaires and the final instruments are available from authors upon request.  
Data Collection and Analysis 

 The data relevant for justification comprised five assessment items and two Likert-scale 
items. Multiple choice and scaled items were performed using standard statistical techniques 
(Green, Salkind, & Akey, 2000). The open-ended responses were analyzed using rubrics and 
additional qualitative analyses were conducted using standard techniques (Glaser & Strauss, 
1967). For example, for questions that asked teachers to select from a set of three which student 
justification they thought was best, researchers employed open coding of emergent themes, 
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discussed the themes, and then employed axial coding to make connections among the categories 
and to refine the coding schemes (Strauss & Corbin, 1990). Coding categories and definitions for 
each question were developed and tested by at least two researchers. Disagreements were resolved in 
discussion with a third research as needed. Applying these codes allowed us to look for change on 
both the group level and the individual level. 

 
Results and Discussion 

Results from the pre-post assessments indicate that the Math ACCESS Project did have a 
positive impact on teachers’ knowledge of content and language-related issues and strategies. 
We will describe content results briefly and then focus on the justification items. 
Evidence of Overall Impact 

Twenty-four participants completed the pre- and post- content assessments related to content. 
The results demonstrate increases in content knowledge overall. Scores of 15 participants (63%) 
increased; scores of 7 participants (29%) decreased, scores of 2 participants (8%) remained the 
same. Overall content knowledge showed a statistically significant difference in mean scores (p 
< .05). (See Table 1.)   

Table 1. Assessment of Content Knowledge of PD Participants, n = 24 
Administration Mean SD t df P 

Pre 9.33 3.67    

Post 10.63 3.63 2.24 23 .035 

 
Teachers’ self-report on the Likert items also demonstrated significant gains. Nineteen 

participants completed all questions on both pre and post administrations. The mean score for all 
7 items increased from pre to post (between 0.50 and 0.95 points per item), with all items except 
Item 1 being a statistically significant difference (p < .05).  A one-tailed t-test showed a 
significant difference between the pre- and post-results. Overall, these data demonstrate a 
positive and relatively strong impact of the professional development work with respect to 
language.  
Evidence of Impact Specific to Justification 

Qualitative analyses of the various assessment items that targeted justification offered 
additional insights into what the teachers had learned, and not learned, and raised some important 
issues for our consideration. We focus our discussion on two main issues that emerged as we 
worked on the idea of justification during the ACCESS Institute and as we analyzed participant 
data from the Institute. The first pertains to teachers’ (and mathematicians’) thinking about the 
qualities of a good student justification. The second pertains to the various types of justifications 
that can be offered and evaluating the validity of students’ work. 

Two assessment items in particular offered insights into how teachers were thinking about 
the qualities of a good justification, including validity. We describe and discuss each below. 
These two items demonstrated quite a bit of change between the pre- and post-assessments, but 
not necessarily towards what we would consider deeper understanding of justification. As will be 
discussed, we ultimately interpreted our results as indicating that we had raised issues related to 
justification enough to prompt awareness, new questions, and reflection, but we did not work on 



Vol. 5  831 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

the ideas intensively enough to solidify new understandings of what comprises a mathematically 
valid justification and a high quality justification.  

Question 7, adapted from Healy & Hoyles (2000), asked teachers to evaluate two student 
justifications of a particular claim (see Figure 1). Teachers determined whether each student’s 
response showed that the claim was (always) true and whether it demonstrated why the statement 
was true. 

Bonnie and Duncan were trying to prove whether the following statement is true or false: 
When you add any 2 even numbers, your answer is always even.  

 
Bonnie’s answer 
2 + 2 = 4 
2 + 4 = 6 
2 + 6 = 8 

 
4 + 2 = 6 
4 + 4 = 8 
4 + 6 = 10 

Duncan’s answer 
Even numbers end in 0, 2, 4, 6, or 8. 
When you add any two of these, the 
answer will still end in 0, 2, 4, 6 or 8. 
 

So Bonnie says it’s true. So Duncan says it’s true. 

Figure 1. Prompt from assessment item, question 7, adapted from Healy and Hoyles, 2000. 
 

On the pre-assessment, 43% of the teachers (incorrectly) thought Bonnie’s response showed 
that the claim was always true and 61% thought it showed why the statement was always true.  
On the post-assessment, these values decreased significantly to 22% and 35%, respectively. 
Indeed, we had an extended discussion about a similar problem during the institute. Initially, it 
was not clear to the teachers why a response such as Bonnie’s was inadequate. Several felt that, 
by showing many examples, the student had demonstrated that the result was always even. Part 
of the difficulty seemed to be gaining distance from the truth of the result to evaluate the validity 
of the student’s method. As the teachers knew the result was true, they did not authentically need 
to be convinced by the argument. In the Institute, we addressed the idea of “proof by example” 
(commonly known as an empirical proof) and its limitations. We also discussed using examples 
that exhausted all possible cases as a valid approach. This latter approach seemed akin to proof 
by example for some of the teachers. 

For Duncan’s argument, 74% of the teachers on the pre-assessment and 70% on the post-
assessment agreed (correctly) that his response showed the statement was always true. (See 
Table 2.) Despite the similar overall values, we found that many teachers had changed their 
response to this question.  

 
Table 2. Percent of Teachers Identifying the Correct Response for Question 7  

 
Question 

 
Correct 
response 

Overall 
N=23 

Multiple Subject 
N =12 

Single Subject 
N =11 

Pre Post Pre Post Pre Post 

7a. Bonnie’s work        

Has a mistake Disagree 91 83 92 75 91 91 
Shows that it’s 
always true Disagree 57 78 58 67 55 91 
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Shows why it’s true Disagree 39 65 33 67 46 64 

7b. Duncan’s work        

Has a mistake Disagree 96 87 92 83 100 91 
Shows that it’s 
always true Agree 74 70 75 58 73 82 

Shows why it’s true Disagree 39 26 58 50 18 0 
 

Furthermore, the elementary and secondary teachers responded quite differently. Whereas 
75% of the multiple-subject (elementary) teachers agreed that Duncan’s work showed it was 
always true on the pre-assessment, only 58% identified it as always true on the post. The single-
subject teachers showed the opposite trend, increasing from 73% to 82%. We suspect that there 
were lingering questions about the distinction between “proof by example” and proof by 
exhaustion, which perhaps were less clear to the elementary grade teachers. It’s interesting to 
note that the idea of proof by exhaustion may have eluded many secondary teachers initially, and 
that they better understood this idea at the end of the Institute. 

In evaluating whether Duncan’s work shows why the statement is true (it does not), most 
teachers, on both the pre- and post-assessment, felt that Duncan’s response did demonstrate this. 
In fact, there was an increase in the number of participants who felt the response did address 
why. Clearly, the participants found this student response compelling. In particular, all single 
subject teachers agreed that Duncan’s work demonstrated why the result held. 

Supporting these “mixed bag” results are analyses from the second question (language 
assessment, Q5). This question included a state test item (open ended problem) and asked 
teachers to identify whether each of three student work samples a) offered an adequate response 
(which requested an explanation) and b) which of the three they felt was the best justification and 
why. Each of the 3 student explanations had merit and none was complete. We used this question 
to infer, on the group level, what the teachers seemed to identify as characteristics of a good 
justification. On the individual level, we analyzed teacher responses for any changes in their 
thinking about what comprised a good justification. 

There is no absolute correct answer to the question of which of the three student responses 
was the best justification. Indeed, among a group of 12 mathematicians with whom we discussed 
this problem, at least one mathematician selected each of the three student work samples. To 
analyze this problem, we coded teachers’ responses to identify the characteristics the teachers 
felt were important for a good justification. There were 4 thematic categories of reasons offered 
for why a particular response was “best” included the following: 

• the detail/explicitness of the response (e.g., I could follow their thinking) 
• the student used, or stated that s/he used, a particular mathematical method (e.g., student A 

used proportional reasoning; he explained he saw the pattern) 
• the student understood/had deduced the key mathematical relationships needed to solve 

the problem (e.g., the student knew there were the same number of red and blue blocks, 
and half as many green blocks)  

• a relative argument (e.g., it made more sense than the other ones)  
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The second and third bullets perhaps need an additional comment. The second bullet reflects that 
teachers placed high value on recognizable and potentially named methods or mathematical 
techniques. Note that the mathematical tools used do not inherently make one justification better 
than another. Nevertheless, this was valued by many teachers. (It is possible that this was a 
variation of the first category, being detailed/explicit, namely with respect to the method used.) 
For the third bullet, we interpreted this to mean that the teachers valued that the student was able 
to identify the core mathematical relationship that was needed to solve the problem. 

As we reflected on these reasons offered, we realized that participants generally did not 
identify qualities such as the student response being convincing or demonstrating why the result 
must be so. We also noticed the preponderance of responses focused on detail and explicitness, 
although it was not clear what the teachers wanted the students to be explicit about. It was 
interesting to note that the attributes of clear and concise only came up once each. This led us to 
wonder whether teachers generally value explicitness and detail, or the obviousness of student 
method, more than whether the justification “does its job” as a justification and removes doubt 
about the validity of the claim. Although it is ultimately a judgment call whether an offered 
justification serves this function, the lack of attention to any associated attribute by the teachers 
was concerning to us. We also realized that the prompt might not have elicited attributes of a 
good justification because the prompt, which asked for which response was best, potentially 
focused teachers on comparing responses and explaining why one was better than the others and 
not what was absolutely good about the one they selected. 

In addition to what the teachers’ noticed, we queried the data for evidence of growth between 
the pre- and post-assessments. We coded individual teachers’ responses for whether they evinced 
some change in their perspective about what comprised a good justification. We coded each as 
either increased sophistication, stayed the same, or decreased sophistication. A response that was 
more sophisticated was more specific about the components of the response that were valued and 
why. It included fewer general claims (it made sense to me) and more specific claims (it made 
sense because the student explained the pattern he found). We found that 9 respondents increased 
in their sophistication; 5 stayed same; and 5 decreased.  

Consequently, we conclude that the ACCESS Summer Institute heightened teachers’ 
awareness of justification, some important qualities of justifications, and the language issues that 
might arise when asking students to justify, but the evidence suggests that we were not 
successful in expanding participants’ notions of what a good justification is. Indeed, our 
assessments show that we made them question their original ideas, but did not do enough work 
to solidify their understandings in a manner that aligns with the mathematics community.  

 
Implications and Conclusions 

Our work with participants in the Math ACCESS Project confirms earlier findings about the 
challenges teachers face as they work with justification. Justification is a complex practice the 
requires content knowledge as well as an understanding of how ideas are logically connected, the 
limitations of certain modes of argument, and how we determine– with a high level of certainty – 
whether a claim is true. During the ACCESS Institute, we were successful in raising some issues 
related to justification, but many more discussions are needed to more fully examine this 
important learning and disciplinary practice. In particular, sustained discussions about the 
qualities of a justification, and what one might expect from different students at different grade 
levels, would be beneficial.  
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As we reflect on the challenges in organizing professional development activities on 
justification, we have come to appreciate the power of a system that does not encourage teachers 
to reflect on or think about justification on a regular basis. On mandated assessments, clear 
explication of steps is as acceptable as a well reasoned justification (both are considered 
explanations). Most textbook tasks do not request justification. Planning time is tight, precluding 
deep thinking about issues of justification and formative feedback to students on justifications 
they produce. It is nearly impossible for teachers to engage this kind of work and thinking on 
their own given the incentives and constraints of the system. Without sustained efforts, however, 
findings that suggest abysmally low participation among students in justification will remain 
unchanged, as teachers are the linchpins in our system for promoting this important practice.  
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In this report, we analyze the heuristics and reasoning that students exhibit as they solve an 
open-ended combinatorics problem in an online, synchronous environment. While significant 
research exists on students’ mathematical reasoning and heuristics in problem solving, there is 
little work in these areas as students collaborate to solve problems online. In our analysis, we 
find that as the students make sense of interpretations of the problem and jointly develop 
solutions, they display emergent heuristics and reasoning that evolve over the course of their 
online sessions. 
 

Objective 
Information-based economies such as in the United States are experiencing an increased 

demand for individuals who know how to harness information and communication technologies 
(ICT) to collaborate and to identify and solve complex problems (Reich, 1992). It is important 
for mathematics educators to acquaint students to environments and learning activities through 
which they develop abilities and dispositions that allow them to transition to ICT-intensive 
careers. While much research has been conducted on students’ mathematical problem solving 
(Francisco & Maher, 2005; Schoenfeld, 1985; Silver, 1994) and on Internet-based instruction 
(e.g., Pena-Shaff, Altman, & Stephenson, 2005; Wallace & Krajcik, 2000), with the exception of 
a few studies in the learning sciences (e.g., Chernobilsky, Nagarajan, & Hmelo-Silver, 2005; 
Hiltz & Goldman, 2005; Powell & Lai, in press; Stahl, 2006), little research has been done on 
Internet-based, collaborative problem solving in mathematics. In light of this gap, it is crucial for 
mathematics education researchers to investigate how students jointly construct mathematical 
ideas within online environments. 

We have therefore engaged in a longitudinal study to investigate (a) how students use ICT 
tools to collaborate in mathematical problem solving and (b) what resulting mathematical ideas 
and reasoning they develop. This study focuses on the latter component of the larger study, and 
investigates the heuristics and lines of reasoning that students evidence in their interactions as 
they collaboratively solve open-ended combinatorics problems using an online communications 
environment. 
 

Conceptual Framework 
The key conceptual terms in this study include heuristics and reasoning. By heuristics, we 

speak of actions that human problem solvers perform that serve as a means to advance their 
understanding and resolution of a problem task. We do not imply that when problem solvers 
implement heuristics that they will necessarily advance toward a solution but only that their 
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intent is to do so. Our sense of heuristics includes explicit and implicit general strategies such as 
categories outlined by Pólya (1945/1973, pp. xvi-xvii, 112-114). 

We distinguish heuristics from reasoning, which we view as a broad cognitive process of 
building explanations for the outcome of relations, conclusions, beliefs, actions, and feelings. In 
agreement with English (2004), mathematical reasoning encompasses such processes as 
analyzing data, conjecturing, argumentation, forming and justifying logical conclusions, and 
proving claims. As she describes, these processes make possible such types of thinking as 
conditional, proportional, spatial, and critical thinking, and deductive and inductive reasoning (p. 
13). There is evidence that imagery is deeply tied to mathematical reasoning (Presmeg, 1997; 
Thompson, 1996), and can affect students’ abilities to solve problems, and ultimately, to form 
generalizations. 
 

Methods 
Participants and Context 

The fourteen students in this study come from two high schools. Eight of the students, whose 
mathematics teacher is the fourth author, are from the urban, public high school in Long Branch, 
NJ (LBHS). The remaining 6 students, whose mathematics teacher is the third author, are from a 
suburban, private high school in Somerset, NJ (RPS). All of these students are in their fourth 
year of high school and, in their respective schools, have average mathematical performance. 

The students use an ICT tool called the Virtual Math Teams Chat (VMT Chat). Developed by 
researchers at Drexel University (Stahl, 2006), with support from the National Science 
Foundation, it is an Internet-based, dual-interaction space with whiteboard and chat windows, 
which allows users, whether co- or remotely-located, to communicate about mathematics. 

For our study during the 2008-2009 school year, we planned for the students to interact 
online for approximately 18 sessions, each 45 minutes long. During the first half of the year, 
students would work collaboratively on open-ended combinatorics problems. Students would 
then switch to solving social choice problems for the second half of the year. 

To neither overcrowd nor under-populate each chat room and to facilitate discussion of the 
problems, we assigned three to four students to a virtual room. Of the four chat rooms, two 
rooms contained two students from each school, and the other two rooms contained two LBHS 
students and one RPS student. 

To ensure minimal face-to-face communication and that communication among students 
would occur in the VMT environment, students who were co-located and in the same chat room 
were placed at desks at opposite ends of their classroom. We also discouraged paper and pencil, 
as we wanted students to place all of their inscriptions into either the whiteboard or chat 
windows. These and other procedures were made clear to the students at the beginning of each 
session through a script that the third and fourth authors read to their students before they began 
working on the problems. 
Data Sources 

Our data sources are the mathematical problem and the persistent archives of the VMT 
interactions in each of the two interaction spaces. 

Mathematical problem. During two sessions in October 2008, the students worked on the 
towers problem, the text of which we present in Figure 1. We chose this mathematical problem 
for two reasons: (1) its context is familiar to students from urban and suburban communities; and 
(2) mathematically it affords different solution approaches, ranging from simple listing 



Vol. 5  838 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

procedures to more advanced methods involving combinatorial analysis. 
 

 
Figure 1. The towers problem. 

 
 Persistent archives. VMT Chat records and archives the chat text and whiteboard 

inscriptions that comprise a chat-room session. These archived sessions are available as Java 
files (with extension .jno) that can be replayed with a player application. These archived, 
viewable VMT Chat sessions are one part of the data upon which analyses can be performed. For 
more detailed analytic purposes, we also produce transcripts of all the actions in the 
environment. To do so, we use an automated transcriber that translates all the actions in the 
environment into text. These transcription files can be viewed in a web browser, in a Microsoft 
Excel spreadsheet, or in a Microsoft Word document as a table. For this study, we used the third 
method for ease of coding. 
Analysis 

 For this report, we analyze two sessions of data from one chat room. This particular chat 
room contains two students from LBHS and two students from RPS. X lil pit 21 x and johnc250 
are from LBHS, and we will refer to them as LP and JC. Cammalleri and 16oncebabyjesus are 
from RPS, and we will refer to them as CM and SO. During the two sessions, the four students 
worked on the towers problem. We found this chat room to be particularly interesting because of 
the way the students interpreted the problem and the solutions that resulted as a result of their 
interpretation. 

 To investigate the online, problem-solving actions of learners so as to understand how they 
build mathematical ideas, heuristics and reasoning, we code for instances in the data of different 
types of heuristics and evidence of mathematical reasoning (Table 1). These codes were 
developed inductively for the data. 
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In Table 2, we present an example of one coded time interval from a VMT Chat 

transcription. In this example, which takes place at 2:49:01, JC (johnc250) has created in the 
whiteboard a textbox listing a tower. This information can be seen in the first four columns of 
Table 2, which lists characteristics of an action at a particular time. Note that “wb” under the 
Type column stands for whiteboard, indicating that this particular action took place in the 
whiteboard. 

In the fifth column, we have coded this moment for the heuristic of using symbolic notation 
(HSN), as well as for the structure of the tower listing (RSTL) and, as evidence of mathematical 
reasoning, contributing a missing solution to another participant’s work (RCMP). 
 

Table 1 

Codes Used in Chat Room Transcriptions 

Heuristic Listing 
Sequentially 
(HLS) 

Using 
Symbolic 
Notation 
(HSN) 

Using Iconic 
Notation 
(HIN) 

Listing 
by 
Cases 
(HLC) 

Evidence 
of 
Reasoning 

Structure of 
Tower 
Listing 
(RSTL) 

Argumentation 
and 
Justification 
(RAJ) 

Contributing 
a Missing 
Solution to 
Another 
Participant’s 
work 
(RCMP) 
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Results 

With regards to our inquiry into the cognition of the team of participants, our investigation 
concerns the following guiding question: What heuristics and lines of reasoning are evidenced in 
students’ interactions as they collaboratively solve open-ended combinatorics problems using the 
VMT Chat?  We present our results first with regards to heuristics and second with regards to 
mathematical reasoning. 
Heuristics 

The VMT Chat environment seemed to afford many of the students’ heuristics. During these 
two sessions, the students seemed to have propensities to use the textbox tool, which is one 
means to list towers on the whiteboard space. To represent the three-, four-, and five-tall towers 
in these lists, students used symbolic notation. While CM (cammalleri) used strings of the words 
red and yellow to represent his towers, LP (x lil pit 21 x) and JC (johnc250) used strings of the 
letters r and y. In the former case, red and yellow stand for red and yellow cubes, respectively. In 
the latter case, r and y stand for red and yellow cubes, respectively. 

To list their towers, students used three methods: listing sequentially, listing by cases, or 
both. Listing sequentially specifies instances where each successive tower is related to the 
preceding tower and where the list contains sequentially two or more instances. At 2:22:55, LP 
lists six four-tall towers: 1) yrry, 2) yyrr, 3) rryy, 4) ryry, 5) yryr, and 6) ryyr. To get the second 
tower, yyrr, from the first tower, yrry, it seems that LP shifted rr from the second and third 
position to the third and fourth position. To get the third tower, rryy, from the second tower, yyrr, 
it seems that LP switched the positions of yy and rr. To get the fourth tower, ryry, from the third 
tower, rryy, it seems that LP interchanged the positions of the second r and first y. To get the 
fifth tower, yryr, from the fourth tower, ryry, it seems that LP changed both ry’s to yr’s. Finally, 
to get the sixth tower, ryyr, from the fifth tower, yryr, it seems that LP changed the first yr to ry. 

CM lists by cases as well as sequentially. In listing four-tall towers, he used three cases: 1) 
Towers containing three red’s and one yellow; 2) Towers containing two red’s and two yellow’s, 

Table 2 

Sample Coding of Transcription 

Time Author Type Content Code and explanation of code 

14:49:01 johnc250 wb [johnc250 
created a 
textbox : 
yellow red 
red yellow 
red] 

HSN, RSTL, RCMP 

EC: (HSN) JC uses symbolic notation to list a five 
cube tall tower. He uses a string of five colors to 
represent a five-tall tower, with each color being 
either red or yellow. 

EC: (RSTL, RCMP) JC creates a textbox containing 
a tower that CM missed and places it among CM’s 
five-tall towers. JC uses CM’s notation to write this 
tower, and seemingly would have had to enter into 
CM’s logic to not only use CM’s notation, but also to 
discover that CM had not listed this particular tower. 
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with red in the first position; and 3) Towers containing two red’s and two yellow’s, with yellow 
in the first position. Within each case, CM lists towers sequentially in a similar manner to how 
LP listed his towers sequentially. 

The heuristic of listing towers sequentially seems to be effective since it allows students to 
create towers methodically, one at a time. Once a tower is listed, it needs only to be slightly 
modified to create a next tower. The same process can then be used with this second tower to 
create a third tower. In this way, students can create a succession of towers in a manner that is 
not daunting, as the student needs only to make small changes to the previous tower to create a 
new tower. When used in conjunction with listing by cases, as CM does, it becomes an effective 
way of listing all of the towers within a case. As we will explain in the next section on reasoning, 
through his interpretation of the problem, CM was actually able to list all three-, four-, and five-
tall towers, save for one. 
Reasoning 

Throughout the two sessions, there is evidence in the students’ whiteboard inscriptions and 
chat text that they reason mathematically. This is evident in how students structure their lists of 
towers. When CM lists three-, four-, and five-tall towers, he seems to use knowledge gained 
from one listing to help with a subsequent listing. 

CM lists three- and four-tall towers in two different ways (Figures 2 and 3). Initially, CM 
starts out by listing three-tall towers, all of which contain either two red cubes and one yellow 
cube, or two yellow cubes and one red cube. He first lists towers containing yellow in the first 
position, and then lists towers containing red in the first position. CM follows a similar tactic in 
listing four-tall towers, all of which contain two red cubes and two yellow cubes. He again first 
lists towers containing yellow in the first position, and then lists towers containing red in the first 
position (Figure 2). 

 
 
 
 
 
 
 
 
 
 
 

 
During his second time of listing three- and four-tall towers, CM starts again with three-tall 

towers. He lists towers containing either two red cubes and one yellow cube, or two yellow cubes 
and one red cube, but first lists towers containing red in the first position, and then lists towers 
containing yellow in the second position (Figure 3). 

 
Figure 2. CM’s initial listing of three- and 
four-tall towers. 
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CM’s method of sequential listing evolves as he adds an additional case to his listing of four-

tall towers: the case of towers with three red’s and one yellow. To represent towers in this case, 
he lists them sequentially and shifts the position of the yellow cube from the last position to a 
position one place to the left for each new tower, creating the towers red red red yellow, red red 
yellow red, red yellow red red, and yellow red red red. After listing these towers, using the same 
cases he used in listing three-tall towers, CM lists four-tall towers containing two red cubes and 
two yellow cubes. He starts with towers with red in the first position, and then lists towers with 
yellow in the first position (Figure 2). 

 CM adapts this method of sequential listing to construct five tall towers, starting with the 
case of towers with three red’s and two yellow’s. The first tower he lists is red red red yellow 
yellow. To construct subsequent towers, he shifts the yellow yellow from its position at the end 
of sequence to a position one place to the left for each subsequent tower, creating the towers red 
red yellow yellow red and red yellow yellow red red. Interestingly, CM starts to list towers 
sequentially after the last tower in that case, and so does not create the tower yellow yellow red 
red red until later. This can be seen in Figure 3 in the textbox labeled “5 cubes.” 

In these two instances represented in Figures 2 and 3 of building three-, four-, and five-tall 
towers, CM seems to reason by analogy. He first builds three-tall towers sequentially and by 
cases, and then seems to transfer this method to constructing four-tall towers. He then revises his 
method of sequential listing for constructing three-tall towers, and after doing so, comes up with 
a new case and method of sequential listing when building four-tall towers, while retaining the 
older method as well. He then uses these methods to produce five-tall towers. 

Reasoning is also evidenced in the way that students make sense of the problem and come to 
a solution based on their interpretations of the problem. Early in the session, CM seems to infer 
from the problem statement that it may be possible to construct towers with a single color. He is 
unsure and asks LP whether this is possible. LP replies, based on his own interpretation of the 
problem statement, that towers must be four-cubes tall, each containing two colors. From this 

 
Figure 3. CM’s final listing of three-, four-, 
and five-tall towers. 
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point onwards, CM continues only to construct towers with two colors and no longer evidences 
entertaining one-color towers. The other two members of the team who are present at this session 
also seem to agree with this interpretation, as they also only construct towers with two colors. 

Later in the session, LP asks how to answer the question involving n-tall towers. CM states 
that five is the largest number of cubes available and that there are only three red cubes and two 
yellow cubes. This interpretation helps us to determine exactly which towers CM constructs as 
well as which towers he omits. We believe that his interpretation stems from our diagram of the 
two sample towers (Figure 1). The first tower is a two-tall tower containing one red and one 
yellow cube, and the second tower is a three-tall tower containing two red cubes and one yellow 
cube. This accounts for the three red cubes and two yellow cubes that CM deems only to be 
available for constructing towers. Taking into account these restrictions, CM lists all possible 
towers with the exception of one five-tall tower that JC contributes (Table 2) that also fits within 
the CM’s interpretation of the problem. CM ultimately comes up with six three-tall towers, 10 
four-tall towers, and nine five-tall towers. Indeed, with these restrictions, the number of three-tall 
towers is 

� 

C 3,1( )+ C 3, 2( )= 6 , the number of four-tall towers is 
� 

C 4, 2( )+ C 4, 3( )=10 , and the 
number of five-tall towers is 

� 

C 5, 3( )=10 . 
 

Discussion 
The results of this preliminary study raise interesting questions about the use of online 

communication environments as well as the role of teacher or researcher intervention and the 
development of students’ problem-solving heuristics and mathematical reasoning. Indirect 
teacher or researcher intervention occurs in the design of the online environment and the 
mathematical tasks as well as in decisions about the composition of the work teams. However, 
the problem-solving sessions in which CM, LP, SO, and JC participate are mediated by an 
Internet-based environment and, importantly, without direct intervention of researchers or 
teachers. Nevertheless, both in the chat and whiteboard spaces, the students engaged in 
thoughtful discussions and displayed emergent heuristics and mathematical reasoning. 

Some of the reasoning in which the students engage is corroborated in the literature. When 
CM constructs 3-, 4-, and 5-tall towers during the towers problem sessions, he seems to be 
engaging in reasoning by analogy. English (1997) defines this type of reasoning as “the transfer 
of structural information from one system, the base, to another system, the target” (p. 5, 
emphasis in the original). Indeed, once CM has listed possibilities for three-tall towers, he seems 
to transfer his strategy from how he lists three-tall towers to how he lists four-tall towers. 

CM then starts over and creates a revised version of his original three-tall towers. 
Afterwards, CM then comes up with an additional case and method for his four-tall towers 
before. This additional case seems to be influenced by CM’s new list of three-tall towers, as well 
as by how CM’s interprets the problem statement. Indeed, the case of four-tall towers containing 
three red cubes and one yellow cube fits within the constraints that CM imposes on the problem, 
that there are a maximum of three red and two yellow cubes with which to construct towers. CM 
then seems to use this new method as well as the method from three-tall towers to list five-tall 
towers. 

Throughout the VMT Chat sessions, there are multiple transfers of structural information. 
CM’s strategy used in his original three-tall tower listing is transferred to his original listing of 
four-tall towers. CM’s strategy used in his revised three-tall tower listing is not only transferred, 
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but also evolved in his new listing of four-tall towers. Finally, CM’s strategy for listing four-tall 
towers is transferred to his listing of five-tall towers. 

Some of CM’s reasoning goes beyond reasoning by analogy. He not only transfers structural 
information but also evolves his strategies as he successively constructs three-tall towers, four-
tall towers, and five-tall towers. When CM constructs his new listing of four-tall towers, he not 
only uses his strategies from his revised list of three-tall towers but also evidences an awareness 
of another pattern. Consider the first two towers listed in his new three-tall towers listing: red red 
yellow and red yellow red. To get the second tower from the first tower, CM seems to use the 
strategy of listing sequentially, and switches the positions of the first red and first yellow in the 
first tower. Note that it is also possible to shift the yellow in the first tower one position to the 
left to get the second tower. CM may have seen this shifting pattern and could have used it to 
create the first four towers in his new listing of four-tall towers, where the yellow cube is shifted 
one position to the left three times (red red red yellow, red red yellow red, red yellow red red, 
and yellow red red red). 
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The goal of this study is to examine the construction and use of representations in 
mathematical problem solving, and, in particular, how representations arise and are deployed in 
their interactional, mathematical, and social contexts. Specifically, we examine students’ 
representational activity while working on proof-based problems in undergraduate Calculus. This 
poster will demonstrate how reasoning with and through mathematical representations in this 
setting is interactionally accomplished and identify and characterize qualities of representations 
that shape those processes of reasoning and proving.  

Data include audio-video recordings of a focus group in an introductory calculus course 
where discussion sections were organized as “workshops” in which students worked in small 
groups and instructors emphasized the need for explanation and justification. Recordings were 
content-logged and initial strips of interaction were selected for close interactional analysis. 
Using these, we developed grounded theoretical categories in an iterative fashion, integrating 
constructs from the literature, then extended our analysis systematically across the data corpus. 

We draw upon two theoretical lenses to examine the students’ construction and use of 
representations: first, we borrow from Speiser, Walter, & Sullivan (2007), who identify a 
representation as a presentation used to facilitate communication with oneself or others (p. 15); 
second, we view a representation as a cultural artifact with a local history of production as well 
as a history embedded in mathematical and pedagogical meanings and conventions (Latour, 
1999). 

Our analysis reveals three properties of representational activity—complementarity, 
prospectivity, and generativity—that we find important in understanding the constraints and 
affordances of representations in their interactional construction and use in mathematical 
explanation and justification. Complementarity refers to the coordination of multiple forms of 
representation to support reasoning beyond the affordances of a single representation. 
Prospectivity describes how representations, due to specific properties embedded in the structure 
and customary use of a certain representation, can afford prospective attention to and yet also 
bound the nature of immediate next steps in the problem-solving process. Generativity refers to 
the productive quality of representational activity for fostering new insights into mathematical 
situations, in particular across representational systems. This poster presentation will display 
selected examples of different representations—possessing one or more of these three 
properties—from the students’ work, along with a discussion of the constraints and affordances 
of such representational activity for students’ as they work together to produce proof and 
justification.  
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For studies of curriculum effectiveness to be meaningful and useful, information is needed about 
classroom implementation of the curriculum. One challenge for researchers is how to obtain 
data about implementation that are informative, reliable, and relatively inexpensive to collect 
and analyze. This paper describes instruments for assessing variations in both content taught 
and instructional practices and illustrates their use in a study of the field trial of the Third 
Edition of the UCSMP Geometry curriculum. 
 

Introduction 
The National Research Council’s report, On Evaluating Curricular Effectiveness (NRC 

2004), recommends that evaluations of curriculum “present evidence that provides reliable and 
valid indicators of the extent, quality, and type of the implementation of the materials. At a 
minimum, there should be documentation of the extent of coverage of curricular material” (p. 
194). Educators have long recognized that classroom instruction, even for the same course, can 
vary from teacher to teacher and school to school. Differences often occur because teachers 
implement curriculum based on their personal teaching philosophy, including what they believe 
to be the most important content, what expectations they believe are reasonable for their 
students, and what district and state frameworks form the basis of accountability measures. As 
Hiebert and Grouws (2007) note,  
 The emphasis teachers place on different learning goals and different topics, the 

expectations for learning that they set, the time they allocate for particular topics, the 
kinds of tasks they pose … all are part of teaching and all influence the opportunities 
students have to learn. (p. 379) 
The challenge for curriculum researchers is how to collect and analyze implementation data. 

Clearly, one approach would be for someone to observe a classroom for an extended period of 
time. However, lengthy observations are expensive. Although such observations might be 
possible in a study of a few teachers in close proximity, extensive observations are not feasible 
in moderate or large scale research. Alternatively, a video camera could be placed in a 
classroom to record lessons. But videos must still be watched and transcribed to be useful – 
again, an impractical approach except when studying a small number of cases. 

The purpose of this paper is to provide insights into two research questions. The first is 
methodological; the second relates to a particular curriculum evaluation project. 

1. What instruments can be used to document teacher implementation of curriculum 
in a low-cost and reliable manner? 

2. What differences exist in how teachers implement and use a new geometry 
curriculum? 

 Data to address these research questions are drawn from an evaluation study of the field-trial 
version of Geometry (Third Edition, Benson et al., 2007), developed by the University of 
Chicago School Mathematics Project (UCSMP). The field trial was conducted in 12 schools 
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from 9 states during the 2006–2007 school year. The schools represented a mix of urban, 
suburban, and rural environments across the U.S.A. Although comparison classes using the 
curriculum already in place at the school were present in 9 of the 12 schools, the results reported 
here are based solely on data from the teachers using the UCSMP Geometry (Third Edition) 
curriculum. Consequently, the results are controlled for curriculum, permitting a discussion of 
how the instruments and analysis provide insights into variability in implementation.  

 
Documenting the Implemented Curriculum: Content Coverage and Opportunities for 

Practice 
 Some researchers (e.g., Tarr et al., 2006) have used textbook diaries to collect data about the 

lessons that teachers teach from a particular textbook. This often involves having teachers make 
notes on a Table of Contents as they use a textbook. Because we were collecting data as part of 
a formative evaluation, we had teachers record slightly more information for each chapter they 
taught. For each chapter in the book, teachers completed Chapter Evaluation forms on which 
they indicated the lessons taught, the number of days spent per lesson, and the questions 
assigned; they also rated each lesson and set of questions on a scale of 1 (low) to 5 (high), and 
made comments about various aspects of the lessons. The ratings and comments provided 
insight to the curriculum developers when revising the materials. The other information provides 
insights into classroom implementation, and is the main source of data reported in this paper.  
Lesson Coverage: Opportunity to Learn Content 

Benson et al. (2007) contains a total of 114 lessons in 14 chapters. The chapter titles are 
listed in Table 1.  

 
Table 1 

Chapter Titles for UCSMP Geometry (Third Edition, Field-Trial Version) 
Ch Title  Ch Title 
1 Points and Lines  8 Lengths and Areas 
2 The Language and Logic of Geometry  9 Three-Dimensional Figures 
3 Angles and Lines  10 Formulas for Volume 
4 Transformations and Congruence  11 Indirect Proofs and Coordinate Proofs 
5 Proofs Using Congruence  12 Similarity 
6 Polygons and Symmetry  13 Consequences of Similarity 
7 Congruent Triangles  14 Further Work with Circles 

 
Figure 1 displays the percent of lessons taught as reported by the 12 teachers teaching from 
Benson et al. (2007) by thirds of the text and overall. Note that the number of lessons is 39 for 
Chapters 1–5, 45 for Chapters 6–10, and 30 for Chapters 11–14. 

Figure 1 demonstrates how implementation of curriculum by teachers using the same text 
can vary considerably. The percent of lessons taught was relatively similar for Chapters 1-5, 
with 7 of 12 teachers each teaching at least 90% of the lessons. However, greater variability in 
implementation was observed in Chapters 6-10, with half of the teachers teaching less than 78% 
of the lessons. In the final third of the book, three teachers taught none of the lessons; and only 
three taught more than 40% of the lessons. Overall, the percent of lessons taught ranged from 
52% to 92% with a median of 67%. 

Although some teachers taught comparable percentages of the text, an analysis of the actual 
lessons taught reveals differences in students’ opportunities to learn specific content. Figure 2 
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indicates the actual lessons reported taught by all teachers, called Teachers A through L, in the 
Field Trial study.  

 
Figure 1. Percent of lessons in UCSMP Geometry textbook taught by 12 teachers. 
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Figure 2. Coverage of lessons taught by teachers A-L in UCSMP Geometry. A dark rectangle 
indicates that the lesson was reported as having been taught. A light rectangle indicates that the 
teacher reported not teaching that lesson. 
 

Although Teachers A, B, F, and K taught comparable percentages of the text (between 52% 
and 57% of the lessons), each pattern of coverage is different and leads to different opportunities 
for students to learn geometry content. Teacher A skipped lessons in many chapters but covered 
some lessons from every chapter in the text. In contrast, Teacher K skipped few lessons but only 
taught through Chapter 8. So Teacher K’s students had little to no opportunities to study three-
dimensional figures, volume, or coordinate proofs; even though Teacher A’s students studied 
some lessons from every chapter, they studied fewer lessons in each of the chapters studied by 
Teacher K’s students. Teacher B also taught most of the first eight chapters but then taught some 
lessons related to proofs with coordinates and trigonometric ratios. Likewise, although Teachers 
C, D, and I all covered between 60% and 70% of the text, each of their patterns of coverage was 
different leading to different opportunities for students to learn geometry content. 

Examining specific lesson coverage may identify other implementation patterns. For 
instance, all teachers taught Lesson 1–7, a lesson that focused on using a dynamic geometry 
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drawing tool (DGS). However, although each had regular access to technology, either graphing 
software such as Sketchpad, or calculators with either Cabri or Cabri Jr, many found the use of 
the DGS to be difficult and confusing. When another lesson on DGS appeared in Chapter 2, 
seven of the twelve teachers omitted it. Some teachers came back to the use of DGS later in the 
year, but an early difficult experience influenced lesson coverage negatively. 
Exercise Coverage: Opportunity for Practice 

Curriculum implementation also includes making decisions about providing opportunities for 
students to practice mathematics, typically through homework. In the UCSMP curriculum, 
question sets are constructed with four types of questions. Covering the Ideas questions focus on 
the essential aspects of the lesson; students who complete these questions can use the basic skills 
and concepts. Applying the Mathematics questions require students to use the essential aspects in 
new ways or in new contexts; students need to take the basic ideas to a slightly higher level. 
UCSMP uses a modified mastery approach so Review questions in each lesson provide an 
opportunity for students to continue working on concepts throughout a chapter and throughout 
the text. Finally, Exploration questions provide an opportunity for extension and discovery. With 
the exception of the Exploration problems, the curriculum developers recommend that students 
generally be assigned almost all the problems. 

On the Chapter Evaluation form, teachers listed the questions assigned to students. Figure 3 
provides a visual of the variability in implementation of homework assignments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Percent of questions assigned by 12 teachers using UCSMP Geometry, based 
only on lessons taught. 
 

Although the median percentage of questions assigned from Covering the Ideas and 
Applying the Mathematics is roughly 80%, there are major differences in expectations between 
teachers assigning the maximum percentage of exercises and those assigning the minimum. For 
instance, two teachers (Teachers D and F) assigned only about a third of the Covering the Ideas 
questions; eight teachers assigned more than 75% of these questions. Likewise, eight assigned at 
least 75% of the Applying questions. However, only five of the twelve assigned at least 75% of 
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the reviews; in fact, five teachers assigned less than a fourth of the reviews. Given that review 
problems are an essential feature of the modified mastery approach used in the UCSMP 
secondary curriculum, the lack of attention to the review questions raises concerns about the 
fidelity of implementation of the curriculum in those classrooms. The limited assignment of 
review questions by some teachers also means that students in their classes may have had less 
opportunity to achieve mastery than the developers intended.  
 

Documenting Teachers’ Expectations Relative to the Assessed Curriculum 
Teachers’ expectations relative to the assessments given to their students also provide 

information about curricular implementation. On all posttests administered as part of evaluations 
of the UCSMP curriculum, teachers are asked to indicate for every item whether they taught or 
reviewed the content needed for their students to answer the item. This measure provides insight 
into whether teachers perceive that their lesson coverage provided students with opportunities to 
master content at a level sufficient for assessment. Even when teachers have taught the same 
content, based on reported coverage of lessons or assignment of exercises, they sometimes 
respond differently to these opportunity-to-learn questions. 

Two multiple-choice posttests were administered as part of the formative evaluation of the 
Geometry curriculum. The posttests were constructed based on content in the first ten chapters, 
which the developers expected most teachers to teach. Of the 60 items on these tests, 20 (items 
36-55) are from the first four levels of the van Hiele Geometry test (Usiskin 1982). Among the 
other 40 items, 19 deal with figures and their properties, 4 with transformations, 9 with 
measurement, 6 with reasoning, and 2 with graphing of lines. Although the 12 teachers in the 
field trial were using the same curriculum, Figure 4 illustrates that their expectations about the 
extent to which students had an opportunity to learn the content for the items varied. 
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Figure 4. Geometry teachers reported opportunity-to-learn (OTL) for the UCSMP-constructed 
posttests. A dark rectangle indicates that the teacher responded “yes” to covering the content on 
the OTL form; a light rectangle indicates that the teacher responded “no.” 

 
Only on 23 of the 60 posttest items (38%) did all teachers report having taught the content 

needed to answer the items. The number of assessment items for which teachers reported they 
had taught or reviewed the content needed for students to answer the items ranged from 38 to 60, 
with a median of 54 items. The documented variability represented in Figure 4 suggests that 
student achievement data that does not consider teachers’ OTL responses on assessment items 
has the potential to lead to incorrect conclusions. Thus, documenting teachers’ views relative to 
the assessed curriculum is an essential part of documenting curriculum implementation.   
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Documenting Instructional Practices Related to Curriculum Implementation 
Data about instructional practices can also be collected from self-reports. At the end of the 

school year, teachers completed two documents: a questionnaire about instructional practices and 
a supplement designed to obtain details about curriculum features that might influence revisions 
to the instructional materials. On the questionnaire, teachers generally checked or circled 
responses from a set of options, so it required only a few minutes to complete; the supplement 
required short responses to open-ended questions. Here, we describe questions and present 
results related to assigning homework and two instructional practices emphasized in the entire 
UCSMP secondary curriculum—reading and writing mathematics. 

Teachers were asked, “On the average, how many minutes of homework did you expect the 
typical student to do each day?” Choices were 0–15 minutes per day, 16–30 minutes per day, 31–
45 minutes per day, 46–60 minutes per day, and more than 60 minutes per day. Five teachers 
(Teachers A, B, D, F, and H) expected students to complete 16–30 minutes of homework per 
day, five (Teachers C, I, J, K, and L) expected 31–45 minutes of homework per day, and two 
(Teachers E and G) expected 46–60 minutes of homework per day. In general, the teachers who 
expected the least amount of time per day on homework were also the teachers who assigned the 
fewest percent of the exercises. Hence, the responses to the questionnaire provide a check on the 
reliability of the data reported about homework on the Chapter Evaluation Forms. 

Because reading and writing in mathematics are both prominent features of the UCSMP 
curriculum, teachers were asked several questions about these practices. Table 2 contains the 
questions we focus on in this paper and the coding used to create an emphasis index for each. 
The coded responses were summed to obtain an index of reading emphasis and writing emphasis 
for each teacher as reported in Table 3. 

Again, considerable variability among teachers as well as an individual teacher’s relative 
emphasis between reading and writing in mathematics is apparent. For instance, Teacher A 
places more emphasis on writing mathematics than reading; for Teacher B, the reverse is true. 
Several teachers (Teachers D, E, I, and J) have relatively high indices for both reading and 
writing. 

Teachers’ responses on the supplement validated their questionnaire responses. When asked 
to describe how reading was handled, Teacher D replied, “Throughout the year, I gave reading 
quizzes and the students who read the sections did fairly well. …I expect them to have read the 
section before we go over the material. I expect them to do a lot of the learning by reading.”  

 
Table 2 

Reading and Writing Questions Asked of Teachers and Coding of Responses 
Reading Writing Code 

How often did you 
expect students to read 
their mathematics 
textbook? 

How often did you expect students 
to write explanations to show what 
they were thinking when solving 
mathematics problems? 
 

Almost every day = 4 
2-3 times per week = 3 
2-3 times per month = 2 
Less than once a month = 1 
Never = 0 
 

How often did students 
read silently in class? 

How often did students write 
complete solutions when they 
solved problems? 

Daily = 3 
Frequently = 2 
Seldom = 1 
Never = 0 
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How often did students 
discuss the reading in 
class? 

How often did students explain or 
justify their work? 

Daily = 3 
Frequently = 2 
Seldom = 1 
Never = 0 

 
Table 3 

Index for Reading and Writing in Mathematics for Teachers Using UCSMP Geometry 
Teacher A B C D E F G H I J K L Median 

Reading Emphasis 4 6 7 8 8 3 4 4 10 8 6 8 6.5 
Writing Emphasis 7 3 5 10 9 8 8 4 7 9 7 7 7 

Note. For both reading and writing, the maximum = 10 and the minimum = 0. 
 

Discussion 
To address the first research question, “What instruments can be used to document teacher 

implementation of curriculum in a low-cost and reliable manner?”, we have described three 
survey instruments: Chapter Evaluation forms, Posttest Opportunity-to-Learn Forms, and a 
Teacher Questionnaire about instructional practices. Each is relatively short and easily 
completed by teachers. Unlike classroom observation data that may require extensive coding 
and high inference, all UCSMP survey data are low-inference and can be analyzed and 
displayed using relatively low-cost software. 

In some cases, questions asked on different survey forms can be used to check reliability or 
to expand perspectives on responses to questions on other forms. Although not discussed here, 
an end-of-year survey of geometry students also had some questions about content covered and 
instructional practices, so that responses by teachers and students can be used to validate each 
others’ perspectives. UCSMP researchers also conducted a 2–3 day visit to each field trial 
school to observe classes and interview the teachers. Data from the school visits generally 
confirmed the data collected from the surveys. We found that when differences occurred, 
teachers were often a bit more conservative on the questionnaires than in the interview. For 
instance, only for Teacher A did the questionnaire responses seem to suggest more frequent use 
of reading and writing than would have been expected based on the interview responses. Such 
reliability checks across surveys and between surveys and observations confirm that self-
reported data from teachers of the type presented here are quite robust. 

To address the second question, “What differences exist in how teachers implement the 
UCSMP Geometry curriculum?”, data were provided from a year long field trial conducted with 
twelve teachers from nine states. Teachers’ responses to questions on the survey forms provide a 
picture of many differing kinds of curriculum implementation. In particular, there is 
considerable variability from teacher to teacher on the following dimensions: 

• Percent of lessons taught, ranging from 52% to 92% with a median of 67%; 
• Content studied during the year, including classes where students had little to no 

opportunity to study three-dimensional figures, volume, or coordinate proofs and classes 
where all these topics were studied; 

• Nature and extent of assigned homework questions, including some classes where 
teachers regularly skipped the review questions designed to develop and maintain 
mastery. 
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• Extent to which they implemented other instructional practices recommended by the 
curriculum developers, such as emphasizing reading and writing mathematics.  

In this paper, we have focused on curricular implementation, not on achievement. However, 
variations in implementation of the geometry curriculum are accompanied by variations in 
achievement levels (Thompson & Senk, in preparation). The nature of the data reported here 
permits detailed profiles of implementation of UCSMP Geometry to be constructed. Although 
space does not permit such profiles to be included here, they can be used to understand class-to-
class and school-to-school differences in end-of-year achievement. 

As recommended by the National Research Council (2004) and reinforced by the data 
reported here, achievement results should be accompanied by information about curriculum 
implementation. As indicated here, students who have studied the same curriculum often have 
very different opportunities to learn. Without information about curricular implementation, it is 
difficult to make conclusions about differences in achievement.  
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In this paper a research is reported where the research problem is how to design a methodology 
for the designing of mathematics study programs in engineering careers. In such way that the 
professor has a clear idea of why each theme included in the program has to be taught. With this 
basis he can motivate the student, showing him the link between mathematics and engineering 
subjects and the professor can know what kind of abilities he can develop in the students. 
 

Introduction 
Mathematics are subjects with a high percentage of reprobation. But this is only a symptom, in 

this educational problem there are several factors that are of curricular type, caused by the teaching 
and learning, inferred by the study theme by itself, caused by the cognitive infrastructure of the 
students, due to social, emotional and economical factors, etc.  

Among the great range of problems there are some specific that have something to do with the 
curricular situations that are mentioned below. When for the first time a professor is going to teach 
mathematics courses, he finds a list of themes that he understands the best he can, which leads to 
make different courses in the same study program, one for each professor. If a professor is asked 
about why these themes are included in the study program, it is common that he can not answer 
precisely and correctly. As regards to the students, different exclamations are heard from them in 
the classroom as follows: What is the purpose of studying mathematics? Why do we have to study 
them?. These questions, at best, are answered by the professor who says that in engineering courses 
that they will take later they will use them (Camarena, 1984; Camarena, 1988). 

From the percentage of students that does not approve mathematics courses and from the 
teaching experience, it can be said that the few interest that the students have for these science is 
because they do not see their immediate application, neither the object to use them. An element 
that affects is the fact that there is not an appropriate curriculum where these mathematics 
courses are taught, consequently, the professors who teach them do not know why the contents 
are included in the study programs (Camarena, 1984). 
Objective  

With the background described, the objective research problem is to build a methodology to 
design mathematics study programs in engineering; in such way that the professor has a clear 
idea of why each theme that is included in the program has to be taught. With this basis he can 
motivate the student, showing him the link between mathematics and engineering subjects. 
Knowing what kind of abilities he can develop in the students.  

 
Perspectives and Theoretical Framework 

The theory in which this research is based is Mathematics in the Sciences Context 
(Camarena, 1984; Camarena, 1990; Camarena, 1995; Camarena, 2001; Camarena, 2003). This 
theory has been developed since 1982 in the National Institute Politechnical of Mexico. It takes 
mathematics learning and teaching in engineering careers as a system, which includes the 
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student, the teacher and the mathematical knowledge. It takes into consideration the interactions 
among the student, the teacher and the mathematics knowledge, all included in the learning 
environment where there are social, economical, political and human relations aspects. This 
systemic look makes five phases of the Mathematics in the Sciences Context theory: Curricular 
developed since 1984. Didactic started since 1987. Epistemological tackled in 1988. Teachers 
Training defined in 1990. Cognitive studied since 1992. 

Mathematics in the Sciences Context is based in three paradigms: Mathematics are 
supporting tools and educational subjects. Mathematics have a specific function in each 
educational level. Knowledge is born integrated.  

The educational philosophic assumption of this theory is that the student is trained to transfer 
mathematics knowledge to the areas which require it, so that he develops competences for his 
working and professional life. We want mathematics for life.  

This research presents incidence in the curricular phase, where Mathematics in the Sciences 
Context thinks about the link among mathematics and other knowledge areas of the student, the 
future professional and working activities and daily life.  

In other hand, it is necessary to take into account particular characteristics of mathematics in 
engineering by the specific methodology to be constructed. Engineering has mathematics as a 
foundation, because mathematics are engineering language and mathematics make sense to 
engineering, also mathematics are a supporting tool. Besides having a formative character for the 
students, that is to say, mathematics develop thinking abilities, critical judgment, scientific heart, 
etc. Even more, mathematics curriculum in engineering schools requires special attention, since 
mathematics are not a goal by themselves; in other words, we are not going to form 
mathematicians (Camarena, 1988). 
Educational Paradigm and Premise  

The methodology for the curricular designing of mathematics study programs in engineering 
careers is founded in the following educational paradigm: With mathematics courses students 
will have cognitive elements and tools he will use in the specific subjects of his career. Also, the 
premise of the methodology is that: Mathematics curriculum should be objective, that is to say, it 
should be a curriculum based on objective basis (Camarena, 1988). 
 

Work Method 
The work method to follow requires establishing a net between the problematic of mathematics 

in engineering with the possible ways to tackle them (see first and third columns in fig. No. 1). For 
such purpose, the problems of mathematics were re-written in terms of research questions in order 
to clear the working method (see second column in fig. No. 1).  

The fig. No. 2 shows, respectively, in column two and three the research questions selection 
and the way to tackle them, corresponding to the objectives of engineering graduate, as well as the 
objectives of searched methodology (see first column in fig. 2). 

With the co-relation net between research questions and possible ways to tackle them (fig. 
No. 1 and No. 2), the tendency that minimizes the paths was established and the maximum 
activities to meet the objectives stated in the research project were taken. 

The different activities described were the following: 
1. Analyze engineering textbooks. 
2. Investigate how mathematics contribute to engineering through the history. 
3. Analyze the bibliography of the elements which motivate the high level student. 
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4. Interviews to engineers in practice. 
5. Diagnosis of the students when they go into engineering career. 
 

Problematic Research questions Ways to tackle the questions 
Program as a thematic 
list of mathematics. 

Why mathematics themes 
are included? 

Identify what is needed from mathematics in 
each engineering theme (textbooks analysis) 
and determine if it is enough. 
 

Where will 
mathematics be used. 

Where do they apply? Identify what is needed from mathematics in 
each engineering theme (textbooks analysis). 
 

Which is the purpose 
of mathematics. 

Which is mathematics 
function in engineering? 

Determine how mathematics themes in 
engineering are used (textbooks analysis). 
 

Why to study 
mathematics. 

Which is the benefit of 
mathematics to engineering? 

Investigate through history how do 
mathematics contribute to engineering. 
 

There is few interest 
for mathematics. 

How to motivate the 
student? 

Analyze bibliography about which elements 
motivate the high level student. 
 

Figure 1. Relation among mathematical problems, research questions and how to tackle them. 

From these activities and what is expected from them we have two elements groups which 
are: general for any type of engineering, that is to say, that are independent from engineering; 
and the ones which depend from engineering which is worked for. In the first category are 
activities number 2 and 3, while the ones that really depend on engineering are 1, 4 and 5. 
 

Objectives Research questions Ways to tackle the questions 

A graduate efficient to 
solve problems is 
searched.                 
OG 

How mathematics are connected with 
engineering subjects? 

Analyze engineering textbooks. 

A graduate competent 
to design is required.  
OG 

What is required from mathematics in 
the professional work of an engineer? 

Interviews to engineers in practice 
about mathematics. 
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Putting into practice 
engineering.         
OSM 

Which applications of mathematics to 
engineering? 

Analyze engineering textbooks. 
 

An objective 
curriculum is wanted.             
OSM 

Where and how mathematics are 
applied? 
With which focus and notation? 
 

Analyze engineering textbooks. 
 

How to construct 
knowledge.          
OSM 

What is it required so that mathematics 
are significant for the student?  How to 
give sense to mathematics? 
How to tie up the cognitive structures 
of the student? 
 

Present mathematics in engineering 
context. Determine the knowledge 
level of the students when they go 
into the superior level. 

Figure 2. Relation among objectives of searched methodology (OSM), objectives of graduate     
(OG), research questions and ways to tackle them. 
 
General and Independent Elements of Engineering  

a) The activity which describes: Investigate how mathematics contributes to engineering 
through the history, lead to make a study consisting of surveys made to historians and books 
revisions about the historical development of engineering and mathematics. From this there were 
found results which respond to the research question: which are the benefits of mathematics for 
engineering?. We founded that mathematics are a supporting tool for engineering and 
educational forming subject for the ones who study them. At the same time it was tackled the 
questioning of why to study mathematics, because it supports the foundation of engineering. 
Notice that the result is consistent with the particular characteristics of mathematics in 
engineering, and the educational paradigm described for the research development, about 
mathematics are engineering supporting tools, not leaving behind the formative character offered 
by them.  

b) The second independent element from engineering says that the bibliography about the 
elements that motivate the superior level students have to be analyzed. For this work several 
theories were found about the motivation. Among the most relevant references are: Ausubel 
David P., Novak Joseph D. y Hanesian Helen (1990); Nickerson Raymond S., Perkins David N. 
y Smith Edward E. (1994) and De Bono Edward (1997). One that makes reference to the age of 
the student is the cognitive psychology of Ausubel David P., Novak Joseph D. y Hanesian Helen 
(1990). Although this theory does not specify the educational levels, these can be inferred 
according to the pupils ages and associate with their corresponding motivators. For the superior 
level case the facts that contribute to the motivation are mainly the ones which surround the 
interests of the selected career. Of course this is true as long as the superior level studies have 
been selected by the student. Several interviews were held with professors, students and 
engineers, about how the students could be motivated so that they have interest in mathematics, 
taking into account that they like their career. After analyzing the suggestions it was considered 
that the most frequent proposal was that applications to engineering have to be given for 
mathematics themes studied. So, it is necessary to show the link between mathematics and 
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engineering subjects. Notice that it is consistent with the research problem about the motivation 
of the student through showing him mathematics linked and applications.  

It is good to mention that in these two partial studies only the results were presented due to 
the length of the investigation.  
Dependent Elements of Engineering  

It is evident that the activities: analyze engineering textbooks, interviews to engineers in 
practice and diagnosis of the students when they go into engineering career, are elements that 
depend of the engineering entered upon. These will be the ones that determine the methodology 
looked for. 

 
Results: The Proposal Methodology Design 

In order to fulfill the premise into the educational paradigm frame, a research strategy is 
proposed in three stages: the central, the preceding and the consequent (Camarena, 1984; 
Camarena, 1988).  

CENTRAL STAGE. Make a textbooks analysis of the specific engineering courses in order 
to detect mathematics contents, both explicit as well as implicit. 

PRECEDING STAGE. Diagnose the knowledge level of mathematics that the students have 
when they go into the career. 

CONSEQUENT STAGE. Interview engineers in practice and researchers engineers about the 
use of mathematics in their professional work. 
Proving the Proposal  

To establish the feasibility of the proposal we selected electronic engineering area. The 
experience is reported below.  

Central stage. In order to realize the first stage, that is, the analysis of mathematics contents, 
it is necessary to know the profile of engineering graduate that the institution wants, the study 
plan and the programs (themes and bibliography) of engineering subjects that the student will 
course. There are three blocks: basic sciences, engineering basic sciences and engineering 
specialization sciences, as it is established by Asociación Nacional de Universidades e 
Instituciones de Educación Superior, of Mexico (ANUIES). 

With this information, groups of mathematics teachers will be formed, which will analyze 
engineering subjects. For such activity textbooks will be used directly, in order to get the 
required mathematics themes, including of course, the focus and depth of the themes, the 
notation with which they are described and their applications. With the described activity it is 
established the curricular link between mathematics and basic sciences, also the link between 
mathematics and subjects of engineering basic sciences, as well as, between mathematics and 
engineering specialization sciences. 

These teacher groups should make a written report of the themes they detected, jointly with 
the focus required by said concepts in order to take them into account in the didactic proposal. 

These teacher groups, who chose one or more subjects to analyze, after having revised 
engineering textbooks will be competent to teach courses to the rest of the members of the 
corresponding Teachers Academy, with the purpose of spreading their knowledge about the 
focus, notation, depth and applications they found in the elected subjects. In the same way, these 
teachers could elaborate books of mathematics problems and notes about the concepts they 
detected. 
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From textbooks analysis, we had detected that from all mathematics used in engineering 
carriers, a percentage between 70 and 90 percent supports basic sciences and engineering basic 
sciences, this percent depends of which engineering. The remaining percentage, between 30 and 
10 percent, supports engineering specialization sciences. 

Also, we detected that engineering basic sciences and engineering specialization sciences 
have two focus, one theoretical and the other applied. From this, we have mathematics that 
support theoretical courses and applied courses. In mathematics included in applied courses the 
professor has to develop, in the student, abilities for modeling and algorithmic handle. While in 
mathematics included in theoretical courses it is not necessary, but if the professor has curricular 
time we propose that he develops abilities too. That is to say, whit this analysis the professor can 
know what kind of abilities he can develop in the students. 

Preceding stage. Once the contents of mathematics needed in engineering are determined, we 
will tackle the second stage. Based on the knowledge of this discipline and teaching experience 
we can determine the necessary requirements for the detected mathematics contents. 

In other words, the mathematics link between superior level and middle superior level is 
established. 

From these requirements, the ones supposed to be received by the student in the middle level 
courses will be selected and the rest should be included in the curriculum of the first years of the 
career or as preparatory courses. 

With this analysis, mathematics entrance profile of the student in superior level is defined. 
Also, with this selection, a diagnostic evaluation method is elaborated to determine the level of 
knowledge and abilities in mathematics of the new student in the career. 

From the concepts in which most of the students are deficient the following classification will 
be made: 

a) Mathematics themes that should be known by the student and that he can to study by 
himself with a simple bibliographic orientation. 

b) Mathematics themes that the students should be known and to have abilities, should be 
taken into account to be included as a preparatory part in the elaboration of the curriculum of the 
first courses of mathematics. 

Consequent stage. With the end of the second stage the third will be tackled, in which 
interviews should be held to engineers being in the industry’s practice, that is to say, engineers 
that are designing. We ask them about the use of mathematics in their work activity. 

It is good to make clear that from this information there would be the contents detected from 
the textbooks analysis and the ones that are not included. The results obtained from this study 
offer for the curriculum a better hierarchization of the importance that should be given to 
mathematics themes. While the ones that are not included in the textbooks of engineering careers 
are the themes and concepts of mathematics that should be considered for post grade engineering 
studies, establishing the mathematics link between superior level and post grade level. With this 
stage the link between mathematics of engineering and industry is also established. 

After making the mentioned activities and with the reported information by the different 
working groups, the person who coordinates the elaboration and/or reorganization of 
mathematics study programs could to group mathematics themes founded in the subjects of the 
three engineering blocks, as well as, the necessary themes obtained in the second stage. 
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That is to say, as up to now there are only mathematics themes that are going to be used in 
their engineering courses, to this should be added mathematics contents necessary to build the 
logical structure of the knowledge, so that the teaching of the themes make sense. 

Resume. With the end of the third stage, it can be deduced: the number of subjects to be 
taught from mathematics. The location of these courses and the link with the other subjects of the 
curricular map of engineer in question. For each course, the thematic content with its extension, 
time and depth to be devoted should be determined, as well as, the focus, notation and 
applications that should be given to them. 

Also, it is important to point out that this methodology takes into account the internal and 
external mathematics link of engineering. In fact, the internal link is established between 
mathematics and basic sciences, mathematics and engineering basic sciences, as well as, 
mathematics and engineering specialization sciences, originated from the first stage. In other 
words, the interdisciplinary subjects of the curricular map now are in fact explicit and known by 
the professors. While the external link is established between middle superior level and 
engineering careers, which came out from the second stage of the methodology, as well as, 
among the latter with post grade and industry, determined by the third stage.  

The methodology to design mathematics study programs in engineering has been 
denominated Dipcing methodology (Metodología de Diseño de Programas de Estudio de 
Matemáticas en Ingeniería).  

In conclusion, we have established the feasibility of the proposal methodology design, 
Dipcing, because with this methodology, as it can be seen, study programs can be designed 
where the professor knows why each one of the themes that constitute the program are included. 
That is, whether they are of direct application to engineering or because they are added to form 
the logical structure of knowledge. So, the professor knows exactly how linked mathematics with 
engineering subjects to motive the student. With this, the professor knows what kind of 
mathematics abilities develops in the student.  

 
Discussion 

From the Dipcing methodology arise support elements for the execution of the study 
programs, as well as, an updating program for teachers, where among others are included 
mathematics courses integrated with engineering. Also, arise a didactic strategy to follow in 
engineering careers, where mathematics should be presented to the students in an integral way 
with engineering. 
Didactic Aspects 

From the methodology come off in natural way didactic guidelines to be followed by 
mathematics in engineering careers, among them is the context or link. 

The didactic strategy called mathematics in context is an ideal way for teaching mathematics 
subjects, since it offers applications that are not artificial but all contrary they are interesting for 
the student and they can be easily motivated with this, mathematics in engineering context is not 
so dry, and it is not out of the student reality and in fact it is ease the teaching learning process 
(Camarena, 1995; Camarena, 2003). 

If the student really likes his career he finds not only a need in mathematics in context but 
also likes them very much and has a great interest to control them. He can tackle any problem in 
his future work life. More information about didactic strategy can be find in Camarena (1987; 
1993; 1995; 2003) references. 
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Some supporting didactic materials are found in books of mathematics problems which are 
guides for the course both for the students as well as for the professors. For more information see  
Camarena (1998) reference. 

Another important element is the use of electronic technology as a didactic support. 
Nowadays this aspect cannot be dismissed since the students are in direct contact with the 
computers and on the other side, in their work life they will use this tool.  
Teachers Updating 

Due to the way the study programs are designed and the didactic lead from them, it is observed 
that the teachers with a mathematical formation should be more prepared in engineering areas they 
work for. Engineering teachers should receive a stronger preparation than the one they have when 
they graduate from their career, in mathematics area they teach. 

Obviously from this methodology the teachers updating courses should be courses that have 
mathematics in engineering context, as well as, courses about the teaching and learning process. 
For more information see Camarena (1990; 2004) references. 

 
Conclusions 

With this methodology, objective mathematics study programs are obtained and they are 
linked with the subjects of engineering they support, as well as, linked with a middle superior 
level, post grade and industry. Also, mathematics in engineering context are generated easily and 
the themes on which the professors must be updated are obtained. 

DIPCING methodology helps to make a better professional quality. When mathematics in 
context is presented the significant learning of the student is helped, which will influence durable 
and motivating learning. 

Is good to mention that the Dipcing methodology has been applied in schools of the National 
Politechnical Institute of Mexico successfully. 
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The purpose of this poster is to present the results of an analysis of an extensive literature 
review of studies and to consider the methodologies used to measure implementation fidelity in 
mathematics classrooms. This review is part of a long term project to implement a new high 
school mathematics curriculum and will serve as a basis for its methodology for measuring 
implementation fidelity. Implementation fidelity is defined as the extent to which a teacher 
implements a curriculum as the authors intended. If teachers do not implement the curriculum as 
the authors intend, they could undermine the effectiveness of the new research-based curriculum. 
Due to the varying conditions across schools and teachers, the need for measuring 
implementation fidelity is strong. Curriculum evaluators must consider whether the curriculum 
could “survive or thrive” across sites (NRC, 2004, p. 114).  

Curriculum evaluators use various instruments to measure implementation fidelity. However, 
there are three instruments which are frequently utilized. The first and the most common 
methodology used to measure implementation fidelity is classroom observation (e.g. Tarr, Reys, 
Reys, Chavez, Shih, & Osterlind, 2008). Researchers also use surveys (e.g. Schoen, Cebulla, 
Finn, & Fi, 2003) and teacher interviews (e.g. Remillard & Bryans, 2004) to gather information 
on a teacher’s implementation of a curriculum. In addition, a few researchers consider additional 
measurements such as homework assignments, chapter evaluation forms, textbook-use diaries, 
and table-of-contents records. Researchers use these instruments to measure several categories of 
implementation fidelity, including use of curriculum, teacher instructional practices, verification 
of teacher-reported data, teacher background information, and teacher beliefs 

Through the curriculum evaluations, researchers conclude that professional development, 
students’ comments and questions, and teachers’ beliefs and backgrounds greatly influence 
teachers’ level of implementation fidelity. Thus, researchers must be concerned with the 
effectiveness of professional development, the need for teachers to learn and adapt prior to and 
during instruction, and the correlation between beliefs and backgrounds and teachers’ 
implementation of curricula. Future research in this project will build on and adapt what is 
learned from this current research. 
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In this paper, we describe a research project in which a new assessment tool was developed and 
operationalized to measure teachers’ pedagogical content knowledge (PCK) of geometry and 
measurement at the middle school level using the Delpi method. This method, often used in the 
field of economics, allows a panel of experts to come to a consensus about a given set of tenants 
or beliefs about knowledge. Delphi methodology provides an opportunity for experts to receive 
feedback and to modify and refine their judgments based upon their reaction to the collective 
views of the group. As a result of this study an instrument with an evaluation rubric for assessing 
middle school teachers PCK in geometry and measurement were developed.  

 
In selecting the participants for this project several factors were taken into consideration: a) 

the number of participants, b) their expertise, and c) the difference in their perspectives. When 
using Delphi method for research it is generally recommended to identify between twelve and 
twenty participants (Altschuld, 1993; Dalkey, Rourke, Lewis, & Snyder, 1972; Debecq, Van de 
Ven, & Gustafson, 1975; Edwards, 2003). Researchers picked twenty Delphi study participants 
based on their expertise. They will be referred as experts from this point on. The experts were 
selected from the four categories: a) researcher experts, b) mathematics educator experts, c) 
teacher experts, d) mathematics education leader experts. A detailed description of each group 
and the selection process will be provided during the presentation. In this study the development 
and administration of this survey was interconnected. The researchers’ role in the data collection 
process was a) gathering the data from the research literature and creating the initial measures, b) 
identifying a panel of experts, c) corresponding with experts, collecting their ratings of the 
measures, and feedback on each measure, and d) analyzing collected data and reporting the 
results. The qualitative analysis included: a) the review of literature, b) the content analysis of 
the data, c) the identification of emerging categories of the data, and d) the operationalization of 
the instrument. The quantitative analysis included: a) calculating reported rating means for each 
item of the instrument, b) identifying outliers in the reported data, c) recalculating reported rating 
means of the items, d) conducting factor analysis, and e) establishing reliability, such as test-
retest, etc. The researchers decided to use three rounds to elicit experts’ suggestions for 
developing appropriate measures of PCK. The data analysis and data collection were done 
parallel to each other. The instrument was modified based on experts’ feedback, and analyzed 
according to the categories of the table of specifications developed by the researchers. New 
categories in the table of specifications emerged from the data, and were used to complete the 
analysis. More detailed explanation on the development of the table of specifications reliability 
and validity considerations and other aspects of the Delphi method in the context of developing 
instruments of teacher knowledge, as well as strengths and limitations of this method will be 
presented during the talk. The Delphi method used in this project may be further adapted in the 
context of the broader instrument development process. 
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In the field of mathematics education, there is a need for viable and valid observational 
measures of mathematics instructional quality. Examining constructs central to mathematics 
teaching and learning is essential in order to gain a deeper understanding of these phenomena. 
Currently, such measures for use in large-scale studies do not exist. The goals of this poster 
presentation are: to introduce a new measure, the Mathematics SCAN (M-SCAN), and to explain 
the process of validating the measure for its reliable use.  

The M-SCAN focuses on eight dimensions of mathematics instructional quality: structure of 
the lesson; multiple representations; students’ use of mathematical tools; cognitive depth; 
mathematical discourse community; explanation and justification; problem solving; and 
connections and applications. The developers of the M-SCAN extended the work conducted by 
Borko, Stecher, et al. (2005) to create the measure and coding guide.  

The validity study was conducted in a large, suburban, mid-Atlantic school district. Sixty 
third and fourth grade classrooms were randomly selected from a larger sample of classrooms 
from a federally funded large-scale study. A thirty-minute segment from each classroom was 
coded using the M-SCAN and three other observational measures: the Reformed Teaching 
Observation Protocol (Sawada, Piburn, et al., 2000), the Classroom Assessment Scoring System 
(Pianta, La Paro, & Hamre, 2008), and a time sampling measure of instructional format and 
content type.  

To validate the use of the M-SCAN, the integrated conception of validity proposed by 
Messick (1995) was utilized. Mathematics education experts provided feedback about the 
constructs and content of the coding guide. To examine the substantive aspect of validity, the 
coders’ rationales for scores were analyzed in regards to the dimension descriptors. Analyses 
were conducted to investigate convergent and discriminant evidence with the other observational 
measures. The development and validation of the M-SCAN aided in establishing reliability. 
Analyses were conducted to determine generalizability of the reliability findings. Specific results 
regarding evidence of validity and reliability will be shared at the poster presentation. 
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Teachers are the ultimate decision makers with regard to mathematics content taught in 
secondary school classrooms and research has shown that they rely on textbooks to help with 
those decisions. The purpose of the study reported here was to gain an in-depth understanding of 
students’ opportunity to learn mathematics from an integrated textbook with respect to the 
specific content strands contained within the textbook. The results reveal that although teachers 
provide some attention to each content strand contained within the textbook, the decisions they 
make about what specific objectives to teach and what to omit results in a different emphasis on 
each strand than is represented in the composition of the written curriculum. 
 

Objectives 
The purpose of this paper is to report findings related to curriculum implementation of 

integrated mathematics textbooks in secondary school classrooms and to discuss implications of 
these findings. As part of curricular reform, new content has been added to textbooks that bring 
topics such as statistics, probability, and discrete mathematics to a more central position in the 
school mathematics curriculum. Moreover, established content such as algebra and geometry is 
presented in a more integrated fashion than embodied in predecessors to standards-based 
textbooks. Although we know textbooks are the centerpiece of mathematics instruction in U.S. 
schools (Grouws & Smith, 2000; Weiss, Banilower, McMahon, & Smith, 2001; Weiss, Pasley, 
Smith, Banilower, & Heck, 2003), we know little about the relative emphasis teachers place on 
content embodied in these standards-based textbooks. Teachers may choose to move through the 
textbook sequentially or not; they may choose to cover most of the chapters of the textbook or 
not; they may supplement the textbook with materials from other resources or not. All of these 
decisions affect the extent to which textbooks are implemented and therefore influence the 
mathematics that students have the opportunity to learn.  

This investigation is an extension of a larger study known as the Comparing Options in 
Secondary Mathematics: Investigating Curriculum (COSMIC) project. The COSMIC project is a 
three-year longitudinal comparative study that addresses questions regarding the impact of two 
distinct organizations of high school mathematics curricular materials on student learning. 
During the course of the COSMIC project, the extent to which the textbook is implemented in 
each classroom is carefully assessed and will subsequently be used in interpreting data analyses 
that examine student learning under each organization of content. In my investigation reported 
here, the classroom implementation of an integrated textbook is examined in relation to four 
content strands: (1) algebra and functions; (2) geometry and trigonometry; (3) statistics and 
probability; and (4) discrete mathematics.  

 
Perspective 

Although textbooks play a prominent role in the teaching of mathematics in K-12 schools, 
prior research suggests that different teachers implement the same materials in different ways 
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(Bowzer, 2008; Chávez, 2003; Tarr, Chávez, Reys, & Reys, 2006). Thus, a difference exists 
between curriculum as represented in textbooks or other instructional materials and the 
curriculum that students experience in the classroom (Stein, Remillard, & Smith, 2007). Figure 1 
illustrates how the use of the curricular materials and textbooks are only one part of a larger 
conceptual frame of curricular influences on student learning. Developed by Stein, Remillard, 
and Smith (2007), this figure models curriculum as “unfolding in a series of temporal phases 
from the printed page (the written curriculum), to the teachers’ plans for instruction (the intended 
curriculum), to the actual implementation of curricular-based tasks in the classroom (the enacted 
curriculum)” (p. 321). The oval represents possible factors that influence the transition from one 
phase of the curriculum to another. For example, teacher beliefs and knowledge mediate the way 
they interpret the written curriculum and make decisions about what to use from the textbook 
and what to omit. Within this conceptual framework, I examine the written curriculum in relation 
to the enacted curriculum. 

 
 
 
 
 
 
 
 

  
 

 
 
 
 
 
 
 
 
 

 
Figure 3.Temporal phases of curriculum (Stein, Remillard, & Smith, 

2007). 
 

Methods 
The purpose of the study was to gain an in-depth understanding of students’ opportunity to 

learn mathematics from an integrated textbook with respect to the specific content strands 
contained within the textbook. Specifically, the following research questions were investigated. 

To what extent do high school mathematics teachers provide students the opportunity to learn 
the mathematics content embodied in an integrated mathematics textbook? 

a. What are students’ opportunities to learn with respect to the Algebra and Functions 
strand?  

b. What are students’ opportunities to learn with respect to the Geometry and 
Trigonometry strand?  
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Learning 

EXPLANATIONS FOR TRANSFORMATIONS 
Teacher beliefs and pre-dispositions 
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in the classroom; about curricular materials) 

Teacher goals 
Teacher knowledge of mathematics for teaching 

Nature & intensity of teacher participation in social networks 
Organizational and policy contexts 
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c. What are students’ opportunities to learn with respect to the Statistics and Probability 
strand?  

d. What are students’ opportunities to learn with respect to the Discrete Mathematics 
strand?  

Participants 
Teacher participants for the study were 44 teachers from sites included in the COSMIC 

study, 21 in year 1 and 26 in year 2 with 3 teachers teaching in both years. At each site, all 
teachers teaching Core-Plus Course 1 during year 1 and Core-Plus Course 2 during year 2 were 
asked to participate. Six school districts in five states participated in the study, all employed a 
dual curricular option program (an integrated approach and subject-specific approach) allowing 
students to choose freely between the two options rather than be assigned via past achievement. 
The school locales varied from rural to urban settings and the student bodies ranged from high-
middle socioeconomic (SES) backgrounds to schools where many students were from low SES 
families.  
Data Sources and Analysis 

Table of contents record. On the Table of Contents [TOC] Record, the teacher provided 
information regarding each lesson of the textbook being used and whether the textbook lessons 
were altered or adjusted. To gather this information, the teacher was provided an instrument that 
included a copy of the table of contents of the integrated textbook and was asked to indicate the 
level of textbook use for each section by choosing one of the following options: (1) content 
taught primarily from textbook; (2) content taught from the textbook with some supplementation; 
(3) content taught primarily from an alternative source; and (4) content not taught. Although 
every unit of each course is integrated around all the strands, the authors have identified each 
unit as having a primary strand within which connections are made across strands.  

The extent to which the textbook was used during instruction and the manner in which it was 
used is reported utilizing two indices developed from the Table of Contents Records: (1) 
Opportunity to Learn index; and (2) Textbook Content Taught index. These two indices were 
calculated for each of the four content strands in the Core-Plus textbook: (1) Algebra and 
Functions; (2) Statistics and Probability; (3) Geometry and Trigonometry; and (4) Discrete 
Mathematics.  

Opportunity to learn (OTL) index. The OTL index indicates whether the textbook content is 
being taught or not taught. Content here refers to the content objectives included in the textbook 
lessons and includes content taught primarily from the textbook or from alternative sources. The 
OTL index was computed by summing the frequency of occurrence of the first three options 
reported across all textbook lessons on a table of contents record divided by the total number of 
lessons included in the particular textbook. The OTL index essentially represents the percentage 
of the content in the textbook that students were provided the opportunity to learn for the 
academic year and aggregated by content strand. The formula below provides a specific example 
of how the OTL index was calculated: 

� 

OTL =
6 + 6 + 29

75
*100 = 54.67

 

For this example, the teacher chose option 1 (content taught primarily from textbook) on the 
table of contents record 6 times, option 2 (content taught from the textbook with some 
supplementation) 6 times, and option 3 (content taught primarily from an alternative source) 29 
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times out of the 75 investigations contained within the textbook. The remaining 34 investigations 
were marked as option 4 (content not taught) and thus represent content untaught.  

Textbook content taught index (TCT). The TCT index considers only those lessons whose 
content was taught in some manner and ignores content students were not given the opportunity 
to learn. It was determined by weighting each of the first three options provided to the teachers 
on the table of contents records. The largest weight was given when the first option was 
identified for a section, i.e., content was taught primarily from the textbook. This was given a 
weight of 1. The lowest weight was given to the third option, i.e., content taught primarily from 
an alternative source and it was given a weight of 

� 

1
3

. The second option, taught with 

supplementation, was given a weight of 
� 

2
3

 and omitted sections were assigned a 0. The index 
was then calculated by summing the weights across textbook lessons and dividing by the number 
of lessons reported as content being taught in any manner and again multiplied by 100.  

� 

TCT =
1(6) +

2
3

(6) +
1
3

(29)

75 − 34
*100 = 47.97

 

Again, this index was reported as a scale ranging from 0 to 100. An index of 100 would represent 
that every lesson taught was taught neither without supplementation nor from alternative sources. 
In contrast, an index of 0 would represent that every lesson taught was taught utilizing alternative 
resources with similar content that substituted for that in the intended textbook. All indices in 
between would roughly indicate the extent to which lessons were supplemented or replaced. 
Ultimately, this index reports the extent to which teachers, when teaching textbook content, 
followed their textbook, supplemented their textbook lessons, or used altogether alternative 
curricular materials.  
 

Results 
Using the Table of Content Records, indices were computed for each year for the entire 

textbook and in respect to the four content strands. These indices reveal teachers’ tendencies to 
select particular strands of mathematics contained within the textbook. 

Overall. The overall mean opportunity to learn (OTL) index across the 21 teachers 
participating in Year 1 was 66.60 with standard deviation of 13.23 as represented in the first 
graph of Figure 2. Across the 26 teachers participating during year 2, the mean OTL index was 
57.44 with a standard deviation of 8.57 as represented in the second graph of Figure 2. These 
indices indicate the percent of content taught as defined by the textbook that students were 
provided the opportunity to learn during each year. Interestingly, although during year 1 the OTL 
is larger than in year 2, there was substantially more variation among these teachers in terms of 
the OTL index. For example, during year 1 the lowest OTL index was 42.86 while the highest 
was 90.91. 
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Figure 4. Percent of textbook lessons taught disaggregated by year. 
 

Whereas the OTL indices provide information regarding the use of the textbook, the TCT 
indices narrow the focus to just the content embodied in the textbook that was taught. Figure 3 
displays the Textbook Content Taught indices. The results show that the content taught across 
year 1 teachers, approximately 65% of that content was taught directly from the textbook. As 
shown visually in the second bar, during year 2, less content was taught directly from the 
textbook (56%) as compared to year 1. Note that the difference was smaller with regard to 
content supplementation with teachers during year 2 supplementing 29% of the content as 
compared to 25% during year 1. In general, little content was taught from alternative sources 
(9% during year 1, and 15% during year 2). 

 

 
Figure 5. Extent to which content taught is attributable to the textbook. 

 
As the overall indices indicate, year 1 teachers using Course 1 materials on average covered 

approximately 67% of the content contained within the textbook, whether utilizing the Core-Plus 
textbook to do so or not; year 2 teachers using Course 2 materials covered approximately 57% of 
the content. Given these results, teachers are making decisions regarding what content to teach 
and what to omit. Using the same Table of Content Records, the OTL index was computed with 
respect to each content strand contained within the Core-Plus integrated textbook. 

Content strand indices. The results indicate that during year 1, the Algebra and Functions, 
Statistics and Probability, and Geometry and Trigonometry strands received similar attention. 
Students were provided the opportunity to learn approximately three-fourths of the content 
contained within the textbook for each of these three strands. However, within these three 
strands, the greatest variance existed within the Geometry and Trigonometry strand (Figure 4). 
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Figure 6. Percent of textbook lessons taught during year 1 disaggregated by content strand. 
 
For example, two teachers omitted all units in the Geometry and Trigonometry strand whereas 
four teachers completed every geometry lesson contained in Course 1. The Discrete Mathematics 
strand received the least attention with only 60% of the material contained in the textbook being 
taught. Moreover, it is also the strand with the greatest variation. For example, three teachers 
omitted all units pertaining to discrete mathematics whereas only two teachers completed every 
discrete mathematics lesson. 

Despite the relatively uniform attention given to the various content strands by teachers in 
year 1, the picture is strikingly different in year 2 (Figure 5). In particular, the Algebra and 
Functions strand not only received the greatest emphasis but was also implemented in the most 
consistent manner. Over 90% of the Algebra and Functions content was taught. In comparison, 
the remaining three strands received much less attention. Only 27% of the Statistics and 
Probability content was taught. Furthermore, the remaining three strands were implemented with 
considerable more variation than the Algebra and Functions strand. Similar to year 1, the 
Discrete Mathematics strand was the least consistently implemented. 

 

 
 

Figure 7. Percent of textbook lessons taught during year 2 disaggregated by strand. 
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Textbook content taught indices. Figure 6 displays the TCT indices for year 1 participants. 
The results show that when teaching content contained in the textbook, teachers relied mostly on 

  

 
 

Figure 8. Extent to which content taught is attributable to the textbook disaggregated by content 
strand, year 1. 

the textbook when teaching the discrete mathematics content, 90% when compared to 64% (A & 
F), 51% (G & T), and 69% (S & P). The use of supplementation was similar among the first 
three strands (26%, 29%, and 27% respectively) although it was greatest within the Geometry 
and Trigonometry strand. Moreover, teachers’ use of alternative materials was also greatest when 
teaching geometry and trigonometry content (20%) when compared to the other three strands 
(A& F: 10%, S&P: 4%, and DM: 2%). 

During year 2 (Figure 7), the results show that when teaching content contained in the 
textbook, teachers again relied heavily on the textbook when teaching the discrete mathematics 
content (71%) and little on alternative resources (2%) but the pattern was similar for the statistics 
and probability content. However, the discrete mathematics content was implemented more 
consistently than the statistics and probability content. The pattern of supplementation among all 
the strands was similar but again was the greatest for the Geometry and Trigonometry strand, 
34% as compared to 30%, 21%, and 27%. The greatest use of alternative materials when 
teaching geometry and trigonometry content was repeated during year 2, 26% as compared to 
14%, 7% and 2%.  
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Figure 9. Extent to which content taught is attributable to the textbook disaggregated by content 
strand, year 2. 

 
Discussion 

Teachers do attend to each major content strand included in high school textbooks where the 
mathematics is organized in an integrated manner, but their daily decision making results in 
student opportunity to learn being different than that intended in the textbook design. Overall, 
teachers on average taught less than two-thirds of the content embodied within the integrated 
textbook during a school year. Interestingly, of the textbook content taught, only 67% in year 1 
and 56% in year 2 can be attributed solely to the textbook, with as much as 9% and 15% (year 1 
and year 2 respectively) on average being taught from other sources.  

Two primary implications of this data are worthy of attention here, one with respect to 
research and the other with respect to practice. In terms of research, given that during the course 
of two years, as much as one-third of the content taught includes use of supplementary materials, 
measures of the impact of this particular curriculum on student learning should be called into 
question, if this supplementation is not accounted for during data analysis of studies designed to 
assess its effectiveness in promoting student learning. In terms of practical implications, if 
textbooks are selected on the basis of content included and emphasized within the textbooks, 
then those concerned with what mathematics students learn need to be vigilant about how teacher 
decision-making may not be consistent with the intentions association with the textbook 
selections. Teachers are making decisions regarding what content to teach and what to emphasize 
and these decisions impact students’ opportunity to learn content. For example, if teachers were 
utilizing an algebra textbook, the content omitted or deemphasized would most likely be 
algebraic content. However, when teachers are utilizing an integrated textbook, the content 
omitted may be from any of the four major content strands contained within the textbook. The 
results during year 1 revealed that, on average, three of the four strands (Algebra and Functions, 
Geometry and Trigonometry, and Statistics and Probability) received similar attention while the 
Discrete Mathematics received the least attention. However, during year 2, the Algebra and 
Functions strand received considerable attention and it came at the expense of the other strands. 
Reasons for differential attention may be attributable to the timing of this particular course 
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within a student’s education. In other words, this course is the second in a series of four and 
would most likely be taken during a student’s 10th grade year, a targeted testing grade within the 
requirements of mathematics testing outlined in No Child Left Behind. Consequently, teachers 
may decide to focus on Algebra and Functions content because they perceive it to be the mostly 
likely content to be included on the test. This cause of the wide range of attention to strands 
across the two years suggests an interesting research question to be pursued further. 
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Nineteen high achieving young women in a 10-year longitudinal study were interviewed in high 
school about their experiences and interests in mathematics. Their perceptions of mathematics 
included that it was a tool for problem solving, a tool for their education, a tool to increase their 
self-confidence, a tool for future careers and other real world experiences. Noting that their 
teachers were instrumental in changing their perceptions of mathematics positively and 
negatively, none of these young women plans a mathematics major.  
 

Background 
A longitudinal study of young women selected by their teachers to take Algebra 1 in seventh 

or eighth grade is now in its tenth year. While some of the young women in the study may be 
talented in mathematics, we choose the term “high-achieving” to describe their scholarship, 
motivation, and work ethic. An historical perspective of Girls on Track provides a context to 
understand the scope of the larger, longitudinal study. Therefore, some of the findings that were 
previously reported are also presented here. In the first few years of the study, the purpose was to 
encourage these young women to continue on the advanced mathematics track, taking calculus 
no later than their senior year in high school. Some of girls continued beyond high school 
calculus, taking other college mathematics courses during their junior and senior years. 
Although, many of the young women in our study did continue on the advanced mathematics 
track, only 2 out of more than 250 young women, planned to or choose to major in mathematics 
as undergraduates, neither of these girls were in this current study.  

In the first three years of the project, 45 of 174 girls were interviewed to investigate how they 
and their parents perceived their school achievement. Howe and Berenson (2001) reported that 
there were four characteristics that emerged from these interviews. First, every girl reported 
strong support from her family in terms of academics. A second factor to emerge was the girls’ 
desire to do well in mathematics. These girls all want to understand what they are doing in math 
class. The girls discussed the desire to understand and their opinions of their teachers in relation 
to their wishes to do well. The interviewer did not directly ask about their teachers but the girls 
gave an opinion that their success and interest in mathematics, in almost every case, depended on 
whether the teacher helped them understand the topic or concept being studied. The third 
characteristic to emerge was assertiveness. These are not the type of girls who are passive in 
class, remaining quietly in the background while the teacher asks the boys the hard questions. 
Their desire to understand, as well as their desire to get a good grade, prompts them to ask 
questions in class and to seek help offered by teachers before and after class. When they get 
lower grades than they want they go to the teacher and ask why they got the low grade and what 
they can do to bring it up. Finally, these girls believe in hard work. What they all do to bring up a 
grade or maintain an A, is to work hard or harder. A good math student is someone who tries 
hard and does their best.  
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In 2004, 39 telephone interviews were conducted with high school juniors and seniors who 
were members of cohorts 1 and 2 as middle school students. Berenson, Vouk, Michael, 
Greenspon and Person (2004) reported results on the girls’ generally positive attitudes towards 
high school mathematics (See Table 1). Of the eight themes, the last three denoted areas in which 
the girls were not comfortable. These girls’ attitudes concerning computer science changed from 
positive attitudes in middle school to negative attitudes in high school. Using data obtained from 
school records, we reported the fact that among high school girls in the longitudinal study 119 
out of 141 girls was on track to take calculus by the senior year (Berenson, et al., 2004). The 20 
girls who took algebra 1 in the seventh grade in 1999-2000 were all on track to take calculus by 
their junior year in high school.  
 
Table 1. Cohorts 1 and 2 Attitudes towards Math in High School* 

Attitude Number 
Expressed Confidence in Math Ability 21 
Had a Great Math Teacher 8 
Enjoyed the Challenge in Math 7 
Liked Math 5 
Used “fun” to Describe Math 4 
Felt Nervous about Next Math Class 5 
Thought Math was Difficult/Hard 3 
Didn’t Like Math Because of the Teacher 2 
*N=39 

 
In 2005, we interviewed by telephone 86 girls, aged 16-20, who were juniors and seniors in 

high school, and freshmen and sophomores in college. Two papers reported at PME in 2006 
indicated the mathematics pathways that these high achieving girls took in high school and the 
relationship between their math course selections and their career choices (Berenson, Michael, & 
Vouk, 2006). Approximately half of these 86 girls are planning to or have committed to major in 
STEM careers, and 60% have taken calculus 1 or beyond, four were undecided as to their career 
choices. We recognize that through high school and the early years of college these career 
choices are subject to change. 

Collapsing categories we conducted a Chi Square test [À2
5= 3.897] to compare frequencies 

of advanced mathematics courses taken and choosing STEM (science, technology, engineering, 
and mathematics) or non STEM careers. Results indicate that high school girls’ taking advanced 
calculus courses in high school were more likely to choose a STEM career. (Berenson, Michael, 
& Vouk, 2006). One of the 86 intended to major in mathematics and one in teaching 
mathematics. When asked to list strengths they will bring to the workplace, this sample of 86 
describe themselves as hardworking, determined, organized leaders who are good with people. 
Disappointingly, only one out of 86 girls described herself as “smart.”, when asked what 
attributes they would bring to the workplace. A quantitative study conducted by Wilson et al., 
(2006) found that decisions among girls in this longitudinal study to take mathematics beyond 
Algebra 2 correlated with measurements of mathematics success that include standardized tests, 
course selection, and course grades. 
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The results of this ten-year study reveal that high achieving girls in mathematics are 
confident, hard working, assertive, and have strong parental support for their academic and 
career choices. Most set high expectations of themselves academically. Half of these girls enjoy 
mathematics from middle grades through high school, indicating that they enjoy being 
challenged. Approximately half of this sample of 86 girls is planning to prepare for STEM 
careers with a majority of choices in the medical field. These high achieving girls are not 
interested in engineering (with the exception of bio-medical engineering), physics, or computing 
careers. The girls in this study from cohorts 1-5 are now in college, have graduated from college, 
or gone on to graduate school. 

The current study takes a closer look at the girls’ perceptions of mathematics when they were 
in high school. The design of this study is one of grounded theory and aims to develop a 
framework of study from the data. According to Creswell (2007), no theoretical foundations are 
given before the analysis begins. Interviews conducted in late 2004 and during the winter break 
of 2006/2007 are being used as sources of data. The remaining sections of this paper will discuss 
the participants, methodology, and discussion of the findings. The study hopes to answer how the 
high-achieving high school girls in this study perceive the role of mathematics in their lives.  

 
Participants 

For the analysis conducted in this study, we looked at 19 of the high school interviews. The 
first 6 of these interviews were conducted 2004, these girls are currently juniors and seniors in 
college. The other 13 interviews were conducted during the winter of 2006/2007. These girls are 
currently freshman and sophomores in college. These girls were sophomores, juniors, or seniors 
in high-school. Table 3 outlines the participants, their grade at the time of the interviews, what 
type of high school they attended, and what their career interests were. The public high school, 
which is an academic magnet, has a strong focus on preparing students for college. This high 
school also offers the widest variety in advanced placement courses of all the schools. 
 
Table 2. Description of the Participants 
Pseudonym  Grade at time of 

interview 
Career interest High school at time of 

interview 
Ray 10th  Psychiatrist, Medicine Public High School 

Academic Magnet 
Amy 11th  Veterinarian  Private High School 
Katya 11th International Policy Private High School 
Zena 11th  Medicine Public High School 

Academic Magnet 
Wendy 11th Undecided Public High School 

Academic Magnet 
Crystal 11th  High School Math Teacher Public High School 
Cara 11th Nursing Public High School 
Ginger 12th  Television or Foreign 

Affairs 
Public High School 
Academic Magnet 

Amber 11th  Biotechnology, Science 
Industry 

Public High School 
Academic Magnet 



Vol. 5  879 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

Kelly 12th  Engineering Public High School 
Kim 11th Paleontologist, Engineer, 

Graphics Design  
Public High School 

Mia 11th Music Engineer Public High School 
Alison 12th Biomedical Engineering Private High School 
Lisa 12th  Lawyer, History Professor Public High School 
Marie 11th  Undecided Public High School 

Academic Magnet 
Rita 11th Elementary School 

Teachers, Speech Pathology, 
Missionary 

Public High School 

Tina Graduated Biotechnology Forensics, 
Pharmacy 

Home-Schooled 

Annette 11th English, Spanish or Math 
Teacher 

Public High School 

Vera 11th  Undecided Public High School 
 

Methodology 
During the history of the Girls on Track program researchers conducted several interviews of 

girls who participated in the summer camp held for middle school girls. Researchers contacted 
possible participants via e-mail and/or by phone, therefore these interviews represent a small 
group of girls willing to contribute to the research several years after their camp experiences. The 
first round of interviews analyzed for this study occurred in 2004, the girls from the first two 
cohorts were in high school, and a second set of interviews were held in late 2006 and early 2007 
when the girls from later cohorts had become juniors and seniors in high school. This research 
presents the results from 19 different girls. The question asked during the analysis was: how did 
high-achieving girls perceive mathematics? 

All interviews conducted were semi-structured and conducted in person. During the semi-
structured interviews, a series of structured questions were asked in each interview with 
researchers also using open-ended questions to probe more deeply (Gall, Gall, & Borg, 2003). 
Different interview protocols were used during the two times interviews were conducted. 
However, all protocols explored participants’ experiences, interests, and activities. All interviews 
were audio-taped. Interviews lasted from 30 to 90 minutes. 

The interviews were transcribed verbatim and analyzed using NVivo qualitative software 
(Weitzman, 2003). Much of the initial analysis of the interview transcripts took place in regular 
team meetings over the course of four months. Researchers discussed codes and definitions of 
these codes. They also coded several interviews together. For first and level coding processes, 
both serial tagging, analyzing each transcript one at a time, and parallel tagging, reading and 
comparing each response to the same question, were employed by researchers (Baptiste, 2001). 
Initially, data were labeled, tagged, and coded based on emerging themes in the data (Baptiste, 
2001). The codes were created during a separate analysis of data using Wenger’s (1998) 
community of practice framework. The research team was analyzing 12 college girls’ interviews, 
during this coding discussion turned to how the students were discussing their views of 
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mathematics and science in relation to their chosen careers and education. The team then created 
a series of codes about the girls’ beliefs and perceptions of mathematics (Table 4).  

To contribute to the validity, reliability and veracity of the study, strategies of verification 
included using incremental evidence (Morse, Swanson, & Kuzel, 2001), triangulation between 
researchers (Merriam, 2002), and adequately engaging in data collection so that the data become 
saturated (Merriam, 2002). In order to address issues relating to reliability, multiple coders were 
used, coding was checked and refined at both the first and second levels of analysis, and inter-
rater reliability was established (Morse et al., 2001). 

 
Table 3. Codes for Describing Girls’ Beliefs and Perceptions of Mathematics 
Codes  Explanation 
Mathematics as a tool for thinking and 
problem solving 

Girls like to be challenged, math increases their 
thinking skills, also some talked about the 
problem solving skills they developed in higher 
mathematics courses 

Mathematics as an educational tool Advance study in other areas such as Chemistry or 
Physics, business degrees, as well as in future 
mathematics classes. Following curriculum 
requirements and educational goals 

Mathematics as a tool for STEM career 
pursuit 

Mathematics will help them in their pursuit of 
STEM related careers. 

Mathematics as a tool to build 
confidence in abilities, enjoyment, and 
satisfaction  

The girls are good at mathematics, and therefore, 
it helps them build confidence in their academic 
abilities. They also express that they have natural 
ability and genuinely enjoy mathematics.  

Mathematics as a tool for connecting to 
real-life and other fields 

The girls talk about liking classes that are 
connected to other areas. Prefer applied 
mathematics classes that are relevant for their 
future majors and career interests. 

Mathematics as tool for teacher 
influence on the young women’s 
perceptions of mathematics 

The young women describe classroom 
experiences and teachers in which their 
perceptions of mathematics was changed. 
Including their enjoyment and satisfaction in 
studying mathematics.  

 
Discussion 

This section will describe each of the six codes in more detail with evidence from the 
interviews. Because these codes were originally created from college interviews conducted in the 
winter of 2006 and spring of 2007, they had to be reevaluated for the high school transcripts. For 
example, the first code, mathematics as a tool for thinking and problem solving, was much more 
prominent among the college aged girls (Lambertus, Berenson, & Bracken, 2009), but the high 
school girls discussed their desire to be challenged. The research team saw this desire as being 
connected with increasing thinking skills. Therefore, the high school interview transcripts have a 
slightly different focus. 
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The first code Mathematics as a tool for thinking and problem solving was created to capture 
the young women’s beliefs about how mathematics increases their thinking and problem solving 
skills. Tina, who was home-schooled and graduated from high school at the age of 15 was taking 
a year off to do community service, because her mom felt she was too young for college. She 
continued her mathematical studies, taking calculus for no credit and because she “wanted to 
keep her mind sharp”. The girls liked not only to progress through the mathematics curriculum, 
but to take challenging courses that improving their thinking skills and prepared them for 
college. This code also encompasses the idea that the girls like to be challenged and what to be 
engaged in their learning. Amy talked about the difficulties she has if she is not being 
challenged. “[I]f you put me in an easy class, I’ll just sit there and not do anything…It’s got to be 
challenging enough for me.”  Ginger, a high school senior, stated that the challenge of a 
mathematics or science course is what draws her to those courses. This is further demonstrated 
by the fact that most of the girls, 16, took at least one advanced placement course, and 14 took an 
advanced placement course in either science, mathematics or a combination of both.  

The second code, mathematics as an educational tool has two facets. The first facet being that 
the girls take mathematics classes that are required and in line with their educational goals. This 
code is closely tied with the first. The girls are preparing themselves to go to college and are 
following the curriculum path that will put them in a position to possibly gain admissions to the 
universities of their choice. For example, Kim stated “I’m in AP Calculus. Last semester I had 
AB and then this year, I have BC Calculus.”  A second girl, Lisa, described how she took all the 
mathematics and science courses available at her school, so that she could “test out” of courses 
in college, because she wants to focus on history and political science in college. Lisa later stated 
that she felt taking calculus would “look good to colleges”. The girls appear to have spent quite a 
bit of time thinking about what types of courses and activities would get them into the colleges 
of their choice. The second aspect focuses on the fact that the girls see mathematics as a way to 
advance their study in other areas such as physics or chemistry. Kelly expressed that she took 
calculus before physics so she could take a higher level course than general physics. However, 
she did not want to take AP physics. Therefore, she was placed into honors and felt that it would 
be fun and “hard” at the same time.  

Mathematics as a tool for STEM career pursuit is the third code. The girls explained the 
different ways in which the felt their mathematics have helped them or will help them in their 
pursuit of STEM careers. Because the girls are in high school, we know that their career interests 
are not solidified. They are probably going to change and several of the girls listed multiple 
unrelated careers or simply states that they did not know. Amy stated “I’m not really sure, 
exactly, what I’m interested in. But, I know that I’ll need math. It’ll be…[math] will definitely be 
important.”  Other girls were more confident in their career choices and knew that mathematics 
would be important in some way. Kelly knew that she wanted to be an engineer. She also had 
taken steps to prepare for that route. Kelly articulated that she needed calculus in order to pursue 
an engineering degree; also, she had visited a couple of chemical engineering classes, and 
observed how mathematics was used. Most of the girls expressed that they would need to use 
math in their future careers.  

The girls are confident in their abilities in mathematics classes; therefore, they talk about 
mathematics as being a tool for building their self-confidence, enjoyment in math. They gain a 
level of satisfaction through being able to perform well in challenging mathematics classes. 
Everyone of the girls in this sample are good at mathematics, and had taken Algebra I in either 
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the 7th or 8th grade. The girls continued down the advanced mathematics track. To date, we know 
that most the girls either started the Calculus sequence, or completed advanced placement in 
statistics. In terms of expressing their confidence and enjoyment, the girls gave comments such 
as: 
 I’m taking calculus because I like math  (Ginger) 
 I’m doing pretty well in them [math classes], so – I like classes that I do well in (Mia) 
 I’m really good at calculus and math-based stuff (Lisa) 
 I like the way that math works (Annette) 

The girls also see mathematics as a tool for connecting to real-life and other fields. They talk 
about the relevance of mathematics to real problems. They express their enjoyment of being able 
to apply mathematics to situations that have a direct impact or application. For example, Alison 
stated that she liked “calculus … better than any of the math that I’d ever done before just 
because you could see how it applied to real life and how it’s important.”  When the girls were 
asked about the Girls’ on Track camp they stated that they like the mathematics problems 
because they were applied to real-life problems and situations.  

Finally, mathematics as a tool for teacher influence on their perceptions, enjoyment, and 
continued study was the final code. All of the girls talk about the influences, both positive and 
negative, of teachers. From examining these particular interviews, we can see that teachers have 
a large impact on the girls’ course choices and their enjoyment of the subject matter. Kim 
expressed “I love it [BC Calculus] because our teacher, she’s an absolutely amazing teacher – 
she really knows how to teach Calculus.”  While Katya’s enjoyment in Calculus class is because 
she feels that she has a “really good teacher this year.”  Her teacher is open to questions and is 
very good at explaining different concepts. 

The girls discuss that a particular course was difficult because the teacher did not explain 
material well, or that a course was exciting and fun, because the teacher was motivated and 
excited about the topic. Cara was the girl who expressed that she did not really like math. She 
verbalized that she did not really enjoy her current math class and that “math is not one of my 
strong points and I don’t really have a good teacher so I don’t really like math.”  When asked 
what it was that Cara did not like about her teacher, she said that the teacher covered too much 
material at once, and does not spend enough time explaining the material.  

In some instances, a teacher has influenced future mathematics choices of the girls. Mia 
stated that her teachers influenced what classes she took “they see how well I’m doing in a class 
and they’re like, ‘you’d probably do well in this class’ or ‘you’d probably do better in this 
class’.”  Another participant, Marie, stated that she did not register for pre-calculus because her 
teacher told her there was a lot of geometry involved “I didn’t do very good in Geometry, I’m 
better at Algebra stuff. So I took AFM [Advanced Functions and Modeling] because she [the 
teacher] said it was a lot of algebra.” 

 
Conclusions 

The high school girls expressed the opinions that their teachers were an important factor in 
their education. The teachers’ willingness to help students, answer questions, and explain 
material all contribute to how the girls feel about their mathematics abilities and their enjoyment 
of the subject. It also seems to influence the courses the girls take in high school. While teachers 
may influence their enjoyment of mathematics, these girls perceive the role of mathematics not 
as a career option but as a tool for their future education and careers. In our study of the high 
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achieving young women, we reported earlier on the college women’s perceptions of mathematics 
and their career interests (Lambertus et. al, 2009). The college girls showed similar enjoyment in 
mathematics and the use of mathematics as a tool. However, of all the young women 
interviewed, none of them is studying mathematics. To date, we know of only one participant 
that has chosen to study mathematics. This leads us to question why these high achieving girls in 
our longitudinal study do not wish to study mathematics in college.  
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Prospective teachers’ views of mathematics, proof, and teaching mathematics were examined in 
a content-focused mathematics education course. Both changes claimed by the participants and 
small shifts observed by the researchers were noted, along with possibly influential class 
activities. In addition, an examination of how the participants held their beliefs revealed that 
they could be tentatively described as isolationist, naïve idealist, and reflective connectionist, 
similarly to the participants in Cooney, Shealy, and Arvold’s (1998) study. 

Introduction 
Previous research suggests that teachers' beliefs about mathematics influence their classroom 

practices, although not in a way that is straightforward or easily measured (Philipp, 2007). In a 
previous study, Conner (2007) found that student teachers' conceptions of the role of proof in 
mathematics aligned with a particular aspect of classroom practice: support for collective 
argumentation. This paper reports preliminary results about shifts in three prospective secondary 
mathematics teachers’ (PSMTs’) conceptions of mathematics, proof, and teaching mathematics 
over the course of one semester. These participants are part of a cohort involved in a larger 
study, which will examine these conceptions and changes therein over two semesters and 
examine their connection to student teachers’ classroom practice with respect to support for 
argumentation. This paper reports on the relevant parts of the following research questions:  

• What do PSMTs believe about the nature of mathematics, the role of proof in 
mathematics, and the teaching of mathematics at the beginning of a two-semester 
sequence of mathematics education courses (content-focused followed by methods)? 

• How do PSMTs’ beliefs about mathematics, proof, and teaching change during a content-
focused mathematics education course and to what do they attribute those changes? 

Theoretical Perspective 
Cooney, Shealy, and Arvold (1998) suggest that we should expect little understanding of the 

connection between teacher education and teacher practice until we “understand the linkages 
between our activities in teacher education and the impact of activities on teachers’ belief 
systems” (p. 331). They conceptualize a belief structure as encompassing the ways in which a 
teacher holds beliefs, providing insights into how consistent teachers’ practices may be with their 
beliefs and how changeable these beliefs may be. At least as important as what PSMTs believe is 
how they hold these beliefs and how they deal with challenges to these beliefs. According to 
Cooney, Shealy, and Arvold, a teacher may uncritically incorporate newly encountered ideas into 
existing beliefs (naïve idealist); may completely reject new ideas that conflict with already held 
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beliefs (isolationist); or may critically analyze ideas, merging aspects of both new and old into a 
compatible system (connectionist). Considerable research has been conducted on the link 
between teacher beliefs and practices. A teacher’s practice may be connected to his or her view 
of mathematics, view of teaching mathematics, or some combination of these views. It may also 
be necessary to examine other related factors to understand the relationships between beliefs and 
practice. The elementary teacher in Raymond’s (1997) study held beliefs about teaching math 
that differed from her practice, but her practice aligned with her views of mathematics. Borko, 
Eisenhart, Brown, Underhill, Jones, and Agard (1992) also found inconsistencies between beliefs 
and practice in their study of a preservice elementary teacher. Philipp (2007) suggests apparent 
inconsistencies between teachers’ beliefs and their practice may be explained by examining 
contextual factors and the teachers’ belief systems. Teachers’ belief structures may influence 
how readily their beliefs change, and previous research has established that teachers’ beliefs 
change slowly, over time, and are not readily changed in one semester (Thompson, 1992). 

Methods 
This research was conducted in the context of a mathematics education course, which was 

designed to help PSMTs think deeply about the middle and high school mathematics they will be 
teaching. The focus of this class was on mathematical concepts such as complex numbers and 
trigonometry and mathematical processes such as proof and representation. The course was 
taught by engaging small groups of students in mathematical investigations followed by whole 
class discussions. One of the authors of this paper taught the course, and all students in the class 
(n = 10) agreed to participate in the research. Participants completed a survey (adapted from 
Yoo, 2008) and participated in semi-structured interviews at the beginning and end of the course 
to provide a means for us to understand their views of mathematics, proof, and teaching 
mathematics. Other data included video and audio recordings and field notes of each class 
session, copies of students’ written work, and their responses to weekly reflection questions. 

The survey asked students to identify, along a continuum from 1 to 8, their views of various 
statements about mathematics, proof, and teaching mathematics. Figure 1 shows one of the items 
on the survey. Each item involved two statements, labeled (a) and (b), and students were asked to 
select a number between 1 and 8 that reflected their level of agreement with the statements. The 
first interview involved questions about mathematics, teaching, and proof such as “What does it 
take to be a good math teacher?” The second interview involved follow-up questions relating to 
participants’ answers to the first interview questions, direct questions about whether participants 
believed their views had changed, and several tasks that asked participants to validate proofs. 

 

 
Figure 1. Sample survey item. 

 
Data analysis is ongoing and has involved several passes across the various data sources. For 

the three focus cases (chosen to be representative of the cohort’s initial views of math, teaching, 
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and proof), the surveys and interviews were examined to ascertain individual students’ initial and 
ending views of teaching, mathematics, and proof. Analysis involved identifying pertinent 
passages from interview transcripts, summarizing what the participants said about each of the 
relevant ideas, considering alternate interpretations of the participants' statements, and examining 
the transcripts, written work, and surveys for confirming or disconfirming evidence. The goal 
was to characterize each participant's views of mathematics, proof, and teaching mathematics. 

After each focus participant's initial and final views of mathematics, proof, and teaching 
mathematics were characterized, changes in views were noted. We noted both changes that were 
apparent to the researchers and areas in which the participants claimed to have changed their 
thinking. When possible, we asked participants to identify class activities that influenced their 
thinking, and we examined those activities to derive characteristics that may have been 
influential. Future analysis will involve examining other classroom activities for evidence of 
when the changes may have occurred and what particular activities or conversations may have 
led to the changes noted by researchers. 

Results 
The results reported here are for a subset of the participants in the overall study and are for 

only one of the two semesters for which data will be collected. David, Kylee, and Helen 
(pseudonyms) were chosen to be as representative as possible of the range of conceptions of 
mathematics, proof, and teaching mathematics observed in the participants at the beginning of 
the semester. All three had completed at least two mathematics classes past the calculus 
sequence, had taken at least two previous mathematics education classes, and were enrolled in at 
least two upper-division mathematics classes in addition to this course. 
David 

David’s views of some aspects related to mathematics shifted over the course of the 
semester, but no evidence was found to suggest that David’s views regarding the nature of 
mathematics changed during the course. He referred to mathematics itself as “independent of 
human invention” but saw the ways people interact with it as new and innovative; mathematics is 
already present, waiting to be discovered (David survey 2, question 1). David seemed to utilize 
the lens of ‘practicality’ or ‘applicability’ to determine which mathematical topics are most 
important. Through the semester, this lens appeared to have been refined from what is applicable 
in school to what is applicable in life. At the beginning of the semester, he indicated that algebra 
was the most practical because it “is something that all high school students are going to have to 
go through at some point” (David interview 1, lines 38–39). David appeared to alter this stance 
as a result of his study of the concept of area for a class project. This project required him to 
examine area in depth and consider alternative definitions and possible generalizations of the 
concept. At the end of the semester David claimed that measurement is the most practical 
because it is “really easy to relate to real world situations” (David interview 2, line 286). 

A second possible modification in David’s thinking might be termed a comprehension of 
unexpected complexity. This comprehension is most clear when David recalled a class activity 
where each student attempted to represent arithmetic fraction operations visually, with the goal 
of gaining insight into how future students, who are not fluent with a standard algorithm, may 
think about performing such operations. “Fractions is one of the basic things you learn in 
math…. That was something I probably would have never… noticed or thought, you know, to 
see the concept behind” (David interview 2, lines 16, 144–145). This new comprehension seems 
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to be at least partly due to the recognition that teaching a concept involves a level of 
understanding greater than that typically achieved by students. In addition to possibly gaining a 
deeper conceptual understanding of fraction operations, there is evidence that David began to 
generalize the idea of looking deeper in order to “see the concept behind.” He stated, “It’s not 
just going to be with fractions, obviously, it’s going to be with other concepts that… we just kind 
of overlook” (David interview 2, lines 148–152). 

In both interviews, David emphasized that his reason for becoming a mathematics teacher 
was first about working with students and secondly about the mathematics. What appeared to 
differ, however, were his views on what and how mathematics should be taught. David’s 
comprehension of the unexpected complexity inherent in mathematical topics he understood 
procedurally developed concurrently with a belief that conceptual understanding should be a 
primary goal of teaching. Again referencing the work with fractions, he said, “Teaching… is 
really going into depth about like how to… divide and multiply fractions and what that actually 
means” (David interview 2, lines 139–141). Additionally, David’s explanations regarding what 
good teaching looks like became more specific over the course of the semester. In his first 
interview, David described a good math class as one with “examples on the board, do things like 
that, but in the end, or maybe the majority of the class time can be spent with students working in 
groups” (David interview 1, lines 171–173). In this view of teaching, student-led discussion is 
noticeably absent. In contrast, David referred to the final few weeks of the course as mirroring 
his ideal classroom: students working on problems in groups and participating in whole class 
discussion where “what happens is you can get the group that does know it to explain it, and that 
always helps” (David interview 2, lines 212–213). 

There is strong evidence to suggest that David’s views of mathematical proof underwent 
some revision. At the end of the course he stated, “I used to think of like proof like as a more, 
like, step-by-step, uh, kind of recipe to follow to prove different things. And now, I kind of see it 
a little bit more as, um, as using, like, your mathematical knowledge to show something’s true” 
(David interview 2, lines 462–465). This minor movement in his thinking does not preclude him 
from later noting that some types of proof have expected structural elements, and, if employing a 
particular type of proof, one should know and use the traditional elements of that type. Aligning 
with his current views about mathematics teaching, David stressed that proofs can help students 
understand mathematical concepts. He pointed to a class activity where several proofs of the 
same statement were analyzed as one instance that helped to change his thinking in this regard. 
Kylee 

Kylee demonstrated subtle changes in her thinking about doing mathematics, although her 
view of the nature of mathematics did not change. In both interviews, Kylee stressed her 
objective view of mathematics, calling it unambiguous in August and, in December, stating that 
her favorite thing about mathematics was that it can only be interpreted in one way. She does 
believe that there are multiple ways to solve a problem, but each problem has only one correct 
answer. The transition with respect to doing mathematics is reflected in her survey responses. 
Initially, Kylee’s responses indicated that natural mathematical talent and procedures were more 
important than hard work or using one’s own knowledge to make sense of mathematics, 
respectively. For example, when asked if she would give up or keep working if a problem took a 
long time to complete, she leaned toward not finishing the problem (Kylee survey 1, question 
16). At the end of the semester she expressed a belief in the value of perseverance: “if you wanna 
figure it out you can” (Kylee interview 2, lines 215–216). One might hypothesize that the class 
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structure of group investigations and class discussions challenged her thinking and contributed to 
Kylee’s strong belief in hard work. When reflecting on the class she wrote, “I love the open 
discussions that we have; the thought-provoking questions provided by our instructor(s) are a big 
part of that” (Kylee week 4 reflection). 

Kylee thought her view of teaching changed, although interview and survey evidence provide 
little support for major changes. At the beginning of the semester, she stated that she knew what 
to expect in teaching because her parents are both teachers. Student characteristics seemed to 
play a big part in how she would run her classroom, but she generally remained committed to a 
more teacher-centered class, expressing a belief that some students need content taught by direct 
instruction: “I know the ‘new-aged’ idea of math is to help students understand it on their own, 
but there are so many things in math that I believe need to be just taught” (Kylee survey 2, 
question 7). Her comments about what teaching mathematics entails, however, did become more 
specific over the course of the semester. In her first interview Kylee seemed to focus on general 
teaching issues such as sharing her love of mathematics, explaining ideas in multiple ways, and 
helping students stay interested and focused during class. In the second interview, when asked if 
her thinking had changed, Kylee stated, “it might be a little bit harder than I thought, but not 
harder in a bad way just a lot more things to think about, … like having to explain things 
different ways and [being] more prepared for how students may think” (Kylee interview 2, lines 
76–80). She pointed to the class activities of fraction operations and generalizing problems as 
experiences that contributed to changes in her thoughts about teaching. The generalizing activity 
involved working a number of similar problems in different contexts and determining how all of 
the problems could be examples of a general problem type. We hypothesize that Kylee’s learning 
experiences during these group activities provided an opportunity for her to think about her 
views of teaching. 

Although Kylee believed that her thinking about proof has changed, she attributed that 
change to her concurrently taken abstract algebra course. She demonstrated consistency in her 
overall idea about proof as a means for connecting and building up mathematics: “Proof is like 
taking ideas you already know and putting them into something, building another idea to make 
you believe something you already know” (Kylee interview 2, lines 284–287). Despite her 
emphasis on proof reinforcing facts that are already known, Kylee, over the semester, expanded 
her view of the purpose of proof to include explaining why statements, such as the four color 
theorem, are true (Kylee survey 2, question 2). 
Helen 

Helen viewed math as a body of knowledge that is waiting to be discovered. This body of 
knowledge has the characteristic of building upon itself. She also believed that math is not about 
memorization; it can be applied to anything and that there are many ways to do things in math. 
Her conception of math with respect to these characteristics seemed to be stable and was 
expressed in both interviews. Helen believed that her thinking about math changed over the 
course of the semester. In particular, she stated that she realized that she can have her own way 
of doing things in math. Previously she had realized that people can do things in math in 
different ways, but she may not have internalized that she might do things differently from others 
and still be doing them correctly. She said, “Kylee might do it this way and Bridgett might do it 
that way but Helen has her own way, too…. their ways are not the only ways that I can do 
things” (Helen interview 2, lines 245–248). We conclude that although Helen’s view of the 
nature of mathematics did not change, her view of herself in relation to mathematics did.  
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Helen believed her view of teaching changed over the course of the semester. Precisely how 
her thinking changed is difficult to determine, but it seems to relate to her conception of group 
activities. Helen’s view of teaching at the beginning of the semester seemed to be that a teacher 
should be the one presenting the information to the students with the students having the 
responsibility to ask questions and participate in class. In an attempt to explain the change in her 
thinking, Helen said, “I’ve been accustomed to like a teacher standing at the board and lecturing 
whereas this semester…. it was more of like, you know, let’s work as a group, let’s figure this 
out as a group or let’s figure this out as a class…. I think this class has really helped because it 
makes me like maybe want to teach the class … like half a little bit of lecture, half a little bit of 
like let’s do group activities” (Helen interview 2, lines 142–150). Experiencing a class in which 
students were expected to construct their understandings by interacting with other students 
around carefully chosen tasks seemed to have influenced Helen’s view of the activities that are 
included in teaching. Helen’s survey answers also reflect this change in her view of teaching. 
Originally, she said the goal of instruction is equally (a) to transmit established mathematical 
facts and procedures to students and (b) to guide students to construct mathematical knowledge 
and understanding on their own. At the end of the class, she indicated that the goal of instruction 
is mostly (b), explaining, “The teacher has to allow the students to try on their own and to guide 
the students to the information, not tell them the information” (Helen survey 2, question 7). 

Helen’s view of proof seemed to stay relatively consistent over the course of the semester. 
She saw the importance of proofs in mathematics but did not like them or feel that she was good 
at proving. For Helen, a large part of proving was related to understanding – understanding why 
a mathematical statement is true and understanding what the mathematical statement means. Her 
response to the survey question ‘The main purpose of proof in mathematics is (a) to show the 
truth of a mathematical proposition or (b) to explain why the statement is true’ was 4, (a) and (b) 
equally, both at the beginning and end of the semester. From her statements and work with proof 
tasks in the second interview, Helen’s clear emphasis was on understanding each step of a proof 
when validating it. She had difficulty understanding one of the statements within an argument 
she was examining in the second interview and stated, “if I understand that one step it will 
probably be really convincing and I’ll probably like that proof the most” (lines 790–792). In fact, 
she did find that argument most convincing and labeled it a proof, but only after the interviewer 
provided more information that helped to explain that particular part of the argument to her. 

Discussion 
As we examined the activity of our three focus participants, we found some similarities in the 

conceptions held by the students, the kinds of changes or shifts we observed in their conceptions, 
and the class activities that the students reported as influencing their thinking. Our analysis 
considered mathematics, proof, and teaching mathematics separately. Our initial hypothesis was 
that this course, which focused on mathematics, might be influential in relation to mathematics 
and proof, while the next course, which focuses on pedagogy, might be more influential in terms 
of teaching. However, all three participants reported changes in their thinking about teaching, 
while only one suggested that this course influenced his thinking about proof.  

David, Kylee, and Helen believe that math is ‘out there’ and either has already been 
discovered or is waiting to be discovered. They talked about math as a known entity, although 
David and Kylee both referred to mathematicians developing new ideas or new mathematics. 
Helen suggested that each person re-discovers math for himself or herself. David’s perspective 
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on what was important about math seemed to broaden, and we found shifts in all three of their 
perspectives on math in relation to teaching and learning. Helen’s view of herself in relation to 
math shifted from a belief that mathematics problems can be done in multiple ways to a belief 
that she may personally have a valid method that differs from those of her peers. Kylee shifted 
from a view that espoused ability as more important in doing math to one that emphasized more 
sense making and hard work. David saw more complexity in what he had before considered to be 
simple mathematical ideas. Essentially, David’s view of mathematics in relation to the rest of the 
world changed; Helen’s view of herself in relation to mathematics changed; and Kylee revised 
her view of what it means to do and learn mathematics.  

All three focus participants were concurrently enrolled in an abstract algebra course. This 
proof-intensive course may have influenced their thinking about proof more than our 
mathematics education course. Kylee directly stated that her thinking about proof changed 
during the semester, but in response to the abstract algebra course rather than the mathematics 
education course. David described a change in his thinking about proof over the course of the 
semester, although we might describe it as a maturing in his views of proof from an initial view 
of proof as step-by-step to a current view as a more global process dependent on understanding. 
He conceived of the purpose of proof as to show why a statement is true, although he also talked 
about proofs as showing that a statement is true. Both Kylee and Helen also spoke about the 
importance of understanding when writing proofs.  

The most interesting shifts during the semester occurred within the three participants’ views 
of teaching mathematics. All three felt that their thinking about teaching changed over the course 
of the semester, and we believe it was the nature of the class activities that most clearly 
influenced those changes. David and Helen both changed in their view of group activities. David 
saw more potential for learning to occur through group activities. Helen professed more 
willingness to use group activities, and perhaps saw more of an opportunity for learning to occur 
in them. Even though we do not believe Kylee changed from her view of the job of the teacher as 
explaining and presenting information to students, Kylee and David both attended more to the 
complexities of teaching mathematics during their second interviews. Their initial comments 
about teaching could be applied to teaching almost any subject, but they specifically commented 
on the complex nature of the knowledge needed for teaching math in their second interviews. 
Kylee and David both pointed to the fractions activity as influential in their thinking about 
teaching, while Helen attributed changes in her perspective to her experience as a learner in a 
class that was, for her, unique. Previous studies have pointed to the notion that teachers are 
influenced by their own learning experiences as students (Thompson, 1992). This, along with 
Helen’s, and to some extent Kylee’s and David’s, report of experience suggests that even one 
course taught in a way that is significantly different from the rest of their experience may allow 
them to begin to think differently about teaching. 

Despite some similarities in views of mathematics, proof, and teaching mathematics, we 
believe these three participants hold their beliefs in very different manners. Choosing Cooney, 
Shealy, and Arvold’s (1998) vocabulary, we believe we can tentatively describe David’s belief 
structure as reflective connectionist, Kylee’s as isolationist, and Helen as a naïve idealist. 
Though his core beliefs, such as his metric of practicality, inform his subsequent beliefs and 
actions, David showed a willingness to refine these subsequent beliefs based on reflecting on his 
experiences and interactions, such as his concept analysis of area and work with the fractions 
activity. Isolationists generally believe that there is always a right or wrong, a belief Kylee 
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repeatedly expressed in reference to mathematics, and that truth comes from authority figures 
rather than rationality. Because her parents are both teachers, it is likely that many of Kylee’s 
views on teaching derive from her parents. She does not seem willing to challenge what her 
parents, as her authority figures, may have told her. Generally, her responses to the survey 
questions seeking to understand her beliefs about mathematics, teaching, and proof were quite 
consistent from August to December. Her only major shift concerned her own perseverance in 
completing mathematics problems. This possible shift in her thinking about her own interactions 
with mathematics does not seem to have influenced her thinking about teaching others, providing 
more evidence that she holds her beliefs as an isolationist. Helen seems to be a naïve idealist, 
wanting to bring the new ideas that arose from her experiences in class into agreement with her 
original ideas based on her classes with her favorite high school teacher, leaving her with the 
conclusion that she would teach half with lecture, half with group activities. Rather than making 
choices between teaching methods or reconciling differences between her original views and 
those arising from new experiences, Helen embraced all as good. 

Implications 
The small shifts in conceptions that we saw over the course of only one semester suggest that 

experiencing a course taught differently may influence students’ beliefs about teaching and 
learning. Although their beliefs about the nature of mathematics and the role of proof in 
mathematics did not change, each participant’s views of some aspect of mathematics and 
teaching changed. Carefully designed mathematics education courses that provide PSMTs with 
experiences that mirror the ways that they will be expected to teach may allow them to 
reconsider or extend their initial beliefs about teaching mathematics. 

We initially hypothesized that this course would provoke changes in the PSMTs’ beliefs 
about proof based on comments made by students who had completed the course in previous 
semesters. Since our participants did not seem to experience comparable change, we examined 
our course activities, comparing them to previous semesters. We concluded that we did not 
address proof and proving as explicitly as in previous semesters. This leads us to suggest that 
more explicit attention to proof might be necessary to provoke students to reconsider their 
conceptions of proof. Given the small shifts in conceptions of proof in this semester, it may be 
necessary to attend to proof much earlier in teacher preparation programs. 

The results reported here tell only part of the story. At this writing, data are still being 
collected about the PSMTs’ conceptions of math, proof, and teaching. We describe the changes 
that we saw as shifts in thinking, and we will continue to examine how stable these shifts are, 
given their individual belief structures, during another mathematics education class and their 
student teaching practicum.  
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This paper reports on an exploratory case study aimed to identify the ways in which an algebra 
one teacher privileged the graphing calculator and the ways in which her goals were interpreted 
and ultimately practiced by her students.  The study employed an adaptation of an existing 
framework (Pierce & Stacey, 2002, 2004) highlighting the mathematical, technical, and personal 
aspects of graphing calculator use.  The authors suggest the consideration of each of these 
aspects as important for future research on the complex issue of privileging in the promotion of 
graphing calculator use. 
 

Background 
Graphing calculators are a mainstay in the U.S. high school mathematics curriculum and 

because of that considerable research has been done on the effect of graphing calculators in the 
math classroom (Ellington, 2003; Burrill et al., 2003). In a national survey completed in 2000, it 
was revealed that over 80% of high school mathematics teachers in the United States reported 
that they used graphing calculators in their classrooms (Weiss, Banilower, & Smith, 2001) and 
due to the current state of standardized tests in our country that percentage has likely risen in the 
last nine years. Given the pervasiveness of graphing calculators in the culture of our high school 
mathematics classrooms, it is necessary to understand the ways in which and the reasons why 
students incorporate them as tools in their mathematics learning and problem solving.   

Studies have shown that the ways in which technology is used in the context of a 
mathematics classroom are formed by a shared understanding about the appropriate modes of use 
that are developed over time by the members of the classroom community, the teacher and the 
students (Doerr & Zangor, 2000; Goos et al, 2003; Kendal & Stacey, 2001; McCulloch, in press; 
Pierce & Stacey, 2004).  Of these studies, those that aimed to understand and describe effective 
graphing calculator use have largely been set solely in the context of the classroom, failing to 
reach beyond and examine how promotion in the classroom might impact student decision 
making with regards to their graphing calculator use in independent situations (Burrill et al., 
2003).  Furthermore, the classrooms in which these studies are typically situated are the 
equivalent of pre-calculus or calculus classes (Burrill et al., 2003).  However, since most 
statewide algebra exams require the use of graphing calculators many students first encounter 
them in algebra one.  As such, it is important to examine how effective use is promoted, 
understood, and then applied in independent situations in these classrooms.   

The study described here was set in a year long algebra one class in a large urban high 
school.  It is different than previous work in that we look at an algebra one teacher and her 
students, both in and out of the classroom.  This particular teacher incorporates graphing 
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calculators regularly because she wants her students to become “effective graphing calculator 
users”.  We aim to identify the aspects of graphing calculator use that this teacher deems 
consistent with effective graphing calculator use, the aspects that she actually promotes in her 
classroom practice, and the ways in which her goals are interpreted and ultimately practiced by 
her students in independent situations.   
 

Framework 
Pierce and Stacey (2002, 2004) have offered a series of frameworks for analyzing both the 

cognitive and affective aspects of effective use of calculators with computer algebra systems 
(CAS).   They have identified four aspects of CAS use:  mechanical, technical, personal, and 
mathematical.  The mechanical aspect refers to knowledge of the actual calculator hardware. The 
mathematical aspect refers to the mathematical knowledge that is drawn upon during problem 
solving.  These two aspects act as the extremes in a continuum of knowledge that students must 
draw upon when using CAS.  The interaction between the mechanical and mathematical aspects 
is what Pierce and Stacey (2004) refer to as the technical aspect.  The technical aspect is 
synonymous with knowledge of the machine software, meaning it is the knowledge of how to get 
the machine to complete the mathematical actions you want it to carry out.  For example, to 
solve an equation using a table requires both the mathematical knowledge of how a table could 
be used to determine a solution and the mechanical knowledge of how to create a table on the 
CAS.  Finally, the personal aspect refers to attitudes toward CAS use and judicious decisions 
regarding its use.  It is through the personal aspect that decisions regarding CAS use are made.  
Since the tools available on graphing calculators are a subset of the tools available on CAS, it is 
appropriate to draw upon Pierce and Stacey’s work to frame this study.   

The purpose of this study was to begin to understand the intricate ways in which the 
promotion of graphing calculator use in the classroom might impact students’ use in independent 
situations.  We aim to go beyond the generalities of attitudes toward graphing calculator use and 
look carefully at the actions and words associated with its use by both the teacher and the 
students, in and out of the classroom. Specifically we aim to examine interaction between the 
mathematical, technical, and personal aspects of graphing calculator promotion and usage.  As 
such, Pierce and Stacey’s (2004) framework for effective use of CAS was adapted for graphing 
calculator use.  This framework captures both the technical and personal aspects of graphing 
calculator use (see table 1).  Pierce and Stacey (2002) have also explicated a framework for the 
mathematical aspect of CAS and graphing calculator use, which they refer to as algebraic 
insight. The algebraic insight framework identifies the “part of symbol sense that is most 
affected by the availability of having CAS” (p. 622) (i.e. algebraic expectation and ability to link 
representations).  Given the context of this study, the algebraic insight framework is an 
appropriate lens through which we can view the mathematical aspect of graphing calculator 
promotion and usage.   
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Table 1. Framework for aspects of effective use of graphing calculators* 
Aspects Elements Common Instances 
1.Mathematical  
(Algebraic 
Insight) 

1.1 Recognition of conventions and 
basic properties 
 
1.2 Identification of structure 
 
 
1.3 Identification of key features 

1.1.1 Know meaning of symbols 
1.1.2 Know order of operations 
1.1.3 Know properties of operations 
1.2.1 Identify objects 
1.2.2 Identify strategic groups of components 
1.2.3 Recognize simple factors 
1.3.1 Identify form 
1.3.2 Identify dominant term 
1.3.3 Link form to solution type 

 1.4 Linking of symbolic and graphic 
representations 
 
1.5 Linking of symbolic and numeric 
representations 

1.4.1 Link form to shape 
1.4.2 Link key features to likely position 
1.4.3 Link key features to intercepts and asymptotes 
1.5.1 Link number patterns or type to form 
1.5.2 Link key features to suitable increment for table 
1.5.3 Link key features to critical intervals of table 

2.  Technical 2.1 Fluent use of program syntax 
 
 
2.2 Ability to systematically change 
representations 
 
2.3 Ability to interpret GC output 

2.1.1 Enter syntax correctly 
2.1.2 Use a sequence of commands and menus 
proficiently 
2.2.1 Plot a graph from a rule and vise versa 
2.2.2 Plot a graph from a table and vise versa 
2.2.3 Create table from a rule or vise versa 
2.3.1 Locate required results 
2.3.2 Interpret symbolic GC output as conventional 
mathematics 
2.3.3 Sketch graphs from GC plots 
2.3.4 Interpret GC non-response 

3.  Personal 3.1 Positive Attitude 
 
3.2 Judicious Use of GC 

3.1.1 Value GC availability for doing mathematics 
3.1.2 Value GC availability for learning mathematics 
3.2.1 Use GC in a strategic manner 
3.2.2 Discriminate in functional use of GC 
3.2.3 Undertake pedagogical use of GC 

*Adapted from Pierce and Stacey (2002, 2004) 
 

Methodology 
The focus of this study was a single high school algebra one class, both the teacher and the 

students.  Since the purpose was to gain insight from all members of the classroom community 
about how graphing calculator use was being promoted and actually used, data was collected 
from both the teacher and the students before, during and after the unit of study.   
Data Collection 

The classroom teacher, Ms. Kersee (a pseudonym) identified a unit of study (solving 
equations) that she would be teaching during the fall semester and in which she planned to 
integrate the graphing calculator.  The class was video taped every day during the unit (13 days).  
In addition to classroom video, both survey and interview data were collected from Ms. Kersee 
and each of her students.  Ms. Kersee was interviewed both prior to and upon completion of the 
instructional unit.  The purpose of these interviews was to gain an understanding of the ways in 
which she planned to promote graphing calculator use (prior) and believes she did promote its 
use.  Students' perceptions of her promotion of the graphing calculator and their actual use were 
captured using both survey and interview data.  A survey designed to identify how each student 



Vol. 5  897 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

typically used the graphing calculator, their comfort level with different modes of the graphing 
calculator, and their perceptions of the teachers promotion of graphing calculator use was 
administered both prior to and after the instructional unit.  Finally, the students participated in an 
interview at the completion of the unit, a portion of which was task-based.  The student 
interviews were intended to provide insight into how and why the students used their graphing 
calculators in private situations and how consistent their use was to the ways in which they 
perceived use was promoted in their class.  All interviews were both video and audio recorded.  
Video of the graphing calculator screen was also captured when calculators were used during the 
interview process.   
Participants 

Ms. Kersee is in her 14th year of teaching high school mathematics.  She has spent her entire 
career at one high school, a large urban high school in the south eastern United States.  During 
her 14 years she has taught at least one section of some version of algebra one every year.  She 
was asked to participate in this study based on the recommendation of school administrators as a 
“very good teacher” that is known for “using technology well” in her classes (She was honored 
as teacher of the year during the 2007-2008 school year).  Ms. Kersee has a B.A. in secondary 
mathematics education and is currently pursuing a master’s degree in educational leadership.   

The class at the focus of this study is an algebra one course that meets 90 minutes each day 
for an entire school year.  The class is comprised of 21 students, all of whom had been 
unsuccessful in a previous algebra course. Due to excessive absences only 17 of the students (8 
female, 9 male; 15 Black American, 1 Mexican American, 1 White American) completed this 
study.  These include 2 freshman, 7 sophomores, 6 juniors, and 2 seniors. A special programs 
teacher was in the classroom full-time due to the number of students who have instructional and 
testing modifications related to learning disabilities or other exceptionalities.  Ms. Kersee 
expresses very firm beliefs on how students in such a class need to learn mathematics.  Beyond 
the development of an environment of high standards and accountability, Ms. Kersee looks to 
incorporate new teaching methods that incorporate different learning styles and highlight 
different methods of solution.   

 
Observations and Preliminary Inferences 

Ms. Kersee labels herself as being committed to professional development, a claim that is 
verified through her actions as a professional.  She has been self-motivated to learn new methods 
of using calculators, specifically graphing calculators, in the classroom.  While she admittedly 
does not know all of the instructional capabilities of the graphing calculator, she continues to 
search for new ideas.  Without any technical, instructional, or financial support from her school 
or district, she explores Internet tools and other materials offered by Texas Instruments (TI) or 
other publishers.  In the place of costly workshops and conferences, Ms. Kersee has taught 
herself how to use the graphing calculator through what she refers to as “playing around.”  In 
order for her students to benefit from what she feels is a powerful tool and to address a shortage 
of available calculators in the school, Ms. Kersee wrote two grants to obtain a class set of TI-84 
calculators, which students use in class and are allowed to check out to bring home in certain 
situations.  

Ms. Kersee incorporates the graphing calculator into her algebra one course because of the 
value she places on effective calculator use as a benefit on state and in-class tests.  She has also 
observed the positive impact of the calculator’s availability on students’ confidence.  In the 
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instructional unit in which this study was situated (solving equations), Ms. Kersee identified the 
use of tables to solve equations as a skill that she intended to promote as a solution method that 
was as legitimate as using “by hand” methods.  Indeed, she stated that she hoped her students 
that struggled with computational errors would use tables instead of “by hand” methods on both 
their classroom based and standardized tests.  

For the purposes of this paper we have chosen to focus on a very small sliver of Pierce and 
Stacey’s (2002, 2004) adapted framework, one particular technical aspect (constructing a table 
from a rule) and the mathematical and personal aspects related to it from both the teacher's and 
the students’ points of view.  Specifically, we focus on Ms. Kersee’s goal of having her students 
learn to use graphing calculator produced tables to solve equations, how she actually carried out 
this goal in her classroom, and some preliminary observations with respect to how her words and 
actions influenced student decision making regarding graphing calculator use in independent 
situations.   
Graphing Calculator Promotion in the Classroom 

Ms. Kersee introduced the use of tables to solve equations on the tenth day of the 
instructional unit.  The previous nine days had been focused on solving one and two step 
equations, special equations (e.g. identity and no solution), solving literal equations, and word 
problems.  This, the tenth day, was the day before the unit test and Ms. Kersee’s goal was to 
provide her students with another method for solving equations.  She opened the class by stating, 
“Today I’m going to show you another way to solve equations.”  She began by using a large 
poster that displays the TI-84 plus calculator, on which she pointed to the buttons that would be 
used in the lesson.  After identifying these keys on the graphing calculator Ms. Kersee put an 
example problem on the board, 2x - 3 = x + 4, and solved it "algebraically."  Next, while using 
the overhead display of her own graphing calculator, she instructed the students to enter the left 
and right side of the equation into Y1 and Y2, respectively.  She reminded the students that the 
solution of the equation will be "the X that makes it a true statement."  To find the solution, Ms. 
Kersee told the students to "search until our Y1 and our Y2 is the same." Then she identified x = 
7 as the solution to this equation.   

On the board, Ms. Kersee checked the solution found on the calculator by substitution, and 
reiterated that the table process is "another way to solve an equation."  The students were then 
given four equations to try to solve on their own ( 1427 −=− xx , )5(2)24(2 +−=− rr , 

24)36)(3/2( +=+ xx , and hh 2.33.92.3 −= ). After the students worked the examples 
independently, she returned to the board and "checked" solutions given to her by the students 
"algebraically" by hand, without using or referring to the table.  After finishing the second 
equation, a student asked Ms. Kersee why she did not "plug in" the solution to check.  She 
responded, "To check your answer, you plug it in.  I was doing it algebraically to show if you 
work the steps, you still get the same answer."  After they had gone over all four examples, Ms. 
Kersee assigned a review for the test the following day. No mention of the graphing calculator 
was made when discussing the review assignment. 

The following day, as they went over the review assignment all problems were worked out 
on the board and no mention was made of the new solving method.  However, as Ms. Kersee 
passed out the tests she reminded the students that “when you are solving equations you can use 
any method. And don’t forget you can do that to check.” Further, she explained, “If you use your 
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calculator to solve a problem on your test, you don’t have to show any work, just make sure you 
write down that you used your calculator so I know where you’re getting your answer from.”   
Student Graphing Calculator Use 

Though Ms. Kersee stated that the students were free to use any method on any problem, 
preliminary analysis indicates that the students did not all interpret her goals as she intended.  In 
some cases, the students did not understand how the new method of solving, using the tables, 
could even be used to meet those goals. Though there are many, we have chosen to highlight two 
examples of this misinterpretation of goals here:  (1) the interpretation that tables are to be used 
to check, not to solve, and (2) the interpretation that tables can only be used when solving an 
equation with variables on both sides.   

Tables used to check, not solve.  Though Ms. Kersee introduced the table solving process as 
another method to solve, she only used it to solve one equation with the class.  She then gave the 
students four examples to try on their own, when they came back as a whole group to share their 
solutions, she checked them by working the problems out by hand on the board.  These actions 
have been interpreted by some students as a message that this process should be used to check, 
not solve equations.  For example, when she was asked how she thinks Ms. Kersee wanted her to 
use her graphing calculator in this chapter one young lady responded, “Actually, I mean, she 
would have wanted us to use it.  But, I think she ... I mean, she would want us to use it a lot but 
like maybe on problems that she went over with us to tell us to use it.  So, if it wasn’t the 
problem she went over that said use calculator, I guess she wouldn't really expect us to use the 
calculator.”  She went on to share a problem on her test for which she used a table.  She 
explained, “I did it by hand and then by the tables, to check…how she showed us.”  Similarly, a 
young man shared that he used the tables to check his work as well.  When discussing his test he 
said, “I used these (points to table) to see if it is right.”  Later when he was asked to solve a 
problem he first did it by hand and then used his graphing calculator to check his solution (see 
figure 1 below).  The conversation follows:  

 
 
 
 
 
 
 
 

 
Figure 1. Student’s “by hand” work and corresponding table used to “check”. 

 
Interviewer:   Okay.  So is your answer correct?   
Student:   It [the graphing calculator] says it wrong. 
Interviewer:   It says it's wrong, huh?  Can you tell me what the answer should be? 
Student:   Negative seven, negative seven. 
Interviewer:   But, so that tells you that it's wrong, since it says negative seven and one, 

right? 
Student:   Yeah. 
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Interviewer:   So when you look through here, can you tell what the answer is supposed 
to be?  It's not negative four. 

Student:   Yeah. 
Interviewer:   Can you tell what it is? 
Student:   Uh, no. 

This particular student not only had interpreted that the table was intended to check his work, 
but even though the solution was in his viewing screen he did not know how to use the table to 
determine the solution to the equation.   

Tables can only be used when solving equations with variables on both sides.  As described 
above, in her introduction of using tables to solve equations Ms. Kersee worked one example 
with the students using the overhead graphing calculator, which was followed by having them try 
four examples on their own.  All five of these examples were of similar form; each had variables 
on both sides of the equal sign.  In more than one case we saw that this choice of examples 
influenced students’ beliefs about the types of problems for which using graphing calculator 
produced tables are either appropriate or that Ms. Kersee would deem valuable.  For example, 
one student was explaining how he used his graphing calculator to solve a set of tasks.  The 
interviewer noticed that he did not use the table on an equation that had a constant on the right 
hand side, but started to use his graphing calculator when their were variables on both sides.  The 
interviewer inquired about this decision. Their conversation follows:  

Interviewer:   Okay, how come, this one you decided to use the table?  What's different 
about these two problems? 

Student:   Oh, because this one here, when it looks like that, I can’t put it in the table 
Interviewer:   When it's like that? 
Student:   Yeah. 
Interviewer:   What do you mean… 
Student:   Like, for, like, two equate--one equation's one side, one equation one side. 
Interviewer:   Oh, so there's a variable on both sides... 
Student:   Yeah. 
Interviewer:   ...and that's why you used the table.  Okay.  I understand.  Can you use the 

table on a problem like this one, too? [pointing to an equation with a 
constant on the right] 

Student:   No you can’t. 
Due to the examples used in class this particular student either didn’t know how enter an 

equation with a constant on one side into the graphing calculator to use a table, didn’t think it 
was possible to do, or didn’t think his teacher wanted him to use it on those types of problems.  
Regardless, his misinterpretation about when it is appropriate or even possible to use tables to 
solve equations was influenced by the examples presented in class.   
 

Discussion 
Previous research has shown that students' graphing calculator use is influenced by the ways 

in which it is privileged in the classroom (e.g. Kendal and Stacey, 2001; McCulloch, in press).  
The preliminary results of this study support these claims, but also point to the complexity of the 
issue of privileging.  Ms. Kersee’s language, both in interviews and in classroom observations, 
indicates that she values the graphing calculator as a tool with which one can solve equations.  
Her intention was to send a message to her students that graphing calculator solving methods are 
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as valued in her class as by hand methods.  However, it is clear that the message that she 
intended to send to her students regarding her goals for them was not the message they received.  
It appears that the examples she chose and the way in which she discussed them might have 
influenced the ways in which her students interpreted her goals.  

Though the focus of this paper was narrow, one particular technical aspect and the 
mathematical and personal aspects related to it, it is apparent that in order to build an 
understanding of how teachers actions influence the development of effective graphing 
calculator users, we must look at all three of these aspects together.  If we had focused on just the 
technical aspect of how to actually create at table we would have missed how Ms. Kersee’s value 
statements regarding using the graphing calculator to check might have been interpreted by her 
students.  Furthermore, had we not focused on the mathematical aspect of interpreting the tables 
we might have missed the fact that some students interpreted that the tables were only 
appropriate to use on equations with variables on both sides.  These findings bring about an 
important feature of the methodology for this study, data collection both in and out of the 
classroom for both the teacher and the students.  Future research that aims to describe student 
decisions regarding technology use should include data from all angles in order to construct a 
complete picture.   

It appears that the personal aspect of graphing calculator use is an important one. Its role was 
evident in every decision made by both Ms. Kersee and her students.  Pierce and Stacey describe 
the personal aspect of graphing calculator use to include attitude toward graphing calculator 
availability and judicious use of the graphing calculator. However, based on both observations 
here and previous research (e.g. McCulloch, in press) it appears that there is more at work within 
the personal aspect.  It seems as if the personal aspect includes not only attitudes, but also values, 
beliefs and even emotions and not only of one’s self, but those perceived of others as well (e.g. 
students perceived Ms. Kersee’s values).  To better understand student decision-making 
regarding technology use future research should be designed to further operationalize the 
personal aspect and its relationship to the technical and mathematical aspects.  

The overarching purpose of this study was to identify the aspects of graphing calculator use 
that this teacher deems consistent with effective graphing calculator use, the aspects that she 
actually promotes in her classroom practice, and the ways in which her goals are interpreted and 
ultimately practiced by her students in independent situations.  This case provides evidence that 
issues of privilege with regards to technology use are complex, often misinterpreted, and in need 
of further research. 
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The objective of this research is to gain knowledge about some of the beliefs activated within the 
framework of the mathematical-argumentation processes that arise in the classroom setting. We 
are interested in analyzing the evolution of those beliefs and explaining them in view of the 
possible reasons subjects have for holding those beliefs, their personal motives and the contexts 
within which the beliefs take shape. In this research our interest lays in discovering the beliefs 
that arise spontaneously in class, which is the reason why the research was undertaken in the 
natural classroom scenario, where researchers limited their participation solely to observation.  
 

Interpretative Framework 
For purposes of this paper, the researchers considered that:  

 The beliefs of a subject S are representations (Goldin, 2002) that possess an apophantical 
function (Duval, p. 98, 1999) to which S associates: 
A degree of probability (0,1] to their truth (Villoro, 2002) 
And a degree of personal relevance (that can start at zero), which relates to the importance 
the subject attaches to the belief, in turn producing in the subject a conative, affective, 
interest or expectations-related charge (Villoro, 2002; Schoenfeld, 1992, p. 358). 

 The beliefs lead the individual holding them to respond consistently in favor of the belief 
held under different circumstances (cf. Villoro, 2002. Schoenfeld, 1992.). This condition 
enables assuming, with fair well-founded basis, that behind a regular or uniform behavior 
practice lies a guiding belief –or system of beliefs. 
The truth or verisimilitude of a belief may be based on reasons—and in this case the subject 

is said to be convinced to a certain extent of that truth, yet it can also or only be based on 
affective aspects or on the interests of the subject holding the beliefs. In the latter case, the 
subject’s belief is said to be based on his/her ‘motives’ (Villoro, 2002).  

Unlike formal logic, in the domain of beliefs the veracity load is not based on dichotomic 
principles. The subject professing a belief can associate to that belief a truth likelihood that 
ranges within a continuum from complete certainty of its veracity (“belief in the strong sense”) 
to uncertainty (“belief in the weak sense”) (Villoro, 2002). 

The types of beliefs present in mathematics classes are (Schoenfeld, 1992; Thompson, 1992): 
(a) beliefs and value judgments of students and teachers concerning their participation in 
classroom mathematics activities, with the how and why they participate; foremost here are those 
related to teaching and learning; (b) Meta-mathematical beliefs; foremost among which are those 
that deal with the ways of justifying in mathematics, validation criteria and the semiotic systems 
involved; (c) ‘Mathematical beliefs’; foremost are beliefs in the truth or verisimilitude of the 
mathematical statements and those dealing with the validity or plausibility of a mathematical 
argument (in the broadest sense of the terms) (Goldin, 2002). 
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Methodology and Data Collection 
This is an ethnographic case study of the instrumental type (Stake, 1995) and of a 

longitudinal nature, undertaken of three primary education centers (two public schools and one 
private school) in Mexico City. Data collection and interpretation consisted of the actions listed 
below, although such actions were not necessarily carried out sequentially:  

1. Design and application, within the context of a pilot study, of a school-type test 
for third and sixth grade students, dealing with proportionality problems and of a 
questionnaire for their teachers;  

2. Interviews of the teachers from the three schools, dealing with their beliefs 
concerning mathematics and its teaching; 

3. Observation of sixth grade classes on the subject of proportionality (ten 
observations of one teacher from each school, undertaken throughout the school 
year). The classes were video-taped using two video-cameras, one of which 
focused on the teacher and the other on the students; 

4. Transcription of all video tapes taken; and 
5. Analysis of the data collected in the video tapes as compared with the data from 

written records. Given the nature of the study, project researchers limited their 
classroom involvement solely to observation. During the classes observed, the 
teacher usually uses the official mathematics textbook as a guide. The didactic 
proposal of such official mathematics textbooks focuses on solving exercises and 
problems. Consequently in this study, a classroom argumentation consists of a 
process of social interactivity among teacher and students, in which reasons are 
presented in order to sustain the solution of problems raised in the classroom. 

 
Interpretation and Results 

For this paper, the authors chose a single episode of one of the classes observed (Lesson 80). 
The episode corresponds to the participation of a student (Mar) who stands out, not just because 
of the mathematical quality of her interventions, but because of the strength of her beliefs and the 
determination with which she attempts to convince the teacher and her classmates of her ideas. 
Below readers will find a chart analysis that highlights the most significant steps in Mar’s 
participation and in her interaction with her teacher (T). In italics, readers will find the possible 
beliefs and the epistemic states (certainty, presumption, conviction) that are eventually 
associated with those beliefs. The Annex to this paper contains the text of the exercise and 
several lines (L.) that are representative of the extract transcribed.  
 
 T: “How can we prove who swam the fastest?” Mar: “By proportionality” (L.14-20) 
The T asks about the strategy and the student (Mar) answers.  
Mar’s belief that proportionality is the method that must be used to solve the problem. 
 Preparation of Table 2 (L. 23) 
Mar constructs a proportionality table. She uses the distances covered by the competitors as her 
point of departure and calculates the times that Be would have registered ‘had he swum the same 
as’ –or at the same speed as- when he swam the 50 meters.  
Table 2 provides Mar with the elements needed for her to know that she stands on more solid 
ground. 
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The logic behind Mar’s reasoning is unknown, but several feasible options exist: 
i. Solution and confirmation argument. In this case Mar has a clear strategy, but initially she does 
not know what the solution will be. To find the solution, she goes to the blackboard and begins to 
analyze the simplest case –that of Be, because the distance he swam is divisible by the rest of the 
distances, so constructing the proportionality table is easy. This is a feasible option given that in 
the video she does not initially propose a result. Also the teacher has asked for a strategy, which 
is what Mar provided.  
With her participation, she seeks to convince the T and the group of the method used. 
ii. Presumption and confirmation argument. Presupposes a conclusion based on a few quick 
calculations that Mar carried out prior to her presentation at the blackboard, where she proves 
that her presumption is correct. 
She has confidence in the method and is to a degree certain of the answer. 
iii. Argument dealing with a hunch or intuition. This appears to be the least feasible option 
because in the video Mar is doing operations while the T is posing the initial questions. 
In this possible case, Mar is persuaded of the solution and has confidence in the method. 
 Mar: “… in order to find … the amount of time it took them”. (L. 29-33). 
Mar compares pairs of reasons possessed by a common term (distance), which reduces the 
problem to a linear comparison of two amounts (times). Her idea of speed consists of ‘the one 
who swam the same distance in the least amount of time’. There does not seem to be any relative 
thought, rather it is absolute based on additive procedures. 
Mar appears convinced of her procedure and of her interpretation of speed in the register. It is 
likely that her conviction and decision to externalize it increased after having drawn the table. 
Mar conveys her beliefs about her role as a student and about self-confidence. 
 Teacher: “I think the amount is wrong …” (L. 34-52). 
Some of the possible explanations for the T’s behavior include: 
i. The T had another type of strategy in mind. This option is fairly likely given that the T showed 
signs throughout the entire course of her preference for general, parsimonious and symbolic 
strategies. The manner in which she closes the solution (L 65) and the way in which she later 
solves the exercise (in Solution 2) are also evidence in favor of the assumption. (L. 64-68). 
ii. The T did not understand Mar’s strategy. Possibly because she was distracted thinking about 
another way of approaching the problem (in the video, she is seen to do calculations in her book 
while Mar is at the blackboard) or because Mar did not explicitly state her conclusion. 
Nonetheless one must admit that the T truly masters this type of strategy, in addition to the fact 
that it is precisely the type of strategy recommended by the textbook for the exercise. Hence her 
distraction was probably the result of her having other plans and expecting another type of 
intervention from her students. 
The T makes it possible for observers to perceive some of her meta-mathematical beliefs (‘the 
more general it is, the more mathematical it is’ (Hersh, 1993)) and some of her ideas about the 
teaching of mathematics. Her intervention also reveals the techniques of the maieutics art that 
she resorts to and the underlying credences. 
 Mar: “It’s just that … you didn’t understand me” (L. 58). 
Perhaps the T’s attitude in L (34-56) served to spur Mar on to reinforce her arguments, explain 
her conclusion (L 62) and increase the certainty of her beliefs. 
Mar gives indications—by way of persuasive rhetorical resources—of how sure she is of her 
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belief in the result found and the method used. Her ideas about her role as a student and the role 
of her T can be perceived. She proceeds in response to her own interpretation of the T’s 
behavior: if the strategy is not understood, then it has to be clarified. 
 Mar: “I think Be was faster, so if we have Be taking 50 seconds for 50 meters, then he would 

have swum differently …” (L. 58-62). 
Mar allows observers to more clearly see the logical structure of her procedure: She makes an 
assumption (‘Be is the fastest, based on certain mathematical elements) and verifies that it is 
correct on the blackboard. This is a presumption and confirmation argument (possibility ii, 
previously alluded to). Mar’s argument is to a certain extent logically complex, given that she 
applies –implicitly- an exhaustive reasoning of the type: 

(dC) If B(dC) then B>C, 
which can be translated as 
For all distances (d) covered by Competitors (C), if B had swum them all at the same speed as he 
did for the 50 meters, he would have swum faster than anyone else. 
In solving school-type problems, Mar is both intuitive and talented which is why she knows—
perhaps implicitly—that the simplest assumptions generally work, as is the case in this exercise. 
Her reasoning appears to enhance her certainty that her conclusion is indeed correct, that the 
method used is valid and pertinent, and she attempts to share her conviction with the T and her 
classmates. 
 T: “¿… how many seconds did it take A…?” (L. 64). 
The T does not institutionalize Mar’s solution and her question suggests a change of strategy (her 
question cannot be answered using the strategy proposed by Mar). She thus prompts for a new 
manner of solving the problem (based on quotient d/t) (L. 64-66).  
The T calls on her authority and the obligations she feels she must honor as a teacher: to lead her 
students to ‘discover’ methods and processes they would be unable to arrive at alone. Once again 
she demonstrates her disposition for the pedagogical resources offered in maieutics. 

Chart 1. Comments on student’s and teacher’s interactions. 

Chart 1 identifies several of the student’s beliefs, as follows: inter alia, her confidence in the 
conclusion of the exercise and in the validity of the solution (mathematical beliefs), and her firm 
conviction that the ‘table’ strategy is the most suitable for solving the problem (meta-
mathematical belief). Observers can also distinguish her ideas regarding her role as a student, the 
role of the teacher and self-referred beliefs. 

As regards the teacher, one can perceive her certainty about the teaching of mathematics 
based on usage of general formulae, a certainty which she underscored throughout the course and 
which appears to orient her standardized didactic practices. Also of note to observers was her 
confidence in the maieutics of Socrates, as revealed in her carrying out of daily routine 
pedagogical duties.  

 The beliefs highlighted in the extract chosen can be explained from the standpoint of 
different levels. One takes into account the possible reasons that led the subject to believe. 
Another considers a person’s own motives, interests and preferences. While yet another looks to 
the socio-cultural context within which such credences were generated, in other words the 
background and circumstances that led a person to believe (cf. Villoro, 2002). The foregoing 
concepts are used below in analyzing the beliefs identified. 
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Mar’s Beliefs 
Toward the end of her intervention, Mar gave indications that she had confidence in the 

conclusion and in the value of her procedure. It is plausible to think that her belief underwent a 
change as the solution process evolved. She may have had a hunch at the beginning that then 
became a presumption as a result of some of the calculations she did in her head. The student 
ended up providing a high degree of probable truth to the result and her certainty was 
substantiated by firm and conclusive—for her—reasons, although her reasons did not receive the 
inter-subjective backing of her Teacher. The fact that she was so very sure of the veracity of her 
conclusion could also have been derived from the treatment and objectification that she 
undertook in one of the registers (tabular) that she is so certain of (personal motives) and from 
the fact that the procedures she used are usually recommended in the Textbook (context). 

Mar showed that she was sure of the truth of the conclusion. However, it is very much 
possible that that was not the vector of her argument, rather her certainty was about the 
pertinence of the strategy she chose (‘table’). What convinces her of the strategy and why does it 
convince her?  

Several reasons can be cited, to wit: that she has proof of reliability or that she has evidence 
that the exercises in the textbook can usually be correctly solved using the same type of strategy; 
or those relative to the characteristics of the method per se in which, as in informal procedures, it 
is possible to signify each step and operation involved, which makes it possible to objectify the 
mathematical notions and obtain treatments imbued with meaning and sense.  

Surely Mar bases her certainties on personal motives and intentions as well. Throughout the 
course her special disposition for and liking of tabular registers was apparent, and this denotes 
the importance and appreciation she attaches to that method.  

Mar’s belief in the strategy could also have been induced by the classroom context. In that 
context the textbook affords a prominent role to that particular solution method, as did Mar’s 
own teacher in the previous course (a teacher well respected by Mar, her classmates and the 
entire school). Moreover tables and tabular registers used as a means of problem solving are well 
known by all her classmates, thus Mar can share the method with them.  
The Teacher’s Beliefs 

The teacher’s scarce acceptance of Mar’s proposal and the emphatic support she attached to 
the introduction of quotient (s/t) as the means to solve the problem analyzed (L.64-66) does not 
seem to be either circumstantial or casual. As previously stated the Teacher showed (at every 
opportunity that we observed) a marked interest in use of general rules and mathematics laws, 
even taking her own initiative to introduce them. Through her attitude during Mar’s 
participation—where Mar resorts to what is in the teacher’s opinion a particular, ad hoc, 
hypothetical and inconclusive argument—the Teacher deliberately or involuntarily conveys to 
her students that she is firmly convinced of her own didactics and of her conception of 
mathematics focused on use and mastery of general mathematics rules. Surely, the teacher has 
her own reasons that support this didactic position (symbolic formulae are efficient and 
universal; they work in practice and are easy to apply and learn). It is also very likely that her 
reasons are driven by her motives, values and intentions (that her students go beyond that called 
for in the official curriculum, that they get better grades in official evaluations or that algebra 
pose less of a problem for them), and by aspects having to do with the context (the school’s plans 
may place a high priority on this type of strategy, or that may be the way she learned 
mathematics). 
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It is quite clear from that previously stated that the disagreements between the student and 
her teacher have to do with the strategy chosen and the beliefs underlying that choice. Teacher 
and student appear to have their own reasons and motives for supporting the ideas of which they 
are convinced, and what was witnessed in class was the asymmetrical struggle between them, 
each aiming to implement her own ideas.  

During the confrontation, meta-mathematical meanings and beliefs were constructed 
concerning how to proceed in mathematics, how to go about expressing a justification and what 
type of register should be used. Another belief that was built has to do with who makes the 
decisions in class. There is little doubt that the students took note of all of this and constructed 
their personal interpretations based on their own belief nodes and networks. As part of an 
accommodation process, the reference frameworks will be changed by the experiences filtered 
through the frameworks themselves.  

 
Final Remarks 

The interpretative belief model introduced in this paper is supported by the epistemological 
position that considers beliefs to be a part of a subject’s stock of truths. That is to say, that 
knowledge is a proper sub-set of a subject’s beliefs. The model is furthermore supported by a 
didactic position according to which in a successful learning model as students progress they 
associate meaningful mathematical deeds with levels of confidence and certainty that increase in 
line with the generality and conclusiveness of the reasons to which they have access 
(epistemically).  

The interpretative framework used makes it possible to identify different types of beliefs that 
arise in the classroom setting, focusing on mathematical and meta-mathematical beliefs. The 
framework also made it possible to analyze changes of epistemic states and values as they are 
conveyed by the actors with regard to those beliefs. In the class being studied, in particular 
terms, the model enabled interpreting the evolution of a single mathematical belief of one 
student, and her confrontation with the teacher’s position.  

Of interest in the study are questions such as precisely what are students convinced of in 
mathematics class? How are they convinced of it? And what roles are played by conviction and 
certainty? In the case analyzed, one student seeks with great determination to persuade her 
teacher of the pertinence of a particular strategy for solving an exercise, showing that not all 
students can be dissuaded easily, contrary to that stated by Hersh (1993). Her case also provides 
evidence in favor of another point. Although arguments must be constructed in the mathematics 
classroom to convince people of the truth of conclusions and to explain them (consistent with 
that reported by De Villiers (1991) and as occurs with the experts proof (Hanna, 1996)), there is 
also a desire to convince people of other issues, such as the suitability of a particular type of 
register or of a method to solve problems (as also occurs with expert rigor criteria (Tymoczko, 
1986). 
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Annex. Lesson 80, Episode 2, Solution 1 
 

1. 
2. 
 
 
 
 
 
 
 
 
10. 
14. 
17. 
19. 
 
20. 
 
 
 
 
 
 
 
23. 
 
 
29. 
31. 

T: Who swam the fastest? (repeats several times) 
A: Beto … Catalina … Beto … 
(The Ss, and Mar in particular, do operations in their notebooks) 
  

04001500 m. Da

5120150 m. Ca

500050 m. Be

020100 m. Am

segminHoras

TiempoDistancia

04001500 m. Da

5120150 m. Ca

500050 m. Be

020100 m. Am

segminHoras

TiempoDistancia

 
(Table 1. Textbook) 

T: Can we know just like that?  
How can we prove who swam the fastest? 
Mar: By proportionality …  
Mar: To see if, for example, 50 m. were covered in 50 sec., for 100 
they would have had to take (pause) one minute and forty seconds. 
T: You’re relating distances to times, right? 
 

25 min.1500 metros

30 seg.2 min.150 metros

40 seg1 min100

50 seg50 metros

segminm.

25 min.1500 metros

30 seg.2 min.150 metros

40 seg1 min100

50 seg50 metros

segminm.

 
(Table 2. Drawn by Mar at the blackboard; does the operations in the 
book that she has in her hand, erases them and writes the results in 
the table on the blackboard). 
T: How can we compare those amounts?  
Mar: (asks to participate) seeing this (points to table 2, that she drew 
on the blackboard) with what they did, to find what’s missing … and 
their times.  

33. 
 
 
34. 
 
36. 
42. 
48. 
 
52. 
 
 
 
56. 
 
58. 
 
59. 
60. 
61. 
62. 
 
 
63.  
64. 
 
65. 
66. 

Mar: “Amalia swam 100 m in 2 min., but here she’s 
got 1 min. 40 sec. (points to the amount in table 2 on 
the blackboard) 
T: One hundred meters in how long? I think the 
amount is wrong. Check it …. 
T:  Can someone tell her what’s going on with 
Amalia? 
T:  There’s a mistake there sweetheart, erase it! 
Ale: The thing is that where it says 150 meters it’s 2 
minutes 51 seconds… 
(Upon the teacher’s instructions, Mar erases the 
entire table she had drawn on the blackboard. The 
teacher then dictates, with the help of the Ss, the 
table in the Textbook). 
T: How can we compare this time and these 
distances? … Who swam the fastest? 
Mar: It’s just that, I had already done the table but 
you didn’t understand me …  
T: Ah ha! Now I understand you! (astounded) 
Mar: I based it on what Beto did …    
T. In other words … the table was just for Beto! 
Mar: It was to see, … because I think that Beto was 
faster, so if Beto took 50 seconds for 50 meters, then 
he would have swum differently …” 
T: Very good. 
T:  What can we do to find out how many seconds it 
took Amalia, Catalina and Darío? 
Di: Divide the distance by the time. 
T: Divide the distance by the time! Of course! 
(emphatically). 
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By focusing on teachers’ preparation for teaching fraction division, this study examined eight US 
and Chinese mathematics teachers’ practices and thinking in lesson plan development. Both 
lesson plans and interview data were collected and analyzed. The results presented a contrast 
picture between US and Chinese teachers’ practices and thinking in constructing curriculum for 
teaching. While Chinese teachers’ lesson plans presented a well-structured and detailed picture, 
US teachers’ lesson plans were brief and more like a reminder for what to teach and relevant 
teaching procedure. Although both Chinese and US teachers thought that lesson planning is 
needed, the nature of their thinking differed and helped explain cross-national differences in 
their lesson plans.  
 

Background 
Results from several cross-national comparative studies suggest that students from East Asia 

outperform U.S. students in school mathematics. High quality classroom instruction has been 
taken as one important factor contributing to Asian students’ achievement, including China and 
Japan (e.g., Stigler & Hiebert, 1999; Watkins & Biggs, 2001). Researchers tend to seek factors 
that may contribute to the quality of teaching in these countries, including curriculum materials, 
teachers’ knowledge, and teachers' work outside of their classrooms (e.g., Li, Chen, & An, 2009; 
Ma, 1999). One key factor might be teachers’ lesson planning and interactions that happen 
before and after their classroom instruction (e.g., McCutcheon, 1980; Stigler & Hiebert, 1999). If 
teachers can design well-thought-out and high quality lesson plans, as a process of curriculum 
planning at the micro level, they build a solid base for classroom implementation. Quality 
instruction is, therefore, more likely to occur. However, not every teacher tends to agree on this 
idea, especially in the United States (see O’Donnell & Taylor, 2006). The value of lesson 
planning and its role in developing high-quality lessons are still contested in teachers’ views and 
practices. Further studies are needed to explore teachers’ practices in lesson planning and their 
thinking behind their practices. 

As part of a larger research project, this study was designed to investigate Chinese and US 
teachers’ practices and thinking in lesson preparation. In particular, this study focused on 
teachers’ curriculum construction for teaching the content topic of “division of fractions”. As 
addressed by Li, Chen and An (2009), division of fractions (DoF) is a complex content topic that 
is included in elementary school mathematics for sixth grade in China, sixth and/or seventh 
graders in the U.S. Although fraction division is procedurally straight forward, it is a 
conceptually rich and difficult topic. In textbooks from many education systems including China 
and the United States, fraction division is a content topic that has been given various conceptual 
treatments (e.g., Li, 2008; Li, Chen, & An, 2009). The topic presents a rich context to explore 
possible variations in teachers’ thinking and lesson planning.  

By focusing on this content topic of DoF, a case study approach was used to focus on eight 
mathematics teachers’ lesson planning from different schools in China and the U.S. Through 
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collecting rich data around these eight teachers’ lesson planning on the topic of fraction division, 
this study was designed to address the following two questions: 

1. What are the characteristics of Chinese and US teachers’ daily lesson plans on the topic 
of fraction division?  

2. What may Chinese and US teachers normally do and think when developing lesson 
plans?  

 
Theoretical Perspectives 

Studying teachers’ lesson planning is not a new endeavor. In the United States, the 
importance of investigating teachers’ lesson planning and their thinking was recognized more 
than two decades ago (e.g., McCutcheon, 1980; Peterson, Marx, & Clark, 1978). The results 
from studies on U.S. expert and novice teachers’ cognition indicated that variations in teacher’s 
planning relate to their classroom teaching behavior (e.g., Hogan, Rabinowitz, & Craven, 2003). 
Cross-nationally, it is reported that Chinese teachers’ lesson plans differed from their 
counterparts in the United States (e.g., Cai & Wang, 2006). Yet, much remains to be understood 
about teachers’ practice and thinking in constructing curriculum for classroom instruction. In 
particular, this study aimed to examine teachers’ planning practices through analyzing teachers’ 
daily lesson plans. Interviews with participating teachers were also used to explore teachers’ 
thinking behind their practices and to triangulate the lesson plan analysis.  

In analyzing individual lesson plans, both content and process are important aspects of lesson 
plans (Cai & Wang, 2006). While the content aspect focuses on what to teach, it translates into a 
teacher’s interpretation and specification of instructional objectives and content treatment for 
teaching. Likewise, the process aspect focuses on how a teacher plans to teach, and it translates 
into the teacher’s planning of lesson activity and its structure with the use of different strategies 
and problems. Moreover, students should be an integral part of a teacher’s consideration in 
lesson planning. It is also important to examine how a teacher may anticipate possible students’ 
learning difficulties and progress in the process of lesson planning (e.g., Shimizu, 2008). Thus, a 
three-dimension framework was developed for analyzing teachers’ plans of individual lessons as 
outlined below: 

Content aspect:  the content scope to be covered in one lesson, instructional objectives, 
important content points of teaching, difficult content points of teaching, 
and materials/tools to be used.  

Process aspect:  activity segments and structure, use of instructional strategies, use of 
problems and representations. 

Student aspect:  the places in lesson plans where the teacher considers students, the nature of 
teacher’s considerations about students in lesson plans.  

 
Method 

Participants and Context of the Study  
This study focused on four US schools and four (out of seven) Chinese schools participating 

in a larger research project that aimed to investigate Chinese and US mathematics classroom 
teaching. With local mathematics education experts’ help, the eight schools were selected with 
comparable variations in school quality and reputations in these two education systems. While 
the four US schools were located in one state, the four schools in China were in two different 
provinces. With one teacher from each school, a total of eight teachers participated in this study.  
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The schools and participating teachers were all informed that the data collection was only for 
the research purpose. As part of the research project, the teachers’ lesson plans on the topic of 
fraction division were requested and collected. All eight teachers were interviewed about their 
practices and thinking in constructing curriculum for mathematics classroom instruction.  
Types of Data Collected 

In the larger research project, all participating schools were site-visited and participating 
teachers were given semi-structured interviews about their lesson preparation and teaching of the 
content topic of DoF. As the topic of DoF was treated differently in Chinese and US textbooks 
(Li, Chen, & An, 2009), the complete instruction of the topic presented different arrangements 
with different amount of time required in these two education systems. Thus, all the data 
collection was focused on the first several lessons that participating teachers prepared and taught 
the content topic of DoF. However, video-taped teachers’ lesson instruction was not included for 
analysis in this study. The data used for this study included the following:  

1. Eight participating teachers’ daily lesson plans on the topic of fraction division.  
2. Semi-structured interviews with the eight teachers about their practices and thinking in 

constructing curriculum for mathematics classroom instruction. In particular, teachers 
were asked such questions as instructional goals for planning the lessons on DoF, 
difficult content points for students in teaching this topic, their perceptions of lesson 
planning, and normal procedure in lesson planning.  

3. Field observations of these eight elementary schools and these teachers’ daily working 
environment. 

Data Analysis 
All the data for this study were analyzed in the original Chinese or English languages, and 

then translated the Chinese into English if needed. To address our first research question directly, 
we analyzed these eight teachers’ lesson plans. Because there were some variations among these 
teachers in terms of their teaching pace and what was planned after the first lesson, the variations 
made teachers’ plans for the first lesson on the topic a default choice for comparison.  

Our analysis of teachers’ lesson plans then followed the framework outlined above. The data 
analysis was a process that integrates iterative lesson plan examination and code development, 
together with extensive discussions between two coders. A consensus in data coding was reached 
after discussions. By referring to the codes used in Cai and Wang’s study (2006), teachers’ first 
lesson plans were categorized in terms of their content and process features. Teachers’ 
considerations of students’ possible responses and difficulties were also examined.  

To support the above data analysis and address the second research question, we analyzed the 
interviews with all these eight teachers to reveal their lesson planning routines, and to capture the 
ways in which these teachers came up their ideas in constructing curriculum for lesson 
instruction on this content topic as well as their thinking about lesson planning. In particular, we 
focused on teachers’ perceptions of the process of lesson plan development, their perceptions of 
important factors influencing their development of lesson plans, their instructional objectives, 
and the difficult and important points of teaching this content topic. The interview data can allow 
us not only to triangulate our analysis of teachers’ lesson plans on the content topic, but also to 
examine teachers’ perceptions and beliefs of the role of lesson planning in developing effective 
classroom instruction. The field observation was also incorporated to support our analysis of the 
interview data in terms of teachers’ lesson planning practices in the school.  
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Results 
Information about these eight teachers and their schools were obtained through interviews 

and school site visits. Table 1 shows that participating teachers were all experienced teachers, 
with at least eight years’ teaching experiences. However, all participating US schools let teachers 
use their own classrooms for lesson preparation and teaching. In contrast, all schools in China 
provided teachers with office space for lesson preparation that is separate from classrooms.  
 

Table 1 
Information about Eight Participating Teachers and Their Working Organization 

Teacher Years of 
teaching 

Teachers’ office  
arrangement 

Normal practices in lesson planning 

CH-T1 
 

10 Subject-based  
teacher office 

Mainly individual preparation, periodically group 
lesson preparation 

CH-T2 
 

10 Grade level-based  
teacher office 

Use common lesson plan prototype, then modify 
by individual teachers 

CH-T3 
 

19 Grade level-based  
teacher office 

Used to be group preparation, now mainly 
individual preparation 

CH-T4 
 

11 Grade level-based  
teacher office 

Use common lesson plan prototype, then modify 
by individual teachers 

US-Ta 
 

9 The teacher’s Classroom Individual preparation 

US-Tb 
 

12 The teacher’s classroom Individual preparation 

US-Tc 
 

8 The teacher’s classroom Individual preparation 

US-Td 8 The teacher’s classroom Individual preparation 
 

Related to the teachers’ working office arrangement, all four US teachers had their lesson 
planning on their own, whereas all Chinese teachers reported the combination of individual and 
group works for lesson planning activities. Although variations existed across these Chinese 
schools in terms of how group efforts were formally utilized, individual work did not prevent 
teachers from having informal discussions about teaching and planning from time to time.  

In general, although the four Chinese teachers were from four different schools in two 
provinces, their lesson plans shared many similarities. Based on the unified curriculum standards 
in China, all their lesson plans contained clear and same instructional objectives taken from 
teachers’ instruction reference book. The complete instruction of DoF was arranged in the 
Chinese curriculum for the sixth grade and would take at least two weeks (Li et al., 2009). All 
four teachers’ first lesson plans focused on the conceptual understanding of why the computation 
of fraction division works. Although the format of lesson plans varied across these two 
provinces, all lesson plans had a clear teaching process that includes reviewing the previous 
knowledge, introducing new content, and summarizing and practicing. 

In contrast, the US teachers’ lesson plans presented a diverse picture. Although these 
teachers were from four different schools, their lesson plans were surprisingly brief and varied in 
content and instruction arrangements. In fact, only three teachers had some kinds of lesson plans 
available to share. And one teacher (Tc) actually made her lesson plan as filling in a small box 
for each day on a monthly planner. All these teachers were teaching DoF to seventh graders and 
planned to use one lesson period (about 40 to 50 minutes per lesson period) to cover the topic.  
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In analyzing features of these teachers’ lesson plans, we thus focused on their first lesson 
plans on this topic. Similarities and differences among these participating teachers’ lesson plans 
were evidenced along the three dimensions specified in the framework, i.e., content features, 
process features, and knowing about students. The following three sub-sections are structured to 
present findings in detail. 
Content Features of Teachers’ Plans for the First Lesson 

In analyzing seven (there was no lesson plan provided by one US teacher - Td) teachers’ first 
lesson plans, five content features were identified in their lesson plans: content topic 
specification for the lesson, instructional objectives, teaching emphasis, difficult points of 
teaching, and instructional materials or tools. Table 2 summarizes content features included in 
these seven teachers’ first lesson plans.  
 

Table 2 
Content Features of Seven Teachers’ First Lesson Plans 

 Content 
specification 

Instructional 
objectives 

Teaching 
emphases 

Difficult points Materials 

CH-T1 + +    
CH-T2 + + +  + 
CH-T3 + + + + + 
CH-T4 + + +   
US-Ta + +    
US-Tb + +    
US-Tc + +   + 
Note. “+” means that the item was presented clearly in that teacher’s lesson plan. 
 

Table 2 shows that all seven teachers’ first lesson plans included both content topic 
specification for the lesson and its instructional objectives. However, while Chinese teachers 
tended to include more information such as teaching content emphasis, US teachers’ lesson plans 
basically did not contain further information except one teacher (Tc) specified what materials 
need to be prepared for instruction. The following sub-sections will provide further detailed 
information.  

Content specification. In specifying the content topic, three Chinese teachers (T1, T2, and 
T3) provided an item (e.g., a fraction divided by a whole number) at the beginning of their lesson 
plans to explicitly state the teaching content, while one (T4) placed the content topic directly as 
the lesson plan’s title. In contrast, all three US teachers used the content topic simply as the title 
of their lesson plans.  

Instructional objectives. Next, all four Chinese teachers provided instructional objectives in 
their lesson plans. They all thought that understanding the meaning of DoF and correctly doing 
the algorithm of a fraction divided by a whole number are major objectives in the first lesson. 
Moreover, they included both understanding (why it works) and mastering the computation of a 
fraction divided by a whole number (how to do the computation) as for correctly doing the 
algorithm. The four teachers included three same instructional objectives, but expressed varied 
ideas in their specifications of other instructional objectives. For example, T1 specified the 
objective of understanding the relationship between fraction multiplication and fraction division 
based on the meaning of division. T4 indicated the need to develop students’ inquiry and 
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enhance their confidence. Two teachers (T1 and T3) included as an instructional objective to 
develop students’ ability to compare, analyze, and generalize results. 

In contrast, the three US teachers included simple objective statement. Two of them simply 
used the title as the lesson’s objective, while the remaining one used “dividing fractions” as 
content topic and “to divide fractions and mixed numbers” as objective. 

Teaching emphases and difficulties. Three Chinese teachers (T2, T3, and T4) from the same 
province further specified teaching emphases and difficulties in their lesson plans. They used the 
same form of lesson plan, which was designed to place teaching emphases and difficulties 
together in the same item. While T2 and T4 addressed teaching emphasis explicitly, T3 did not 
separate teaching emphasis from difficulties. For those plans including teaching emphases and 
difficulties, they were similar in their specifications of teaching emphases and difficulties. For 
example, T2 indicated “teaching emphases” as the computation of a fraction divided by a whole 
number, T4 indicated as the meaning of fraction division and the computation of a fraction 
divided by a whole numb, while T3 mentioned the meaning of fraction division and the 
computation of a fraction divided by a whole number as both “teaching emphases” and “teaching 
difficulties”. However, such content specifications were absent in the US teachers’ lesson plans.  

Teaching materials. Table 1 shows that two Chinese teachers (T2 and T3) and one US 
teacher (Tc) mentioned “teaching materials” besides the textbook. T2 planned to use concrete 
materials (e.g., rope), and T3 planned others (e.g., small blackboard). The US teacher (Tc) listed 
several materials as supplies, including ruler, scissors, tape, and colored pencils.  
Process Features of Teachers’ Plans for the First Lesson 

In general, lesson plans were considered as scripts for what teachers will do in classrooms 
(e.g., Cai & Wang, 2006). Although these teachers’ lesson plans varied in many ways, the four 
Chinese teachers’ lesson plans shared a similar structure of instructional process. In particular, 
all lesson plans except one (T3’s) were outlined as containing four steps: (1) reviewing previous 
knowledge, (2) introducing new knowledge, (3) exercises and practicing, and (4) summary and 
assigning homework. In contrast, the three US teachers’ lesson plans were brief and varied 
dramatically. In fact, Tc’ lesson plans contained no process information at all, while Ta and Tb 
filled in blanks on a pre-set one-page lesson plan. However, Ta wrote one sentence for each of 
four activities in a list, like “Recall any previous knowledge of dividing fractions” as activity 1. 
The lesson plan looked more like a reminder for a sequence of lesson activities. Tb listed six 
fraction division computations and corresponding word problems, together with two exercise 
sheets for students. Given such limited information available on US teachers’ lesson plans, the 
following sub-sections will focus on process features presented in Chinese teachers’ lesson 
plans.  

Reviewing previous knowledge. As explained in the last section, all four Chinese teachers’ 
lesson plans contained two instructional objectives: to understand the meaning of fraction 
division and to master the computation of a fraction divided by a whole number. Subsequently, 
these teachers, except T3 whose lesson plan did not have a reviewing step, planned relevant 
knowledge review. In particular, two teachers (T2 and T4) planned the review of the meaning of 
whole number division, while T1 planned to review multiplication of fractions.  

Introducing the new knowledge. All four teachers planned the part of “introducing new 
knowledge” in detail. A difference was observed as T2 and T4 placed the meaning of fraction 
division as part of reviewing and then introduced the computational rule as “new knowledge”. 
Others (T1 and T3) included both the meaning and the computational rule of DoF in the step of 
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“introducing new knowledge”. For introducing the meaning of DoF, T1 used the word problems 
of whole number division provided in the textbook, whereas T3 provided a fraction division 
expression and used the equation of multiplication to introduce the meaning of fraction division.  

Pedagogically, all four teachers were consistent in planning to ask students to discuss the 
computational rule in groups and to report their findings. In order to help students’ learning, 
three teachers (T1, T2, and T4) planned to provide students some hints first by showing concrete 
manipulative or pictorial representation. With the use of concrete or pictorial representation, each 
teacher expected students to predict the answer for the problem. Although these four teachers’ 
lesson plans varied in terms of the degree of their details, they all showed the use of pictorial 
representation in proving the computational rule and the use of multiple ways for coming up the 
algorithm.  

Exercises and practicing. After introducing the new knowledge, all four Chinese teachers 
provided exercises for practicing. T1 included exercises for understanding the meaning and 
mastering the algorithm, others mainly focused on the computation. All four teachers provided 
exercises for practicing the algorithm. With the exception of T2 with one type of exercise 
provided for practicing the algorithm, others planned to provide multiple types of exercises for 
doing the algorithm.  

Summary and assigning homework. All four teachers ended their lesson plans with a 
summary and assigning the homework. In particular, these teachers designed specific questions 
in their lesson plans to ask students in order to check whether or not students’ learning achieved 
the lesson’s instructional objectives. 
Knowing and Predicting Students’ Responses and Difficulties 

Three teachers (except T3) planned to organize and use students’ group discussion about the 
fraction division algorithm. Moreover, T4 explicitly predicted possible solutions that students 
would generate through group discussion. Based on the solutions that students would make, the 
teachers planned to generalize for developing characteristics of each algorithm.  
Teachers’ Thinking about Lesson Planning 

To my surprise, all eight teachers said that they always had lesson planning and considered 
that lesson planning is important and useful to them. These teachers’ responses presented a 
picture different from cross-national differences in teachers’ lesson plans reported above. Further 
analyses of teacher interviews were carried out to reveal details.  

For US teachers, lesson planning mainly referred to “getting ready for a lesson”. It involved 
knowing what to teach and how to teach a lesson. Although these teachers would use textbooks, 
they would use textbooks mainly as resources and for getting exercise problems. It was 
important for them to know students’ learning style, what may make their learning difficult, and 
to think about how to connect mathematics with real world. While all four US teachers thought 
that they had enough time to plan for their lessons, they were not sure whether they were 
satisfied with their lesson preparation until they taught students.  

For Chinese teachers, lesson planning was a process necessary for students and teachers. 
Lesson planning for students meant to plan lessons from the student’s perspective. Teachers 
should think what students have already learned and how the teachers provide students a good 
learning approach. Lesson planning for teachers meant that the teachers can deepen their own 
understanding of content through the lesson planning process and develop their teaching. In this 
regard, studying the textbook is very important to develop a deep understanding of the content 
topic in terms of instructional objectives, emphases, and difficulties. Studying textbooks can also 
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help teachers make knowledge connections between the current content topic and others. 
Moreover, lesson planning is for teachers to think about how to teach cleverly and use teaching 
strategies. Teachers can thus develop teaching from the process of lesson planning.  

 
Discussion 

Overall, the study presented contrast results between US and Chinese participating teachers 
in their practices and thinking in constructing curriculum for teaching. Chinese teachers’ lesson 
plans presented a coherent and detailed picture, not only in terms of what these teachers 
considered as important for their students to learn among these teachers, but also in structuring 
these contents together for classroom instruction in individual lessons. Their lesson plans 
resulted from these teachers’ intensive study of textbook content in relation to their students’ 
situation. In contrast, US participating teachers’ lesson plans were very brief, if they made one. 
Lesson plans were developed more like a reminder for what to teach and its teaching procedure. 
Because these US teachers tended to pay more attention to students and their learning but not a 
lesson’s content treatment, their lesson plans presented a picture that is consistent with these US 
teachers’ thinking about lesson planning. Although this study is limited with a few participating 
teachers, the findings provided a valuable glimpse of what may help contribute to the quality of 
classroom instruction in China. To Chinese teachers, the value of lesson planning is beyond what 
it is for classroom instruction. It is also a valuable professional activity for teachers themselves.  
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Factor analysis was used to analyze data that was collected from 520 high school mathematics 
teachers’ questionnaire responses to 48 Likert type statements. The analysis revealed a three 
factor solution: disposition towards activities, a disposition towards appreciation of geometry 
and its applications, and a disposition towards abstraction. These results allowed for the 
classification of teachers into one of eight groups depending on whether their score was negative 
or positive on the three factors. Knowing which group a teacher belongs to would allow for 
appropriate professional development activities to be undertaken as was done in the following 
case study where techniques for scaffolding proofs were used as an intervention for a teacher 
who was in Group 2 with a positive disposition towards activities and appreciation of geometry 
and its applications but with a negative disposition towards abstraction.  

 
Theoretical Framework 

Beliefs play a central role in shaping the practice of teaching (Ernest, 1989, 1991; Raymond, 
1997, Thompson, 1984, 1992). Questionnaires that included both statements that required 
responses on a Likert scale and open-ended questions are used to measure beliefs (Leder and 
Forgasz, 2002). Thompson (1984) used the method of case studies to report on teachers’ beliefs 
about mathematics, mathematics teaching, and their criteria for judging effectiveness of 
instruction. Case studies give deeper insights into beliefs. 

Students take their “cues” from their teachers. Classroom experience affects students’ beliefs 
about mathematics. Teachers need to examine their own beliefs about proofs, in particular in 
order to understand how they may influence their students (McCrone, Martin, Dindyal, & 
Wallace 2002; Schoenfeld, 1988; Senk, 1985). If teachers strongly convey the idea that proofs 
are necessary to fully understand and appreciate the fundamental geometrical principles being 
taught, students may become more interested and involved in learning about and doing proofs. 
Otherwise, doing proofs becomes a dry, rote classroom drill. As earlier researchers have 
reported, doing formal proofs should come after students have made some sense of the 
underlying geometrical and mathematical ideas through hands-on explorations (Battista & 
Clements 1995; Freudenthal, 1971).  

The Study  
One of the questions that I wanted to follow up after the preliminary questionnaire was:  

What happens in a class where a teacher is required to teach geometric proof but has scored 
negatively on factor 3: a disposition towards abstraction?  Could something be done to help a 
teacher overcome a negative disposition towards abstraction? 

In my position as a mathematics specialist-consultant, I was carrying out professional 
development in Rose’s school and the principal suggested that I observe Rose’s class in which 
she was about to start teaching geometric proof. This provided an opportunity for me to delve 
further into these questions, using Rose as an ‘opportunistic sample’. It was in the position of 
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observer participant that I was present in and observed Rose’s class seven times taking extensive 
field notes.  

Rose who has an undergraduate degree in mathematics education had taught ninth and tenth 
grade mathematics in a small urban high school for two years. She was in her late twenties, when 
I started to work with her. She is enthusiastic in the classroom and she exhibits good classroom 
management skills. 

I met with Rose each morning to discuss her lesson plan for the day and after each of these 
classes to conduct a debriefing with her. During these sessions I made several suggestions, such 
as always listing all six corresponding parts of congruent triangles on the board when referring to 
them and marking them on the diagrams. She implemented these suggestions and others 
described below in her class almost immediately. This study was presented to Rose so that she 
could concur or refute any inferences made. 

I observed Rose’s class several times. I also had the results of the factor analysis and my 
intention was to find a way to make her comfortable teaching students about proof. The 
intervention is described below, along with her responses to a further follow-up questionnaire. 
When she taught with the movable cards containing statements and reasons which were part of 
the intervention she felt more at ease. 

Rose was at the end of her third year of teaching. During the previous year, she had been one 
of the respondents to the questionnaire. Her scores on the three extracted factors were positive on 
factor 1: a disposition towards activities, positive on factor 2: a disposition towards appreciation 
of geometry and its applications, and negative on factor 3: a disposition towards abstraction.  

  
Rose in Her Second Year of Teaching 

Based on Rose’s factor scores I went back to look at her actual responses to a number of 
statements on the questionnaire.                                                                                                                              
She responded disagree slightly more than agree to the following statements:                                                                    
4.  Learning to construct proofs is important for high school students.                                                                  
6.  Geometry should be included in the curriculum for all students.                                                                      
13.  High school students should be able to write rigorous proofs in geometry.                                                      
This indicated to me that Rose was concerned about teaching average or below average students 
how to do proofs.  

Rose responded agree slightly more than disagree to these statements:                                                                 
1. I enjoy teaching geometry.                                                                                                                                   
2. Learning geometry is valuable for high school students.                                                                                                
9. Geometry should occupy a significant place in the curriculum.                                                                   
10. High school geometry should not contain proofs.                                                                                        
21.  I enjoy doing geometric proofs.                                                                                                                                             
These responses appear to show that Rose believed that geometry is worth learning and that she 
did enjoy teaching geometry as long as she did not have to teach students how to do proof. She 
herself likes doing proofs. 

 Rose responded strongly disagree to the statements:                                                                                                     
16.  My students enjoy doing geometric proofs.                                                                                              
44.  I enjoy teaching my students how to do geometric proofs.                                                                                                   
Rose responded moderately agree to the statement:                                                                                             
48.  I enjoy proving theorems for my students.                                                                                            
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These responses and the conversations that I had with her led me to conclude that she was 
uncomfortable about teaching students how to do proofs. The fact that she enjoyed proving 
theorems for students and doing proofs gave me a glimmer of hope that she might reconsider 
teaching proofs if she was armed with the appropriate tools and therefore more confident. 

 
Rose in Her Third Year of Teaching 

By her third year of teaching, Rose had a desire to teach mathematics to upper grade students 
and so she sought and accepted a position at another small urban high school whose students 
were supposedly “more academic” than at Rose’s first school. I was doing short-term 
professional development at the school where I worked with three of the four mathematics 
teachers. The principal asked me to work with both Rose and another teacher who were both 
starting a unit on proof in geometry. Although I observed both teachers and suggested similar 
interventions this study focuses on Rose because she was an identified respondent to my 
questionnaire. 

Teaching students how to prove theorems involves all of the problem-solving that teachers 
do in their ‘work of teaching’ (Ball, Bass, & Hill, 2004; Kazima & Adler, 2006). These include: 
Using mathematically appropriate and comprehensible definitions; designing mathematically 
accurate explanations that are comprehensible and useful for students; working with students’ 
ideas; making judgements about the mathematical quality of instructional materials and modify 
as necessary and assessing students’ mathematics learning and take next steps. Rose exhibited 
these problem solving skills in her teaching of other aspects of geometry. Could Rose 
incorporate these skills when teaching proof?  I believed I could share a method of teaching 
students how to do proofs that would be appealing to Rose. The method is described below.  

 
Congruent Triangles 

The students in the class were learning how to prove geometrical results. They were mostly 
tenth graders who had already learned definitions and properties of triangles and quadrilaterals in 
the ninth grade or the beginning of the tenth grade.  
Rose used the concept of congruent triangles as a vehicle for introducing students to proving 
conjectures.  

The following is a snapshot of the type of questions Rose asked on the first day of the unit: 
“What makes triangles congruent?”  Students respond that the triangles have to be exactly the 
same. Rose then drew a picture of two triangles on the board. How can I show that triangle ABC 
is congruent to triangle DEF (See Figure 1) based on the information given? 
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Figure 1. Rose’s example of congruent triangles. 
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The students recognised that the triangles were congruent from the given information. No 
student noticed that these triangles couldn’t really exist because in a 30-60 triangle the length of 
the side opposite the 30 degree angle is equal to half the length of the hypotenuse. Bills, Dreyfus, 
Mason, Tsamir, Watson, and Zaslavsky (2006) asserted that when selecting instructional 
examples the teacher should take into account ‘learners’ preconceptions and prior experience’. 
Zaslavsky and Zodik (in press) studied what considerations went into teachers’ choices of 
examples. They found there was a tension between the desire to construct real-life examples and 
mathematical accuracy. A random choice of example could lead to an impossibility. When Rose 
and I discussed her example she was surprised at what she had done. She expressed a desire to be 
more careful about her choice of examples in the future. 
Another question that Rose posed was whether the information given was sufficient to prove 
triangles congruent:  She drew the diagram shown in Figure 2 and asked students, “In the square 
ABCD, is ∆ABC congruent to ∆ADC?”             

 

B

 

C

 

A

 

D

 

Figure 2. Rose’s second example. 
  

Her students had to remember the properties of a square in order to answer this question. 
They knew the sides were all congruent. Rose wanted the students to focus on SSS congruent to 
SSS. Rose had the students rely heavily on the visual aspects of the problem. I suggested that she 
have the students investigate the other congruence relationships. I loaned her Michael Serra’s 
book Discovering Geometry: an Investigative Approach (2003). She prepared a hands-on lesson 
for the investigation:  Is ASA a Congruence Shortcut?  Rose gave each group of students a work 
sheet with a line segment and two angles drawn on it and asked them to construct a triangle. The 
students used scissors and tape to cut out the segment and angles and paste them together to form 
a triangle. She had the groups compare their results. Rose placed the results up on the bulletin 
board. 

Rose kept telling me that she was anxious about having the students do actual proofs. I gave 
her three worksheets from a set of worksheets I had received from Sandra Gundlach, a teacher, 
who had presented them at a conference. The first one had six statements to prove along with a 
diagram for each (See Figure 3). The next two sheets had mixed up answers to each of the proofs 
from the first sheet. I brought in envelopes with the given, the “to prove”, and the diagram for 
each of the six proofs taped onto the outside and the cut up statements and reasons inside.  
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Figure 3. Last 2 examples from sheet 1: Proving triangles congruent. 
 
Rose took proof #1 (See Figure 4) and enlarged the cut up statements and reasons. She taped 

them to the blackboard, wrote the given and to prove statements, and drew the accompanying 
diagram. Some of the students had difficulty with how to use the definition of midpoint. Rose 
used coloured chalk effectively to illustrate. My suggestion was to use Geometer’s Sketchpad to 
demonstrate angle bisectors in proof #2, but the technician was not available to bring a laptop to 
Rose’s classroom. (I mention this here to make the point that even if a teacher wants to use 
technology it is not always readily available.)  Students complained that one angle looked bigger 
than rather than equal to the other angle. (Sometimes such arguments are productive but in this 
case time was wasted).  
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Figure 4. Proof #1 mixed up answers. 
 

Rose used a metaphor of identical twins to help the students understand that corresponding 
parts of congruent triangles are congruent. “If the twins are identical, what can you say about 
their eye colour, their height etc.?”  The students responded, “They are the same.”   “So if the 
triangles are congruent by SSS, SAS or ASA, what can you say about the other parts of the 
triangles?”  The students were able to understand this concept. In the United States some 
teachers abbreviate the statement corresponding parts of congruent triangles are congruent – 
CPCTC. Unfortunately many students use the abbreviation but fail to remember what it 
represents. 

Some students struggled with the logical sequencing of the steps. In proof #4 they placed the 
statement G is a midpoint of EI in the middle of the proof. One student, Gary said, “You have to 
look at cause and effect.”  This was a useful insight.                                                                                
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Eventually Rose used the same format for proofs that she found in the text. She assessed how the 
students were doing by giving them a quiz where all the statements and reasons were written in 
mixed-up order on the page and the students had to put the proof together correctly. She was 
pleased with the results. 

 
Some of Rose’s Response to the Follow-Up Questionnaire 

Rose’s responses to the follow up questionnaire were: 
1. What do you most love about geometry and why? 
I love geometry proofs. I feel they help students think logically. A proof is like a jigsaw puzzle 
where everything must fit and when it is complete it’s a nice accomplishment. Proofs make 
students realize that nothing in geometry can be taken for granted there always has to be a 
reason. 
Rose’s response indicates a positive experience with proofs, but I knew from conversations with 
her that she was worried about teaching proofs. Her next response gave me a glimpse into why 
she was anxious about teaching students how to do proofs. 
2. What is your most memorable experience or experiences as a student in a geometry class? 
My teacher explained the topics very thoroughly. However eliminated geometry proofs from the 
curriculum. I feel this turned me off from proofs for quite some time.  
4. Is there any topic or topics that are in the current geometry curriculum that you believe should 
be eliminated?  Please explain why. 
I believe constructions should be eliminated from the curriculum, time does not allow for it. 
This question was included to try to find out what teachers do not value in geometry. The way 
the curriculum is arranged in Rose’s state, geometry is part of integrated courses. Constructions 
are taught in the first course and proofs are taught in the second course. There is no context for 
the unit on construction. It is left to the last lessons of the course. Rose cannot do justice to the 
topic and therefore wanted to see it eliminated.  
5. Do you include real world applications in your geometry course?  What are these and why are 
they included? 
Geometry is a topic in mathematics that lends itself to real world application. I tell my students 
geometry is something that is used in every field in the working world. Construction works as 
well as carpentry works need to know geometry. Individuals who work in advertising need to 
think about space when they make up an advertisement. Police officers need to use geometry 
when they are on a chase or when a shooting occurs. This year I took my students outside in the 
courtyard and we went around looking at the building and trying to find quadrilaterals and 
explain their properties and purpose by looking at them as well as their purpose in the building. 
I was able to understand Rose better from her responses to this short open-ended questionnaire. 
Her own experiences with proof in high school (Raymond, 1997) influenced her belief that it 
would not be easy to teach students how to prove. Rose did not understand the relationship 
between constructions and proof (Schoenfeld, 1988) and felt that teaching constructions should 
be eliminated from the curriculum. The curriculum emphasises the procedure for constructions. 
Since Rose’s high school teacher did not teach proof to the class she may have had the students 
working aimlessly at constructions which is what Rose did in her own class and felt it was a 
waste of time. In Rose’s responses, the formal, intuitive, and utilitarian reasons for studying 
geometry can be found.     
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Case Study Conclusions 
Rose’s factor scores on the questionnaire placed her in group 2. Rose had a fear of teaching 

students how to do proofs. From her response to question 2 above we find that because Rose’s 
teacher did not teach her how to do proofs when she herself took a geometry class, she was 
reluctant to now teach her own students how to do proofs. From another perspective, Rose left 
her first high school teaching job in order to teach at a school with more academic students. Not 
all of her students at the second high school were as academic as she expected. She might have 
believed that many of them were not capable of doing proofs. I created an intervention by 
showing her an approach to teaching proofs that fitted well to her disposition to work in a hands-
on manner and use manipulatives since she had a positive score on factor 1. She used the 
intervention successfully in her class and has now requested to teach two sections of this course 
in the coming year. She has also taken an intermediate level training course in Geometer’s 
Sketchpad during the summer in order to become more adept at using it in her class when she is 
teaching geometry (Cinco & Eyshinskiy, 2006). 

In this one case, by looking at the factor scores I was able to find an appropriate intervention 
for the teacher. Can one look at the factor scores of other respondents and introduce them to 
interventions that would help them in their teaching of geometry?  We can’t generalise Rose’s 
success to others since Rose was already implementing most of the aspects of problem solving in 
her work as a teacher (Ball, Bass, & Hill, 2004; Kazima & Adler, 2006).  

Rose believed that she has a professional responsibility to continue learning and perfecting 
her craft. Beswick (2007) refers to this belief as “commitment to seeking out ‘second voices’ and 
is related to a propensity to reflect on one’s practice with a view to continual improvement” (p. 
115). She attributed the notion of “second voices” to Lerman (1997). Rose was willing to 
incorporate suggestions made to help improve her practice. Teachers who are unwilling to listen 
to “second voices” may not be able practice their espoused beliefs.    

 
Follow-Up: Rose in Her Fourth Year of Teaching 

During Rose’s fourth year of teaching I observed her class at the beginning and towards the 
end of her unit on proof. She again used investigations to verify conjectures about when triangles 
are congruent (Serra, 2007). She displayed the results of these investigations on the classroom 
walls. She also used the cut out statements and reasons that I had shown her the previous year. 
She increased the number of proofs that her students did using this method. Her questioning had 
improved. She had the students planning out their proofs. She asked, “Why does this belong 
here?  Why can’t it be placed earlier in the proof?”  

On examinations she included matching up statements and reasons instead of cutting them 
out. She then had the students put the matched up pairs into a formal proof. Some of her students 
were finally able to complete proofs on their own.  
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Over the last few decades more emphasis has been placed on the role teachers play in the 
learning process. Teachers organize and shape the learning context and so have enormous 
influence on what is being taught and learned. With this recognition, the mathematics education 
community began to invest more time and resources into teacher research. Specifically, 
mathematics education researchers, educational psychologists, and those involved in teacher 
education have become increasingly aware of the influence of teachers’ beliefs on their 
pedagogical decisions and classroom practices. This collective case study reports on an 
investigation into the relationship between mathematics teachers’ beliefs and their classroom 
practice, namely, how they organized their classroom activities, interacted with their students, 
and assessed their students’ learning. It also examined the pervasiveness of their beliefs in the 
face of efforts to incorporate reform-oriented classroom materials and instructional strategies. 
The participants were five high school teachers of ninth-grade algebra at different stages in their 
teaching career. This study contributes to the body of literature by illuminating the clustered 
organization of these teachers’ beliefs into an interdependent belief network. This network is 
presented as hypothesized models reflecting the derivative nature of the teachers’ sets of 
mathematical beliefs. The researcher sought to understand the teachers’ beliefs from their own 
descriptions and experiences to identify dimensions of the phenomenon not covered by 
preexisting theory (Ezzy, 2002). 

The qualitative analysis of the data revealed the teachers’ beliefs about the nature of 
mathematics served as a primary antecedent for their beliefs about pedagogy and student 
learning. Findings from the analysis concur with previous studies in this area that reveal a clear 
relationship between these constructs. In addition, the results provide useful insights for the 
mathematics education community as it shows the diversity among the in-service teachers’ 
beliefs (presented as hypothesized belief models), the role and influence of beliefs about the 
nature of mathematics on the belief structure and how the teachers designed their instructional 
practices to reflect these beliefs. Implications for teacher education will also be presented. 
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This study investigates the development of “critical colleagueship” (Lord, 1994) by eight 
middle-grades mathematics teachers participating in a teacher study group as part of a project 
focused on improving mathematics classroom discourse. Analysis of the action research phase of 
this project indicated that aspects of critical colleagueship, such as self-reflection, openness to 
new ideas, the capacity for empathetic understanding, and the ability to reject flimsy reasoning 
were exhibited by the teachers. These aspects were manifested in three interaction patterns 
ranging from the common patterns of praise and advice-giving to the uncommon pattern of 
teachers engaging as challenging colleagues. 
 

Background 
With the current climate of educational reform in the United States and with teacher quality 

seen as critical to success (Wilson, Duffy, Fiori, Halladay, & Mapuranga, 2006), understanding 
how teachers learn through professional development and how contexts promote this learning is 
crucial. Although professional development has been labeled as “the ticket to reform” (Wilson & 
Berne, 1999, p. 173), there is little in terms of empirical evidence of the effects of professional 
development on practice or on student learning (Elmore, 2002). 

According to the “consensus on effective professional development” learning is a 
collaborative activity and “educators learn more powerfully in concert with others who are 
struggling with the same problems” (Elmore, 2002, p. 8). Therefore, professional development 
should be designed to include the development of teachers’ ability “to work collectively on 
problems of practice within their own schools and with practitioners in other settings, as much as 
to support the knowledge and skill development of individual educators” (Elmore, 2002, p. 8). 
Similarly, Wilson and Berne (1999) determined that a common thread in “highly regarded” 
projects was the “privileging of teachers’ interaction with one another” (p. 195). These projects 
all had similar conceptions of professional development and were “aiming for the development 
of something akin to Lord’s (1994) ‘critical colleagueship’” (p. 195).  All of the professional 
development projects studied had difficulty building “trust and community while aiming for a 
professional discourse that includes and does not avoid critique” (p. 195). Unfortunately, this is 
contrary to the culture of teaching, in which teachers have a great deal of autonomy and are not 
often asked to explain their actions (Wilson, Miller, & Yerkes, 1993). 

 
Purpose of Study 

Because of the lack of empirical evidence documenting the benefits of collegiality, there is a 
need to explore the concept of collegiality. There is also need for research that examines groups 
of mathematics teachers in order to gain insight into collegiality as it applies to mathematics 
teachers. This study has two purposes, one of which is methodological. It aims to answer the 
following questions: a) What are some of the ways that critical colleagueship is exhibited by 
mathematics teachers participating in a teacher study group as part of a project focused on 
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teachers engaging in action research to improve mathematics classroom discourse? and b) Is it 
possible to identify the aspects of critical colleagueship exhibited by mathematics teachers by 
observing a group of mathematics teachers? 

 
Theoretical Framework 

For a broader transformation, collegiality will need to support a critical stance toward 
teaching. This means more than simply sharing ideas or supporting one’s colleagues in the 
change process. It means confronting traditional practice – the teacher’s own and that of his or 
her colleagues – with an eye toward wholesale revision (Lord, 1994, p. 192). 

In an effort to explain how teachers learn, Lord (1994) proposed his idea of critical 
colleagueship based on research about teacher collegiality. Critical colleagueship involves not 
only working together, sharing ideas and supporting each other, but also confronting 
unproductive practices and pushing one another to confront these practices. According to Lord, 
the elements of critical colleagueship are: 

1. Creating and sustaining productive disequilibrium through self reflection, collegial 
dialogue, and on-going critique. 

2. Embracing fundamental intellectual virtues. Among these are openness to new ideas, 
willingness to reject weak practices or flimsy reasoning when faced with 
countervailing evidence and sound arguments, accepting responsibility for acquiring 
and using relevant information in the construction of technical arguments, willingness 
to seek out the best ideas or the best knowledge from within the subject-matter 
communities, greater reliance on organized and deliberate investigations rather than 
learning by accident, and assuming collective responsibility for creating a 
professional record of teachers' research and experimentation. 

3. Increasing the capacity for empathetic understanding (placing oneself in a colleague's 
shoes). That is, understanding a colleague's dilemma in the terms he or she 
understands it. 

4. Developing and honing the skills and attributes associated with negotiation, improved 
communication, and the resolution of competing interests. 

5. Increasing teachers' comfort with high levels of ambiguity and uncertainty, which 
will be regular features of teaching for understanding. 

6. Achieving collective generativity – "knowing how to go on" (Wittgenstein, 1958) as a 
goal of successful inquiry and practice. (p. 192-193) 

 
Methods 

Participants and Context 
The participants included two university researchers and eight middle-grades (grades 6 – 10) 

mathematics teacher-researchers (TRs) from seven different schools in the Midwest United 
States. These middle and high schools were in a variety of communities (rural, suburban, urban) 
and included students from a range of socioeconomic levels. The teachers were also 
“purposefully selected to vary gender, context of teaching situation, certification level, years of 
teaching experience, extent of involvement in professional development, and reasons for entering 
the teaching profession” (Herbel-Eisenmann, Drake, & Cirillo, 2009). For more about the 
participants, see Herbel-Eisenmann, Drake, & Cirillo (2009). All of the TRs volunteered to be a 
part of this project1. The participants were involved in regular project meetings ranging from 
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three-hour meetings to full day and overnight retreats. The data for this study is transcripts from 
10 of the project meetings, all of which came from the action research phase of the project.  
Data Analysis 

This study draws on discourse analytic methods (Fairclough, 1992; Choularaki & Fairclough, 
1999). First, the corpus was reviewed and summarized in broad terms (Fairclough, 1992), using 
codes that reflected the topic of the discourse. These topic codes were then used to choose 
transcripts that contained discourse in which the teachers shared with one another. Once the 
transcripts where chosen each transcript was broken up into episodes by topic or theme. These 
episodes were then broken up into question/advice blocks. Each of which was coded for who was 
doing the questioning, and who was being questioned, and the type of question(s) asked 
(clarification, elaboration, probing, challenging). Additionally, notes were taken on how these 
question/advice blocks related to the components of critical colleagueship (i.e., pushing someone 
to reject flimsy reasoning, evidence of openness). 

 
Findings 

In the analysis of the 10 transcripts, three patterns of interaction surfaced: praising colleague, 
advising colleague, and challenging colleague. Due to limited space, I have chosen to describe 
the praising and advising colleague using a single transcript that exhibits both of these interaction 
patterns. I will then discuss the challenging colleague by exploring a different transcript. It 
should be noted that these interaction patterns did not always emerge in isolation; however in 
most cases one interaction pattern lasted for multiple teacher turns. All teacher names are 
pseudonyms. Since the purpose of this study was to identify the teachers exhibiting the aspects of 
critical colleagueship, I have chosen to indicate the researchers by using initials.  
Praising and Advising Colleague 

The praising colleague interactions were those in which teachers’ engaged in dialogue that 
included a multitude of praise, usually directed at the teacher who was presenting their work. 
This interaction rarely involved questioning and the questions that were posed were mostly 
clarification questions. Similarly, the advising colleague interaction involved little questioning. 
However in addition to questioning in this interaction, the teachers offered advice (solicited and 
unsolicited) to the presenting teacher. This transcript is a representation of the types of praising 
(bold) and advising (italics) interactions in the data. The underlined text indicates utterances that 
include aspects of critical colleagueship.  

In the following transcript one of the TRs, Robert, shared his action research progress. He 
showed videos from two lessons (one from the beginning and one from the end of the project).  

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 

BHE: 
 

Robert: 
Mike: 

 
Cara: 

 
 
 
 
 

So what did other people notice in what you heard happen in that period of 
time if Robert's goal is to be having kids talk more, right? 
Contribute more of their ideas in classroom discussion. 
I liked how you didn't give any cues when you were, when you were writing 
down answers.  I mean there was no evaluation going on. 
I really liked the idea that you gave it to them the day before and had them if 
they didn't understand it or needed something, they had to write down a 
question. And I like the fact, I mean I have so many kids that come up to me 
and say, you know three of them just put it down in front of you and just 
stand there.  And then it's, I don't get it.  And so by your asking them to write 
down a question ahead of time really made them get into the thinking of it.  I 
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12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

 
Robert: 

Cara: 
 
 
 

Stacey: 
Robert: 

 

thought that was a really neat strategy and one I'm gonna take. 
It's stolen from... 
That's what you got to do and I like that a lot.  And I like the problem 
because, and I guess I relate to Robert, well, because we're both teaching 
sixth grade and that's the exact concepts that I work with all the time, is that 
it depends on the size of the whole on what the fraction is. 
You're successfully getting them more engaged in meaningful ways. 
I mean honestly things that you've enjoyed in class that, more opportunities 
to provide kids with activities like this I could always use.  Cause I'm willing 
to try them now where before I wasn't going to try them.  

We can see that in lines 04, 06, 14, and 18, different teachers praise Robert for the good 
things they see in his teaching using words such as “like” and commenting on the “neat” things 
he is doing. In addition, in line 18 Stacey uses the word “successful” to describe Robert’s 
progress. 

Although this interaction between the teachers did not seem to be what one might define as 
critical, many of the aspects of critical colleagueship were exhibited. Throughout this excerpt the  
aspects of empathetic understanding and openness are exhibited. Cara indicated that she had 
similar situations to Robert and not only is she placing herself in his shoes (lines 08) she 
explicitly aligns herself with Robert in line 15 where she stated “I relate to Robert.” Openness to 
new ideas is reflected in both what Robert says and in what other teachers say during this 
interaction. In line 12 Cara explained that Robert had a “really neat strategy” and she claimed 
that she was “gonna take” it. An even more explicit instance of openness to new ideas is 
exhibited by Robert. In line 20, Robert asked for more ideas from the other TRs because “I’m 
willing to try them now where before I wasn't going to try them.”  

We continue the transcript form the same meeting where we left off. 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

Cara: 
Robert: 

 
 
 

Gwen: 
Kate: 

 
Cara: 

 
 

MC: 
 
 

Robert: 
 
 
 
 
 

Do you like what you’re doing better? 
Yeah. Like I said, it was more fun. I don’t know if, I mean I think they get, 
like I said I'm asking them to do something that's different than the norm. So 
they ask. Like I said the one girl did ask, why does each problem that we do 
have to have a discussion or a lot of discussion. 
I've got students that ask that too. Why do we have to talk so much? 
It might be interesting to ask them too what their reaction is to talking about 
them more. 
I have done that. It’s very interesting. For example, I've gone to that no 
hands policy and I just said, why do you think I've gone to this policy? And it 
was very interesting for them to say different reasons.  
Robert, you said in the past I wasn't willing to try this. And I was wondering 
is, do you think that's accurate that you weren't willing to or do you think it's 
more that you didn't know what other possibilities there were?  
I guess I don't know. At that time, even if these were posed to me I'm pretty, 
you know I might think they're pretty cool or whatever, but if you haven't 
known I was pretty passive in my behavior. But I was at a transition point 
where I didn't want to teach anymore. So I was pretty frustrated in my job that 
I was doing. You know I was seriously looking at other things to do. And then 
you know I just kind of had a change of heart, changed grade level, and then 
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42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
53 
53 

 
MC: 

 
Robert: 

 
 
 
 

Holly: 

this kind of came up too. 
So then it was that you were more willing it sounds like. So what about the 
participation here made you more willing? 
Gosh, I don't know. Maybe. Probably accountability to everyone else. Just 
change. Seriously. And that we're all going through the same stuff too. We're 
all in the same, same problems, same issues. Yeah and just having materials 
to use that were pretty user friendly and I was able to understand you know 
what the objectives were and stuff.  
I would say Robert, even just since we started the project I think there's more 
resources on the NCTM's illuminations website that are more by topic so 
that's a richer resource even in the last few years. And I find that like two or 
three times a week to see if there's an open ended thing. 

We see in this excerpt that the TRs also provided Robert with advice. In line 28, Kate 
advised Robert to talk with his students about discussing problems, and in line 30, Cara offered 
him an example of how he might be able to do this. Later in the discussion in line 50, Holly also 
gave Robert some advice on where he might be able to find rich resources. 

This excerpt also illustrated the aspects of critical colleagueship. Cara (line 30) continued to 
exhibit empathetic understanding and so did Gwen (line 27) by commenting that she also had 
students ask similar questions. We also see Robert engaging in self-reflection (lines 23, 36, 45) 
and in lines 36 and 45, discussing his openness. Robert shared his progress with the other 
teachers and seems to be engaging with the difficulties he experienced and the ways in which he 
was able to change is practice. He also talked candidly about how his willingness to try new 
things changed.  Interesting is the fact that when MC asked Robert about his willingness to try 
new things prior to the project, one can see that the project encouraged his openness. He stated in 
line 36 that he was the type of person that “was pretty passive in my behavior.” Then, in line 45 
Robert talked about the project and how it had encouraged his openness because of “the 
accountability to everyone else” and the fact that “we’re all going through the same stuff.” 
Challenging Colleague 

The least frequent type of interaction was that of the challenging colleague. In these 
interactions teachers asked elaboration, probing and challenging questions. This interaction 
happened only when one particular TR presented to the group. Bold is used to identify utterances 
that were challenged or challenging and the underlined text indicates utterances that include 
aspects of critical colleagueship. 

In the following excerpt a different TR, Owen, discussed his action research project, which 
was to identify his students as procedural or conceptual by giving them an assessment.  

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 

Owen: 
 
 
 
 

Stacey: 
Owen: 

 
Holly: 
Gwen: 

So to me, using the Pythagorean theorem to find a distance is more of a 
conceptual response, because it connects back into something they already 
know.  So whether or not they learn the Pythagorean theorem in a procedural 
fashion, or a conceptual fashion, right. Okay, are they relying on their 
procedural understanding of the Pythagorean theorem?  
How are you going to determine that? 
 Well I do the Pythagorean theorem when I’m supposed to be doing 
distance formula, I do the Pythagorean theorem. 
What do you do? 
What do you mean do? 
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11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Owen: 
 

Gwen: 
 
 

Owen:   
Gwen:   

 
Owen: 
Gwen:   

 
 

Owen: 
 
 
 
 
 

Kate: 
BHE: 

Owen: 
Stacey: 

 
 
 
 

We ah, they get a grid paper and I have them draw a right triangle, and 
they make the squares off to the sides.   
The question would be, when you are teaching them distance, you just taught 
as, a triangle Pythagorean theorem. So, you never actually gave them a 
problem where they did this?   
Oh no, we did, there are homework problems like this. 
In class, did you show them using Pythagorean theorem to solve the 
problem? 
Yes.  That's the way we did them. 
So you couldn't say, that a kid said, oh this is how you did it, so that's how I'm 
supposed to do it. So how is that different than, I know the distance 
formula, so that's how I’m going to do it? 
Because the distance formula is an exterior entity which they have no actual 
understanding of. All they have is their memorization of what the distance 
formula is as opposed to having them draw a triangle, which connects a 
problem they are presented with, back to something else they are already 
familiar with. Well no kid is going to come out, with a one hundred percent we 
would assume. 
Well they might, but you might have a lot of people who are,  
 They have a lot of variation. 
Right. Yeah. 
I don't think that's the issue, I think the issue is whether or not you can 
really make the initial statement, this is procedural, this is, and I’m one of 
the, I'm a big, big advocate of conceptual, so you know that about me. You are 
trying to talk about conceptual and you're not giving conceptual tasks, it's 
hard to justify the claim that this is procedural or this is conceptual. 

In this transcript we see that Owen is asked questions that require him to elaborate, justify his 
reasoning, and reflect on his own thinking about his action research project. Owen is asked fairly 
quickly in his presentation (line 06) how he plans to determine whether students have conceptual 
or procedural understanding, and then in lines 09 and 10 both Holly and Gwen asked Owen to 
explain what he means by doing the Pythagorean theorem. As Owen continued to present his 
ideas, Gwen asked many questions (lines 13, 17, 20). It is important that these questions be 
looked at together because as individual questions they may seem to be only asking Owen to 
clarify how he taught the concept of the distance formula. However, these questions are 
challenging Owen to consider alternate explanations for the results he may get from his students. 
Gwen and others are attempting to push Owen to think about his reasoning, which they believe 
to be faulty. This is evident by phrases such as “So you never actually…”, “So you couldn’t 
say…”, and “So how is that different than…” In lines 29 and 30, both Kate and BHE posed 
issues for Owen to think about that challenge his plan to identify students. In line 33, Stacey not 
only challenged Owen but also Kate and BHE. In response to the issues they were discussing 
with Owen, Stacey stated “I don’t think that’s the issue.” Stacey then continued to challenge 
Owen’s action research project and stated that “it is hard to justify the claim that this is 
procedural or conceptual.” 

The challenges that the teachers posed for Owen brought about other aspects of critical 
colleagueship, although perhaps not fully realized, that were not exhibited in the praising or 
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advising colleague interactions above. In this challenging colleague interaction the teachers 
pushed Owen to reject what they believed to be flimsy reasoning. They provided him with 
countervailing evidence and sound arguments to encourage him to reconsider his project 
objectives. However, Owen did not seem to be open to these ideas as evidenced by how he 
continued to explain his reasoning in the same way without incorporating ways to address the 
issues posed by the teachers. 

Discussion 
This study is only the first step in unpacking critical colleagueship. According to Wilson and 

Berne (1999), critical colleagueship may help to explain how teachers learn. Although this study 
does not claim to draw a link between the aspects of critical colleagueship and teacher learning, 
it has provided us with what some of the aspects of critical colleagueship sound like in a 
particular mathematics teacher study group. This study is a necessary step in determining 
whether this type of collegial development does in fact explain teacher learning since it is first 
necessary to determine whether these aspects can be observed in a teacher study group. From a 
methodological standpoint, this study did in fact illustrate that it is possible from observing a 
mathematics teacher study group to identify some of the aspects of critical colleagueship. The 
teachers in this study exhibited openness to new ideas, capacity for empathic understanding, self-
reflection, and were working towards aspects of rejecting flimsy reasoning by providing their 
colleagues with sound arguments and countervailing evidence. However, there are many aspects 
that were not identified in this study. The question remains as to whether these aspects (e.g., 
increasing teachers’ comfort with high levels of ambiguity and uncertainty and sustaining 
productive disequilibrium) were simply not exhibited by the teachers in this group or if these 
aspects are not observable. Since this analysis included only 10 project meetings, it is possible 
that observing more meetings across a longer period of time might illuminate more than was 
possible here. 

This study also raises more questions about how collegiality develops and specifically how it 
develops within a mathematics teacher study group. First, why was it that the teachers engaged 
as challenging colleagues around only one teacher’s sharing? Although we may like to believe 
that personal relationships, status, and personality do not play a role in the development of 
critical colleagueship, it appears that they do. Even though the teachers in this study seemed to 
feel comfortable sharing and collaborating with each other, it is possible that the existing 
relationships and issues of status (teaching experience, certification level, mathematical 
knowledge, and experience with reform curriculum) may have had an impact on how critical 
colleagueship developed. Further research is needed to examine how status in a teacher study 
group affects collegiality. Also, the question remains as to how the context of mathematics 
allows for the development of critical colleagueship. Future research should examine the 
mathematical aspects of the teacher talk within study groups. 
   

Implications 
This study has implications for further professional development work. According to Wilson 

and Berne (1999), effective professional development opportunities were those that involved 
something akin to critical colleagueship. This study group was one of those opportunities. 
Although the teachers in this group have not mastered all the aspects of critical colleagueship, 
they were well on their way to developing these types of relationships. Needless to say, critical 
colleagueship does not develop over night. This project was a four year project and the meetings 
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analyzed for this study were from the fourth year of the project. Special care was taken in this 
project to promote trust and to help the teachers feel comfortable sharing. The types of 
interactions discussed above are less likely to develop in traditional professional development 
settings where teachers are not given opportunities to collaborate with the members of their 
group on a regular basis. 

Regarding action research, the context of the study groups examined in this study, Atweh 
(2004) made a compelling argument for the use of action research in mathematics classrooms. 
Action research can be a catalyst for teacher learning since the learning process involves prior 
knowledge, experience, and reflection, all of which are a part of the action research process. This 
type of research also affords teachers the professional status and autonomy they deserve. “If 
teachers are to enjoy the status of autonomous professionals they should feel that they are in 
control of the processes of knowledge generation as well as knowledge application” (Atweh, 
2004, p. 203). This study adds to the argument for doing action research. Teachers, just like 
students, need good tasks and environments in order to be able to engage in good discussions. 
The action research project proved to be a good venue for the types of discussions that promoted 
the teachers to engage as critical colleagues. It was through these projects that the teachers were 
able to share their classroom practices, including their successes and their struggles, and give and 
receive constructive feedback. 

 
Endnotes 

1. This data was collected as part of an NSF grant (#0347906) focusing on mathematics 
classroom discourse (Herbel-Eisenmann, PI). Any opinions, findings, and conclusions or 
recommendations expressed in this article are those of the authors and do not necessarily reflect 
the views of NSF. We would like to thank the teachers for allowing us to work in their 
classrooms. 
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To what extent does the use of computational tools offer teachers the possibility of constructing 
dynamic models to identify and explore diverse mathematical relations? What ways of reasoning 
or thinking about the problems emerge during the models construction with the use of the tools? 
These research questions guided the development of the study that led us to document the 
process exhibited by high school teachers to model mathematical situations dynamically. In 
particular, there is evidence that the use of computational tools helped them identify and explore 
a set of mathematical relations dynamically. In this process, the participants had opportunity of 
fostering an inquisitive approach to models construction that values ways of formulating 
conjectures or mathematical relations and ways to support them. 
 

Introduction 
Models construction plays a fundamental role during the development of mathematical 

knowledge. In particular, the modeling cycle that involves examining the phenomenon to be 
modeled, identifying and discussing assumptions and elements to construct the model, and 
exploring and validating the model provides useful information to frame an instructional 
approach to foster teachers’ practices and students’ mathematical thinking. In this context, we 
argue that a central activity in students’ process of developing mathematical concepts and 
solving problems is the construction of models that are used to identify, explore and support 
mathematical relations. Goldin (2008, p. 184) states that “…A model is a specific structure of 
some kind that embodies features of an object, a situation or a class of situations or phenomena –
that which the model represents”. How a model is constructed? How can one evaluate the 
pertinence of a model? What is the role of the use of computational tools in the construction of 
models? To respond to and discuss these questions, we identify an inquisitive or inquiry 
approach as a crucial activity associated with the modeling process. 

Mathematical modelling is the process of encountering an indeterminate situation, 
problematizing it, and bringing inquiry, reasoning, and mathematical structures to bear to 
transform the situation. The modelling produces an outcome –a model– which is a 
description or a representation of the situation, drawn from the mathematical disciplines, in 
relation to the person’s experience, which itself had changed through the modelling process. 
(Confrey & Maloney, 2007, p. 60) 
Teachers need to problematize their instructional practice in order to construct instructional 

routes. In this process, it is crucial that they get engaged into an inquisitive approach to examine 
the situation (formulation and discussion of questions) in terms of mathematical resources and 
strategies that lead them to the construction of models. A model then, is the vehicle for teachers 
to identify mathematical relations and to solve problems. We contend that the development and 
availability of computational tools offer teachers and students the possibility of enhancing their 
repertoire of heuristics strategies to deal with mathematical relations embedded in models. It is 
also important to recognize that different tools may offer distinct opportunities for them to 
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represent and approach mathematical problems. For example, with the use of dynamic software, 
such as Cabri-Geometry or Sketchpad, some tasks can be modeled dynamically as a mean to 
identify and explore diverse mathematical relations or conjectures. Thus, tasks or problems are 
seen as opportunities for teachers and students to engage in the construction of models. In this 
process they pose and pursue relevant questions as a mean to identify and represent relevant 
information that guides that construction. In this study, high school teachers worked on a series 
of mathematical tasks in which they had the opportunity to construct and explore mathematical 
models. Those models provided them relevant information to think of and design their 
instructional routes. They were encouraged to use dynamic software during the process of 
constructing and refining the models. 
 

Conceptual Framework 
Kelly and Lesh (2000) have recognized that researchers, teachers, and students rely on 

models to represent, organize, examine, and explain situations. For instance, researchers 
construct models to analyze and interpret teachers and students’ activities. Teachers use models 
to describe, examine, and predict students’ mathematical behaviors, while students use models to 
describe, explain, justify, and refine their ways of thinking. Thus, a model is conceived of as a 
conceptual unit or entity to foster and document both the teachers’ construction of instructional 
routes and the students’ development of mathematical knowledge. 

In this context, it becomes important to identify not only the basic ingredients or elements of 
a model; but also to characterize the process involved in the construction of models. Doerr and 
English (2003, p. 112) define models as “systems of elements, operations, relationships, and 
rules that can be used to describe, explain, or predict the behavior of some other familiar 
system”. That is, the models construction involves examining the situation or problem to be 
modeled in order to identify essential elements that are represented and scrutinized through 
operations and rules with the aim of identifying and exploring mathematical relations. Here, we 
are interested in documenting cognitive behaviors that the problem solver (teacher or student) 
exhibits during the interaction with the task. Thus, it is important to distinguish phases or cycles 
that explain relevant moments around the teachers or students’ process of models construction. 
In particular, ways in which teachers or students refine or transform initial models of the 
situation or phenomenon into more robust or improved models to deal with the situation. 

In order to identify the essential elements embedded in a task or phenomenon it is important 
to comprehend initially the situation or problem (Polya, 1945). Understanding phenomena or 
situations that involve real contexts demands not only the recognition of the key elements around 
the problem or dilemma; but also ways to represent them mathematically. This phase is crucial to 
construct the model that will be explored through mathematical resources and strategies. The 
exploration stage leads us to search for different approaches and media to examine the model and 
eventually to solve the problem. The next stage is to interpret and validate the solution in terms 
of the original statement or problem conditions. In this process, it is important to analyze and 
discuss whether the model used to solve the problem or situation represents a tool to approach a 
family of problems or situations. 

Is the model of the situation appropriate? Is the solution reasonable and consistent with the 
problem statement? Can the model be improved? Can the model be extended? What are the 
mathematical resources, concepts and strategies that were relevant during the construction and 
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exploration of the model? These types of questions are crucial to evaluate the strengths and 
limitations of the model and to extend the model scope (Niss, Blum, & Galbraith, 2007). 

Figure 1 represents a modeling cycle that shows relations and operations that allow 
transferring features of the phenomenon into the model construction. How can the use of 
computational tools influence and help the problem solver construct and explore mathematical 
models? Zbiek, Heid, and Blume, (2007, p. 1170) suggest that in experimental mathematics, 
computational tools can be used for: 

(a) Gaining insight and intuition, (b) discovering new patterns and relationships, (c) graphing 
to expose mathematical principles, (d) testing and especially falsifying conjectures, (e) exploring 
a possible result to see whether it merits formal proof, (f) suggesting approaches for formal 
proof, (g) replacing lengthy hand derivations with tool computations, and (h) confirming 
analytically derived results. 

In particular, the use of dynamic software 
could play an important role in constructing 
dynamic models of situations or tasks. The 
models represent configurations made of simple 
mathematical objects (points, segments, lines, 
triangles, squares, etc.) in which, some elements 
of the models can be moved within the 
configuration in order to identify and explore 
mathematical relations. As a consequence, the 
same process of model construction and 
exploration incorporates new ways to represent, 
formulate, and explore mathematical relations. 

Real 
World

Mathematical 
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Objects
Relations

Phenomena
Assumptions

Objects
Relations

Phenomena
Assumptions

Manipulations

Results
InferencesConclusions

Interpreting

Representing

Extra-mathematical 
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Data Data

 
Figure 1. Modeling cycle. 

For example, the situations or problems are now analyzed in terms of the facilities offered by 
the tool such as dragging particular components; find loci of points or lines, quantifying certain 
relations, etc. Indeed, the use of the tool offers the problem solvers the opportunity of exploring 
new routes to develop or reconstruct and explore basic mathematical results. In particular, the 
visual approach becomes relevant to identify the relations that later can be analyzed in terms of 
numeric and graphic approaches. 

The research questions used to guide and structure the development of the study were: (a) 
what ways of reasoning or thinking about the problems emerge during the model construction 
with the use of the tools?, (b) to what extent does the use of computational tools offer teachers 
the possibility of constructing dynamic models of problems to identify and explore diverse 
mathematical relations?, and (c) what types of mathematical resources and strategies emerge 
during the teachers’ construction of mathematical models associated with the phenomena? 
 

Research Design, Methods and General Procedures 
Six high school teachers participated in 3 hours weekly problem-solving sessions during one 

semester. The teachers were encouraged to use dynamic software (Cabri-Geometry) to construct 
dynamic models associated with the tasks or situations. Some problems were selected from 
textbooks or research articles and others came from the teachers’ own construction of geometric 
configurations with the use of the tool. In general, the didactic approach during the sessions 
involved working in pairs and plenary presentations. Two researchers coordinated the 
development of the sessions and participated as members of a community that fostered an 



Vol. 5  941 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

inquisitive approach to the tasks. In this process, the teachers worked as a part of the community 
not only to solve the problems; but also to have opportunities to review mathematical contents 
that emerged while solving the tasks. The problem solving sessions were recorded and each team 
handed in a report that included the software files. The researchers took notes and discussed the 
advantages in using the tool during the diverse problem solving phases. In this report, we focus 
on analyzing the work shown by the community while dealing with a problem embedded in a 
real context. Thus, the unit of analysis is the work shown by the six participants as a group 
during the sessions. The task discussed throughout this report is representative of the type of 
problems that the community addressed during the development of the sessions. 
In general, the participants had experience in using 
computational tools and they were encouraged to use them 
during their interaction with the tasks. 

The task. Figure 2 shows a car going on a straight 
highway. Aside there is a palace and the driver wants to stop 
so that his friend (the passenger) can appreciate the facade 
of the palace. At what position of the highway should the 
driver stop the car, so that his friend can have the best view? 
(Adjusted from Vasíliev & Gutenmájer, 1980). 

 
Figure 2. The palace. 

 
Presentation of Results 

We organize and structure the results in terms of identifying essential phases around the 
process of model construction that the participants exhibited during the interaction with the task. 
These phases include the initial comprehension of the statement of the task; the identification of 
basic elements to construct a model of the problem; the exploration of the model and the 
formulation of conjectures; ways to support mathematical relations and conjectures, 
interpretation of results and validation and extension of the model. 

A. Understanding the task statement: An inquiry approach. This phase was important to 
comprehend the task and to identify and discuss a set of assumptions that led the community to 
identify the elements to be considered in the model construction. To this end, the community 
posed and discussed the following questions: How can we identify that for a distinct position of 
the car, the passenger has different views of the palace? What does it mean to have the best 
view? Is it sufficient to consider the position of the passenger on the highway as a reference 
instead of the car to determine the best position? It was observed that the figure provided in the 
statement of the task helped them to visualize and eventually represent the problem. They relied 
on the figure to assume that the observer could be identified as one point that is moved along a 
line (the highway). Here, the community also discussed if the provided information was 
sufficient to solve the task since there was no quantitative data involved in the statement. 

Initially, the community identified two ways to characterize the best view of the facade: One 
that related the distance between the observer and the facade (less distance better view) and the 
other that focused on relating the best view to the angle that is formed between two points on the 
facade and the observer. The former interpretation was chosen by the community and became a 
source or a departure point to construct the model of the situation. At this moment, the task was 
thought of in terms of the basic elements (line, angles, segments, etc) as a way to construct a 
mathematical model.  
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B. Model construction. The initial analysis of the statement led the community to construct a 
dynamic model of the situation by representing elements of the task (highway, facade, and 
observer) through geometric objects (lines, segments, points, angles). In this context, Sophia 
proposed to represent the highway with a straight line and the passenger a point of that line, and 
a segment as the base of the palace’s facade. Why can the facade of the palace be represented 
through a segment? Some of the participants argued that the best view means to compare angles 
that relate the wide of the palace (represented by a segment) and the point that represents the 
observer. In general, the participants agreed that Sophia’s representation included the relevant 
information of the task. It is important to mention that in order to explain what happens to the 
angle for various position of the point (the observer) they recognized that it was necessary to 
identify and notate explicitly the main objects embedded in the problem (points, angles, line, 
segment). Here, some teachers initially used paper and pencil to sketch a problem representation 
but later, the use of the tool (dynamic software) became important to visualize the angle variation 
for different positions of the observer. 

C. Model exploration and conjectures. At this stage, there appeared two ways to represent 
the statement: One in which some participants used paper and pencil and relied on trigonometric 
relations to construct and explore the model (Figure 3, left); and the second approach in which 
the use of the tool guided the model exploration. Thus, the participants who decided to use the 
software, started to observe the behavior of some attributes of triangle APB (area, perimeter, and 
angles) when point P was moved along line L. Here, by assigning measurements to those 
attributes, both the areas and perimeters of the family of triangles did not reach a maximum 
value. In particular, Sophia and Jacob noticed that when point P was situated on a position that 
was collinear with point A and B, then the angle APB measured zero degrees; but when point P 
was moved to the right of the collinear position the measurement of angle APB increased for 
some positions and then the angle value decreased. 

 

  
Figure 3. Paper and pencil representation (left) and a dynamic model (right). 

 
Thus, they focused on determining the position for point P on L in which the angle APB 

reaches its maximum value. There appeared two ways to identify the maximum value of the 
angle. One in which some of the participants directly visualize the numbers displayed while 
moving point P along the line L (Figure 4); and another in which the participants construct a 
graphic representation that involves the distance AP and the corresponding value of angle APB 
(Figure 5). 
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Figure 4. Identifying various positions 

for point P and the angles formed with end 
points of segment AB. 

 
Figure 5. Graphic representation of the 

variation of the value of angle ABP when 
point P is moved along line L. 

 
The participants were aware of the need of looking for an algebraic or geometric argument to 

justify the position of point P where the angle reaches its maximum value. In this process, Daniel 
and Emily decided to draw the circle that passes through points P, A, and B. Based on this 
construction, they realized that when point P is moved along line L, then the circle that passes 
through points P, A, and B seems to be tangent to line L at the position where angle APB reaches 
its maximum value (Figure 6). 

Based on this information a conjecture emerged: To identify the point where angle APB 
reaches its maximum value is sufficient to draw a tangent circle to line L that passes through 
points A and B. That is, the tangency point of the circle and line L is the place where the 
observer gets the best view of the palace. How can we construct the circle that passes through A 
and B and is tangent to line L? Emily posed this question to the rest of the participants during the 
class discussion. Sophia and Jacob suggested that it was relevant to identify relevant properties 
of the tangent circle assuming its existence. That is, if the tangent circle exists, what properties 
should it have? Here, it was recognized that the circle must lie on the perpendicular bisector of 
segment AB and also that its centre must also be on the perpendicular to line L that passes 
through the tangent point. Thus, David drew a perpendicular line to L that passes through point P 
and the perpendicular bisector of segment AP. These lines get intersected at point D. What is the 
locus of point D when point P is moved along line L? With the use of the software the locus was 
determined (Figure 7). Thus, the intersection point (C) of the locus and the perpendicular 
bisector of AB was the centre of the tangent circle. Here, to draw the circle they drew the 
perpendicular from point C to line L, and the distance from point C to line L was the radius of 
the tangent circle (Figure 7). During the class, it was also argued that the locus of point D when 
point P is moved along line L is a parabola, since point D is on the perpendicular bisector of 
segment AP and it holds that d(P,D) is always the same as d(D,A) (definition of perpendicular 
bisector). Here, the focus of the parabola is point A and the directrix is the line L. 

Sophia and Jacob constructed the tangent circle to L that passes through point A and B by 
drawing initially the perpendicular bisector of segment AB. Later, they situated a point C on that 
perpendicular bisector and drew a circle with center point C and radius the segment CA. They 
also drew a perpendicular to line L that passes through point C. This perpendicular and the circle 
get intersected at point D. What is the locus of point D when point C is moved along the 
perpendicular bisector of AB? 
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Figure 6. The circle that passes through 
point P, A, and B seems to be tangent to line L 

when angle APB gets the maximum value. 
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Figure 7. Drawing a tangent circle to 
line L that passes through points A and B. 

 
Again, the use of the software showed that such locus was one branch of a hyperbola. The 

locus intersects line L at point P. The perpendicular line to L that passes through point P 
intersects the perpendicular bisector of segment AB at point C’. Thus, to draw the tangent circle 
to L that passes through points A and B it was sufficient to draw the circle with center point C’ 
and radius segment C’P (Figure 8). 
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Figure 8. Using a hyperbola to construct 

a tangent circle to line L that passes through 
points A and B. 
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Figure 9. Providing an argument to show 

that angle APB reaches the maximum value. 

 
D. Interpretation and model validation. During the class discussion, the participants 

recognized that the problem of finding the best view was reduced to construct a tangent circle to 
a line that passes through two given points; however, it was important to provide a mathematical 
argument to validate that the tangency point was the position where the angle gets its maximum 
value. To present the argument they relied on figure 9: Point M and N are the intersection points 
of the perpendicular bisector of segment AB and circles that pass through points ABD and ABP’ 
respectively. 

Thus, to compare the values of angle ADB and angle AP’B is the same as comparing angles 
AMB and ANB. This is because angle ADB is congruent with angle AMB and angle ANB is 
congruent with angle AP’B. It is also observed that d(A, N) becomes equal to AP when D 
coincides with point P (tangency point), otherwise d(A, N) is always larger than AM. Therefore, 
the tangency angle is the angle with maximum value. To evaluate the appropriateness and 
feasibility of the model the participants changed the original position of the essential elements 
(highway and facade) and they observed that the model also allowed them to identify the best 
view of the facade. Including the case in which the facade (segment AB) and the highway (line 
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L) are parallel, here the best view appears at the intersection of the perpendicular bisector of 
segment AB and line L. 

The participants observed that the domain of the 
solutions lies on the interval between the intersection 
of the perpendicular from the extreme of the facade 
that is closest to the line (highway) and the 
intersection point of the perpendicular bisector of 
segment AB and the highway (Figure 10).  

Figure 10. The model’s domain. 
 

Discussion and Remarks 
The model approach used to guide the development of the problem solving sessions helped 

the participants to focus on key aspects associated with the development of mathematical 
thinking and practice. For example, firstly, the participants, working as a part of a community, 
realized that the process of initially comprehending the problem statements is crucial not only to 
identify essential aspects of the situation, but also to recognize a series of assumptions needed to 
construct a model of the task or problem. Secondly, they recognized that the model exploration 
phase represents a departure point for the problem solver to examine the model from distinct 
perspectives with the aim of identifying a set of relations or conjectures. Later, the conjectures 
that emerge, during the model exploration phase, need to be supported with mathematical 
arguments. Finally, the model used to solve the problem needs to be examined in order to 
evaluate and contrast its pertinence and possible extension to be used in isomorphic or related 
tasks. 

In this context, there is evidence that the use of the tool helped the participants to initially 
construct a dynamic model of the task. Thus, moving a point (P) on a line (highway) led them to 
identify and relate the “best view” with the angle formed between the ends of a segment (palace) 
and that point. How can we measure the angle for distinct positions of point P? How can we 
identify the angle with a largest value? The teachers used the software to measure the angle for 
various positions of point P to observe that there was a position where the angle’s value was the 
largest. This visual and empirical approach became important to think of other ways to represent 
the angle variation. The graphic solution involved a functional approach in which the use of a 
Cartesian system helped them relate the distance from one end of the segment (AB, the palace) 
and its corresponding angle. Thus, the graphic approach became relevant to visually identify the 
point where the angle reaches its maximum value. In addition, moving the point P on the line 
helped the participants to observe particular behaviors of other objects (circles, segments) within 
the representations. For example, the teachers observed that the circle that passes through the 
three points (A, B, and P) becomes tangent to the line when the angle APB reaches its maximum 
value. Thus, the solution of the task was reduced to draw a circle tangent to the line and the 
tangency point was the desired point. Again, analyzing relevant properties of the possible 
solution led them to construct the perpendicular bisector of segment AB and the perpendicular 
line to L that passes through point P. The locus of the intersection point of those lines when P is 
moved through line L generated a parabola. Here, the parabola was the key to find the solution of 
the task. The participants were surprised that a conic section was used to find the point where the 
observer gets the best view of the palace. They also recognized that the dynamic representation 
of the problem became important to identify two mathematical results: (a) given a line L and a 



Vol. 5  946 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

segment AB that is not parallel to line L, then there is a point P’ on the line where the circle that 
passes through points A, B and P’ is tangent to line L. Here the angle AP’B is the angle with the 
maximum value, (b) given a line L, a point P on that line, and a segment AB that is not parallel 
to L, then the locus of the intersection point of the perpendicular bisector of segment AP (or BP) 
and the perpendicular line to L that passes through point P when point P is moved along line L is 
a parabola. The modeling phases, described in this report, provided useful information to identify 
a potential route for students to approach mathematical tasks with the use of the tool. Thus, the 
construction of the dynamic representation, the quantification of attributes (measures of 
segments, angles, etc.), the identification of loci and the graphic representations are key activities 
that can help teachers and students to identify and explore interesting mathematical relations. In 
addition, the use of the tools is also relevant to search for arguments to support those results. 

In short, during the modeling processes the participants had an opportunity of identifying and 
discussing assumptions and essential components that were relevant to construct a dynamic 
model of the task. The exploration of the model, through an inquisitive approach, led them to 
formulate a set of conjectures and relations that were important during the solution process. To 
reach the solution, they relied on empirical, numeric, visual, and algebraic approaches to support 
and validate conjectures. In this context, the use of the tool seems to help the teachers to 
experience themselves diverse routes to reconstruct basic mathematical results. These routes are 
key ingredients for teachers to identify instructional strategies that can foster their students’ 
development of mathematical thinking.   
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This study explored how two fourth-grade teachers transformed problems and teacher questions 
in terms of cognitive demands in teaching. This study also examined factors influencing their 
textbook use. Analysis results revealed that although two teachers used the same textbook, they 
used it differently. One teacher closely followed the textbook and thereby maintained the higher 
level of student thinking. However, the other teacher lowered the cognitive level by using teacher 
questions that focus on procedure and finding the answer. Teachers’ different teaching goals for 
learning were identified as a significant factor that leads teachers to use the same textbooks 
differently. 
 

Introduction 
Historically, curriculum materials or textbooks have been a key agent of policies to regulate 

mathematics practice in ways that align instruction with the reformers’ ideas. Unlike objectives, 
assessments, and other mechanisms that seek to guide curriculum, textbooks are concrete, and 
provide the daily information of lessons and units: what teachers and students do. Textbooks are, 
therefore, often used as a means to shape what students learn (Dow, 1991). Accordingly, 
research on teachers’ textbook use and influential factors has been done over the course of two 
decades and has provided a substantial number of categories of teachers’ textbook use patterns 
and factors that influence them (e.g., Freeman & Porter, 1989). However, most of the previous 
studies on textbook use focused on the maximal extent of coverage, such as to what extent 
teachers use textbooks in planning and teaching school subjects. Therefore, they provided three 
or four different textbook use patterns such as a textbook-follower, a textbook-adaptor, and a 
textbook-ignorer. However, these findings do not help us understand how teachers use their 
textbooks to provide different students’ learning opportunities. 

According to the Professional Standards for Teaching Mathematics (NCTM, 1991), 
opportunities for student learning are not created simply by putting students into groups, by 
placing manipulatives in front of them, or by handing them a calculator. Rather, the level and 
kind of thinking in which students engage with mathematical problems, what Stein and Smith 
(2000) called, “cognitive demands” of mathematical problems determines what students will 
learn (p. 19). Yet, there are a few studies looking at how teachers use their textbooks in terms of 
cognitive aspects. Although several studies have examined teachers’ practices in terms cognitive 
demands (e.g., Stein, Grover & Henningsen, 1996), they did not consider the teacher-text 
relationship (i.e. how the cognitive demands of mathematical tasks presented in textbooks were 
changed when teachers planned and implemented these task during instruction). 

This study therefore explored whether and how the cognitive demands of the textbook 
versions of problems and questions were changed when teachers moved content from text to 
teaching and what factors influenced their textbook use. In particular, this study examined 
whether and how two teachers used the same textbook differently in terms of cognitive demands. 
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Research Questions 
The purpose of this study is to examine two fourth-grader teachers’ textbook use in terms of 

cognitive demands of problems and questions and influential factors. The detailed research 
questions are as follows: 

1. How do two teachers use their textbooks in terms of the cognitive demands of 
problems and questions?  

2. What factors influence teachers’ use of the same textbook?  
 

Conceptual Framework 
In order to examine teachers’ textbook use in terms of cognitive demands, this study refers to 

Stein and Smith (2000)’s study. A problem in this study means a mathematical object to be 
solved or answered that requires logical thought, whereas a question is a pedagogical object 
suggested in the textbook or used by teachers during instruction that directs the student to think 
in certain ways, reflect on their math work (i.e., teacher questions). According to Stein and 
Smith, cognitive demands of problems mean the kind and level of student thinking required when 
(students) engage in problems; cognitive demands of questions means the kind and level of 
student thinking required when (students) engage in teacher questions (Stein, Grover & 
Henningsen, 1996).  

Problems and questions presented in textbooks and those used by teachers during instruction 
can be categorized into two different levels of cognitive demands—problems (and questions) 
requiring high-level cognitive demands on students and those requiring low-level cognitive 
demands on students as Table 1 shows. 

 
Table 1 

Two Types of Problems and Questions in Terms of Cognitive Demands of Student Thinking 
 High-level  Low-level  

Characteristics • Require complex and non-algorithm 
thinking. 

• Require students to explore and 
understand mathematical concepts 

• Require students to analyze the task 
and possible solution strategies 

• Usually are represented in multiple 
ways (e.g., visual diagrams, 
manipulatives, symbols) 

• Require making connections among 
multiple representations. 

• Require engagement with the 
conceptual ideas that underlie the 
procedures. 

• Involve either reproducing previously 
learned facts, rules, formula, or definitions  

• Are algorithmic. Use of the procedure is 
either specifically called for or its use is 
evident based on prior instruction, 
experience 

• Do not require students to make 
connections to the concepts or meanings 
that underlie the procedure being used. 

• Are focused on producing correct answers 
• Do not require students to give 

explanations,  
• Focus solely on describing the procedure 

that was used. 
Example Use a diagram to illustrate how the 

fraction 3/3 represents the same 
quantity as the decimal 0.6 or 60% 

Find an equivalent fraction. ½= ( )/6 
Completing multiplication tables 

 
A mathematical problem demanding high-level cognitive processes requires students to 

recognize transformed versions of a formula they have already learned. The focus for high-level 
problems is on comprehension, interpretation, flexible application of knowledge and skills, and 
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assembly of information from several different sources to accomplish work. In contrast, a 
problem involving lower cognitive demands requires students to use memory: Students are 
required to reproduce or recognize information they have already seen or they have to use 
algorithms to generate answers to a set of problems. The focus for low-level problems is on 
memory, formulas, or algorithms to accomplish work. This study employed this framework in 
analyzing problems and teacher questions in textbooks and those used by teachers in teaching. 

 
Methods 

Participants and Textbooks 
Two fourth-grade teachers participated in this study. Brad had 7 years of teaching experience 

at the elementary school while the other teacher, Karen had four years of teaching experience. 
They worked together at the same elementary school and in the same grade in the U.S. (all 
names are pseudonym).  

Math Trailblazers (Wagreich et al., 2004) was used by the teachers. Math Trailblazers is one 
of many commercially published texts revised to reflect changes called for by the NCTM 
standards. Problems and questions in this textbook were analyzed based on Stein and Smith’s 
framework above before conducting the study. The vast majority of the problems and questions 
presented in the textbook were categorized as high level problems and questions that require 
students to use procedures with connections to meaning, concepts, or understanding and doing 
mathematics (Hiebert, 1999). For example, a typical problem presented in Math Trailblazers 
(Grade 4, Wagreich, et al, 2004, p. 922) is: “Look for patterns in the number sentences and find 
another equivalent fractions.” This problem requires students to focus on the relationship 
between numerators and denominators and use the patterns, as opposed to simply following the 
rule, in order to find other fractions equivalent to one half. Questions presented in the teacher’s 
manual of Math Trailblazers were also categorized as requiring students to engage in thinking, 
reasoning, problem-solving, justifying, and communicating about mathematics. These questions 
include the language like “look for”, “explain”,” justify”. 
Data Collection and Analysis  

In order to examine how two fourth-grade teachers interact with the textbook and what 
factors influence their decision-making, I observed and interviewed each teacher while they were 
teaching a fraction unit across two semesters. During the observation, I took field notes focusing 
on problems and questions the teachers or students worked on. Post-observation interviews were 
tape-recorded. In the analysis of two teachers’ textbook use, audio-taped interview data, the 
transcripts of interviews, documents related to teachers’ use of textbooks (teachers’ lesson plan 
from the teacher’s manual and my observation notes), and my observation were used. Based on 
Stein and Smith’s (2000) framework, each problem used by teachers was classified into either 
high-level or low-level. The interview data were analyzed in order to explore possible reasons 
why teachers used the same textbook differently. First, interviews were transcribed into printed 
text. I then read the transcripts carefully. While I obtained a general sense of the information 
through that reading, I tried to make a list of emergent ideas from the reading of the data (e.g., 
Miles & Huberman, 1994).  

 
Results 

Analyses of the two teachers’ use of the textbook revealed that there were similarities 
between these teachers on the dimension of the mathematical problems they set up. The same 
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mathematical problem was used in both classes and was set up in essentially the same manner. 
However, different from Brad, Karen lowered the cognitive demand level of the textbook 
problems by using teacher questions that focus on procedure and finding the answer the ways in 
which students actually went about working on the problems differed in the two classes. During 
instruction, Karen shifted the emphasis from meaning, concepts, or understanding to using 
procedures. She took over students’ thinking and reasoning and specified explicit procedures for 
finding equivalent fractions. As class went over, Karen’s questions became much narrower, 
asking students to fill in the blank rather than construct an answer (e.g., “two times two is?). 
Karen attempted, and rarely managed, to surface students’ mathematical thinking using her 
questions. In this paper, I will describe how Karen transformed the cognitive demand of textbook 
problems when teaching the topic of equivalent fractions using Math Trailblazers. In particular, I 
will use the lesson “equivalent fractions” in Karen’s class, which I observed in Brad’s class. 
1. How do two teachers use their textbooks in terms of the cognitive demands of problems and 
questions?  

Before observing her class, Karen gave me a copy of her lesson plan, reproduced as Figure 1, 
which came directly from the teachers’ manual of her textbook. Brad closely followed 
suggestions presented in Figure 1.  

 
1. Ask students to use their fraction chart from Lesson 3 to find all of the fractions that are equivalent to 

½. List these on the board or overhead. 
2. Ask students to compare the numerators and the denominators of the equivalent fractions in order to 

look for patterns. 
3. Ask students to suggest other factions that are equivalent to 1/2 
4. Write number sentences on the board or overhead showing the equivalencies 
5. Students look for patterns in the number sentences 
6. Students use the patterns (multiplying or dividing the numerator and the denominator by the same 

number) to find fractions equivalent to 3/4, 1/3, and 2/5. 
7. Students use the patterns to complete number sentences involving equivalent fractions 
8. Students complete Questions 1-5 on the Equivalent Fractions Activity Pages in the Student Guide as 

independent practice 
9. Assign Homework Questions 1-15 on the Equivalent Fractions Activity Pages in the Student Guide. 

Students will need their fraction charts to complete this assignment 
 

 Source: From Math Trailblazers Fourth Grade Teacher’s Lesson Guide (p. 924), by Wagreich, P., Goldberg, H., 
Bieler, J.L., Beissinger, J.S., Cirulis, A., Gartzman, M., Inzerillo, C., Isaacs, A., Kelso, C.R., & Peters, L(2004), 
TIMS Project, Dubuque, IA:Kendall/Hunt.  

Figure 1. Summary of lesson activities in lesson. 
 

Like Brad, Karen used activities suggested in the lesson guide. Karen asked students to look 
at the fraction chart they used in the previous lessons and find all of the fractions that were 
equivalent to one half. Like Brad’s class, students in Karen’s class easily came up with the 
equivalent fractions. As suggested in the lesson guide, Karen asked students to arrange these 
equivalent fractions in an order such that a denominator gets bigger. As in Brad’s class, students 
arranged them and Karen wrote them on the board, such as. Karen again asked students to write 
this arrangement of these equivalent fractions down underneath the word “equivalent fractions” 
in students’ notebook. In the meantime, she told them that all of these fractions are the same size.  

As students finished writing down equivalent fraction sentence, Karen asked students to find 
patterns by comparing the denominators. Students noticed two patterns, “counting by twos” and 
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“even”, but they did not come up with the answer that Karen expected, which is multiples of two. 
In this instance, Karen interacted differently from Brad. While Brad gave hints, waited until 
students volunteered to answer, and had students discuss the incorrect answer, Karen told her 
students the expected answer. This interaction with students exemplifies how teachers decrease 
the cognitive demand of problems during instruction. Henningsen and Stein (1997) reported that 
teachers often decrease the cognitive demand of student thinking by taking over student 
reasoning and telling students how to do the problems.  

For the rest of the lesson, I repeatedly observed this pattern. For example, after having 
students find the relationship between the numerators and between the denominators of fractions 
equivalent to one half, Karen asked students to look at the numerators and denominators together 
of each of equivalent fractions and find patterns. Several students responded, but none provided 
her expected answer. Karen again said to students “the numerator is half of the denominator, 
isn’t it?” Indeed, Karen’s telling was more obvious when students did not figure out patterns in 
the number sentences. She wrote four number sentences on the board and said: 

 
I have on the board four number sentences. Four number sentences. The first one, one half 
equals two fourths. The second one, one half equals four eighths. The third one, one half 
equals five tenths and the fourth one is one half equals six twelfths. Look at that pattern in 
these number sentences, first by looking at the numerators and then by looking at the 
denominators. What do you see?   

         
This problem requires students to focus on the relationship between numerators and 

denominators and use the patterns, as opposed to simply following the rule, in order to find other 
fractions equivalent to one half. One student answered but his answer did not show the 
relationship between numbers and denominators. The same mistake occurred in Karen’s class as 
in Brad’s class. In both Karen’s and Brad’s classes, when students were asked to find the 
relationship in the number sentences as above, students tended to compare the denominator of 
the first fraction and the numerator of the second fraction, and find the relationship. For example, 
in Karen’s class, one student found the relationship for the first number sentence, such as “If you 
take two and times it two you get four”. Karen responded to this study as follows: “Is this what 
you were saying? One times two is?” Karen paused and students said “two”. Karen again said, 
“two times two is?” and paused. Students said “four.”  

Although Karen set up problems finding the relationship and used it to find other equivalent 
fractions, as students became confused, Karen gave the pattern as a rule that students needed to 
follow, which requires low level of student thinking. Karen said, “Here is the rule. Get your pens 
ready. If you multiply both the numerator and the denominator of a fraction by the same number, 
the result will be an equivalent fraction”. Karen asked students to copy out the rule in their 
notebook, and repeatedly stated the rule while students were writing the rule down. During an 
interview, Karen mentioned that “students need to memorize it to apply it”; contrast with Brad 
who said that “students need to make a discovery for themselves.” By using the rule, Karen tried 
to have students see patterns in the rest of number sentences. For example, Karen asked students 
to take a look at the third number sentence and see whether the rule works. Some students 
nodded their heads to say yes and some kids shook their heads for no. She said: 
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That’s what the rule says. Multiply both the numerator, that’s my numerator and the 
denominator by the same number. The result will be an equivalent fraction and I said over 
here that one half equals five tenths (interview, 04/27/2007). 

 
Karen led the students through four number sentences involving equivalent fractions, all the 

while focusing on the procedure. For example, for the fourth number sentence, Karen repeatedly 
asked, “Three times what equals six?” Karen paused and students said “two.” Karen asked again, 
“Four times what equals twelfths?” and paused. Students said “two.” Karen’s questions became 
procedure-oriented, required only multiplication facts. The conversations that Karen had with 
students during this portion of class revealed what her goal for the lesson was: writing equivalent 
fractions by applying the rule.  

Like Brad, Karen asked students to explain and justify their answers. For example, Karen 
also asked students to see if it is true that one third equals two sixths. However, in her class, it 
was sufficient and acceptable for students to rely on the rule. Consider the following Karen’ 
remark: “We said it’s true if we could multiply both the numerator and the denominator by the 
same number to come up with the answer. What number do I multiply one times two is equal?” 

Karen ended up the lesson by asking students to create the number sentences involving 
equivalent fractions such as “one times two is two and six times two is twelve”, which is 
expressed as in a numerical form. Karen called out one student. But the selected student said, “I 
don’t know how to do this”. Karen called out other students. A few students could make the 
number sentences described above. Karen used the same mathematical problems as those used in 
Brad’s class for an introductory teacher activity and student exercise. Therefore, the problems set 
up in Karen’s class focus students’ attention on the discovery of patterns and the use of the 
patterns for finding equivalent fractions, which demands complex thinking and a considerable 
amount of cognitive effort. However, the questions most frequently used in Karen’s class were 
“what number do we multiply?” which require only multiplication facts. In Karen’s class, the 
procedure of “how to do it” was stressed above all else. In an interview, she confirmed her 
typical questions as below: 

 
I think probably the question that I asked over and over again and maybe not in this exact 
word is “What number should I multiply both the numerator and the denominator by to find 
the equivalent fraction?” I probably said that a hundred times (interview, 04/27/2007).  

 
Her remark “a hundred times” shows not only how frequently she used this type of questions 

during the class but also how she was aware of her frequent use of this type of questions in her 
class. Students in Karen’s classroom were rarely pushed to elaborate on their answers. If 
students’ responses reflected the correct answer, the teacher did not raise follow-up questions to 
make students’ mathematical thinking explicit. If students’ responses reflected the incorrect 
answer, teachers paraphrased the answer, changing it to make it more “accurate.” Although 
Trailblazers provide a lot of suggestions in the lesson guide for how teachers should approach 
questioning or approach discussing concepts, Karen did not use those questions. She shifted the 
emphasis of their work from meaning or understanding to the use of procedure without 
connections, and decreased the cognitive demands of teacher questions in ways that require 
lower level of student thinking.  
2. What factors influence teachers’ use of a textbook?  
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Karen supplements the lessons from Trailblazers with practice problems. While Brad 
claimed to be a “follower” of Math Trailblazers, Karen claimed to be “modifier” of the textbook. 
She reported that, in total, 50% of lessons came directly from Math Trailblazers and the rest 50% 
came from other resources such as other textbooks. She said that she supplements the textbook 
with more practice problems from other textbooks, in particular, an old textbook, Houghton 
Mifflin Mathematics. During an interview, Karen said:  

 
I’ve used old textbooks. I find that in the Trailblazers series there is a lot of introducing the 
concepts but not a lot of mastering the concepts… We have some old texts [Houghton 
Mifflin] like that has more practice than the Trailblazers does....Houghton Mifflin has some 
from when I was in school so 1980’s. The Trailblazers series provide a lot of explore, look at, 
manipulate but it’s very shallow in the practice areas as you can see from the lesson that 
there’s I don’t know ten problems or seven problems (interview, 04/27/2007). 

 
Together with her use of lower level teacher questions, frequent supplementing of the 

standards-based textbook with more practice problems reduces the cognitive demand of student 
thinking. Why did Karen transform her textbook in that way? What factors account for Karen’s 
transformation? During the interview, Karen provided the rationales for why she added practice 
problems out of her obligation to meet the Grade Level Content Expectations (GLCE) for 
Michigan. In addition, Karen’s notion of how students learn also is a factor that influences her 
use of the textbook and her teaching practice.  
Conflict between Teachers’ Goal and Perceived Goals of the Textbook  

Karen believes that she should cover all the content presented in the GLCEs. Karen described 
her use of the textbook as follows: 

 
When I start out at the beginning of the year, I lay out the content expectations that the state 
has mandated then I try to match up the text with the GLCEs. So when I get to each unit I 
have to first make sure that I’ve covered all of those content expectations. Because that’s 
what the state says we have to do. The district has said, this is the text we’re using and that 
the Trailblazers series. But the district also has said that the Trailblazers series does not cover 
all of the Michigan grade level content expectations. So therefore you must supplement. So 
when I’m planning I take a look at the lessons that are in the Trailblazer series and I see 
which ones of those cover the grade level content expectations and then I look at all the holes 
that are left over and start using other resources (interview, 04/27/2007).  

 
Karen’s obligation to the contents of the GLCEs influences her pedagogy. During an 

interview, Karen said: 
 
When I was at a math meeting a year and half ago we were talking about the new content 
expectations, what 4th graders are required to know….The curriculum director at the time 
said, these things are suppose to be taught to mastery and here was this huge group of experts 
saying, we’re introducing the concepts but the children are not practicing it enough to say 
that we’ve mastered it….So I’m working really hard on trying to make sure that I can pull 
from anywhere that I can find practice stuff to make sure my kids are going home and 
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working on it on their own, working on it with friends here, that their parents are informed 
about what we’re doing and also working with them at on it (interview, 04/27/2007).  

 
Indeed, “mastery of the concepts” can be interpreted in various ways. Some may think it only 

from procedural aspects, such as proficiency in computation, whereas others consider it from 
both conceptual aspects and procedural aspects of the mathematics contents. Considering the 
recommendations in the GLCEs, definition of mastery requires both conceptual understanding 
and computational skill (Mcthighe & Wiggins, 2005; Wormeli, 2006). However, Karen seems to 
recognize the definition of mastery from the procedural aspects. This understanding may cause 
her to lead instruction more procedure-oriented and emphasize application of the rule in her 
class.  
Procedural fluency as a Teaching Goal  

Indeed, Karen’s obligation to meet the GLCEs is in keeping with her notion of how students 
learn, as evidenced by the focus of her questions on procedures—on how rather than why. Karen 
put more emphasis on application of the rule than on sense-making or meaning in learning 
mathematics. Karen articulated her goals as “proficiency in writing equivalent fractions” and 
“mastering the concepts and applying it” in general. This differs from the evidenced by teachers 
in the first pattern which matches the category “understanding-oriented”. Together with Karen’s 
view on the emphasis of Grade Level Content Expectations, her learning goal seems to push her 
to supplement the textbook with more practice problems and change the emphases from 
understanding to following rules to solve problems in her classroom.  

 
Discussion and Implications 

Although Brad and Karen used the same textbook, Brad maintained the cognitive demand of 
the textbook problems by using higher level teacher questions, whereas Karen decreased the 
level by using lower level teacher questions. The reason behind this different use of textbook is 
their different teaching goals for student learning. While Brad wanted students to develop the 
underlying ideas between equivalent fractions, generate the rule and apply the rule to find 
equivalent fractions, Karen wanted students to follow the rule to find equivalent fractions. She 
believed that practice makes perfect. Different teaching goals led them to use the same textbook 
in different ways, which in turn provided different notions of knowing mathematics and doing 
mathematics. This study suggests that the extent to which teachers’ ideas about how mathematics 
is learned matches the teaching and learning philosophies of the textbook contributes 
significantly to their use of curriculum.  

This study provides implications for policy makers, curriculum developers, professional 
developers, and teacher educators. For example, for professional developers, this study suggests 
that they should provide opportunities for teachers to learn and participate with their textbooks in 
professional development and should provide teachers with opportunities to change their notions 
of learning and teaching mathematics. Research has documented the challenges that many 
teachers face when they try to conduct lessons that take into account and productively build on 
student responses (e.g., Ball, 2001). All teachers need support. In particular, teachers like Karen 
need to teach about mathematics as a field of inquiry, not as a body of procedures. They need to 
learn to think about the goals of learning mathematics as greater than the mastery of 
computational skills. Teachers cannot make fundamental changes in their teaching without 
several kinds of support, such as time and assistance in examining and evaluating their own 
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assumptions about how children learn mathematics and comparing their assumptions to those 
represented in standards-based curriculum. Reformers and policy makers must find ways to 
communicate about change in a way that makes sense and respects where teachers are, while still 
helping them realize that they are being asked to rethink what they do, and in a way that provides 
guidance for that change.  
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For professional learning communities (PLC) to be used as a form of mathematics professional 
development (MPD), more work needs to be done to identify the extent to which mathematics 
teachers in PLCs engage in the activities that address their content and pedagogical needs. This 
paper reports on a study that investigated mathematics teachers’ attempts to implement 
principles of PLCs. Based on the findings, the role of PLCs as the sole source of professional 
development for mathematics teachers is questioned. Suggestions for future research on 
collaborative MPD and its benefits for the design and replication of professional development 
interventions are offered. 
 

Background 
The rapid growth of the field of literature on mathematics professional development (MPD) 

is due to the realization that teachers should be better prepared to be able to improve their own 
instructional practices (Sowder, 2007). As a result, recent studies have attempted to identify 
effective MPD initiatives and find a set of features that are commonly part of these successful 
programs (e.g., Yoon et al, 2007; Garet et al, 2001). This search has led to findings that 
professional development experiences that are sustained (Garet et al, 2001), practice-based (Ball 
& Cohen, 1999), and allow for teacher involvement in the decision making process (Yoon et al, 
2007) are successful in terms of the high value that teachers place on the experience as well as 
resulting increases in student achievement. Additionally, research has shown that the opportunity 
for collaboration is both valued by teachers (Garet et al, 2001; Arbaugh, 2003) and plays a role 
in supporting inquiry and problem solving (Loucks-Horsley et al, 1998). Given the recent focus 
on professional development, especially in collaborative settings, it is important to define the 
work of teachers in groups in order to identify what influences teacher learning and aid in the 
design of effective MPD. 

Professional learning communities (PLC) provide both an organizational framework and a 
set of requisite dispositions and activities for teacher learning. PLCs are defined as sustained 
collaborative opportunities where teachers focus on student learning and critically reflect on their 
shared practice (e.g., McLaughlin & Talbert, 2006; DuFour & Eaker, 1998). In such 
communities, teachers are empowered to make changes to their practice by inquiring into the 
best methods of instruction and developing and testing new hypotheses (Louis, Marks & Kruse, 
1996). Additionally, the decisions to make changes are based on data from the classroom to 
determine new and appropriate teaching strategies (DuFour & Eaker, 1998). Studies have shown 
positive changes in the practice of teachers (i.e., student-centered instruction, high expectations 
for student learning) in PLCs (McLaughlin & Talbert, 2001; Vescio, Ross & Adams, 2008). 

However, not all collaborative groups of teachers engage in the type of examination of 
practice found with PLCs. Research studies have shown communities of teachers that share 
values and set expectations for their work with students but avoid the conflicts that can arise 
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during the critical reflection on practice (e.g., Wells & Feun, 2007). As a result, teachers tend to 
stick with the teacher-centered, traditional methods that are prevalent in schools (McLaughlin & 
Talbert, 2001). While structural changes such as the availability of meeting time for teachers are 
important for the work of a collaborative team (Louis, Marks & Kruse, 1996), such changes are 
relatively easy and are less effective in impacting instructional practices. As a result, the 
attributes of PLCs are special in the bigger picture of teacher collaboration. 

Many MPD interventions claim to rely on collaboration, specifically the shared values and 
norms for critical reflection that are part of PLCs (e.g., Borko et al, 2008; Lachance & Confrey, 
2003; Arbaugh, 2003; Kazemi & Franke, 2004). However, a team’s inclination to engage in 
critical reflection is not the only component of most collaborative MPD interventions. Many 
programs aim to promote the use of instructional practices such as cognitively demanding tasks, 
mathematical technology, and Standards-based curricula. As a result, certain features are 
commonly incorporated into collaborative MPD such as video study, task analysis, student work 
analysis, and engaging with mathematical content and technology. These activities are important 
as Kennedy (1998) found that a strong content focus in professional development programs had a 
positive impact on student learning. Additionally, research has linked increases in student 
achievement to teachers’ mathematical and pedagogical knowledge (e.g., Hill, Rowan & Ball, 
2005) and their attention to student reasoning (e.g., Carpenter et al, 1999). Ultimately, 
mathematics teachers are faced with unique challenges that must be addressed with specific 
forms of professional development activities. 

PLCs only provide a general guideline for the organization, activities, and individual and 
group dispositions necessary to make meaningful change to instruction, regardless of subject. 
Additionally, there is little documentation of the nature of the work that teachers do while 
working in PLCs (Vescio, Ross & Adams, 2008). In order for PLCs to serve as an effective form 
of MPD, more work needs to be done to identify the extent to which mathematics teachers in 
PLCs engage in the activities that improve their content and pedagogical knowledge and, 
ultimately, improve student achievement. 

The study described here investigated two teams of teachers attempting to implement 
principles of PLCs as part of a district-wide intervention. The goal of this study was to discover 
both teams’ success in implementing these principles and to what extent the presence of features 
that are commonly found in effective MPD was evident in their work. From those findings, the 
author questions the role of PLCs in the professional development of mathematics teachers and 
highlights other factors that could be attributed to a group of teachers’ inclination to engage in 
activities found in effective MPD. As a result, the author offers suggestions for future research 
on collaborative MPD and how findings from such research could be used to inform the design 
and replication of MPD. 
 

Framework 
When comparing the literature on professional communities, PLCs, and collaborative MPD, 

there are differences in terms of the activities teachers do, their content focus, and what teachers 
ultimately take away from the experience. Further, some types of collaborative settings rely on 
many of the characteristics of another type. For instance, PLCs rely on a focus on student 
learning, experimentation, and inquiry but also rely on the shared values that comprise more 
traditional collaborative groups. Collaborative MPD interventions often consist of specific 
activities that focus teachers’ attention to students’ mathematical thinking. However, the 
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productive use of these types of classroom artifacts relies on the shared practice, results 
orientation, and comfort with critical reflection, traits which are attributed to PLCs.  

As a result, a conceptual framework has been developed to illustrate both the hierarchy and 
the links among different types of collaborative work (see Figure 1). The framework refers to 
three stages: Collaboration, Teacher Learning, and Specialized Growth. By using the term stages, 
it is implied that the features of each type of collaborative setting serve as a necessary foundation 
for subsequent types of work.  

 

 
Figure 1. Conceptual framework: Stages of mathematics teachers’ collaborative work. 

 
To better describe the attributes and features of these three stages, elements have been 

identified for each. The Collaboration stage consists of three elements: beliefs on collaboration, 
shared values and goals, and shared role. The Teacher Learning stage consists of three elements 
in addition to those in the previous stage: collective inquiry, assessment of practice on basis of 
results, and focus on student learning. Finally, the Specialized Growth stage has three elements: 
content focus, use of artifacts of practice, and planning and implementing reform-inspired 
instructional practices. 

Each stage also refers to the type of growth that teachers experience at each stage. At the 
Collaboration stage, teachers worry about logistical and other non-instructional issues, resulting 
in unchanged practice and, thus, no growth. Teachers at the Teacher Learning stage function as a 
PLC and, in turn, focus on issues of curriculum, instruction, and assessment resulting in a 
general pedagogical growth. At the Specialized Growth stage, teachers are focused not only on 
teaching but are also focused on content, fostering specialized growth in both mathematics 
content and pedagogy.  

Previous work has documented the factors attributed to fostering a group of teachers’ 
movement toward becoming a PLC (stage one to stage two). While structural features such as the 
availability of meeting time are beneficial toward the growth of a group, other factors such as the 
empowerment of teachers to be involved in the decision-making process (Louis, Marks, & 
Kruse, 1996), a focus on issues of curriculum and instruction instead of issues of behavior and 
policy (McLaughlin & Talbert, 2006), and the use of classroom data to drive decision-making 
(DuFour & Eaker, 1998) help develop a group of teachers into a PLC.  

The transition of a PLC consisting of mathematics teachers to a group engaging in the types 
of activities found in effective MPD (stage two to stage three) is not as clear. While many MPD 
interventions claim to value and rely on collaboration and the traits of PLCs, researchers or 
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facilitators drive many of the decisions for activities and content. In order for true PLCs to serve 
as a source of professional development for mathematics teachers, the role that PLCs play in the 
specialized growth of teachers must be better defined.  

 
Methods 

Context 
The study reported in this paper investigated the collaborative interactions of two teams of 

high school mathematics teachers. The study took place in a large, urban school district in the 
southeastern United States. A goal of improving high school graduation rates as well as a 
mission to stay current with movements in the field of education resulted in the district adopting 
the idea of PLCs to be implemented throughout its schools. Specifically, the district promoted 
the principles for PLCs described by Rick DuFour and his colleagues (DuFour & Eaker, 1998). 
Workshops for district teachers were held to present these principles of collaborative learning. 
Knowing the benefits of teacher collaboration, district administrators hope PLCs eventually 
serve as the arena for the professional development for all teachers. As a result, attempts have 
been made to ensure that teachers are given adequate time to work collaboratively and that they 
develop the skills needed to function as member of a PLC. 
Participants 

Both teams’ involvement in the study was the result of their positive response to participating 
after interest was gauged from schools across the district. Additionally, both teams were focused 
on issues in Algebra I classes, which provided some control in the study. The two teams were 
housed at different schools in the same district, Brantley High School and Elmwood High School 
(both pseudonyms). Both teams met on Tuesday mornings for 45 minutes each week as part of a 
scheduling change at the school level. Each team was in their first year together, though PLCs 
had been in the district for two years prior and some teachers from each team had previously 
worked together in that capacity.  

The team at Brantley High School consisted of five teachers, three female and two male. 
Four of the teachers had five or fewer years of teaching experience and all five teachers had 
between two and four years of experience teaching Algebra I. The team at Elmwood High 
School included four teachers, three female and one male. There was generally more teaching 
experience on this team, with three of the four teachers having taught for at least ten years. Two 
of the teachers had taught Algebra I for 13 years each. However, the other teachers are in their 
first year of teaching the course.  
Data Sources 

Data was collected for this study using three sources: team meeting observations, individual 
surveys, and individual interviews. While the team meeting observations provided the most 
information about the team’s interactions, the interviews and surveys allowed for triangulation of 
data to ensure consistency of observed phenomena across different environments.  

The researcher observed, audio recorded, and took notes on four of each team’s weekly 
meetings over a span of two months. The researcher did not provide any input regarding the 
agenda for each meeting nor did he provide any feedback after meetings. The teachers 
participating in the study were also given two surveys consisting of demographic information, 
goals for their collaborative interactions, and a set of Likert scale questions regarding teachers’ 
experiences with their team and the activities in which they engage with their teams (adapted 
from McLaughlin & Talbert (2001) and Wells & Feun (2007)). The teachers also participated 
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individually in two interviews over the course of data collection. The first interview was 
designed to allow teachers to elaborate on their experiences with their team as well as other 
forms of professional development. The second interview was designed for a different goal as 
teachers interacted with mathematical tasks and corresponding student work to explicate their 
dispositions when analyzing tasks and student work.  
Analysis 

For each data source, coding sheets were developed to pair positive indicators of effective 
group interactions with a corresponding element. For example, the mention or use of common 
lesson plans, activities, or assessments would be positive indicators for the collective inquiry 
element of the Teacher Learning stage and working through mathematical tasks or discussing 
algebraic concepts would be positive indicators for the content focus element of the Specialized 
Growth stage. By then combining the results across all data sources, consistencies could be noted 
in order to identify the strengths and weaknesses of a team at each element and, thus, each stage 
of the framework. These strengths and weaknesses, as well as any inconsistencies across the 
three data sources, were further examined as possible factors associated with fostering or 
inhibiting mathematics teacher learning.  

 
Results 

The analysis of data from both teams yielded results regarding each team’s implementation 
of the principles of PLCs and the extent to which they engaged in activities commonly found in 
effective MPD. Since, in this context, PLCs had been setup to serve as a form of professional 
development, this section will highlight each team’s performance as well as factors that can be 
attributed to each team’s success or difficulties at each stage of the framework.  
Brantley High School 

Based on teachers’ responses regarding collaboration as well as the full use of their available 
time to meet as a group, it is clear that the team at Brantley High School valued the benefits of 
collaboration. A common goal for all of the team members was the sharing of ideas and sharing 
the responsibility on items such as test creation and other materials. However, the roles and 
responsibilities were not evenly distributed amongst team members, as two teachers were new to 
the team, which could have impacted their willingness to take a more prominent role. 

Despite uneven participation, the team was able to thoroughly engage in activities that are 
recommended for PLCs. The team made significant changes to their curriculum in response to 
changes in the course’s cumulative state exam and its effect on student achievement. Among 
other commonly used materials, the team administered common chapter tests, which were used 
for data analysis and decision-making. In all, the team focused much of their time on issues of 
curriculum and assessment and, in turn, student learning. The team’s success has even been used 
as a model for other teams in their school attempting to implement the same PLC principles. 

Despite the team’s success in implementing the principles of PLCs, there was little to no 
evidence of any of the elements of the Specialized Growth stage in their team meetings or 
individual responses. Aside from an occasional discussion of algebraic topics with respect to 
their curricular changes, there was no time spent with mathematical content, artifacts of practice 
such as video or student work to supplement the assessment data on which they relied, or 
planning the use of mathematical tasks or technology. In this case, while the team at Brantley 
was very effective at implementing the PLC principles, they did not engage in the materials and 
activities based in mathematical content and pedagogy as recommended in MPD literature. 
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The team at Brantley’s success at implementing the principles of PLCs could be explained by 
the fact that four of the five team members attended at least one of the PLC workshops offered 
by the district. As a result, it seemed that the team implemented those principles literally, 
assuring that activities such as common planning, data analysis, and refining curricular materials 
were a fixture in their collaborative work. However, such a determined focus plus the fact that 
most of their other professional development experiences were focused on general issues such as 
classroom management might explain the group’s inability to engage in the types of activities 
that are common in MPD. Without much previous professional development based in their 
content area, it is not too surprising that these teachers were not self-motivated to incorporate 
mathematical content and pedagogy into their collaborative interactions. 
Elmwood High School 

For the team of Algebra I teachers at Elmwood High School, while the teachers did seem to 
share goals for student achievement, there was less evidence that they valued their collaborative 
interactions. The members of the team seldom cited the value they placed on collaboration and 
the team also often cut meetings short, even though the meeting time caused no conflicts with the 
school day. Despite these problems, there was an expectation that all four members of the team 
participate in the group discussions and bring ideas and materials to share.  

At the same time, however, the teachers on the team at Elmwood did not engage in a shared 
practice. While the team followed a common curriculum and pacing guide, they would only 
occasionally use common chapter tests and classroom materials. Additionally, the team spent 
very little time reflecting on their practice or drawing conclusions from classroom data. Much of 
the team’s time was focused on issues not pertaining to curriculum, instruction, or assessment, 
instead resorting to discussions on class size and student behavior. As a result, this team was not 
successful in implementing PLC principles at the time of this study. In essence, the team at 
Elmwood High School was functioning as a traditional collaborative team by sharing values and 
materials but not taking a critical look at their instructional practice. 

Even though much of the team’s time was unfocused, when the team did discuss issues of 
curriculum and instruction, there were many instances that served as indicators for elements in 
the Specialized Growth stage. During team meetings, teachers worked through mathematical 
tasks that teachers were going to use in class. The team also referenced curricular resources and 
other literature on mathematics content and pedagogy. Some of the team’s time focused on the 
use of graphing calculators in the classroom. As a result, the team at Elmwood showed more 
evidence of engaging in the types of activities that are common features of effective MPD 
despite their deficiencies as a PLC. 

The Elmwood team’s performance was far different than that of the Brantley team. However, 
like the Brantley team, some factors were identified that may be attributed to their effectiveness 
in implementing the PLC practices and the extent to which they engaged in activities found in 
effective MPD programs. Only one of the teachers on the Elmwood team attended a PLC 
workshop offered by the district, which could explain the team’s lack of emphasis on principles 
such as shared practice and data analysis. Moreover, the lesser value that this team placed on 
collaboration in comparison to the Brantley team could make it difficult for the team to 
accomplish much at the teacher learning level. Such a claim is consistent with literature on 
professional communities and PLCs and is in line with the idea of stages found in the 
framework. However, the team’s ability to begin to implement features of professional 
development commonly found in mathematics-focused programs seems to defy the idea of 



Vol. 5  962 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

stages. Upon closer examination, several factors could be attributed to their use of these 
specialized activities. First, three of the four members had graduate degrees in mathematics 
education or educational leadership. Given this fact, the professional development of these 
teachers was much more focused on mathematics content and pedagogy. The individuals on the 
team also shared a willingness to change the way they teach but did not seem to have the norms 
to address these issues as a group. 
 

Discussion 
The goal of this study was to evaluate the effectiveness of PLCs in terms of the specialized 

growth of mathematics teachers and offer recommendations for future research on and design of 
collaborative experiences for mathematics teachers. The grounds for this study are based in 
literature on collaborative professional development, specifically research on collaborative MPD. 
In such work, teachers benefit from the activities and dispositions that come from working as a 
PLC. However, facilitators provide the direction for these groups toward the specialized growth 
that impacts mathematical instructional practices and, in turn, student achievement. In order for 
collaborative MPD to be effective and replicable, the role of PLCs in the professional 
development of mathematics teachers must be better understood.  

The implementation of PLC principles as a professional development intervention should be 
questioned based on the results of this study. One team was not successful in implementing the 
principles, which could lead to doubts about the methods used in such a widespread 
implementation. The other team was successful at implementing the PLC principles but showed 
no evidence of engaging in the activities or discussions that are commonly found in successful 
MPD programs, leading to doubts about the real benefits that mathematics teachers can take 
away from these collaborative experiences.  

The results of this study also raise questions about the conceptual framework considered in 
this paper. The team at Elmwood was not effective in implementing the principles of PLCs but 
did show evidence of some of the activities that are commonly found in MPD, which would be 
characteristic of teams at the Specialized Growth stage. Given this team’s ability to incorporate a 
content focus while struggling to incorporate collaborative norms, such a framework could be 
reconsidered across two dimensions (collaborative norms and content focus) instead of the one-
dimensional approach taken in the original framework. Ultimately, this framework could be used 
to inform the design of collaborative MPD as an emphasis is needed on both the collaborative 
norms and the content focus of a group’s interactions in order to lead to the specialized growth of 
mathematics teachers’ instructional practices.  

This study looked at a small number of teams for a relatively short amount of time. However, 
the findings from this study can inform future research on the collaborative work of mathematics 
teachers. Future research should look at more teams for a longer period of time to get a more 
representative account of the growth of teachers in collaborative settings across subjects, schools, 
and districts. Based on the results of this study, it is also recommended that future research 
studies take measures of teachers’ content knowledge, pedagogical knowledge, and beliefs on 
content, collaboration, and reform-inspired instructional practices using the tools, instruments, 
and assessments available in the field. The results of this study suggest that individual teachers’ 
knowledge and dispositions could affect the collaborative work of a group. Similarly, researchers 
should also take into account any ambient factors that surround a collaborative team, such as 
existing professional development programs, graduate coursework, or the implementation of new 
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curricula. The results of this study suggest that these experiences can impact the work of a 
collaborative team. By better explicating these factors, the design of MPD interventions can take 
a broader scope by considering all of the attributes of effective programs and allowing for more 
efficient replication.  
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We describe a one-day professional development activity for mathematics teachers that 
promoted the use of comparison as an instructional tool to develop students’ flexibility in 
algebra. Our analysis indicates that when teachers were presented with techniques for effective 
use of comparison, their own understanding of multiple solution methods was reinforced. In 
addition, teachers questioned their reliance on one familiar method over others that are equally 
effective and drew new connections between problem solving methods. Finally, as a result of 
experiencing instructional use of comparison, teachers began to see value in teaching for 
flexibility and reported changing their own teaching practices. 

Introduction 
Recently, Star (2005, 2007) proposed a new conceptualization of procedural knowledge, 

highlighting the critical importance of strategic flexibility as an instructional outcome for school 
mathematics. Star (2005; Star & Seifert, 2006; Star & Rittle-Johnson, 2008) defines strategic 
flexibility as knowledge of multiple approaches for solving mathematics problems and the ability 
to select the most appropriate strategy for a given problem.  

Consider the domain of linear equation solving. What does it mean to be a flexible solver 
within this domain? A standard algorithm exists for solving linear equations; this algorithm is often 
explicitly taught as the optimal approach. For an equation such as 9)1(3 =+x , the standard 
algorithm would involve first distributing the 3, then collecting and isolating like variable and 
constant terms to opposite sides of the equation, and finally dividing both sides by 3 to solve for x. 
However, this is not the only strategy for solving linear equations; for this particular equation, it 
may in fact be more efficient to divide both sides by 3 as a first step. A flexible solver not only 
knows both strategies but also chooses to use the more efficient approach on this problem. This 
choice reflects expanding knowledge of when the divide step is appropriate to use. In addition, if 
the problem were altered slightly to 10)1(3 =+x , a flexible solver (particularly a middle school 
student) might realize that dividing by 3 on both sides, though possible, might not be the optimal 
solution method, since 10 is not evenly divisible by 3. Flexible strategy knowledge reflects better 
conditionalized knowledge of when to use strategies.  

Flexibility as an important outcome is alluded to in several recent policy documents, including 
the National Research Council’s [NRC] “Adding It Up” report (2001), the Curriculum Focal 
Points from the National Council of Teachers of Mathematics [NCTM] (2006), and the recently 
issued report from the National Mathematics Advisory Panel (2008). Flexibility also appears to 
have a strong metacognitive component. Flexible solvers engage in metacognition when they think 
critically about a problem and choose to use a more efficient or effective solution strategy to solve 
it, when they compare multiple solution methods to problems and note why one seems better than 
another, when they tap into their repertoire of multiple solution procedures, and when they even 
realize an opportunity or need for efficiency. 
The Development of Flexibility 
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Drawing on the literature in cognitive science and mathematics education, Star and colleagues 
have identified comparison as a particularly effective means for promoting the development of 
flexibility. Rittle-Johnson and Star (2007) found that middle school students who learn to solve 
equations by studying multiple worked examples, presented side by side, become more flexible 
than students who see the same examples but presented one per page. Similarly, Star and Seifert 
(2006) found that students who were asked to solve previously completed equations using a 
different ordering of solving steps become more flexible in their knowledge of equation solving 
strategies. These results from Star and colleagues on the benefits of comparison can be 
summarized by the following three instructional practices that have been found to positively 
impact students’ strategy flexibility in mathematics.  

First, research on comparison indicates to-be-compared solution strategies should be presented 
to students side-by-side, rather than sequentially. Side-by-side placement allows for more direct 
comparison of solution strategies and facilitates the identification of similarities and differences 
between strategies. A side-by-side comparison helps students notice and remember the features 
that are important to each or both solution strategies (Rittle-Johnson and Star, 2007).  

The second practice is for teachers to engage students in comparison conversations. Discussion 
of and comparison of multiple strategies helps students justify why a particular solution strategy or 
solution step is acceptable and helps students make sense of why certain strategies are more 
efficient than others for particular problems (Silver et al., 2005). Teachers can help guide 
comparison conversations to ensure that students are able to make connections among strategies 
that they would not always be able to make on their own. 

The final recommended practice is to provide students with the opportunity to generate 
multiple solution methods to the same problem, either by investigating multiple solution methods 
of the same equation or by creating new equations to solve by a given method. In general, 
knowledge of multiple solution strategies seems to help students more readily consider efficiency and 
accuracy when solving problems. Additionally, by generating multiple solution methods, students are 
encouraged to move away from using a single strategy and, rather, other, possibly better strategies that 
work for the problem (Star & Seifert, 2006; Star & Rittle-Johnson, 2008). 
The Present Study 

The goal of the present study was to design and pilot a professional development activity for 
inservice secondary mathematics teachers, focusing on improving teachers’ flexibility via the three 
comparison practices described above. Our professional development activity had two goals. First, 
we sought to make teachers aware of the three comparison practices described above. Research has 
linked these practices to students’ flexibility, so our primary goal was for participating teachers to 
learn how to implement comparison in their own classrooms.  

However, the success of our efforts to change teachers’ practices would clearly be dependent 
on the flexibility of the teachers themselves. For example, teachers attempting to orchestrate a 
comparison conversation with a group of students would be better able to direct the conversation 
along a fruitful path if they understood the nuances of different solution methods and problems, 
e.g., if they were flexible. Furthermore, a flexible teacher has the ability to spot a potentially 
interesting and innovative approach to a problem during a class, and will offer it for classroom 
discussion to highlight the specific aspects of this unique approach. Conversely, less flexible 
teachers, those with only a superficial knowledge of procedures, may have the tendency to teach 
only one method for solving particular problems, and disregard students’ innovative solution 
methods as unimportant digressions. Thus, a secondary goal of our professional development 
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activity was to impact participating teachers’ flexibility, by implementing the comparison practices 
in the professional development. Teachers must themselves see value in flexibility before they will 
regard it as an important instructional outcome for their students—and in order for flexibility to be 
valued, teacher participants must be consistently presented with problem solving situations in 
which they can develop and exercise their own flexibility.  
 

Method 
In June of 2007, a two-week professional development institute for 24 middle and high school 

algebra teachers was held at California State University, Chico. The teachers were participants in a 
5-year project; the results reported here are from the first year of the project. The focus of the 
professional development institute was algebraic reasoning and pedagogical strategies for use in 
algebra classrooms. The professional development activity focusing on comparison was 
implemented during one eight-hour day.  

The comparison practices were introduced to the teachers by giving a brief presentation on the 
notion of flexibility and the comparison practices. This introduction was followed by a series of 
problem solving activities where groups of 3-4 teachers were given two similar math problems (P1, 
P2) and two suggested strategies (S1, S2) for solving the problems and asked to solve both 
problems using both strategies. Teachers were then asked to create a poster with all four 
combinations of problem and strategy (P1S1, P1S2, P2S1, P2S2) that they would then present to 
the remaining participants. The purpose of the presentations was to model the first two comparison 
practices -- that is, to present different solution methods side-by-side and to facilitate comparison 
conversations among the other participants. This activity format was used several times over the 
course of the two-week institute. Below we show the various problems and strategies that groups 
of teachers were asked to present. They will be referred to hereafter as Topics 1-7. 
 
1. Systems of Equations: Solve the following systems by (S1) substitution, and (S2) linear combinations:  

 (P1) 
852
234

=+
=−

yx
yx   (P2) 

825
23

=+
−=

yx
xy

 
2. Linear Inequalities: Find the solution sets for the inequalities by (S1) moving the variable to the right-hand side of 

the inequality and (S2) moving the variable to the left-hand side of the inequality: 
 (P1) 1053 >− x   (P2) 23 −≥ xx  

3. Solving Proportions 1: Solve for x by (S1) using cross multiplication, and (S2) multiplying both sides of the 
equation by a single value: 

 (P1) 
5

162
=

x
  (P2) 

9
5

6
=

x  

4. Solving Proportions 2: Solve for x by (S1) using cross multiplication, and (S2) comparing the ratio of the 
numerator to he denominator: 

 (P1)
8

16
14

=
x   (P2) 

8
3

14
=

x
 

5. Finding Linear Equations: Determine the equation of the line passing through the two points by (S1) using the 
slope-intercept form of the linear equation, and (S2) using the point-slope form of the linear equation: 

 (P1) (0, 4) and (5, –2) (P2) (–2, –2) and (6, 1) 
 
6. Simplifying Fractions: Simplify the expressions by (S1) dividing numerator and denominator by successive 

common divisors, and (S2) writing out the prime factorization of the numerator and denominator: 

 (P1) 
98
38  (P2)

3

2

6
2
ab

ba  
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7. Finding the Least Common Multiple: Find the LCM by (S1) generating a table of multiples, and (S2) writing out 
and using the prime factorization: 

 (P1) 30,18   (P2) xxx +22 ,4  
 

The data reported below was taken from recollections of the facilitators but also from teachers’ 
responses to a written open-ended survey administered at the conclusion of the comparison activity 
and discussion. This survey contained two prompts: “Reflect on the comparison activity in regards 
to your teaching,” and, “Reflect on the comparison activity in regards to your own mathematical 
ability and understandings.”  
 

Results 
We describe the discussions that took place during the professional development comparison 

activities in order to illustrate that using comparison with teachers gave insight into teachers’ own 
flexibility, and moreover helped to develop an appreciation for flexibility as an instructional 
outcome. As we point out, these discussions were both mathematical and pedagogical in nature.  
Observing the Activity 

Topic 1: Systems of equations. This topic was chosen since it is a very familiar topic within 
which teachers would see value in using comparison techniques to teach flexibility. Many 
indicated they had already used modified comparison techniques when teaching solution methods 
for systems of equations, noting that the typical textbook teaches solution methods as totally 
separate, rarely indicating a connection between any two. However, many teachers noted while 
they present different solution methods, they do not allow their students to have conversations 
about the solution methods, nor do they let them have a choice as to which method to use to solve a 
given problem. 

In this specific example, teachers found that the set of equations that featured an equation in 
slope-intercept form is easier to solve by substitution then the other system, and more cumbersome 
to use for elimination due to the re-arranging of the equation that had to come first. Many remarked 
that this example addressed a difficulty for students; if a student does not properly rearrange an 
equation for setting up the elimination method (i.e. having all variables to one side and lined up in 
order of x terms and y terms, for example), or for setting up the substitution (placing the equation 
into slope-intercept form), then they will incorrectly solve the problem. Many teachers noted that 
literally having side-by-side comparisons of solution methods might help students see that 
elimination is often more efficient when the least common multiple of either the coefficients of the 
x terms (or the y terms respectively) is easy to find. 

Topic 2: Linear inequalities. One of the most fruitful of the comparison discussions concerned 
solution methods for solving linear inequalities. The intent of the two problems and the two 
solution methods in Topic 2 was to emphasize that problems involving inequalities can be solved 
by moving the variables to either side of the inequality, as opposed to the more common way 
students are taught to solve equations, which involves isolating the variable on the left side. We 
had hoped to show that the potential for error when dividing by a negative in working with 
inequalities and of forgetting to ‘flip’ the inequality could be taken care of by being flexible in 
working with inequalities. Indeed, this is what the discussions indicated. 

During the discussion of the solution methods in Topic 2, several teachers commented on the 
fact that they always ask students to move the variable to the left side of the inequality. In fact, 
many of the same teachers admitted their own difficulties in trying to solve the problems by 
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moving the variable to the right side first. Such comments clearly showed that throughout the 
activity our teachers were forced to consider their own flexibility in solving problems. A 
significant portion of this discussion was focused on the difficulty with the negative sign 
depending on which side of the inequality the variable was on. For instance, when solving the 
inequality, 1053 ≥− x , by moving the variable to the right, 10531053 +≥⇒≥− xx , the 
coefficient of the variable is positive, and so there is no need to worry about making mistakes in 
dividing by negatives and forgetting to flip the inequality. Of course, the ability to do this requires 
flexibility in understanding how to read inequalities in both directions. 

Topic 3: Solving proportions. Our intent in Topic 3 was to allow our teachers to discuss the 
strategy of cross-multiplication for solving proportions and to compare it with other strategies. 
Many teachers report that cross-multiplication, although a useful strategy for solving proportion 
problems, is often incorrectly used by students who lack an understanding of why it is a valid 
strategy. Moreover, the overreliance of students on this strategy indicates a lack of flexibility in 
their understanding of what a proportion can represent, and subsequently of the lack of tools for 
solving such problems. One possible strategy for solving Topic 3 Problem 1 

5
162

=
x

 by multiplying 

both sides of the equation by a single value would be to multiply both sides of the equation by 
)16/5( x . Our teachers needed some instruction in this solution strategy, which they indicated was 

not completely intuitive to them. In fact, teachers reacted quite negatively to this strategy, both in 
terms of how students might view this approach (“We don’t expect our students to be able to do 
that”), and also in terms of their own comfort with and willingness to use this strategy (“that seems 
like too much work”). More generally, in the discussions of both Topics 3 and 4, our participants 
revealed their own reliance on cross-multiplication as the ‘best’ strategy to use when solving 
proportion problems, and perhaps a little reluctance for investigating other means of solving them.  

Topic 5: Finding linear equations. In presenting this topic, we wanted to learn about our 
participants’ flexibility in finding linear equations. In particular, finding the equation in P1 (see 
above) is perhaps easiest by using the slope-intercept form (S1), since one of the given points is the 
y-intercept. Our teachers picked up on this and indicated so in the discussions. Many of our 
teachers seemed more in favor of using the slope-intercept form to solve either case, by first 
finding the slope, then substituting the coordinates of one of the points for x and y, and lastly 
solving for b. In using the point-slope formula strategy (S2: using )( 11 xxmyy −=− ) to solve P1 
and P2 of Topic 5, many teachers commented that it takes just as much work and just as many 
steps to use it to solve Problems 1 and 2. In other words, in their view, the fact that the point 

)4,0( is given in P1 does not offer any advantages when using the point-slope formula. But perhaps 
surprisingly, some participants were more in favor of the point-slope formula in both cases. For 
example, one person remarked, “Many students like the point-slope form because there’s no y-
intercept. They don’t need to solve an equation [referring to solving for b]. It takes less steps. 
[Students often wonder,] “What does it really mean that I’m solving for b?” This comment 
suggests that teachers feel that students can use the slope-intercept form of the equation of a line 
without understanding what solving for the variable b means in the context of the problem. 

Topic 6: Simplifying fractions. The discussion of Topic 6 served as an exemplar of how solving 
problems side-by-side and directly comparing the solution methods can lead to a better 
understanding of the mathematics involved and when different methods are appropriate. In this 
topic the relationship between factoring and then cancelling common factors in the numerator and 
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denominator, and “successively dividing” numerator and denominator by the same values are 
examined as two different methods for simplifying fractions. The impetus for such an exploration 
comes from seeing the ‘cancelling factors’ strategy appear in the text when solving fraction 
simplification problems, with no real explanation as to why it is a valid solution strategy. 

In the case of simplifying the fraction found in P1,
38

98
, it was more or less obvious to teachers that 

each number is even, so a common factor of 2 may be ‘divided out’ from numerator and  
 
factors of the numerator and denominator share. When participants saw the differing solution 
methods to P1 side-by-side, 
 
38

98
=

19

49
and 

38

98
=

2 ⋅19

2 ⋅ 49
=

2

2
⋅

19

49
= 1 ⋅

19

49
=

19

49
, 

 
they were better able to draw the connection between “canceling out” common factors and 
factoring. The observation was made that the process of canceling out a common factor is covering 
up several steps involving factoring and division. But when shown side-by-side, connections can 
be drawn between the two. If armed with the flexibility to rewrite the expression in P2 as 

2 ⋅ a ⋅ a ⋅ b

2 ⋅ 3 ⋅ a ⋅ b ⋅ b ⋅ b
, and then to divide out common factors, a student may have better success in 

solving such a problem. In this example, teachers saw the importance of teaching multiple methods 
and drawing connections between the two. Again, the connection between factoring and dividing 
common factors and “canceling out” common factors was more readily seen when solution 
methods were presented side-by-side. 

On the pedagogy side of the discussion, the presenting teacher’s reference to the solution by 
cancelling common factors as “cross-cancelling” became a source of interest. What exactly does 
the word “cross” refer to in this method? Is it the misuse of a word? A conflation of meanings? 
Does “cross” refer to the “crossing-out” procedure used once the numerator and denominator are 
factored? One person remarked that in general, “cancelling out kind of ‘sounds like’ you should get 
zero.” Here, teachers were trying to rectify the language commonly used with the mathematical 
steps involved in the problem solving method. Such pedagogical talks sparked specifically by 
comparison discussions were common. 

Topic 7: Finding the least common multiple. The final topic was chosen as an illustration of the 
potential disconnect between a common method for finding the least common multiple [LCM] of 
integers and the method later commonly taught for variable expressions. In particular, many 
students first construct lists of the multiples of the two integers and then find the first number that 
appears on both lists as the LCM. However, this method has its limitations when applied to two 
variable expressions such as xxx +22 ,4 . Consequently, a method involving prime factorization 
and then finding common factors must be introduced as students progress to such expressions. 

The participants saw that when they tried to apply the “listing” method to the variable 
expressions, it was not clear how they would actually do so. For instance, participants started by 
writing a list such as { },...12,8,4 222 xxx , and quickly realized that they would need to factor in 
more factors of x as well, as in { },...4,4,4 432 xxx . Eventually, participants saw that it would be 

19

38

98
=

2 ⋅19

2 ⋅ 49
=

2

2
⋅

19

49
= 1 ⋅

19

49
=

19

49 
49 
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nearly impossible to write an exhaustive list of all the varying multiples of 24x , and furthermore 
they were uncertain how to organize their lists to obtain the LCM of )1(4 2 +xx . This example 
illustrated the need to understand the connection between the procedure of listing factors, used 
primarily with numbers, and the prime factorization method that is taught for finding the LCM of 
variable expressions. Once more, when teachers had a chance to explore the content they teach and 
the methods they know in the context of comparison, they were able to challenge their own 
understanding of concepts and procedures in new ways. 
Teachers’ Comments on the Post-Activity Survey 

Recall that participants were asked to complete a written survey following the professional 
development activity. Teachers’ responses generally indicated an increasing appreciation of the 
potential of comparison for improving students’ flexibility. One teacher noted, “If students look at 
several ways of doing the same problem, they can start to generalize what’s really going on.” 
Similarly, another teacher noted the potential power of the comparison conversation, noting, “[The 
discussion] is a great tool to get students to defend their ideas and explain their reasoning.” One 
teacher began to see how comparison could be used to help students review and consolidate 
material at the end of a unit: “If I were to use this comparison as a review or a recap of the 
concepts, the students would then be able to engage in fruitful conversation about the various 
methods.” In addition, another teacher noted how comparison could be used for students to check 
their work: “Comparison would also be a way for students to check their own work, because they 
should get the same answer for both methods.”  

However, other teachers noted the challenges of implementing comparison effectively in their 
own teaching. As one teacher noted, “Comparison is a tool I have already used in various lessons, 
but I do not question my students successfully. I tend to want to lecture and give them my 
comparisons instead of asking them what they notice.” More generally, teachers seemed especially 
daunted by the difficulties of facilitating a classroom discussion where students would be allowed 
to share their own thoughts when comparing multiple strategies. Several teachers noted their own 
tendency to do most of the talking in their classrooms and their trouble with allowing students to 
discuss ideas. Another concern noted by teachers was whether students might be confused by 
seeing multiple methods; as one teacher noted: My worry is that some students will be confused if 
I introduce more than one way to solve a problem on the same day.” 

In addition to commenting on the potential impact that comparison can have on students’ 
knowledge, teachers also commented on the ways that the professional development activity 
influenced their thinking about their own teaching and learning of mathematics. One teacher noted, 
“I learned that in my own thinking and strategic competence that I already have a mental map of 
comparison strategies which helps me quickly decide upon a certain strategy to solve a particular 
problem…[The discussion] allows students to take ownership of their own learning.” Similarly, 
another teacher noted, “In all of the textbooks, there is the sequential set of examples and students 
often become confused… I know that when I was learning math, I often fell back on one way of 
solving a problem. I think this did not allow for a better understanding of the topic because I was 
so focused on one solution method. This one-way method put up a sort of roadblock in my 
understanding.” Similarly, another teacher noted, “I realize that intuitively I choose a method that 
is best/most efficient/easiest for me when I work on the board, but I have never taken the time to 
express why or even let the students suggest why.” 
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Discussion 
The results of this small study suggest that using comparison in a professional development 

institute can provide teachers with an adaptable instructional tool as well as a chance to examine 
their own flexibility as problem solving. Survey results suggest that introducing comparison 
techniques to teachers increased awareness of student flexibility. As a result, teachers began to see 
that flexibility is a valuable instructional goal that can be incorporated into their curriculum. In 
addition, teacher discussions during the professional development indicated that teachers expanded 
their own flexibility. Teachers reported that they were challenged to see the connections between 
different solution methods, and subsequently questioned why they taught a certain solution method 
over another. The current study suggests that the three recommended instructional practices 
described above represent a practical way to begin to teach for flexibility in the algebra classroom.  

Future studies on the use of comparison with teachers should focus on effects of teachers’ use 
of comparison in their classrooms, including direct observations of teachers’ practices to determine 
when and how teachers are implementing the practices described here. In addition, a more detailed 
study of the correlation between mathematics teachers’ knowledge of multiple strategies and the 
effectiveness of their use of comparison in the classroom would be educative. Furthermore, the 
work of Star and colleagues (e.g., Rittle-Johnson & Star, 2007) suggests that simply changing the 
method of presentation to side-by-side is not enough; students must have the opportunity to engage 
in comparison conversations and to try to derive their own problem situations for comparison to be 
effective. Hence, a comparative study on the impact of comparison in the classroom both with and 
without the discussion component would more strongly inform teacher best practice for developing 
flexibility using comparison. 
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In this paper we provide an analysis of the work of a video-based case development team whose 
goal was to produce didactic objects to be used the professional development of secondary 
mathematics teachers. In order to generate artifacts for use in the creation of the cases, the 
research team conducted a classroom intervention in an Algebra I classroom. The daily 
videotapes, copies of all the student work, and interviews with the teacher comprised the 
resources for the case development effort. As design researchers, we engaged in interactions of 
design and research as we tested and refined our development efforts. An important aspect of the 
work is its focus on the unifying mathematical concept of covariation. 
 

Introduction 
In this paper we analyze the work of the Case Design Project [Cadept]1 that is part of the 

TPCC [Teachers Promoting Change Collaboratively] 2 Project. As background, the larger TPCC 
project entails multiple stages of research and development employing a design research 
perspective (cf. Brown, 1992; Cobb, Confrey, diSessa, Lehrer & Schauble, 2003). Following this 
design orientation, the TPCC research team first addressed the need for a strong mathematical 
basis for teachers by engaging them in a series of three graduate-level courses called Extended 
Analysis of Functions [EAF]. The mathematical content of the EAF courses focused on 
developing a coherent understanding of the secondary mathematics curriculum from the 
complementary perspectives of (1) functions and quantitative relationships (with covariation 
being a foundational idea for both) and (2) representational equivalence. In addition, these 
courses were designed and implemented as a model of the type of interactions and discussions 
that supported the mathematical thinking being developed during the course.  

Next, the work of the grant was extended to the school setting as groups of teachers enrolled 
in the EAF courses met weekly in the format of Professional Learning Communities [PLC’s]3 
with the goal being that of reflecting on practice as it related to the big mathematical ideas of the 
courses. Our intent was that PLC meeting agendas would be tightly linked with issues that 
emerged in the EAF courses. As a result, the relevance of the issues to the teachers’ classroom 
practices provided the link between the courses and teachers’ classrooms (cf. Zhao & Cobb, 
2006). Each PLC was assigned a facilitator from the TPCC project with the expectation that 
within a three-year period each PLC would become self-facilitated. The appointed facilitator 
initially set the meeting agendas and conducted these meetings. The means of support used to 
initiate teacher reflections typically included (1) teacher developed student interviews, (2) 
Japanese-style lesson study or (3) sharing a self-recorded video of a teacher in the PLC teaching 
a particular lesson in his classroom.  
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During the preliminary analysis of both the EAF courses and the PLC’s, the research team 
realized that its work was not supporting the teachers’ ability to formulate an image4 of the 
practices that were being promoted in the project. The teachers also had difficulty imagining the 
kind of interactions that would support students in understanding the big mathematical ideas 
from the EAF courses. Examples of teachers’ difficulty in understanding the ideas promoted in 
the project emerged particularly during PLC sessions. When discussing student interviews the 
teachers conducted, their focus was on students’ answers and not how the students thought about 
obtaining their answers. When a teacher would share a video recording of a teaching segment 
from her classroom, other teachers’ were (1) either hesitant to share their opinion so as not to 
offend the teacher or (2) focused on classroom management issues. In their discussions, little 
focus was placed on student thinking. 

In order for the TPCC research team to better understand these perceived difficulties and then 
create conversations that would address the difficulties, it decided to generate artifacts for use in 
the professional development settings. The goal was to create video-based cases in which 
teaching took the form of a long-term coherent approach to significant mathematical ideas in a 
classroom setting where students’ current ways of reasoning were at the forefront of decision 
making and planning. As a result, the Case Development Project [Cadept] was developed. The 
goal of Cadept was twofold. First, the members of the Cadept design team wanted to create 
potential didactic objects5 (cf. Thompson, 2002) that could be used with teachers to reflect on 
teaching in relation to student learning; and second, these objects needed to provide 
comprehensive understandings of the struggles teachers encounter as they attempt to implement 
what they understand to be the big mathematical ideas in their classrooms.  

In order to generate the artifacts necessary for creating the potential didactical objects, the 
TPCC research team determined that it needed to conduct a classroom intervention6 with one 
teacher in order to produce a record of her attempts to teach a conceptually oriented course. The 
team selected a ninth-grade Algebra I course for non-honors students —students with whom the 
team would later work in Geometry and Algebra II. The teacher, whom we call Augusta8, was a 
full participant in the classroom intervention. Augusta was chosen as the teacher for the 
experimental classroom because she was comfortable taking risks and trying out instruction for 
which the eventual outcome was unclear. She also was willing to collaborate with the TPCC 
research team in the process of designing the course. In addition, Augusta’s principal was eager 
to have this project in his school. This, therefore, removed some potential institutional 
constraints. During the year of the intervention, each class session was videotaped for two 
purposes: for our own understandings of the struggles that teachers face, and for potential use in 
generating artifacts.  

The development of the cases was an iterative process of ongoing analysis, modification and 
refinement. Much like Simon’s (1995) Mathematics Teaching Cycle the TPCC research team 
engaged in both meta and mezzo levels of design and revision during which it focused on both 
the design of the professional development courses for the teachers and the design of activities 
for the classroom. 

Against this background, we next document the evolution of the need for the classroom 
design intervention. We follow by documenting the research and design cycle that was employed 
in the development of video-based cases from Augusta’s classroom. We then give a summary of 
the current state of our work. We conclude with an analysis that provides implications of our 
work for other university collaborators and the field at large. 
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The Evolution of the Need to Design a Classroom Intervention 
As noted earlier, the need to generate classroom artifacts emerged from ongoing analyses of 

work in both the EAF courses and the PLC’s. Further, the teachers’ curricular knowledge—their 
understandings that corresponded to textbook material they felt compelled to teach and their 
image of problems that students must know how to solve—overwhelmed their ability to imagine 
teaching a series of lessons that developed ideas relationally, coherently, and longitudinally 
independent of their text. As a result, the research team decided to conduct a classroom design 
intervention with one teacher to produce a record of that teacher’s attempts to teach a 
conceptually oriented course.  

It was conjectured that the record of Augusta’s classroom would provide a data source for us 
to use in documenting the process of both the teacher and her students’ learning conceptually 
oriented mathematics. In addition, the team conjectured that the struggles emerging as part of 
this learning would also be documented. As a result, our design was focused on (1) Augusta’s 
reconceptualization of Algebra I, (2) students’ mathematical learning, (3) appropriate instruction 
to teach what Augusta reconceived so that students could learn it, and (4) the means of support 
for Augusta’s transformation. 

 
The Artifact Collection Process 

In addition to the daily-videotaped classes, the TPCC research team also created an electronic 
record of the lesson designs for the year, videotaped daily debriefing sessions with Augusta after 
the class period, audio recorded weekly collaborations with Augusta, made copies of all student 
work, and videotaped student interviews with the research team. This extensive data corpus not 
only provided the resources for use in understanding the difficulties associated with teaching 
conceptually oriented mathematics, but it also provided artifacts that could be used in the design 
of potential didactic objects. As a result, the Cadept team’s initial design conjectures for the 
artifacts was focused on (1) instances of Augusta’s coming to conceptualize an instructional 
sequence to promote students’ mathematical learning, and (2) means of support for Augusta’s 
transformation. It is therefore important to note that the intention of the design was not to focus 
on Augusta per se; but rather on the generation of artifacts which could be used to focus other 
teachers’ attention on Augusta’s reconceptualization of her teaching practices. The motivation 
for focusing the design of the case study on Augusta’s reconceptuatlizations and teaching 
practices were based on the observations made from the PLC and EAF courses. 

This was a highly interventionist and time-intensive process. As part of this process, frequent 
exchanges occurred between Patrick Thompson and Augusta both after class and during their 
Saturday planning sessions. The goal of these exchanges was to support Augusta’s ability to 
reason logically with the innovative materials while using the student’s ways of reasoning as an 
important aspect of planning. In addition, these meetings assessed the effectiveness of the 
materials in developing student thinking and Augusta’s understanding of these materials. The 
meta-level goal of these exchanges was to gain insight into Augusta’s difficulties as she was 
teaching with these innovative materials while getting her input into subsequent design.   
   

The Design of Video-based Cases 
As the TPCC research team reflected on the unfolding “story” from Augusta’s classroom and 

on the changes in Augusta during the teaching of the Algebra I course, it saw the video as a 
potential source of didactic objects for professional development. The team determined that the 
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video would make a compelling case for other teachers. In particular the research team identified 
appropriate instances from the classroom video to choose as segments that would form the basis 
of the cases. The Case Design Project [Cadept] was therefore developed to create a series of 
video-based artifacts to be used in a professional development setting. These video artifacts 
would be part of a larger package of artifacts that included problem sets for the teachers, 
curriculum critique and development, and analysis of student work. These materials were being 
designed to provide opportunities for the teachers to reflect on their practices by examining 
Augusta’s classroom. 

The initial exploration of the data yielded six potential cases: (1) covariational reasoning, (2) 
linear functions, (3) systems of equations, (4) sums of functions, (5) factoring and polynomials, 
and (6) quadratics. As the design team worked, each case required condensing the classroom 
video into sequences of short video stories that could be supported with additional resources 
from Augusta’s classroom. The video was edited both to make these stories of practical viewing 
length, and also to emphasize specific plots. These plots involved the students struggling with 
mathematical ideas, the teacher struggling with implementing those ideas, the development of 
discourse in the classroom, and the cognitive development of the students including significant 
mathematical benchmarks and shifts.  

 
Pilot Studies as Part of the Design Cycle 

As noted, the design team took a design research perspective in its development process. As 
a result, selected video segments were piloted with teachers throughout the development process. 
For example, the third EFA course served as one pilot study. The goals of this study were to 
draw teachers’ attention to student thinking and the subtleties of covariational reasoning and 
instruction. Initially, the teachers in the functions course did not focus on content nor student 
understanding. Their original focus was on Augusta’s classroom management. Their assessment 
of the success of the lesson was directly related to how well the students’ behaved. Moreover, the 
teacher’s focus was on Augusta rather than on the students she was teaching to. They did not 
discuss the students’ thinking, nor notice the role of Coordinating Quantities Tool8 in the lesson. 
They viewed the tool as a “nice activity.” When they broke into groups to watch individual video 
clips, their discussions indicated that they did not have a theory of learning or a notion of an 
epistemic student. It was only after discussion and probing by Patrick Thompson (the teacher of 
the functions course) that the teachers attempted to focus on student thinking. As a result, were 
able to articulate evidence as they built models of student thinking. As an example, they were 
able to examine one student’s use of the Coordinating Quantities Tool to make conjectures about 
her ways of reasoning about the coordination of the two quantities. Also, the teachers’ image of 
covariation changed. They shifted from shape thinking9 to covariational reasoning.  

Throughout the study, it was apparent that simply changing the curriculum or improving 
teacher’s content knowledge would not provide a sufficient stimulus for change. These issues 
must be addressed in the context of exploring classrooms (cf. Zhao, 2007). Zhao makes a strong 
argument for the necessity of “conceptualizing the relations between teachers’ learning in the 
setting of professional development and their instructional practices in the classroom” (p. 3). She 
argues that 

[r]egardless of researchers’ continuous efforts to design and support teachers’ 
professional development, changes in classroom mathematics instruction do not 
always occur as intended. Thus, an immediate and pragmatic challenge posed to 
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teacher educators necessarily involves how to design professional development 
activities so that teachers can relate what they learn to their classroom practices and, as 
a result, become willing to engage in changing their current ways of teaching. (p. 4) 

In order to address this conundrum, the design team therefore focused its pilot efforts on 
understanding the relation between the classroom-based video artifacts and the teachers’ 
reactions with respect to their practice. 

As a result, the research team constructed an epistemic model of teachers’ images of the 
classroom. The model included the fact that teachers would not attend to student thinking 
without readily available evidence and someone pressing them to hold to that evidence. Further, 
the text emerged as the dominant resource for planning. Also, possible distracters in video 
emerged. For example, teachers paid more attention to classroom management issues than to the 
intended focus of the video segments. The epistemic model of teachers’ image of Augusta’s 
classroom was used as a factor in choosing the story that was to be told of the important issues to 
be discussed around the video based cases. As a result, selected video segments were continually 
piloted throughout the development process. The iterative process was crucial in the success of 
our final design. 

 
Results of Analysis, Conclusions and Implications 

Numerous scholars in the field of mathematics education have advocated the importance of 
teachers having strong knowledge of the content they teach (cf. Ball, 1990; Bransford, Brown, & 
Cocking, 2000; Grossman, 1990; Ma, 1999; National Research Council, 2001; Schifter, 1995; 
Sowder, et al., 1998). This sentiment is echoed in the No Child Left Behind legislation that 
articulates a demand for highly qualified teachers who display mastery of subject matter. There 
is, in fact, general agreement in both the political and educational arenas that knowledge of 
content is a necessary condition for an effective mathematics teacher. 

However, we have learned that this knowledge is necessary, but not sufficient. Being able to 
take newly acquired knowledge and transpose it into a new image of teaching is challenging at 
best. As we have noted, teachers must also develop images of good teaching. These images must 
be grounded in the teaching of significant mathematics where student thinking guides 
instructional decision-making. Here we have argued that the investigation of a well-designed 
video-based case can provide the context in which to make explicit the complexities involved in 
innovative mathematics classrooms. In doing so, we provide a context in which to examine the 
use of video-based cases in supporting teachers’ professional growth, including their 
understandings of issues of both mathematical content and pedagogy. It is in this context that 
opportunities for teachers to reflect on their teaching practices arise. 

However, investigations of classrooms provide both potential resources and pitfalls. Teachers 
view classrooms through the lens of their prior beliefs, thereby negating any efforts for issues of 
teaching and learning to be made explicit through their observation. For this reason, teachers’ 
discussions of classrooms often take on the characteristics of “storytelling” during which the 
teachers in professional learning communities share their interpretations of accounts from the 
classrooms. The judgments they make about what they observe and experience can become traps 
that prevent professional growth. Overcoming this can be a formidable task. We therefore cannot 
assume that the issues that are focused upon during collaborations will be made explicit and then 
acquired naturally through teaching.  

However, the effectiveness of video-based, multi-media cases has been documented by 
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Richardson and Kyle (1999) who state that “the use of multimedia cases significantly impacts 
teachers’ cognitions” (p. 131) They note that the power lies in the cases’ ability to present “a 
visual, moving picture of teaching in a real-life classroom” (p. 136). Video-based cases also 
allow easy access to numerous facets of the classroom to facilitate in-depth investigation of 
issues of content, the teacher’s decision-making process and students’ diverse ways of reasoning. 
Through their investigation and critique of a case, teachers have the opportunity to develop and 
refine their skills in critiquing, evaluating and creating learning experiences. Their image of 
teaching is changed as a result. 

The critical aspect of this process is the guiding and framing of the experience by the 
facilitator. Just as we view the role of the teacher as critical in supporting students’ developing 
understandings of mathematics (or any other content area), we view the role of the facilitator as 
critical in supporting teachers’ understandings of what it means to teach mathematics effectively. 
We do not believe that the cases are transparent carriers of meaning. Nor do they have agency. 
They are, in fact, tools to be used in the course of teacher collaborations (cf. Kaput 1994; Miera, 
1998; van Oers, 2000). The goal is then to create the settings in which these cases can become 
genuine didactic objects. For this reason, our next cycle of design and research will focus on the 
development of facilitators’ guides. However, like Carpenter and colleagues (Carpenter, Blanton, 
et al), we do not believe that forms of professional development can be codified and handed over 
as a means of scaling up. Therefore, the next steps in our design process will involve cycles of 
design and revision while working closely with other university collaborators. 

Although our process is still ongoing, we claim to have documented evidence to support the 
following guiding principles: 

 
1.  The thoughtful design of a video-based case is essential in creating effective means of 

supporting teacher professional growth and development because it provides a bridge 
between the professional development setting and the classroom. 

2.  Video-based cases must support the larger goals of any collaboration. 
3. The strength of a video-based case is limited by the quality of instruction and the nature 

of the student discourse captured in the video. 
4.  Video-based cases can only become didactic objects when thoughtful consideration has 

been given to their design and use. 
 

In order for the cases to meet these guiding principles and therefore support teachers’ ability 
to re-conceptualize their practice, they need to provide resources to support the teachers’ 
construction of an image of a conceptually oriented mathematical conversation with students. A 
conceptual conversation is one that has a diminished emphasis on technique and procedure while 
having an increased emphasis on images, ideas, reasons, goals, and relationships. People 
conversing conceptually speak in ways that make their meanings, ideas and ways of thinking 
clear to others in the conversation. To avoid speaking in ways that could possibly hide their 
meaning, these individuals are aware of possible interpretations of their words another may have 
which are different from the meaning that they intended. The design, testing and refinement of 
our cases and the supporting material can therefore provide this opportunity. This is significant 
in that it offers a means of supporting teachers’ transitions in professional development setting. 
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Endnotes 
1. The Case Design Project Team [Cadept] is composed of Kay McClain, Scott Adamson, 

Ted Coe, Carlos Castillo-Garsow, Sharon Lima and Patrick Thompson. 
2. The research team is composed of Patrick Thompson (Principal Investigator), Scott 

Adamson, Ted Coe, Carlos Castillo-Garsow, Sharon Lima, and Kay McClain. Research reported 
in this paper was supported by National Science Foundation Grant No. EHR-0353470 under the 
direction of Patrick W. Thompson. Any conclusions or recommendations stated here are those of 
the authors and do not necessarily reflect official positions of NSF. 

3. We use the term Professional Learning Communities to denote the cohorts of teachers 
within the schools who met on a weekly basis to discuss issues related to the college course. An 
analysis of the development of the cohorts into communities is beyond the scope of this paper. 
We therefore realize that we are taking liberties with the term community and do not intend to 
imply that we have conducted analyses to confirm that these cohorts actually transformed into 
communities (cf. Dean, 2005; Wenger, 1998).  

4. By “image” we build from what Maturana (1978) describes as a conceptual system 
through which we may anticipate another system’s behavior. These images are highly related to 
what Cobb has in mind when he speaks of an envisioned practice as a goal of instructional 
design. 

5. Elsewhere, we have used the phrase didactic object to refer to “a thing to talk about” that is 
designed with the intention of supporting reflective mathematical discourse (see Thompson, 
2002). In doing so we note that objects cannot be didactic in and of themselves. Rather, they are 
didactic because of the conversations that are enabled by someone having conceptualized them 
as such. In this sense, a didactic object is a tool, but one designed to produce desirable 
conversations. 

6. We make a distinction between a classroom intervention and a classroom teaching 
experiment or a classroom design experiment. In the intervention, the goal of the TPCC research 
team was to elicit certain ways of reasoning and certain struggles from both the teacher and the 
students.  

8. The Coordinating Quantities Tool (or finger tool) makes use of the index finger on each 
hand by asking students to track the changes in the quantity of the independent variable with a 
horizontal movement while simultaneously tracking the quantity of the dependent variable in a 
vertical movement. 

9. Thompson makes a distinction between “shaping thinking” and covariational reasoning. In 
shape thinking, students can imagine the shape of a graph from the scenario such as the distance 
of a bungee jumper from a bridge as he bounces back and forth. The graph is then a static trace 
of an event that has occurred. Covariational reasoning requires the student to think about how 
two quantities vary in relationship to each other or co-vary.  
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By synthesizing what has been learned with regard to critical dimensions of mathematics 
classroom teaching and learning, and investigating the ways teachers and other school 
personnel characterize high-quality mathematics instruction, this study defines the notion of 
‘instructional vision’ and provides an initial categorization scheme. Motivating this work is the 
need to reliably document change in participants’ instructional visions within an ongoing study 
of the institutional setting of mathematics teaching, in which we hypothesize that improvement in 
teachers’ instructional practices and student achievement will be greater in schools where 
teachers and instructional leaders have a shared vision for high-quality mathematics instruction. 
 

Background 
The Middle School Mathematics and the Institutional Setting of Teaching (MIST) research 

team is working for four years with four urban school districts serving ethnically and 
economically diverse populations as ‘co-designers’ of support structures and strategies for 
meeting ambitious goals for reforming mathematics instruction at a district level. All four of our 
participating districts have recently formulated and begun implementing comprehensive 
initiatives for improving the teaching and learning of middle-school mathematics, including the 
adoption of mathematics reform curricula and the provision of professional development aimed 
at developing instructional practices in which teachers place students’ reasoning at the center of 
their instructional decision making.  

Our aim is to investigate, test, and refine a set of conjectures and formally test a set of 
hypotheses about support structures that potentially enhance the impact of professional 
development on middle school mathematics teachers’ instructional practices and student 
achievement. Our conjectures and hypotheses pertain to seven sets of support structures: 1) 
teachers’ professional networks; 2) shared vision for high quality mathematics instruction across 
teachers and instructional leaders; 3) quality of instructional leadership; relationships of 4) 
accountability and 5) assistance between teachers and instructional leaders (including principals, 
assistant principals, department chairs and mathematics coaches) and among teachers; 6) 
alignment across district units with respect to high-quality mathematics instruction; and 7) 
particular supports for providing equitable learning opportunities to all students. 

It is the second of these hypotheses that motivates the work represented in this paper: 
Improvement in teachers’ instructional practices and student achievement will be greater in 
schools where teachers and instructional leaders have a shared vision for high-quality 
mathematics instruction. Eventually, the goal is to establish a means of tracking shifts toward 
both increased sophistication and ‘sharedness’ in individual leaders' and teachers' instructional 
visions. However, in order to determine the extent to which groups of individuals share an 
instructional vision, we must first be able to reliably assess accounts of personal visions of high-
quality mathematics instruction. With this paper I define visions of high-quality mathematics and 
describe the initial categorization scheme resulting from preliminary data analysis.  
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Theoretical Perspectives 
Professional Vision 

Charles Goodwin (1994) presented a comparative analysis of practices in two professional 
settings, an archeological field school excavation and the 1992 California trial of four policemen 
charged with beating Rodney King. He argued that both the senior archeologist and the defense 
attorneys (with the help of an “expert witness”—an LAPD sergeant who was not present for the 
alleged beating) utilized particular complex discursive and representational practices to build and 
contest professional vision, which he defined as “socially organized ways of seeing and 
understanding events that are answerable to the distinctive interests of a particular social group” 
(p. 606).  

Sherin (2001) extended the idea of professional vision to her work in documenting the 
evolution of one mathematics teacher’s perspective of classroom events. Her teacher, David 
Louis, had been teaching for five years at the time that Sherin and her colleague began observing 
and videotaping his classroom and meeting weekly with him to watch excerpts of those video 
recordings. During the most recent year-and-a-half, Mr. Louis had attempted to change his 
instructional approach to one of supporting the development of a community of learners (Brown 
& Campione, 1996; Rogoff, Matusov, & White, 1996). In addition to their weekly video viewing 
sessions, Mr. Louis and the researchers also participated monthly in a video club with David’s 
colleagues. Over the course of her 4-year collaboration with Mr. Louis, Sherin documented how 
his interpretation of classroom events captured on video from his classroom changed from a 
focus on his own pedagogical actions (i.e., what he should have done differently) to one on 
student ideas and the nature of mathematical discussions (i.e., accounting for what had actually 
transpired in classroom events of interest). Adapting Goodwin’s notion, Sherin suggested that 
this marked a shift in his professional vision—a “new interpretation strategy” (p. 90) focused 
more on the aspects of classroom activity to which researchers rather than teachers typically 
attend.  

However, in his conception of professional vision, Goodwin was much less concerned with 
how individual actors had come to the point of being able to enact the practices of a professional 
vision than he was in examining how the enactment of a professional vision is accomplished. 
Although he recognized that the practices must be learned, his conception of professional vision 
was much more collectively and historically oriented, arguing that “the ability to see relevant 
entities is not lodged in the individual mind, but instead within a community of competent 
practitioners” (p. 626). In her account of Mr. Louis’s interpretations of classroom events, Sherin 
explicitly made the leap from archaeology to mathematics teaching, but in doing so mapped 
Goodwin’s (collective) professional vision within archaeology onto (individual) ways of 
interpreting events in the mathematics classroom. 

Though Sherin’s analysis of Mr. Louis’s shift in perspective might not have adhered 
faithfully to Goodwin’s conception of professional vision, there is much to be learned from her 
account. Sherin adapted Goodwin’s notion of “professional vision” to describe one individual’s 
way of seeing and interpreting classroom events. Across time, she documented which aspects of 
the classroom the teacher emphasized as being important with respect to mathematics instruction 
and learning, and the rationale behind his choices. It is this perspective on the classroom that I 
refer to as simply a “vision”—specifically, a “vision of high-quality mathematics instruction” 
(for which I will use “instructional vision” synonymously). Just as Sherin was able document an 
evolution in Mr. Louis’s way of seeing and interpreting classroom events, the motivation for the 
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work reported in this paper arose from a need to reliably document change in the visions of high-
quality mathematics instruction among our study participants (including mathematics teachers, 
principals, mathematics coaches, and district leaders) to provide a means for determining the 
extent to which groups of participants move toward a shared instructional vision. To achieve this 
goal, it is therefore necessary to build a framework for considering the ways teachers and other 
participants characterize high-quality mathematics instruction.  
Dimensions of High-Quality Mathematics Instruction 

A considerable body of literature provides insights into one or more important aspects of 
mathematics teaching and learning, often investigated and reported as discrete elements of the 
practice. However, few attempts have been made to glean a coherent set of distinct aspects that 
adequately delineate crucial dimensions of the practice. In the following paragraphs, I summarize 
three such attempts, namely those of Franke, Kazemi, and Battey (2007); Carpenter and Lehrer 
(1999); and Hiebert and colleagues (1997). By examining how the various summaries fit 
together, my intention is to provide an initial frame for the analyses presented later in the paper. 

Franke, Kazemi, and Battey (2007) described three features of mathematics classroom 
practice they viewed as most central: 1) creating and shaping mathematical classroom discourse; 
2) establishing classroom norms for doing and learning mathematics; and 3) building 
relationships with and among students that support participation in the mathematical work of the 
classroom. The authors further detailed specific aspects of each feature. For example, with 
respect to classroom discourse, Franke and colleagues stressed four core ideas and practices, 
including revoicing student thinking (O’Connor & Michaels, 1993) to highlight particular 
mathematical ideas, to introduce mathematics vocabulary or to position students in relation to 
each other and their arguments; employing tasks that provide for multiple strategies and rich 
discussion; identifying and building on the resources English language learners bring to 
mathematical discussion; and encouraging students to interrogate meaning (Rosebery, Warren, 
Ogonowski, & Ballenger, 2005) behind mathematical assumptions and ideas, which contributes 
to developing classroom norms around questioning and challenging. Regarding classroom 
norms, the authors stressed the importance of distinguishing between social and 
sociomathematical norms (Yackel & Cobb, 1996), and attending to the consequences such norms 
have for student learning and defining what it means to ‘do mathematics.’ Lastly, the authors 
described the importance of teachers building relationships with students in terms of 
understanding children’s thinking, and also in ways that lead to opportunities for participation, 
“which requires getting to know students’ identities, histories and cultural and school 
experiences, all in relation to the mathematical work” (p. 243).  

Carpenter and Lehrer (1999) described three dimensions of instruction, the examination of 
which they viewed as critical for enabling students to engage in mental activities necessary for 
learning mathematics with understanding: mathematical tasks, tools and normative practices. 
First, the authors suggested that through task sequencing that is based on children’s thinking 
rather than mathematical structure, the learning of concepts and skills can be integrated. 
Important in this vein is that tasks be viewed as problems to be solved, not exercises to be 
completed, and that they be couched in meaningful contexts. Secondly, the authors suggested 
that tools, such as paper and pencil, manipulatives, calculators, computers and symbols, be used 
to represent mathematical ideas and problem situations. They argued that “connections with 
representational forms that have intuitive meaning for students can greatly help students give 
meaning to symbolic procedures” (p. 25). By considering the use of such tools, which can be 
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introduced by either students or the teacher, students begin to abstract the mathematical ideas 
behind their manipulations, so that they gradually no longer need the physical representations. 
But the authors also argued that it is not the tasks and tools alone that will support learning with 
understanding. Lastly, Carpenter and Lehrer pointed to the role of classroom normative 
practices, which influence the use and interpretation of tasks and tools and “govern the nature of 
the arguments that students and teachers use to justify mathematical conjectures and 
conclusions” (p. 26). A key norm the authors highlighted is that students be expected to regularly 
discuss alternative strategies and why they work. This practice, they argued, will not only 
motivate the kinds of reflective mental activity previously described as students come to 
participate in what has been established as common classroom practice, it will also provide 
opportunities to make relationships explicit as the class examines how various methods are alike 
and different. 

Predating the work described above was Hiebert et al.’s (1997) book, Making Sense: 
Teaching and Learning Mathematics with Understanding. Based on research conducted by the 
eight authors in various mathematics classrooms, Hiebert and colleagues identified and devoted a 
chapter to each of five “dimensions” of mathematics classroom instruction and activity: 1) the 
nature of classroom tasks; 2) the role of the teacher; 3) the social culture of the classroom; 4) 
mathematical tools as learning supports; and 5) equity and accessibility. Within each of these 
dimensions, the authors discussed essential “core features,” necessary for supporting students’ 
understanding of mathematics. Like the authors whose work is discussed above, Hiebert and 
colleagues attempted to describe a set of features of mathematics classroom instruction they 
viewed as critical for providing opportunities to learn mathematics with understanding—the 
dimensions that ‘matter.’ Additionally, the authors viewed their framework as potentially 
meaningful to those engaged in the practice of mathematics instruction, suggesting that it could 
be “used by teachers to reflect on their own practice, and to think about how their practice might 
change” (p. 3). 

 
Hiebert et al. (1997) Carpenter & Lehrer (1999) Franke et al. (2007) 

Nature of Classroom Tasks Tasks or activities students engage 
in and the problems they solve  

Role of the Teacher   

Social Culture of the Classroom Classroom normative practices Establishing norms for doing and 
learning mathematics 

Mathematical Tools as Learning 
Supports 

Tools that represent mathematical 
ideas and problem situations  

Equity and Accessibility  Building relationships for doing 
and learning mathematics 

  Supporting discourse for doing and 
learning mathematics 

Figure 1. Summary of central aspects of mathematics instruction identified in three works. 
 
In Figure 1 I list the critical dimensions of mathematics classroom instruction identified in 

the work summarized above, mapping those identified by Carpenter and Lehrer and those of 
Franke et al. onto the dimensions described by Hiebert and colleagues. The ‘gaps’ in these lists 
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should not be interpreted as omissions; they are typically a consequence of arrangement and 
classification choices. Since all of the authors acknowledged a systemic relationship among their 
dimensions, it is not surprising that in any one of these classification choices, dimensions 
identified as central by the other authors can be found. Two particular instances worth noting in 
this regard are Hiebert et al’s “role of the teacher” and Franke et al.’s “supporting discourse for 
doing and learning mathematics.” Much of what Carpenter, Franke and their co-authors wrote 
about pertained very much to the role they envisioned a teacher playing. For example, both 
teams described the importance of the teacher’s influence on the establishment of classroom 
norms. Likewise, Franke et al.’s discourse dimension was represented in multiple places 
throughout the others’ summaries as they discussed the importance and role of communicating 
about mathematics in the classroom. Although it is to some extent a matter of reorganizing and 
renaming, I will argue below that the labels on the dimensions are meaningful in that they can 
represent points of view, or ways of seeing and valuing aspects of a mathematics classroom. 

 
Research Questions 

As stated above, my immediate goal was to build a coding scheme for assessing participants’ 
visions of high-quality mathematics instruction. Therefore, my question regarded the ways 
teachers, principals, and others characterize high-quality mathematics instruction. In particular, 
which aspects of mathematics classroom instruction do they choose to highlight? To what extent 
do practitioners’ characterizations of classroom instruction map onto the critical “dimensions” 
described in the literature?   
 

Methodology 
Participating school districts were purposively sampled to represent districts with ambitious 

goals for mathematics instruction reform to meet the needs of diverse populations. While 
differences exist among the strategies the districts are attempting to implement for accomplishing 
their goals, in general, all four districts are working to support mathematics instruction in every 
classroom that emphasizes rigorous tasks, problem-solving and sense-making, productive 
discourse, fair and credible evaluations, and clear, high-level expectations for all students.  

In each annual data collection we document aspects of the institutional settings in which our 
participants work, the instructional practices and mathematics content knowledge for teaching of 
approximately 30 middle school mathematics teachers per district, and the extent to which 
structures such as those listed above have been established to support the ongoing improvement 
of mathematics teaching in 6-10 representative middle schools per district. Annual data sources 
are varied, but include 45-90 minute interviews with each participating teacher, principal, 
mathematics coach and district leader on issues related to the institutional settings in which they 
work, as well as their vision of high-quality mathematics instruction. 

The data analyzed for this paper come from the interviews conducted in year one (January 
2008) with middle school mathematics teachers, principals, and, in districts that employ them, 
mathematics coaches. I examined transcripts from every participant (teachers, principals and 
coaches) at each of eight schools (two from each district). These schools were theoretically 
sampled (Strauss & Corbin, 1998) to provide wide variation in the ways participants talked about 
mathematics instruction, as indicated in case summaries written for each school. The interviews 
were conducted and audio-recorded by members of the project team and later transcribed. As is 
the case with ‘unstructured interviews,’ (Burgess, 1984), they followed a set of guiding questions 
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(that were customized for each district), but were conducted flexibly, intended to afford 
opportunities for conversations rather than a rigid sequence of questions.  

The interviews probed at a number of issues related to mathematics instruction and the 
institutional setting in which participants work, including participants’ understanding of the 
district’s plans for improving mathematics instruction, their vision of high-quality instructional 
leadership, their informal professional networks, professional development activities in which 
they participate, the people to whom they are accountable, the sources of assistance on which 
they draw, and the curriculum materials they use in the classroom. An additional purpose of the 
interviews—and the focus of my analyses in this paper—was to document teachers’, principals’, 
and coaches’ visions of high-quality mathematics instruction. Specifically, we asked participants 
the following question: “If you were asked to observe another teacher's math classroom, what 
would you look for to decide whether the mathematics instruction is high quality?” Depending 
on the participant’s response, we asked, “Why do you think it is important to use/do _____ in a 
math classroom? Is there anything else you would look for?  If so, what? Why?”  

The purpose of this particular question was twofold. First, it was an attempt to circumvent 
the say-do problem (Gougen & Linde, 1993), a well-known obstacle in the social sciences in that 
self-reporting typically does not yield reliable data concerning participants' own practices. Thus, 
in asking our participants to imagine and talk about the activities in a classroom of some 
hypothetical other, our thinking was that we could release the participant from some of the 
pressures of accurately describing his/her own classroom and practices, and tendencies to 
foreground more socially desirable aspects of classroom instruction to the exclusion of those 
perceived as less desirable . Secondly, and more importantly, in asking teachers (and principals 
and coaches) to place themselves in the role of observer, we hoped to ascertain aspects of the 
lens with which each participant would actually view a mathematics classroom, or the way they 
interpret classroom events (Sherin, 2001). That is, we could interpret their responses to mean, 
“this is what matters in a mathematics classroom”—the aspects of the classroom on which they 
focus to determine the quality of instruction. This in turn would enable us to not only establish 
the kinds of things they might attend to when observing a mathematics classroom (e.g., what the 
teacher does, what the students are doing, the nature of the mathematical tasks, the nature of 
classroom discourse, etc.), but also to attribute some measure of depth or sophistication to their 
criteria.  

Focusing in particular on the portion of the interviews including the question and probes 
mentioned above, I collected more than 200 statements from 54 of 222 participants (8 principals, 
41 teachers and 5 mathematics coaches). Following Strauss & Corbin’s (1998) open coding 
technique, I classified these statements (or concepts) into categories based on shared properties, 
such as whose behavior the statement pertained to (e.g., teacher, students, or both) or which 
aspect of the learning environment was emphasized (e.g., nature of classroom tasks, structure of 
lessons, etc.).  

My initial classification was guided by a provisional list of codes (Miles & Huberman, 1994) 
drawn from Hiebert and colleagues’ (1997) identification of essential dimensions of mathematics 
classroom instruction discussed above. I employed these dimensions and their accompanying 
core features as an initial framework for categorizing mathematics teachers’ and instructional 
leaders’ descriptions of what they would look for in a classroom to determine whether what they 
observed was high-quality instruction. Hiebert and colleagues’ framework represented a 
reasonable starting point for my purposes, since the authors viewed it as a tool that could be used 
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by those engaged in the practice of mathematics instruction for reflection and change. Thus, in 
initially adopting these authors perspective, I was not merely imposing a priori a researcher’s 
tool on practitioners’ views, but attempting to combine etic and emic accounts to create tools in 
which both communities find relevance and meaning.  

 
Results 

Approximately half of the lines of talk I collected from interview transcript resembled the 
kinds of ideas expressed in the dimensions proposed by Hiebert et al. Many participants 
commented on the types of problems they would hope to see students working on (the nature of 
classroom tasks), what they thought the teacher should be doing (the role of the teacher), or how 
students would be interacting with other students and the teacher (the social culture of the 
classroom). Approximately five participants commented on the need to differentiate instruction 
based on students’ individual needs (equity and accessibility), and two participants’ remarks 
pertained to the importance of technology or means of representation in the classroom 
(mathematical tools as learning supports). Since my primary goal was to describe participants’ 
visions of practice, I decided to drop the category pertaining to mathematical tools because it 
accounted for so few of the participants’ responses, and retain the other four dimensions 
proposed by Hiebert et al. But a considerable number of responses were left unaccounted for. 
Therefore, I sorted the remaining statements into groups that appeared to share a focus. One set 
of concepts pertained to student and teacher talk (i.e., classroom discourse—a dimension 
identified in the framework of Franke et al.), one to lesson structure, another to assessment, and 
another (the largest) to student engagement.  

In summary, in order to establish a means for describing participants’ instructional visions, I 
have relied on both our interview data and previous work in identifying important aspects of 
mathematics classroom practice to identify categories to which teachers' and leaders' 
instructional visions might pertain. This analysis resulted in eight categories or, in Hiebert and 
colleagues’ language, “dimensions”: 1) the role of the teacher; 2) classroom discourse; 3) the 
organization/purpose of activity (i.e., student engagement); 4) social culture and norms; 5) the 
nature of classroom tasks; 6) role of student thinking; 7) lesson structure; and 8) equity and 
accessibility. 
 

Discussion 
With this paper I have attempted to define a construct important to the ongoing MIST 

project, that of instructional visions. In the spirit of Simon and Tzur’s (1999) efforts to generate 
“accounts of mathematics teachers’ practice,” my aim was to categorize and understand teachers’ 
visions of high-quality mathematics instruction “in a way that accounts for aspects of practice 
that are of theoretical importance to the communities of mathematics education researchers and 
teacher educators” (p. 254). Thus, guiding my analysis was this question: What is the minimum 
number of dimensions of classroom activity and instructional practice that makes a difference? 
This question represents a two-pronged endeavor. One the one hand, I wanted my final 
categories to reflect what previous researchers have identified as important aspects of 
mathematics classroom instruction. On the other, I needed the final categories to sufficiently and 
meaningfully account for patterns I perceived in our data. 

Along each of the eight dimensions listed above, we have elaborated a conjectured trajectory 
for participants’ instructional visions in terms of depth and sophistication of their descriptions 
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(the presentation and discussion of which is beyond the scope of this paper). Over the 4-year 
duration of our research team’s work in school districts, we will use (subsequent refinements of) 
these trajectories to document shifts in individuals’ visions of high-quality mathematics 
instruction, and the extent to which members of various district units move toward a shared 
instructional vision.  
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This paper examines the use of a laboratory-class-based professional learning experience for 
mathematics teacher developers (MTDs). An 8-day institute focused on mathematical knowledge 
for teaching (MKT) featured a laboratory class a means of providing a common experience for 
observation and discussion. In a follow-up study 2 years later, the MTDs recalled several 
features of the institute and reported that it had influenced their current thinking and practice. In 
particular, the MTDs identified several features of the laboratory-class-based experience as 
significant: (a) observing the instructional practices of another MTD, (b) experiencing a 
potentially novel model of professional development, (c) investigating MKT, (d) working with 
MTDs of different backgrounds, and (e) exploring student understanding. 
 

Recent reports have cited an urgent need for improving both the quality and size of the 
mathematics teacher workforce in the United States (see, e.g., Business-Higher Education 
Forum, 2007; National Science Board, 2007). Part of this improvement entails mathematics 
teachers shifting their practices away from teacher-centered models of instruction to a focus on 
students’ mathematical understanding and developing students’ ability to solve problems, 
communicate, and work together. Undertaking a task of this scale requires a cadre of competent 
mathematics teacher developers (MTDs), those who are charged with the initial and ongoing 
professional education of mathematics teachers.  

MTDs are a diverse group of professionals that includes community college and university 
faculty from both mathematics and mathematics education departments, privately practicing 
professional developers, and school district leaders who offer workshops for teachers. Although 
some MTDs do not have degrees in education or consider themselves teacher educators, they do 
teach courses designed for teachers. Sztajn, Ball, and McMahon (2006) described the literature 
                                                 

1 This paper is based upon work supported by the Center for Proficiency in Teaching 
Mathematics and the National Science Foundation under Grant No. 0119790.  Any opinions, 
findings, and conclusions or recommendations expressed in this presentation are those of the 
authors and do not necessarily reflect the views of the National Science Foundation.  
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on MTDs’ professional learning as essentially nonexistent. Similar to the shifts recommended for 
teachers, it is becoming clear that those who work with teachers need to also “undergo shifts in 
their knowledge, beliefs, and habits of practice that are more akin to a transformation than to 
tinkering around the edges of their practice” (Stein, Smith, & Silver, 1999, p. 262). 

But how do MTDs acquire their expertise? Along with the investigation and development of 
professional development models for mathematics teachers, attention must also be given to 
models of professional development for MTDs (Sztajn et al., 2006). In this study, we 
investigated a model of professional development for MTDs that featured a laboratory class. 

In summer 2004, 65 MTDs from across the country gathered in Ypsilanti, Michigan, to 
attend an 8-day institute entitled “Developing Teachers’ Mathematical Knowledge for 
Teaching”. The institute was organized by the Center for Proficiency in Teaching Mathematics 
(CPTM), an NSF-funded project led by researchers from the University of Michigan and the 
University of Georgia. The central feature of the institute was the observation of six consecutive 
sessions of a university-credit mathematics content course entitled Mathematical Content and 
Applications for the Teaching of Elementary School Mathematics. Sixteen preservice elementary 
teachers enrolled in the course, which was taught by Deborah Ball from the University of 
Michigan. 

To better understand how a laboratory-class-based model may facilitate the professional 
development of MTDs, we examined the 2004 CPTM Summer Institute and its laboratory class 
to address the following research questions: 

1. When asked to recall their participation in a laboratory-class-based professional 
development experience, what do mathematics teacher developers report as being 
significant? 

2. What features of a laboratory-class-based professional development experience do 
mathematics teacher developers report as influential in their current practices? 

 
Theoretical Perspective 

The professional development of MTDs, like that of other teachers, should attend to the work 
of teaching (Ball & Cohen, 1999; Smith, 2001). This work includes the cycle of teaching: 
planning for instruction, enacting the plan, and reflecting on the plan (Smith, 2001). Although 
this cycle oversimplifies the teaching process, it highlights three of its significant aspects. 

Current literature on effective professional development also suggests classrooms should be 
used as a laboratory to explore teaching and learning (Lappan & Rivette, 2004). Hiebert, Morris, 
and Glass (2003) proposed an experimental model for preservice teacher development, called 
lesson experiments, whose laboratory-like structure parallels Smith’s (2001) three-part cycle of 
teaching. In this model, preservice teachers treat the development and enactment of lessons as an 
experiment. First, they develop research questions, plan activities, and formulate hypotheses 
about what students might learn during those activities. Second, they implement those activities 
and collect data that will help them test their hypotheses. Third, when the lesson has concluded, 
they examine and interpret their data, developing conclusions and reformulating their 
hypotheses. By learning how to learn from their practice, participants in lesson experiments will 
continue to sustain professional growth throughout their careers. 

Hiebert et al. (2003) recommended those who teach teachers should also learn about their 
practice through lesson experiments. By incorporating systematic inquiry within the cycle of 
teaching, the lesson experiment model fulfills what Cochran-Smith (2003) called the need for 
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teacher educators’ practices to have an inquiry stance. This stance includes “a way of learning 
from and about the practice of teacher education by engaging in systematic inquiry on that 
practice within a community of colleagues over time” (p. 8). 

The ultimate goal of professional development for teachers at any level is to improve their 
students’ mathematics learning, yet it is difficult to link the effect of one professional 
development experience with students’ performance over time. Smith (2001) noted: 

If the goal of these efforts is to change knowledge, beliefs, and habits of practice so as to 
have an impact on students’ learning, then changes in what teachers know, how they think 
about teaching and learning, and what they do in their classrooms might foreshadow future 
changes in learning outcomes for students. (pp. 51–52) 

In this study, we sought to better understand changes in the MTDs’ thinking and practice since 
attending the institute by asking them to reflect on their experiences with different features of the 
institute.  
 

The 2004 CPTM Summer Institute 
In this section, we first describe several goals that guided the design of the institute activities. 

Then we provide more detail about the laboratory class and sessions related to it. 
Institute Goals and Design 

MKT. As indicated by its title, the institute’s central theme was mathematical knowledge for 
teaching (MKT). Bass (2005), who led discussions of mathematics at the institute, defined MKT 
as “the mathematical knowledge, skills, habits of mind, and sensibilities that are entailed by the 
actual work of teaching” (p. 429). From this theme, the designers posed two questions to focus 
institute activities: 

1. What mathematical knowledge and practices play a central role in the everyday work of 
teaching? 
 2. What are promising approaches for helping teachers learn mathematics for teaching and 
and learn to use it in their work? (Sztajn et al., 2006, p. 154)  

Institute designers used a variety of strategies to support MTDs’ discussion and analysis of 
MKT. These strategies included assigning a particular focus for laboratory class observations, 
distributing scholarly articles on MKT, and, when appropriate, connecting MKT to group 
discussions.   

MTD diversity. The institute designers selected institute participants that would reflect the 
diversity of backgrounds held by MTDs. In doing so, they hoped to encourage the group to 
collaboratively develop a professional identity (Sztajn et al., 2006). In addition, the designers 
sought to better understand how MTDs of different backgrounds “attend to learning 
opportunities” (p. 154–155). To accomplish this task, the designers used focused observations 
and participant journals as ways to capture MTDs’ observations and reflections during the 
institute.  

Professional development of MTDs. The designers also strove to understand how to help 
MTDs sustain their learning and professional growth. Using their knowledge of the professional 
development of K-12 teachers, they identified five guiding principles for the design of the 
institute:  

(a) learn in and from practice; (b) share with each other and from their professional 
experiences; (c) participate in some aspects of the design of their professional 
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experiences; (d) choose professional development opportunities to work on that are most 
meaningful to them; and (e) be treated as professionals. (Sztajn et al., p. 155) 

Efforts to reach these goals were evident throughout the various institute activities. 
The Laboratory Class 

The laboratory class could “be compared to a shared specimen for observation and 
manipulation” (Sztajn et al., 2006, p. 156). In this model, the MTDs, as the participants, acted as 
“a research team developing hypotheses and looking for evidence to support or refute claims and 
assumptions” (p. 156). Although the laboratory class provided a site for inquiry, it also created 
an environment that encouraged the MTDs to work within a community to generate knowledge 
and theorize their practice. Specifically, the laboratory class and its supporting sessions 
paralleled the three-part teaching cycle—planning, teaching, and reflecting—and incorporated 
features of Hiebert, Morris, and Glass’s (2003) lesson experiments. 

Planning. Each morning, the MTDs would review and discuss the plan for the upcoming 
laboratory class session. Although Ball had already created a plan for that lesson, she gave the 
MTDs an opportunity to make suggestions. Part of the MTDs preparation for their observation 
involved solving and discussing the mathematics problems in the lesson. This prompted them to 
hypothesize how students might approach the activities and what difficulties students might 
encounter. This planning activity was essential for focusing MTDs’ observations of the lesson. 

Teaching. The MTDs sat in elevated rows on either side of the class to observe the two-hour 
laboratory class in which the planned lesson was taught. To provide further focus, the institute 
designers directed the MTDs to specifically consider the teaching, the learning, or the 
mathematics being taught in the lesson. During the observation, the MTDs looked for confirming 
or disconfirming evidence to support or refute their predictions.  

Reflecting. After each observation of the laboratory class, the MTDs reconvened first in 
small groups and then as a whole to discuss and reflect upon what they observed. Ball met with 
the MTDs to discuss what had occurred, the rationale for her instructional moves, and her plans 
for future class sessions. The MTDs revisited their original thoughts about the lesson and 
discussed how students approached the activities and what seemed difficult for them.  
 

Method 
To understand what influence, if any, the CPTM Institute had on participating MTDs’ 

thinking and subsequent practice, CPTM researchers designed a two-part follow-up study. First, 
institute participants were invited in fall 2006 to complete an online survey that elicited 
information about their current practice, their impressions of the institute, and input for an 
upcoming reunion for institute participants. Of the original 65 participants, 46 submitted 
responses to one or more of the online survey questions. 

The second part of the follow-up study consisted of four 90-minute focus group interviews at 
the reunion in January 2007 with a total of 32 participants from the institute. By encouraging 
participants to explain and discuss their responses, these interviews enabled the collection of rich 
data not attainable through the survey alone (Kleiber, 2004). The focus group discussions 
addressed the institute experience (including specific attention to the laboratory class), the 
participants’ current practice, and MKT.  

Although responses in the online survey and focus group were to questions that dealt with a 
wide gamut of institute issues, we focused specifically on those that concerned the laboratory 
class. We examined transcripts to identify specific features of the laboratory class recalled by 
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participants and the changes in practice that they reported had occurred as a result. Through 
several iterations of this process of examination, two dominant themes emerged pertaining to the 
laboratory class, along with some other themes that were mentioned less frequently or not 
described as explicitly. Once the themes were identified, we used them to code the data. 
 

Results 
We have organized our results into three sections. The first two address the dominant themes: 

(1) the opportunity to observe and emulate instructional practices that the participants thought to 
be effective, and (2) the identification of features of institute design that affected their institute 
experience and their view of professional development. The third section summarizes some of 
the other themes, which included opportunities to investigate MKT, explore student 
understanding, and work with MTDs of different backgrounds. We address both research 
questions within each section. 
Observing Effective Instruction 

 Many participants cited the instruction that took place in the laboratory class as prominent in 
their view of what they learned at the institute. Although a variety of aspects of this instruction 
received particular attention from the participants, we detail the three most frequently cited. First, 
Ball constantly pushed her students to think deeply about the mathematics they studied and the 
pedagogical decisions she made during class. In a focus group discussion, Sally (all names are 
pseudonyms) called this technique “the press” and gave examples of the questions Ball asked to 
focus students on their mathematical thinking: “‘Why are you saying that? What do you mean by 
that?’” Ball often asked students about her pedagogical decisions, encouraging them to think 
more deeply about what they were learning. Rachel (focus group) described this behavior as 
“making [one’s] practice explicit” and reported that she had become “a much better teacher” by 
adopting this practice. At times, Ball would push the preservice teachers to consider both the 
mathematics and the accompanying pedagogy by prompting them to write in class journals. Paul 
(focus group) remarked on this technique:  

I always had students write a lot about things. But I do that a lot more now than I ever did. 
And getting at them to understand or explain the whys of what’s happening, to get at that 
greater depth of the thing, I find that that’s very difficult for most students. 

By focusing on creating mathematical explanations, asking significant questions, and identifying 
connections between representations, Ball was able to push the students to consider more deeply 
the mathematics and pedagogy they would need in their own practices. 

Second, Ball used mathematically rich problems whose exploration required large amounts 
of class time. In his focus group, Andrew (focus group) described his reaction to this practice: 

There was … an enormous amount of time talking about one problem. This elaboration of 
discussion where people were able to go down all kinds of different paths, some of them 
down to dead ends and so forth…. It was a really eye-opening experience for me. 

The participants reported using some of these problems in their classrooms. More importantly, 
some noted having redesigned their courses to include fewer problems with more time for 
exploration allotted to them. 

Third, Ball established classroom norms necessary for the students to explore and discuss 
their mathematical thinking. Molly (focus group) described this practice as providing “a really 
rich classroom environment where [students] knew it was okay to make a mistake and that 
everyone was going to learn from that.” As a result of observing the instruction at the institute, 
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Julie (focus group) reported that she spends “a lot more time socializing my students and talking 
on the first day.” She continued to describe how she stresses to them the importance of spending 
significant amounts of time on problems, finding multiple solutions, and, at times, becoming 
frustrated. 

Although we have identified three general elements of Ball’s practice that participants 
deemed to be significant, this description may oversimplify what she did in the laboratory class. 
In her focus group, Suzanne described the complexity of Ball’s instruction eloquently: 

Her work is often so nuanced. … You can’t make a list. That’s sort of just a beginning step. 
But I have thought many times since then: What is it that she did? What were some of the 
things? And yet I feel like I’m just scratching the surface. 

Institute Features  
In the follow-up study, participants described how the laboratory class, as a feature of the 

institute, stimulated their thinking about their own professional development as well as the 
professional development they provide for others. Several participants noted the importance of 
having a common experience that enabled “deep discussions about the issues we face in 
preparing teachers of mathematics” (Helen, online survey) by providing something that “we 
could dig into together” (Jen, focus group). 

Of particular significance, participants frequently stated the importance of interacting with 
Ball before and after laboratory class sessions and her openness to their input. This interaction 
enabled them to feel like “active participants in her instruction” (Lauren, focus group). Edward 
(focus group) was drawn in by the interaction with Ball, coupled with the “real time nature” of 
the laboratory class, commenting: 

There were all of these unpredictable variables that come into play, what inputs [Ball] used 
and how those influenced her thinking, and how transparent she was about that, how she 
invited our involvement in that. And so, we were simultaneously going through the same 
process. 

This shared process, which Robin described as an opportunity to “learn in the moment” (Focus 
Group D) was also cited by other participants as an important feature of the laboratory class. 

Several participants reported changes that they had attempted to make based upon their 
experience with this professional development model. Martha took her class of 25 preservice 
teachers to a fifth-grade classroom to observe a lesson, focusing on how students learn. Lauren 
(focus group), citing the importance of having focused observations, no longer allows the 
teachers with whom she works to interact with students during classroom observations. Several 
participants reported using video to create the common experience for their own students that 
was found to be so valuable at the institute. However, Sandy (focus group) noted that, because 
the use of video was not instantaneous, “you lose something.” 
Other Themes  

Although participants discussed the themes detailed above more frequently and explicitly, 
other themes could be detected within the data. First, some participants cited the importance of 
exploring MKT at the institute. Considering their own practices, they also noted the teachers 
with whom they work needed to develop a deeper knowledge of the mathematics they teach. 
When discussing how to address this need, some recalled their experiences in the laboratory 
class. In particular, they focused on the importance of having multiple representations for a 
mathematical concept. Molly (focus group) stated:  
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I … remember all the different representations, none of which I would have thought of in a 
million years, and then how [the students] even struggled to communicate what is was they 
were doing and why they were doing it. … Giving them a chance to go back and really 
reflect on that was so important. 
Some participants provided examples of how MKT had become a theme in their current 

work. For example, Andrew (focus group) described how the focus on explanation in the 
laboratory class carried over to his own practice: “I confess I got kind of hung up on this idea of 
explanations in these courses that I’ve been teaching.” He went on to describe how he has been 
trying to elicit explanations from his students that are similar to those that teachers need to 
produce on their own. 

Other participants described their attempts to focus on deeper mathematical knowledge in 
their work. This shift in focus involved the creation or redesign of their mathematics content 
courses for teachers and, for Robby (focus group), a move to make his examinations 
“explanations-based.” 

Second, in addition to exploring MKT, participants noted the importance of working with 
MTDs of different backgrounds while at the institute. By assembling a group incorporating the 
diversity of MTDs, the institute organizers created an environment in which all could learn from 
each participant’s unique insights. The participants of our study referred to the diversity of the 
MTDs and how the laboratory class structure brought out a variety of viewpoints. Jonathan 
(online survey) described the various perspectives as “critical”, stating that it had “a powerful 
impact on all of us, that there was not agreement, or even common understanding among those in 
the ‘same’ workgroup.” Robbie (focus group) cited the presence of diverse viewpoints as a way 
to bring out “some kind of opposition or polemic” in the group discussions, an element that he 
claimed facilitated his learning. Erica (focus group) had a similar view, stating that the presence 
of divergent views forced her to reflect upon and justify her perspectives. 

Some participants reported that the interactions with MTDs of different backgrounds affected 
their subsequent practice. For example, an unidentified participant (notes from focus group) 
reported having “more confidence to interact with mathematicians about the body of knowledge 
that I possess & where our worlds intersect.” Julie (notes from focus group) expressed a similar 
sentiment, stating, “I valued at the institute the input of research mathematicians and work with 
them seeking deeper understandings of that which I teach.” 

Finally, the participants reported that the laboratory class and the student journals that 
students produced in conjunction with the course provided an opportunity for them to develop 
hypotheses of student understanding. Considering the utility of understanding student thinking, 
Kelly (focus group) remarked, “If we can capture student thinking on problems so that we know 
how they typically respond, then that’s very informative for the next time you teach.” 

For some participants, this focus on student understanding carried over into their work. At 
the institute, Erica had become particularly intrigued by her interpretation of a student-produced 
representation and how it differed from the student’s interpretation. In one focus group, she had 
reported that her subsequent thinking and attempts to reconcile that this difference led to her 
developing a “Building Hypotheses of Student Understanding” theme for her methods courses. 
Many participants also reported adopting the practice of using student journals after the institute 
as a way to monitor student understanding. 
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Discussion 
Comparing the goals for institute held by institute designers with the experiences that 

participants recalled about it revealed some parallels. The institute designers intended for the 
participants to investigate MKT (the institute theme), learn from peers with varying professional 
backgrounds, and learn in and from the practice of MTDs. MKT was a prominent topic in the 
online survey and focus groups. When asked questions that focused on the laboratory class, 
however, the participants spoke much more on the practice of the laboratory class instructor 
rather than on MKT. It was not that MKT was unimportant to the participants, but rather that 
they mentioned it less frequently in the context of discussion of the laboratory class. This relative 
lack of attention might be attributed to a struggle to articulate their understanding of MKT. In 
addition, many aspects of Ball’s instruction recalled by participants, such as the focus on 
explanation or the importance of a deep understanding of mathematics, could be considered an 
embodiment of MKT in action. 

One feature of the institute that participants reported as influential in their thinking and 
practices was the laboratory class. The laboratory class, through its combination of participant 
observation of and reflection on a common experience, allowed the MTDs to progress in how 
they thought about the work of MTDs. Making the laboratory class the central feature of an 
intensive institute experience appears to have helped the MTDs change their thinking and 
practice. The responses of MTDs suggest that variations of this laboratory class experience could 
be incorporated into professional development for mathematics teachers. 
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This study examines what mediated teachers thinking processes when jointly planning a lesson. 
The findings reveal that how teachers thought about standardized testing and state standards 
influenced how they took into account the cognitive, language and social development of students.  
In addition, the mediation of the facilitator, that involved the tension between creating a product 
and engaging in discussion, influenced the level of conversation that took place.   

 
Background 

Teacher lesson planning that supports learning is a complex process (Ball, 2000).  Teachers 
need to consider the students they will be teaching, the mathematical content to be taught, and the 
methods through which the information will be delivered.  Understanding the thought processes 
that teacher engage in for planning lessons can give professional developers insight on how to 
support teachers to improve their teaching practices.  Lesson study has been advocated by 
researchers (Lewis & Tisuchida, 1997; Stiegler & Hiebert, 1999) as a viable means for teachers to 
examine and improve their teaching practices.  In lesson study, a group of teachers jointly plan and 
teach lessons. We adapted the idea of teachers jointly planning a lesson in our work with teachers.  
Therefore, we present an analysis of what mediated teacher’s thinking processes when jointly 
planning a lesson. Lesson study involves a group of teachers identifying a goal within a content 
area and jointly planning activities to teach a lesson (Fernandez, Cannon, & Choksh , 2002). 
Lewis, Perry and Murata (2009) point out that the innovation mechanism of lesson study must be 
understood as opposed to focusing on the surface features of lesson study (c, Fulla, 2001; 
McLaughlin & Mitra, 2001).   

 
Theoretical Perspectives  

Lesson planning provides teachers with an organizing structure to conceptualize outcomes, and 
identify means of delivering instruction in order to influence student learning (Bage, Grosvenor, 
Williams, 1999; Panasuk & Sullvan, 1998; Yinger, 1979).  Therefore, understanding what teachers 
consider when planning lesson is necessary for supporting teachers to improve their practice.  
Simon (1995) pointsout that effective lesson planning should involve thinking about the 
mathematical goals, learning trajectory that students might follow and designing tasks to support 
learning. However, the plans must be flexible so that the teacher can adapt tasks based on 
assessment of student thinking. This process involves taking into consideration children’s cognitive 
development in order to support their mathematical thinking.  Furthermore, this also means that 
teachers must consider the context in which they teach. Specifically, they must consider how to 
support mathematical thinking and language development (Bransford, Darling-Hammond, & 
LePage, 2005) within the social setting of the classroom.  How teachers think about students’ 
cognitive, language, and social development influences how they plan lessons and also the 
eventual outcome of the lesson.   
      Planning a lesson that takes student learning into account involves thinking about multiple 
variables.  Joint lesson planning involves using problem solving skills.  Particularly, it involves 
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working with non-routine problems. This means, the teachers have to define what they want their 
students to learn and figure out a topic and tasks.  The potential for teachers’ growth in learning 
comes from the messy process of solving the non-routine problems. Polya (1957) identified the 
process of problem solving as involving several phases such as understanding the problem, 
developing a plan, carrying out the plan, and looking back.  Carlson & Bloom (2005) identify 
resources, control, methods, heuristics and affect as dimensions of problem solving process.  
 

Research Question 
What mediated teachers thinking processes when jointly planning a lesson?  
 

Methodology  
This paper examines data gathered as part of a larger three year Math Science Partnership 

Project involving collaboration among 5 school districts and 22 schools in a western state. There 
were three different professional development sites. The data analyzed in this paper is from one 
site. Five teachers participated in a professional development session where they engaged in 
developing a lesson, teaching it, and debriefing afterword. These teachers had participated in two 
and a half years of professional development in math education. Therefore, teachers had 
experience thinking about current research and teaching methods.  

Four female teachers and one male teacher in grades 3-7 participated in the study. Additionally, 
a facilitator who was a district leader and part of the professional development team oversaw the 
process and incorporated guiding questions with the focus of completing the lesson plan. The first 
author serving as the project director, sat in during the lesson planning process. The teachers in the 
study applied to be part of this three year program. Teachers were randomly selected based on their 
interest, and commitments to serve as a teacher-leader.  

The teachers involved in this study took part in a lesson study session, led by a facilitator. The 
facilitator focused on the completion of a Lesson Study Planning Sheet on a computer. Teachers 
were asked to complete the following elements: Learning Activities and Questions, Expected 
Student Reactions, Teacher Response to Student Reactions? Things to Remember, and Evaluation. 
Under the heading of Learning Activities and Questions the following elements existed: Process 
Standards, Standard, Big Mathematical Ideas, Objectives, Activities, and Possible Homework.  

The data presented in this paper was the first 1 and ½ hour segment of the four-hour video tape 
recording of a lesson planning session that was part of a lesson study group. The data was 
transcribed and coded using Strauss and Corbin (1990) constant comparative methods. We first 
transcribed the data and made initial notes of observations. Then we coded the data based on 
emerging themes. Once the data was coded we looked at patterns in the data to determine what 
teachers considered when planning the lesson.  

 
Results  

How teachers thought about the state testing and standards influenced the topic they chose to 
plan a lesson on.  Furthermore, the level of conversation was mediated by the facilitator. The 
facilitator’s focus on helping teachers to help students do better on standardized testing, and her 
focus on keeping teachers on task to develop a product (lesson plan) within the time frame 
allocated, mediated the level of conversation that took place.  A brief excerpt of transcript from the 
beginning stages of the joint lesson plan is presented here.   The teachers were examining the 
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geometry state standards and standardized testing item specification sheet in order to decide on a 
topic for planning the joint lesson. This transcript illustrates the conversation that took place. 

T4 Let’s say we are all developing a lesson. And, maybe we have a lesson on linear 
measurement, and maybe that one lesson would be dealing with inches, feet, yards and miles. 
You know I mean. It would just be on one thing. And then in a separate lesson you can say 
we also use….Then they can put it all together. I just think if you teach it all at once with 
third graders they are going to get very confused. Don’t you think? If they can use those 
units?  
T1 It says standard and non-standard. I know I have looked at these before, but I can’t 
remember. 
Facilitator  Okay, select and use appropriate units, measure to a required degree of accuracy 
and record results. Estimate and use measures and devices to measure.  (Reads standards) 
T3 I think the item specs the hint. It says inches and cm. so I think that is all we need to 
worry about. 
Facilitator  Another thing to look at and I hate to tell people this, but seriously, is the matrix 
to see how many questions they are going to be asked about cm and m and if there is only 
one question….you have to think about how much time 

Teachers discussed sequencing of the lesson and what they might be capable of understanding. 
However, the conversation shifts to focusing on state test.  

T3 You know, we did that. The first we got serious about cramming for the (state test). We 
went through and looked for what they had asked the year before and there were concepts we 
did not cover. And when we got it back it was really fun because the kids didn’t do really bad 
on the ones we did not cover.  
T1 Where is the matrix? 
Facilitator: It is on here. Look at this, it tells you. It defines the terminology and it tells you 
how much they should be… and that is in the vocabulary that is underneath the old standards 
and we moved it to a glossary because this wasn’t satisfactory.  
Facilitator: This like unit, inch, meter, pound, it at least defines it a little bit. 

Facilitator identifies vocabulary that will be on the state test.  T3 teachers comment reveals that 
teacher cover content only that will be tested. 

…. 
Facilitator: Okay, now what topic do you guys want? 
T1 Okay, I posed a topic, now, somebody else. 
T3 I agree with you, measurement is frustration in fifth grade, so it is no better in sixth grade 
because they are still banging their heads against the wall in fifth grade so as soon as they get 
in middle school they probably have problems. And when I do things around the house with 
my kids, measurement is still a problem in high school. 

Teacher discusses the difficulty that students experience when learning measurement across 
grade levels. 

Facilitator:  And it is, to me, am I wrong, or do early elementary not measure as much as we 
used to. Get your ruler out and measure this….can you jump one inch, or one mile? 
T3 Well I think, it has changed a lot. 
T1 There is crazy stuff, this one question in here has a sticker star placed in the middle of a 
ruler and it is an inch and they are counting up from the beginning and it is clearly an inch. I 
mean it is crazy, weird stuff. (Examine curricular materials) 
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F2 How about we do a measurement lesson at grade three in your classroom? 
T1 All right. 

Facilitator suggests that they do a lesson on measurement. As teachers start sharing stories from 
classroom the facilitator makes a comment to get teachers back on the task of creating a lesson 
plan. 

T5 They read the ruler backwards. 
T1Let me show you. Here it is. (shows paper) This is three inches according to my students.  
T5 We talked about this in the teachers meeting the other day that you need to step and this 
was one of the most missed questions in our data. So, what do you need to do to teach them 
to zero in, or compare the beginning to the end? Ours had a truck with wheels and some kids 
measured the distance between the wheels instead of the end of the truck, you know? And so 
we discussed what kinds of things do you have to do in a lesson to remedy your kids missing 
those lessons? Well, one is you have got to give them practice measuring things not with the 
beginning of a ruler.  
T4 And two, when you are working on in the overhead you are showing them about starting 
at zero and you do it intentionally and you are modeling and then you just kind of place it 
down starting from and they will say that to you. OH Mrs. W, Mrs. W, you are not starting at 
zero! And then I could say, well, does it matter if I am starting at zero and here is when you 
could say this is at 
T1What is a third grade standard we are looking at. 
T2 You wanted the vocabulary right? 
F2 No, I am going to be ornery and keep you guys or we won’t get done.  
T5 What she was talking about measurement. 
F2 I know, I know. Do you actually want linear measurement or do you want to do 
something else? 
(reading standards) 
… 
T1 Here is 3.3.1. compare, order and describe objects by compare attributes for area and 
volume/capacity. Or  3.3.2. select and use appropriate units of measurement required to a 
degree of accuracy. 
T3 We can do both, can’t we? 
F2 Mm, there is no reason you can’t cover both, I mean depending on the standards.  
T3 I mean not covering all of both of them, but touching on both of them. 
T1 We could very well be touching on both of them. 
T3 Usually when you are doing that you are doing multiple anyway. 
T5 You know what this is a question I guess I should have asked back when we were looking 
at our standards, but volume is not mentioned , I don’t think, in sixth grade standards and 
they put it in seventh grade and it used to be in sixth grade standards. Now, I am hearing 
volume in third grade standards? 
T3 Not any more. I don’t think. 
T5 Didn’t you just read volume? 
T1 Area and volume/capacity and like I said, I am confused about how much differentiation 
to make between volume and capacity. Do I strictly say, volume is the amount of space and 
capacity is the amount it will hold? And volume is measured in square units and capacity is 
measured in liters, gallons, bla, bla, bla?  
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T4 I really didn’t even differentiate in fifth grade, I don’t think.  
F2 Remember too, we are talking about one lesson and how much you are going to be able to 
teach in one lesson. Not everything you are going to be teaching because you may not 
actually be teaching both of those in one lesson. 
T1 Right. 
F2 For our purposes and narrowing it down.  
T4 Let’s look at some lessons and see what we can find that comes to fit us close and then 
start modifying it. 
This vignette illustrates that teachers not only looked at the state standards to make decisions 

about the focus for the lesson content. They also examined the specific number of items on the test 
specification sheet that was available on the internet to determine what topic to teach. The data 
illustrates that preparing students to be successful in standardized testing mediated how teachers 
interpreted the task and also made decisions.  In addition, teachers also considered students ability 
levels and sequencing of lessons.  For example, T4 pointed out that if you teach too many concepts 
together the students might get confused. Teachers relied on their classroom teaching experiences 
to make sense of what students might do such as reading the ruler backwards and T5 shared that 
measurement was a most missed question in their school data.  

Teachers shared stories from their classroom experiences of teaching measurement and stated 
that measurement is a frustration in fifth, sixth grades and even middle school. During this 
process, the teachers were seeking to find a topic that would be beneficial for all teachers at 
different grade levels present in the lesson planning session.  Sharing stories of difficulty in 
teaching measurement involved the process of beginning to define a problem that students have 
with measurement.  The conversation had shifted from originally reading the standard and test 
matrix and item specification to talking about students.  The facilitator interjected at this point to 
get the teachers back on task to develop the lesson plan. She even asked the teachers if they 
wanted to stay with the topic or do something else. This comment shifted the focus away from 
linear measurement to talking about volume and capacity. Again, the conversation shifted to 
reading out loud what the standards stated about volume and capacity in the state standards. As a 
result, the conversation shifted to a lower level of description.  Once, teachers started to discuss 
their own experiences in the classroom and confusions about the topic the conversation shifted to 
a deeper level of thinking. For example, a teacher commented that teaching volume was more 
difficult than linear measurement. During this time, the facilitator reminded teachers not to get 
off track but to focus on one lesson.  

The facilitator’s actions were mediated by the need to have a finished product in form of a 
lesson plan within the allocated time for the planning session.  The activity of the group shifted 
to looking at curricula to plan the lesson. The facilitator’s interjections resulted in teachers 
changing the activity of discussion to focusing on developing a product.  As teachers started 
looking at lesson activities, the facilitator was reading ideas from the state standards of other 
topics they could focus on.  The facilitator told the teachers they could choose another topic 
other than geometry because the topic was taught earlier by the teacher and the geometry 
standards were not “meaty enough”.  Therefore, the conversation shifted again to another topic. 
One teacher was doing her master’s project on problem posing and division and suggested that 
they work on problem posing.  Eventually, teachers decided upon a lesson that involved problem 
posing involving division. They developed a lesson that involved students writing a division 
problem so that others could solve them. The teachers decided to create bags for group of 
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students so that they could create their own problem. Their goal became to help students develop 
problem solving skills by posing problems.     

 
Discussion  

The first one and a half hours of the 4 hour lesson planning session involved finding a topic to 
plan a lesson. This process involved defining the problem in order to plan a lesson.  The first phase 
of problem solving involves understanding the problem (Polya,957).  Carlson et. al  (2005) point 
out that that defining a problem is an important part of the problem solving process.  Therefore, 
this process should be messy because it involves working with a problem that is not defined.   

Lesson planning can be compared to the problem solving process. What we found interesting 
in the data was the tension between the facilitators role in keeping teachers on task of developing a 
product, verses allowing teachers to engage in discussion.  When teachers began to relate a 
problem about their students and share stories from the classroom, the facilitator refocused teachers 
on the task of creating the lesson plan.  The intervening comments changed the direction of the 
conversation that was taking place.  Many times, discussion about what took place in their 
classrooms was viewed by the facilitator as an “off task” behavior. The conversation shifted to a 
descriptive level of reading standards or looking at activities.  Whereas, when a teacher shared 
stories such as the difficulty they have teaching volume and capacity as opposed to measurement, 
they were posing problems to the group for discussion that required a deeper level of thinking. 
Carlson, Bowling, Moore & Ortiz (2007) point out that a facilitator needs to “decenter”  in order 
for meaningful conversation to take place.  Figure 1 illustrates the trajectory of conversation that 
took place.   

 

 

2:10:00

2:30:00

2:50:00

3:10:00

Discourse-
Problem Focused
(Deeper Level 
Discourse)

Discourse-Connect to 
prior knowledge/ 
experiences
(Moving to deeper 
leve l)

Discourse-
Describing 
(Surface level 
discourse)

LEVELS OF
DISCUSSION

Product-Discussion 
orientation, creating 
a tangible  product 
(lesson p lan)

Process –
Orientation 
sense making

--------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------

The Path of Discussion

Intervention by facilitator
 

 
Lesson study is a widely used form of professional development. Understanding what happens 

and how problems get defined can provide professional developers insight on how to support 
teachers during lesson study.  Lewis et. al (2009) had pointed out that the innovation must be 
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understood as opposed to the surface features being implemented. In this 1 1./2 hour discussion, a 
deeper discussion of defining the problem did not occur.  Allowing teachers to share stories from 
their classroom, discussing what the standards mean in relation to their students can be a process of 
identifying a significant problem in order to find a solution. Eventually, a lesson on problem 
posing involving division was planned. The lesson did take into account student reasoning. Further 
research is needed on how teacher define problem during lesson study. 
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In this study, we examined the reflection-on-action of four middle school mathematics teachers 
from the perspective of Cohen and Ball’s instructional triangle (1999). We addressed questions 
of how teachers reflect on their students’ understanding differently. The four teachers were 
asked about their students’ thinking while watching video clips taken from their lessons. 
Findings indicate that the teachers showed differences assessing and interpreting students’ 
thinking, differences by teaching experiences, and changes over time in ways they talked about 
the interaction between materials, students, and teachers as they related to students’ 
understanding. 
 

Introduction 
In his discussion of the characteristics of practical knowledge, Schön (1983) noted, “There 

are actions, recognitions, and judgments which we know how to carry out spontaneously; we do 
not have to think about them prior to or during their performance (p. 54).” However, we 
sometimes think about what we are doing, and that is reflection. Two important forms of 
reflection are: reflection-in-action, which involves thinking about actions while engage in them 
and reflection-on-action, which involves thinking about processes after actions (Schön 1983). 
We are interested in teachers’ reflection, in particular, reflection-on-action, because a growing 
body of literature suggests that reflection can help teachers understand the relationship between 
their cognition and teaching practice (Artzt & Armour-Thomas, 2002).  

While there are a number of definitions for reflection in the literature, for this study, we 
consider reflection to involve teachers’ analysis of teaching and students’ learning. This is 
consistent with the Mathematics Teaching Today (Martin, 2007), which emphasized the analysis 
of teaching and learning as one of the professional standards. The Mathematics Teaching today, 
which is newer version of the NCTM teaching standards, asserts that teachers need to engage in 
this kind of reflection because it helps them develop deeper understanding of students’ learning 
and development and impacts the ways in which they plan their lessons. Because of the potential 
for shaping teachers’ practices, we assert that reflection is a part of the professional knowledge 
of teachers.  

Research on inservice teachers’ reflections has examined how reflection affects teachers’ 
practices as well as their learning. In one line of reflection research, Sherin and her colleagues 
(Sherin, 1998; Sherin & Han, 2004; and van Es & Sherin, 2008) suggested the concept of 
teacher noticing as an important aspect of teacher learning that develops as part of the reflection 
process. Teacher noticing includes “(a) identifying what is important in a teaching situation; (b) 
using what one knows about the context to reason about a situation; and (c) making connections 
between specific events and broader principles of teaching and learning” (van Es & Sherin, 2008, 
p.245). Sherin and her colleagues found that teachers commented more on students’ 
understanding and were able to recall more detailed information of classroom events over time as 
they worked as a group in video clubs. These are considered desirable outcomes of engaging in 
this kind of reflection activity.  
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In contrast to Sherin and her colleague’s work, this study focuses on individual teacher’s 
reflection. While we relied on video, we did not set up a learning community among the teachers 
and, in fact, did not engage the teachers in professional development as an intentional activity. 
Rather, we report the effects of engaging teachers in reflecting on classroom activities as part of 
a research effort. In further contrast to Sherin and her colleague’s work, the researcher in these 
interviews directed the teacher’s attention to particular events in the classroom rather than 
allowing the teachers to determine which incidents they wanted to discuss. 

In this study, we examine four inservice teachers’ individual reflection-on-action in the 
context of being interviewed for a larger research study. Our goal was to understand the 
development of the teachers’ reflections over time in terms of their discussions about student 
thinking and to consider how the teachers differ in their reflection on student thinking. To this 
end, we examine teachers’ reflections on their students. 
 

Theoretical Framework 
We used Cohen and Ball’s instructional triangle (1999) as a metaphor for thinking about 

teachers’ reflections (see Figure 1). The triangle indicates that the learning environment is 
comprised of the interactions among the teacher, the students, and content as embodied in the 
instructional materials. 

 
Figure 1. Cohen and Ball’s instructional triangle. 

 
The triangle forms the basis of our analysis because when teachers reflect on their lessons, 

they think back to the situations and interactions on the lessons so that the triangle of interactions 
can be a metaphor for thinking about teachers’ reflection. That is, we take the perspective that 
reflection on these interactions is a critical element for improving the interactions and in helping 
the teacher begin to think about how the three elements of the triangle interact. Our underlying 
assertion is that a teacher with better reflective thinking will be more likely to connect a 
reflection on student understanding to the content and to her/his own actions as the teacher in the 
learning environment.  

 
Methodology 

In our previous work, we examined one teacher’s reflection and its change over time 
(Authors, 2007). In that study, we found that the teacher moved toward incorporating more 
discussion of the interaction between teachers and materials in her reflections on student 
understanding. In the present study, we replicated our analysis on a larger sample of teachers 
who participated in the NSF-funded Coordinating Students’ and Teachers’ Algebraic Reasoning 
(CoSTAR) project. 
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The CoSTAR Project 

The CoSTAR research project focused on broad questions about mathematics teaching and 
learning by considering students’ and teachers’ knowledge, interactions, and sense-making of 
shared events. The CoSTAR data included daily videotaped observations of each teacher 
working with a single class of students using Connected Mathematics Project (CMP; Lappan, 
Fey, Fitzgerald, Friel, & Phillips, 2002) materials for an entire unit of instruction at a time 
(typically 6-8 weeks). The CoSTAR team interviewed teachers using the classroom video clips 
and student interview video clips.  
Participants 

The four participants were mathematics teachers at Pierce Middle School1, which had 
recently replaced traditional instructional materials with the standards-based CMP materials. 
Three of the teachers were experienced mathematics teachers each having over 10 years of 
teaching experience. The fourth was a new 6th grade teacher who had some experience teaching 
7th grade CMP while serving as a long-term substitute in the year prior to her case study. The 
data analyzed for this study came from our first case study with each of the teachers, though Ms. 
Moseley2 had participated in a two-week pilot study before these data were collected. Ms. 
Moseley and Ms. Reese were teaching 6th grade and in their second year of implementation of 
the materials during this study while the 7th grade teacher, Ms. Bishop, was in her third year of 
implementation at the time of data collection.  
Data Collection 

Each teacher was interviewed weekly for the duration of her case study. In each interview, 
the interviewer used video clips from class sessions and student interviews. The video clips were 
selected by the interviewer and the investigator who was interviewing the students in the same 
classroom. In each case, the focus of the effort was on developing a deeper understanding of how 
the students and teachers understood the shared events of the classroom. 

The interviews were videotaped using two cameras—one focused on the teacher and the 
other focused on either the computer on which the student interview and classroom clips were 
shown or on any written work or gestures the teachers made during the interview. These videos 
were then transcribed verbatim and these transcripts formed the basis of our analysis. 

For each participant, we selected three interview transcripts—first, middle, and the final—
from each of the cases to investigate these teachers’ reflection patterns. The transcripts were the 
primary data analyzed for this study; however, the interview videos and classroom videos were 
used to clarify any points of confusion from the transcripts. 
Data Analysis 

Data analysis occurred in two steps. In the first step, the first author separated the transcripts 
into three categories based on the questions the teachers were asked: questions about teaching, 
questions about students, and questions about curriculum and materials. Questions about 
logistics of the research itself were separated out as well. For this study, as in our earlier 
research, we chose to focus only on interactions that arose from questions about students.  

In the second phase of analysis, we used a modified version of the categories developed by 
Wallach and Even (2005): (1) Assess, (2) Describe, (3) Interpret, (4) Justify, (5) Extend. Assess 
instances were those in which the teachers evaluated students’ ability. Describe instances were 
verbatim descriptions of actions without any analysis. Interpret instances were the teachers’ 
analyses of what their students were doing. Justify instances provided a rationale of the teachers’ 



Vol. 5  1011 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

beliefs about what was happening. Extend instances included interactions in which the teachers 
reflected on their teaching, the content, or the curriculum materials.  

Each researcher coded all of the instances in the subset of data concerned with student 
questions within the three selected transcripts for each teacher. A single paragraph could have 
one or more instances within it and each instance was assigned to one of the five categories. 
Inter-rater agreement was achieved on both the instances and the categories for each instance. 
We discussed each instance about which there was disagreement to achieve a 100% agreement 
on the coding. Finally, we used inductive analysis (Patton, 2002) to compare the four teachers’ 
reflection on students’ understanding. 

 
Results  

Initially, we only considered the relative percentage of instances of each category for each 
teacher (see Table 1). However, the relative frequency of each kind of instance was insufficient 
for understanding the teachers’ reflection-on-action. Hence, we examined each instance in 
various ways to further understand the teachers’ reflections. 

 
Table 1 

Percentage of Category for each Teacher 
 Ms. Moseley Ms. Reese 

Date 3/13/03 4/08/03 5/22/03 3/17/03 4/08/03 5/13/03 
Assess 6.90 15.56 14.29 16.13 6.56 4.17 

Describe 16.09 8.89 5.36 12.90 9.84 8.33 
Interpret 42.53 46.67 41.07 35.48 49.18 43.75 

Justify 9.20 15.56 16.07 8.06 13.11 8.33 
Extend 25.29 13.33 23.21 27.42 21.31 35.42 
Total 100 100 100 100 100 100 

 Ms. Archer Ms. Bishop 
Date 2/10/04 3/01/04 5/25/04 3/17/03 4/08/03 5/13/03 

Assess 13.04 10.45 10.13 3.85 9.52 10.64 
Describe 26.09 5.97 10.13 11.54 11.90 8.51 
Interpret 13.04 50.75 44.30 55.77 30.95 40.43 

Justify 13.04 11.94 11.39 3.85 10.71 10.64 
Extend 34.78 20.90 24.05 25 36.90 29.79 
Total 100 100 100 100 100 100 

 
 Positive/Negative Comments 

As shown in Table 1, Ms. Moseley and Ms. Bishop generally increased in their frequency of 
Assess instances, but Ms. Reese and Ms. Archer decreased overall. Hence, we cannot say that 
there is a pattern in general. Nonetheless, we found an interesting result in those teachers’ Assess 
instances. During interviews, Ms. Moseley provided 17 positive comments (80%) of the total 21 
assess instances and Ms. Bishop offered 12 positive comments (80%) of the 15 assess instances. 
Most of these positive Assess instances focused on students’ understanding or things that the 
students were able to do. For example, “She got the right percent though, so that is good” (Ms. 
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Moseley, 4/08/03 interview) and “I think she understood the concept” (Ms. Bishop, 9/24/03 
interview). In contrast, in their Assess instances, Ms. Reese and Ms. Archer talked about their 
students’ misunderstanding or things that the students were not able to do. For example, “She’s 
misunderstanding that they’re different sizes” (Ms. Reese, 3/27/03 interview) and “Yeah… he 
would’ve found some stuff out. It wouldn’t have come out right” (Ms. Archer, 5/25/04 
interview). Of Ms. Reese’s 16 Assess instances, 11 were negative (69%). Ms. Archer’s Assess 
instances included 12 negative comments (67%) out of the 16 Assess comments analyzed. 

The positive or negative comments showed up in different patterns of the frequency of Assess 
instances. Ms. Moseley and Ms. Bishop who focused on students’ understanding positively 
showed a kind of increasing pattern in the percentage of instances of Assess. On the other hand, 
Ms. Reese and Ms. Archer who commented on negative students’ understanding showed a 
decreasing pattern in the instances. We claim that the decreasing pattern of the instances of 
Assess of Ms. Reese and Ms. Archer aligned with an increase in their discussion of their 
students’ understanding in contrast to focusing on students’ mistakes. Further, we assume that 
the teachers who evaluate their students positively make more efforts to understand their 
students’ mathematical thinking unlike the teachers who assess their students negatively focus on 
students’ misunderstanding or their mistake.  
Novice/Expert Teacher 

We had one teacher, Ms. Archer, who was in her first year full-time teaching at the time of 
data collection in contrast to the other three teachers who all had more than 10 years of 
experience. The case of Ms. Archer was curious in that she used many descriptions and a few 
interpretations to explain her thoughts about her students’ understanding at the first interview. 
However, by her later interviews, she changed to have fewer descriptions and more 
interpretations, making her similar to the other teachers. This may be because she was nervous 
about being questioned about her students and her practice or it may be related to her limited 
pedagogical content knowledge (Shulman, 1987), which necessarily limited her ability to 
interpret classroom instances. Ms. Bishop’s shift from Description to Interpretation suggest that 
providing this novice teacher with opportunities to watch and analyze her students’ work with 
the mathematics in their classroom supported her in moving quickly to being able to analyze and 
interpret her students’ work. If this is common in other settings, it could suggest that simply 
reflecting on student understanding can help develop a kind of professional knowledge for 
teaching much faster than it might develop without this reflection.  
Change in the Instances of Extend 

In this study, Extend instances included a wide variety of comments including reporting, 
evaluating, reasoning, reconstructing the teacher moves as they related to their students’ 
understanding, and assessing aspects of the curriculum materials. In the first interview, Ms. 
Archer provided the highest percentage of instances of Extend. However, the ratio of comments 
on her teaching decreased in later interviews. In our analysis, we found that Ms. Archer shifted 
over time to include less reasoning more reconstructing in her comments. Despite the decrease in 
Extend comments, we found that the Extend instances changed to reconstruct her thinking about 
teaching as it related to her students rather than just reasoning about her teaching practice itself. 
Building from our theoretical framework, we assert that this is a more sophisticated focus as the 
teacher began to attend to the interactions between the elements of the interaction triangle rather 
than simply focusing on each element independently. Given that the instructional environment is 
shaped by these interactions, having the teachers attend to them should impact teacher practice.  
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All four teachers showed changes in their instances of Extend from reporting or reasoning 
their teaching to considering various aspects including evaluation of their teaching or curriculum 
materials. For example, in their first interviews, the teachers commented specifically much on a 
few aspects such as reporting and reasoning; however, in later interviews, the teachers generally 
reflected on various aspects of teaching while they were talking about student thinking (see 
Table 2). This implies that these teachers’ reflections improved in the sense that the teachers 
noticed more aspects of teaching and situations in their teaching as they gained experience in 
analyzing the video clips. This experience allowed them to not simply focus on their students’ 
understanding and report their teaching actions, but also to evaluate and reason about their 
actions and the curricular materials as they related to student understanding. Again, building 
from our theoretical framework, this showed a movement to looking at the interactions between 
what they did, what the curricular materials included, and how the students understood the 
mathematics of interest. In other words, it built the teachers’ professional knowledge in ways that 
allowed them to coordinate their understanding of how the three elements of the classroom work 
together and reconstruct their teaching with their students in the context.  

 
Table 2 

Instances of Extend for each Teacher 
Extend instances Ms. Moseley Ms. Reese 

Date 3/13/03 4/08/03 5/22/03 3/17/03 4/08/03 5/13/03 
Report 4   8 7 2 

Evaluation 4 1 4 1  2 
Reasoning 3 2 4 4 5 5 

Reconstruct 8 2 3 2 1 4 
Others 2 1 2 2  4 
Total 21 6 13 17 13 17 

Extend instances Ms. Archer Ms. Bishop 
Date 2/10/04 3/01/04 5/25/04 3/17/03 4/08/03 5/13/03 

Report 1 2 3 6 9 2 
Evaluation 2  2  5 2 
Reasoning 3 7 5 6 7 2 

Reconstruct  3 4  6 4 
Others 2 2 5 1 4 4 
Total 8 14 19 13 31 14 

 
Increased Incidents of “no idea” 

We anticipated that, over time, the teachers would become clearer and less hesitant in 
explaining their interpretations about students’ understanding. However, in our analysis, we 
found the opposite to be true for these teachers. This shift in the instances of Interpret occurred 
for all teachers, indicating that experience was not a factor in this aspect of our analysis. In the 
initial interview, the teachers provided interpretations of their students’ mathematical 
understanding, but in later interviews, they often said “I don’t know how he/she gets this” or “I 
have no idea.” Perhaps, as they became more aware of individual student thinking through 
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viewing these videos, the teachers were beginning to question their preconceived ideas about 
student understanding. In contrast, it could be that the teachers were becoming more comfortable 
with the interviewers and felt safe admitting when they did not understand a student’s thinking. 
Regardless of the underlying cause in the increase of “no idea” comments, it was clear that the 
teachers did not always know how to interpret the students’ thinking. We expect that reflection 
built into the regular practices of teachers might impact the teachers’ abilities to interpret student 
thinking; however, the duration of this study was too short to test this assumption. 

 
Discussion 

The data presented here suggest that the teachers who participated in this project began to 
change in the ways they reflected regardless of their years of teaching experience. While not 
large, these changes indicated that these teachers gained more insights about students’ 
understanding as they gained experience in analyzing student understanding. The role of the 
researchers in this study is important because the researchers persisted in asking questions about 
students’ understanding each week and selected video clips to support the teachers in discussing 
student understanding. This forced the teachers to reflect on their students’ understandings week 
after week for the six to eight weeks of the unit. Without the researchers, the teachers likely 
would not have reflected on the students’ understanding. We assert that the consistent interviews 
supported ongoing development of teacher knowledge that would not have occurred without the 
intervention. However, it should be noted that this study was not intended as a professional 
development study, rather the changes in reflection appeared to be the products of the teachers’ 
changing in their reflection abilities simply through regular engagement in reflection. 

Consistent with Sherin and Han’s study (2004), we found that our teachers also shifted to 
focus more on student conceptions than pedagogies over time. This is especially interesting 
given that our context was quite different from theirs in that our study focused on one-on-one 
interactions between the teacher and the researcher rather than group interactions among 
teachers. Also, in our study, the researchers selected the classroom events on which the 
interviews focused whereas in Sherin and Han, the teachers attempted to interpret their students’ 
mathematical thinking and, in the process, they struggled to explain their interpretations. These 
results suggest that reflection may be the critical aspect in promoting attention to student 
understanding as a product of the classroom interactions. Further, the video clips used in this 
study played a role of useful sources to engage teachers in reflecting on. This suggests that 
teachers can quickly develop relatively the ability to analyze student mathematical understanding 
if they were provided appropriate sources for reflection.  

Clearly, further research is needed to understand the impact of reflection on teaching and 
learning. Reflection, as a form of professional knowledge, involves teachers’ analyzing their own 
practice and using the conclusions they draw from the analysis to drive their future teaching. In 
this study, we examined teachers’ reflection-on-action as prompted in one-on-one interviews. 
Our findings suggest that professional development may consider ways of using reflection and 
ways of engaging teachers to reflect on in order to raise teacher awareness of the interactions 
among the three elements of the interaction triangle.  

 
Endnotes 

1. All names are pseudonyms. 
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2. The pseudonyms for teachers used in this study are consistent with those used in other 
publications of the CoSTAR project. 
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U.S. national reports have identified the need to increase the pool of highly qualified 
mathematics teachers as a way to improve mathematics education. However, providing high 
quality mathematics education for all students goes beyond the recruitment of knowledgeable 
teachers. This paper offers an examination of the role that professional development plays in the 
work and retention of new teachers and/or teachers in hard-to-staff settings. Based in California 
and including 10 sites and more than 250 teachers, first and second year results from data 
collected through large group surveys, online logs and site level focus groups helps to explain 
why the attrition rate over the first year of the study dropped from 20% to 11%. 

 
Introduction 

The preparation, support, and retention of mathematics teachers in grades 7–12 merits careful 
examination. Several U.S. national reports have pointed to the need to increase the pool of highly 
qualified mathematics teachers as a way to improve mathematics education (National Academy 
of Sciences, 2007; Glenn Commission, 2000). However, providing high quality mathematics 
education for all students goes beyond the recruitment of mathematically knowledgeable 
teachers to encompass issues of teacher preparation, support, professional development, and 
retention. Analyses of teacher employment patterns reveal that new recruits leave their school 
and teaching shortly after they enter. Ingersoll, using data from the School and Staffing Survey 
concluded that in 1999-2000, 27% of first year teachers left their schools. Of those, 11 percent 
left teaching and 16 percent transferred to new schools (Smith & Ingersoll, 2003). Earlier 
research revealed that teachers with the highest qualifications tend to leave first (Schlecty & 
Vance 1981). This “revolving door” is even higher in large urban districts; for example, 25% of 
the teachers new to Philadelphia in 1999-2000 left after their first year and more than half left 
within four years (Neild and other 2003). In Chicago, an analysis of turnover rates in 64 high-
poverty, high-minority schools revealed that 23.3 percent of new teachers left in 2001–2002. In 
California, 10% of the teachers working in high-poverty school transferred out in 2006–2007 
(Posnick-Goodwin, 2008). 

Reasons for the attrition of new teachers and teachers in high-poverty schools are often 
related to “working conditions” and lack of support (Ingersoll, 2001; Smith & Ingersoll, 2004; 
Johnson et al., 2004), though pay also plays a role (Hanushek, Kain, & Rivkin, 2001). This 
support includes both professional and collegial support such as working collaboratively with 
colleagues, coherent, job-embedded assistance, professional development, having input on key 
issues, progressively expanding influence and increasing opportunities (Johnson, 2006). 
Preparation, support, and working conditions are essential to teachers’ effectiveness and their 
ability to realize the intrinsic rewards that attract many to teaching and keep them in the 
profession despite the relatively low pay (Johnson & Birkeland, 2003; Liu, Johnson, & Peske, 
2004; Lortie, 1975).  

Most of the research on the “support gap” has dealt with elementary teachers and national 
data. To focus attention on the retention and the impact of support and professional development 
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on mathematics teacher retention, both those who move and those who leave teaching altogether, 
a study was developed in the Fall of 2006 by the California Mathematics Project. This study is 
entitled California Mathematics Project Supporting Teachers to Increase Retention (CMP STIR) 
and was funded by the California Postsecondary Education Commission under the Improving 
Teacher Quality Grants to address both dimensions of teacher retention across California. The 
project focuses on teachers from schools and/or districts eligible under the No Child Left Behind 
guidelines who are in their first five years of teaching or teachers in hard-to-staff schools.  

 A major component of the project is research that would extend and deepen the knowledge 
base on mathematics teacher retention. Since the base for this study of support and sustainability 
of mathematics teachers involves 10 CMP regional sites, its design is complex, diverse, and 
builds on a 25 year-old professional development network, thus embracing a diversity of 
perspectives on the retention of mathematics teachers through support and professional 
development.  

This paper will include an overview of the project, an outline of the research design and the 
results of the first two years. Results will include project as well as site specific analyses, and 
reflect upon opportunities and challenges.  

 
Research Design and Methodology 

The project is multifaceted in both the range of professional development models and the 
research design. In general, CMP STIR is a 5 year intervention project with the first three years 
focused on systematic and sustained support, year 4 supports leadership development, career 
advancement and school and district support, and year 5 emphasizes collaboration, 
communication, and dissemination. Although specific dimensions of the professional 
development vary from site to site, the general model for the first three years is (1) intensive 
professional development and (2) systematic and sustained academic year support. The intensive 
PD consists of Institutes and follow-up, content, and communities of practice, while the support 
may include coaching, lesson study groups, school site networking, data driven reflection, access 
to resources, district and/or school support.  

To study the major question of teacher retention, the project design consists of both 
quantitative and qualitative data. Overall, the research design encompasses project level 
longitudinal data, site level data, and case studies in three of the sites. The project level 
component includes baseline data, annual surveys and exit surveys. The site level data involves 
baseline data providing a history of attrition for each site across a five-year period from 2002– 
2007, teacher content knowledge, student achievement data, site yearly reports, teachers’ 
monthly logs, focus group interviews, administrator interviews, and exit interviews. The case 
studies include classroom teacher interviews and observations for both project teachers and 
control teachers.  

Project level, site level, and case study observations and interviews are linked through the 
inclusion of similar questions, such as a question about confidence and one about competence 
are found in the annual survey, the focus group questions, the log prompts and the case study 
interviews. The question of how much longer the participant expects to teach and why is also 
found in each level. Since most of the data collected is self-reported, triangulation helps provide 
validity and reliability. Yearly data allows us to trace trends within and across years.  
Tracking and understanding teacher retention patterns as related to professional development 
relies on site level models and input. Site level perspective provides the basis for on-going 
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discussions and a serious element of reality. In this paper we choose to focus project findings by 
describing the unique features of one particular site’s model, California State University 
Bakersfield (CSUB) in Kern County, and relate this site’s results regarding opportunities and 
challenges translated at the site level. At CSUB, teachers are supported in taking one course per 
quarter in the Master’s of Arts in Teaching Mathematics (MATM). The Department of 
Mathematics being very collegial, this model not only impacts subject matter content knowledge, 
but also allows for effective collaborations among participants while working together on course 
work, or sharing teaching ideas and other concerns with one another and the faculty in an 
atmosphere of nurtured community. The heavy technology focus of most courses such as 
Dynamic Geometry, Discrete Mathematical Models, or Numerical Approach to Calculus, 
engages teachers in first-hand experiences with educational technologies they are then able to 
transfer to their own classroom. This choice of support model draws both from the program 
coordinators’ knowledge of the District’s needs, and from the nature of the MATM. Kern County 
recruits heavily from the upper Midwest. These teachers generally obtain their teaching 
credential along with their baccalaureate degree, whereas in California, the credential generally 
requires an additional year of post-baccalaureate courses. Thus, many teachers obtaining their 
credential outside of California fall behind in graduate credits and end up at the bottom of the 
pay scale. Historically, these teachers would earn a graduate degree in Counseling or 
Administration and leave the math classroom. Furthermore the collegial, technology intensive 
and constructivist nature of the MATM meets some of the immediate needs of these individuals 
by breaking their classroom isolation while providing the tools to implement new teaching 
strategies with their students. Early in the data collection, one teacher shared with us “I already 
know what the unsuccessful lesson feels like. I hope to learn the successful strategies that will 
make my lessons work!” 

In addition to this intensive course work, participants at CSUB have the option to attend 
yearly summer institutes aimed at addressing specific pedagogical content knowledge needs. 
These needs are self-identified during the school year to promote a model of professional 
development that is not only Content Knowledge and Community centered, but also focused on 
Teacher, and Assessment and in-line with the recommendation from the “How people learn” 
framework (Bransford & Brown, 2003). In summer 2007, 20 participants attended a “Meaningful 
Algebra” one-week intensive workshop that addressed the key California algebra standards, 
developing activities adaptable to any algebra book, modeling instructional strategies that 
teachers can use in their classrooms, and providing research-based information about learning. In 
summer 2008, 6 participants attended a Proportional Reasoning workshop during which Susan 
Lamon’s books on teaching ratios and fractions for understanding (Lamon, 2006) as well as 
integrated-type curriculum supported the teachers’ inquiries and discussions. Other support and 
engagement activities for participants include attending additional technology-based workshops 
and conferences, engaging in leadership positions at their school, self-reflecting on teaching 
practices through action research projects, and presenting at regional conferences. 

 
Results 

Project sites work with teachers from schools and/or districts across California. Locations of 
the sites range from Northern California to the border of Mexico and include urban and rural 
communities. Each site is expected to work with at least 27 teachers. Data from the initial survey 
conducted in the Fall of 2007 included 266 teachers with site participation ranging from 17 in a 
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small costal community to 60 in an urban setting. Each site also identified teachers for a project 
level control group that consists of 83 teachers across the state. The CSUB site currently serves 
25 teachers in 17 high-need schools. Even though all participants are in their first five years of 
teaching mathematics, demographics vary across the group from newly graduates, to second 
career, with some individuals more seasoned in serving the district.  

Baseline retention data for the state-wide project was collected in the site proposals which 
included a five year study of retention. That is, for mathematics teachers who were teaching in 
June, how many returned to teach in September. Each site compiled this data for the period of 
2002–2007. Across this time period the attrition rate was consistently 20% both across years and 
sites. In addition to the attrition, the need across the five years, as reflected in the number of 
mathematics teaching positions reported each September, showed an increase of more than 60%. 
That is, the 600 math teaching positions reported in 2002 grew to 982 teachers in 2006. One site 
was able to trace individual teachers across the five years. The attrition rate for this site was 40% 
when the new teachers were tracked across the five-year period. In no case did the baseline data 
reflect how many left teaching and how many moved to another teaching position or 
administrative position. 

Initial surveys included a baseline for retention expectation which provided a sharp contrast 
with the pre-project baseline data. In 2007, the participating mathematics teachers across the 10 
sites reported that 94% expected to continue teaching for at least 3 years and 81% expected to 
teach for at least another 6 years. Additionally, the individuals in the 6% who expected to teach 
for only one or two year more were those who anticipated retiring or moving into administrative 
roles. Expected retention was traced through multiple instruments. Similar retention expectations 
were reported in the focus groups administered during the intensive professional development of 
2007. A log prompt completed in March 2008, however, signaled an increase in expected 
attrition ranging from 10% to 20%. Actual first year attrition results varied from 4% to 29% with 
an average across the sites of 11%. What happened in these teachers lives that changed their 
expectations? Data collected across the multiple instruments and levels are designed to help 
understand these changes but the exit interviews conducted at each site are especially important. 
For example, since the CSUB project started in 2007, 5 participants have withdrawn due to 
conflicts of interest but are still teaching in the district, and 2 participants discontinued their 
participation to a change career: one went back to his prior engineering career after being unable 
to follow through with his alternative license, while another followed her parents’ advice to 
pursue a profession in Law. The increase in expected attrition identified in the spring log 
coincided with a time when budget cuts where announced throughout the state and teachers were 
receiving Reduction in Force notices, especially those new to teaching. 

Across all sites, beginning in September of each year, six electronic logs are collected 
throughout the academic year. Due to serious follow-up by each site, the response rate was very 
high varying from 53% to 100% with an average of 78% across sites and logs. The first two logs 
addressed teaching goals and support for classroom teaching. Results from these responses 
reflected the impact of the professional development with 84% indicating that the professional 
development affected their goals and/or supported their classroom teaching. Logs 3 and 6 looked 
at their perceived success as a teacher and the success of their students. In log 3, the teachers 
looked at opportunities and challenges and whether their students were as successful as they 
would like. Only 13% of the participating teachers were satisfied with their students’ 
achievement. But, when they talked about the opportunities and challenges, student achievement 
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became both a challenge and an opportunity. Instead of deciding to leave teaching or looking 
only at the challenges, the majority discussed the opportunities for learning how to teach. The 
final log asked the participants to describe a lesson that they especially liked and the support they 
received in developing this lesson. Seventy-nine percent attributed contributions to the lesson 
from the professional development and/or community developed through the professional 
development.  

As we conduct research to gauge the effects of our intervention on teacher retention and 
support, each site gains valuable feedback on the model of professional development offered, 
which in turn helps refine the support provided. At CSUB, self-reported needs seem to be met by 
STIR, whereas a greater support from the school site is requested regarding assistance in 
instructional approach and curriculum. Some participants, even though they acclaim the 
community found at the university, still suffer from isolation at their site and express frustrations 
regarding workload, curricular pace, and lack of parental, administrative or collegial support. At 
times these frustrations seem enhanced by a new awareness of what teaching for understanding 
could potentially look like, and the evident discrepancy with their school environment or the 
reality of their classrooms, as one of our teachers points out, “There is a disparity between what I 
know how to do in my classroom and what I actually do. Much of the difference is caused by a 
lack of time to prepare, and lack of chance to reflect on what was done. This disparity is the 
cause of building frustration.” 

As we enter the second year of intervention, online feedback also reflects enthusiasm for the 
program. The Summer Institutes have helped some implement successful lessons in their 
classrooms. Some have turned what they learn in graduate school into enrichment activities for 
their students, especially through history and technology. Teachers welcome the opportunities 
provided to use technology in their classrooms as they have become very familiar with it as users 
in their university courses. The MATM is technology-focused; mathematical concepts are 
discovered and discussed through inquiry-based activities encouraging participants to try new 
teaching strategies with their students as one teacher sums it up: “I have used Geometer’s Sketch 
Pad with my LCD projector onto my classroom whiteboard. I learned how to use the program in 
my class thru the CMP STIR program. Likewise, I have used my knowledge developed from the 
program about cooperative learning exercises with my classrooms. Overall, my students have 
been very pleased about how the classroom lectures are conducted and how much more they are 
involved compared to previous math teachers.” Some mathematics faculty teaching in the 
MATM have become role models for these beginning teachers who express a desire for their 
students to access deeper conceptual understanding of the material. Teachers also want guest 
speakers to enhance classroom motivation, feel empowered by their participation in STIR, and 
supported by a learning community that exists beyond the MATM courses; confidence levels 
have increased. Recently, teachers started asking for “more”: more classroom games enhancing 
students’ motivation; more enrichment ideas; more on-site support; more insights on how to 
teach lower-level mathematics; more involvement from administrators and parents.  

Focus Groups are group interviews conducted at each site during the summer intensive 
professional development. The purpose of the Focus Group interview is to talk with a randomly 
selected group of participants during the intensive PD about their experiences to date, and to 
obtain data that might not surface by other methods. All of the Focus Group interviews are 
conducted by the same person and last between 45 to 70 minutes. Responses are coded and the 
data is compiled for all sites. Due to group dynamics, not every participant answers every 
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question. In some cases, several teachers would nod in agreement to a response, visual 
affirmations that are not recorded while most of the verbal responses are transcribed during the 
interview. 

The 2007 Focus groups included 59 participants consisting of 28 middle school teachers 
(including 3 special education teachers), 20 high school teachers, two pre-service students not 
assigned to a school, a middle school/high school coach, and a special education teacher of 
grades 4–6 (data for seven teachers are missing). When responding to “why are you 
participating?” and “what did you hope to gain?,” participants often responded with what they 
had already gained through networking with each other and with institute leaders: ideas for 
working with students, as well as for teaching and understanding mathematics conceptually. 
Ideas that linked to the classroom and time allocated for planning with colleagues were identified 
as successful aspects of the institute. Three key challenges emerged: how to transfer what was 
learned to the classroom, how to balance home, institute, coursework, and summer school, and 
how to address mathematics content that was challenging. As a result of the institute, many were 
realizing the importance of teaching conceptually, with concerns that they won’t be able to 
implement it with fidelity. Several teachers shared that they felt comfortable with the lecture 
method and that changing would be a challenge for them. Accordingly, they want the site to 
support them in the classroom through regular observations and coaching.  

About 85% of the respondents said that teaching would be a lifelong career. In response to 
why they went into teaching, most said they liked the idea of teaching and helping others, liked 
helping students specifically, and influencing them with positive experiences in math. Other 
reasons included making an impact, coming from a family of teachers, and liking mathematics. 
About 10% mentioned that teaching was a second career. Most indicated that they would be 
interested in a leadership positions if they did not have to leave the classroom, such as become 
department chair or give presentations. A few talked about going into administration or 
becoming a college instructor. 

For the 2008 Focus Group interviews, another group was randomly selected to participate. 
Future plans still showed high retention expectations with 88% expecting to be lifelong teachers 
and 5% expecting to leave teaching in 5 years. One-third of the participants mentioned an 
improvement in their classroom teaching. Regarding changes in the delivery of instruction, 35% 
identified higher level cognitive demands of students in questioning and problem solving. In 
terms of content, teachers reported deeper understandings of math, and greater accessibility to 
new mathematical ideas. Table 1 below shows changes in confidence that the participants can 
make a difference in student learning of mathematics, and competence in their knowledge of 
mathematics. 
 

Table 1 
Self-Reported Confidence and Competence in Teaching Mathematics (4-Point Scale) 
 Confidence Competence 
Year/Level 4 3 2 1 4 3 2 1 
2007 15 32 12 0 14 34 12 0 
2008 31 26 1 0 23 29 6 0 
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 Support, networking and community are reflected in the responses to what has been gained 
to date as well as from prompts that looked at support provided, most useful support, what was 
gained in summer of 2008, and unexpected benefits. The following is a quote from the last log of 
2008 that resonates with many of the Focus Group responses: 

 
It was great to work together and talk about what worked and what didn’t. It was great to 
hear about the “aha” moments when they caught on that the number was always 
approximately 3. We discussed many ways of teaching this concept and it was very useful for 
us to bounce ideas back and forth to see what has worked or not worked in the past. 

 
Conclusion 

This project is only in its second year but critical questions are being addressed. The key 
issue of the role of professional development on teacher retention shows reductions in 
mathematics teacher attrition for teachers in their first five years of teaching or teachers in hard-
to-staff schools. Through the multiple levels of data collection and the triangulation of the data, 
dimensions related to this connection are surfacing. They include increased teacher perceived 
content and pedagogical knowledge and the development of professional mathematics teacher 
communities. Another major theme that has emerged across the sites and will need to be 
examined in future years is the issue of teachers’ confidence in and competence with learning 
and teaching essential mathematical understandings. 

As we look ahead, a greater presence at the school site will be necessary for the CSUB 
model. This need may be addressed through seeking administrators’ involvement in supporting 
the program, focusing the teachers’ thesis on action research projects, and moving into the 
leadership phase to help broaden the community. On-site leadership positions are already 
assumed by some of the participants. Additionally, 6 potential leaders were identified and/or 
expressed interest in leadership and participated in the San Joaquin Valley Mathematics Project 
Winter Leadership Retreat this winter. They shared very positive impressions with us: “The 
retreat was one of the most positive experiences of professional development I have ever 
participated in”. Further leadership opportunities will include an involvement as workshop 
leaders in the induction program for beginning teachers, and presentations at regional 
conferences.  

To conclude, success of a retention initiative takes root in a variety of needs: the need to 
know your District and its teachers—a necessity that often relies on established, long-term 
relationships between the university and district leaders; the need to offer sustained support as 
opposed to punctual interventions in order to break the isolation of beginning teachers and create 
a sustainable community; the need to establish relevance in the professional development 
activities proposed by engaging participants in deep introspection of their own knowledge gaps; 
the need to involve all actors of the community to prevent miscommunication from annihilating 
attempts made towards change; the need to nurture the community created by moving its 
members forward into roles and responsibilities they are ready to take on; and last but not least, 
the need to refine even successful models to keep the momentum. 
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A U.S. federally funded nationwide field trial in 118 school classrooms of algebra 1 implemented 
Texas Instruments TI-Navigator™. The year 1 control group implemented the treatment in the 
second year. The purpose of this paper is to describe the professional development program and 
evaluate the summer institutes for both cohorts of teachers. 

 
Purpose and Context  

Teaching reforms and innovative interventions require carefully planned professional 
development programs to support implementation (Clarke, 1994). Large-scale research efforts in 
education often utilize teacher training as part of the intervention in order to effect change in 
student outcomes. Classroom Connectivity in Promoting Mathematics and Science Achievement 
(CCMS)1 is a national research study examining the impact of classroom communication 
technology on student achievement, dispositions toward mathematics and science, and self-
regulated learning. The intervention for this project consists of professional development to 
support algebra 1 and physical science teachers’ implementation of a modern classroom 
connectivity technology, the TI-Navigator™ that allows classroom teachers to wirelessly 
communicate with their students’ handheld devices. The research design is a randomized cross-
over field trial in 118 Algebra I classrooms. Cohort 1 teachers attended a summer institute and 
implemented the intervention in the first year. Cohort 2 was a control group in the first year 
using graphing calculators and implemented the TI-Navigator™ in the second year of the study. 
This paper reports the practices and findings related to the professional development (PD) efforts 
for the mathematics teachers in the CCMS project. 
 

The Connected Classroom 
Connected classrooms in this study were equipped with the TI-Navigator™, a system 

connecting each student’s handheld graphing calculator with the teacher’s computer. Four 
handhelds are wired to a hub. The students and teacher communicate wirelessly via the hubs 
through an access point connected to the teacher’s computer. Using the Quick Poll feature, the 
teacher can pose an individual question, and LearningCheck™ is a feature by which several 
questions can be sent to the calculator. Student responses may include multiple choice, true/false, 
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and open-ended responses. The results can be displayed as bar graphs using a projector. A third 
feature is Screen Capture by which the teacher can take a “snapshot” of all calculator screens. 
The teacher can hypothesize about and diagnose errors or display a selection of screens to the 
class to foster class discussion of students’ work. The fourth feature of the system is Activity 
Center in which a coordinate system can be displayed. A typical Activity Center lesson might 
include the teacher displaying a line with the assignment, “match my line.” Similarly, the teacher 
can ask students to send the equation of a line through a given point parallel to or perpendicular 
to a line entered by the teacher. Finally, the teacher can aggregate data collected by students, 
display it on the screen, and send the lists to students to analyze. Activity Center is typically used 
to develop conceptual knowledge. Quick Poll and Learning Check are typically used as tools for 
formative assessment. Screen Capture may be used for either of these purposes. The teacher has 
immediate information that may lead to adjustment of instruction. Using any feature, the teacher 
can engage the class in discussion diagnosing incorrect responses that can be displayed 
anonymously. As aggregate class results are shown to the class, students receive immediate 
feedback in a private non-threatening way that can encourage them to reflect and discuss their 
understanding or methods of solution in small groups and with the class as a whole (Roschelle, 
Penuel, & Abrahamson, 2004).  
 

Perspectives on Professional Development  
Various models of professional development are described in the literature (Guskey & 

Huberman, 1995; Loucks-Horsley, Love, Stiles, Mundry & Hewson, 2003; Rodriquez & Knuth, 
2000; Smith, 2001). Well designed PD programs are teacher-driven (Borko & Putnam, 1995; 
Little & McLaughlin, 1993) and focused on documented learning needs for students (Fullan, 
1993; Howey & Collinson, 1995). Loucks-Horsley et al. (2003) offer a framework for 
professional development in science and mathematics that includes a commitment to a vision and 
standards, analysis of student learning, goal setting, planning, execution, and evaluation in the 
context of classrooms, with consideration of teacher knowledge and beliefs.  

Clarke (1994) describes ten important research-based principles of successful professional 
development: 1. Determine initial teacher interest in the topic of professional development and 
provide an element of individual choice; 2. Develop collegial working groups within schools 
with broad community and administrative support; 3. Identify and manage possible classroom, 
school, and district level barriers; 4. Model actual classroom approaches to help teachers develop 
better understanding of the change; 5.Request teacher commitment to active and sustained 
participation in their individual classroom context; 6. Acknowledge the importance of classroom 
practice on teacher beliefs by encouraging teachers to validate the practices in their own 
classrooms; 7. Provide time for reflection and opportunities for group discussion and feedback; 
8. Allow teachers to develop ownership by encouraging the development of their professional 
judgment regarding implementation; 9. Acknowledge the slow and incremental process of 
change and celebrate small successes; 10. Encourage goal setting for continued professional 
development. The CCMS Summer Institutes aimed to enable expansion of teachers’ professional 
knowledge base including their pedagogical content knowledge, their subject matter knowledge 
and their beliefs, experiences and habits (Borko & Putnam, 1995; Eraut, 1995).  
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CCMS Professional Development 
Given the complexity of teaching with the TI-Navigator, a significant initial professional 

development program was required. We designed a weeklong summer institute for the summer 
before a teacher’s implementation of the TI-Navigator. Given what we know about the need for 
regular continuing professional development (Loucks-Horsley et al., 2003), the teacher 
participants meet one day before subsequent Teachers Teaching with Technology (T3) 
International Conferences for targeted CCMS professional development and attended the three 
day conference. Web-based follow-up training tutorials on graphing calculators and TI-
Navigator were available on the T3 website, and a project listserv was made available to the 
participants as an opportunity for questions and discussion.  

In technology-laden training, an unwarranted focus on the technical aspect of making the 
technology work is appealing. Yet an equal emphasis on the pedagogy of using the technology is 
extremely important. Important components of the summer institutes included: a) focus on 
student learning in algebra 1; b) extensive hands-on practice in both ‘student’ and ‘teacher’ roles; 
c) curriculum-specific applications; d) the pedagogy of the connected classroom, especially self-
regulated learning and formative assessment; e) experienced teacher-instructors who use the 
technology in their own secondary mathematics classrooms; and f) differentiation and practice 
based on the teacher’s technology ability level. Discussions about pedagogy for using the 
technology were built into the workshops in a practical, hands-on manner. The goal was to teach 
theory through real-life examples of classroom activities. Often these were introduced 
spontaneously as the participants played the part of students for the workshop instructor’s 
“expert teacher,” as s/he illustrated how to use features of the connected classroom system. In 
this way, the context became sensitive to specific classroom needs of the participating educators 
(Pink & Hyde, 1992).  

The model used for the Summer Institute was based on lessons learned in the T3 PD program 
founded at The Ohio State University in 1988 (with NSF support) that closely parallels the 
Clarke (1994) principles stated above. The T3 trained instructors were secondary school teachers 
who had used the technology in their mathematics classrooms and modeled the methods from 
their classroom experience. In addition to the three primary T3 instructors who assumed 
responsibility for the PD planning and delivery, three other T3 instructors who were also 
classroom teachers provided support during practice sessions. This enabled the differentiation of 
practice sessions based on technology ability levels. Following the T3 model, we held daily 
debriefing sessions so that adjustments could be made for the next day. Mathematics content for 
the institute was from typical Algebra 1 curricula. Activities included in the institute were 
technology-focused, hands-on instruction and practice in “student” and “teacher” roles. 
Participant products for the week were lesson projects and presentations.  

Finally, faculty lectures infused theoretical and pedagogical focus on productive classroom 
discourse, formative assessment (FA), student self-regulated learning strategies and the teacher’s 
role in supporting self-regulation, and learning environments from How People Learn (HPL) 
(National Research Council, (NRC), 1999). Self-regulated learning (SRL) is consistent with 
mathematics education reform. For example, in Adding It Up, Kilpatrick, Swafford and Findell 
(2001) call for strategic competence, adaptive reasoning, and conceptual understanding as well 
as procedural fluency as components of mathematical competence. Among contexts that support 
SRL are multiple representations and rich mathematical tasks, classroom discourse, 
environmental (classroom) scaffolding of strategic behavior, an evaluation system that 
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emphasizes feedback, and self and peer evaluation (Pape, Bell & Yetkin, 2003). Among the 
components of contexts that support SRL are teacher’s higher order questions, teacher press for 
student involvement, teacher press for elaboration, explanations and justifications, soliciting 
multiple answers or solution methods, mastery orientation, and scaffolding and social support 
(high expectations, respect, and inclusion of all students in the learning process) for student 
achievement (De Corte, Verschaffel, & Eynde, 2000; Pape, 2005). 

Another component of faculty lectures was HPL “centerednesses” for the design of learning 
environments. Learner-centered environments “pay careful attention to the knowledge, skills, 
attitudes and beliefs that learners bring to the educational setting” (NRC, 1999, p. 133). These 
environments are termed “culturally relevant,” or “culturally responsive,” and include 
“diagnostic teaching.” “Knowledge-centered environments take seriously the need to help 
students to become knowledgeable” (p. 136). They “focus on the kinds of information and 
activities that help students develop an understanding” (p. 136) of the algebra content. 
Assessment-centered environments “provide opportunities for feedback and revision and what is 
assessed must be congruent with one’s learning goals” (pp. 139-140). Included are formative 
assessments and appropriate summative assessments. Community-centered environments include 
“the classroom as a community, the school as a community, the degree to which students, 
teachers and administrators feel connected to the larger community” (pp. 144-145). Using a TI-
Navigator with pedagogically sound techniques has the potential to support a learning 
environment with these centeredness characteristics.  

The last component of faculty lectures was formative assessment. Cowie and Bell (1999) 
define formative assessment as “the process teachers and students use to recognize and respond 
to students’ learning and enhance it before it is complete.” In addition to the timeliness of the 
formative assessment process, Black and Wiliam (1998) direct attention to the “teacher use of 
assessment information to modify and improve their teaching effectiveness.” In an analysis of 
more than 40 studies, high quality formative assessment was linked to significant learning gains 
(Black, Harrison, Lee, Marshall & Wiliam, 2003). Black et al. identified enhanced feedback 
loops, active student participation, teacher modification of instruction based on knowledge of 
student learning, and increased motivation and engagement as important characteristics of 
successful formative assessment studies. 

 
Participants and Data Collection 

The Institute was designed to last one week. For Cohort 1 in the first summer, 30 participants 
attended the first week, and 30 participants attended the second week. Out of 60 total teachers, 
42 were female (70%) and 18 were male (30%). For Cohort 2 in the second summer, 27 
mathematics teachers participated in week 1 and 20 attended week 2. Of the 47 teachers in the 
second summer, 35 were females (74%) and 12 were males (26%). Each day of the Summer 
Institute was videotaped to document the progress of the PD.  In addition, participants completed 
an Institute Evaluation Survey in the afternoon of the last day of the Institute. 

 
Evidence of PD Instruction 

The videotapes from the Institute provide evidence of teacher-instructors incorporating 
pedagogical issues into their instruction. In the segment below, one of the instructors described 
insisting on student explanations and justifications. He then described how to use Quick Poll for 
teacher error analysis during or after class.  
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Instructor 1 (I 1 discussing the Screen Capture feature): Before I show it to the class, I could 
group all the ‘good’ wrong answers to the top. I could ask, “How did someone get such 
and such. I could have kids defend. Why is 3 the correct answer? Have them tell why do 
you think it is. Why is it not? Having kids starting to talk mathematics . . . I can take a 
picture of the entire record. When I have a question and I want to know who is really 
with me on this topic, . . . I can capture this entire [class] snapshot to look at later during 
my conference period. Also, in addition to [surveillance], saving a [Screen Capture] 
picture is crucial for us deciding which kids need remediation, which kids need 
intervention, who do I need to focus on, all this educational stuff we have to be concerned 
about. We can save it to look back at later. In the heat of the battle of the classroom we 
might not be able to address every single misconception. [July 31, 2006; year 2, day 1] 

On another day the teacher-instructor reinforced pedagogical strategies of speaking 
mathematically in class discussion, classroom discourse, and engagement. 

Participant 1 (P 1): We have to reset our window. 
I 1: Ahh – This is a great discussion because I would hope the kids would say our window 

[on the calculator] is not right now. What do we need to change our window to?  
P 1: Something above 84.  
I 1: So we have students in the calculator change the window to something above 84. Now 

we have a discussion. I want to pause for a second. Why do you think it might be more 
powerful to have every student look at this graph versus the teacher standing up here just 
graphing “watch.”  

P 2: Ask them what they thought. 
P 3: And you could do a Quick Poll of what they thought.  
P 4: That way you would have everybody engaged. 
I 1: You said the magic word, engaged! They are taking active participation in the activity. . .  
I 1: (summarizing a few seconds later) Obviously we are talking about discourse, and this is 

great discussion. In the Navigator world this is what should be going on in your 
classroom. It is different from the days when the teacher lectures and the kids sit there . . . 
and write stuff down. . . . So we get engagement. [August 2, 2006; Year 2; Day 3; PM] 

In the brief episode below, one instructor emphasized the importance of planning good 
pedagogy, speaking mathematically in classroom discourse, and student error analysis and 
revising incorrect answers. In discussion a participant turns the topic by asking about indicating 
the correct answer for a Quick Poll. Another instructor discussed the potential for increased 
argumentation if the correct answer is not indicated. 

I 2: When it comes to your presentations on Friday, keep everything in mind. You should use 
all of this technology in a pedagogically sound way. [I 2 asks a question followed by a 
brief participant response; I 2 continued:] That’s the discourse; when we get to the point 
where we can talk about mathematics and talk about error analysis and get kids to revise 
their incorrect thinking and get their incorrect thinking to be correct. I use a little trick: I 
say give me a good case for why we choose ‘false;’ or make a good case for choice ‘c.’  

P 5: If they saw the correct answer [bar] in green, there would be no discussion. If you set the 
system so the correct answer is not indicated we can go back later to see the correct 
answer.  



Vol. 5  1029 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 
 

I 3: Certainly there is tremendous discussion without knowing the correct answer, because 
the kids argue more vehemently. Sometimes, I seed my questions so the obvious 
[apparent] answer is the wrong one. [August 1, 2006; Year 2; Day 2; PM] 

 
Institute Evaluation Survey Results 

The Institute Evaluation Survey was administered at the end of each summer institute (see 
Table 1). Overall, participants rated the Summer Institute very highly on a Likert-type scale with 
means on appropriateness of content of 4.5 and 4.8. Participant’s perceived usefulness of the 
pedagogy and their self-confidence in using the TI-Navigator exhibited means of 4.1.  

 
Table 1. Institute Evaluation Survey Results 

Construct Cohort 1 (N=60) Cohort 2 (N=47) 
Mean* SD Mean SD 

Appropriateness of institute content  
(5 items; see Table 2) 4.54 .70 4.76 .54 

Perceived pedagogical usefulness  
(8 items; see Table 3) 4.10 .85 4.08 .81 

Perceived self-confidence in components 
(15 items) 4.09 1.18 4.10 1.02 

*Note: 1 – strongly disagree; 5 – strongly agree 
 

Table 2 presents participant responses to specific items about the appropriateness of institute 
contents. Appropriateness included materials and discussions about pedagogy. These resulted in 
the indicated levels of comfort and confidence that they can teach with the TI-Navigator. Across 
the two cohorts, the percents of participants who agreed or strongly agreed ranged from 87% to 
and impressive 98%.  
 
Table 2. Participant Responses about Appropriateness of Institute Contents 

Statement: single item  

Cohort 1 
% somewhat 

agree or 
strongly agree 

Cohort 2 
% somewhat 

agree or 
strongly agree. 

The content of this institute was at the appropriate level 90 93 
The institute materials were useful and helped me learn how 

to teach more effectively with the TI-Navigator 
98 98 

The institute helped make me feel more comfortable about 
using this TI-Navigator technology in my classroom 

95 98 

The discussions about how and why to teach with the TI-
Navigator (i.e. pedagogy) were valuable to my everyday 
teaching 

87 98 

As a result of this institute. I will be able to use TI-Navigator 
technology in my teaching 

98 98 
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Table 3 presents participants rating of their learning of various specific pedagogical issues. 
The statement in the item stem reads: “As a result of this institute, I have a better understanding 
of the following pedagogies.” In Cohort 1, 77% to 90% agreed that the institute had helped their 
understanding. In Cohort 2, 74% to 89% agreed that the institute had improved their 
understanding of various pedagogical issues.  

Participants were asked to respond to the components with the item stem: As a result of this 
institute, “I have a better understanding of the following TI-Navigator components.” Regarding 
the primary component uses: Create a class, Quick Poll, LearningCheck, Screen Capture, student 
inquiry/data aggregation, Activity Center, Class Analysis, send lists applications and programs. 
Participants agreement (combining somewhat agree and agree strongly) over the two summers 
ranged from 87% to 100%. On other facilities: network manager, sending internet data to the 
class, percent of agreement ranged from 22% to 48%, and collecting files was 83% and 89% 
agreement for cohorts 1 and 2, respectively.  

 
Table 3. Participant Ratings of their Improved Understanding of Specific Pedagogies 

As a results of this institute, I have a better understanding of 
the following pedagogies: 

Cohort 1 
% somewhat 

agree or 
strongly agree 

Cohort 2 
% somewhat 

agree or 
strongly agree 

Classroom discourse to reveal student strategies  83 89 
Formative assessment  74 68 
Strategies to support developing self-regulated learning 83 77 
Questioning strategies  77 83 
Critical junctures when I might use the TI Navigator 82 96 
Classroom norms that foster understanding and development 

of strategic behavior 77 80 

Mathematical explanations and justifications  85 74 
Uptake of correct and incorrect student responses  90 89 

 
Conclusion 

A professional development program patterned after the T3 model was designed for the 
national field trial research study of implementation of the TI-Navigator in Algebra 1 
classrooms. An important component of the professional development was teacher-instructors 
modeling their use of TI-Navigator based on their classroom teaching experience. The teacher-
instructor roles were supplemented with faculty lectures on applying theory to classrooms. 
Additional professional development activities were designed to implement the principle of 
ongoing PD. Participants met for CCMS specific learning one day per year and attended the T3 
International Conference. Additional online training and a listserve for participant 
communication were made available.  

The summer institutes were evaluated highly. Participating teachers generally agreed that 
they had learned facility with the TI-Navigator, pedagogical issues and that the institute activities 
were appropriate. Future work will undertake an evaluation of annual daylong PD activities and 
use of the project listserv. 
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End Note 
1The research reported here is from the project Classroom Connectivity in Promoting 

Mathematics and Science Achievement supported by the Institute of Education Sciences, U.S. 
Department of Education, through Grant R305K0050045 to The Ohio State University. The 
opinions expressed are those of the authors and do not represent views of the U.S. Department of 
Education. 
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This paper examines teachers’ developing understanding of student failure in freshman 
mathematics classes. The question organizing my inquiry was: How do high school mathematics 
teachers who are engaged in equity-oriented reforms learn about struggling students in their 
workplace communities? I found that teachers’ conversations shifted away from personal 
reflections and moved toward understanding the classroom systems that contribute to student 
failure. Teachers’ learning was signaled by changes in their framing of student failure. By 
joining concepts of frame analysis and learning in a community of practice, this study 
contributes conceptual tools for understanding teachers’ learning at the level of mechanism. 
 

Teachers’ ideas about student ability directly shapes the culture of learning in their 
classrooms. If teachers believe that student ability is fixed, then there is little they can do about 
students’ learning difficulties. If, on the other hand, teachers have a more developmental view, 
believing that ability is dynamic, they are more likely to adapt their practice and send students 
messages that encourage persistence in the face of difficulties (Weinstein, 2004). Yet teachers 
vary in the extent to which they adapt their practice to the diverse learners they encounter 
(Stodolsky & Grossman, 2000). When faced with underprepared students, teachers often feel a 
tension between upholding subject matter standards and meeting learners where they are (Horn, 
2007). Teachers’ conceptions of struggling students are thus important sites for their 
reconceptualization of student ability. Research suggests that teachers' participation in a strong 
teacher community has the greatest potential for yielding the kinds of teacher learning that 
produces equitable student outcomes, though what that learning is or how it might be taking 
place is largely unaccounted for in the literature (Gutiérrez, 1996; Horn, 2005; Little, 2003; 
McLaughlin & Talbert, 2001). As such, the overarching research question organizing my inquiry 
was how do high school mathematics teachers who are engaged in equity-oriented reforms learn 
about struggling students in their workplace communities? 

 
Rationale 

My study targets high school mathematics because mathematics consistently plays a 
gatekeeper role for students (Moses, 2001; NRC, 1989; Schoenfeld, 2002): “More than any other 
subject, mathematics filters students out of programs leading to scientific and professional 
careers […] Mathematics is the worst curricular villain in driving students to failure in school” 
(NRC, 1989, p. 7). What is most disturbing is the fact that a disproportionate number of poor and 
minority students compose this group, a disparity that is quantified in the “achievement gap” that 
plagues our nation. By targeting high school mathematics, I situate my study in the context of a 
critical gateway/gatekeeping subject. 

I focus my study on teachers engaged in equity-oriented reforms for two reasons. First, in 
keeping with the prior reasoning, a specific portrait of teacher learning about equity-oriented 
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reforms concerning struggling students can directly speak to single-system attempts to change 
disparities in student achievement by educators. To achieve this goal, I selected a group of 
teachers who not only chose to engage in equity-oriented reforms but who also had some success 
with their efforts to improve equitable outcomes. This particular group is made more exceptional 
as a case of teacher community because it was designed for optimizing teachers’ learning (e.g., 
attending to issues of equity through conversations about curriculum and pedagogy became a 
part of teachers’ daily work) and had considerable external support by our research team.  
Second, there is presumably a greater impetus for teachers engaged in equity-oriented reforms to 
question their assumptions and practices, rendering their learning about students, teaching, and 
subject matter more visible. I make this assumption because a major goal of equity-geared 
reforms is providing all students with rich opportunities for making sense of essential 
mathematics ideas. It follows that the conditions surrounding teachers’ enactments of reform, 
such as instruction and classroom culture, must also align with this goal in order to yield 
equitable outcomes. As such, my focus on teachers who are collectively engaged in equity-
oriented reforms is a strategic choice for increasing observable instances of teachers’ 
sensemaking on struggling students. 

 
Theoretical Framework 

Teachers’ Learning in a Community of Practice 
Teachers’ participation in their professional communities is a social endeavor. This activity 

catalyzes a dual process of participation and reification, which is the fundamental process 
through which learning happens (Wenger, 1998). This learning-as-a-social-phenomenon stance 
influences my more general conception of teacher community, meaning that the communities do 
not necessarily have a certain level of functioning, improvement-oriented stance, or meet some 
other criterion. In other words, these teacher communities are “neither intrinsically beneficial nor 
intrinsically harmful. Rather, they constitute the places in which organizational and individual 
learning unfolds” (Coburn & Stein, 2006, p. 28, emphasis in original). As such, by adopting a 
community of practice perspective – which Wenger (1998) characterizes as communities where 
members are mutually engaged in an activity, held together by a joint enterprise, and have a 
shared repertoire of customs for praxis – I identify learning as change in participation within that 
community.  This definition of learning recognizes the co-construction and distribution of 
knowledge across teachers and takes the wider social context into consideration (Kelly, 2006). 
Individuals’ learning can be conceptualized as movement from legitimate peripheral 
participation by newcomers to fuller forms of participation by old-timers: “As they progress they 
acquire the skills, the identity, and the ways of acting and interacting valued by the community” 
(Coburn & Stein, p. 44; see also Kelly, 2006; Lave & Wenger, 1991; Wenger, 1998). 

This theoretical framing is critical for this paper because it places my study of an equity-
oriented teacher community in a broader community of practice landscape, which means that the 
community in my study is not privileged for its equity orientation. In other words, when looking 
across teacher communities, an equity-oriented community is not more or less of a community 
as an entity than another teacher community; when looking within the teacher community itself, 
the community’s equity-orientation does not lock it into one state of being (i.e., “strong learning” 
or “mature”). More importantly, such a framing allows for an equity-oriented description with 
the understanding that such a description is not necessarily unitary or consistent. Rather, a 
community of practice framing helps me see such communities for what they are: key sites for 
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negotiation of the meaning of equity-oriented reifications about students, (Coburn & Stein, 
2006), which makes observable instances of teachers’ learning around these issues more likely 
(Kelly, 2006). To be clear, this means that it is possible for the community in my study to look 
like a developmentally mature, strong teacher learning community in one instance, and then 
perhaps an evolving weak community in the next instance (Grossman, Wineburg, & Woolworth, 
2001; McLaughlin & Talbert, 2001); I will need to look well beyond the labels – including 
equity-oriented – to make sense of teachers’ learning through interactions in their workplace 
communities. This framing provides a value-neutral basis for my analysis of teachers’ learning 
because it allows for the nonlinear, dynamic, zigzag nature of teachers’ learning about students, 
teaching, and subject matter through interactions in their workplace communities.  
Frame Analysis as a Means for Capturing Learning 

My study aims to understand teachers’ learning about struggling students in a community of 
practice context, and so I need conceptual tools that will help capture learning as changes in 
participation within teachers’ interactions – changes that may be subtle, ambiguous, and most 
certainly complex. I turn to theoretical and empirical work on frame analysis for ways of making 
sense of this interactive learning process as it unfolds (Benford & Snow, 1986; Goffman, 1974; 
Snow, Rochford Jr., Worden, & Benford, 1986). Frame analysts look at the interactive process 
by which frameworks are created in social interactions, and focus on “how people use 
interpretive frames strategically to shape others’ meaning-making processes in an effort to 
mobilize them to take action” (Coburn, 2006, p. 347). I take framing interactions to be evidence 
of learning because these processes – processes such as framing (e.g., prognostic, diagnostic, and 
motivational), reframing, offering counterframes, aligning to frames, and frame amplification 
(Benford & Snow, 1986; Snow et al., 1986) – mark and describe changes in participation in a 
community of practice. As such, examining the ways teachers engage in framing interactions in 
relation to struggling students stands to result in more manageable units of teacher interactions 
for the analysis of their learning (Evans, 2002; Russell & Munby, 1991).  

 
Methods 

This research takes place in the context of a larger project, Adaptive Professional 
Development for High School Mathematics Teachers (Ilana Horn, Principal Investigator), a 
design-experiment project situated in part at Septima Clark High School (all names are 
pseudonyms), a diverse, large, urban comprehensive high school in a large northwestern school 
district in the US. Our research team worked with the Clark mathematics teachers using a mutual 
appropriation approach – that is, we collaborated with the teachers to create activities that fit 
theoretical principles about equitable mathematics teaching while serving the teachers’ goals 
(Cole, 2006). Our precepts included pedagogical principles about equitable mathematics 
teaching, such as the use of pedagogical strategies to engage learners in important mathematical 
ideas (Boaler, 2002, 2006; Horn, 2006; Moses, 2001). In addition, we used learning principles 
for teachers, such as prioritizing providing teachers with collaborative time in the school day to 
make sense of new practices in their classrooms (Horn, 2005, 2007; Horn & Little, under review; 
Little & Horn, 2007). For this paper, I examine teachers’ learning about struggling students in 
context of their interactions during this collaborative time.  

During the 2004-2005 school year, I followed the interactions of the mathematics department 
at Clark in my role as a research assistant on the project.  I observed classrooms, attended 
department meetings, and provided classroom support to teachers. One teacher in particular, 
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Susan, struggled with issues related to students, teaching, and mathematics. She asked for my 
help, and so I provided her with additional classroom-based support several days per week, such 
as co-planning instruction, doing mathematics, modeling teaching, making sense of student 
work, and interpreting student interactions. However, even with my classroom-based support 
Susan still faced a crisis: over 75% of her freshmen students were failing her first-year 
mathematics course. This crisis caused the other teachers of first-year mathematics to examine 
their pass rates, and the results were stunning: more than 50% of students taking the first year 
(9th grade) mathematics course at Clark were failing. The Clark teachers were in a panic over this 
crisis and asked our research team to help them make changes to their existing curriculum and 
pedagogy with the aim of improving all the success of all students.  

Realizing the ambitious nature of the Clark teachers’ plans for implementing starkly different 
pedagogical and curricular equity-oriented reforms, our team designed an intervention for the 
2005-2006 school year to support their reforms. We created the “Freshman Team” intervention 
by providing the four teachers of first year mathematics with an extra planning period (in 
addition to their personal planning period) so that they would have dedicated time during the 
school day to collaborate around issues of teaching and curriculum. We also helped Clark find a 
new teacher trained in equity-geared teaching practices who could take on the “missing” four 
first year classes, in addition to being a part of the collaborative team and having her own 
personal planning period. We aimed our intervention at freshman mathematics because it is – 
and was at Clark – in this course where students are historically most likely drop out of high 
school mathematics, a group disproportionately represented by poor and minority students. 
Clark’s principal supported this intervention by crafting the master schedule so that all five team 
members had a common overlapping planning period. The Freshman Team met during every 
sixth period, and was composed of five teachers: Susan, Zack, Rose, Julie, and Linda. 

Through active participant observation, I collected a variety of qualitative data about the 
teachers’ work, including audio records and fieldnotes of the Freshman Team’s weekly meetings, 
artifacts of classroom practice, records of professional development activities, and teacher 
interviews. In addition, I have the “headnotes” I collected through my experiences working at 
Clark that allow me to build connections between events and have a deeper knowledge of the 
place and participants (Emerson, Fretz, & Shaw, 1995). I crafted a case study around the 
Freshman Team at Clark because this method will help me concentrate my investigation and 
analysis on the complexities and particulars of teachers’ learning around about struggling 
students in context of equity-oriented reforms (Merriam, 1998). By conducting an in-depth 
analysis of the Freshman Team teachers’ learning around issues of struggling students I am able 
to use the case of Clark to theorize about teacher learning inside of a community of practice 
more generally, which responds to a need for case studies of this nature (NAE, 2008).   
Data Analysis Procedures 

I began my analysis by content logging all of the recorded Freshman Team meetings in 
chronological order. Then, I systematically examined the content log and timeline resources with 
my unit of analysis: the episodes of pedagogical reasoning (EPRs) (Horn, 2005) that are related 
to struggling students. Horn (2005) defines the EPRs to be  

units of teacher-to-teacher talk where teachers exhibit their reasoning about an issue in their 
practice. Specifically, EPRs are moments in teachers’ interaction where they describe issues 
in or raise questions about teaching practice that are accompanied by some elaboration of 
reasons, explanations, or justifications. (p. 215) 
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My decision-rule for locating EPRs is based on topical shifts that are related to struggling 
students. Identifying these episodes allowed me to systematically reduce the larger data corpus 
into smaller portions of Freshman Team meetings that are the most proximal and relevant to 
teachers’ learning about struggling students.  

Next, using my theoretical framework, I coded the transcripts from the most proximal and 
relevant episodes of pedagogical reasoning based on teachers’ sensemaking around struggling 
students, and in particular, noted instances where teachers use interpretive frames strategically to 
shape others’ meaning-making processes and in what way these frames are being used (e.g, 
prognostic framing versus diagnostic framing, reframing versus counterframing, etc.). Once the 
data were coded, I looked for themes that helped make a case for teachers’ learning (or not) 
around issues of struggling students. I then generated findings based on my analysis of a 
strategically reduced data set. 

 
Results 

I examined teachers’ learning about struggling students through a close analysis of one 
conversation that emerged as significant from the larger data analysis process. This conversation 
took place at the end of the first term (January 2006) after the research team initiated an activity 
to support an investigation into the reasons for students’ failure. On this day, teachers used their 
two-hour meeting time to go to the counselor’s office as a group to review the student history 
files of their students they identified as struggling students. They did this activity in conjunction 
with another planned “make-up packet” intervention for their struggling students. 

The teachers used the first 90 minutes of this meeting for review of student histories. During 
this time, Zack privately commented to a member of our research team that he did not 
understand the value and utility of this review. At the end of this review, Zack, the Team-
designated facilitator of this meeting, prompted the group to debrief this activity by asking the 
following question: “Did you find anything interesting out, and what are you gonna use it for?” 
Rose responded to Zack’s question first, and launched the debriefing with a finding about student 
transitions: 

I found a lot of transitions for ELL and special ed kids, and that kids are having trouble with 
these transitions. […] They don’t get any support when they transition out, which doesn’t 
make any sense to me. I don’t know if there’s anything we can do about that, because that 
seems like the time when the kids need the most support.  

Rose’s report suggests a call to action around supporting struggling students through important 
transitions (motivational framing). Julie went next, and reported that she thought that one of her 
struggling students was just a lazy kid: “my perception is that he’s lazy, not getting it, 
troublemaker.” But then she found evidence contradicting her perception in his records:  

You know, he had pretty good grades up until, you know, this year. So I know he can do the 
math. His test scores show that he can do the math. Or at least he tests well, you know. So, 
you know, kind of gives me new glasses to look at him through.  

Julie demonstrates a change in participation in the community of practice (learning) by her 
demonstration of a change in her framing of a problem of practice about one of her struggling 
students. Her view shifted from one that linked a struggling student with laziness (diagnostic 
framing) to a more multidimensional view that this student is capable of doing mathematics, and 
by extension, indicates her agency in helping this student reclaim this capability (prognostic 
framing). What is more, even though it was Linda’s turn to reflect when Julie finished speaking 
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this thought, Rose interrupted the sharing out process to say, “Maybe something recent happened 
with that kid. Maybe that’s a good thing to try to find out!” Rose’s comment opened the 
conversation back up on Julie’s student (motivational framing and frame amplification), which 
generated discussion around supporting him and other students like him (prognostic framing).  

The debriefing continued in this manner, where each teacher reported and reflected on what 
she or he found. Zack was the last teacher to report out. I interpreted his reflection as an account 
that confirmed and amplified what he already knew: struggling students are students who have 
poor work habits and perform poorly, and always have. Based on his report, I infer that though 
Zack believes teachers amplify the struggling student problem with practices like social 
promotion, the main problem is mostly attributed to the ways in which students work in class. As 
an analyst, I interpreted Zack’s report as one that frames the problem of struggling students in a 
way that primarily locates the problem of student failure with the behaviors of the students 
(diagnostic framing). Despite Zack’s negative outlook on this exercise and his framing of the 
struggling student problem, Rose responded to Zack’s comment by wondering about kids who 
have been failing for ever and ever and ever. What happened? What do you do? How did they 
get so behind? They must not understand anything that’s going on. This statement oriented and 
opened up the conversation to an alternative framing of the struggling student problem 
(reframing using prognostic/motivational framing). Linda aligned with and extended Rose’s 
potential reframing by saying that students “must get just so used to it,” which implied that it 
must be really difficult for struggling students to overcome a history of failure, or to believe that 
success is possible (frame alignment using motivational framing).  

Lisa – the external professional development specialist funded by our project – then made a 
conversational move that connected this conversation to status (“the first thing that popped into 
my head is status”) and asked, “How much does he believe that he's not capable if he's been 
being told the same thing over and over and over again?” I interpret Lisa’s statement as a move 
to align with and extend Rose’s and Linda’s reframing with status (students fail because they get 
multiple messages that they are not capable), which also served as a contrast Zack’s framing of 
the problem (students perpetually fail because of their work habits). Lisa’s comment “finished” 
the “community” reframing by linking the struggling student problem to status (frame bridging), 
which further served to engage teachers’ agency with this problem. 

I claim that Freshman Team aligned with a community-based “status reframing” that was 
built by Rose, Linda, and Lisa. This reframing locates the problem inside teachers’ classrooms, 
giving the Freshman Team agency over the problem. The data show how teachers’ participation 
in this conversation on sensemaking around struggling students shifted away from Zack’s 
framing that locates the problem inside the student, and moved towards alignment with the 
community-based framing started by Rose. What is more, teachers’ participation in this 
conversation shifted away from personal reflections, and moved toward understanding the within 
classroom systems that contribute to student failure. Taken together, I argue that these shifts 
show changes in teachers’ participation in a community of practice (Wenger, 1998). This 
indicates that the Freshman Team learned through this conversation about the conditions that 
contribute to student failure and how to better support them. In other words, these teachers’ 
learned about struggling students through participation in their workplace community in a way 
that led to their reconceptualization of student ability, an important process for adapting their 
practices and changing the culture of learning in their classrooms (Weinstein, 2004). 
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Discussion and Implications 
In this paper, I examined teachers’ conversations in their workplace communities for the 

purpose of understanding the nature of teachers’ learning about struggling students. I found that 
teachers’ participation in a workplace community conversation brought about alignment toward 
or away from a developmental framing of student ability. I interpreted these shifts in framing as 
a marker of teachers’ learning about their struggling students. Theoretically, this analysis 
contributes to our understanding of teachers’ learning about struggling students through 
participation in their workplace communities. By connecting the conceptual tools of frame 
analysis with analysis of teachers’ learning in a community of practice, this study contributes to 
the development and use of conceptual tools for understanding teachers’ learning at the level of 
mechanism, which responds directly to the need for more literature clearly explaining what 
teacher learning is within a workplace group or how it might be taking place (Grossman, 
Wineburg, & Woolworth, 2001; NAE, 2008).  

This study also serves to highlight emergent issues that warrant further study, such as the 
effects of teachers’ roles within the workplace community and looking at individual teachers’ 
learning alongside group learning. For example, Rose consistently made conversational moves 
that pressed the group for deeper understanding and opened up the conversation for alternative 
framing, such as when she commented about Julie’s student (“Maybe something recent happened 
with that kid”). This comment engaged Julie’s agency with that student, which changed the 
group’s sensemaking around Julie’s student, thereby helping Julie and the rest of the Freshman 
Team learn that there is something more that can be done to support that student. I theorize that 
Rose’s participation in the conversation catalyzed a collaborative reframing process that resulted 
in teachers’ learning. 

Furthermore, I hypothesize that Zack’s ambivalence towards this exercise – an exercise 
connected to the equity-orientation of the group – and his consistent orientation to diagnostic 
framing for problems of practice closed off this learning opportunity for him. For example, at the 
end of the debriefing, Zack remains uncertain about the utility of their shared activity, and makes 
a comment about struggling students who get “passed along” in spite of their failure. His 
participation appears relatively constant, which indicates little visible learning around issues of 
students in this conversation. My hypothesis brings up an emerging analytic issue concerning 
Zack’s learning opportunities alongside an analysis of his learning. In addition, analysis of group 
dynamics alongside individual learning has not yet been done and will help us better understand 
the relationships between individual and group learning. Though these emergent issues raise 
questions that need to be addressed in my future work, this analysis highlights the possible levers 
for bringing more teachers into a developmental view of student ability.  
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Background and Literature Review 
American students continue to perform poorly on tests of mathematics achievement (National 

Center for Educational Statistics [NCES], 2000; 2004). Analyses of student scores on large-scale 
tests have gone beyond identifying student performance shortcomings, and have identified specific 
factors that influence student achievement. Studies have shown that students’ mathematical 
learning can be positively influenced by allowing students to explore hands-on tasks that focus on 
students’ higher-order thinking skills (Wenglinsky, 1998). Further, students’ learning has been 
linked to specific pedagogies, such as posing questions about students’ mathematical thinking 
(Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 1996). While these practices echo the 
recommendations for mathematics education reform (National Council for Teachers of 
Mathematics [NCTM], 1989, 1991, 2000; RAND, 2003; Schoenfeld, 1992), the enactments of 
these pedagogies are still rare in today’s classrooms. 

How do we support teachers’ enactment of these pedagogies? A recent synthesis of research 
about teachers’ enactments of mathematics curricula suggests that numerous teacher factors, 
such as content knowledge, pedagogical content knowledge, beliefs and their interpretation of 
the curriculum influences how learner-centered activities are enacted in classrooms (Remillard, 
2005). Teachers must be given opportunities to develop an understanding about these pedagogies 
while also participating in experiences that develop each of the teacher factors mentioned above. 
Professional Development’s Role in Improving Student Learning 

In the past decade, professional development leaders have presented theoretical perspectives 
about how teachers learn (Cohen & Ball, 1999; Putnam & Borko, 2000; Richardson, 1996) and 
recommended principles for effective professional development programs (e.g. Guskey, 2003). 
These recommendations include:  

• focusing on issues related to student learning (Hawley & Valli, 1999); 
• allowing teachers to take ownership of their learning (Hawley & Valli, 1999; Loucks-

Horsley, Love, Stiles, Mundry, & Hewson 2003); 
• addressing specific content and pedagogies (Desimone, Porter, Garet, Yoon, & Birman, 

2002); 
• providing opportunities for teachers to reflect and learn from their own practice (National 

Partnership for Educational Accountability in Teaching [NPEAT], 2000a, 2000b; Putnam 
& Borko, 2000); 

• allowing teachers to collaborate with each other and with project staff (Sparks & Hirsch, 
2000); and  

• providing ongoing and comprehensive activities (Loucks-Horsley et al., 2003; Richardson, 
1996).  
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In essence, these documents call for learner-centered approaches to professional development 
(NPEAT, 2000a, 2000b).  

In mathematics education, promising approaches to learner-centered professional 
development (LCPD) have been advanced.  These programs allowed teachers to focus on student 
learning by having them watch videos of their own classroom instruction (Sherin & van Es, 
2005) examine student work samples (Carpenter, Fennema, & Franke, 1996; Fennema et al., 
1996), collaborate with university faculty to develop and implement reform-based curricula into 
their classroom (Silver, Smith, & Nelson, 1995; Silver & Stein, 1996), and make instructional 
decisions based on their analysis of student work (Fennema et al., 1996; Schifter & Simon, 
1992).  

While learner-centered principles have been widely embraced, empirical research is needed 
to examine how LCPD programs influence teachers’ classroom practices and their students’ 
learning. Typically, professional development research includes only teachers’ self-report about 
their perceptions, experiences and intentions to apply their new knowledge and skills in their 
classroom (Guskey, 2000). While this information is useful, teachers often overstate how they 
intend to use what they have learned from professional development in their classroom (Buck 
Institute for Education, 2002). LCPD research must study participants’ enactments of pedagogies 
emphasized during workshops. 
 

Methodology 
Based on the need to examine teachers’ enactments of pedagogies emphasized in a 

professional development project, I conducted a naturalistic study (Patton, 2002). Two research 
questions guided this research: 

1. To what extent (and how) do teachers enact the practices emphasized in a learner-
centered professional development during their mathematics teaching?  

2. How do teachers’ enactments of the practices emphasized during learner-centered 
professional development compare with their espoused and intended practices?  

Context 
Two teachers participated in this naturalistic, qualitative study (Patton, 2002). Both teachers 

taught in an urban elementary school located near the downtown area of a major city in the 
southeastern United States. Seventy-nine percent of students at the school qualified for free or 
reduced lunch. The participants, along with colleagues from other elementary schools in the 
district, took part in a professional development program designed to prepare them to integrate 
learner-centered mathematical tasks and associated pedagogies into their classrooms. During the 
program, teachers completed mathematical tasks while the project staff modeled learner-centered 
pedagogies, worked with related technologies, examined cases from the Developing 
Mathematical Ideas curriculum (Education Development Center, 2006) and discussed how to 
address the state mathematics standards by having students complete mathematical tasks.  
Participants 

Shantel. Shantel, an African-American female, has been teaching the 5th grade for 13 years. 
During the study, Shantel taught three departmentalized mathematics classes daily: one with 
students in the Early Intervention Program (EIP) and two with students at grade level (AGL-1 
and AGL-2). During her baseline interview, she indicated her intention to use professional 
development-related practices in order to change her teaching in what she referred to as a “good 
way” to help her students learn. 
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Keisha. Keisha, an African-American teacher, has completed six years of teaching, including 
four years as a 4th grade teacher. Keisha finished her specialist degree in Educational Leadership 
in August, 2005, and described herself during her baseline interview as “a lifelong learner.” In 
her first year, Keisha did not teach mathematics, so this year was Keisha’s third year of teaching 
4th grade mathematics. Keisha frequently characterized herself as a “different” teacher because 
she used manipulatives, games, songs, videos and other instructional strategies to teach 
mathematics to her students. 
Data Collection 

Data were collected related to intended (i.e., what they planned to do), enacted (i.e., what 
they were observed doing), and espoused practices (i.e., what they believed they did). Teachers 
were observed when they indicated their intent to implement practices consistent with the 
professional development goals and were interviewed to identify their intended and espoused 
practices. During each implementation a video camera and a wireless microphone were used to 
record the classroom activity. Further, I recorded field notes about the students’ work and the 
teachers’ interactions with the students. I interviewed each teacher after the observations about 
their intended and espoused practices. 
Analysis 

The Video Analysis Tool (VAT; http://vat.uga.edu) was used to code instances of the six 
instructional practices emphasized during the professional development (i.e., tasks, questions, 
algorithms, technology, student communication, and mathematical representations) using a lens 
that codified the extent to which they implemented the pedagogies. The lens (Figure 1) was 
constructed based upon scales that were developed during prior research studies (Fennema et al., 
1996; Hufferd-Ackles et al., 2004) and was refined after initial pilot testing. Interview data were 
analyzed using inductive analysis. The instructional practices in the scale were used as primary 
codes during the analysis of the interviews.  
 

 
Figure 1: Sample scale. 

 
Findings and Discussion 

Several patterns from the data analysis warrant further discussion: These are discussed in this 
section.   
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Little evidence was found to indicate that participants’ enacted practices aligned with the 
professional development intended practices. Consistent with prior research studies (e.g. 
Cognition and Technology Group at Vanderbilt [CTGV], 1997; Doyle, 1988; Henningsen, Stein, 
& Grover, 1996), a majority of the enacted tasks did not align with the professional development 
goals. Both teacher-participants implemented didactic tasks that did not include resources or 
used them for rote procedures rather than to complete the tasks. One explanation for teachers’ 
enactments of low-level tasks might be their desire for their students to have success in 
mathematics. Previous studies about the enactment of mathematical tasks (Doyle, 1988; 
Henningsen, Stein, & Grover, 1996; Kim & Stein, 2006; Tarr, Chavez, Reys, & Reys, 2006) 
found that teachers often provided rote procedures, skills-based practice problems and explicitly 
told students how to complete the tasks in order to ensure students’ success.  

Subsequent implementations were more likely to feature learner-centered tasks and high-
level questions. Professional development researchers examining teacher questioning of students’ 
mathematical thinking reported that teachers needed time to make substantive changes to their 
teaching practices (Richardson, 1994; Orrill, 2001) and to recognize instances where questioning 
would be appropriate (Sherin & van Es, 2005). In the present study, both participants asked more 
high-level questions during their latter enactments. The increase in high-level questions as the 
study progressed may be evidence of the cumulative impact of ongoing professional 
development activities. During the workshops, teachers observed high-level questioning 
strategies modeled by the professional developers, reading and watching teachers’ 
implementation episodes and discussing questioning approaches. It seems likely that initial 
attempts to apply target strategies were influenced by limited familiarity and few opportunities to 
practice. Thus, with ongoing workshop and planning support, paired with prior opportunities to 
apply the methods with their students and emerging familiarity and comfort, teachers were more 
likely to demonstrate learner-centered practices in their classrooms.   

Participants’ espoused practices did not align with the professional development goals. 
During this study, teachers’ interpretation of the professional development goals rarely matched 
the actual goals. While teacher-participants’ reported that each of their implementations would 
align with the professional development goals, few were consistent with the project goals. Prior 
studies reported similar results: researchers observed teachers as they employed didactic 
instruction, but teachers’ indicated they were implementing reform-based mathematics 
instruction (Peterson, 1990; Wilson, 1990).  

Although scaffolding influenced classroom enactments, didactic components were evident 
even during highly scaffolded tasks. Tharp and Gallimore’s (1988) application of Vygotsky’s 
Zone of Proximal Development to teacher learning contended that teachers require extensive 
support and guidance when first learning new pedagogies. This support can be scaffolded and 
gradually removed when teachers are able to independently enact these new pedagogies. Studies 
of enacted curriculum (Remillard, 2005; Kim & Stein, 2006) found that teachers were more 
likely to implement learner-centered curriculum when instructional materials adequately 
supported instruction. The present study confirmed teachers’ need for support; classroom 
implementations were most closely aligned with the professional development goals on tasks that 
were scaffolded by the professional developers (i.e., tasks the professional developer modeled or 
co-planned with the participants).  
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Implications for Future Research 
Scaffolding Implementation   

While the scaffolding tended to increase the likelihood of learner-centered task 
implementation, the teachers did not receive the type of progressive guidance recommended by 
Tharp and Gallimore (1988). The workshops transitioned from directly adopted, to co-planned to 
independently planned tasks, but participants varied in the order in which they implemented 
those tasks in their classrooms.  Participants may have been more likely to adopt the professional 
development practices if their first implementation was directly adopted from workshops and 
subsequently followed by co-planned lessons and independently planned lessons. Perhaps initial 
enactments might be more effective if focused on directly adopted tasks modeled during the 
initial workshops and scaffolded via on-site support.  Research is needed to examine the benefits 
and tradeoffs involved in explicitly imposing and scaffolding tasks developmentally.  
Clarifying Links between the Enactments and Student Learning 

Future studies should examine how evidence of student understanding and measures of 
student learning, are influenced by the enactment of learner-centered tasks. The progressively 
scaffolded approach suggested previously may complement this line of research. Implementation 
of adopted tasks might promote consistent student learning outcomes (e.g., similar types of 
student-generated mathematical representations, communication about students’ mathematical 
thinking, and representations of mathematical work). As teachers assume increased ownership of 
the implementations by co-planning and independently planning tasks, and begin personalizing 
their approaches consistent with learner-centered tenets, student learning outcomes might then 
demonstrate greater variation. Research that attempts to link the implementation of learner-
centered tasks to student learning outcomes must start by examining measures of student 
learning that are embedded within the tasks themselves.  

 
Conclusion 

This study provides evidence that scaffolding teacher’s implementations increases the 
likelihood of the enactment of learner-centered tasks—especially after teachers gain greater 
familiarity through professional development workshops and have opportunities to practice the 
methods with their students. However, even highly scaffolded tasks were sometimes 
implemented didactically. Due to the inconsistency between teachers’ self-report and their 
observed behaviors, in situ observations are needed to sufficiently examine participants’ 
implementation of professional development practices. Further, professional development 
researchers must continue to examine the links between teacher learning, teachers’ 
implementations of their new knowledge and skills, and student learning outcomes. 
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This study examined similarities and differences in the learning of two teachers in the context of 
Japanese Lesson Study. The goal of this project was twofold: 1. To assess teacher change as a 
result of participating in Lesson Study: 2 To uncover mechanisms in Lesson Study that support 
teacher change. Both teachers began the lesson study with comparable mathematical knowledge; 
both came from the same school, used the same textbooks and faced similar challenges in terms 
of student learning profiles and attitudes, but only Brenda demonstrated significant changes in 
her practice. An analysis of the transcribed video data revealed that Brenda spent more time 
than Francis examining student work from the practice lessons and also appeared to focus more 
on her students’ developing understandings than Francis did. The implications arising from this 
limited but detailed study are explored. 
  

Background 
Lesson study is becoming an increasingly popular professional development method for 

mathematics educators despite a lack of evidence of its effectiveness in a North American 
context and little research into the processes by which lesson study might lead to improved 
teacher practices and student learning (Lewis, Perry, & Murata, 2006). In lesson study - a 

professional development method credited with improved student learning in Japan over the last 
50 years - teachers cyclically plan a lesson together, observe the lesson implemented in a real 
class, scrutinize student learning, and then re-teach an improved lesson (Stigler & Stevenson, 

2001). Lewis, Perry & Murata (2006) argue that there is a need for formative evaluation to 
summarize the essential processes, and to determine the mechanisms by which lesson study can 

lead to teacher professional development 
and ultimately to improved student 

learning. 
This study introduces a methodology 

for examining lesson study mechanisms 
and teacher learning outcomes associated 
with improved student learning in 
mathematics: teacher beliefs, classroom 
practices and mathematical knowledge. A 
literature review suggested a tentative 
model (see Figure 1) of how these closely-
interconnected concepts might interact 
during lesson study to affect teacher 
implementation of reform mathematics.  

The circle captures the cyclical stages 
of lesson study, beginning with planning. 
The spiral arm conveys the potential 

generative nature of lesson study, building and learning from previous cycles, resulting in 
gradual improvements in mathematics teaching. Improved mathematics instruction in this 

Figure 1.  Theoretical model guiding study. 
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research implies changes in teacher beliefs, knowledge, and practices towards those associated 
with reform mathematics teaching. These changes include teacher’s use of authentic learning 
tasks that promote multiple solutions or strategies, instruction that builds connections between 
mathematical ideas through classroom discourse, and teaching that adapts to the student 
understandings (Ross et al., 2002; Sherin, 2002). 

In order to make these desired changes in mathematics teaching, research has documented 
the increased knowledge demands on teachers, both of mathematics and mathematics teaching 
(Ball et al., 2004). In this research, mathematical understanding (MU) has been defined as the 
ability to see connections between mathematical concepts and flexibly apply this knowledge to 
new situations –a synthesis of Woodruff’s (2007) flexible understanding and Hill, Schilling, and 
Ball’s (2004) subject knowledge. In contrast, pedagogical content knowledge (PCK) refers to the 
teacher’s ability to choose the most appropriate instructional strategies and representations and 
ability to anticipate and interpret student’s understanding and misunderstandings (Hill et al., 
2004). The proposed model suggests planning activities—discussing problematic mathematics 
topics and considering possible teaching strategies—will affect both mathematical understanding 
and pedagogical content knowledge.  

The model proposes that planning activities affect beliefs about mathematics (BM) and 
learning (BL); as teachers explore rich mathematical tasks and reflect on teaching strategies to 
overcome traditional student misconceptions, they need to explicitly examine their beliefs. 
Changing teacher’s beliefs about mathematics and beliefs about learning are considered central 
to reform teaching. Traditional mathematics instruction implies a belief that mathematics is a 
static field comprised of set procedures leading to set answers. In contrast, reform mathematics 
envisions mathematics as a dynamic field emphasizing problem solving continually enhanced 
through conjecture, exploration, analysis, and proof (Smith, 1996).  

The proposed representation also expects that the practice lesson —one of the more unique 
features of Lesson Study— will build teachers’ pedagogical content knowledge as teachers 
observe student conceptions (and misconceptions) of the activity. Similarly, the model predicts 
that, as teachers collegially elaborate their comprehension of student understandings and adjust 
the lesson during the refinement stage, teachers will further develop pedagogical content 
knowledge. It is anticipated that the focus on student learning during the research lesson will 
build teacher knowledge of student understandings and reinforce teacher pedagogical content 
knowledge. As this knowledge increases, it will affect mathematical understandings, beliefs 
about learning, and all stages of subsequent lesson study cycles. The spiral in the model can also 
represent the gradual, yet continual enrichment of these conversations. 

 
Context and Methodology 

To evaluate this model, teachers’ mathematical understanding (MU) (specifically of 
fractions), pedagogical content knowledge (PCK) and beliefs about mathematics (BM) and 
learning (BL) were probed prior to, during and following the lesson study.  Before and after the 
lesson study, the teachers individually solved problems using a talk-aloud protocol and were 
individually interviewed to assess their knowledge of fractions, mathematics teaching, student 
understandings, as well as their beliefs about mathematics and learning.  Additional data were 
collected by recording all lesson study sessions and by having teachers complete short reflections 
on the lesson study process and their own learning.   
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This present study comes from a larger study of four teachers conducted in a small-town 
elementary school in the rural school district where the first author works. The school, with 
approximately 450 students, is a dual-track school in an economically-depressed area, resulting 
in classes in the regular stream having a high proportion of special needs students. The first 
author worked with the teachers as a participant researcher, as the group explored lesson study 
for first time.  The group met formally ten times within a five-week period, with many more 
informal meetings in the hall, the staffroom, and during a shared half-hour commute each day. 
Two formal meetings occurred during school hours, with coverage provided by administration. 
The remaining lesson study sessions occurred after school and at lunch. The teachers, eager to 
demonstrate the lesson study process to their colleagues, arranged a public lesson, attended by 
two staff from their school, six teachers from other schools, and two special assignment teachers 
from the board office. 

In the larger study, more than 25 hours of interview and session transcripts were read closely 
in their entirety to identify themes and categories using peer and participant reviews to develop 
validity and manage subjectivity (Bogden & Biklen, 2003; Macmillan & Schuster, 2001). Matrix 
queries within NVivo 7 (Network Solutions E-Commerce, 2007) investigated relationships 
among the different stages of lesson study and codes identifying changes in teacher beliefs and 
knowledge. This paper contrasts the learning of two teachers; Brenda who made significant 
changes in her practice, and Francis who became more rigid in some of her teaching.  Both  
worked in the same school, teaching grade 5/6 and 6 respectively. Both used the same textbooks 
and faced similar challenges in terms of student learning profiles and attitudes. Interview and 
session transcripts were re-examined to identify differences during the lesson study that would 
explain the variation in teacher change.  As tentative hypotheses developed, the video and audio 
sessions were rechecked in search of discrepant evidence. 
 

Results 
Pre-Lesson Study Mathematical Understanding (MU) 

Both Francis and Brenda were confident completing their pre-lesson fraction knowledge 
assessment.  Francis answered every question correctly except one, and using a mixture of 

procedures and intuitive strategies, she moved flexibly between 
graphical, verbal and formal representations to solve the problems. 
She used sophisticated counting strategies such as counting by 
arrays, and quickly caught any calculation or reading mistakes by 
checking the reasonableness of her answer.  

Brenda also answered almost every question, struggling only 
on the more unusual conceptual-based questions such as 
determining the shaded fraction of a complex shape such as Figure 
2 (where she estimated rather than find the determining the specific 

fraction). She used arrays to determine fractions of the cookie set and easily converted percents 
to fractions, hesitating only at 0.33. She immediately recognized it as an important fraction, but 
needed to use 3/10 as a benchmark to determine it was 1/3. She ordered fractions instinctively, 
without once using a procedure for finding common denominators.  
Pre- lesson Study Pedagogical Content Knowledge  

To assess the teacher’s PCK , the teachers were asked to anticipate how students would 
answer the fraction items that appeared on the teacher interview. While both teachers were 
confident in their own ways of solving these questions, neither Francis nor Brenda was able to 

Figure 2.  What fraction is 
shaded? 
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identify mathematical misconceptions that students might have. Francis could only identify areas 
where students might have difficulties with the presentation of the material, noting for example 
her students might ask, “How come this number has two decimals?” where one dot was the 
period at the end of the sentence. When asked how her students would think about specific 
questions, Francis initially answered in absolutes—students would or would not be able to 
answer: “I think that half of my students would know this.” Brenda’s conception of student 
understanding was limited to whether, in her view, they understood each step of the procedure 
required to solve the problem.  
Pre-Lesson Study Beliefs about Mathematics and Teaching  

The first author observed one of each teacher’s mathematics classes before the pre-interviews 
and the lesson study. In Francis’s class, students were observed answering teacher questions in a 
number sense activity followed by students making up questions for the last answer.  Of the 40 
minutes observed, 35 minutes focused on the teacher asking closed questions with only one right 
answer.  In her initial interview, Francis reported that three days a week her class worked on new 
skills. On Wednesdays her class worked on consolidating number facts, and on Fridays the class 
would work in homogenous groups to solve problems. Francis also noted that her students 
benefited from, and enjoyed drill and practice activities:  

It’s probably old school but I do believe that practice can make perfect and I think it’s 
lacking but I don’t think it does them any harm to practice. 
Brenda reported that, for the most part, she followed the textbook, supplemented by a skills 

duotang.  During the observed class, Brenda provided a teacher-centered lesson on creating nets, 
asking closed questions to review terminology, and provided detailed hints for students to create 
nets. In her interview she noted that she liked traditional math and had difficulty with students 
explaining their work: 

I’m the type of person that I just liked to do math. I don’t want to explain, I don’t 
want to talk, so I’m awful;… Every time I’m telling them [to explain their solution], I 
feel like a hypocrite, because I know I hate it. That’s why I don’t really like teaching 
math, because I like doing, I like thinking about it. 

Post Lesson Study: Changes in Teachers  
Despite their similarities before the lesson study, Brenda’s and Francis’ teaching practices 

and thoughts on teaching appeared to diverge significantly by the end of the Lesson Study 
experience. In post interviews, Brenda reported that that since the Lesson Study she had begun to 
ask her students questions to probe their understanding, such as “How do you know?” Do you 
have a different way of explaining that?’ She also reported that she began to value class 
discussions about student thinking—in sharp contrast to her earlier comments about hating such 
discussions. In addition, when asked to describe student strategies, Brenda revealed a much more 
analytical approach than she described prior to participating in the lesson study. For example, in 
describing a specific lesson involving ordering of fractions, Brenda referred to an example where 
students had to consider which of two fractions was the greater, 20/15 and 10/4.  Brenda noted 
how some students were able to reason by either drawing pictures or converting to mixed 
fractions. She also noted that several students reasoned erroneously asserting that 20/15 was 
bigger because both the nominator and denominator were bigger.   

In another example, where students were asked to find equivalent fractions, Brenda described 
students’ grouping of cookies. When asked whether she thought more students would use the 
grouping strategy or divide the numerator and denominator by the same term, she initially 
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responded that they would most likely divide—the strategy that she would have used.  However, 
she then reconsidered from the students’ perspective: 

I think the dividing strategy. Or would they? They had a hard time going from a lot to 
less. They had more success paper folding and drawing lines—thinking I am going to 
group this. I think you have to present it both ways the abstract and the physical. 

Brenda summarized changes in her teaching from as moving from search for the perfect 
resources to a focus on student understanding:  

I am going to think about what they did, or I am going to look at their work. I am just 
going to read this rather than think of more practice for them, because that’s not reaching 
them. It’s okay to sit back and think about, and read about data management or stem and 
leaf graphs. It’s fine if you don’t bring something new everyday. It’s fine if you just go 
over where they are coming from.… Not just more practice. Mulling over. What’s going 
on in their brain?… We put away the textbook and just discuss. I’ve done a lot of that, 
and I get a lot more out of them.  

In contrast, Francis reported much less change in her teaching: during post interviews she 
seemed at times to be more insistent on traditional mathematics instruction than she had 
appeared to be prior to the Lesson Study. She insisted on the dominance of rules and the need to 
practice set procedures. Even though, as part of the Lesson Study, she had been involved in 
teaching three lessons with the goal of fostering students’ conceptual understanding of equivalent 
fractions, at post interview she asserted that finding common denominators was the only way of 
adding fractions—this traditional method is no longer even in the grade six curricula. She said 
that students did not need to explore why rules worked: 

I think a lot of my students had the rule... I don’t know that we are so concerned with [the 
understanding why]. I thought that the lesson was very good for a lot of students to show 
that they had an understanding of the material. They had an understanding of the rule, of 
the abstract. 
 

Accounting for Differences in Teacher Changes: A Focus on Student Work 
 Given that Francis and Brenda began the lesson study with similar knowledge and beliefs 
and taught similar students in similar classrooms, what differences in their lesson study 
participation might explain their different outcomes? An analysis of the transcribed video data 
revealed that Brenda spent more time than Francis examining student work from the practice 
lessons. She also appeared to focus more on her students developing understandings than did 
Francis.   

After each lesson study session, the student work was distributed to teachers to examine. The 
video record showed the other teachers browsing the student samples for five minutes and then 
proceeding to discuss their notes on the lesson. In contrast, Brenda is visible studying the work 
even after the discussion begins. For example after the first practice lesson, Brenda examined the 
student artifacts for 20 minutes, at times appearing to sort the work into categories. When Brenda 
participated in the discussions she did so by referring to the student work she was trying to 
analyze. For example, in one point she directed the group’s attention to several students’ 
strategies including that of Paul and Adele: 

Paul: He was adding one to the top and four to the bottom [to determine equivalent 
fractions to ¼]. I was thinking, “Where did that come from?” I would have never thought 
like that. 
Adele: Its not a fraction until you cut it up. 
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The video of the debrief session for the second lesson shows a similar pattern in regards to 
Brenda’s interest and focus on student work.  

In contrast, video analyses show that Francis examined the student work for less than three 
minutes after each practice lesson but then was the most active participant in the discussion with 
more than ten turns in each discussion.  During the debrief of the first practice lesson, Francis 
listed the students who “just didn’t get it at all” and several times during the lesson study 
meetings and post interview she reported that it was attention rather than misunderstanding that 
led to students poor achievement. She described students who did not attend to the class review 
of a worksheet and noted “ It’s not that they are totally confused with things but they dismiss so 
much.”  

An examination of the lesson study video indicated that Francis differed from Brenda in how 
she used the materials in her own classrooms, outside of the formal observation lessons. Francis 
tried some of the problems in her class, and reported to the group the students who could or 
couldn’t solve the question, and the frustration students experienced when the teacher refused to 
immediately tell them “the” “right” answer.  

When probed “What were your students thinking” by the first researcher, Francis detailed the 
students who wanted detailed procedures, while Brenda responded she had no idea what her 
students were actually thinking. Francis moved on to other topics, but Brenda persevered. At the 
next group meeting, Brenda reported that she had covered equivalent fractions in her class for 
three periods days before she could see what the students did not understand, and before the 
students could actually do the work. She indicated that “It’s so hard when you are there by 
yourself and trying to observe,” but her comments suggest that she had set up a feedback loop 
within her own class. In these lessons, she analyzed student responses to questions to determine 
their thinking and how instruction should proceed. 

 
Conclusion 

Lesson study consists of a complex web of activities that have the potential to support 
professional development. Although limited, this study comparing the changes in two teachers 
over three months suggests that concentrated examination of student knowledge and their 
developing understandings is an important mechanism of lesson study. While longitudinal 
studies of larger groups of teacher are necessary to determine if this focus on student thinking 
leads to long-term teacher change, this study suggests that teacher knowledge and focus on 
student conceptions through Lesson Study is a powerful supporter of teacher change. 

This central finding of this study has implications for North American teachers undertaking 
lesson study. While a focus on student understanding is an integral component of the Lesson 
Study process, North American teachers may not always be amenable to a careful focus on 
student understanding (Fernandez, Cannon and Chokshi, 2003). In this study only Brenda 
spontaneously examined student work in detail and this attention was followed by significant 
changes in her teaching beliefs and practices. The results of this admittedly small study appear to 
be aligned with the findings of Franke, Carpenter, Levi, & Fennema (2001) where the focus on 
student understandings is an important element of teacher change. 
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This qualitative study examined the career paths of 12 career changers who completed a field-
based Master of Arts in Teaching program to become middle level mathematics teachers. 
Researchers examined the sources of mathematical knowledge for teaching mathematics as well as 
the affect on their mathematics teaching of the context in which these teachers learned and used 
mathematics in their previous careers.  
 

B ackgr ound 
The findings presented here are the result of a pilot study for a larger, multi-state longitudinal 

study that examines the development of career changer mathematics teachers are the middle and 
high school level. This was a qualitative study of 12 career changers who became middle level 
mathematics teachers. Teachers were graduates of a Master of Arts in Teaching (MAT) program 
at a research university in the southeastern portion of the United States. The program had a 
heavy emphasis on field experience. The purpose of this study two fold. The first goal of the 
study was to investigate the sources of professional knowledge that career changers use in their 
teaching of middle level mathematics. In this study researchers sought to describe sources of 
professional knowledge such as knowledge for practice, knowledge in practice and knowledge of 
practice (Cochran-Smith &  Lytle, 1999; Sowder, 2007) necessary for career changers to teach 
middle level mathematics. The second goal of the study was to determine how these career 
changers develop their vision of what they need to know to teach middle level mathematics, their 
mathematical content knowledge for teaching, their understanding about children’s thinking 
about and learning of mathematics, their pedagogical content knowledge, and their sense of self 
as a mathematics teacher (Sowder, 2007). Data sources included surveys, interviews, classroom 
observations, and licensure examinations. In this paper, the researchers report the results on the 
development of the aforementioned types of knowledge and sources of development of such 
knowledge. 
 

T heor etical F r amewor k 
Problem Statement 

The teacher shortage in the United States is a two-fold problem. As student enrollment is 
increasing and teacher attrition rates are also increasing (Ingersoll, 2000, 2007). In its recent 
report, Teacher Attrition and Mobility: Results from the 2004-05 Teacher Follow Up Survey 
(2007) the National Center for Educational Statistics (NCES) reported that in 2004-05 269,600 
teachers left the profession. This number represents 8.4% of the teaching force in that year. In 
California, it is estimated that approximately 33 1/3% of the teaching force is approaching 
retirement age and that 25% of teachers leave the profession in their first five years (CFTL, 
2001). Ingersoll (2000, 2007) reports that the attrition rate for mathematics and science teachers 
is not significantly different from that of the all teachers combined. Because of current attrition 
rates and retirement rates of mathematics teachers at all levels, there have been several attempts 
to increase the number of teachers entering the profession. These attempts include programs for 
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mid-career changers such as Troops to Teachers, programs for recent college graduates with 
degrees in content areas such as Teach for America, and programs that provide an alternative 
route to certification, for example the South Carolina Program for Alternative Certification for 
Education (PACE) program and the American Board for Certification of Teacher Excellence 
(ABCTE). The National Science Foundation (NSF) funds programs such as the Noyce 
Scholarship and Fellowship program to encourage science, technology, engineering, and 
mathematics (STEM) majors to pursue careers in mathematics and science education. Many 
universities offer Master of Arts in Teaching (MAT) programs for career changers who are 
seeking second careers in education. A major goal of these projects is to encourage career 
changers who have experienced successful careers in occupations in which mathematics was 
used to seek second careers as mathematics teachers at the middle and high school levels. 
Researchers report that the inservice and preservice professional development of mathematics 
teachers is an important aspect in the improvement of mathematics education in public school 
systems. (Ball & Cohen, 1999; Elmore & Burney, 1999; Nelson & Hammerman, 1996; Sykes, 
1999; Thompson & Zeuli, 1999) In this study, we seek to understand how novice teachers 
develop their mathematical knowledge for teaching in the context of a field-based MAT program 
designed for career changers who seek certification in middle level mathematics. 
Prior Research  

There has been significant research in the area of teachers’ professional mathematical 
knowledge and its development (Ball & Cohen, 1999; Borasi & Fonzi, 1999; Hill, Ball & 
Schilling, 2008; Ma, 1999; Simon, 1997; Spillane, 2000; Sowder, 2007). Researchers have 
defined professional knowledge for teaching mathematics in various ways. For example Ball and 
Hill (2008) refer to mathematical knowledge for teaching as “the mathematical knowledge that 
teachers use in the classroom to produce instruction and student growth” (p.374). Spillane (2000) 
discusses procedural knowledge as well as principled knowledge for teaching mathematics that 
focuses on the conceptual knowledge that provide a basis for procedural knowledge (p.144). 
Simon (1997) describes the intersection of eight areas of knowledge for teaching mathematics. 
The aspects of knowledge for teaching mathematics described by Simon (1997) include 
knowledge of and about mathematics; knowledge of a meaningful model of mathematics 
learning; knowledge of the way students develop relevant mathematical concepts; knowledge of 
a meaningful model of mathematics teaching; knowledge of students’ interaction with 
mathematics; knowledge of goal setting for students; knowledge of what student learning might 
occur; and knowledge lesson planning that is consistent with one’s model for teaching 
mathematics. Ma (1999) discusses at length the fundamental knowledge of mathematics that is 
required for teaching elementary mathematics. In the Mathematical Education and Development 
of Teachers, Sowder (2007) synthesizes the research on the professional development of 
mathematics teachers. In particular, Sowder uses the framework proposed by Cochran-Smith and 
Lytle (1999) which identifies knowledge-for-practice, knowledge-in-practice, and knowledge-of-
practice to make sense of the body of research on the development of professional knowledge 
for teaching mathematics. Knowledge – practice is defined as the shared knowledge already 
know by others such as those that provide teacher education and professional development 
experiences. Is knowledge is acquired as a result of formal professional development activities 
(p. 250). Knowledge – in – practice is defined as the particular knowledge of teaching known “as 
embedded in practice and in teachers’ reflections on practice” (p.268). This type of knowledge is 
acquired when teachers reflect on their own practice. Knowledge – of – practice is the 
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knowledge that teachers develop while practicing their craft in their own classrooms and school 
sites while investigating the interaction of learning, knowledge and theory.  

Several researchers have studied mathematics teachers who have had successful careers in 
other fields in which mathematical concepts were applied (Adler & Davis, 2006; Ensor, 2001). 
In particular, Adler and Davis have researched diverse populations of mathematics teachers, 
career changers in the UK and teachers with insufficient training in South Africa and how their 
knowledge for teaching mathematics develops. Adler and Davis studied the works of Hill, Ball, 
& Schilling, (2008). with respect to unpacking mathematical knowledge for teaching 
mathematics with respect to mathematics courses required for inservice teacher professional 
knowledge. It was determined that mathematics courses required for inservice teachers in South 
Africa did not require teachers to unpack knowledge for teaching mathematics, even though this 
unpacking of mathematical knowledge is required to teach reform mathematics. Of particular 
interest to this study are the works of Bernstein (1996) and Ensor (2001) have studied the 
conceptualization of mathematics for teaching. The Bernstein and Ensor studies lead to the 
questions, what effect does the context in which one learns and applies mathematical concepts 
have on ones ability to teach middle level mathematics and how do career changer mathematics 
teachers learn from their professional communities about teaching mathematics 
 

R esear ch Questions 
The participants in this study became mathematics teachers after successful careers in 

engineering, accounting, retail sales, applied sciences, and the military. Career changers who 
become mathematics teachers face many challenges. Some of these challenges are similar to 
those who completed the traditional route to teacher certification others are very different. The 
researchers are interested in tracking the development of the professional knowledge for teaching 
mathematics for this unique population of career changers. The research questions for this study 
are: 

1. What are the sources of professional knowledge such as knowledge for practice, 
knowledge in practice and knowledge of practice (Cochran-Smith, M. & Lytle, S., 1999; 
Sowder, J., 2007) necessary for career changers to teach middle level mathematics? 

2. How do career changer mathematics teachers learn what they need to know for teaching 
mathematics? 

3. In what ways do career changers develop: 
a.  their vision of what they need to know to teach middle level mathematics: 
b.  their mathematical content knowledge for teaching: 
c.  their understanding about children’s thinking about and learning of mathematics; 
d.  their pedagogical content knowledge; and  
e. their sense of self as a mathematics teacher (Sowder, 2007). 

4. How do career changer mathematics teachers learn from their professional communities 
about teaching mathematics? 

 
M ethodology 

Participants 
There were 12 participants in the study. Each of these participants has experienced a 

successful career in which mathematics concepts were applied on a regular basis. Participant 
undergraduate degrees included civil engineering, electrical engineering, architectural design, 
marketing, economics, meteorology, statistics, business management and marketing. As 
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candidates in the MAT program, these teachers were required to complete a minimum of 250 
hours in field-based internships in addition to the traditional student teaching experience. The 
extent of the field experiences required of this program are consistent with Ensor’s (2001) 
recommendation that extensive field experiences are important in the development of best 
practices in the mathematics classroom. 

Participants in the study ranged in age from 22 – 50. Three of the participants in the study 
were males, the remaining nine participants were female. There was one African American 
participant in the study. After successful completion of the MAT program, participants had 
completed a minimum of one year of teaching middle level mathematics.  

Participation in the study was voluntary. Participants were recruited from recent graduates of 
an MAT program. Respondents received no incentives for participation in this study. 
Data Collection 

The researchers collected data through surveys completed by candidates in the MAT program 
and recent graduates of the MAT program. Video-tapes of the candidates conducting instruction 
in a simulated classroom, a requirement of the first semester Middle Grades Mathematics 
Methods course is the second source of data for this study. Another video tape of their teaching 
was collected during the regular academic year after completion of their teacher-training 
program. Data was also collected from interviews with participants after they have completed a 
minimum of one semester of teaching in a middle grades mathematics classroom. Participants 
Praxis mathematics exam scores were also provided.  
Data Analysis 

The researchers considered participants Praxis scores as indicators of their mathematical 
content knowledge. To analyze the video lesson plans collected in this study researchers used 
Instructional Quality Assessment Classroom Observation Tool Rubrics created by Lindsay Clare 
Matsumura, Helen Garnier, Sharon Cadman Slater, and Melissa Boston. The interviews were 
transcribed, coded, and analyzed. The researchers noted common themes that immerged from the 
interview data and survey results. These themes included but were not limited to the following 
themes: a) teachers vision of what they need to know to teach middle level mathematics; b) their 
mathematical content knowledge for teaching; c) their understanding about children’s thinking 
about and learning of mathematics; d) their pedagogical content knowledge; e) their sense of self 
as a mathematics teacher; and f) identified sources of professional knowledge to teaching. With 
every new theme, the researchers re-evaluated prior interview data and survey results.  

 
Pr eliminar y R esults and Discussion 

Preliminary research finding of this pilot study include the following: 
1. Based on survey data and interviews, the researchers found that all participants relied 

heavily on their prior professional training in the field outside of education to bring rich 
contextual examples into their classrooms.  

2. Ninety percent of participants also reported that mathematics methods classes as well as 
classroom management classes (that they took as part of the teacher training) were most 
important for their transition into a classroom. They felt that pure “mathematics classes 
were very helpful”. However, teachers wished they “had an opportunity to take more 
mathematics methods classes.” Their sense of self as a “mathematics teacher” versus 
“mathematics user” continued to develop during these formal classes and as they spend 
more time in the field.  
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3. Based on the interview data, several participants who worked in schools with established 
‘communities of practice’ were influenced by these communities. These teachers/career 
changers had significant growth of knowledge-in-practice, and knowledge-of-practice. 
However, two participants reported that they “stayed away from majority of their teacher 
fellows in order to avoid constant complaining about students, school, administration, 
etc….” 

4. During the interviews, all teachers reported that they developed foundation of their 
mathematical content knowledge during formal mathematics classes at the university. 
They continued working on this content knowledge after graduating from each of the 
academic programs  

5. Based on the preliminary video analysis, career changers vision of what they need to 
know to teach middle level mathematics changed with time. 90% of participant started 
their teaching practice with a behaviorist approach to teaching mathematics. They 
focused on students’ correct answers and attempted to create a “perfect sequence of 
procedures or steps” for students to remember. Over time teachers focused on their own 
understanding of children’s thinking about mathematics and their own pedagogical 
content knowledge. The classroom focus also shifted towards learning environment with 
opportunities for problem solving.  

Limitations  
One of the main limitations of this study is the fact that the sample for this study was a 

convenience sample. In addition, one of the researchers was the instructor for the mathematics 
methods class in which the participants participated during their formal class work for the MAT. 
Participants in the study were overwhelmingly female Caucasians. The results of the study 
cannot be generalized because of the small sample size and lack of diversity of the sample. This 
was a pilot study. The researchers intend to collect additional data through classroom 
observations after career changers first year of teaching. This classroom observation data 
analysis was not included in the current report. 
Final Thoughts 

Additional research is needed to better understand the transition STEM majors, career 
changers experience when becoming middle school mathematics teachers. In this pilot study, we 
observed and described some of the patterns in such transition. However, we are interested in 
learning more on how these middle grades teachers contextualize their prior knowledge in their 
daily teaching practice. We are also interested in knowing in what ways will the analysis of 
classroom observations (that researchers collected) contribute to the project findings.  
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This study investigated the design and impact of a professional development project, Math 
ACCESS (Academic Content and Communication Equals Student Success) with a unique focus – 
working with teachers to understand the language demands of student participation in higher 
order thinking and justification in mathematics classes, particularly related to supporting 
linguistically diverse students in urban schools. The results demonstrate increases in teachers’ 
content knowledge, perceptions of knowledge and confidence related to supporting students’ 
development of academic language, and awareness of challenges and strategies related to 
vocabulary and language development for ELLs as well as other students.  

 
Objectives and Purposes 

In this paper, we document the design and impact of a professional development (PD) 
project, Math ACCESS (Academic Content and Communication Equals Student Success). This 
on-going project has a unique focus – working with teachers to understand the language demands 
of student participation in higher order thinking and justification in mathematics classes. There is 
evidence that promoting the development of academic language and engaging students in the 
practices of justification and argumentation support students’ learning of mathematics (e.g., 
Brenner, 1998; National Research Council [NRC], 2001). These practices may be particularly 
important for supporting lower attaining students (Boaler & Staples, 2008) and the growing 
population of English language learners (ELLs) (Brenner, 1998; Moschkovich, 2002).  

The development of students’ academic language is a central function of schooling 
(Schleppegrell, 2007). A key aspect of this work is to help students move from everyday, 
informal language toward academic language and use of the mathematics register (Halliday, 
1978; Pimm, 1987). This goal is pertinent for all students, but particularly so for students whose 
first language is not English (Cummins, 2000; Schleppegrell). Too often, attention to language in 
mathematics classrooms focuses on vocabulary. Language-related instruction should move 
beyond simple vocabulary; it should include attention to how language is used to express 
mathematical ideas (functional linguistics) and the development of the mathematics register 
(Moschkovich, 2002; Pimm; Schleppegrell). Most classrooms, however, do not support such 
practices. Many teachers remain unaware of the language demands involved in learning 
mathematics, especially with attention to justification and higher order thinking. 

Developing command of academic language is not only a valued end in and of itself, but it 
also supports students’ learning (Halliday, 1978; Pimm, 1987; Schleppegrell, 2007). Language 
and thinking are intertwined; we use words to think and reflect; when we name something, we 
can come to understand it in a new way (Vygotsky, 2002). Building on students’ everyday 
language and bridging to academic language is a key strategy to develop mathematical 
proficiency (Echeverria, Vogt, & Short, 2002). Math talk is dense. Phrases like “Given that the 
sides of the triangle are…” and “For all x…” are not structures used in everyday language. We 
must help students understand these meanings (Pimm, 1987).  

The need for teachers to be knowledgeable of the linguistic demands of learning and doing 
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mathematics is perhaps heightened in urban areas where students are more likely to be 
linguistically diverse. In particular, intermediate level ELL students who demonstrate Basic 
Interpersonal Communication Skills (BICS), but who have not yet achieved Cognitive Academic 
Language Proficiency (CALP) (Cummins, 2000), are at risk of not being able to access 
necessary academic language to support justification and higher-order thinking. These students 
may be socially fluent, yet may need strategic linguistic support for cognitively challenging 
mathematical tasks (Janzen, 2008). Attention to these areas can help to ensure that students who 
vary in prior mathematical background, language ability and other characteristics will have more 
equitable access to math learning opportunities (Cohen & Lotan, 1997). 

As noted, teachers often remain unaware of the language demands of doing mathematics 
beyond a consideration of vocabulary. In a recent review of the literature related to teaching 
ELLs in content areas, Janzen (2008) emphasized the need for further research on PD that can 
help teachers to develop “understanding of the relationships among language, content, teaching, 
and context, and how they can implement that knowledge in their disciplinary fields” (p. 1031). 

To provide a sense of the complexities involved, consider an open-ended prompt that asks 
grade 4 students to find a way to purchase at least 40 buns that costs the least amount of money, 
given particular package sizes and prices. The task includes potential for cognitive challenges, 
but also contextual and linguistic challenges beyond vocabulary. These may include 
unfamiliarity with “everyday” words and phrases (e.g., package and purchase), as well as other 
words that are germane to the mathematical work they are expected to engage. For example, 
phrases such as “at least” and “the least” may seem familiar, but may be misinterpreted or not 
understood, and lead to very different mathematical work. Students must make sense of what is 
required of them mathematically and must be able to represent their mathematical thinking and 
processes in written form—ideally, including justification in the response. The intersection of 
language, content, and context are complex for students and challenging for teachers to teach.  

Given these complexities, it is important to consider how the mathematics education 
community might expand teachers’ pedagogical expertise in these areas. There are examples of 
PD that have attended to the development of language, though they typically target the teaching 
of ELLs in any content area (e.g., SIOP, Echevarria, Vogt, & Short, 2004). Conversely, there are 
examples of PD that foreground mathematical justification or higher order thinking (e.g., 
QUASAR, Silver & Stein, 1996), but that do not include explicit attention to language issues. 
There are limited examples of projects that attend to both language and cognitively challenging 
math (e.g, Project Challenge, Mitchell, 2007 and the Center for the Mathematics Education of 
Latinos/as, CEMELA, 2009). Given the importance of these areas for student learning, there is a 
clear need to develop and provide research-based PD for teachers that addresses these issues.  

 
Context 

In response to these needs and issues, we created a conceptual model to guide the 
development of a professional development program. The model comprises three “pillars”: 
Academic Language and the Mathematics Register, Student Justification and Collective Building 
of Arguments, and Access by all Students. Each pillar addresses a core component of instruction 
that has a strong research base documenting its value for student engagement and learning, and 
promoting more equitable outcomes. In this paper, we focus on the first pillar, Academic 
Language, and document and discuss relevant activities, outcomes, and issues from our work 
with a group of teachers during the ACCESS Summer Institute.  

The Math ACCESS PD program was supported by the Teacher Quality Partnership Grant 
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program from the Connecticut State Department of Higher Education. We partnered with two K-
8 public schools, one public high school, and one private high school in an urban district. In this 
district, 45% of the students speak a language other than English at home, 94% of students 
qualify for free/reduced lunch, and 96% of the students are categorized as “minority students” 
(Connecticut Strategic School Profiles, 2008).  

Given our goals and the requirements of the grant program, we organized the PD into two 
main components. The “instruction” comprised a one-week intensive summer institute (40 hours) 
during July and a half-day (5 hours) session in September. The “follow up” comprised a 
modified form of lesson study where teachers, organized in grade-band teams, collaborated to 
develop, implement, and debrief lessons that used pedagogical strategies related to each pillar. 
Space precludes an in-depth discussion of each pillar and the corresponding activities. We 
provide an overview and discuss in more depth some of the instructional activities that targeted 
promoting academic language during the summer institute.  

The first pillar, Academic Language and the Mathematics Register, focuses on the role of 
language in mathematics, specifically, developing students’ academic language and their ability 
to respond to open-ended prompts. Our learning objectives for the teachers focused on helping 
teachers recognize language-related aspects of math prompts that may be challenging for 
students and generate and/or purposefully select strategies that support students in managing the 
language demands. Examples include: expanding students’ math vocabulary, having command 
of certain phrases (e.g., at least, the least, for each person/for every person), and helping students 
develop proficiency with explanations and justification. Towards these ends, we developed a 
range of activities, including: providing background in the Sheltered Instruction Observation 
Protocol (SIOP) model (Echevarria, Vogt, & Short, 2004); unpacking language demands within 
curriculum materials, state testing materials, and student work samples; writing language 
objectives for math lesson plans that focus not only on vocabulary, but also functional language 
(Schleppegrell, 2007) (e.g., Students will continue to build an idea of what makes a good 
explanation by using a language frame: “___ is correct/incorrect because ___.”); and modeling 
explicit attention to language during algebraic and proportional reasoning content instruction.  

An example activity that demonstrates the intersection of language, content, and sense-
making was designed around the prompt: Before, tree A was 8’ tall and tree B was 10’ tall. Now, 
tree A is 14’ tall and tree B is 16’ tall. Which tree grew more? (Lamon, 2006). Lamon notes that 
proportional reasoning problems are filled with language challenges because “the same words 
that we use to discuss whole number relationships, take on different meanings in different 
situations” (p. 33). In this case, the phrase “grew more” had more than one interpretation, 
allowing teachers to wrestle with language related to absolute and proportional reasoning.  

Activities related to the other two pillars were also critical, as these pillars are mutually 
supportive. Throughout the Institute we focused on scaffolding, norm setting, appropriately 
challenging each student, and particular teaching-learning strategies. The teachers analyzed 
cognitive demands of tasks (Stein, Smith, Henningsen, & Silver, 2000), modified existing tasks 
to infuse higher order thinking (HOT), discussed and analyzed qualities of good justifications, 
analyzed student work, and worked in teams to plan and implement HOT lessons.  

The following research questions are addressed in this research project:  
3. What are the outcomes and effects of the ACCESS professional development activities 

for participating teachers? 
4. What issues arise as teachers work at the intersection of academic language and 

justification? 
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This paper focuses primarily on the first research question, with particular attention to the 
first pillar, Academic Language. We are currently engaged in the academic year “follow up” so 
data collection and analysis are ongoing. Please see Staples and Truxaw (under review) for focus 
on the second pillar, Justification, related to this project. 

 
Methods of Inquiry 

Twenty-four grades 4-9 teachers participated in the ACCESS Summer Institute; 20 teachers 
continued the program during the academic year. The 20 continuing teachers included 11 
teachers who taught the single subject of mathematics and 9 teachers who taught multiple 
subjects. Teaching experience ranged from 0 years to over 21 years. The first two authors did the 
majority of the instruction; all authors are supporting school-based follow-up activities.  

This study employed a mixed-methods design in order to investigate outcomes and effects of 
the ACCESS PD. Participants completed two assessments at the beginning and completion of the 
Summer Institute in order to assess the following: a) the growth of teachers’ content knowledge 
and b) change in their ability to identify and generate strategies to support the development of 
students’ academic language, especially among ELLs. Assessments included both content 
questions and teaching scenarios where situations are analyzed and action is proposed.  

Items for the content knowledge assessment were drawn from previously validated sources 
(e.g., CT State Dept. of Education, 2008; Healy & Hoyles, 2000; Learning Mathematics for 
Teaching Project, 2008) and were selected by a team of mathematics educators to fit the content 
themes of the institute, algebraic and proportional reasoning. The items were field tested for 
appropriateness and timing by administering them to non-participating elementary and secondary 
mathematics teachers. Based on these results, the final items were selected. The final instrument 
included 7 multiple-choice questions and 2 open-ended questions.  

The language assessment was developed specifically for this investigation in order to 
uncover participants’ growth related to supporting the development of students’ mathematics 
academic language, especially with attention to ELLs and higher order thinking. We identified 
the key constructs of the survey based on the themes of the institute. Following 
recommendations of Gable and Wolf (2001), content-validity was sought through the use of 
research literature and experts’ content validation (i.e., mathematics educators, linguistic experts, 
second language learner specialists, and methodological experts) that noted the adequacy of the 
items as representative of the specified constructs. The final instrument included 6 open-ended 
questions related to language use, challenges, and strategies, and 7 Likert-type questions asking 
for self-reported knowledge of language issues addressed during the PD. The content validity 
questionnaires and the final instruments are available from authors upon request.  

Analysis of the multiple choice and scaled items were performed using standard statistical 
techniques (Green, Salkind, & Akey, 2000). The open-ended responses were analyzed using 
standard qualitative methods (Strauss & Corbin, 1990). For example, for questions that asked 
teachers to identify the linguistic demands of a problem, researchers employed open coding of 
emergent themes, discussed the themes, and then employed axial coding to make connections 
among the categories and to refine the coding schemes (Strauss & Corbin). Coding categories and 
definitions for each question were developed and tested by at least two researchers. Disagreements 
were resolved in discussion with a third research as needed. Applying these codes allowed us to look 
for change on both the group level and the individual level. 
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Results and Discussion 
Results from the pre-post assessments indicate that the Math ACCESS Project did have an 

impact on teachers’ knowledge of content and language-related issues and strateigies. We will 
describe content results briefly and then focus on the language-related results.  
Evidence of Reaching our Objectives Related to Content 

Twenty-four participants completed the pre- and post- assessments related to content—
algebraic and proportional reasoning. The results demonstrate increases in content knowledge 
overall. Scores of 15 participants (63%) increased; scores of 7 participants (29%) decreased, 
scores of 2 participants (8%) remained the same. Overall content knowledge showed a 
statistically significant difference in mean scores (p < .05), as shown in Table 1.  
 
Table 1. Assessment of Content Knowledge of PD Participants, n = 24 
Administration Mean SD t df p 
Pre 9.33 3.67    
Post 10.63 3.63 2.24 23 .035 
 
Evidence of Reaching Our Objectives Related to Language 

The analysis of our data indicates that there were (Institute-compatible) observed changes in 
teachers’ proficiencies identifying language-related issues and planning in ways that would 
promote the development of academic language. A summary of related results follows. 

Teachers’ self-assessment of knowledge. We asked teachers to self-assess their knowledge of 
various issues by rating themselves on seven 7-point Likert item questions (1= not at all 
knowledgeable; 7=expert knowledge). For example, they rated their knowledge of Generating 
strategies to support students in managing language demands of CAPT and CMT-like open-
ended prompts. Nineteen participants completed all items on the pre- and post-assessments. The 
overall pre-assessment mean was 4.09; the post-assessment mean was 4.77 (4=moderately 
knowledgeable; 5=very knowledgeable). A one-sample t-test was performed, showing a 
statistically significant increase in total mean scores for all participants (p < .05). Similarly, 
mean scores for each of the 7 individual items increased from pre- to post-assessment. These 
data demonstrate a positive and relatively strong impact of the PD with respect to language.  

Open-ended items related to language challenges and strategies. In addition to the Likert 
items, the Language Assessment included 3 open-ended questions that provided evidence of 
change with respect to the teacher’s ability to identify challenges related to language and/or 
strategies to address challenges and support the development of academic language. 

Developing academic vocabulary. Question 2 asked participants to identify 3-5 general 
strategies they might use to help students build understanding of mathematical vocabulary. 
Taken as a group, participants increased the number of strategies they generated to address 
vocabulary in the classroom and specifically increased the number of ACCESS related strategies 
(i.e., strategies associated with the 3-pillars; e.g., “Think-pair-share activities to build 
vocabulary,” was considered ACCESS related; “flashcards,” was not). Table 2 shows the mean 
number of strategies per teacher and the percent of those strategies identified as ACCESS related. 
We also include results for single subject teachers as compared with multiple subject teachers as 
we found some interesting differences among these two groups.  
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Table 2. Language Survey Question 3 – Strategies to Address Vocabulary 

 All 
n=20 

Single subject 
n=9 

Multiple subject 
n= 11 

 Pre Post Pre Post Pre Post 
Mean # strategies per teacher 3.2 3.3 2.9 3.5 3.6 3.1 
% ACCESS related strategies  33% 50% 16% 40% 50% 72% 
 
The mean number of strategies per teacher increased for all participants and for the single-

subject subgroup; the mean number of strategies per teacher decreased for multiple-subject 
teachers. However, perhaps more important than the number of strategies (especially since the 
prompt suggested a specific range of 3 to 5 strategies), was the inclusion of ACCESS related 
strategies. These percentages increased overall, as well as for the two subgroups. Sixty-five 
percent of the teachers added at least one ACCESS related strategy.  

Identifying challenges and strategies in open-ended math prompts. In question 3, participants 
were given an open-ended prompt designed for grade 7 or 8 students. Participants were asked to 
identify words and/or wording that might be challenging for students and then describe why the 
words would be challenging. Responses were coded for increased detail or specificity if they 
included additional words or phrases and/or included increased detail in their description of the 
challenges (e.g., adding the word “explain” [not included in pre-assessment] accompanied by, 
“Students may need some language support to be able to explain the process they followed to 
come up with the answer.”) The results suggest that, overall, the participants increased detail or 
specificity related to challenges of language for this specific prompt: 12 participants (60%) 
showed an increase; 2 participants (10%) showed a decrease; 5 participants (25%) had similar 
detail and/or specificity, and 1 (5%) had missing data. There were slight differences in results for 
single-subject versus multiple subject teachers—55% of single subject participants showed 
increases; 67% of multiple subject participants showed increases. 

Question 4 included an open-ended prompt designed for grade 4 students. Participants were 
asked to identify a) features of the problem that would be challenging to ELLs and b) strategies 
the teacher could use to help students understand and answer this type of problem. Data were 
coded for increased specificity and detail, as well as by thematic category. For Question 4a 
(challenges of the prompt), results were mildly positive: 10 participants (50%) showed an 
increase, 4 participants (20%) showed a decrease, 5 participants (25%) showed similar level of 
detail, and 1 participant (5%) had missing data. Most notably, teachers seemed to show increase 
in responses that included specific words, short phrases, and symbols and were accompanied by 
reasons why they may be challenging (e.g., use of prepositional phrases or relational words). 
This demonstrated some movement beyond simply identifying vocabulary words.  

 For question 4b (strategies), results related to increase/decrease of strategies were mixed: 7 
participants (35%) showed an increase; 5 participants (25%) showed a decrease; 7 participants 
(35%) showed equal numbers, and 1 participant (5%) had missing data. While the number of 
strategies did not show marked increases, the thematic coding revealed some interesting trends. 
Forty percent of the teachers’ increased the explicit mention of language in the strategies they 
described. Interestingly, the increase in strategies related to language was much higher for single 
subject teachers (55%) than for multiple subject teachers (22%). To further make sense of the 
strategies, those coded as specifically mentioning language were subcoded thematically. This 
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coding revealed a decrease in responses involving simple definitions and an increase in 
responses where the teacher described building meaning about language. This showed a shift 
toward ACCESS related language awareness.  

 
Implications and Conclusions 

This research reported on PD designed to help teachers understand the language demands of 
student participation in higher order thinking and justification in mathematics classes—with 
particular attention to linguistically diverse students in urban schools. Recognizing that it is not a 
simple matter for teachers to change their practices (Darling-Hammond & Bransford, 2005), 
combining multiple themes seems ambitious. However, it is this very recognition that PD is too 
frequently unconnected to complex issues and practices of real schools (Kazemi & Hubbard, 
2008) that suggests to us its timeliness.  

Although the Math ACCESS project is ongoing, the preliminary results suggest that this 
model of PD has promise for increasing teachers’ knowledge of the language demands of student 
participation in higher order thinking and justification in mathematics classes. The results 
demonstrate measurable increases in teachers’ content knowledge, perceptions of knowledge and 
confidence related to supporting students’ development of academic language, and awareness of 
challenges and strategies related to vocabulary and language development for ELLs as well as 
other students. Thematic analysis demonstrated subtle shifts in perceptions about language use in 
mathematics classrooms. For example, some of the teachers moved from suggesting rote 
strategies for learning definitions of math words to providing evidence that they were beginning 
to grapple with contexts and functions of language (Schleppegrell, 2007); this suggests a shift 
toward thinking that language is not separate from mathematics, but rather, can be integrally 
involved with the process of doing mathematics. 

An additional interesting finding concerned differences in results between single subject 
teachers (predominantly secondary math) and multiple subject teachers (predominantly 
elementary). While there were clear group differences in certain results, the differences were 
inconsistent—that is, for some questions, single subject teachers showed more improvement and 
for other questions, multiple subject teachers showed more improvement. We conjectured that 
some of the differences in results may relate to teachers’ background experience, expertise, and 
comfort with content or language. For example, multiple subject teachers were likely to have 
more extensive backgrounds in language-use, though they may not have considered applications 
of language to mathematics. Secondary teachers, on the other hand, were likely to have deeper 
content area expertise, but less experience with language. Questions that have arisen for us 
include: How do interactions of single subject and multiple subject teachers over the course of 
the PD impact their perceptions of and competencies with content or language?  How do prior 
knowledge and background influence teachers’ openness to ideas? Considering impact of these 
differences is worthy of further investigation. 

As we consider the implications of this research, it is useful to note that these results relate 
only to the Summer Institute. The project is ongoing, with regular follow-up work in the schools. 
With this in mind, we look forward to further uncovering important distinctions between 
“knowledge” and “knowing” (Cook & Brown, 1999; Kazemi & Hubbard, 2008). The results 
reported here relate predominantly to the teachers’ knowledge from the PD; as we continue to 
work with these teachers and document their practice, we will be better able to say how the 
knowledge translates to knowing in teaching practice. This translation from knowledge to 
knowing in practice has the potential to transform teaching and learning.  
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Starting with the notion that teachers learn as teacher educators model effective mathematics 
pedagogy, we examined what teacher educators model from the perspective of researcher, 
teacher educator, and teachers. Using the NCTM Professional Teaching Standards as a starting 
point of our analysis, we highlight the idea that teachers were not only engaged as learners of 
mathematics in a classroom community but also as professionals in a community of mathematics 
teachers. Here we redefine and elaborate on the NCTM Professional Teaching Standards as they 
apply to mathematics teacher education with respect to teachers’ engagement in a community of 
mathematics teachers. 
 

Introduction 
The NCTM Professional Standards for Teaching Mathematics (1991) express the vision of 

teachers who are well prepared to teach mathematics using student-centered instruction. This 
vision highlights the importance of teachers’ ability to select tasks that engage students’ intellect 
and deepen students’ understanding, orchestrate mathematical discourse, use technology and 
tools to pursue mathematical investigations, make connections to previous or developing 
knowledge, and guide individual, small group and whole class work. As recognized in the 
mathematics teacher education literature, such a shift in the classroom environment requires 
changes in the core dimension of mathematics instruction that are not easy to accomplish, may 
take several years, and require appropriate professional development (Clarke, 1994; Friel & 
Bright, 1997; Fennema & Nelson, 1997; Loucks-Horsley, Hewson, Love, & Stiles, 1998).  

It has been argued that teachers’ instructional practices are shaped by their own learning 
experiences long before entering teaching in what Lortie (1975) calls an “apprenticeship of 
observation”. Thus, a major difficulty for teachers working to transform their teaching practices 
in accordance with the NCTM Professional Standards for Teaching Mathematics is that many 
teachers’ experiences as learners of mathematics stand in stark contrast. One way to help 
teachers make this transition is to engage them as learners in inquiry-oriented mathematics 
communities where student-centered mathematics teaching is modeled.  

The results reported here are part of a larger study in which we investigate modeling by 
teacher educators in teacher education courses for practicing teachers. An analysis of the data 
revealed that the teachers are not only engaged as learners of mathematics in a classroom 
community, but also as professionals in a community of mathematics teachers. In this report, we 
redefine and elaborate on the NCTM Professional Teaching Standards specifically with respect 
to modeling professional practice by mathematics teacher educators. We illustrate this 
elaboration with an example.  
 

Theoretical Perspective 
We view learning as situated within practice. We presuppose that novices develop while 

embedded in a community alongside experts. Such engagement provides learners with multiple 
opportunities to build a conceptual model of desired practice. With respect to mathematics 
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teacher education this suggests that learning the teaching profession stems, at least in part, from 
the teaching teachers see and experience as learners and the activity they engage in as 
professionals. Thus, in mathematics teacher education modeling instructional practices is 
essential to learning about the practice of teaching since from this perspective the learning of and 
development of any practice emphasizes the influence of participation, observation and listening 
in as practice is modeled and mediated by culture and communication.  

The constructs of perceptual lived experience, intent participation, apprenticeship and 
cognitive apprenticeship share a situated perspective on learning from the milieu. They all 
suggest that knowledge is developed and deployed in activity and is not separable from or 
ancillary to learning and cognition (Brown, Collins, & Duguid, 1989). In mathematics teacher 
education, teachers have the opportunity not only to learn mathematics, but also the practice of 
teaching mathematics from the mathematics instruction they experience as learners. When 
student centered instruction is modeled, teachers have the opportunity to understand their mature 
roles as professionals and develop a conceptual model of effective inquiry-oriented teaching. 

 
Literature 

The NCTM Professional Standards for Teaching Mathematics (1991) suggests learning to 
teach is a process of integration of theory and practice, and teachers should be afforded 
opportunities to comment and reflect on their own learning and teaching. The current reform 
movement in mathematics education has a strong underlying theme of the professionalism of 
teaching. Reform recommendations suggest that teachers ought to collaboratively plan 
instruction, reflect on practice, create and reflect on new practices, and support one another’s 
professional growth, (NCTM, 1991). This collaborative work of teachers allows teachers to share 
what they have learned from their experiences as practitioners and then act on what they learn 
through discussion to enhance their effectiveness as professionals so that students benefit 
(Astuto, Clark, Read, McGree, & Fernandez, 1993, Hord, 1997). Communication and 
collaboration such as this among school faculty and staff are important aspects of what 
researchers call a “professional learning community” or PLC (Dufour & Eaker, 1998; Astuto, 
Clark, Read, McGree, & Fernandez, 1993, Hord, 1997).  

A professional learning community is characterized by a supportive and shared leadership, 
collective creativity, shared values and vision, supportive conditions and shared personal 
practice. A major component of the PLC is the collective inquiry process. Dufour and Eaker 
summarize Ross, Smith, and Roberts’ (1994) description of the collective inquiry process: 

 
1. Public reflection–members of the team talk about their assumptions and beliefs and 

challenge each other gently but relentlessly. 
2. Shared meaning–the team arrives at common ground, shared insights. 
3. Joint planning–the team designs action steps, an initiative to test their shared insights. 
4. Coordinated action–the team carries out the action plan. This action need not be joint 

action but can be carried out independently by the members of the team. At this point, the 
team analyzes the results of its actions and repeats the four-step cycle.  

 
For mathematics teachers this includes discussion and reflection about teaching, student 

learning and the evaluation of both, sharing insights about mathematics teaching and student 
thinking gained through practice, collaboratively lesson planning and so on. However, engaging 
in this collaborative process is not automatic. In reform-centered mathematics teacher education 
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the hope is that the teachers are enculturated into a professional learning community of 
mathematics teachers. In what ways can mathematics teacher educators foster the enculturation 
of mathematics teachers into the collective inquiry process of a professional learning community 
of mathematics teachers? 

In what follows we report on research conducted in mathematics teacher education courses 
for practicing teachers. The courses in this study provide teachers the opportunity to deepen their 
understanding of the mathematics they teach, and engage in activities that are important to the 
enculturation into collective inquiry process of a professional learning community of 
mathematics teachers as it is modeled by mathematics teacher educators. In this report we 
describe our analytical framework and discuss an emergent framework for how mathematics 
teacher educators model the collective inquiry process and how it parallels the NCTM standards. 
We further discuss implications for instruction. 

 
Method 

The mathematics courses for practicing teachers discussed in this report are a part of a 
university-based professional development group. As with many mathematics professional 
development programs, the goal is to move teachers forward in their thinking about content and 
student learning so teachers can work to help increase student achievement in mathematics 
(Nickerson, 2000; Sowder, 2007). These professional development programs are designed to 
provide extra preparation for teaching mathematics, not only by communicating pedagogical 
knowledge, but also by providing opportunities for teachers to deepen their content knowledge 
by collaboratively reflecting on their teaching and student learning. However, as the focus of this 
study is on modeling the collective inquiry process the results will focus on the latter. 

In this study we observed the mathematics professional development of three cohorts: a 
primary elementary cohort (grades k-3), an upper elementary cohort (grades 4-6), and a middle 
school cohort. The classroom data was collected in two consecutive classes for each of the three 
cohorts. All class sessions were videotaped and a researcher was present at all sessions and took 
field notes. The videos of the classroom sessions were reviewed to create a descriptive timeline 
of classroom events to aid in analysis. The teacher educators were interviewed pre and post 
observation and several participants were interviewed to enable the coding and subsequent 
creation of an integrated data set of complementary perspectives. Starting with the NCTM teaching 
standards the classroom sessions coupled with the timeline analyzed in a cyclical process of coding and search for 
confirming and disconfirming evidence (Strauss & Corbin, 1990) to delineate the categories of modeled 
instructional acts. Once we developed what we thought to be an exhaustive group of codes, we coded a few episodes 
separately and compared codes for inter-rater reliability. The coders were in agreement 78% of the 
time and discussion resolved discrepancies. The primary cause of discrepancies was related to 
sub-codes of the categories. 
 

Analytical Framework 
The NCTM Standards (1991) advocate a shift in the mathematics classroom environment 

from an emphasis on mathematics as an individual pursuit that privileges the memorization of 
algorithms and procedures to an emphasis on mathematics as a collaborative endeavor among 
members of the classroom community where logical reasoning and argumentation are used to 
solve problems. In Table 1 following, we provide a brief summary of the NCTM Professional 
Teaching Standards as they are described by under four headings: tasks, discourse, environment, 
and analysis. 
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Table 1. Brief Summary of  NCTM Professional Teaching Standards (1991)  
1) Pose worthwhile 

mathematical tasks 
Tasks are the projects, questions, problems, constructions, 
applications, and exercises in which students engage. They 
provide the intellectual contexts for students' mathematical 
development. 

2) Orchestrate class 
discourse  

 
3) Promote student discourse  
 
4) Encourage the use of 

tools to enhance discourse 

Discourse refers to the ways of representing, thinking, 
talking, and agreeing and disagreeing that teachers and 
students use to engage in those tasks. The discourse embeds 
fundamental values about knowledge and authority. Its 
nature is reflected in what makes an answer right and what 
counts as legitimate mathematical activity, argument, and 
thinking. Teachers, through the ways in which they 
orchestrate discourse, convey messages about whose 
knowledge and ways of thinking and knowing are valued, 
who is considered able to contribute, and who has status in 
the group. 

5) Create a leaning 
environment that fosters 
the development of each 
student’s mathematical 
power 

Environment represents the setting for learning. It is the 
unique interplay of intellectual, social, and physical 
characteristics that shape the ways of knowing and working 
that are encouraged and expected in the classroom. It is the 
context in which the tasks and discourse are embedded; it 
also refers to the use of materials and space. 

6) Engage in ongoing 
analysis of teaching and 
learning 

Analysis is the systematic reflection in which teachers 
engage. It entails the ongoing monitoring of classroom 
life-how well the tasks, discourse, and environment foster 
the development of every student's mathematical literacy 
and power. Through this process, teachers examine 
relationships between what they and their students are 
doing and what students are learning 

  
The NCTM Professional Teaching Standards served as a lens for examining how the 

mathematics teacher educators’ support the teachers’ improved participation in a mathematics 
classroom community of learners. From this emerged parallel categories to describe the 
mathematics teacher educators’ interactions with the teachers modeling the collective inquiry 
process of mathematics teachers during the class sessions.  

 
Results 

Starting with the NCTM Professional Teaching Standards as a basis for our analysis, the 
classroom observations and video were used to redefine the categories of interaction of the 
mathematics teacher educators with the teachers to shed light on how the teacher educators 
model the larger practice of the teaching profession. One of the results that emerged was that in 
the mathematics courses for practicing teachers in this study, the teachers were engaged on two 
levels, as learners of mathematics in a classroom a community and as professionals in a 
community of mathematics teachers. In this section we redefine and elaborate on the NCTM 
Professional Teaching Standards in terms of mathematics teacher education as they are modeled 
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in mathematics courses for practicing teachers with respect to the collective inquiry process of a 
community of mathematics teachers. 

The mathematics teacher educators model the collective inquiry process of a professional 
learning community of mathematics teachers by engaging teachers in activities that are a part of 
the practice of teaching mathematics. The activities were often related to evaluating and 
reflecting on student learning and teaching, lesson planning, and thinking about student thinking, 
understanding and learning and so on. These activities were mediated by the mathematics teacher 
educator and provided opportunities for teachers to increase their participation in the collective 
inquiry process in a community of mathematics teachers. Table 2 characterizes the mathematics 
teacher educators’ instructional acts that have the capacity to foster the enculturation of 
mathematics teachers into the collective inquiry process. 

In this section of the results we will describe a classroom episode from the middle school 
cohort and discuss the mathematics teacher educators’ interactions with teachers as they engaged 
in an activity that has the capacity to promote teachers’ enculturation in the collective inquiry 
process. Here the teacher educator is Karla, the teachers are the participants in the mathematics 
teacher education and the term student is reserved for the children that the teachers teach.  

The mathematics teacher educator, Karla, began the class by asking the teachers to discuss in 
their groups the student work that they brought from their own students and choose a few 
examples that they thought would be interesting to share with the class.  The student work the 
teachers brought was drawn from a predetermined task that all of the teachers in the class tried 
with their own students, called “try-ons” in this context. This particular try-on was a banquet hall 
problem that stated as follows: 

 
A banquet hall has a huge supply of various shaped tables (square, trapezoidal and 
hexagonal). Only one person can sit on each side of a table, except the longest 
side of the trapezoid table, which can seat two people. The same shape tables must 
be used for each banquet. The banquet rooms are long and narrow, so the tables 
can only be put together as shown    , 

 

. For a given 
table shape, develop a rule or formula for the number of people that can be seated 
at 1 table, 2 tables, 5 tables, 100 tables, or n tables. (Adapted from  Burns 1992) 

Figure 1. Try-on task. 
 
As the groups discussed their students’ work, Karla walked about the room, listened in on the 

groups’ conversations and briefly joined the discussions of each group in turn. Much of the 
discussion in groups focused on trying to understand what the students were thinking, the 
reasonableness of the students’ approach, common approaches the students took, etc. After a few 
minutes Karla asked the teachers if they need more time to discuss. A show of hands suggested 
that the teachers needed more time. Karla decided to let them continue their discussions for a few 
more minutes and continued to listen in and discuss with groups. After a few more minutes Karla 
brought the class back together so the teachers could discuss the task as a class. Ms. K shared a 
student's work related to using tables to determine linear relationships. Karla placed the student’s 
work on the document camera and asked Ms. K what she could tell the class about this the work. 
(See Figure 2.) 
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Square  

Tables  1 2 5  100 n tables  

People 4 6 12 202 Add  2 each  time  

 

Trapeziod  

Tables  1 2 5  100 n tables  

People 5  8 17 302 Add  3 each  time  

 
Hexagon  

Tables  1 2 5  100 n tables  

People 6 10 22 402 Add  4  each  time  

  
Figure 2. Student work shared in the professional development class. 

 
Ms. K explained that the student could determine the number of seats at the banquet by her 

rule of adding a certain number for each table added, but could not generalize that statement with 
a formula. Ms. N, a teacher in Ms. K’s group, further elaborated on the student's work and 
explained that the student could reason about the situation additively but had not yet transitioned 
her thinking about repeated addition as multiplication or make use of variables to further 
generalize the situation. Karla pointed out that the student is making use of a recursive 
relationship to solve the task but not the functional relationship.  

Ms. N expressed that they chose to share that example of student work because many of their 
students thought about the task in a similar fashion. They discussed another student’s work 
where the student did use multiplication to do the task but did not generalize the linear 
relationship with a function and was unsure how to think about n tables. This particular student 
chose n to be 200 and found the number of seats available if there were 200 tables. Karla stated if 
we had to order the students in their level of understanding it seems this student seems to exhibit 
a little less understanding than the one in their last example. Karla noted that the students were 
from 6th grade and that they might not expect that all students at this level would be able to could 
come up with a function to express the relationship. Karla then asked the teachers to think about 
what would be next for these students to push them further in their thinking if they were going to 
be their teacher next year. Ms. N suggested that they could give the kids practice translating 
words into variable expressions; and once they have practice with that they could go back to the 
banquet hall task and ask them how they could use their experience translating words into 
variable expressions to determine the number of seats when there are n tables are put together. 
Karla reiterated what Ms. N said and Ms. K added that the practice could start with simple 
translations that yield expressions like 2x and 3x and so on. Karla suggested another possibility 
could be to ask the students express the relationship in words and later connect the words to the 
algebra. Karla then opened the floor for additional question or comments before moving on. 

Using the NCTM Professional teaching standards to describe classroom episodes like the one 
above was problematic with respect to tasks, discourse, environment, and analysis because the 
while some mathematics learning may have taken place the teachers were primarily engaged as 
teachers of mathematics and not learners. In order to characterize the interaction of the 
mathematics teacher educators and the teachers we elaborate on the professional teaching 
standards as it applies to modeling the collective inquiry process. 
Tasks 
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In the episode described above the primary focus of the task was not to provide intellectual 
contexts for the teachers’ mathematical development as learners, but to motivate the 
development of the teachers’ understanding of the students’ mathematics through discussion, 
exploration and experimentation. With the try-on task, the mathematics teacher educator 
modeled the coordinated action and analysis of the collective inquiry process.  
Discourse 

While like in the NCTM professional teaching standards the discourse during this episode 
reflected the ways of representing, thinking, talking, and agreeing and disagreeing that 
mathematics teacher educators and teachers use to engage in tasks, the discourse in this episode 
is embedded in the teachers’ classroom experiences as teachers within a community of teachers. 
The mathematics teacher educator orchestrated discourse that modeled the public reflection 
aspect of the collective inquiry process.  
Environment 

The environment represents the setting or context in which the tasks and discourse are 
embedded for learning. When the teachers are engaged as learners of mathematics, the setting is 
a mathematics classroom community. However, when the teachers are engaged as professionals, 
the setting shifts to a community of mathematics teachers. As the teachers engage in this 
professional learning community the mathematics teacher educator models the interplay of 
intellectual and social characteristics of the members of the community that shape the evolving 
knowledge base of the community. 
Analysis 

Analysis in the NCTM professional teaching standards refers to the ongoing monitoring of 
classroom life-how well the tasks, discourse, and environment foster the development of every 
student's mathematical literacy and power. In terms of the collective inquiry process the 
mathematics teacher educator works to foster development of every teachers’ enculturation in a 
professional learning community of mathematics teachers. One way a mathematics teacher 
educator fosters this enculturation is exemplified in the above episode as she listened in on the 
conversations of the groups. Through this process, mathematics teacher educator examines the 
group members’ participation in the collective work of teachers. The teacher educator modeled 
the analysis of student thinking as a means of thinking about where to go next. She also modeled, 
we argue, by listening in on groups and selectively sharing what she was thinking about their 
learning from the perspective of analysis. 
 

Table 2 characterizes the mathematics teacher educators’ instructional acts as they model the 
collective inquiry process.  

 
Table 2. The NCTM Professional Teaching Standards and the Collective Inquiry Process 

1) Worthwhile Tasks or 
Activities 

Tasks/Activities motivate the development of the teachers’ 
understanding of the students’ mathematics through 
discussion, exploration and experimentation. 

2) Orchestrate class 
discourse  

 
3) Promote teacher discourse  
 

Discourse refers to the ways of representing, thinking, 
talking, and agreeing and disagreeing that teacher educators 
and teachers use to engage in those tasks. The discourse 
embeds fundamental values about knowledge and authority. 
Mathematics teacher educators, through the ways in which 
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4) Encourage the use of 
tools to enhance discourse 

they orchestrate discourse, convey messages about the 
collaborative work of teachers. 

5) Create a learning 
environment that fosters 
the enculturation of 
teacher collective inquiry 
process  

Environment represents the setting for engaging in the 
collaborative work of teachers. It is the unique interplay of 
intellectual, social, and physical characteristics that shape 
the ways of knowing and working that are encouraged and 
expected in the community of teachers. It is the context in 
which the tasks and discourse are embedded; it also refers 
to the use of materials and space. 

6) Engage in ongoing 
analysis of teaching and 
learning 

Analysis is the systematic reflection in which 
mathematics teacher educators engage. It entails the 
ongoing monitoring of classroom life-how well the tasks, 
discourse, and environment to foster teaches participation 
in the Collective Inquiry Process of a professional 
learning community of mathematics teachers.  

 
Concluding Response 

Collins, Brown and Newman (1989) and Lave and Wenger (1991) hypothesize that through 
observation, learners develop a conceptual model that provides them with an advanced organizer 
and interpretive structure for reflecting on a given practice. It can be argued that understanding 
how to participate in the collective inquiry process of a professional learning community of 
mathematics teachers is important because it provides insights into the nature of the 
professionalism of teaching advocated by the NCTM. In mathematics teacher education, teachers 
have the opportunity not only to deepen their mathematics content and pedagogy skill, but also 
the opportunity to engage in the collective inquiry process of mathematics teachers. The hope is 
that this research informs the body of knowledge about teaching the practice of teaching 
mathematics. 
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This paper reports on a professional development and research initiative that engages a group of 
beginning middle school teachers in studying non-routine mathematics problems and 
investigates the effects of this intervention. Participants in this group engaged in the guided 
study of: a) non-routine mathematics problems, b) samples of students’ written work on NRP, c) 
sample mathematics assessments that include NRPs, d) case studies of NRP-centered 
mathematics instruction, and e) ‘vertical’ analysis of various curricula. The study group 
improved teachers’ lesson planning but varied in the authenticity of using the NRPs among 
individual participants. An instructional design framework was developed linking the NRPs, the 
lesson and the unit of instruction.  
 

Background 
This study draws on data from a larger professional development and research initiative that 

engages beginning middle school mathematics teachers in a lesson study group and studies the 
effect of their participation in this in-service initiative on the quality of their mathematics 
lessons. Lesson study participants are teachers in their first years of service who work in ‘hard-
to-staff”, high poverty, urban schools. Our long term research goal is to explore the impact of 
participating in this study group on teachers’ practice and their retention in the high need schools 
were they work.  

In this report we describe how beginning middle school teachers interacted with lesson study 
activities centered on the solving, teaching, and learning of non-routine problems (NRP). 
Participants in this group engaged in the guided study of: a) non-routine mathematics problems, 
b) samples of students’ written work on NRP, c) sample mathematics assessments that include 
NRPs, d) case studies of NRP-centered mathematics instruction, and e) ‘vertical’ analysis of 
various curricula.  

 
Theoretical Perspectives 

Influenced by the seminal work of Polya (1945), Schoenfeld (1985) and the NCTM focus on 
problem solving (1989, 2000), mathematics education researchers highlight the need for 
instruction to engage students in solving rich, challenging, high level, and open-ended tasks. 
Researchers might vary in how they refer to these problems based on their wide range of 
frameworks ranging from cognitive science to social constructivism and activity theory. The 
literature refers to these tasks as high level tasks (Stein et al., 1996), model-eliciting tasks (Lesh 
& Harel, 2003), realistic modeling problems (Verschaffel & de Corte, 1997), spiral tasks (Fried 
& Amit, 2005), and multiple-solution connecting tasks (Leikin & Levav-Waynberg, 2007). What 
is common among all the above types of problems, which we refer to as non-routine problems 
(NRP), is their valuable role in eliciting thinking and reasoning, communication, critical attitude, 
interpretation, reflection, creativity, and generalization, all of which are central to the activity of 
mathematizing (Freudenthal, 1991).  
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Yet there is increasing concern that in many classrooms, especially in those attended by 
minority and low SES students, instruction focuses almost exclusively on mechanical ways of 
applying algorithms and formulas to the solution of stereotypical word or ‘story’ problems 
(Oakes, 2005; Boaler, 2002). The poor quality of mathematics instruction in schools attended by 
low SES and minority students is seen as a critical contributor to social inequality (Moses & 
Cobb, 2001) in that these groups of students are denied access to high level mathematical 
thinking as well as important pathways to economic and other enfranchisement (National Action 
Committee for Minorities in Engineering 1997; National Science Foundation 2000).  

It is well documented that teachers rarely make non-routine problem solving an integral part 
of their instruction (Henningsen & Stein, 1997; Silver, 2005; Leikin & Levav-Waynberg, 2007). 
Therefore, it is hardly surprising that students have difficulties with these kinds of problems 
(Verschaffel & de Corte, 1997; Cooper & Harris, 2002). A modality of mathematics instruction 
that focuses only on routine problems is seen as very unlikely to prepare students to successfully 
tackle and solve novel problems in and out of school settings. While this poverty of mathematics 
instruction could be blamed to a great extent to mandated curricula and standardized testing 
(Haydar, 2009), it is also a result of limitations in teachers’ appreciation of the educative value of 
those kinds of problems, their own level of comfort in solving such problems, and their ability to 
handle the pedagogical demands that this type of problem solving activity entails, in particular in 
orchestrating whole-class discussions about multiple strategies for solving a given problem 
(Silver et al., 2005; Shreyar et al., 2009). 

Mathematics teacher educators advocate the use of lesson study as a model of teacher-
initiated and mentor-facilitated professional development (Stigler & Hiebert, 1999). Issues of 
adaptation of the lesson study model to the US context have been the subject of many recent 
studies (Fernandez & Yoshida, 2004; Lewis, 2002). However, we know little about how lesson 
study activities centered on non-routine problems affect beginning teachers’ planning and 
assessment skills, especially when in urban school contexts. This study is an attempt to fill some 
of these gaps. 

 
Research Questions 

In this research we aimed to explore to what extent and how does NRP-centered lesson study 
group increase participants’ ability to effectively incorporate non-routine problem solving into 
their classroom practice. In addition, our goal was also to use this Lesson Study group as a 
laboratory and draw insights on the design, try out and documentation, revision and 
dissemination of a sequence of NRP-based activities and materials for the professional 
development of middle school mathematics teachers. 

 
Methodology 

The participants in the Lesson Study Group (n=10) were either recent graduates or in their 
final year in a middle school mathematics master’s program. They were within their first 5 years 
of teaching in ‘hard-to-staff”, high poverty, urban schools. They teach seventh to ninth grade 
mathematics in urban school settings attended by a predominantly African-American, Latino, 
Asian, and/or recent immigrant school population. All of them expressed in writing, as a 
response to the invitation letter from the researchers, their interest in, understanding of, and 
commitment to the proposed project.  

In line with what is typical to the Lesson Study modality of professional development in 
mathematics (Stigler & Hiebert, 1999; Fernandez & Yoshida, 2004), a central focus of the 
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sessions was the design, try out, documentation, revision, and write up of mathematics middle 
school lessons. More specifically participants were engaged in the following activities: 

• Solving and studying NRP 
• Selecting and sequencing from a list of NRP 
• Designing NRP-based lessons 
• Trying out, documenting, discussing NRP-based lessons 
• Analyzing curricula in search for NRP 
• Analyzing assessments in search of NRP 
• Inventing, finding, adapting NRP 
• Transforming a routine problem into a NRP 
• Analyzing student work samples on NRP 
Parallel to the three face-to-face sessions, the pilot lesson study group project engaged 

participants in three a-synchronous on-line discussion boards via Blackboard.  
All Lesson Study sessions were audio and video-taped and a record was kept of all the 

asynchronous online discussion board contributions. Portions of these sessions were analyzed in 
search for evidence of an increase in participant teachers’ ability to: appreciate the value of NRP; 
solve and discuss alternative solution strategies for NRP; recognize NRPs in textbooks and 
assessments (as well as the lack thereof); design NRP-centered lessons, and organize NRP into a 
unit; and incorporate non-routine problem solving into their classroom practice.  

In order to be able to assess the effect of participating in the LSG for each individual teacher, 
we collected pre- and post data from each participant regarding: a) solving and explaining in 
detailed write ups their solution to NRP, b) selecting NRP from a given list of ‘scrambled’ 
problems and sequencing those problems into a unit, c) transforming a routine problem into a 
non-routine problem, and d) designing a NRP-centered lesson for students in one of their classes 
for a given unit/topic. 

We also conducted a follow up, open-ended survey four months after the last Lesson Study 
session. Survey questions focused on their recollection of the most memorable moments of the 
lesson study, their narratives of what NRP-related elements they incorporated or planning to 
incorporate in their mathematics lessons and their interest in future engagement in similar 
professional development activities. 

In analyzing the above data, we looked for indicators of improved skills in studying, solving, 
and describing the solutions to NRPs as well as evidence of an enhanced ability on the teacher 
participants’ part to search for, design, adapt, and sequence NRPs. We developed a coding 
scheme based on the PISA cross-disciplinary problem-solving framework and Competency 
Clusters (OECD, 2003). 

To analyze the manner in which participant teachers incorporate non-routine problem solving 
into lesson planning we developed a lesson template based on the Japanese lesson study and its 
various adaptations (Fernandez & Yoshida, 2004). 
 

Snapshots from Lesson Study Sessions 
To illustrate how teacher participants typically engaged in NRPs during the lesson study 

group activities we present below snapshots from one of the sessions. These snapshots are 
paradigmatic of the kinds of conversations that occurred during the sessions. Participants worked 
on the cross-to-square problem (fig.1). We selected this problem as a rich context that includes 
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all the following features which we view as highly relevant to the classroom practice of middle 
school teachers: 

• Conveyed through a diagram (invites diagrammatic thinking) 
• A geometric dissection 
• A constant area problem 
• As a puzzle, it generates puzzling, puzzlement 
• Linked to rotated or ‘tilted’ squares (transformational geometry: from a square to a tilted 

square)  
• Connection to Pythagoras theorem  
• Lends itself to other related problems (other square dissection puzzles) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 1. 
 

The problem was introduced during a brief whole-group exchange following a “thinking 
aloud together” modality (Zolkower & Shreyar, 2007).  
Framing the NRP 
BZ:  Can we dissect this rectangle in three pieces so the pieces may be re-arranged into a 
square? (Draws a 2 by 8 rectangle on chart paper) 

A few minutes later 
Ms. E: I got it! It will give you a tilted square with an area of 8. 

BZ draws the tilted square and shows with arrows how it results from dissecting  the 
rectangle. 
BZ:  Easy, right? Now the real problem consists of dissecting this cross-like  figure… 
(Draws diagram)… in four pieces so that the pieces may be re-arranged  to make a square. 
Ms. S: How can this work?! 
BZ:  What do you mean? 
Ms. S: I mean, if there are 13 squares. 13 is not... 

Cross-to-Square Puzzle  
 
Divide the shape below into four 
parts that can fit back together to 
form a square 
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Mr. H: Can we split the squares? 
BZ:  Split them how?  
Mr. H: Cut them diagonally in some way 
BZ Draws a small square and splits it in half diagonally. 
BZ:  What do you all think? 
Mr. Z: It won’t work unless we cut the squares. 
Shifting the Context: From the LSG to the Classroom 
After the solution was found. 
Ms R:  I have a question… How do we help our students solve these kinds of  problems? 
BZ writes R’s question on the board, crosses out 'help,' and substitutes it with 

‘teach.'  
BZ:  I'd like to rephrase R's question: How do we TEACH students to solve these  kinds 
of problems? What kinds of problems would they need to work on before  tackling this one? 
Ms. G: Unless they’re familiar with the idea that a square can be tilted.... Makes a  hand gesture 
to indicate ‘tilted’ 
Ms. S: Also… as soon as they see 13, they may think, like I did, it’s impossible to  do it! 
BZ:  Those two issues seem quite related, right? So it may beneficial to first engage students in 

activities that involve sketching and finding the area of tilted squares… on graph paper, 
of course.  

From NRP to Pre-Requisite, Sub-Problem 
The above shift in perspective, from solving the math NRP problem to raising the question of 

how a problem such as this one could be introduced in a middle school classroom, led us to 
introduce a likely candidate for a pre-requisite (or sub-) problem (fig. 2). 
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 Figure 2. 
 
From Problems to Units  

And, in turn this was followed by an activity whereby participants were given a set of nine 
‘scrambled’ problems and asked to solve each of them, identify the mathematics in each of the 
problems then select three to five problems to make an instructional unit with them. They were 
also asked to justify their choice of problems for the unit as well as its sequencing. 
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Results  
The lesson study activities centered on NRPs proved to be a rich context for teachers’ 

engagement with mathematics, learning, and teaching. Our analysis of the data revealed the 
following  

• Mirroring the classroom: By asking teachers to try out and report on both their own 
problem solving and their incorporating of NRPs in their classrooms, teachers developed a better 
understanding of what their students go through when they solve mathematical problems and led 
them to realize the importance of providing a challenging and, at the same time, supportive 
classroom environment. As one participant put it: “The engagement in solving non routine 
problems so resembled what happens in my classroom. Students demonstrate different 
approaches as did we as teachers. The environment needs to be safe so that all feel comfortable 
to share. I also rediscovered my own strengths and weaknesses as a problem solver.” 

• The laboratory context: the participation in the lesson study encouraged teachers to 
experiment with incorporating non-routine problems in their classrooms and being able to 
experience gradual successes “I have started incorporating NRPs occasionally in my class. I 
noticed that all my students are becoming more actively engaged and are asking if we are going 
to continue to do problems of that nature.” 

• Lesson planning improvement: As noted before, teachers showed improvement in 
planning sequences of related lessons: “I am planning to continue the use of proper sequencing 
of lessons and use more NRP's.” 

• Analytical pedagogical tools: Working on NRP and analyzing curricular and assessment 
materials with respect to non-routine problem solving gave teacher participants tools for 
examining their classroom practices. For example one teacher noticed: “Comparing and 
contrasting the different assessment forms and questions from around the world was most 
memorable to me. I found it very interesting and insightful to critique the NYS math curriculum 
in comparison to other countries” 

• Community of practice: Teacher participants found in the group a learning community 
and enjoyed “the experience of being able to work with teachers who have a different method or 
strategy of presenting a lesson different from what [they] will usually do in [their] classroom.”  
One teacher noticed how the group provided a structured time for collaboration and how other 
teachers became a resource: “Not only did I have structured time to create a higher-level multi-
topic activity to complete with my class, but now I can take the other activities created by the 
other teachers back to my school and use them with my students in the future. 

• School Leadership: One teachers played a leading role in replicating some of the lesson 
study activities at their schools. This participant wrote in a journal entry: “Our professional 
development sessions at school are currently planned around solving non-routine problems as 
we wish to enhance teachers own skills (at their request).” 

The analysis of the lessons planned by individual participants both at the beginning of the 
study and at the end of the sessions showed that participants: (1) moved from the brief isolated 
lesson formats to more complex ones that place the lesson in the context of broader unit of 
instruction; (2) made more effort after the sessions to include mathematical problems in their 
lessons; (3) The success in incorporating non-routine problems into classroom practice on a 
routine basis varied by individual participants. Also only two teachers introduced the non-routine 
problems systematically as authentic contexts for mathematizing while others often contrived 
some of the mandated curriculum standards to the problems.  
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Discussion  
Given that NRPs are challenging for students and given their rich mathematical content 

create the need for teachers to act as curriculum and instructional designers and locate a given 
NRP (Pn) with another that should precede (Pn-1) and/or follow after (Pn+1) , this vertical 
analysis constitutes the backbone for designing a unit of instruction based on NRPs. Also NRPs 
are analyzed and compared horizontally to problems from other mathematical strands. NRPs are 
by their very nature amenable to a variety of approaches. The chart in Fig.3 describes our 
framework on the relationship between NRP, other NRPs, Problem-based lesson and problem-
based unit. NRP-based Lesson study should guide teachers in relating and moving back and forth 
between these different instructional design dimensions. 

Other than the curricular side, NRP-based teacher education activities were also found to 
help teachers improve their ability to conduct classroom interaction. 

 

 
Figure 3. 
 

Non Routine Problems require from teachers a connected understanding of mathematics 
where the isomorphic connections between the different mathematical strands and structures are 



Vol. 5  1090 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

developed and used to solve the problem. The uneven results found in this study in how 
individual participants incorporated NRPS in their lessons are due in part to the level of comfort 
with NRP mathematical content and linked to participants’ disposition to try these in their 
classroom. Engaging teachers in NRP-based LSG proved to be a safe professional development 
modality strengthening teachers’ own mathematical and problem solving content knowledge and 
guiding that shift from thinking about incorporating non-routine problem as potential tasks that 
beginning teacher will only do after they become expert teachers to that belief that this is 
essential part of being a better reform mathematics teacher.  
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This teacher development experiment examined the development of mathematical knowledge for 
teaching (MKT) of three coaches of mathematics teachers (Hill, Rowan, & Ball, 2005). Coaches 
were graduate students in the field of mathematics who had an interest in teaching. Coaches 
developed knowledge of content and teaching as they reflected and collaborated with classroom 
teachers to implement inquiry-oriented lessons. Coach knowledge of content and students 
developed through observing and interacting with students. Finally, coaches developed 
specialized content knowledge as they discussed perturbations from lessons with teachers. 
 

Background 
The field of professional development coaching currently enjoys steady growth in 

mathematics education as schools search for effective ways to support the learning of in-service 
teachers. Although coaching is gaining popularity as a means of professional development, its 
forms and effectiveness of implementation vary from context to context (Olson & Barrett, 2004). 
For example, due to the difficulty in recruiting highly qualified coaches from the field of 
mathematics education, some school districts have looked to hiring their best mathematics 
teachers as coaches. As a result, districts rob students of qualified teachers and position the 
newly hired coaches to find their own way in supporting teachers. Thus, finding qualified, cost-
effective coaches remains a difficulty for schools.  

One alternative model of coaching matches graduate students in the fields of science, 
technology, engineering, and mathematics (STEM) as content specialist coaches with K-12 
classroom teachers. The National Science Foundation (NSF) has established the Graduate 
Fellows in K-12 Education (GK-12) program that provided the context for this study.  The GK-
12 program places Graduate Fellows into K-12 classrooms as collaborative coaches (Olson & 
Barrett, 2004). The partnership is designed as a mutual professional development opportunity for 
both the coaches and the classroom teachers. Teachers develop content knowledge related to the 
subject matter they teach.  (See Knapp, Barrett, & Kaufmann (2007) for teachers’ development 
of mathematical knowledge for teaching through this model.) The teachers voluntarily participate 
in the partnership. The mathematics graduate coaches may or may not have prior teaching 
experience, but they have had summer and bi-weekly training on topics such as the National 
Council of Teachers of Mathematics (NCTM) Standards (2000) and social constructivism. 
Graduate coaches collaborate with practicing teachers and other graduate coaches on planning 
and delivering standards-based lessons. Coaches generally model lessons for teachers with the 
teachers’ own students. On some occasions, however, the teacher leads the lesson with the 
coach’s assistance. Most often, teachers and graduate coaches work in pairs, although at times 
teachers request the assistance of multiple coaches. NSF expects that graduate coaches will 
develop useful teaching abilities through the program that will prepare them for faculty positions 
that involve teaching. In order to examine the viability of the partnership, this study examines the 
impact of the coaching relationship on the teaching abilities of the coaches. More specifically, I 
investigate coaches’ development of mathematical knowledge for teaching, which is the 
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mathematical knowledge and habits of mind needed for teaching mathematics (Hill et al., 2005). 
In addition, I seek to ascertain aspects of the coach-teacher relationship that might lead to coach 
development. Thus I ask, “In what ways do graduate coaches develop mathematical knowledge 
for teaching as they engage in collaborative coaching with classroom teachers?” For the 
remainder of this paper, I refer to graduate coaches as Coaches, K-12 classroom teachers as 
Teachers, and K-12 students as students. 

 
Theoretical Framework 

The construct of mathematical knowledge for teaching (MKT) has been linked to student 
achievement, and thus provided a framework for analysing the Coaches’ development in this 
study (Hill et al., 2005). MKT includes these six elements: common content knowledge; 
specialized content knowledge (SCK) needed specifically for the mathematics classroom; 
knowledge of content and students (KCS) which is knowledge of how students learn 
mathematics; knowledge of content and teaching (KCT) which includes knowing the best 
representations for teaching mathematics; knowledge of curriculum; and knowledge at the 
mathematical horizon. This study focused on KCT, KCS, and SCK (See Table 1) (Hill et al.).  

 
Table 1. Components of Mathematical Knowledge for Teaching 
Subject Matter Knowledge Pedagogical Content Knowledge 
Common Content Knowledge (CCK) Knowledge of Content and Students (KCS) 
Specialized Content Knowledge (SCK) Knowledge of Content and Teaching (KCT) 
Knowledge at the Mathematical Horizon Knowledge of Curriculum 

 
For a theoretical framework, the emergent perspective appeared suited to this study because 

mathematical knowledge for teaching (MKT) is related to the construct of classroom social 
norms as outlined in the emergent perspective (Ball, 2003; Cobb & Yackel, 2004). The emergent 
perspective takes the social aspects of learning and the individual psychological aspects to be 
reflexively related. In this study, I investigated the individual and social construction of MKT of 
Coaches as they collaborated with teachers. 

 
Methodology 

I chose to employ qualitative, multi-tiered teacher development experiment (TDE) 
methodology because the goal of a TDE is to generate models for teachers’ mathematical and 
pedagogical development, closely matching our research aims for the collaborative coaches 
(Lesh & Kelly, 2000; Presmeg & Barrett, 2003).The methods for this qualitative teacher 
development experiment involved year-long case studies of three mathematics coaches: Melvin, 
Dave, and Marsha. I also conducted case studies on four Teachers, but I do not report on the 
Teacher development in this paper. Melvin had four years of teaching experience at the 
secondary level before pursuing his graduate degree in mathematics. Dave had two years of 
teaching experience, and Marsha had no former teaching experience or preparation. 

Data sources for Melvin’s development of MKT included 87 written pre/post lesson 
reflections,  transcripts of two audiotaped interviews, 4 video-taped lessons, and transcripts of 9 
audiotaped pre and post planning sessions done in collaboration with a 6-8th grade mathematics 
teacher, Mrs. Gerber. Data sources for Dave included 74 written pre/post reflections, transcripts 
of two interviews, 9 video-taped lessons, and transcripts of 7 audiotaped planning sessions with 
Teachers. Data sources for Marsha included 87 written pre/post reflections, transcripts of two 
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interviews, 12 video-taped lessons, and transcripts of 11 audiotaped planning sessions with 
Teachers. Pre lesson reflections asked Coaches to describe the lessons that they would teach and 
to explain how students would be expected to invent knowledge and think through the content. 
Coaches were also asked to predict areas that would be difficult for students to understand. Post 
lesson reflections required Coaches to describe how the lesson went and whether students 
understood the content. These data sources were analysed for development in mathematical 
knowledge for teaching with regard to SCK, KCS, and KCT.  

In order to analyse the data, SCK, KCS, and KCT were broken down into 17 codes relating 
to different aspects of each construct. A question accompanied each code in order to highlight 
ways that MKT development might occur. Questions came from the elements of the work of 
teaching elaborated by Hill et al. (2005) and from salient aspects of the pilot study. For examples 
of the codes and accompanying questions, see Table 2. Three transcripts were analysed by both 
the researcher and Melvin, Dave, and Marsha respectively until an interrater reliability of 80% 
was reached. After this, the researcher coded the rest of the transcripts.  Each time a portion of 
transcript was coded as SCK, KCS, or KCT, the accompanying question was answered based on 
the data. Ways in which these elements developed were then categorized and tabulated.   
 
Table 2. Analysis Codes and Questions 
Category Analysis Question (Code) 
KCT How did the lesson study environment affect the Teachers’/Coaches’ 

instructional choices and use of curriculum? (KCT1) 
KCT How did the Teacher/Coach encourage student construction of knowledge? 

(KCT4) 
KCT How did the Teacher/Coach provide explanations, examples, or 

counterexamples? (KCT7) 
KCT Did the Teacher/Coach ask students to justify their reasoning? (KCT6) 
KCS How does the Teacher/Coach notice students’ 

knowledge/reasoning/thinking as they engaged in lesson study? (KCS12) 
KCS How does lesson study help Teachers/Coaches question their students [not 

as an instructional tool but to learn about students’ thinking]? (KCS13) 
KCS How does lesson study help Teachers/Coaches see/hear student 

misconceptions? (KCS14) 
SCK How did mathematical discourse between Teachers and Coaches foster 

reasoning? (SCK17) 
 

 
Results and Discussion 

I coded Coach reflections for knowledge of content and students (KCS), knowledge of 
content and teaching (KCT), and specialized content knowledge (SCK). This meant that I coded 
quotes which I felt indicated that the Coach developed or had an opportunity to develop these 
elements of teaching. For example, if a Coach noted changes he would make to a lesson after 
teaching it, I coded an opportunity to develop KCT. I avoided counting quotes which showed 
teaching knowledge that the Coach possessed prior to the lesson. In addition to reporting results 
from reflections in this section, I also report codes from transcripts of audio taped reflections 
with teachers, videotapes of lessons, and interviews. The final tallies revealed 91 expressions of 
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developing KCT, 41 expressions of developing KCS, and 14 instances of developing SCK. In 
addition, Coaches reported learning general pedagogy. 

After coding the data, I looked back at each code, and identified how that type of knowledge 
developed. To focus on the primary ways in which Coaches developed, I eliminated all ways that 
were expressed less than ten times. Some ways I collapsed together into a single category. The 
compression phase of data analysis revealed five primary ways that mathematical knowledge for 
teaching developed for the Coaches. I list the five primary ways in Table 3, and I provide 
evidence for the ways in the sections following the table.  
 
Table 3. Primary Ways in which Coaches Developed Mathematical Knowledge for Teaching 
Frequency Way 
KCT (46)  
17 Reflecting about changes and things to keep from a lesson taught 
11 Having students construct their own knowledge and make discoveries and 

conclusions; Teaching for conceptual understanding 
18 Reflecting on lesson with teacher; Considering perturbations or misconceptions 

prompting revision; Collaborating with Teacher in planning, with both sets of 
expertise working together; Repeating lesson or teaching strategy 

KCS (32)  
32 
 
 

Observing, listening, and interacting with students during lesson; seeing what’s 
hard for them and misconceptions; seeing level of material students could handle, 
construct, or conjecture (raised expectations) 

SCK (10)  
10 Finding an application to model the content; Discussing perturbations with 

Teachers or other Coaches; Testing a student conjecture 
 
Coach Development of Knowledge of Content and Teaching 

The primary ways in which Coach mathematical knowledge for teaching developed focused 
on knowledge of content and teaching (KCT) and knowledge of content and students (KCS). The 
first primary way Coaches developed KCT was in reflecting about lessons they had taught and 
deciding to either retain or change elements of the lessons. For example, Marsha stated the 
following in a reflection: 

The kids really had a lot of fun with this game, and it really was simple in terms of 
materials and set up. They practiced a lot of multiplication problems and were really 
checking each others work since they wanted to win the cards that round. It also helped 
them to think about strategies of what is going to give you a big number when you 
multiply, which I think helps them to develop their estimating and telling if an answer is 
reasonable. 

She learned a classroom activity to support students’ estimating strategies (KCT). This finding 
substantiates Mumba et al. (2003) who found Coaches to have Technocratic-oriented reflections. 
In other words, they sought solutions to improve their teaching. Furthermore, like Mumba et al., 
the nature of the Coach reflections were descriptive, dialogical, and critical. Dialogical referred 
to reflecting with teachers during and after lessons as well as reflecting with other Coaches 
before and after lessons. Critical referred to expressing dissatisfaction with lessons and 
suggesting alternatives. The second way Coaches developed KCT followed from the first, in that 
Coaches often chose to change lessons towards inquiry. In other words, they valued to a greater 
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degree students making their own discoveries and conclusions, individual construction of 
knowledge, and teaching for conceptual understanding. The third way KCT developed was 
similar to the first and second, but allowed for collaboration with Teachers. Coaches collaborated 
with Teachers on planning lessons, in which both sets of expertise went into the lesson design. 
The teacher contributed knowledge of her individual class and pedagogy. The Coach contributed 
content knowledge and knowledge about inquiry-based instruction. After lessons, Coaches and 
Teachers as collaborative partners discussed perturbations relating to student misconceptions, 
pedagogy, or technology. The Coaches and Teachers would then revise and sometimes repeat 
lessons based on their discussion of the issues. Finally, Coaches would at times repeat the cycle 
of revision, perhaps with another Teacher or another Coach. 
Coach Development of Knowledge of Content and Students 

Knowledge of content and students (KCS) primarily developed during lessons as Coaches 
observed, listened to, and interacted with students. Coaches learned what concepts were difficult 
for students to understand as well as misconceptions that students possessed. For example, all 
three Coaches independently encountered trapezoid as a challenging concept in middle grades 
classrooms. Dave and Marsha, independently in different lessons and different schools, found 
that students’ conceptions of ‘trapezoid’ are often of an isosceles trapezoid where both legs are 
the same length. The Coaches then challenged this misconception by presenting them with right 
trapezoids, and discussing with them the properties of a trapezoid. Marsha used geoboards as a 
teaching tool and Dave used Geometer’s Sketchpad to address the misconceptions. Melvin 
addressed the misconception during a class discussion. In a post lesson reflection he wrote,  

The best discussion I felt like came from discussing the trapezoids, as the students felt 
there was only one possible trapezoid, the picture we frequently see in books of an 
isosceles trapezoid. After determining the definition of a trapezoid to be one set of 
parallel sides, the students debated me as to whether or not a right trapezoid was really a 
trapezoid. This discussion really brought out the misconceptions created by always using 
the same figure to describe a family of figures and was a good chance to discuss what 
properties are necessary to classify a quadrilateral. 

Thus, the Coach learned that students hold limited concept images of figures, developing 
knowledge of content and students (Vinner & Hershkowitz, 1980). 

In addition to learning about student misconceptions, Coaches learned about the level of 
material the students could handle. Moreover, Coaches learned how students created conjectures 
and constructed knowledge. At times, Coaches’ expectations were raised by observing students’ 
productions in an open-ended environment. For example, in an open-ended lesson in which 
students were to conjecture about quadrilateral properties using Geometer’s Sketchpad as a tool, 
the Coach, Melvin, expected students to come up with perhaps four or five conjectures. He and 
the teacher were amazed when the students produced twenty conjectures, some of which can be 
seen in the following portion of transcript: 
Student: 2 sets of parallel lines. 
Melvin: 2 sets of parallel lines. What do we think? 
Students: Yeah, No [chorus of no’s] 
Melvin: Who says no? OK right there, you say no? Alright, so far she’s the winner. She says 

that’s not the case, but let’s go back and let’s look at this, OK. On your screen you might 
have parallel sides, but remember what a property is. A property is something that’s true 
for every quadrilateral. So let’s look over here. Do these have parallel sides? [motioning to 
a student screen and dragging] Are they parallel now? 
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Melvin: Look at mine up here [referring to the projected Sketchpad screen]. What I’m going to 
do is I’m going to start dragging this thing around, right? I can drag this around. Are those 
parallel? [chorus of no’s] So it doesn’t. Even though I can take these and I can make them 
parallel, and according to that observation right there, they are parallel. So I would agree 
with the young lady. However, we need to be true for all of the quadrilaterals, and so that 
isn’t going to be one for all of them. 

Student: All have four letters. 
Student: Four segment lines. 
Melvin pointed out that “segment lines” was contradictory and wrote, “Four segments.” The 
transcript continues. 
Student: They’re all enclosed areas, I mean, inside it’s all enclosed. 
Melvin: OK, I’m going to tie all that up with one word – polygon, OK. Enclosed. 
In the audiotaped post reflection between the Coach and the teacher, the Coach said,  

Yeah, I felt, I was very happy with their creativity, and their coming up with the properties. 
They all were involved. One thing we talked about might happen is that they’ll just stare at 
me, and look at me. That didn’t happen at ALL. So, so by that I was taken a little bit aback 
and was kind of enthused by it. Um, was maybe a little bit overwhelmed...”  

Melvin learned that students are curious and eager to conjecture, and he also learned that student 
conjectures could appear very different from properties listed in a textbook. Thus, at times, the 
results of inquiry-based lessons took Coaches by surprise; knowledge of content and teaching 
had spawned knowledge of content and students.  
Coach Development of Specialized Content Knowledge 

The last area of Coach development related to specialized content knowledge. Although this 
type of development occurred less frequently than KCT and KCS, it surfaced through rich 
discussion as can be seen in the following example. Melvin, like Dave and Marsha, encountered 
trapezoids when he and a teacher developed a quadrilateral taxonomy in which a trapezoid was 
defined as having exactly one pair of parallel sides (Battista, 1998). During a debriefing session, 
the following discussion ensued between Melvin and the 7th grade Teacher, Mrs. Gerber. 
Melvin: But see now the tricky thing, actually, I’m learning a lot, Mrs. Gerber, because having 

done this kite, now I see the relationship a kite… rhombus, 
Mrs. Gerber: OK 
Melvin: Every rhombus is a kite, by my, by our definition, and see this is the thing. Um, I’m 

finding out that that definitions vary from book to book. (That’s true.) Do you guys have, 
do you guys talk about kite in your book? 

Mrs. Gerber: No, we don’t talk about it. No, we don’t.  
Melvin: I’m finding a lot of differences in the definition of trapezoid, a lot of differences in the 

definition of kite. 
Mrs. Gerber: What are you finding in the differences in trapezoid? 
Melvin: Some books just say that it’s got um at least two [one] pairs of opposite sides [parallel], 

so that would mean a parallelogram is a trapezoid as well. 
Mrs. Gerber: OK 
Melvin: But it doesn’t have to have all, it doesn’t have to have all, it doesn’t have to have two 

pairs of opposite sides parallel. It just has to have at least two opposite sides that are 
parallel, so that gives it a little bit of more flavor, so every parallelogram is a trapezoid, and 
every trapezoid is a quadrilateral, it would fit in that flow.  

Mrs. Gerber: Oh, OK, now I’ve never seen that either.  
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Melvin: Yeah, actually, I like that better, if we’re going to make a note on how things are going 
to be done next year, I would suggest doing that. 

Mrs. Gerber: Well, you know, that that make the trapezoid not such an odd guy out. 
In his final interview, Melvin stated, 

I will be honest with you, I was growing in my understanding as well, right with her 
[Mrs. Gerber]. I mean, because I, we had presented trapezoids as only one pair of 
opposite parallel sides as opposed to at least [one pair of parallel sides]. And that change 
makes quite a difference…  

Thus, Melvin developed specialized content knowledge (SCK) about definitions of a trapezoid as 
he delved into the topic of quadrilateral relationships with the teacher. In another planning 
session, Melvin and the Teacher wrestled with adding arrows to their taxonomy to denote 
generality (Battista, 1998). For example, they showed that a square is always a rectangle with a 
down arrow, but that a rectangle is sometimes a square with an up arrow (See Knapp et al., 
2007). They decided to give the same task to students. The collaboration between Melvin and 
Mrs. Gerber inspired a didactic problem situation, and thereby provided for the development of 
knowledge of content and teaching (KCT).  
Coaches’ Path to Mathematical Knowledge for Teaching 

In reflecting about the ways in which Coaches developed mathematical knowledge for 
teaching, I summarize the development with the following cycle. In the Coaches’ Path to 
Mathematical Knowledge for Teaching, Coaches develop specialized content knowledge (SCK) 
as they research the topic for a lesson. As they search for curriculum and collaboratively plan for 
instruction with Teachers and other Coaches, they develop specialized content knowledge (SCK) 
and knowledge of content and teaching (KCT). During the lesson, Coaches develop knowledge 
of content and students (KCS) through observation of and discourse with students. Finally, in the 
reflection/debriefing phase, Coaches develop KCT, KCS, and SCK as they consider 
perturbations from the lesson with the Teacher or another Coach and reflect on the lesson (Hart, 
Najee-Ullah, & Schultz, 2004).  Finally, the lesson may be repeated at another school with 
another teacher, and the cycle continues. The debriefing phase is perhaps the most valuable 
aspect of the cycle because both mathematical and pedagogical issues get discussed and 
intertwined. For example, the definition of a trapezoid discussion between Melvin and Mrs. 
Gerber occurred during a debriefing meeting. Also during the debriefing sessions, the lessons are 
fine-tuned based on the knowledge of content and students gained from the teaching phase. It is 
important to note that not all Coaches follow this path for all lessons. Rather, it is when and to 
what degree Coaches follow this path or elements of it that they appear to develop mathematical 
knowledge for teaching.  

In conclusion, Graduate Coaches developed MKT through collaborative coaching with 
teachers. In particular, development occurred during collaborative planning and subsequent 
debriefing with Teachers. This aspect of the Coaching relationship is critical and should not be 
shortchanged. This research implies that the coaching relationship can serve as a form of 
professional development for both Teachers and Coaches (Knapp, et al., 2007). Thus, I 
recommend that universities involved in the preparation and professional development of STEM 
professors or K-12 teachers consider offering coursework, student teaching assignments, or 
assistantships which involve coaching of K-12 teachers.  
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This paper reports on how beginning mathematics teachers who are participating in the New York 
City Teaching Fellows program view and respond to their students’ mathematical errors. It 
describes the error analysis-coding model used when identifying and analyzing the error-handling 
situations. The study focuses on (a) elicitation of the identified errors, (b) type of errors (c) 
teachers’ immediate reactions, (d) teachers’ follow-ups and (e) the correction and post-correction 
processes. The other focus of the study is teachers’ views of error attribution, and their own role in 
responding to students’ errors in urban context as expressed in end-of-year interviews. Results 
show the importance of considering influences of school contexts on individual teachers’ error-
handling role.  
 

T heor etical Per spectives 
Most mathematics education professional organizations and reform voices call for 

mathematics classroom environments where students participate actively in trying to understand 
what they are asked to learn. Effective learners in such environments recognize the importance 
of reflecting on their thinking and learning from their errors. As Lannin et al. (2006) emphasized 
“creating an environment where students can learn from their errors is paramount for supporting 
their mathematical learning” (p.186). 

The NCTM standards (2000) elaborate that, in such environments, mathematical errors are 
seen not as “dead ends but rather as potential avenues for learning.” This view considers the fact 
that “students feel comfortable making and correcting mistakes” as a basic and main reform 
characteristic. Teachers have a crucial role in building such environments, where students 
understand that it is acceptable to struggle with ideas, to make mistakes, and to be unsure 
(NCTM, 2000). However, there are fewer studies on error-handling activities of teachers in 
mathematics lessons (Heinze, 2005). 

 The research design and methods for this study are informed by a framework that articulates 
theoretical standpoints deriving from teacher education, learning theories and comparative 
education. First, we adopt the view of errors as resources for promoting learning rather than 
simply as diagnostic tools or stumbling points, we look developmentally at the immersion of 
beginning teachers in the teaching profession and realize the importance of the first years in 
shaping their teaching practices. We believe in the importance of supporting beginning teachers 
and considering their professional needs within the growing alternative certification context, we 
finally derive from the  cross-cultural lens of comparative educational studies their emphasis on 
the importance of  contextual nature of the teaching practices. 

Researchers in mathematics education have long realized and studied the role of errors in 
learning (Baruk, 1985). Most of the earlier research held a diagnostic approach and tried to study 
the nature of students’ errors and suggest remediation strategies (e.g., Radatz, 1979). Calls for 
teachers to capitalize on students’ errors are also abundant in the literature (Borasi, 1994; 
Ashlock, 2005; Lannin et al., 2007; Smith et al. 1993). For example, Borasi (1994) proposed 
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“using errors as springboards for inquiry” as a strategy to use students’ errors in stimulating and 
supporting mathematics inquiry instruction while Lannin (2007) stated that “ when students seek 
to understand the general nature of the errors, they engage in a critical boundary-defining process 
that can lead toward a normative view of the application of a particular concept [and] when 
students engage in considering the applicability of a particular concept, they define the boundary 
for when to and when not to apply a particular idea.” (p.57). Martinez (1998) looked at errors as 
unavoidable part of the process of problem solving. He called for both teachers and learners to be 
more tolerant of them, arguing that “if no mistakes are made, then almost certainly no problem 
solving is taking place.” In this view errors are not seen as signs of failure or weakness as other 
learning theories might suggest. Expanding on how different learning theories view errors, 
Santagata (2005) noted that different learning theories assign to mathematical errors rather  
fundamental roles: either as obstacles as in the case of behaviourists or as tools for learning with 
constructivists); however, “the extent to which they inform teachers’ practices is a question yet 
to be investigated” (Santagata, 2005, p.492). 

Comparative education studies showed differences in how teachers in different cultures and 
countries vary in their approaches to students’ mathematical errors: for example Osborn and 
Planel (1999) reported on how teachers in England made more effort to protect students’ self-
esteem and avoid negative feedback while teachers in France were observed responding directly 
to students’ wrong answers and sometimes yelling at students. Stevenson and Stigler (1992) 
reported that Japanese teachers viewed mathematical errors as having a positive function. 
Students in Japanese mathematics lessons are called to the front of the classroom to share their 
own problem solutions with their classmates even when they are wrong. These wrong solutions 
are regarded as sources of useful discussions. Japanese teachers also plan their lessons taking 
into account common mistakes made by their students. To the contrary, they found that US 
teachers avoided discussions of students’ mathematical errors and showed more concern about 
students’ self-esteem. 
 

Research Questions 
This study aims to investigate whether and how beginning teachers, like the NYC Teaching 

Fellows, are aware, develop or practice their error-handling role. In particular, it aims to answer 
the following questions: (1) How beginning mathematics teachers respond to their students’ 
mathematical errors in their classroom settings and  (2) How do they view students’ 
mathematical errors and look at their own role in responding to these errors. 
 

Methodology 
This study draws on data from a larger research project facilitated by MetroMath (The Center 

for Mathematics in America’s Cities at the Graduate Center- CUNY in NYC) that explores the 
nature of teaching and learning in “high-needs,” urban schools having a large proportion of 
alternative-routes teachers. More specifically, the MetroMath study examines the impact that the 
NYCTF program, an alternative teacher certification program, is having on mathematics 
education in the NY City classrooms.  

The NYCTF program is examined both from a macro study – using large scale surveys of the 
2006 and 2007 cohorts, as well as a micro study. In the micro study, we draw on data from case 
studies of eight teachers whose mathematical classrooms we observe about once a month using 
field notes, video taping, written reflections and post-observation interviews to understand 
teachers’ experiences in the classroom.  
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For this particular paper we focus on the video- -tapes and field notes that show occurrences 
of students’ mathematical errors and analyse how the eight case study teachers responded to and 
handled these situations. A second set of data we used was end of year interviews that we 
conducted with the eight NYC fellows in order to better understand their views about errors and 
their perception of their own practices when they recognize mathematical errors. 

 
The Error Profile and Coding Scheme  

In this study, a mathematical error was defined as a student’s wrong answer to a teacher’s 
question or mathematical task. To analyse teachers’ responses to the error we developed an error 
profile form adopted from Haydar (2002) and Santagata (2005). For every identified error, the 
error profile included teacher name, date and time, instructional task, narrative of the teacher-
student interaction followed by a table that organized the analysis of each error according to: 
elicitation activity; nature of talk; type of error; immediate reaction; teacher interaction; error 
correction and post-correction behaviour. 

A coding scheme was developed to look at each of the aspects listed above. After we 
identified that the teacher had recognized a student error, we would fill out the identifying 
information for the first part of the error profile. We then analysed the elicitation activity (in 
what part of the lesson did the error occur? ) then the nature of talk: was it public (whole class)? 
private? (one-to-one)? or semi-private? (small groups). We then coded the type of error 
(conceptual, procedural, drawing, computational, distraction, notation). As for the teacher’s 
immediate reaction we looked whether the teacher gave a negative verbal reaction or asked a 
question related or not to the content. We then analysed the intervention that followed (Did the 
teacher give another task?; Interviewed the student?; Repeated the same question?; Used picture 
or other teaching aids?; Explained?). The focus that followed was to locate who gave the correct 
answer at the end (Was it the teacher him/herself?; Another student? ; The same student?; Or was 
no correct answer given at all?). Finally, we looked at what happened right after the correction 
was done (Did the teacher use the error as a learning moment?; Did he/she use it as a warning for 
students?; Or did the teacher delay the response?; Or just moved to another task?). Following are 
two examples that illustrate the error profile, the identifying information were taken off for space 
and anonymity considerations, clarifications were added in italic. 
 
Example 1: Private error profile. 
Task or question: Simplify the following algebraic expression: 3) 3x3 +x3-x+ 2x2+x 
 
Narrative:  
A.N. (seventh grade student) has written the following answer: 
3x3 + x2+36 
 
T (teacher) pointing to the x2 
“you forgot the 2 here” she adds the two then asks him: 
“why did you put 36 here?” 
 
Coding: 

EA (elicitation activity) 4 (student 
work time) 
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EN (elicitation: Nature of talk) 3 (private) 
TE (type of error) 8(not enough 

information) 
IR (immediate reaction) 4 (other: points 

to 2) 
TI (teacher intervention) 6 (other) 
CR (correction) 1 (teacher 

corrects) 
PC (post-correction) 4 (moves to 

another error) 
Figure 1: Example of a partial private error profile. 

 
 Example 2: Public error profile. 
Task or question: Simplify the expression: (n + 2) + (n + 4) 
 
Narrative 
T (teacher) moves to the front of the room and asked S1 (8th grade student) to answer #3: (n + 2) 
+ (n + 4) 
S1 immediately says n2 + 6n + 8. 
T moves to the back and asks if the answer was correct. 
S2 (Another student) says no, and gives the answer 2n + 6. 
T looks at S1 and explains that it is very important to see the difference between # 3 and # 4 in 
these two questions. He says that one has the plus sign in between parenthesis and the other has 
the imply multiplication and that these problems must be solved by different methods. 
T looking at the whole class says: “We need to be careful not to use the FOIL method because 
we have the plus sign” and assures S1 that he did not ask this to trick him, but to show that we 
need to be alert. 
 
Coding: 

EA (Elicitation Activity) 
 

1 (Do Now) 

EN (Elicitation: Nature of Talk) 
 

1 (Public) 

TE (Type of Error) 
 

2 (Procedural) 

IR (Immediate Reaction) 
 

2 (Content Question) 

TI (Teacher Intervention) 
 

2 (Teacher interview 
students, i.e Q& A) 

CR  (Correction) 
 

3 (Other 
student corrects) 

PC (Post-correction) 1 (use of error for 
explanation) 

         Figure 2. Example of a partial public error profile. 
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The Interview 
In order to better understand how teachers looked at their students’ mathematical errors and 

how did they view their roles in responding to students’ errors, we included four related 
questions as part of an end-of-year interview conducted within the larger research methodology 
mentioned at the beginning of the methods section. The questions were: (i) When a student 
makes mistakes or errors in math, does it mean he/she is a weak student? Explain. (ii) When a 
student in your class makes math mistakes or errors, how do you react? That is, describe the 
different ways you typically respond to student errors. (iii) Some educators think that allowing 
students to present and explain wrong answers to their classmates, puts students at risk of 
acquiring wrong information or skills. What do you think? and (iv) How much can you do to 
improve the understanding of a student who always makes mathematical errors? Do you have 
such students? Explain. 

 When analysing teachers’ answers, we focused on teachers’ error attribution (why do they 
think student make errors?); their views of their own interventions; their views of the role of 
errors in learning; and their own sense of efficacy in dealing with students errors. 
 

R esults and Discussion 
Our findings show beginning teachers moving over time toward more private talk about 

errors situations with students in their classrooms. This fact may be a reflection of the workshop 
model being taught to the teachers in NYC in middle and high school math instruction. The 
workshop model was originally designed to promote interactive pedagogy and creative student 
learning and has been adopted in NYC public schools since 2003 (Traub, 2003). 
Our analysis of the data is also showing variations in how individual teachers develop the way in 
which they respond to students’ mathematical errors. This is due in part to the contextual 
differences in the culture of the schools where they each teach. The main influence themes that 
we detected: 
 
Influence of the emphasis on successful test preparation strategy at the school. The focus on the 
State test preparation led two of our case study teachers to minimize any interactions around 
mathematical errors. This resonates with other studies that show how high stake tests are 
narrowing the mathematics curriculum and how teachers filter the policy messages according to 
their priorities and experiences (Haydar, 2009). 
Influence of the workshop model at the school resulted in a shift from teacher ownership to 
including more students in the correction process. The participatory nature and structure of the 
workshop model helped some of the teachers especially in the schools where the model was 
systemically emphasized to delegate some of the correction role to students. 
Influence of limitations in content knowledge. Teachers who showed limitations in their content 
knowledge tended to have more negative immediate reactions, less interviewing during the 
intervention and more of teacher correction.  
Influence of discipline issues. In classrooms where teachers were still struggling with discipline 
issues, we found a narrowing in the correcting agent to the teacher or the student who made the 
error especially within public talk. This is in line with what other researchers described as 
beginning teachers facing challenges in “survival skills” (Kirby et al., 2006). Kagan (1992) 
affirmed that until beginning teachers have established standard routines and resolved their 
images of self as teachers, they will continue to be obsessed with discipline and class control. 
The analysis of the teachers’ interviews permits to draw the following observations:  



Vol. 5  1105 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

 
Error attribution: six of the eight teachers interviewed distinguished between making errors and 
being weak in mathematics but for different reasons. For some, making mistakes is at least a sign 
of on-task work : “if they’re making mistakes, they’re doing something, which is half the battle.” 
For other teachers errors may result from simple confusion or wrong assumption: “I would say 
that a student who makes a mistake is either confusing something or is making an assumption 
that he or she shouldn’t make”. 
Teachers self-scripted role: half of the teachers explained that they would seek the help of 
students’ peers: “ I would just tell the student who made the mistake to check with so and so and 
if you got a different answer try and figure out who’s right”. Others mentioned that, especially in 
public situation they would start by highlighting any positive aspects in the method that led to the 
wrong answer and then move to some questioning regarding the error itself: “I always tell them 
what they did correctly first.” 
Errors and learning: six teachers thought that displaying individual students’ errors in front of the 
whole class can be beneficial. Some saw in that an opportunity to learn from common errors: 
“They’re going to make mistakes in math all the time anyways, so we might as well learn from 
the most common mistakes that the students are making.” Others thought that other students in 
the class are always critical to each other and hence playing the correcting agents “I think it’s 
very uncommon that a kid leaves the classroom thinking that that was the right answer because 
of just what the other kids do. They don’t let them get away with that”. Two teachers out of the 
eight saw some risks in the error public displays, one of them thought “it needs to be made 
explicit by the teacher and the student that what students presenting at this time is wrong 
answer”. The other teacher emphasized students’ short attention span as source for a risk of 
getting stuck on the error without paying attention to the correction: “ so all of the sudden now 
they think what the person presented was correct because they didn’t pay attention to the rest of 
the presentation.” 
Self-efficacy: teachers sense of efficacy in going about helping students who make continuous 
mathematical errors varied between admitting a role and ability to help by “ keep working with 
them”;“ working one-on-one” ; “ try to identify their way of thinking”; “giving them 
individualized homework”. However, teachers were concerned with time constraints “You can’t 
sit with them every day either because you’ve got, you know; 29 other kids to worry about.” and 
students’ lack of cooperation “Some students just don’t even try”. These two factors were the 
most reported by teachers as hindering their role in helping students who always make 
mathematical errors.  
 

This paper presented an inside view of how beginning teachers in the NYTF program think 
and behave when facing their students’ mathematical errors. The influences at the school and 
policy levels shown in this study along with teachers views of their error handling role and their 
content and pedagogical knowledge need to be considered seriously in any teacher education 
effort whether pre- or in-service aiming to help novice teachers reach a comfortable zone 
whereas they can create challenging yet safe environment where students feel comfortable 
making and learning from their errors. 
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Recently there has been increasing emphasis on constructivist-oriented teaching practices 

within professional development mathematics communities (Loucks-Horsley et al. 1996). Aimed 
at promoting inquiry based learning, this poster illustrates an example of curricular innovation 
inspired by Piaget’s notion of cognitive disequilibrium, which maintains that “knowledge 
develops as a solution to a problem” (Piaget, 1997). Harel (2000) reformulated Piaget’s ideas as 
a fundamental principle for teaching and learning in the Necessity Principle, which states that: 
 

For students to learn, they must see an (intellectual, as opposed to social or economic) need 
for what they are intended to be taught.    

 
A widely pervasive mathematical relationship related to the development of perhaps all 
biological systems finds expression in the surface area to volume ratio. This poster describes 
lesson concepts, procedures, sample discussions, and activities coordinated using the Necessity 
Principle to allow student opportunities for genuine cognitive disequilibrium based on their 
familiar knowledge of dogs, combined with intellectual and mathematical justifications for topics 
and methods used. This poster illustrates how subjects were seen to: 
 

1. Create cube models of small dogs and dimensionally doubled large dogs, while 
mathematically studying comparative surface area to volume ratios in an applied 
context. 
 

2. Discover mathematical justifications and necessities for using concepts such as 
proportion, surface area, volume, and unifix cube manipulatives in addressing the 
‘cooling problem.’ 

 
This example of application of the Necessity Principle to lesson design represents preliminary 
pilot research in a study investigating the effectiveness of intellectual necessity for the transfer of 
familiar problem solving knowledge to less familiar, non-isomorphic problem settings.  
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In Principles and Standards for School Mathematics (2000), the National Council of 

Teachers of Mathematics (NCTM) asserts that written and oral communications are vital 
processes for the learning of mathematics. In fact, there exists a plethora of literature asserting 
the importance of writing in the mathematics classroom. However, the literature lacks analysis of 
the difficulties mathematics teachers may have in implementing writing in the classroom, 
beginning with the creation of writing prompts and proceeding through to responding to 
students’ writing. Therefore, efforts to document the process of using writing in mathematics 
classrooms could prove invaluable to mathematics teachers and mathematics teacher educator. 

The purpose of this poster is to report results from a research study where the aim was to 
develop a picture of how middle school teachers respond to student journal writing in 
mathematics. This poster focuses on how the teachers responded to student journal writing and 
the implications that has for the use of written communication in their mathematics classes.  

Looking at the very nature of the teachers’ responses allowed me to understand how teachers 
“listen” to their students thinking, and in turn make statements about what the teachers valued in 
the student writing. A lens for looking at this work is Davis’s (1996) framework for listening. 
Davis defines three types of listening, evaluative, interpretive, and hermeneutic.  

Teacher responses were disappointing. Teachers’ responses much like the student responses 
were short and unelaborated. Most teacher comments on students’ papers focused on assessing 
the quality of student responses, listening evaluatively, something that has been reported in the 
literature to lack benefit. In fact, almost all teachers’ responses were evaluative although the 
literature reports that to achieve positive results from journal writing teachers should focus on 
nonevaluative comments (Borasi & Rose, 1989). Evaluative responses denote teachers’ listening 
to students to determine correctness. Consequently, because of this practice teachers were unable 
to elicit better responses from their students, due to comments, which focused on correcting 
student thinking rather than trying to interpret student thinking (interpretive listening).  

Another factor that caused difficulty in this study was the teachers’ inability to respond to 
student writing in a timely manner. Often times, teachers would become bogged down in 
responding to student writing and this caused them to have to respond to a lot of writing at one 
time, in turn affecting the quality of the teacher response. Borrowing ideas from Language 
education, there exist alternative ways to respond to student writing that can help teachers 
manage time factors and the amount of writing assigned. Instead of commenting on each 
individual student response, teachers could engage students in peer sharing and responding, 
individual conferences, or respond to each student once per week.  

As outlined by NCTM (2000), being able to communicate mathematically is a vital process 
to learning mathematics. A teacher’s ability to encourage written communication is important. 
Therefore, responding to student journal writing is a crucial step. Teachers need to understand 
that with journal writing the point is not to necessarily critique the student work but is to push 
students’ thinking, not imposing necessarily their own views on the student but to have the 
student think more deeply about mathematics (Borasi & Rose, 1989).  
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This poster will report on the Education Development Center’s (EDC) NSF-funded one-week 

summer institute for mathematics education faculty.  The institute was guided by the principle 
that mathematics education professionals need first-hand experience with coming to understand 
mathematics and was inspired by a course for graduate students developed at the University of 
Maryland.  It was designed to immerse the twenty-four participants (17 faculty members, 6 
graduate students, and 1 retired faculty member) in mathematics, exploring problems posed by 
the organizers and investigating personally relevant questions posed by individuals or small 
groups.  The group considered how such an experience could guide the development of 
mathematics courses for graduate students in mathematics education at their own institutions.  
The third author was the Principal Investigator for this project, and the other two authors 
conducted the project evaluation.  The poster provides a general overview of the program and 
will focus on two questions that guided the evaluation component of the project: 1) How well 
does the institute serve the participants’ mathematical needs?, and 2) How do participants’ 
courses for pre-service teachers and graduate students change as a result of participating in the 
institute?  

To address the first question we will describe the participants’ responses to the mathematical 
experience.  Data sources include participant journals (time was allotted twice daily during the 
institute for journaling), a follow-up survey, and observation and interaction with the 
participants.  A thorough review of this data highlights several general themes among the 
participants’ reactions to the mathematical immersion experience.   For instance, several felt 
invigorated by engaging in and exploring mathematics in ways that were new, unfamiliar, or 
uncommon in their professional lives.  Many participants related their own experiences to those 
of their students, and the social and community aspects of the work were impactful. There was 
some rejection of a perceived insinuation that mathematics educators in general lacked such 
experiences and would benefit from collaboration with mathematicians, but others anticipated a 
need for such collaborations in their own contexts.  Overall, a general excitement about open-
ended, low-stakes mathematical explorations for their own sake developed in the group, and 
many participants projected their own fulfilling experiences as valuable for graduate students.   

To address the second question we will describe the various implementation strategies and 
professional reflections that occurred following institute participation.  At least two participants 
developed collaborations with faculty members in other departments and taught graduate courses 
modeled after the institute at their institution.  One participant reported moving from a 
Department of Education to the Department of Mathematics and Statistics as a result of an 
“awakened desire . . . to teach and ‘do’ mathematics”.   
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We will discuss our efforts to create an online environment that supports teachers engaging 
with the practices of “doing mathematics.” We feel it is important to differentiate this from U.S. 
students’ (and therefore U.S. teachers) common experience of mathematics as “doing procedure 
after procedure.” In our work, we seek to engage teachers with practices common to professional 
mathematicians: asking mathematical questions, making conjectures, testing conjectures, proof, 
and generalization. Hiebert (1999) argued that teachers need opportunities to experience 
mathematics in the way they are expected to teach; teachers have few opportunities to do so. We 
believe this could be one reason for the inconsistent adoption of instructional processes 
recommended by the NCTM process standards (NCTM, 2000), as well as the methods of 
implementation of reform curricula by teachers (Senk & Thompson, 2003). 

The model we use for our interactions is Online Asynchronous Collaboration (OAC) in 
Mathematics Education (Clay & Silverman, 2009), which was developed primarily to scaffold 
participants’ engagement in legitimate mathematical practices online. OAC involves cycles of 
individual, small group, and whole class interaction and collaboration. In this poster, we will 
discuss our recent implementation of OAC in a professional development setting. We will 
include analysis of teachers’ “regularities of practice” – the way they “do mathematics” 
personally and with their students – and the ways in which the structure and scaffolding provided 
by (a) the OAC environment, (b) the professional development (PD) facilitator(s), and (c) their 
colleagues supported the emergence of these mathematical practices. While we feel that 
professional development of this sort is invaluable for teachers, we also note that it is significant 
that we are having measurable success doing PD online, which opens up significant opportunities 
for scaling and for serving traditionally underserved communities.  
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Standards-based curriculum embodies an approach to teaching mathematics that differs 

substantially from traditional, didactic approaches (Smith & Smith, 2006). Standards-based 
instruction employs rich mathematical tasks that allow students to explore mathematical 
concepts, determine their approach to finding a solution, and connect their answer to 
mathematical concepts by discussing mathematics and their strategies with their colleagues. 
Research on the use of standards-based curriculum indicates three things: 1) when implemented 
with a high level of fidelity students using standards-based curriculum significantly outperform 
their peers who use traditional curriculum on measures of problem solving (Smith & Smith, 
2006; Stein, Remillard, & Smith, 2007); 2) teachers require sufficient amounts of support in the 
form of workshops and in-class assistance while beginning to implement standards-based 
curriculum (Cohen, 2006, Henningsen & Stein, 1997; Tarr, Reys, Reys, Chavez, Shih, & 
Osterlind, 2008) and 3) professional development that is content specific and develops teachers’ 
content knowledge in conjunction with teachers’ skills related to teaching with standards-based 
curriculum can positively influence teachers’ instruction (Cohen, 2005; Fennema, Carpenter, 
Franke, Levi, Jacobs, & Empson, 1996; Makros, 2003). 

This study employed survey data from over 200 teachers in 18 schools. Each teacher was 
involved in the piloting of a standards-based mathematics curriculum in a large urban district. 
Preliminary analysis of descriptive statistics revealed that a great deal of variance exists across 
schools regarding implementation. Further, teachers employed varying practices to assess 
students’ understanding and supplement the material with other curricular resources. The poster 
will provide more elaborate details of the findings. 
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Reading math is not like reading a basal reader or novel. Illustrations accompanying 
situational problems require students to begin at different points to correctly retrieve information.  
During mathematical testing today’s students are expected to read lengthy real life situations and 
determine logical answers to questions.  They are no longer expected to only calculate or 
manipulate the numbers Reading mathematic texts has put additional processing demands on the 
math readers that contradict with how readers process narrative and expository texts. The math 
reader may need to read 1) right to left as well as left to right. i.e. reading a number line, 2) from 
top to bottom or bottom to top.  i.e. reading mathematical tables or 3) diagonally. i.e. reading 
mathematical graphs. 

In addition, the math reader may have very little prior knowledge about lengthy mathematical 
word problems and a paucity of text material to activate prior knowledge (Patton, 2007).  
Brennan and Dunlap (1985), Culyer (1988), Thomas (1994) and Thomas (1988) stated in their 
research that mathematics texts contain more concepts per word, per sentence and per paragraph 
than any other type of textual material. Young math readers have difficulties visualizing 
mathematical concepts as the concepts have been addressed previously by memorization or in a 
very abstract format.    

This study’s purpose was to determine if teacher candidates were knowledgeable of the 
various approaches needed to interrupt (read) illustrations accompanying math problems. 
Subjects were 35 females enrolled in required EC-4 math/science methodology. The seven 
question instrument was researcher -designed and modeled very closely to the state released 4th 
grade test. A panel of experts was utilized to equate the proper procedure/s to solve each problem     

Since the problems were modeled closely to a state achievement test released items, the 
success rate of participants (teacher candidates) was expected to be near 100% correct.  
Participants were successful on most problems. However, only 26% stated that they approached 
one of the problems in the best manner according to the panel of experts.  It is enlightening, and 
alarming, that eighty-one percent of the participants stated they approached the problem in an 
inappropriate manner (Patton). More than one approach, therefore it is possible to have the sum 
of the answers selected greater than 100%. 

To effectively teach elementary mathematics, teacher candidates must abandon 
misconceptions about mathematics teaching.  Misconceptions may arise from the teaching 
practices of the past decades when the students were expected to memorize the facts with little 
emphasis placed on higher level thinking skills   Teacher candidates’ views and perceptions of 
mathematics must be broadened to encompass how teacher candidates more effectively facilitate 
and interpret the nature of children’s thinking.  It is time for teachers of elementary mathematics 
to stop memorizing facts and start developing the metacognitive awareness they need to select 
appropriate mathematics strategies for learner success (Patton, Klages & Fry 2008). )  
Metacognition allows learners to make adjustments to different problem-solving tasks 
(Montague, 1998).  Reading situational math problems with corresponding illustrations are 
considered to be different problem-solving tasks. Results conclude teacher candidates need more 
math instruction if they are to be truly successful with their students in the quest of learning.  



Vol. 5  1115 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

References 
Brennan, A. D., & Dunlap, W. P. (1985) What are the prime factors of reading mathematics? 

Reading Improvement 22, 152-159.  . 
Culyer, R. C. (1988). Reading and mathematics go hand in hand.  Reading Improvement 25, 189-

195.      
Desoete, A., Roeyers, H, and Buysse, A. (2001). Metacognition & mathematical  problem 

solving in grade 3. Journal of Learning Disabilities, 34(4)435 – 49 
Doughtery, B.J. (1990).  Influences of teacher cognitive conceptual level on problem-solving 

instruction.  In G. Booker et al. (Ed.), proceedings of Fourteenth International Conference for 
Psychology of Mathematics Education (pp. 119-126). Oaxtepec, Mexico:  International study 
group For the Psychology of Mathematics Education. 

Flavell, J.H. (1976). Metacognitive aspects of problem solving. In L.B. Resnick (Ed.), The 
Nature of Intelligence (pp. 231-236). Hillsdale: NJ: Erlbaum. 

 Jacobs, J. and Paris, S., (1987) Children’s metacognition about reading: issues in definition, 
measurement and instruction.  Educational Psychologist 22 (3 & 4) 255-278. 

Kramarski, B., Mevareh, Z.R., and Arami, M.  (2000).  Effects of multilevel versus 
unilevel metacognitive training on mathematical reasoning.  Reasoning  

 Educational Studies in Mathematics, 49 (2), 225-250. 
Locangeli, D., & Cornoldi, C. (1997). Mathematics and Metacognition: What is the Nature of the 

Relationship? Mathematical Cognition, 3, 121-139. 
 Montague, M. (1998). Assessing Mathematical Problem Solving. Learning Disabilities  

Practice, 11, 238-248. 
National Council of Teachers of Mathematics. (2000). Principles and Standards for School 

Mathematics. Reston, VA: Author.  
Patton, B. (2007) “Reading Math Illustrations: A Multi-Case study of 12 Low Achieving Math 

Students”.  American Association for Teaching in and Curriculum.  Cleveland OH.  
Patton, B., Fry, J. & Klages, C. (2008) Teacher Candidates: Evaluation of their reading math.  

Education. 
Pugalee, D.K. (1999). Constructing a Model of mathematical literacy.  The Clearing House, 73 

(1) 19-22 
Thomas, D.A. (1988) Reading reasoning skills for mathematics problems solvers, Journal of 

Reading 32, 244-49.  
 Thompson, A. G. (1992).  Teachers’ beliefs and conceptions: A synthesis of the research.  In 

D.A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning, (pp. 
127-146).  New York: Macmillian   

Thompson, A.G. (1984).  The relationship of teachers’ conceptions of mathematics and 
mathematics teaching to instructional practice.  Educational Studies in Mathematics, 
5(2)105-127. 

Verschaffel, L. (1999). Realistic mathematical modeling and problem solving in the  upper 
elementary school: Analysis and improvement. In J.H.M. Hamers, J.E.H. Van Luit & B. 
Csapo (Eds.), Teaching and learning thinking skills. Contexts of Learning. (pp. 215-240). 
Lisse: Swets & Zeitlinger.  

 
 
 



Vol. 5  1116 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

AFFORDANCES OF VISUAL REPRESENTATIONS: THE CASE OF FRACTION 
MULTIPLICATION  

 
           Beste Güçler                Jungeun Park      Raven McCrory 
  Michigan State University       Michigan State University         Michigan State University  
        guclerbe@msu.edu                  parkju20@msu.edu                     mccrory@msu.edu  
 
This study focuses on two instructors who taught a mathematics course designed for prospective 
elementary teachers and explores which interpretations of fractions they addressed and how they 
used visual representations when discussing fraction multiplication. Our findings indicate that 
the distinct interpretations of rational numbers can turn out to be quite intertwined during actual 
practice. As a result, it might be challenging to extract meaning from the visual representations, 
especially when the problems are not situated in a context, unless instructors explicitly attend to 
the interpretations underlying those representations.  

 
Introduction 

It is challenging to blend research on fractions with classroom teaching for several reasons. 
First, the development of fractions in the classroom is complex and non-linear. Second, “teachers 
are not prepared to teach content other than part-whole fractions” (Lamon, 2007, p. 632) and thus 
we may not see in reality the ideas and constructs that research suggests in theory. Third, 
teachers may not explain details supporting their choices of problems and representations, 
making them invisible to research. In this study, we explore some of the complexities of 
multiplication of fractions in the context of preservice teacher education.  

There is evidence that part-whole has been the most dominant realization of fractions for 
students as well as preservice and inservice teachers (Domoney, 2002; Sowder, Philipp, 
Armstrong, & Schappelle, 1998; Tirosh, Fischbein, Graeber, & Wilson, 1999). Besides part-
whole, Kieren (1980) proposed four other subconstructs or interpretations for fractions: measure, 
operator, quotient and ratio. Each of these interpretations may be illustrated with multiple 
representations, including numbers, and various discrete, linear, and area models and more. In 
her longitudinal study of six classes from grades 3 to 6, Lamon (2007) noted that the students 
who were exposed to these five subconstructs developed deeper understanding of rational 
numbers and proportional reasoning compared to students in the control group who received 
traditional instruction that did not explicitly attempt to use multiple interpretations of rational 
numbers. (Note that, in this paper we use “fraction” and “rational number” interchangeably, 
acknowledging that there are important and contested mathematical differences between the 
two.) As a result, she considers being able to “move flexibly between interpretations and 
representations” as one of the key elements of understanding fractions (Lamon, 2007, p. 636). 
Therefore, understanding of fractions entails experience with multiple interpretations (Kieren, 
1980) as well as experience with multiple representations of fractions.  

According to Izsák (2008), research on teachers’ knowledge of fraction multiplication is not 
as extensive as the research on fraction division and decimal multiplication. There is a body of 
research indicating that teachers find it difficult to construct appropriate representations for 
fraction multiplication (Armstrong & Bezuk, 1995; Sowder et al., 1998; Tirosh et al., 1999). In 
this paper, we look at two instructors who teach mathematics content for undergraduate 
prospective elementary school teachers. The study addresses the following question: Which 
interpretations of fractions do instructors teaching elementary mathematics content to 
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undergraduate preservice teachers concentrate on as they teach fraction multiplication, and how 
do they represent these ideas to students?  

 
Theoretical Framework 

The part-whole realization of rational numbers entails “the partitioning of a continuous 
quantity or a set of discrete objects into equal-sized parts…” (Sowder et al., 1998, p. 8). 
Therefore, this subconstruct requires understanding of the whole and the ways in which it may be 
partitioned. The realization of a rational number as a measure “occurs when we want to measure 
something but the unit of measure does not fit some whole number of times in the quantity to be 
measured” and so “demands that the rational number be understood as a number, as a quantity, 
as how much of something” (Sowder et al., 1998, pp. 9-10, italics in original). A rational number 
acts as an operator when it is interpreted as: 

a function that can operate on a continuous region as a stretcher or shrinker or on 
a set as a multiplier or divider, in either case serving as a function machine that 
operates on one value to form an output of another value. (Sowder et al., 1998, p. 
11) 

A rational number can also be realized as a quotient. “A fraction b
a  can also represent the 

quotient a÷ b ; that is, a and b are integers satisfying the equation a=bx” (Sowder et al., 1998, p. 
11). Finally, when we realize a rational number b

a  by means of the comparative relationship 
between a and b, we are thinking of the rational number as a ratio.  

Among the five subconstructs of rational numbers, the operator subconstruct seems to be the 
most effective for fraction multiplication (Behr, Harel, Post, & Lesh, 1993; Izsák, 2008; Sowder 
et al., 1998). Lamon’s (2007) findings also suggest using the measure subconstruct for fraction 
multiplication since it might enable the extension of the operator subconstruct. She exemplifies 
the measure and the operator subconstructs and their meaning for the fraction 4

3 as follows:  
 

 

  

  
Figure 10. Portion of the table Lamon (2007, p. 654) 
uses when she addresses alternative instruction 
strategies to the part-whole interpretation of fractions.  

 
In this paper, we investigate how instructors of preservice elementary teachers utilize these 
interpretations as they represent fraction multiplication.  
 

Methods 
Data for this study comes from a larger project that explores the mathematics content taught 

to undergraduate prospective elementary teachers. This paper uses data from two instructors, 
collected through observations of their classes when they taught fractions. Particular attention 
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was given to the visual representations instructors used when addressing fraction multiplication. 
Fraction lessons were videotaped and portions of the tapes where the instructors discussed 
fraction multiplication were transcribed. Field notes taken during instruction supplemented the 
data.  

We report on two instructors for whom we will use the pseudonyms Eliot and Sam. These 
instructors form contrasting cases with respect to the number of visual representations they used 
when discussing fraction multiplication. Eliot primarily relied on a single visual representation 
across the problems she solved whereas Sam used multiple representations for each of the 
problems she worked on. Given this, we investigated the possible impact of this difference on the 
interpretations of fractions the instructors facilitated in their classrooms. We used snapshots from 
the classroom videotapes for Eliot’s representations to keep the authenticity of her 
representations on the whiteboard in her classroom. Sam’s video snapshots were not clearly 
visible since she used a blackboard so we used field notes to reproduce her drawings. The 
researchers checked the fidelity of the field notes with Sam’s actual representations in the video 
clips. We initially analyzed the data with respect to the subconstructs underlying the visual 
representations the instructors used for each problem individually and then compared our results 
until we reached consensus. In this respect, we used a form of competitive argumentation 
(VanLehn & Brown, 1982) during our data analysis.  

 
Results 

Eliot’s Representations of Fraction Multiplication 
Eliot based her initial discussion of fraction multiplication on whole number multiplication. 

Although her initial introduction encouraged students to think about fraction multiplication in 
terms of repeated addition, Eliot also mentioned that multiplication does not necessarily lead to a 
larger number in the case of fractions. After these, she explicitly pointed out the word of means 
to multiply and started modeling fraction multiplication problems using diagrams. Throughout 
her discussion of multiplication of fractions, Eliot consistently used a visual diagram in which 
two hexagons were considered as one whole. At the very beginning of her fraction lessons, Eliot 
introduced these hexagons and their subunits consisting of triangles, rhombi (Eliot used the word 
rhombuses instead of rhombi so we will stick with her word use), and trapezoids using pattern 
blocks. Afterwards, she kept on using the same idea by drawing the hexagons on the board. 
Below is the relationship among the units and the subunits: 
2 hexagons (the whole) = 12 triangles = 6 rhombuses = 4 trapezoids 
1 rhombus = 2 triangles 
1 trapezoid = 3 triangles    

Eliot assumed her students knew how to compute fraction multiplication and briefly 
mentioned the rule. She focused only on modeling during her discussion of multiplication of 
fractions. For all the problems she worked on, except for one, she used the diagram in which two 
hexagons referred to one whole. For example, she modeled 2

1
3

2 × as follows: 
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Eliot first modeled 2
1

3
2 × by considering it as 3

2 of 2
1 . She shaded one 

hexagon noting that it was the half of her whole, which was two 
hexagons. 
 
 

 

Eliot: “What is two thirds of my half? I need to split my half into three 
pieces and shade two again” (The class was familiar with representing 
thirds by rhombuses). Therefore, Eliot split the hexagon into three 
rhombuses and shaded two of them one by one. She then asked what the 
double shaded region was in terms of the whole. Two rhombuses made 
up a third of the whole, so Eliot wrote 3

1  as the answer.  

Figure 11. Eliot's representation of 3
2 of 2

1  
 
Eliot’s wording while shading 3

2 of one hexagon might be considered as recursive partitioning 
when she split the hexagon into three equal pieces and shaded two of them. Given this, she might 
be using the idea of finding part of a part by applying the notion of part-whole recursively. On 
the other hand, it is also possible that Eliot operated on the hexagon that represented 2

1  as she 
split it into three parts (divide by 3) and then shaded two of them (multiply by 2). In this respect, 
given the description in Figure 1, she might have also used the operator subconstruct. Therefore, 
for this problem, it is not explicit which subconstruct she is particularly attending to. Eliot then 
modeled 2

1
3

2 × again, this time considering it as 2
1 of 3

2 : 
 

 

Eliot noted that in order to take the half of 3
2 , we first needed to know what 

two thirds of the whole was. She asked, “two-thirds is how many 
rhombuses? Four” (Eliot used the equivalent fraction 6

4 for 3
2  to be able to 

represent it with rhombuses. The students were familiar with this use). She 
then divided the hexagons into six rhombuses and shaded four of them.  

 

Eliot: “What is half of my four rhombuses? Two rhombuses. How much of 
my whole is shaded twice?” (Note that she used the names of the geometric 
shapes rather than saying ‘what is a half of two thirds’?)  
She then shaded two rhombuses out of the four rhombuses she already 
shaded and wrote 3

1 as the answer.  

Figure 12. Eliot's representation of 2
1 of 3

2  
 
When finding the half of four rhombuses, Eliot considered four rhombuses as another whole. 

It is likely that she used part-whole interpretation with recursive partitioning here since she made 
the number 3

2 concrete by naming it “four rhombuses”. Then half of four rhombuses would be 
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Figure 5.  Elliot’s representation of 
3

2 of 4
11 . 

equal to two rhombuses. On the other hand, she often emphasized in her previous classes on 
fractions that students needed to think about this model in terms of area. For example, when 
modeling addition of fractions with these hexagons, she said, “we are merging the areas together 
to find out how much of our same whole the new area takes up”. Similarly, when she explained 
why 4

3 of two hexagons would be equal to three trapezoids, she mentioned, “because we can 
cover three fourths of the area of our whole using three trapezoids”. Given this, she might also be 
attending to the measure subconstruct (See Figure 1) as she modeled 2

1 of 3
2 .  

Eliot modeled 3
1

4
3 ×  by considering it as 3

1 of 4
3 : 

 

 

Eliot mentioned that three fourths of the whole would be three trapezoids and 
shaded them in her drawing. She then asked, “what is a third of three 
trapezoids? One trapezoid. Because when you have three of anything, a third of 
it is one of them”. She then shaded one trapezoid out of the already shaded 
three trapezoids and asked how much of the whole was shaded twice. Students 
answered by saying a fourth. Eliot wrote 4

1 as the answer.  

Figure 4. Eliot’s representation of 3
1 of 4

3  
 
Note that Eliot talked about one third of 4

3 as one third of three things (trapezoids), which would 
be the recursive application of the part-whole subconstruct. Here, it seems relatively clear that 
Eliot used recursive partitioning for finding the part of a part rather than attending to the operator 
subconstruct. However, when the numerator of the operator is equal to 1, it might also be 
difficult to identify from the visual representation whether the operator subconstruct or the part-
whole interpretation is used.  

Eliot might have used the operator subconstruct when she modeled 3
2

4
11 × considering it as 

3
2 of 4

11 . The following is the picture she drew:  
Eliot noted that 4

11 would be equal to a whole 
plus an additional fourth. Since a pair of hexagons 
corresponded to one whole, she drew two pairs of 
hexagons. She shaded all of the first pair and a 
trapezoid in the second pair that corresponded to the 
additional fourth. She then said, “You want to ask 
yourself what is two thirds of the shaded portion? I 
need to think of a way to cut that into three equal 
portions…I guess I am going to cut everything into 
triangles”. After this, she split the shaded portion, 

which is 4
11 , into triangular portions. She then noted she was going to shade “two out of every 

three”. Given Eliot’s previous examples and arguments, one can again assume that she used part-
whole interpretation with recursive partitioning. On the other hand, it is relatively clear in this 
example that she operated on the fourths in 4

11  since she split every fourth in 4
11+ into three 

equal portions (divide by 3) and then took “two out of every three” fourths (multiply by 2), 
which would suggest she was attending to the operator subconstruct. Eliot’s consideration of 4

11  
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as 4
11+  when splitting each fourth into its thirds and taking two out of three fourths also 

signaled an implicit use of the distributive property.  
Representations of Fraction Multiplication in Sam’s Class 

Sam also started her discussion of fraction multiplication with whole number multiplication. 
She structured her class around the three cases: a whole number multiplied by a fraction, a 
fraction multiplied by a whole number, and a fraction multiplied by another fraction. Similar to 
Eliot, Sam also mentioned the relationship between the word of and multiplication. Sam did not 
discuss mixed number or improper fraction multiplication. Unlike Eliot who used a single visual 
representation for each problem, Sam used a variety of visual representations (some of which 
were initiated by her students) for the problems she worked on. Her representations consisted of 
pie diagrams, rectangular area models and also the number line. For example, while 
modeling 3

1
2

1 × , Sam considered it as 2
1 of 3

1  and used the following visuals: 
 

 

Sam drew this model mentioning, “we draw a whole and then have one third. 
We then think about what one half of that third is”. She split the third she 
shaded into two parts horizontally following a student’s suggestion. She then 
labeled the portion that corresponded to 2

1 of 3
1 . 

 

Sam then asked students if she could split the shaded third into two parts 
vertically by saying “I will split this to halves.” She drew dotted lines and 
shaded one strip as shown . The students agreed that she could do this 
vertically.  

 

Sam: “How about trying other models? How about a pie?” After saying this, 
she drew a pie diagram and divided it as shown with solid lines. She then 
added the dotted lines and said “because of that, we have to cut the other parts, 
so this one half of one third will be what?” A student answered “one sixth of 
the whole”. Sam confirmed this was the correct answer. 

Figure 6. Sam’s representations of 2
1 of 3

1  
 

Sam seemed to be using the part-whole subconstruct with recursive partitioning for these 
representations. However, it is also possible that she might be using the operator subconstruct 
when she the split the third into two parts and shaded one part. On the other hand, Sam went on 
and split the other thirds into halves after this step for each of the visuals. In this respect, it is 
more plausible that she used the part-whole subconstruct with recursive partitioning rather than 
the operator. In general, it is difficult to distinguish the operator subconstruct from the part-
whole subconstruct in situations where the numerator (of the operator) is 1 or when the 
denominator is equal to the numerator of the operand. The latter is shown when Sam elicited the 
following representations for 4

3
3

2 × : 
 

 

A student drew this representation first by drawing the rectangular 
region as the whole, then cross-partitioning it and shading three 
fourths. The student then said, “I will take two thirds of this three 
fourths” and shaded the two parts as shown on the right. Sam did 
not add any other explanation for this picture and asked what other 
models the students could use.  
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Another student drew this picture. In Sam’s class, this model is 
referred to as the bar diagram and is mostly used for situations 
involving measurement. The student first split the bar into four 
parts and then labeled three fourths of the whole. She then shaded 
two parts one part at a time. Again, Sam did not have any 
additional comments about the picture and asked the class if they 
could model the same problem using the number line. 

 

Sam drew this model herself. She first put the numbers 0 and 1 on 
the line and then divided the interval into four parts. She marked 
three fourths. She then labeled other points in terms of fourths and 
asked, “what will be the two thirds of three fourths of this line 

 (pointing to the region between 0 and 1)? Two fourths (pointing to 
the region between 0 and 4

2 )”. She then labeled the portion of the 
number line from 0 to 4

2 as 2
1  and concluded, “so we can use 

different models to show the idea of multiplication of fractions”. 
Figure 7. Representations of 3

2 of 4
3 in Sam’s class 

 
Sam’s primary goal seemed to be providing a variety of representations for this. The student 

might have drawn the first model using part-whole (recursive partitioning) or operator (split the 
region into three s and shade two) interpretation. Yet, because the student did not explain her 
thinking process fully and Sam did not follow up , it is hard to identify which interpretation was 
in use. Similarly, for the second drawing, although Sam often used a bar diagram for 
measurement situations, the student might have used the part-whole interpretation with recursive 
partitioning if she thought about the problem as part of a part. That the part already consisted of 
thirds blurs whether the student attended to the operator subconstruct when finding two thirds of 
three fourths. The last drawing seems to clearly use the measurement subconstruct given 
Lamon’s (2007) definition of the notion (See Figure 1). However, Sam did not refer to the 
numbers in terms of their distances or measures from 0 since she asked what two-thirds of three-
fourths would be pointing to the line segment between 0 and 1. If she considered this portion of 
the line segment as the whole that was partitioned, she might be attending to the part-whole 
interpretation with recursive partitioning. 

In summary, both Eliot and Sam used visual representations to illustrate solutions to fraction 
multiplication problems. While doing so, Eliot relied on a single representation across problems 
whereas Sam used multiple representations for each problem. It remains unclear whether their 
use of visual representations also facilitated understanding of the different mathematical 
interpretations underlying fraction multiplication.  

 
Discussion 

Identifying the relationships between visual representations and mathematical interpretations 
was challenging in our study possibly because: (a) different interpretations of fraction 
multiplication could result in the same representation, and (b) instructors did not explicitly 
address which interpretations they were attending to as they represented fraction multiplication. 
For example, in using a subdivided area as both instructors did, whether they interpret fractions 
as part-whole or operator depends on the language they use to explain the representation and, in 
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some cases, the order in which they subdivide the object. Making the steps clear could tie the 
fraction more closely to the interpretation or subconstruct. Another possibility is that using real 
contexts for fraction problems could lend meaning to the fractions that is absent in the abstract 
representations both of these instructors used. 

One difficulty we encountered in analyzing these cases is that representing a fraction and 
representing an operation with fractions create different requirements for the teacher. 
Representing a single fraction using one of the subconstructs is relatively straightforward. 
Representing an operation, though, is not so easy. A subdivided area, as in Sam’s pie diagram, 
can represent a part-whole fraction. But dividing each piece in half can be seen as creating 
smaller pieces (part-whole) or as operating on a single piece (operator). The language 
surrounding the representation as well as the choice of numbers in the multiplication problem is 
important for what idea the picture evokes for the student. 

Does it matter? About this we have little evidence in this study, but previous work by Lamon 
(2007) suggests that it does matter. If K-8 students end up with a better understanding of and 
greater fluency with fractions by specifically learning about different interpretations of fractions, 
then it makes sense that teachers should themselves recognize these interpretations. We see in 
this case study, however, that the subconstructs of fractions can be intertwined during actual 
classroom practice. Our findings also indicate that it might be difficult to extract meaning from 
visual representations unless instructors clearly attend to the interpretations underlying those 
representations.  

This study suggests several important areas for further research. In our view, it is especially 
interesting and important to understand more fully how explicit instructors of future teachers 
need to be about fraction interpretations and representations to equip their students – the future 
teachers of K-8 children – to teach fractions effectively. 
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Prospective elementary teachers must understand fraction division deeply to be able to teach this 
topic to their future students. This paper explores how two university instructors help prospective 
elementary school teachers develop such understanding. In particular, we examine how 
instructors teach the meaning of division, the concepts of unit, and the connections between 
multiplication and division. 
 

Purpose of the Study 
The National Mathematics Advisory Panel has identified “proficiency with fractions” as a 

major goal for k-8 mathematics education because “such proficiency is foundational for algebra 
and, at the present time, seems to be severely underdeveloped” (p. xvii). However, as 
acknowledged by the authors of The Mathematical Education of Teachers (Conference Board of 
the Mathematical Sciences (CBMS), 2001) and supported by prior research studies, many 
prospective and practicing teachers possess shallow understanding of fractions (e.g., Ball, 1990; 
Ma, 1999; Simon, 1993; Tirosh & Graeber, 1989), and some are convinced that “mathematics is 
a succession of disparate facts, definitions, and computational procedures to be memorized 
piecemeal” (p. 17, CBMS, 2001). This characterization stands in stark contrast to the depiction 
of mathematical knowledge needed for teaching that has arisen from research on the 
mathematical knowledge that teachers draw upon in the context of teaching. This research (cf., 
Ball, Thames & Phelps, 2008) suggests that prospective teachers need mathematical knowledge 
and skills beyond basic competency with the topics they intend to teach. They need, for example, 
to be able to give or evaluate mathematical explanations, and to connect representations to 
underlying mathematical ideas and other representations.  

How can college mathematics courses help prospective elementary teachers develop the deep 
understanding of mathematics that they will need for their future teaching? In this paper, we 
analyze two sets of fraction division lessons for prospective elementary teachers to highlight 
both the content and nature of two different approaches to achieving this goal. We chose to focus 
on fraction division because of the well-known and well-documented struggles of U.S. 
prospective and practicing teachers with fraction division. For example, In Ma’s study (1999), 20 
of the 21 U.S. teachers were unable to come up with correct story problems for the given fraction 
division sentence 1 ¾ ÷ ½. The findings of this study provide paradigm cases to highlight the 
challenges of designing mathematics courses for prospective elementary teachers.  
 

Theoretical Framework and Prior Study 
Based on interviews with U.S. and Chinese elementary teachers, Ma (1999) proposed a 

‘knowledge package for understanding the meaning of division by fractions” that teachers should 
have as illustrated in the diagram below (from Ma, p. 77). In this paper, we focus on three 
specific aspects of this knowledge package, as suggested by the bolded objects in the diagram: 
the meaning of division for both whole numbers and fractions, the concepts of unit, and the 
properties and relationships among four basic operations.  
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Fishbein et al. (1985) identified two primitive models for division: a partitive model and a 
measurement model. For measurement division, one tries to determine how many times a given 
quantity is contained in a larger quantity. For partitive division, an object (or collection of 
objects) is divided into a given number of equal parts (or sub-collections), and the goal is to 
determine the quantity in (or size of) each part (or sub-collection). The “primitive” version of 

partitive division restricts the number of equal 
parts to a whole number, thus precluding 
division by a fraction, and reinforcing the idea 
that division makes smaller. Tirosh and 
Graeber (1989) found that partitive division 
was the dominating model held by U.S. 
prospective teachers, which led many of them 
to believe that in a division problem, the 
quotient must be less than the dividend, even 
though they could apply procedures to solve 

problems with divisor less than one correctly. This finding has prompted increasing attention to 
fraction division in the measurement context as well as calls for a modified interpretation of 
partitive division by capturing the idea of division as an inverse operation of multiplication. For 
example, Parker and Baldridge (2003) suggested thinking about 12 ÷ 2/3 as “12 is 2/3 of what?”  

The concept of unit in definitions and in operations is a key part of developing a deeper 
understanding for fraction division. For example, solving a measurement division problem such 
as “How many 2/3’s are in 2?” requires the students to conceptualize “2/3” as a reference unit 
and interpret the “2” in terms of chunks of that particular unit: a process called “unitizing” by 
Lamon (1996). In the context of partitive division, such as when Parker and Baldridge (2003) 
suggest that students think of 12 ÷ 2/3 as “12 is 2/3 of what?” the unitizing process is more 
complex. In partitive division an object –the initial unit – is divided into a given number of equal 
parts, in this case 2/3 of a part. The goal is to determine the size of each part, a new unit, in this 
case 18. To solve a partitive division problem, a student must conceptualize the “unknown” 
quantity as both a unit itself and a fraction of a different unit.  

Finally, the properties and relationships among operations (addition, subtraction, 
multiplication, and division) are needed when developing alternative algorithms (e.g. solving 
division word problems through repeated subtraction) or when explaining why the “flip and 
multiply” algorithm works.  
 

Methods 
This paper reports findings from the case study component of a large-scale research project 

that investigates mathematics content courses taken by prospective elementary teachers during 
their undergraduate education. We focus here on two of seven case studies in the larger study, 
the cases of Pat and Eliot. During the units on fractions, we videotaped, wrote observation notes, 
and collected artifacts from students and from the instructor. We interviewed the instructors to 
probe their ideas about teaching the course, and both instructors completed an extensive written 
survey about their teaching. As part of the larger project, students in theses courses took pre- and 
post-tests assessing their mathematical knowledge. Results of these tests suggest that both of 
these instructors were successful at teaching their students mathematics, producing among the 
highest gain scores of all 42 instructors in the larger study. (For additional information about the 
larger project and the pre-post-test results, see McCrory, 2009.) 

The meaning of 

division by fractions

Meaning of division

with whole numbers

Meaning of multiplication

with whole numbersThe conception of


inverse operations

Meaning of addition

Meaning of multiplication 
with fractions

Concept of unit

Concept of fraction

Fig. 3.2. A knowledge package for understanding the meaning of division by fractions

From Ma, 1999, p. 77.  
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Both Pat and Eliot taught at universities that prepare large numbers of future teachers in their 
respective states. They provided the greatest theoretical contrasts in their professional 
backgrounds and instructional approaches to fraction division among the seven participating 
instructors. Eliot was a new instructor who had received her Ph.D. in mathematics the previous 
year. This was the second time she taught this course and her instructional approach was a 
combination of lecture and individual seatwork. Pat was an experienced math instructor with a 
Ph.D. in mathematics education and several years’ experience teaching high school math. He had 
taught this mathematics course for future teachers over 20 times. The majority of his class time 
was spent on a combination of small group work and students explaining and justifying their 
solutions in front of the class, interspersed with his comments, questions, clarifications, or 
explanations. He occasionally gave a prepared short (15 minute) lecture. Finally, the course 
taught by Eliot was a 3-credit math content course that met for 50 minutes three times a week, 
while the course taught by Pat was a 4-credit integrated content and methods course taught for 80 
minutes twice a week.  

Data from multiple sources for each instructor was compiled. Tabular materials chronicled 
the major goals and instructional events of each lesson as well as narratives containing initial 
memos about the research questions were generated to form the case study database for each 
participating instructor. The research team went through the videotaped lessons to identify the 
opportunities prospective elementary teachers had to develop deeper understanding of fraction 
division. Episodes that illustrated the development of a particular aspect of the knowledge 
package of fraction division were selected and transcribed for further comparative analysis.  
 

Results 
Our analysis on the fraction division lessons taught by the seven participating instructors 

uncovered a wide variety of approaches and emphases. The discussion of Eliot’s and Pat’s 
lessons helps illustrate such diversity. In the following we will first provide a summary of the 
main activities for each instructor’s instruction of fraction division. Then we will discuss the 
main differences between these two different instructors using specific episodes from their 
lessons.  

Table 5 
Summary of Eliot’s and Pat’s Lessons on Fraction Division 

Eliot 2/29/08 (50 min.) 
• Model fraction division with pattern blocks using two hexagons as the 

whole. 
• Explain why the invert and multiply algorithm works. 

3/03/08 (8 min.) 
• Discuss the patterns of fraction division when the divisor is smaller, equal 

or larger than one. 
• Discuss the patterns of fraction division when the divisor is smaller, equal 

or larger than the dividend. 
3/05/08 (24 min.) 

• Use reasoning and logic to estimate the result of fraction division. 
• Review of fraction division with pattern blocks. 

3/07/08 (8 min.) 
• Review of fraction division with pattern blocks. 
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Figure 1. Eliot’s board 
drawing for 1/2 ÷ 3/4. 

Pat 4/10/08 (40 min.) 
• Model the solution of a (single) measurement fraction division word 

problem. 
• What number sentence can be used for solving this word problem?  
• Why is it a division problem (vs. a multiplication problem)? 
• Why is it hard for elementary students to connect their solution for a word 

problem to a number sentence? 
4/15/08 (70 min.) 

• Model the solution of a (single) partitive fraction division word problem. 
• Compare and contrast the type of mathematical knowledge needed for 

solving this word problem with a number sentence vs. with a pictorial 
model.  

• Why can the same number sentence be used to represent both partitive and 
measurement division word problems? 

• Connect both fraction division word problems with whole number division 
problems. 

• Discussed the invert and multiply algorithm and ask students to think 
about why it works for both types of fraction division as homework. 

 
As noted in the introduction the three key features of a deeper understanding of fraction 

division include: the meanings of division for both whole numbers and fractions, the concepts of 
unit, and the properties and relationships among four basic operations. In terms of the key 
fraction division concepts, Eliot’s lessons were based exclusively on the measurement 
interpretation of division. Pat’s students had opportunities to make sense of both measurement 
division and partitive divisions, and also spent considerable time to contrasting the two. In the 
context of measurement division, both instructors emphasized the process of unitizing, 
conceptualizing the divisor as the “unit” to represent the given quantity (dividend). ).  Eliot 
explained why the division algorithm worked by utilizing various properties of operations, while 
Pat facilitated his students’ own discovery of the logic and reason behind this algorithm. Next we 
describe in detail episodes from each of the instructors. 
          Eliot’ Lessons 

In Eliot’s lessons, students were familiar with the “2-hexagon as the 
whole” model when using it to model operations with fractions. She 
expected that her students could move flexibly among 
representations and interpretations such as “1/2 ÷3/4”, “How many 
¾ in ½?” and “How many 3-trapezoids in one hexagon?” and the 
drawings associated with them. This was an approach that required 
developing an understanding of the model itself, as well as an 
understanding of the operation for division applied to fractions. Eliot 
modeled such processes for her students as shown in the following 
episode (see Figure 1 for Eliot’s board drawing). 

Eliot:  Let’s illustrate a half which we decided is one hexagon [Draws on board], and just 
to refresh our memory, three-fourths, we decided was three trapezoids. [Draws on 
board]. Now do I have an entire set of three trapezoids in my half? No. How much 
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Figure 2.  Eliot’s explanation 
of “flip and multiply”. 

of three trapezoids do I have in my hexagon? [Some students responded two, 
others responded two-thirds.] 

Eliot: Two-thirds. That’s exactly it. I have two-thirds of three-fourths in one-half. So I 
have two-thirds of three trapezoids in two trapezoids. So I have two out of the 
three I was looking for in my shaded region. Two-thirds. (Transcript, 2/29/08) 

In terms of the explanation of why the invert and multiply algorithm works, Eliot used 2/3 ÷ 
5/7 as an example. As she wrote on the whiteboard, (Figure 2) she explained each step:  

What you are really doing when you flip and multiply is multiplying by one…. If I were to 
multiply by something over itself, I would be multiplying by the number one... So I want to 
multiply by seven-fifths over seven-fifths Have I changed a thing? No. …What is something 
multiplied by its reciprocal? One. So now all I have is two-thirds times seven-fifths divided 
by one. Well one is also the division identity. So guess what I have here? Two-thirds times 
seven-fifths. So what have I done effectively? Flipped it and multiplied. …This is why you 
can do that, because all you are really doing is multiply by the multiplicative identity. 
(Transcript, 2/29/08) 

During all of her lessons on fraction division, Eliot 
designed her lessons around modeling with pattern blocks. She 
provided her students with clear, step-by-step explanations of 
the process and ample opportunities for them to practice on 
similar problems both in class where they could get additional 
support from her and as homework. She provided them with 
actual pattern blocks during class so that they could physically 
manipulate them. She acknowledged the struggle some of her 
students were having and re-visited this topic two more times, 
once after the quiz and once before the final exam, to address 
some of the common mistakes her students made. Eliot also 
modeled for her students how to use reasoning and logic to 
determine the reasonableness of their answers. She wanted her 

students know why the division algorithm works. 
Pat’s Lessons 

Pat used the following word problem to discuss fraction division in the measurement context.  
A batch of waffles requires ¾ of a cup of milk. You have two cups of milk. Exactly how many 
batches of waffles could you make?He gave students time to work on the problems in small 
groups (a mode of work that they were used to), and after about 30 minutes, asked the class what 
answers they got. Individual students gave answers – 2, 2 ¼ (later changed to 2 ½ after 
discovering a computation error), 2 2/3, 2 3/8. After some discussion the class agreed that there 
was enough milk to make 2 batches, and the computation 8/4-6/4=2/4=1/2 was carried out to get 
the answer 2 ½. One student who thought the answer was 2 2/3 batches was asked to explain his 
reasoning. He first wrote down 2/4 and ¾ and explained that 2/4 is 2/3 of ¾. He then drew the 
following diagram (Figure 3) while explaining his reasoning:  

Student 1: This is two cups of milk [draws the two rectangles and then sub-divides each into 
four equal parts]. This is going to be batch number one right here [shades three parts of the 
rectangles, angle to the right]. And then batch two would be this [shades another three parts, 
angle to the left]. You got two boxes left. So there would be two boxes left. You need three 
boxes for a batch, so we have two boxes, we need three for a batch so we are only going to fill in 
two of these boxes [draws the three circles and shades two of them], ‘cause this is one batch right 
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Figure 3.  Student 1 waffle  
problem drawing. 

 
 

here [points to the three circles and writes “1 BATCH” 
underneath them]. It’s every three boxes. We have two left, 
which means there is two thirds of the last batch. So we have 
one batch right here [points to first three rectangle parts 
shaded], two batches [points to the next three], and two thirds 
of the last batch. ...the number two is two-thirds of three. ... I 
changed the wholes or whatever…. two-quarters is two-thirds 
of three-quarters. (Transcript 4/10/08) 

Pat re-iterated the entire explanation and emphasized the 
point of “2 is 2/3 of 3, so you have 2/3 of a batch” which he 
wrote on the board. He also wrote “2/3 of a batch” and “½ of 
a cup” on the board for the shaded two of the three circles. 

He then asked the class what the student meant by changing the whole.  
Student 2: Every time you make a batch of waffles, your whole or what is left over changes. 
Student 3: You are changing from the whole as being the cup to the whole as being one batch 

of waffles.  
Pat:  So a cup is a whole and a batch is a whole… rather than writing 2 ½, you have 2 

batches and ½ a cup of milk left over…. These two boxes [pointing to the bottom 
of the students’ drawing] have double meaning. (Transcript, 4/10/08) 

Instead of providing his students with a representation like the 2-hexgon, Pat asked them to 
generate their own drawings. He continued to push his students on being explicit about their 
explanation. In the process, he provided ample opportunities for his students to make 
connections among multiple representations: the story context, the drawings, the words, and the 
number sentences. His students were comfortable with being pushed and they also started to 
push each other for clear explanations or other their own elaboration without being prompted. 

Pat introduced the question of why “flip and multiply” works after discussion of the waffle 
problem. Many students settled on the number sentence “2 x 4/3” for the waffle problem, but Pat 
pointed out that 4/3 was not a number in the problem (a requirement for an acceptable number 
sentence). One student offered an explanation using algebra, ¾ • x = 2 so x = 2 • 4/3. Pat asked 
for another justification that would work in their teaching, pointing out that an algebraic equation 
was beyond the comprehension of elementary students. Another student proposed thinking of 4/3 
as the number of batches that could be made with one cup of milk. Pat delayed the rest of the 
discussion until the next class, during which the class worked on an additional contextualized 
division-by-fractions problem, this one a partitive problem:  

You have 2 cups of flour to make some cookies. This is ¾ of what you need for one full 
recipe. How many cups of flour are needed for a full recipe? 

Pat again asked students to work on the problem in groups, then to share and explain their 
solutions at the board. At the end of the second class, he asked students to use the pictorial 
representations of the two problems to figure out why the invert and multiply algorithm makes 
sense as a homework problem.  

Following the principles of Cognitive Guided Instruction (Carpenter, et. al, 1999), Pat’s 
lessons on fraction division were built upon story problems embedded in daily contexts. His 
students were encouraged to develop their own solution methods and models to explain their 
reasoning. Not apparent in the short episode discussed earlier were attempts both Pat and his 
students made to compare and contrast different models based on different solution methods of 
the same given problem. 
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Discussion 
In this paper, we described the opportunities to develop deeper understanding of fraction 

division offered by two mathematics instructors in their courses. In terms of content, Eliot’s 
lessons addressed topics that were not discussed in Pat’s class, while Pat’s lessons went deeper in 
connecting the meanings of whole numbers, fractions, multiplication and divisions through 
contextualized problems. Furthermore, Pat insisted on developing language and representations 
accessible to elementary students, while Eliot used concepts and terminology that would not be 
familiar to elementary school students. 

Some of these differences are surely the result of the difference in course purposes: Eliot’s a 
mathematics content course; Pat’s an integrated content & methods course. They may also be a 
result of the difference in instructor backgrounds: Eliot a mathematician and Pat a mathematics 
educator and former high school math teacher. The effectiveness of these different curriculum 
models, math first then methods vs. integrated math and methods, is beyond the scope of the 
current study, as is the effectiveness of their very different approaches to teaching these ideas. 
We can observe, however, some differences in the mathematics of the lessons and provide 
conjectures about what these differences might mean for future teachers.  

One big difference is the representations and how they were used. Eliot relied on pattern 
blocks and modeled reasoning with pattern blocks for her students. Pat encouraged his students 
to generate their own diagrams and expected them to use the context of the story problems to 
support their explanations. Both approaches get at the meaning of fractions and require moving 
flexibly across representations, which Lamon (2007) noted as a key part of fraction division 
understanding.  

We also noticed a difference in the level of abstraction different representations demanded.  
For example, in Eliot’s case, students need to be able to relate the actual physical blocks with the 
fraction quantities each block represents. Although the manipulatives are “real”, the association 
of the block with the fraction is abstract and requires learning to connect the two. In Pat’s case, 
the students need to create diagrams that connect with fraction quantities and the corresponding 
unit. In this case, the connections have meaning outside of the realm of mathematics, and may 
not be experienced as abstract. They also needed to attach each number and picture to something 
in the context of the word problem. The uses of both manipulatives (e.g. pattern blocks, fraction 
bars) and student-generated diagrams have been the primary focus of prior research 
investigations, and the findings have highlighted the complexity of making such contexts 
meaningful in elementary classrooms (e.g. Olive, 2000). The question, “How might these 
different uses of representations affect the development of deeper understanding of fraction 
division among prospective elementary teachers?” is worth pursuing.  

The goals of mathematics courses specifically designed for prospective teachers should go 
beyond K-12 mathematics in order to distinguish themselves from mathematics courses for non-
teachers. Both instructors did this. Eliot takes the students to mathematical explanations of the 
underlying mathematics that would not be appropriate for elementary students (e.g., the “flip and 
multiply” explanation) but, if successful, serves to provide the future teachers with deeper 
understanding of why the algorithm works. Pat’s use of story problems requires students to 
understand why the problem is division and write number sentences for the problems they are 
learning. They give public explanations for their reasoning, thus teaching each other.  

In this paper, we analyzed two sets of fraction division lessons for prospective elementary 
teachers and highlighted how two different representational contexts were used to achieve this 
goal. Even though mathematics courses for prospective elementary teachers are just a small 
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component of the professional development continuum, these courses provide a common context 
to reach a large number of prospective elementary teachers. Thus it is important that we continue 
to explore how such classes are taught and how instructors choose and use representations to 
help future teachers learn mathematics. 
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Research has painted a dreary picture of preservice elementary teachers’ preparation to teach 
school mathematics. A response to this problem has been to focus on the mathematical 
knowledge that is needed for teaching. However, another response remains largely 
uninvestigated—the learning to enact mathematics teaching. In this paper we report on our 
ongoing investigation of elementary preservice teachers’ learning of mathematics teaching 
practices. Here we focus more narrowly on one of our focal practices and report our progress 
defining and unpacking the ways prospective elementary teachers at different stages in their 
teacher preparation program perform interpretations of students’ mathematical work. We report 
on the conceptual and empirical work we have done to define the practice of interpreting with 
greater precision and with the goal of broadening what might be considered competent 
performance, especially for those just beginning their studies of mathematics teaching.  
 

Introduction 
The practice of listening to and making sense of students’ mathematical ideas comprises 

much of the work of mathematics teaching. Either on the fly or when grading papers, teachers 
are constantly reading and interpreting what students say, write, and do. Such interpretations 
inform teachers’ instructional decisions and actions—which in turn affect students’ access to, 
and opportunities to learn, mathematics. It is therefore no coincidence that there is so much 
emphasis in reform documents and rhetoric on the need for teachers to develop new and better 
ways of seeing, interpreting, and handling students’ mathematical ideas.  

Noteworthy here is that although we can all recognize that the practice of interpreting 
students’ mathematical work is essential to teaching, this practice is not named anywhere as an 
explicit object of study in teacher preparation. The study of teaching is focused on the 
knowledge, skills, and dispositions that support teaching practice, and not on the practices 
themselves. Yet increasingly we find preservice and inservice teachers working on instructional 
activities that prompt them to interpret students’ work and to sometimes construct a teacher 
response. While there is an increasing collection of such materials for teacher learning, much less 
work has been done to understand the practices of mathematics teaching that those instructional 
activities aim to develop, especially at the early stages of teacher preparation. 

In this study we are concerned with unpacking the practice of interpreting students’ 
mathematical work by characterizing the performances of elementary preservice teachers who 
are at different stages in their teacher preparation. By examining closely the differences and 
similarities among these prospective teachers’ interpretations we seek to generate more detailed 
descriptions of how the practice of interpreting students’ mathematical work is performed by 
those who are just beginning their formal studies of mathematics teaching. 
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Theoretical Framing 
We draw on the research literature in mathematics education to broadly define the practice of 

interpreting as the work teachers do to figure out students’ mathematical ideas expressed in oral 
or written form. In theory, this is a practice that teachers get better at as they gain more 
experience with students’ ways of thinking and doing mathematics. It is also reasonable to 
assume that as teacher preparation students move through their program, they accumulate 
exposure to the work of mathematics teaching, and hence to the practice of interpreting students’ 
mathematical work. As we considered how one might differentiate between an uninitiated and an 
experienced student of mathematics teaching, in terms of how they might interpret students’ 
mathematical work, we found that such distinctions have been theorized more so than 
empirically established and mainly with a focus on practicing teachers.  

Davis (1996) theorized three orientations to listening in mathematics classrooms (evaluative, 
interpretive, and hermeneutic) and suggested that a hermeneutic orientation (one in which the 
teacher and students co-construct and negotiate meaning) is rare and mainly performed by 
accomplished teachers of mathematics. An evaluative orientation, on the other hand, is quite 
prevalent and indicative of mathematics teaching of poor quality. In fact, Crespo (2000) found 
that elementary preservice teachers, as Davis suggested, had difficulties interpreting students’ 
work and an overall tendency to promptly evaluate without carefully analyzing it. Additionally, 
Sherin’s (1997) notion of teachers’ professional vision—which she defines as the ability to 
notice and interpret significant features of classroom interactions—is also an attempt to describe 
teaching practice. She argues that teachers, as all professionals, develop particular ways for 
looking and making sense of what happens in classrooms. They develop selective attention to 
classroom events (focusing and narrowing the landscape of what needs to be made sense of) and 
then use various strategies to make sense of what is noticed.  

Drawing on Davis’ (1996) descriptions of teachers’ orientations to listening and Sherin’s 
(1997) construct of professional vision we conceptualized the practice of interpreting students’ 
mathematical work as embodying aspects of ‘noticing’ (what is selected as the focus of analysis) 
and also strategies and orientations to the analysis of students’ mathematical work (how the 
analysis is performed). In order to interpret students’ mathematical work, teachers then need to 
purposefully select what is important and use some analysis strategies to unpack that work. 

We used the distinctions and descriptions provided by Davis (1996) and Sherin (1997) as 
starting points but it became evident that we needed more conceptual tools to help us make 
distinctions among preservice teachers of elementary school mathematics that were at the very 
beginning of their professional preparation. As Hiebert and colleagues (2007) suggest, we 
needed to define a more reasonable and a wider set of performances for those beginning their 
formal study of mathematics teaching than the expert teaching practices that are more readily 
available and discussed in the research literature. We have therefore adopted three conceptual 
tools to help us make distinctions across a range of performances and allow for a broader sense 
of what we might consider competent practice for a beginner. We are conceptualizing 
mathematics teaching as a set of practices for which teachers build a repertoire, as practices that 
can be bound to, or flexibly used across, teaching genres, and as practices that have both 
imagined and implemented performances. 

In using the concept of repertoire we are borrowing from music education, where it typically 
means a collection of well-practiced pieces (routines) that are ready to be performed publicly. 
Our hypothesis is that experienced teachers would have a broader collection than inexperienced 
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teachers, and that they would be able to de-compose and re-compose their collection (set of 
routines) much easier than novices.  

By using the concept of teaching genre we are hoping to be able to look at a wide range of 
teaching practices rather than draw a line between teaching that is usually seen as reform or 
traditional– and think about the ways that those learning to teach execute the practices of posing, 
interpreting, and responding within and across these genres. By drawing on the notion of genre, we 
could think about differences between beginning and experienced teachers in the way they did 
something like assign and correct practice problems as well as differences in more complex genres 
of teaching like facilitating a mathematical discussion. We expect that some genres might be easier 
to learn than others.  

Finally, because teacher preparation students do not have a fully developed practice, we have 
adopted the terms implemented and imagined enactments of practice to describe a distinction and 
relation we see between these two forms of teaching practice. To us these two forms are equally 
important in the construction and development of a repertoire of mathematics teaching. For 
example, it would be difficult to consistently and thoughtfully enact teaching moves that one has 
not imagined as possibilities and rehearsed in some imaginary, vicarious, or simulated situation.  
 

Methods 
The practice of interpreting students’ work is not performed in a vacuum but rather happens 

in conjunction with other instructional practices. Hence, we study the practice of interpreting in 
relation to two other practices not discussed here (that of posing mathematical tasks to students, 
and of responding to their mathematical ideas). We conceptualize these three practices as 
interrelated. Even within the simplest of math lesson structures—introduce task, monitor 
students’ work on that task; and then close the lesson—teachers find themselves enacting the 
practices of posing, interpreting, and responding. Previously (at this conference) we presented 
about this project’s goals, design, and initial insights from pilot data (see Crespo et. al, 2007). In 
this paper we report on the cross-sectional phase of the study with a focus on the practice of 
interpreting to look more specifically at how preservice teachers who are at the beginning, 
middle, and end of their program conduct interpretations of a given students’ mathematical work. 
Studying Teaching Practice with Written Tasks 

As in many other research projects, we use paper-pencil teaching scenario tasks to collect 
data about the participants’ enactments of mathematics teaching practice. While it might seem 
odd to study teaching practice anywhere but inside classrooms, researchers have used proxies to 
real classrooms for a long time. In our case and because teacher education students construct 
performances of mathematics teaching long before they have the opportunity to try them out in 
an actual classroom, we began our explorations of preservice teachers’ performances of teaching 
practice by using written scenario tasks.  

The conceptual tools of repertoire, genre, and imagined/implemented practice played key 
roles in the design of the paper-pencil instruments used in this project. First, we consider all 
responses to our paper instruments to be imagined performances of teaching practice. Only 
practice that we observe in an actual classroom is considered as implemented. Furthermore, in 
designing the project’s written tasks we paid close attention to the implied genre of mathematics 
teaching that particular scenarios suggested. We have explicitly designed teaching scenario tasks 
that are not clearly identifiable as belonging to a particular genre of mathematics teaching. We 
have also included tasks that can be identified as portraying a particular genre, in particular those 
explicitly promoted in the teacher preparation program where this study is located.  
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Following on our assumption that the teaching repertoire of experienced and beginning 
teachers are quite different we also designed tasks that would allow us to peer into the range and 
depth of the participants’ repertoire of posing, interpreting, and responding practices. While it is 
impossible to get a complete picture of anyone’s entire teaching repertoire, we designed tasks to 
prompt participants to share multiple ways they could imagine performing the target practice. 
For instance, one particular task prompts participants to “share at least three different ways you 
can imagine setting up this task in a classroom.”  

Because we are studying three practices (posing, interpreting, and responding) that are 
intricately connected and that for the most part happen altogether within a single lesson, we 
designed our instrument so that each task places the respondent at the start of a math lesson and 
prompts them to perform the practices of posing, interpreting, and responding within a lesson. 
All of our tasks’ math content was focused on the strand of Number and Operations. We 
designed and used 6 such tasks but in this paper we only focus on only one (shown below). Task 
1(a) shown in Figure 1 focuses on the practice of posing a mathematical task, and 1(b) focuses 
on the practice of interpreting students’ mathematical work.  

 
1. (a) Imagine you are going to ask your class to solve the following addition. 

What can you imagine saying and doing to get them ready to work on this 
task? 

 
   258 
   +389 

T eaching Scenar io C ontinued 
1. (b) Imagine that a student shows on the board the following strategy for adding.  
 i.) What would you want to make sure your class notices in this student’s 

work? 
 ii.) What are three different questions you can imagine asking to the class 

about this student’s strategy, and say a bit about how these three questions 
are different? 

   258  
   +389 
   17 
   130 
      500 
   647 

Figure 1: Sample P-I-R project task*.  
* This task was adapted from a mathematics-for-teaching task used by another project at 

the authors’ institution. Original task was developed by the IMAP (Integrating 
Mathematics and Pedagogy) project. 

 
Data Collection and Participants 

The project’s instrument was administered in the Spring 2008 to elementary preservice 
teachers who were at three different stages of teacher preparation (Junior, Senior, and 
Internship). Roughly speaking the junior year of this program focuses on children as learners. 
During the Senior year, they study teaching methods in each of four subject areas (mathematics, 
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literacy, science and social studies). During the Internship, they spend a year working with a 
mentor teacher (and supported by a field instructor) as they take increasing responsibility for 
teaching in each of the subject areas while also taking four graduate level courses of teaching 
methods throughout the year.  

All preservice teachers enrolled in the program were invited to participate in the study. The 
tasks were administered during class (when instructors were able to fit us into their class 
schedule, typically at the end of class so that students could choose to participate or leave the 
room) and also outside of class (during lunch hour). Participants were given 30-40 minutes to 
complete either form A, B, or C; with each form including 2 of the teaching scenario tasks. 
Participants were invited to complete more than one form. A total of 126 Juniors, 152 Seniors, 
69 Interns participated in the cross-sectional study. Task 1 was included in Form A and was 
completed by 46 Juniors, 42 Seniors, and 56 Interns. 
 

Some Results 
Our work in this project has reminded us that even though there seems to be an over 

abundance of descriptions of mathematics teaching practice, the field lacks clear language to 
characterize with more precision those practices. This becomes very apparent when attempting to 
distinguish among a set of questions, which could have been generated by experienced teachers. 
Figure 2 offers a few sample responses to task 1b (ii) that were constructed by pilot participants 
who were and were not teachers. Figuring out (and explaining reasons for) which of these 
questions one might think were made by which group of participants is not that simple.  
 

- Can someone explain why Susie has 130 in the second line and not 13? 
- Does someone have a different way to solve this problem?  
- Why did this student put zeros in their work? 
- Why didn’t this student carry the numbers? 
- Will this work for any 3 digit + problems? For any + problem? For any problem? 
- Can you see how this student was able to get to the answer? 
- Why did they add 17, 130, and 500? 
- How do you know that this answer is correct? 

Figure 2. Sample responses to task 1b(ii) “three different questions you can imagine asking …” 
 
Would we be surprised if we learn that all of these questions have been generated by non-

teachers; by experienced teachers? What would we consider ‘typical’ and ‘not typical’? Which 
of these would we agree should be in all teachers’ repertoire of mathematics teaching (and why)? 
In order to be able to address these sorts of questions, this project aims to generate more precise 
language and descriptions of three focal practices of mathematics teaching. We are also 
proposing that these practices need to be explicit objects of study. But most importantly, as 
Hiebert and colleagues (2006) suggest, we aim to not just map expert performances of these 
practices, but to construct descriptions of beginners’ enactments of these practices. 
Developing Analytical Rubrics 

While designing analytical rubrics to code the participants’ responses to the project’s tasks 
we have had to continually revise and rework our definitions. Initially we broadly defined 
interpreting as the practice of figuring out students’ mathematical ideas expressed in oral or 
written form. Later we had to make our definition more precise and applicable to the project 
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tasks. For the practice of interpreting our current working definition is that it involves the process 
of selecting (and discarding) and then analyzing and drawing conclusions from data (in this case 
students’ work). It involves narrowing the data (what Sherin calls ‘selective attention’) and 
making low and high inference observations—such as describing, explaining, comparing, 
evaluating—about that data.  

Because task 1b includes a student’s work that features non-traditional arithmetic algorithms 
our rubric is also consistent with criteria articulated by Campbell, Rowan, and Suarez (1998)—
validity, generalizability, and efficiency—that teachers should consider to support student-
invented strategies in teaching situations. Ball, Bass, and Hill (2004) also suggest these criteria 
when stating that there is some relevant work teachers must do in order to be able to respond to 
students’ strategies they haven’t seen before—what, if it exists, is the method and will it work for 
all cases? What these (as well as many other) mathematics educators suggest is that teachers, 
upon encountering a non-standard piece of mathematics (especially if proposed by students), 
would carry out some analysis about the validity of the method, not only whether it produces the 
correct answer, but how and why it works. They would explore if the method works for other 
examples and perhaps contrast or connect with other methods. They might also explore if and 
when it makes sense to use (or not) this method.  

 Our rubric for Task 1(b), therefore, attempts to capture these aspects of the practice of 
interpreting students’ work. It includes codes for parts (i) what is important to notice in the 
student’s work and (ii) questions one might ask about the student’s work. For both parts (i) and 
(ii) the response is first coded in terms of where the focus of attention is (A. the answer, B. the 
method, C. Big ideas) allowing for the possibility that attention can be spread across all three 
foci (to be consistent with our notion of repertoire). In fact, mathematics educators have often 
alluded to teachers needing to develop multiple lenses and peripheral vision in the classroom 
(i.e., Lampert, 2001). Then each category is coded in more detail to characterize more precisely 
the analysis work that is done on the answer, the method, and/or big idea.  

 
A. Focus on Answer – (A1: Answer is correct; A2: incorrect; A3: other evaluation of answer) 
B. Focus on Method – (B1: description; B2: explanation; B3: comparison; B4 evaluation) 
C. Focus on Big Ideas – (C1: Mathematical; C2: Pedagogical) 
E. Explanations are or not provided for generated questions in (ii) – (E0 and E1) 
Sample statements for task 1b(i): 
(A1): “to notice that the student was able to come up with the correct answer.” 
(A2): “this is wrong for adding but perfect for multiplication.” 
(A3): “this is set up as a multiplication problem not an addition problem” 
(B1): “that they added each column and put the whole answer down.”  
(B2): “adding the 2 and 3 in the 100’s column does not give you 5, it gives you 500.” 
(B3): “instead of carrying the 1 the student placed it beneath and worked downward instead of 
from right to left.” 
(B4): “this is a different but not incorrect method of finding the sum.” 
(C1): “that this strategy relies on place value to work.”  
(C2): “I would also want to see what other students were thinking about this problem.” 
Two sample responses to task 1(b) 

(i) I want to make sure that the class notices that there is more than one way to solve 
math problems. They are free to use whatever strategy they choose to arrive at the correct 



Vol. 5  1140 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

answer. I want the class to pay close attention to place value (ii.) Can you tell me how you 
started this problem? Will this strategy work for all addition problems? Can you think of a time 
when this strategy would not be the most effective? (Student A) 
 
(i) I would want my class to notice how the student used the different numerical places in order 
to help him/her solve the problem. (ii) Is this a sufficient strategy to use when adding? Why or 
why not? Why did the student start from the ones place? Would it have made a difference if 
he/she began from the hundredths place? Is this the correct answer? How do you know? * 
These three questions are different because the first one deals with the efficiency of the 
problem (is it the fastest way to get to the answer), while the second questions deals with the 
place values. The third question focus on the answer, and whether it is correct and why. 
(Student B) 

 
Student A’s response was coded as follows. Part (i) was judged as exhibiting attention to the 

answer and a mathematical big idea—place value. More specifically the response was 
characterized as C1, A1. The three questions generated in response to (ii) of the prompt were 
judged as exhibiting attention to the answer and the computational method. It was assigned the 
following codes: B1, A3, B4. In turn, student B’s response was coded as follows. Part (i) was 
judged as exhibiting attention to a mathematical big idea – “numerical places.” More specifically 
the response was characterized as C1. The three questions generated in part (ii) were judged as 
exhibiting attention to the method and the answer and the response was characterized with the 
codes B4, B2, A1. We chose these two students as examples not because they were the ‘best’ or 
because they stood out from the rest, but rather because these statements were common across all 
the cohorts of participants. What is noteworthy also about these and other similar comments is 
the breadth of what these two students were able to notice about the given student’s work. If 
task1b had only used prompt (i) or (ii), we would have missed the range of what these students 
are considering (answer, method, big idea) when asked to interpret a student’s mathematical 
work. 
Contrasting Cross-Sectional Interpretations 

Our initial observations from the pilot data were that as a group the non-teachers had a 
narrower repertoire (in both what they noticed and in the types of questions they generated about 
the students’ work) than the experienced-teachers group. We also noticed that the experienced 
teachers made noticing statements and generated questions that were not at all made by the non-
teachers group. However, we also found that there were also unexpected overlaps between the 
two groups. We were therefore curious about what we might learn by examining the 
performances of those who were at the very beginning, right in the middle, and at the very end of 
their formal study of elementary mathematics teaching. 

Simple frequencies (see Table 1) of the coded performances in tasks 1b (i) and (ii) using the 
developed rubric showed that when interpreting the given student’s mathematical work the main 
focus of attention for all the cohorts (including students who were enrolled in a pre-requisite 
course but not yet applied to the teacher preparation program – Pre-TP) was mainly on the 
computational method (B). Additionally, the most frequent type of analysis was that of 
description (B1), regardless of how far along the participants are in the program.  
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Table 1 
Distribution (in percents) of Participant Statements across Rubric’s Criteria 

TE 
Stage 

No. 
Participants 

 
Task A1 A2 A3 B1 B2 B3 B4 C1 C2 

 
E0** 

 
E1 

Pre-TP 32 1b(i) 16 22 0 50 22 16 16 34 9 N/A N/A 
Juniors 46 1b(i) 4 2 22 65 35 22 17 33 15 N/A N/A 
Seniors 42 1b(i) 12 5 7 57 26 26 14 88 12 N/A N/A 
Interns 56 1b(i) 9 2 20 70 52 14 16 70 16 N/A N/A 
Pre-TP 32 (91 Q*) 1b(ii) 25 22 6 59 16 19 38 25 25 53 28 
Juniors 46 (123 Q) 1b(ii) 20 0 37 48 26 24 37 30 2 46 54 
Seniors 42 (113 Q) 1b(ii) 14 2 12 69 26 26 36 79 5 55 45 
Interns 56 (172 Q) 1b(ii) 29 0 46 63 48 29 38 34 4 11 89 
Note. * (# Q) means total number of questions generated by the participants 
 ** E0 means – no explanation; and E1 means explanations were written 

 
In terms of differences, the interpretations made by those who were farther along in the 

teacher preparation program (Interns) had, in addition to the focus on the description of the 
method (B1), a prominent focus on the explanation of the method (B2) more than the other three 
groups. They also provided the highest percent of explanations for the questions they generated 
about the student’s mathematical work. The Interns and those in the middle of the program 
(Seniors) also had a strong focus on the mathematical big idea(s) that were involved in the 
solution method of the student. It is hard to tell whether this could be a product of being in the 
classroom more or having completed more coursework. While we have not yet delved into 
making finer categories about the quality of their noticing and questions, one thing that is 
remarkable, however, is that although the practice of interpreting is not explicitly taught at this 
institution’s teacher preparation program, the preservice teachers who are farther along in the 
program do pick up and learn to enact some aspects of this practice on their own. We wonder 
what more they might learn should this practice become an explicit and systematic focus of 
instruction in teacher preparation. 

 
What Next? 

Coding and analyzing the cross-sectional responses to task 1(b) showed us some important 
differences and similarities in the ways prospective elementary teachers at different stages in 
their teacher preparation program perform interpretations of students’ mathematical work. Our 
rubric has helped us to identify salient responses for each cohort of participants and to also 
identify aspects in the practice of interpreting students’ work that seem productive to build on 
and aspects that appear to be challenging for those at the very early stages of teacher preparation.  

Because we are looking at the collective rather than individual performance of preservice 
teachers and because we are using the conceptual lens of repertoire, we have been able to elicit 
and see a wider range of performances from preservice teachers than we expected. Our analysis 
so far suggests that preservice teachers may have a much broader collection of interpretive 
moves than the research literature has reported in the past. There is however much work still to 
be done to further unpack these participants’ interpretations of students’ mathematical work. In 
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terms of what comes next, we are currently in the process of exploring clusters and combinations 
of interpreting moves performed by participants. We are also continuing the work of developing 
more detailed descriptions and finer distinctions among the cohorts as to what might be 
considered reasonable performances at different stages of teacher preparation. 
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Prospective elementary mathematics teachers should be able to understand how their future 
students understand number concepts. A difficult concept is that of rational numbers. Rational 
numbers often have complicated means of representation, signifiers and signifieds, making them 
difficult for students to understand and teach. In this paper, we describe how one teacher 
integrates a theory of semiotics when instructing prospective elementary school teachers about 
rational numbers. We propose that by teaching prospective teachers about semiotics, 
connections between signs and units are made explicit and prospective teachers will be more 
equipped to approach the instruction of rational numbers to future students.  

 
Background on Obstacles to Understanding Rational Numbers 

Lamon (2007) suggests that fractions are a subset of rational numbers, in that fractions are 
notational and are “non-negative rational numbers” (p. 635). We are interested in how to instruct 
preservice elementary school teachers to move beyond simply the use of symbols (notational 
systems in which there are two integers written with a bar between them) to a conceptual and 
transferable understanding of what those symbols represent. 

Preservice elementary teachers often have trouble understanding and ultimately teaching 
future students about rational numbers (Graeber, Tirosh, & Glover, 1989; Harel et al., 1994; 
Simon & Blume, 1994). One key issue that prospective teachers face when they are trying to 
understand and work with rational numbers is whether a fraction is related to division, is a type 
of multiplication, or is a ratio of some sort (Ni, 2001). For example, Behr and his colleagues 
(Behr et al., 1993, 1994) demonstrated that transformation involved in solving problems with 
rational numbers use compositions and recompositions of units. The part–whole construct for 2/3 
suggests two interpretations: two-third as parts of a whole are two one-third units, i.e., 2(1/3-
unit), or two-thirds as a composite part of a whole is one two thirds unit, i.e., 1(2/3-unit). In the 
number sentence 2 ÷ 3 = 2/3, fractions are related to the idea of division. However, in another 
sense, in order to get 2/3 you must first define 1/3 and then multiply it by the number of 1/3rds 
that you have. Further, if the numerator and denominator are meant to express a ratio—like there 
are two dogs for every three cats, then 2/3 cannot be thought of in either of the above ways. You 
cannot have 2/3 of a dog.  

 
Purpose of this Study 

In this paper we consider how semiotics instruction can be used to help preservice 
elementary school teachers learn about rational numbers. While there may be many reasons why 
rational numbers are hard for students to understand, from a lack of prerequisite knowledge to a 
lack of working memory to hold multiple numbers in mind at one time, we are going to focus on 
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how different meanings denoted by a single representation of a fraction in different relevant 
contexts may lead to an inability to fully understand rational numbers. We describe how one 
professor used a dyadic, or two part, semiotic framework developed by Ferdinand de Saussure 
(1957) to help instruct preservice elementary school teachers about rational numbers. 
Furthermore, by using this framework, the teacher was able both to decompose the problems 
themselves and to give the preservice teachers a way to understand how their future students will 
view the problems.   

 
Theoretical Framework: Why the Study of Rational Numbers is a Semiotic issue 

Semiotics, broadly conceived, “is concerned with everything that can be taken as a sign” 
(Eco, 1976, p. 7), including “images, gestures, musical sounds, objects…these constitute, if not 
languages, at least systems of signification” (Barthes, 1967, p. 9). Ferdinand de Saussure (1957) 
described a linguistic sign as a two-sided entity made up of a signifier and signified. A signifier 
is the material aspect of the sign whereas the signified is the mental concept associated with the 
material symbol. For example, the English word “tree” is made up of the material sounds /t/, /r/, 
and /e/ (the signifier) as well as the mental concept we each hold of what it means to be a “tree” 
(the signified). 

In addition to the simple model of a signifier and signified, one must also bear in mind the 
community in which this relationship takes place. Saussure (1957) reminds us that regardless of 
the signifier a linguistic system uses “to designate the concept ‘tree,’ it is clear that only the 
associations sanctioned by that language appear to us to conform to reality” (p. 66-67). Thus, 
there are many different signifiers that can represent the same signified. In the field of semiotics, 
“langue” refers to the collection of signs, the overall system of signification, that permit 
individual speech utterances. Put another way, “langue” is “language minus speech,” the 
structure that permits individual utterances (Barthes, 1967, p. 14). Depending on how the words 
are combined in a phrase or what words are chosen in a particular phrase, the concept of the 
signified may change. In other words, the meaning of a sign is not contained within the signifier 
or signified alone, but develops within a phrase and within a community as well. To make sense 
of the sign, not only do the signifier and signified need to be taken into account, but the context 
that contains that sign must also be considered. One type of sign may be signified by a written 
symbol. Therefore, it follows that one way to study and begin to understand rational numbers is 
by using semiotics. 

Taking the idea of rational numbers as signs, we can see how it can be difficult for students 
to make sense of them. A single signifier of a rational number, like two whole numbers with a 
bar in between them (ex – ½), can take on multiple meanings. Consider the following uses of 
rational numbers taken from a popular book used to teacher prospective elementary teachers 
mathematics (Billstein, Libeskind, Lott, 2007, p. 299) (Table 1): 
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Table 1 
Uses of Rational Numbers 

Use Example 
Division problem or solution to a 
multiplication problem 

The solution to 2x = 3 is 3/2. 

Partition, or part, of a whole Joe received ½ of Mary’s salary each month 
for alimony. 

Ratio The ratio of Republicans to Democrats in the 
Senate is three to five. 

Probability When you toss a fair coin, the probability of 
getting heads is ½. 

 
In the example, a rational number could be used as division, to partition something, as a ratio, 

or even as a probability. Similarly, Kieren’s semantic analysis of rational number identifies five 
“subconstructs” of rational numbers. They are part–whole, ratio, quotient, operator, and measure 
(Behr et al., 1992; Kieren, 1976). Depending on the context, the meaning of the rational 
number—even if it is represented by the same numbers—changes.  

Consider the following question out of context. What does 2/3 mean? This signifier, 2/3, 
could mean any of the following (the list is certainly not exhaustive): 

• 2 candy bars shared equally by 3 people, each person gets 2/3 
• 2 dogs for every 3 people 
• 2 ÷ 3 = 2/3  
• 1 ÷ 3 = 1/3 (partitioning), there are 2 1/3rds = 2/3 (iterating) 
• 2 parts, with 3 equal parts to make a whole  
• 2/3 = 4/6 = 6/9, etc. 
• It could be 2/3 of a number greater than one, like 6, which is equal to 4 
• It could be 2/3 of a number less than one, like 1/6, which is equal to 1/9 
We posit that one difficulty students have when trying to first understand and then later teach 

rational numbers is that they must navigate across multiple meanings, or signifieds, for the same 
symbol, or signifier, a relatively common task in spoken and written language, but not 
necessarily common in the understanding of numbers. We use the phrase ‘semiotic dissonance’ 
to describe the difficulty or inability for a person to meaningfully construct a sign from a 
signified (meaning) and its associated signifier (symbol). Further, when a teacher develops the 
ability to navigate across meanings, he or she must be able to step back and understand how 
future students must then navigate across meanings. This understanding is the basic semiotic 
framework that we will refer to for the rest of this paper. 

 
Mode of Inquiry: A Case of One Teacher Using a Semiotic Framework to Teach Rational 

Numbers to Prospective Elementary Teachers 
As part of a larger study that explores the mathematics content taught to undergraduate 

prospective elementary teachers, this paper focuses on one of seven instructors who were video-
taped while they taught fraction lessons. The video data was supplemented by the field notes 
taken during instruction and of an interview of the instructor. For more information about the 
project, including student test data and teacher surveys, see McCrory (2008). Since in this paper 
we are concerned with overcoming the difficulties students face when trying to work with 
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rational numbers, we looked at one college professor in more detail. For this project, over 15 
hours of video data was gathered for this instructor. The analysis of the video tapes used an 
Iterative Refinement Cycle (Lesh & Lehrer, 2000) model in which multiple interpretive cycles 
were used on the data. The first interpretive cycle was used to identify those issues that pertained 
to general pedagogy and classroom culture. The second cycle was used to identify those issues 
that reflected the semiotic framework that framed this research investigation. The third cycle was 
used to establish explicit connections between the instructor’s pedagogical decisions in order to 
make clear to the students the semiotic issues in their problem solving process. Finally, 
throughout the entire iterative viewing and interpretive process, the analysis of the other data 
source, including field notes and the exit interview with the instructor, was used to help inform 
the context and nature of the classroom discourse.  

Below we provide excerpts of the interpretive narrative and discuss how Pat (a pseudonym), 
a professor of prospective elementary school teachers, used semiotics to instruct his students 
about rational numbers. The following episodes from Pat’s class show how an understanding of 
semiotics can help preservice elementary teachers understand rational numbers and ultimately 
how to understand how to navigate these teachers’ future students’ misconceptions of rational 
numbers.  

 
Results 

Before delving into the difficult concept of rational numbers, Pat did a short presentation 
introducing the students to semiotics. In the presentation, Pat first defined a linguistic sign as a 
“…two sided entity, a dyad, between the signifier (symbol) and the signified (meaning).” He 
then gave the following visual example of linguistic sign using the concept of ‘dog’: 

 
sign  Spoken word “Dog” 
             Concept of Dog 
 
 Pat would refer back to this simplified semiotic framework when semiotic dissonance arose 

in problems that had the same numbers, but different units, to explicitly show students how the 
semiotic framework provided insight into their confusion. Pat specifically chose the waffle and 
cookie problems below to include two meanings of division: partitive/sharing (how many/much 
per group?) and quotative/measurement (how many groups?).  

• The Waffle Problem: A batch of waffles requires ¾ of a cup of milk. You have two cups of 
milk. Exactly how many batches of waffles could you make?  

• The Cookie Problem: “You have 2 cups of flour to makes some cookies. This is ¾ of what 
you need for one full recipe. How many cups of flour are needed for a full recipe? (Class 
handout, 4/10/08) 

In his class, Pat began by having students work in six groups of four students to solve the above 
problems. When Pat asked for solutions to the first problem, four of the six small groups each 
gave a different answer (2, 2 ¼, 2 2/3, 2 3/8), only one of which was actually correct. Clearly this 
question posed a series of problems for this class. Pat proceeded to have the group that had 2 ¼ 
go to the board and write how they solved the problem for the class. One student said, “I knew 
that 1 cup of milk was four fourths,” and then wrote out on the white board 4/4 + 4/4 = 8/8 to 
represent the 2 cups of milk. He continued saying, “I know ¾ a cup is batch so I took away 6/8 
for two batches,” while writing 4/4 + 4/4 = 8/8 – 6/8 = 2/8. The student concluded by saying that 
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he had 2 batches so far, represented by the 6/8, and a ¼ leftover, simplified from the 2/8, giving a 
final answer of 2 ¼ batches. Another student quickly pointed out that 4/4 plus 4/4 was actually 
8/4, not 8/8. Using that fact, Pat reworked the problem on the white board writing 4/4 + 4/4 = 
8/4, and 8/4 – 6/4 (for the two batches of waffles) = 2/4 = ½. The class then began to discuss the 
meaning of the ½, whether it meant ½ a batch or ½ a cup. After some class discussion on how to 
interpret the ½, a third student pointed out that the ½ left over was not ½ a BATCH, but rather 
was ½ a CUP and that ½ cup was the same as 2/3 of a batch. To illustrate his point, the student 
drew a pictorial representation of the problem (figure 1) trying to show how ½ cups of milk was  
equivalent to 2/3 batch of waffles.  

 
Figure 1. Pictorial solution to the waffle problem. 

 
After the students explained why they got their answers, Pat brought the class back and 

explained how both a cup and a batch could be a whole. Pat stressed that the students needed to 
attend to the context, and said, “technically the ½ is not wrong until you put a name to it. You 
say ½ a batch. That’s not true, because it’s half a cup” (from video on 4/10/08 and 4/15/08).  

This is clearly a semiotic problem, where the signifier, or visual mark “1/2,” had taken on 
two different meanings, depending on the signified, or concept, with which the students 
associated the signifier to construct their sign. One student incorrectly associated the ½ to 
‘batches’ while another student correctly associated the ½ to ‘cups,’ which was equivalent to 2/3 
of a batch. In this case, the single signifier, ½, could only be meaningfully associated with one 
meaning, cup. We describe this phenomenon with the phrase ‘semiotic mismatch,’ in which a 
signifier is incorrectly associated with a particular signified as determined by the context. As 
illustrated in this excerpt, by explicitly showing students how signs can mean different things 
depending on the context, the students gained insight in how to determine what the accurate 
signified, or intended meaning, was in the problem.     

When Pat moved to a discussion of the cookie problem, he encouraged the students to use a 
semiotic framework not only when approaching their own understanding, but also in future 
instruction of rational numbers to elementary school students as well. As with the waffle 
problem, Pat first had the class work in small groups to come up with a way to model their 
solution. Pat had two groups put up two solutions. The first solution, which was an algebraic 
solution, looked like this: 

 
2 cups = 8/4 cups 
2 divided by ¾ 
8/4 divided by ¾ 
8/4 x 4/3 = 8/3 
2 2/3 cups 
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The second solution (figure 2), copied in the notes as replicating the board drawing, was a 
pictorial strategy. 

 
 

Figure 2. Pictorial solution to the cookie problem. 
 
At this point, Pat gave the students some time to think about how they would explain each of 

the above answers to their future students. Pat discussed how this was a content pedagogy 
course, so he wanted them to understand the content, but then, as future teachers to be able to 
explain the mathematics with clarity. While no one seemed eager to attempt to explain the first 
solution strategy, one student did label and explain the second strategy. First, she labeled the 
model (figure 3) and noted that she thought it was important to label cups on one side and ¼ 
batch on the other side so students would not get confused. Here the student had moved from 
having semiotic dissonance to realizing the importance of being consistent with the use of 
symbols when there are multiple signifieds, quantities of cups and recipes, as a result of the 
context.  

  
 

Figure 3. Pictorial solution to the cookie problem with student explanation. 
 

Pat waited for the students to comment as the model was explained. He then pointed out that 
the two shaded boxes in the drawing, 1/3 of 2 cups and ¼ of a recipe were also both equal to 2/3 
cups. In this case, the signifier represented by the two shaded boxes, could be associated with 
three different meanings, the signified, depending on context. 

After students shared solutions of the cookie problem, Pat asked the groups to think about 
what mathematics was necessary for kids to solve the problem using the different strategies 
presented. The class decided that to solve the problem using strategy 1, the algebraic solution, 
the child would need to know improper fractions, the division of fractions, fraction algorithms, 
and whole number operation facts. On the other hand, for strategies 2 and 3, the pictorial 
strategy, the child would need to know how to partition pictures, split quantities up, and 
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recognize the concept of a changing whole. One of the students specifically pointed out that in 
strategy 1, number facts were necessary while in strategies 2 and 3 a conceptual understanding of 
division was needed. Furthermore, looking back over the three representations, one could see 
that while the first strategy was mathematically correct, a student would not necessarily need a 
conceptual understanding to solve the problem. There were no units labeled, and thus semiotic 
confusion could arise in children. In the second solution, the diagram was not labeled adequately, 
which could also lead to semiotic confusion. The third solution had taken into account much of 
the semiotic framework that had been taught, including labeled pieces so that a child could more 
easily figure out what is signified by the images and numbers. 

By analyzing the three representations of the cookie problem and determining what langue, 
or semiotic context, was needed to solve the problem using the two strategies, Pat enabled his 
students to begin to think about how they could instruct future students about rational numbers. 
He emphasized the importance of labeling the units and how the changing whole could be tricky 
for their future students to understanding and learn. He presented them with a semiotic 
framework to be able to create meaningful signs by connecting the appropriate signifiers with the 
appropriate signifieds, depending on the knowledge available to his students as well as his 
students’ future school aged students.  

After discussing the waffle and cookie problems individually, Pat asked the groups to 
determine the difference between the two problems. While both problems used the same 
numbers (2 and ¾), the same operation (division), and had the same answers (2 2/3), the 
contextual difference led to different solution strategies and conceptions of the fractional 
quantities. Again, Pat wanted the students to understand that the langue of the problem affects 
the ultimate meaning of the signifieds (amount) and of the signifiers (visual or auditory number 
itself). By now, the students had decomposed both problems and quickly answered that: 1) In the 
problems they are asking two different questions; 2) In the first you have everything you need. In 
the second problem you need to figure out what extra represents. You don’t have everything you 
need. 3) In the first problem, ¾ makes a whole, in the second it is ¾ of what is a whole; and 4) In 
the first problem, the measurement is division, where you know the amount of groups and want 
to know what the whole is and the second is partitive division, in which you know how many 
groups/parts are in the whole. By analyzing the problems and giving students a semiotic 
framework to allow them to determine the meanings of the symbols being used, the students 
were able not only to understand the rational numbers themselves, but were also able to 
conceptualize what kinds of mathematical knowledge their future students would need to 
understand such problems.  

 
Discussion 

As noted in the introduction, preservice elementary teachers often have trouble understanding 
how to conceptualize and use rational numbers. Without adequate conceptual understanding, this 
lack of content knowledge will be perpetuated when these students go to teach their future 
elementary school students about rational numbers. This paper has shown how one teacher has 
used a framework of semiotics to help students understand, use, and ultimately instruct each 
other about rational numbers. Whether this knowledge transfers to the elementary classroom is 
an area that needs further study. Nonetheless, the preservice teachers in this case study clearly 
showed growth in their understanding of rational numbers through the use of a semiotic 
framework. The study of semiotics helps students to interrogate “how” things mean, not just 
what they mean, that a secondary system underpins the superficial representations of concepts 
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with which they have become so familiar. Further, breaking down the problems using semiotics 
makes explicit what we often think we are doing implicitly. Finally, this explicit decomposing of 
problems allows students to begin to see where their future students may encounter difficulties 
when trying to understand rational numbers. 
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This paper reports on a study of the development of knowledge of geometry and measurement of 
more than 450 pre-service elementary teachers (in two cohorts) that were taking a required 
mathematics course focused on these topics. They completed pre- and post- tests consisting of 
multiple choice and open response items. Pre-service teachers’ mean percent correct doubled 
between the pre- and the post- test. Such large increase was also evident in some individual 
items; however, this improvement in mean scores was not at all uniform. This suggests that after 
a semester of study on these topics preservice teachers made significant progress but there were 
still concepts they continued to find difficult. Implications of these and other results are 
discussed. 
 

Introduction 
Mathematicians and teacher educators have been studying what mathematics is needed for 

teaching at elementary grades for decades. These studies have been summarized in the 
recommendations of the Conference Board of the Mathematical Sciences (2001) and include 
individual studies conducted by scholars such as Ball (1990), Borko et al. (1992), and Ma 
(1999), and the reviews by Begle (1979), Ball, Lubienski, and Mewborn (2001), and Hill, Sleep, 
Lewis and Ball (2007). The book by Even and Ball (2009), a study of the International 
Commission on Mathematical Instruction (ICMI) about the education of mathematics teachers, 
indicates that the concern about mathematical knowledge for teaching is worldwide. Most of the 
studies of mathematical knowledge of prospective or practicing elementary teachers have tended 
to focus on knowledge of number and operations. In particular—except for a few studies about 
pre-service teachers’ van Hiele levels, e.g., Mayberry (1983)—little is known about prospective 
teachers’ knowledge of geometry, measurement, or spatial reasoning. Yet, after number and 
operations, the topics of geometry and measurement are the most frequently taught content 
strands in elementary grades (Rowan, Harrison & Hayes, 2004). 

In this paper we report on a study that addresses this gap in the literature on mathematical 
knowledge for teaching. A mathematics research group originally set up by the Teachers for a 
New Era Project [TNE] at Michigan State University has been conducting self-studies of what 
prospective teachers in the elementary teacher certification program learn about knowledge for 
teaching mathematics from the required courses in mathematics and mathematics education. In 
this paper we report on one part of our work: an investigation of the knowledge of geometry and 
measurement acquired during a required undergraduate mathematics course about geometry and 
measurement designed for students in the elementary teacher education program. In particular, 
the study reported here addresses the following research questions: 
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1. What knowledge of geometry and measurement do pre-service teachers have at the 
beginning of a mathematics course addressing those topics?  

2. To what extent and in what ways does the pre-service teachers’ knowledge of geometry 
and measurement change by the end of the course?  

 
Participants  

The population of concern is the set of students enrolled in the 5-year elementary teacher 
preparation program at the authors’ University. Students in this program are required to take two 
mathematics courses designed especially for future teachers of Grades K–8 (The State’s 
elementary certification is for Grades K–8 and secondary is for Grades 7–12). In the first course, 
called MATH 1 here, students study whole numbers, rational numbers, number theory, ratio and 
proportion, and elementary ideas in algebra. In the second course, called MATH 2, students 
study topics in geometry and measurement, including spatial visualization, and properties of 2-D 
and 3-D figures, such as congruence, similarity, transformations, perimeter, area and volume. 
This choice of content was influenced by the recommendations and research mentioned earlier, 
as well as by national and state standards for students in Grades K–8. To develop what Ma 
(1999) calls “profound understanding of fundamental mathematics,” both MATH 1 and MATH 2 
emphasize developing multiple representations for mathematics concepts, writing and solving 
word/story problems, and explaining why mathematical statements are true or why procedures 
“work.” 

MATH 1 is required for admission to the elementary teacher preparation program; so most 
students taking it are freshmen or sophomores. MATH 2 may be taken at any time prior to the 5th 
year internship; so students are a mix of freshmen, sophomores, juniors and seniors. Both MATH 
1 and MATH 2 are taught in sections of 25–35 students. Typically, one section each semester is 
taught by a professor, and other sections are taught by teaching assistants, most of whom are 
doctoral students in mathematics or mathematics education. In order to investigate the stability of 
results, this study was conducted in two consecutive years in MATH 2. Students enrolled in 
MATH 2 in Spring 2007 used the first edition of Beckmann’s text (2004), and in Spring 2008 
they used the second edition of the same book (2007). A different faculty member was course 
supervisor each semester. Students in Spring 2008 spent more time on volume and less time on 
properties of quadrilaterals than the students in Spring 2007. Other aspects of curriculum and 
instruction were the same.  

 
Methods 

 Each semester students were given a pre-test on the second day of class. As part of the 
consent process students were informed that their pre-test score would not count towards the 
course grade. They were also informed that these questions were about material that would be 
studied and examined later in the course and that the results would help instructors evaluate the 
effectiveness of their instruction. Most questions on the pre-test were also embedded in the final 
exam (post-test) for the course.   
Instruments 
 Topics on the pre-test included properties of polygons and polyhedra, the meaning of 
measurement units, perimeter, area and volume. Items addressed various strands of mathematical 
proficiency, including conceptual understanding, adaptive reasoning, and strategic competence 
(National Research Council, 2001). Several items were taken from previous research involving 
school children (e.g., Battista, 2007), or teachers (e.g., Ma, 1999). In this paper we report on a 



Vol. 5  1155 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

total of eight items—three multiple choice and five open-ended. Several of the free response 
items have multiple parts, and some items can be solved in more than one way. 

Figures 1 and 2 show two items dealing with concepts of area. Figure 1 shows a multiple 
choice item assessing conceptual understanding of the effect of changing the unit of measure on 
the area of a figure. Understanding such transformations is essential for most real world 
applications of geometry. In addition, a successful response to this item would indicate the 
ability to integrate what Battista (2007) calls measurement and non-measurement reasoning. 

Figure 2 shows a free response item asking students to identify and explain the relation 
between the areas of two triangles. As Beckmann (2002) notes: 

prospective teachers should learn to explain mathematics not only because they will explain 
mathematics to their future students, but also because explaining mathematics enhances their 
own understanding of mathematics and their own mathematical reasoning abilities. (p. 2) 

 
Juan, Kim, and Angelo each measured the area of the same shape using the area units shown below.  

 
    Juan’s unit      Kim’s unit   Angelo’s unit 
 
Which of the following could be a correct set of area measurements for the shape?  
 
(a) Juan:  60 units   Kim:  15 units      Angelo:  90 units 
(b) Juan:  60 units     Kim:  240 units Angelo:  40 units 
(c) Juan:  120 units   Kim:  30 units       Angelo:  80 units 
(d) Juan:  120 units   Kim:  480 units Angelo:  180 units  

 
Figure 1. Item G4 – a multiple choice question about units of area. 

 
ABCD is a rectangle. 

 
a.  How do the areas of triangles AED and AFD compare? (Mark one.)  
 (a)  The area of triangle AED is equal to the area of triangle AFD. 
 (b)  The area of triangle AED is greater than the area of triangle AFD. 
 (c)  The area of triangle AED is less than the area of triangle AFD.  
 (d)  There is not enough information to determine how the areas of triangles AED and AFD are related. 
 
b.  Justify your answer.  
 

Figure 2. Item G6 – assessing reasoning about areas of triangles. 
 
Scoring Items 
 Each correct multiple choice item was given one score point. For each free response item the 
research team developed a scoring rubric, with 4 points maximum allotted for each free response 
item. This results in a maximum total score of 29 points. 
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 Influenced by the work of Malone et al. (1980) and Thompson and Senk (1998), rubrics 
typically assigned 4 points to a model solution, 3 points to a solution that is conceptually correct 
but has a minor computational error, 2 points to an item that indicates a chain of reasoning but 
contains either a conceptual error or gets only about halfway to a solution, 1 point to a solution 
that does not contain a valid chain of reasoning, but has at least one correct relevant statement, 
and 0 points to a completely incorrect solution. 
 Rubrics were developed iteratively, generally over a period of several weeks for any given 
items. Typically, a team of two or three researchers would select sample solutions that they 
thought illustrated the general scoring guidelines described above, and present them for 
discussion and potential revision to the full 7-person research team. Once agreement on the 
language of the rubric was reached, anchor papers were identified, and the full team practiced 
scoring a small set of other papers. Once acceptable levels of reliability were reached, the team 
that proposed the rubric scored all remaining papers. Figure 3 shows the rubric developed for 
Item G6 (b). Once rubrics had been developed for all items, other researchers who had not been 
involved in the original scoring, rescored a random 15% of the samples. For Item G6 (b), the 
rescoring resulted in 98% agreement. 
 

4 points (a) Complete, correct argument based on Cavalieri’s principle (must include a statement that side BC 
is parallel to side AD because figure ABCD is a rectangle, or other equivalent statement). (b) 
Responses that use the formula Area=(base)*(height)/2 and justify why the bases and heights of the 
two triangles are the same [must include the statement that the distance between the opposite sides of 
a rectangle are equidistant because they are parallel]. (c) Responses that correctly show some 
combination of categories (a) and (b) or other method. 

3 points (a) Same criteria as 4(a) but minor errors/omissions (e.g., student fails to mention that rectangles 
have parallel sides). (b) Same criteria as 4(b) but minor errors/omissions. (e.g., failing to mention 
opposite sides of a rectangles are parallel, parallel lines are equidistant) (c) Same criteria as 4(c) but 
minor errors/omissions.  

2 points  (a) Explanation that mentions Cavalieri’s Principle and/or shearing process (or other related term). 
(b) Explanation that uses the formula Area=(base)*(height)/2 but does not show how the bases and 
heights of the two triangles are equal. (c) Combination of (a) and (b) or other methods that shows a 
chain of reasoning but either has major conceptual errors, or half way done.  

1 point  There is at least one correct and relevant fact in the response. 
0 point  Incorrect, irrelevant, or blank statements  

Figure 3. Rubric for Item G6 (b). 
 

Results 
 The mean and standard deviation of the overall score earned on the pre- and post-tests for the 
two samples is given in Figure 4. Also given are the Test Difficulty, defined as the ratio of the 
mean score to the maximum possible score (29), and the distributions of scores. Performance on 
the pre-tests was quite stable across semesters, with a mean score about 9 of 29 points possible in 
each semester. Mean scores rose to almost 20 points on the post-test in 2007 and 18 points in 
Spring 2008. In each semester the growth from pre- to post-test was more than two standard 
deviations.  Table 1 reports descriptive statistics for the items shown in Figures 1 and 2, 
including the mean, standard deviation, and item difficulty (defined to be the ratio of the mean 
score to the total number of points possible on the item).  
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Figure 4. Descriptive statistics for students’ overall scores on TNE geometry items and boxplots 

of distributions of total scores. 
 

Table 1 
Descriptive Statistics for Items G4 and G6, Shown in Figures 1 and 2 (respectively) 

 
Item (Max. Points) Test N M SD Item 

difficulty 
Item G4 (1 point)      
 Spring 2007 Pre 235 0.23 0.42 0.23 
 Spring 2007 Post 235 0.55 0.50 0.55 
 Spring 2008 Pre 232 0.18 0.39 0.18 
 Spring 2008 Post 232 0.43 0.50 0.43 
Item G6 (a)(1 point)      
 Spring 2007 Pre 235 0.28 0.45 0.28 
 Spring 2007 Post 235 0.80 0.40 0.80 
 Spring 2008 Pre 232 0.36 0.48 0.36 
 Spring 2008 Post 232 0.73 0.45 0.73 
Item G6, (b) (4 points)      
 Spring 2007 Pre 235 0.22 0.58 0.06 
 Spring 2007 Post 235 2.12 1.12 0.53 
 Spring 2008 Pre 232 0.25 0.65 0.06 
 Spring 2008 Post 232 1.54 1.08 0.39 

 
 Both Items G4 and G6 were difficult for the students in this study. The correct answer to 
Item G4 is choice (b) and on the post-test this was the most commonly chosen answer, but only 
55% in 2007 and 43% in 2008 chose the correct answer. Each semester, the most commonly 
chosen wrong answer on the post-test was distractor (a) with about 30% choosing it in 2007 and 
about 55% in 2008. 
 For Item G6, although only about a third of the students recognized on the pre-test that the 
areas of the two triangles are equal; by the end of the semester about 80% in 2007 and about 
73% in 2008 recognized that the two areas are equal. However, justifying this conclusion was 

Administration 
of Test N M SD Test 

difficulty 
Spring 2007 Pre 176 8.74 4.24 0.30 
Spring 2007 Post 219 19.93 4.56 0.69 
Spring 2008 Pre 232 9.03 4.39 0.31 
Spring 2008 Post 232 17.79 4.27 0.61 
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more difficult for students even at the end of the course. In 2007 and 2008 combined only 1% of 
students on the pretest and 24% on the post-test scored 3 or 4 on part (b) of Item G6. That is, by 
the end of the semester less than one student in four was successful at justifying why the areas 
are equal. Figure 5 shows two valid arguments illustrating the two most commonly used 
solutions for this item.  

 
Student A Student B 

  
Figure 5. Sample solutions to Item G6(b) shown in Figure 2. 

Student A used Cavalieri’s principle to compare the area of triangles AED and AFD. 
Whereas there were no students who used this particular principle on the pre-tests in 2007 or 
2008, on the post-tests there were 45 students altogether who used this principle to justify 
successfully their response that the area of the two triangles must be equal. This type of response 
is interesting because Cavalieri’s principle is not typically taught in high school geometry, and it 
is clear that these students did not know this principle at the start of MATH 2; but by the end of 
the course about 10% of the samples were able to use a newly-learned abstract principle in a 
problem context and to construct a well-argued explanation for their responses. 

Student B used the formula A=b*h/2 for the area of a triangle to argue that if the bases and 
heights of two triangles are equal, then the two areas must be equal. Whereas on the pre-tests 
there were only 5 students who invoked this particular argument with some success (all scored 3 
points), on the post-tests there were 67 students altogether who used this argument to justify 
successfully (scored 3 or 4) their response. Students typically enter MATH 2 familiar with the 
area formula for triangles. Responses like Student B’s are interesting because they show that 
what students seem to have learned in the course is not new content but rather how to apply what 
they already knew to a new problem situation involving the construction of an explanation or 
justification. In both cases, these students seemed to understand that areas can be compared 
without calculations or measurement—one can use properties of shapes and general principles to 
determine areas. More generally, solutions such as those of Students A and B show how pre-
service elementary teachers can use formulas and general principles to understand relationships, 
contrast shapes and even make arguments about relationships among mathematical objects. 

 
Discussion 

This study investigated the knowledge of geometry and measurement that pre-service 
teachers displayed at the beginning of a mathematics course addressing those topics, and to what 
extent and in what ways did pre-service teachers’ knowledge of geometry and measurement 
change by the end of the course. The overall scores on the TNE Geometry Test show that 
consistent with results reported by Mayberry (1983) the pre-service teachers in this study began 
their course with weak knowledge of geometry, with mean scores of about 9 of 29 points on a 
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pretest about properties of polygons and polyhedra, the meaning of measurement units, 
perimeter, area and volume. These results were stable across two semesters. The post-test scores 
show that they learned quite a bit about geometry and measurement in MATH 2 with average 
scores on the same items on the post-test increasing to about 18 - 20 points. However, when 
examining specific items we see that some topics explicitly taught in the course were learned 
successfully, but that there were other concepts that many students continued to find difficult. 

Item G4 about the size of the unit and the resulting measure of area addresses a fundamental 
concept of area that shows up in many elementary curricula. This item was quite difficult even at 
the end of the semester with slightly more than half the sample getting it correct in 2007 and 
slightly less than half successful in 2008. It is not clear how much the complexity of the item, 
involving three different measurement units, contributed to its difficulty. But this item taps a 
concept that is fundamental to understanding area. It is therefore important for researchers and 
teacher educators to figure out why this concept is so difficult and how to help pre-service 
teachers understand it. 

Item G6 assesses reasoning about areas of triangles that is typical of mathematics included in 
some state standards for Grades 7 or 8. Results show that during this study, the percent of 
students who were successful on this item increased between the pre-test to post-test from about 
30% to 75% on part (a) and from about 1% to 24% on part (b). Thus, after completing a whole 
semester of a geometry course that places considerable emphasis on explaining your thinking, 
the majority of preservice teachers made excellent progress on recognizing that two areas were 
equal, but continued to have difficulties explaining and justifying their responses. Most had no 
trouble recalling the area formula for triangles, but applying the formula and properties of 
quadrilaterals to construct an argument about the equivalence of the area of the two triangles was 
difficult for many students. However, it is heartening to see that other students, about 15% of the 
sample, not only were able to learn a new mathematical principle, Cavalieri’s Principle, but they 
were also able to apply it to write an argument about areas of triangles. Thus, Beckmann’s 
(2002) proposition that explaining mathematics will help future teachers to enhance their own 
understanding of mathematics and their own reasoning abilities is somewhat supported by our 
research. However, for the majority of students in our sample, the development of strong 
reasoning abilities is still an elusive goal. 

This study was undertaken with the joint goals of contributing to the research on knowledge 
for teaching mathematics and of investigating what prospective teachers in the elementary 
teacher certification program at our university learn about mathematics for teaching from the 
required courses in mathematics and mathematics education. To the former, we have contributed 
items about geometry and measurement that are lacking in the literature, and rubrics for scoring 
those items that can be used reliably by other scholars. Starting with the current semester, Spring 
2009, we have begun to share the results of this work, with faculty and teaching assistants who 
are currently teaching MATH 2, with the belief that knowing about pre-service teachers’ 
performance in previous years will engage instructors in conversations about ways to improve 
teaching and learning.  
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In this work we examined the impact of a 10 weeks long experience of one-on-one work with 
children from disadvantaged communities at a learning center on a cohort of thirty middle 
school mathematics teacher candidates’ views about children’s learning and teaching matters.  
Data collected through reflective journals indicated that personal and sustained experience of 
working with children allowed the teacher candidates to shift their focus from identifying what 
they perceived to be children’s academic and social “deficiencies” to importance of making 
mathematics meaningful to children. The teachers however, continued to overestimate their 
ability to influence children’s academic and social growth. 

 
Introduction 

The importance of designing educational experiences that prepare teachers to work 
productively with children from economically disadvantaged communities has been voiced and 
recognized by teacher educators in various areas for quite some time (Mason, 1997).  In 
mathematics education, the NCTM’s call for making mathematics accessible to all children, 
including those in poor communities, has generated concerns about how teacher candidates 
might be assisted to develop necessary skills and dispositions to so.  There is certainly legitimate 
ground for such concern since research findings continue to suggest that teachers maintain 
negative attitudes towards low income, culturally under-represented student groups, assuming 
them incapable of academic success (Garcia, 2004).  Though not widely explored in mathematics 
education, research on teacher candidates’ beliefs confirm that they have lower expectations for 
economically disadvantaged students’ academic performance and undermine the role of ability in 
explaining their academic success when they occur (Tiezzi & Corss, 1997). Challenging such 
views is a must if the goal of empowering all children to achieve mathematics is to be 
accomplished. 

The overarching goal of the study we report here was to investigate the impact of a 10 weeks 
long field experience which required teacher candidates to work, in an after-school program, 
with individual and small groups of children from urban schools on teachers’ conceptions about 
the academic needs and intellectual capacity of children from disadvantaged economical 
backgrounds. Of particular interest to us was documenting what teacher candidates viewed as 
important for children to know, ways in which they examined children’s mathematical thinking 
skills, as well as orientations they adopted in their interactions with children.  More specifically, 
we aimed to document and analyze how the experience of sustained one-on-one work with 
children from poor communities impacted their conceptualization of the children’s needs and 
their mathematical knowledge. 

 
Literature Review and Conceptual Framework 

In recent years one of the foci of attention of research in mathematics education has been on 
understanding the nature of professional knowledge base and beliefs of future teachers.  As some 
researchers have studied the substance of knowledge of mathematics teacher candidates as it 
relates to specific pieces of content, others have explored their beliefs and perceptions of 
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teaching and the subject matter (Phillip, 2008).  The body of research suggests that teacher 
candidates enter teacher education programs with well-established teacher role identities (Bush, 
1986) and strong convictions about teaching and intentions on how to teach (Phillip, 2008).  
Their beliefs about effective teaching and learning can be strongly held and appear to be resistant 
to change (Pajares, 1992).  These beliefs strongly influence the extent of teacher candidates’ 
willingness and ability to learn while in teacher education programs. In studying the source of 
teacher candidates’ beliefs about mathematics teaching and learning, researchers have noted that 
those beliefs, for the most part, are formed in contexts dating back to teachers' own schooling 
years (Phillips, 2008).  Families and social communities provide additional contexts in which 
teachers form their beliefs and perceptions about not only teaching but also about the impact of 
race, culture and socio-economic status on academic success and ability (Ladson-Billings, 1997).  
Bush (1986) labeled the combined impact of these forces as “enculturation.” Several researchers 
have documented that pre-service teachers about to begin student teaching expected teaching 
tasks to be less problematic for themselves than for others (Weinstein, 1988).  These scholars 
have suggested that pre-service teachers may have an unrealistic optimism about their future 
teaching performance, and that this optimism may be associated with a lack of motivation to 
become seriously engaged in critical examination of their own knowledge base for and beliefs 
about teaching. Assuming beliefs to be context-bound raises concerns about preparing teachers 
to teach in contexts drastically different from their own culture, race, ethnic background and 
social class background (Tiezzi & Cross 1997, p.113-114).  Teaching force in the US consists 
primarily of white, middle class females whose goal is to pursue teaching appointments in 
settings similar to where they were raised (Gutierrez, 1999).  Combined with knowledge that 
teachers’ stereotypes about children are sufficient to impact student performance (Oaks, 1990) 
and that many teachers have negative attitudes about individuals from cultures different from 
their own (Irvine & York, 1993 cited in Gutierrez) heightens the need to design experiences that 
raise teacher candidates’ awareness of the intellectual strengths and capabilities of children from 
poor communities and to challenge their perceptions about what this student population is 
capable to accomplish. In mathematics education this need is paramount since national and 
international data on student achievement in mathematics continue to indicate that children from 
low socio-economic backgrounds perform at significantly lower levels compared to their white, 
middle class peers (NCTM, 2008). While it is naïve to ignore the non-instructional factors that 
both implicitly and explicitly impact student performance, the significant role of the teachers on 
advancing student learning even in the presence of non-instructional elements cannot be 
contested (Ladson-Billings, 1997) and one which is of concern in teacher preparation. Our study 
aimed to explore potential for creating change in teacher thinking about mathematical ability of 
children from disadvantaged communities. We conjectured that an intensely supervised 
experience in which teachers worked with individual and small groups of children would allow 
them to focus on instructional factors that could assist in advancing children’s mathematical 
thinking. 

Our design of the experience was informed by three perspectives guiding current thinking on 
teacher preparation. These include: The use of concrete contexts for learning about the 
profession (Brown et al, 1989), the value of sustained reflective practice on development of 
professional knowledge (Schon, 1987), focus on children’s cognition as a means to advance 
teacher thinking (Fuson et al, 1999). 

The notion of "contextual learning" accompanied with reflection proposes that teachers' 
engagement in intentional efforts to think about their experiences potentially create cognitive 



Vol. 5  1164 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

change in both their beliefs and practices (Schon, 1987; Tobin, 1990). Additionally, as 
Thompson and Thompson (1996) proposed we espouse the teachers gain knowledge about 
teaching and mathematics through sustained and reflective work with students and mathematical 
ideas, analyzing students' work, their own teaching, and reflecting on what they intended as well 
as what they achieved. 

   
Setting 

The goal of our research was to collect data on mathematics teacher candidates’ perceptions 
about teaching children from poor communities as they worked with individual and small groups 
of children in an after-school program for a period of 10 weeks.  During this experience teacher 
candidates worked with approximately 40 children ranging in age from 6 to 16 years.   All 
children were of African American heritage and from low socioeconomic background. The after-
school program was housed in the learning center on the university campus and provided free 
tutorial and assistance to community members.  The children were transported directly from their 
schools to the learning center.  Each child was assisted approximately three hours a week on two 
different days (1.5 hours each day).  Each child worked with the same teacher candidate for the 
entire 10 weeks. Hence, the number of hours of contact with each child by each teacher 
candidate was approximately 30 hours.  With the exception of three, each teacher candidate was 
assigned two specific children, based on schedule and grade level.   
Participants  

The participants were 30 teacher candidates pursuing an undergraduate degree in middle 
level mathematics teaching. Nine of the participants were male and 21 were females. All 
participants were Caucasian and had completed at least one field experience in the previous 
quarters. They had also completed a minimum of 25 credit hours of mathematics coursework. 
Lastly, they all had completed 12 credit hours of coursework in general education. One of the 
education courses completed by students focused on global multicultural issues.    

 At the time of data collection, the participants were enrolled in a course titled, “Field 
Experiences in Mathematics Teaching.”  Traditionally, this course required the teacher 
candidates to observe teachers of their own choice once a week for 8 weeks.  An examination of 
past data indicated that a majority of the teacher candidates enrolled in the course had opted to 
complete the required field experience in their own hometown, frequently observing a former 
teacher of their own.  The quarter during which the study took place was the first attempt at 
modifying the field experience requirement so to assure teacher candidates gained a different 
learning experience, moving away from their own comfort zone, focusing their attention on 
children’s cognition.    

In addition to the 3 hours of work at the learning center, the participants attended course 
sessions on campus. During these sessions, the instructor of the course granted teachers the time 
to talk about their experiences, ask questions about teaching techniques or resources they could 
use with children, and discuss course readings which linked closely to teaching specific content 
pieces at different grade levels. The articles were selected from professional journals published 
by the National Council of Teachers of Mathematics.  Additionally, during the campus sessions 
the course instructor used samples of children’s work on specific problems the teacher 
candidates had used in the after school program to comment on the mathematical ideas that 
children seemed to be grasping, problem solving strategies they had used and reasons that could 
have contributed to their choice of representations and/or solutions to tasks.  These discussions 
were framed to capitalize on approaches that could help or hinder children’s progress.  
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Data Collection and Analysis 
The teachers’ weekly reflective journals served as primarily data sources for the study. While 

these journals were augmented with field notes on on-campus course session discussions, and 
observational data completed on site (learning center), in discussing the impact of the experience 
we are relaying solely on the written documents submitted by teacher candidates. Data was 
collected with the intent to trace a trajectory of the impact of the experience on participants’ to 
cognitive needs of children and ways in which their socio-economic background influenced these 
views.  Since no previous reports on such an experience in mathematics teacher preparation were 
published our research was of exploratory nature.  Indeed, in coding the data the following 
categories guided our analysis:  (a) experiences influential in candidates’ thinking when 
assessing children’s work and ability; (b) challenges and tensions that the candidates were 
experiencing in their work with children; and (c) frames that teacher candidates used when 
analyzing and interpreting children’s work. 

 
Results 

Throughout the 10 weeks long field experience each of the teacher candidates submitted 8 
reflective journals on their work at the center (n=240), 3 progress reports on each of the children 
with whom they worked and one final report on their experience working with children and what 
they extracted about teaching and learning through their work.  In their reflective journals 
teacher candidates documented their impressions of the children’s needs, procedures they had 
used in detecting these needs, issues they struggled with in their work with children, as well as 
areas in which they felt children and they themselves were making progress. Additionally, they 
were asked to comment on teaching approaches and problem types they were using and whether 
they found children responsive to these tasks.  Children’s progress reports had a specific 
structure.  In each report the teacher candidates identified specific mathematical areas they had 
worked with children each week, level of progress in those areas as well as plans for their 
subsequent work in the follow up sessions. Lastly, the final report was structured so to provide 
the teacher candidates with an opportunity to assess not only the experience of working with 
children but also their overall assessment of their own growth and development as teachers.  In 
analyzing the data, we divided the reflective journals into two groups reflecting teachers’ ideas 
during the first three weeks of experience (Phase I) and the last three weeks of experience (phase 
II).  Constructing such a phase analysis was essential to study the impact of two particular 
interventions: (1) Modeled teaching by the field experience supervisor, (2) implementation of 
specific problem solving tasks to be used as a means to assess children’s mathematical thinking. 
Assessment of Learners and Teaching 

Tables I and II summarize a typology of teacher candidates’ comments as well as the 
frequency of each comment type that they made about teaching and children as reflected in their 
first three journals (Phase I) and last three reflective journals (Phase II).  During the first phase, 
despite the instance of the course instructor that the candidates must rely on multiple sources to 
determine learners’ facility with different mathematical concepts they relied primarily on on-line 
diagnostic tests which measured (in a narrow way) children’s mastery of basic skills.  These 
instruments failed to capture the abilities of children in a meaningful way and in problem solving 
contexts.  Hence, the candidates’ perception of children’s needs was shaped by these results.  In 
places where children offered correct solutions to questions using non-traditional strategies the 
merit of these approaches were dismissed.  The children’s authentic approaches were labeled as 
“inefficient” or “inadequate” to help them launch answers on tests “quickly.”  This assessment 
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was universal among the candidates even in places where children were enrolled in advanced or 
honors courses (middle level and high school children). 

 In addressing these perceived procedural gaps, the candidates eagerly relied on using various 
games and puzzles to engage children in learning however, they failed to connect the content of 
these games and puzzles to mathematical competencies they had hoped to address.   Therefore, 
due to the disconnect between what they were asked to do during their time with candidates, 
children became less and less engaged in tasks, less responsive to teacher candidates’ 
expectations and “demands,” and at time refused to do what they were assigned.  These results 
directly confronted teacher candidates’ initial optimism towards their ability to teach.  However, 
rather than a retrospective analysis of children’s behaviors, they “blamed” their home cultures 
and backgrounds to their lack of interest. Reflective journals submitted during this phase were 
indicative of the candidates’ resistance to examine their own actions.  Rather than exploring the 
impact of instructional choices they had made on children’s behaviors they assumed children’s 
own lack of motivation to learn as primary issue they struggled with.  Indeed, on several 
occasions when teacher candidates felt they had made progress with a child at the end of a 
session (the child had successfully imitated the process the teacher had modeled through the use 
of several examples) they were disappointed that during the subsequent session the child had 
exhibited difficulty performing the procedures again.  In explaining this phenomenon the teacher 
candidates referenced lack of support and/or reinforcement at as the primary reason for 
children’s “failure.”  The following statements are typical of the type of comments teacher 
candidates made in the reflective journals during this phase.   

When she left last week I knew she understood borrowing, she showed me she could 
subtract two digit numbers from three digit numbers. She came and we were back on the 
same step as we were last week. I think that had she practiced more at home this would 
not have happened. I think as teachers we need to be able to rely on families to get kids to 
their work. I know these kids are not getting that at home. (S1) 
I feel so sad for these kids, they come here and we help them but then they go home and I 
am guessing there is no one there to help them. (S2) 

These results, while disheartening, were not unexpected. Previous studies had documented 
similar findings during the initial exposure to children of similar backgrounds among teacher 
candidates (Haberman, 1996).  

Table 1. Teacher candidates’ comments about children (Numbers reflect the total number of times statements had 
occurred on the first three journal entries.  Numbers larger than 90 indicate that in the same journal a remake may 
have been repeated more than once by the teacher candidate) 
Comments about Children 
 It is sad 

what these 
kids can’t 
do 

Not sure if 
they get 
support at 
home 

It is sad 
how little 
they know 

They are 
capable but 
problems 
are boring 

They are 
not getting 
the support 
they need at 
home 

They don’t 
want to do 
their 
homework, 
they probably 
are not 
getting 
reinforcement 
at home  

They don’t 
sit still long 
enough to 
do the 
worksheets  

Phase I 
(First four 
journals) 

 
120 

 
56 

 
84 

 
12 

 
75 

 
65 

 
62 
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Phase II 
(Last for 
journals) 

34 42 32 48 29 28 10 

During the first phase the candidates primarily commented on what learners were unable to 
do, referencing them as “these children,” using a passive voice in identifying the impact that 
their own actions or choices could have had on children’s learning. A prominent portion of the 
reflective journals concerned their perceived notions of children’s home life, assuming their 
families to be less supportive of academic pursuit.  Indeed, in nearly 28 of the 30 cases children’s 
lack of mastery of basic skills was attributed to lack of support at home and their families low 
expectations for success.  These assumptions were not supported with data and mirrored the 
teachers’ pre-conceived notions of what children experienced at home and value attached to 
education by their guardians and parents.  Additionally, the candidates were unable to understand 
the children’s lack of interest in completing drill and practice exercises that were either assigned 
at school or asked to do at the center by them.  Almost each of the teacher candidates made 
comments reflecting greater concerns for children’s social behaviors and habits of children than 
their mathematical thinking.  They seemed unwilling or unable to go beyond what they perceived 
as “inappropriate behavior” (walking, not sitting down while working on problems, or not 
completing work as they were told by the teacher candidates) and to analyze differences due to 
cultural practices (Ladson-Billings, 1997).   

Table 2.  Teacher candidates’ comments about teaching and their expectations ((Numbers reflect the total number of 
times statements had occurred on the first three journal entries.  Numbers larger than 90 indicate that in the same 
journal a remake may have been repeated more than once by the teacher candidate) 
Comments about Teaching and expectations for children 
 My job is 

to make 
sure they 
feel good 
while they 
are with 
me 

I don’t 
want to 
push them 
too much 

Teaching 
these kids 
is hard 

Teaching 
is harder 
than I 
thought 

I need to 
learn more 
about how to 
teach 
(CONCEPT) 

If I could 
find a way 
to connect 
their 
estimation 
skills to 
algorithms 

I am 
surprised 
at their 
problem 
solving 
skills 

Phase I 
(First four 
journals) 

 
76 

 
65 

 
45 

 
3 

 
7 

 
0 

 
12 

Phase II 
(Last for 
journals) 

 
23 

 
12 

 
12 

 
44 

 
46 

 
43 

 
47 

 
From “These” Children to “My” Children 

During the second phase however, frequency of comments that indicated some awareness of 
the need to learn alternate ways to effectively work with children increased significantly.  
Having developed a personal knowledge of each child due to extended weekly interactions with 
them, allowed for the development a personal bond that motivated greater investment in 
children’s success on their part. This personal bond appeared to have also made them conscious 
of the impact of their own choices on what children did or gained from their time at the center.  
Although the teacher candidates continued to make unsupported claims about what they 
perceived to be the conditions of children’ home lives, the frequency of their comments 
decreased significantly.  Additionally, while they seemed to overestimate their own influence on 
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children.  This is consistent with the findings of Tiezzi and Cross (1997) as they reported that in 
their reflections over the experience of observing teaching in an Urban setting the teacher 
candidates offered idealized notion of teaching children in such settings, believing they could 
“help.”   Unlike their findings though, it seemed that the desire to be helpful (on an affective 
way) facilitated the development a disposition to focus on children’s thinking and cognition as a 
means to achieve this goal.  The following comments were typical of statements teacher 
candidates made in their journals during this phase. 

I know my kids are doing better, I know they can do just as well as others.  I feel I have 
made a lot of progress with them.  They are happier when they are with me here and I 
know I am more at east working with them. (S1) 

Indeed, an examination of progress reports written for children also indicated a shift in 
quality of teacher candidates’ assessment of children’s work over time. Whereas in the first 3 
progress reports a majority of teachers’ comments concerned what children were unable to do; 
highlighting their lack of proficiency in some basic procedural domains; the last two reports 
manifested a deeper appreciation for children’s problem solving skills and their resourcefulness 
in solving problems in authentic ways on their parts.  
An Analysis of Major Influences 

While the depth of analysis of teacher candidates remained relatively native, the shifts in 
their foci are particularly important and promising.  These shifts were due to two major 
interventions implemented starting the fourth week of experience: (1) on site modeling by the 
supervisor, (2) assignment of specific problem solving tasks on which teacher candidates were 
asked to implement at the center. 

The field experience supervisor attended the learning center three times a week for 
approximately 3 hours each for 5 weeks. During the time at the center, she held small group 
problem solving sessions with children while teacher candidates observed her interact with kids 
and her teaching. In organizing the sessions, she deliberately chose to work with those children 
whose tutors had diagnosed as having learning problems due to their lack of responsiveness 
during the sessions.   During these sessions the supervisor presented both the children and the 
teacher candidates with the same mathematical problem as they sat at the same table using 
identical resources and concrete materials.   As children worked on the task, the supervisor asked 
them to explain their thinking and repeatedly inquired whether the teacher candidates understood 
what concepts they were using.   On several occasions, teacher candidates were puzzled by the 
fact that the children could solve problems in ways that they themselves were unable to grasp.  
Indeed to assure continuity in challenging the teacher candidates’ views about children’s ability, 
the supervisor assigned specific problems to be administered to children. Many of these tasks 
involved algebraic reasoning, guessing and estimation skills.  Classroom discussions then 
focused on analysis of methods children had used and ways in which these methods could be 
connected to different topics in school curriculum.  

 
Epilogue 

Teacher education programs have traditionally utilized an urban field experience prior to 
student teaching in teacher preparation Mason (1997) assuming that such an enculturation allows 
for development of positive professional insight and heighted awareness about children in urban 
schools. Results of research on the impact of this approach on teacher candidates’ beliefs 
however have been inconclusive.  In fact, several scholars have questioned the effectiveness of 
such experiences suggesting that these exposures can reinforce, rather than challenge, negative 
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attitudes towards students from low Socio-economic backgrounds (Haberman, 1996).  After an 
extensive review of literature, Mason (1997) concluded that the overall research fails to provide 
evidence supporting the value of field experiences on teacher candidates’ conceptions about 
teaching and learning in poor communities of the abilities of children in achieving success in 
such settings (p. 120).  He punctuated the need for identifying elements of supervised 
experiences that are necessary to provide positive learning opportunities for teacher candidates.   

In the current study, rather than placing teacher candidates in urban schools as observers of 
teaching, we organized a quarter long supervised tutorial experience during which they worked 
one on one with children from disadvantaged communities. Our goal was to determine whether 
such an experience would assist the future teachers in learning about the potential of children for 
learning and their capacity for problem solving.   This experience, supported with extensive 
supervision and teacher modeling proved to be a useful vehicle for engaging teacher candidates 
in learning to focus attention to children’s strengths as opposed to their shortcomings in 
procedural domains. Such a content focused supervision impacted teachers candidates’ professes 
assessment of their own professional needs as reflected in their journals.  

While it would be naïve to make claims to long term impact of this experience on teacher 
candidates’ beliefs and views about teaching and learning in poor communities, results of our 
exploratory research provide some evidence that such an experience can be valuable when 
carefully supervised by a content specific specialist who can help them make sense of 
mathematical merit of children work and introduce them to techniques and tasks they could 
immediately test and verify.   This approach is consistent with current recommendations for 
using children’s cognition as a springboard for advancing teacher development.  Providing 
teachers opportunities to establish personal relationships with children of different culture and 
socio-economic background might serve as a good starting place for advancing their professional 
growth. 
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This paper presents a description of the ways that elementary teachers’ mathematical content 
knowledge and locus of authority are related to their instructional practices and their reflections 
on their teaching. The cases of four teachers are used to illustrate the four possible combinations 
of content knowledge (high/low) and authority (internal/external). Although four cases are 
presented as exemplars, teachers’ practices were not consistent across time and setting, and the 
changes were not necessarily reflective of “growth” toward more reform-oriented teaching. 
Data were drawn from a 5-year study in which two cohorts of elementary school teachers were 
followed from their junior year in college through their first two years of teaching. 

 
Background 

In my previous research, I identified connections between the locus of authority (internal or 
external) from the viewpoint of preservice teachers and their propensity to think reflectively 
about pedagogical dilemmas (Mewborn, 1999). I proposed that when preservice teachers see 
themselves as having the authority to raise and solve pedagogical dilemmas, they are more likely 
to think reflectively. In contrast, when preservice teaches see authority as external to them 
(residing in a teacher educator, an experienced classroom teacher, or in a textbook), they are 
inclined not to think reflectively about pedagogical dilemmas. In the study reported here, I have 
extended this connection to include the way that authority and mathematical content knowledge 
are interconnected in shaping teaching practice and reflection on that practice. In particular, I 
describe four possible interactions between authority (internal/external) and mathematical 
content knowledge (high/low) and associate each with a particular approach to teaching 
mathematics and reflecting on that teaching. 

 
Theoretical Perspective 

This project is situated within the interpretive paradigm for teacher socialization (Zeichner & 
Gore, 1990). This interpretive approach involves an attempt to understand the nature of a social 
setting at the level of subjective experience. The purpose of this approach is to gain an 
understanding of the situation from the perspective of the participants and within their levels of 
consciousness and subjectivity. The goal is to “capture and share the understanding that 
participants in an educational encounter have of what they are teaching and learning” (Kilpatrick, 
1988, p. 98). Eisenhart (1988) noted that the purpose of the research questions posed by 
researchers using the interpretive paradigm is to first describe what is “going on” and second to 
uncover the “intersubjective meanings” (p. 103) that undergird what is going on in order to make 
them reasonable.  
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Methods 
The data reported in this manuscript were collected as part of a 5-year research project 

entitled Learning to Teach Elementary Mathematics8 in which two cohorts of preservice teachers 
were studied for two years of their preservice program and their first two years of teaching. The 
overall goal of the project was to develop conceptual frameworks for understanding teaching and 
learning in elementary mathematics teacher education by studying how novice teachers craft 
their teaching practices across time as a result of their personal theories, teaching experiences, 
and teacher-education programs.  

The participants for the project were selected from two cohort groups who began the four-
semester teacher education program in the fall of 2000 (Group A) and 2001 (Group B) and 
remained together as a cohort for the four semesters. Some data were collected on all students 
from each cohort, but the majority of data collection focused on two target subsets—6 students 
from Group A and 9 students from Group B. The target students were selected by purposeful 
sampling (Bogdan & Biklen, 1992) to represent a range of personal theories about mathematics. 
And to the extent possible, the target students were reflective of the diversity of students enrolled 
in each cohort. The 15 target students consisted of 13 White women, 1 White man, and 1 African 
American man. Although the racial and gender composition of the targeted students was fairly 
homogeneous, there was considerable diversity in their experiences with mathematics and their 
personal theories about the teaching and learning of mathematics.  

The data set includes a mathematics beliefs survey (Ambrose, Phillip, Chauvot, & Clement, 
2003), a content knowledge assessment (Hill & Ball, 2004), and all written work produced by the 
students during their two mathematics methods courses. In addition, the target students were 
observed four times teaching a mathematics lesson and individually interviewed on four 
occasions during their preservice years. The observations occurred during field experiences in 
the second and third semesters of the program (one observation each) and during their student 
teaching experience (two observations). The four interviews were semi-structured and took place 
at the end of every semester of the teacher education program. The first interview was conducted 
near the end of the first mathematics methods course and focused on eliciting autobiographical 
data from the participants regarding their views of mathematics and their prior experiences as a 
mathematics learner. They were also asked to reflect on their experiences working one-on-one 
with a student in mathematics during the methods class. The second and third interviews 
occurred at the end of the second and third semesters of the teacher education program and asked 
participants to reflect on their practicum field experiences and how these experiences differed (or 
not) from their one-on-one teaching experience and from what they had learned in their 
mathematics methods course. The fourth interview, conducted at the conclusion of student 
teaching, focused on their reflections about their various teaching experiences during their 
teacher education program and the changes (if any) in their conceptions about mathematics and 
mathematics teaching and learning from the beginning to the end of their teacher education 
program. Most of the target students (those teaching within reasonable driving distance) were 
observed teaching mathematics monthly and interviewed twice per year during their first 2 years 
of teaching.  
                                                 
8 This study was funded by the Spencer Foundation under grant number 200000266. I am 
grateful to Patricia Johnson, David W. Stinson, and Lu Pien Cheng for their contributions to data 
collection and analysis throughout the project. 
 



Vol. 5  1173 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

All data were transcribed and organized for coding purposes, and the research team defined 
an initial set of 25 codes. Line-by-line coding of data took place chronologically for all 15 target 
participants with different researchers coding data for different participants and then writing 
summaries, called “data stories.” These chronological and parallel data stories facilitated 
comparison and contrast among the participants. Finally, the data stories and original data were 
recoded across participants.  
 

Results 
Figure 1 depicts the hypothesized relationship between content knowledge and view of 

authority and the resulting nature of both lessons and post-lesson reflections. Following Figure 1 
I describe a teacher who typifies each cell and give an example of a lesson she taught that depicts 
the type of teaching and reflecting that is suggested by the category. 

 
  Content Knowledge 
  High   Low 

A
ut

ho
rit

y 

In
te

rn
al

 

Lessons are student-centered, 
mathematically rich, developmentally 
appropriate, and teacher is reflective 
about self, students, and content after 
the lesson.  
 

Lessons focus on fun activities with some 
mathematical substance, but they sometimes 
fail due to the preservice teachers’ lack of 
mathematical foresight or inability to “think 
on the fly.” Teacher is reflective after the 
lesson, but reflections center mostly on self 
and teaching actions. 

Ex
te

rn
al

 

Lessons consist of attempts to provide 
clear and concise procedural 
explanations. Preservice teachers 
assume that this is how children learn 
mathematics best and that improving 
their teaching is merely a matter of 
giving better/clearer explanations. 
Little reflection after the lesson. 

Preservice teachers try to provide lessons 
that make math fun and easy in order to 
spare students the agony of learning. The 
content of the lesson is often unclear and 
sometimes mathematically inaccurate or 
unimportant. There is little reflection on the 
lesson beyond whether or not the students 
enjoyed it. 

Figure 1. Relationship between content knowledge, authority, teaching practice, and reflection. 
 
Jayne 

Jayne provides an example of a teacher with high mathematics content knowledge and an 
internal locus of authority. She described herself as favoring language arts and mathematics, with 
a particular affinity for algebra. She also described herself academically as “creative,” “original,” 
“independent,” “wanting to stand out from the crowd,” and “not afraid to ask for help.” Her 
scores on the Learning to Teach Mathematics instrument placed her in the top 10% of all 
students participating in the study. Jayne had an internal locus of authority and wanted to help 
her students develop a similar sense of independence. Even as a preservice teacher, her view of 
textbooks provided a good example of her internal locus of authority: “I feel that [the textbook] 
gives a lot of good suggestions and activities for teachers to pick and choose from. Some 
activities just need a little adjusting.” When asked how she planned her lessons, she noted, “I 
went through them [the curriculum materials] and saw what I thought. I went through and picked 
what I like and what I didn't like and some stuff I thought was a good idea and just kind of 
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modified it to what I thought my classes need.” As a classroom teacher Jayne challenged her 
principal’s decision to ability-group students across classes for a portion of mathematics 
instruction every day to help students with weak procedural knowledge prepare for criterion-
referenced testing. Jayne participated as required but continued to state her case, and, after test 
results came back and Jayne’s students had the highest scores in the building, her principal 
relented and allowed her to manage mathematics instruction for her students for the full period. 

A lesson that typifies Jayne’s teaching style and that of teachers fitting in the first cell of 
Figure 1 involved introducing first-graders to addition sentences. Jayne made the lesson 
engaging by using a song about frogs sitting on a log being joined by others. She allowed the 
students to pick numbers and to act out the problems, and then she introduced the corresponding 
notation. At one point a student proposed to act out a story that corresponded to 10 – 0. Jayne 
asked him to state his story as a number sentence, which he did correctly, and then asked him if 
it was an addition sentence. The child acknowledged that it was not. Jayne then asked him to 
recast his story so that it would correspond to an addition sentence, which the child did 
successfully. Throughout the lesson, Jayne asked questions such as “What are we going to do 
with the numbers?” “How does the addition work?” “What can you tell me about adding two 
numbers?” “What is the number sentence? Why?” “Does it make sense?” 

In a post-observation conference following this lesson, Jayne was able to reflect on her 
teaching, students’ learning, and the content of the lesson. She articulated the purpose of her 
lesson this way: 

I wanted to see if the students could understand the concept of numbers sentences in a 
context, almost like a story problem. Because I have notice that my kids have problem with story 
problems, you know, trying to deicide if they need to add or subtract—knowing what to do with 
the story—where to start. I wanted them to have some basic comprehension of mathematical 
sentences and understand to go back and check their work, and to determine if their number 
sentence made sense—all the basics. 

She also reflected on the seatwork portion of the lesson, noting that the individualized nature 
of the task allowed children to self-differentiate by selecting numbers with which they were 
comfortable. She also noted that she challenged particular children by asking them to choose 
larger numbers. 
Cynthia 

Cynthia also possessed strong content knowledge in mathematics (and in other subjects, 
graduating from college with perfect 4.0 grade point average). Cynthia considered herself to be 
“fairly good” at mathematics and attributed her success to teachers’ clear explanations rather 
than her ability. She was often one of the first people to catch on to new material in her high 
school math classes and her college math class for elementary teachers, and her peers often came 
to her for help. If she did not understand something right away, she made a point of going to the 
teacher for help immediately.  

However, Cynthia was a “teacher pleaser” who had an external locus of authority both as a 
student and as a teacher. As a college student, Cynthia would often read ahead in the syllabus 
and ask detailed questions about expectations for future assignments. She frequently turned in 
drafts of assignments early and asked if she had done it “right.” During interviews for this 
research study, Cynthia would ask, “Am I telling you what you want to know?” “Am I giving 
you what you need?” Cynthia’s lessons, both as a preservice and inservice teacher, were 
characterized by following the textbook and presenting clear, logical, well-organized 
explanations to students. Students did engage in activities, including hands-on activities, but 
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these were always tightly structured and almost always procedural in nature. Cynthia’s 
interactions with students were generally quite directive. As a preservice teacher, Cynthia offered 
the following response to a written case: “To break this habit of writing the problems incorrectly, 
I would show them many times how to write the problem and have them do many practice 
problems themselves because practice makes perfect!” In providing suggestions for a peer who 
was having difficulty teaching a child the standard addition algorithm, Cynthia wrote, “First, the 
child needs to learn to start every addition problem in the right-hand column, or she will never 
remember to add the one. Model for her the correct way to do two-digit addition problems while 
you are teaching her how to actually do them.” These suggestions typified her teaching during 
her field experiences and her first two years of teaching. 

During one observation Cynthia was circulating around the classroom as students worked 
independently. One student was confused, and she looked at his paper and said, "Write 3. Just 
write the number 3." Two more students had questions, and Cynthia told them what to write on 
the worksheet. Similarly, in a lesson on graphing in a second grade classroom, Cynthia was 
working with a small group of children who had just finished collecting data from their peers. 
She asked the group what color most people chose as their favorite. One student noted that he 
had a tie–the same number of people selected two colors as their favorite. Rather than asking the 
student what he meant by a “tie” or engaging the children in a discussion about what they should 
put on the worksheet if two colors were tied, she simply told the student to write the names of 
both colors in the blank. Later in the lesson, the worksheet contained the question, “How many 
people liked horses or dogs the best?” The children were not sure how to interpret the “or” part 
of the question. Cynthia quickly told them to count how many people picked dogs and how many 
people picked horses and write the total in the blank.  

Cynthia’s reflections on her lessons were generally confined to assessments of student 
behavior and her organization in preparing for and implementing the lesson. For example, after 
one lesson she noted that students were engaged because “I made my word problems contain 
aspects of the Halloween season, such as trick-or-treating, candy, and toys, because those things 
were what [they were] interested in at the time.” 
Shelly 

Shelly provides an example of a teacher with low content knowledge and an internal locus of 
authority. Shelly struggled with mathematics, taking the Praxis I basic skills test several times 
before passing the mathematics portion. She admitted to feeling a great deal of anxiety and to 
having a lack of self-confidence regarding mathematics teaching and learning.  

Shelly demonstrated that she had an internal locus of authority by making modifications to 
textbook lessons even as a preservice teacher. During a field experience where she was in a 
school that had adopted the Saxon curriculum, she felt comfortable going outside the scripted 
lesson to add her own touches. In particular, she often incorporated children’s literature and 
hands-on activities in her lessons. She also demonstrated her internal locus of authority in her 
reflections on her teaching. At the conclusion of an 8-week one-on-one teaching experience she 
noted, “I have made some improvement through trail and error….I stopped worrying so much 
about planning things that were on her grade level but rather planning things based on her 
success during a lesson.” 

Although Shelly planned lessons that engaged students, her lack of mathematical knowledge 
often caused her lessons to collapse. She frequently started lessons with children’s literature 
books that were only tangentially related to the topic at hand. For example, one day during her 
second year of teaching she had planned a lesson on graphing in late October. The lesson 
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involved children making glyphs based on their favorite things about Halloween. Shelly began 
the lesson by reading a book about Halloween, but it had no connection to the mathematics of the 
lesson, so 15 minutes of the lesson were spent discussing ghosts, witches, and other Halloween 
creatures.  

A more illustrative example of how Shelly’s weak mathematical knowledge interfered with 
her lesson planning came from a lesson on even and odd numbers that she taught in her first-
grade classroom during her second year of teaching. After an introduction, Shelly handed each 
child a piece of paper and told them to write their first name on it. She then placed a pile of cubes 
at each table and told the children to count out enough cubes to equal the number of letters in 
their first name and snap them together. Shelly then told the children to “see if you can divide 
your cubes into 2 groups evenly.” She chose a student’s cube train and said “This is what I’d 
do.” She modeled snapping off one cube at a time and alternating placing them in one pile or 
another. She then asked if the result was fair, if the piles were the same (her informal definition 
of “even”). After giving the children time to work independently, she called the class back 
together and asked one child at a time to say how many letters were in their name, to show their 
cubes and tell whether they could put them into 2 equal groups, to declare whether their name 
(not the number of letters in their name) was odd or even, and to come to the front of the room to 
attach their name to a poster under “odd” or “even.” She had one child snap his cubes off one at 
a time and place them in her hands, alternating between left and right. Then she had him count 6 
in one hand and 5 in the other and asked him whether it was fair or even. The child said “yes,” 
so, she ended up telling him it was odd when he said the amounts were not equal. After the 
lesson I examined a child’s textbook and discovered that the book taught odd/even by having 
children use cubes to represent a quantity and then snap the cubes off in 2s (pairs) rather than 
putting them in two groups (measurement division rather than partitive). When I asked Shelly if 
she had already taught even and odd numbers this way she seemed completely unaware of this 
approach and said that she would try it because it might be easier. This is an illustration of Shelly 
feeling comfortable to go beyond the textbook to design her own lesson but not having the 
mathematical foresight to realize that she was creating problems with students’ understanding by 
introducing a method that was contrary to the method the students had to use to do their 
homework. In our post-observation conference Shelly indicated that she planned to delay the test 
on this chapter because she did not think the students had a firm grasp on even and odd numbers. 
Tracey 

Tracey was not confident in her mathematical ability, claiming that “math has always been 
my least favorite subject throughout school, and I’ve always called it my worst subject.” She said 
she was not good at quick computations and memorizing algorithms, and this had worked to her 
disadvantage in school. She hoped not to have to take any math in college but said she enjoyed 
her math for elementary teachers course “once I figured out what I was supposed to be doing.” 

I claim that Tracey had an external locus of authority for herself as a future teacher and that 
she saw herself as that external authority for her students. As a preservice teacher she noted that 
time would be a constraining factor in the classroom and that it would not be possible to hear 
ideas from many children. She stated that moving through the curriculum at a predetermined 
pace and adhering to school system requirements was a higher priority than listening to children. 
She also noted that sometimes what a child says is “off the wall and would only confuse mattes 
more or lead the topic off on a tangent.” 

In Tracey’s first field experience, I saw evidence that she viewed herself as an authority for 
her students. Her lesson was very directive, and she was spoon-feeding the children to enhance 
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their short-term success. In helping second-graders complete a two-digit subtraction problem, 
she asked questions such as, “Where do I start?” “What problem do I do first?” “What is 8 minus 
5?” “Where do I put it?” “Am I done with this part?” “Where do I go next?” Her lesson was a 
string of such bite-sized questions with no “why” questions at all. For much of the lesson she 
was helping students create a bar graph about circus animals in order to answer word problems. 
She directed students to “put your finger on the yellow box. Find the line that says ‘elephants.’ 
Point to the number of elephants. Who can tell me how many elephants there are?” Then she told 
a student to come to the board and put the prescribed number of elements on the graph she had 
created. 

Tracey’s overriding concern as a teacher seemed to be to “protect” children from the pain of 
doing mathematics by either breaking it down into tiny steps and asking structured question that 
they could answer without much thought or by doing “fun” activities with them. An example of a 
fun activity occurred during a lesson when she was teaching kindergarten. The goal of the lesson 
was for children to tell time to the hour. She began the lesson by reading a children’s literature 
book (The Grouchy Ladybug by Eric Carle) and then had the children make their own clocks in 
the shape of ladybugs using paper plates, construction paper, brads, and pipe cleaners. The bulk 
of the one-hour lesson was spent on the craft activity of the children constructing the ladybugs. 
After they had spent 40 or more minutes on their creations, Tracey directed the children to fill in 
the numbers on the clock face. She did not anticipate that this would be difficult for 
kindergarteners (cognitively and in terms of fine motor skills), but most of the students ended up 
with inaccurate representations of clock faces (starting with 1 where the 12 should be, numbers 
unevenly spaced, numbers going past 12, etc.). Her plan had been to have the children bring their 
clocks back to the reading rug while she read the book again and have them show each hour on 
their own clocks. As the time allotted to the lesson began to wind down, she realized that the 
clocks were not functional because the clock faces were not accurate and because the crafts 
contained too much wet glue to withstand handling, she omitted the final part of the lesson. In 
reflecting on the lesson later in the day, Tracey was disappointed in the lesson, but she mainly 
focused on the effort she had put into cutting out the ladybug wings and spots and bending 
construction paper to make ladybug legs and her frustration that the clocks did not turn out to be 
functional because of the glue issue. She did not mention the fact that the clock faces were not 
accurate or that the lesson involved virtually no mathematics. A similar but slightly less dramatic 
example comes from Tracey’s second year of teaching second grade in a lesson on “grater than” 
and “less than.” In an effort to make a lesson “fun,” she gave each student three colored index 
cards–a pink one with a less than sign on it, a green one with a greater than sign on it, and a blue 
one with an equal to sign on it. She put two numbers on the white board and asked the students 
to hold up the correct card (with the sign facing her). In planning this lesson she failed to take 
into account that the greater than and less than signs are really only one sign and that when the 
students held up the cards to face her, they would be facing the opposite of the way the children 
saw them at their desks. After about 10 minutes, she called a halt to the lesson because she could 
not tell whether the children understood greater than and less than. In reflecting on the lesson, 
she noted that she had tried to make the lesson more fun and interactive than a worksheet but that 
a worksheet was probably a better way to assess this content. 

 
Discussion 

Although I have presented examples of four teachers who seem to fit neatly into the cells of 
Figure 1, the reality is that teachers fit in one cell for some lessons and in another cell for other 
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lessons. Teachers’ practices are not consistent across time and setting, and the changes are not 
necessarily reflective of “growth” toward more reform-oriented teaching or the upper left cell of 
Figure 1. For example, some teachers were very comfortable asking open-ended questions and 
building instruction from children’s mathematical thinking in their first mathematics methods 
class field experience in which they worked with one child. In subsequent whole-class field 
experiences, however, they became more tied to the textbook and focused on correct answers. In 
most cases, the teachers were aware of the contrast in their instructional style across settings. The 
teachers attribute these differences to a variety of factors: curriculum constraints, the difficulty of 
orchestrating discourse in a large group, the challenge of managing children on so many different 
levels, and the pressure to “cover” the curriculum prior to testing. These findings support 
Tabachnick and Zeichner’s (1984) portrayal of the socialization of teachers as a negotiated and 
interactive process rather than as one that is predetermined. Our challenge is to refine this claim 
by explicating the factors that influence this negotiation and in what ways. If we can better 
understand the ways in which individual teachers integrate the messages they receive from 
various sources to shape their teaching practice, we can develop ideas about how teacher 
education programs, induction year support programs, and professional development programs 
can best assist teachers in developing a practice that leads to rich mathematical activity in the 
classroom. 

 
References 

Ambrose, R., Philipp, R., Chauvot, J., & Clement, L. (2003). A web-based survey to assess 
prospective elementary school teachers' beliefs about mathematics and mathematics learning: 
an alternative to Likert scales. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), 
Proceedings of the 2003 joint meeting of PME and PMENA (Vol. 2, pp. 33–39). Honolulu: 
CRDG, College of Education, University of Hawaii. 

Bogdan, R. C., & Biklen, S. K. (1992). Qualitative research for education: An introduction to 
theory and methods. Boston: Allyn and Bacon. 

Eisenhart, M. A. (1988). The ethnographic research tradition and mathematics education 
research. Journal for Research in Mathematics Education, 19(2), 99–114. 

Hill, H.C., & Ball, D. L. (2004). Learning mathematics for teaching:  Results from California’s 
mathematics professional development institutes. Journal for Research in Mathematics 
Education, 35, 330-351.  

Kilpatrick, J. (1988). Editorial. Journal for Research in Mathematics Education, 19, 98. 
Mewborn, D. S. (1999). Reflective thinking in preservice elementary mathematics teachers. 

Journal for Research in Mathematics Education, 30, 316-341. 
Tabachnick, B. R., & Zeichner, K. M. (1984). The impact of the student teaching experience on 

the development of teacher perspectives. Journal of Teacher Education, 35(6), 28-36. 
Zeichner, K. M., & Gore, J. M. (1990). Teacher socialization. In W. R. Houston (Ed.), Handbook 

of research on teacher education (pp. 329–348). New York: Macmillan. 
 
 

 
 

 



Vol. 5  1179 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

FACTORS IN THE ACHIEVEMENT OF PRESERVICE ELEMENTARY TEACHERS 
IN MATHEMATICS CLASSES 

 
Raven McCrory 

Michigan State University 
mccrory@msu.edu 

Changhui Zhang 
Michigan State University 

zhangcha@msu.edu 
 

Andrea Ploucher Francis 
Michigan State University 

ploucher@msu.edu 

 
Sarah Young 

Michigan State University 
youngsa1@msu.edu 

 
While it has been found that teacher knowledge affects mathematics student achievement, to 
date, little research has explored how professors affect preservice elementary teacher’s 
mathematical knowledge. This study explores future teachers’ learning in undergraduate 
mathematics classes. Our data includes pre and post tests from over 1000 students in classes of 
41 instructors at 17 institutions in four states as well as teacher survey data from those 41 
instructors. In our multilevel models, we identify three key variables that influence gain: 
students’ prior knowledge, use of specifically designed textbooks, and the methods the professor 
uses to teach the course. 
 

Introduction 
Improving the mathematical knowledge of elementary teachers is key to improving 

children’s mathematical knowledge (e.g., Conference Board of the Mathematical Sciences, 2001; 
Hill, Rowan, & Ball, 2005; Monk, 1994; Rowan, Correnti & Miller, 2002). Mathematics classes 
required for certification provide a unique opportunity to influence teachers’ mathematical 
knowledge, yet there has been little research about either what is offered or what students learn 
in these undergraduate mathematics classes. In this study, we begin to address these questions. 
On average, undergraduate programs require teachers to take 2.7 mathematics courses for 
elementary certification and in states where there is a separate endorsement or certificate, 5.6 
classes for middle school certification, up from 2.4 and 3 respectively in 2000 (Lutzer, Rodi, 
Kirkman, & Maxwell, 2007). Although the number of mathematics classes required of these 
future teachers has been increasing over the last decade, we know almost nothing about the 
content of these courses, who teaches them, or what their impact is on future teachers’ 
mathematical knowledge. The goal of our research is to understand what these future teachers 
learn and what accounts for differences in learning across instructors at various institutions. 
Specifically, we ask what characteristics of students, courses, instructors, and institutions explain 
variation in achievement across mathematics classes for future teachers that are focused on 
number and operation? 

This work is important because these undergraduate classes are a unique sustained 
opportunity to influence teachers’ mathematical knowledge. If we could learn more about how to 
make these classes better – to have a greater impact on teachers’ knowledge – through changing 
the content, the textbook, the way classes are taught, or other variables, our findings could have 
an enormous impact on the preparation of elementary teachers for teaching mathematics 
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Background 
To investigate this question, we designed a multilevel study at undergraduate institutions in 4 

states. We collected data from future teachers (students in undergraduate mathematics classes), 
instructors, and mathematics department chairs. We developed hypotheses about what variables 
might predict student learning and tested these hypotheses using multilevel analyses. The 
complete study is described in detail in other documents including McCrory (2009). 
Literature Review 

The National Math Panel (NMP) report, (see p. 5-1) which summarizes research on teacher 
knowledge, suggests that the effect of teacher quality on student achievement is large. In one 
study, 12-14% of the variation in student achievement was attributed to differences in teachers. 
In another study, the difference in outcomes for students of the worst and best teachers was 10 
percentile points on a mathematics assessment. Yet, the NMP report points out that 
understanding the individual differences that constitute teacher quality remains elusive. One 
likely candidate is teacher knowledge of mathematics, but there, the research is inconclusive.  

Studies of teacher knowledge have typically relied on proxy data (number of math classes, 
certification status, years of experience, test scores such as SAT or ACT) to investigate the 
question of what mathematics teachers bring to their teaching. One exception is the work of Ball 
and colleagues at the University of Michigan (e.g., Hill, Rowan, & Ball, 2005; Hill Schilling & 
Ball, 2004). In their project, Learning Mathematics for Teaching (LMT), they developed 
measures of elementary teachers’ mathematical knowledge and went on to show that the 
knowledge measured by their instrument was a significant predictor of K-8 student achievement 
in mathematics. That is, teachers who scored higher on the LMT measures had students who 
scored higher on standardized mathematics achievement tests. Their work shows that there is 
specific mathematical knowledge that contributes to or is an indicator of teacher quality. 

What we do not know is whether or how prospective teachers might learn this content. It 
seems unlikely that they learn it from their high school mathematics classes or from conventional 
college mathematics courses. If that were the case, the problem of elementary teachers’ 
mathematical knowledge would be nonexistent or at least easy to address. Although some have 
argued that more required mathematics classes would improve teacher quality, research suggests 
otherwise: taking more mathematics courses does not necessarily result in teachers who teach 
mathematics more effectively. Wilson, Floden and Ferrini-Mundy (2002) point out in their report 
on teacher preparation that studies about subject matter preparation “undermine the certainty 
often expressed about the strong link between college study of a subject matter and teacher 
quality” (p. 191). What is missing is a better understanding of the content that matters and how 
best to offer it to future teachers. 
Purpose of this Study 

This study begins to address what affects prospective teachers’ mathematical content 
knowledge in their mathematics courses. In particular we investigated a number of factors that 
we hypothesized might influence their mathematical achievement, measured with the LMT items 
that we know correlate with teacher quality. Factors include the textbook used, the instructor’s 
attitude toward the class and experience teaching the class; and how the textbook was used; and 
methods of teaching. Other factors, related to the students themselves, are prior knowledge, 
socio-economic status, and attitude toward mathematics.  
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Method 
Population 

Data for this study were collected at institutions in 4 states, chosen to reflect variation in state 
policy and K-8 mathematics outcomes. The analysis here includes data from 41 instructors and 
1706 students at 17 institutions. The data reported in this paper were collected between 
September 2006 and December 2008. 
Instruments and Data Collection 

Students completed pre- and post-tests using items from the LMT project. The pre and post-
tests were different, equated through Item Response Theory (IRT) methods to make results 
comparable. We used two forms and 6 additional common items. Each student took one of the 
forms plus the 6 common items for the pretest and the other form for the posttest, making the 
pretest somewhat longer than the posttest. Thus, every student completed every item, but had 
completely different pre- and post-tests. The student tests also included attitudes and beliefs 
items and demographic questions as explained below. The pretest was administered in the first 
two weeks of class; the posttest in the last two weeks. LMT items are not generally available for 
public release, but a set of released items is available on the LMT Web site, 
http://sitemaker.umich.edu/lmt/measures. 

Instructors completed an extensive survey developed for this project. It includes questions 
about content coverage, teaching methods, contextual issues, personal demographics, and more. 
The complete instrument is available at our Web site, http://meet.edu.msu.edu. The instructor 
survey was administered at the end of the semester during which student pre/post tests were 
administered. 
Data Analysis and Results  

The first analyses were on the test scores themselves. We used IRT parameters from the 
University of Michigan project to calculate pre- and posttest scores for all students. IRT scoring 
takes into account the difficulty of items and thus makes it possible to compare pre- and posttest 
scores on the same scale. The scores, however, do not correspond to percent correct and are more 
like z-scores. For reporting purposes, we set the average pretest IRT score to 50 with a standard 
deviation of 10. The range of scores is theoretically infinite, but practically, scores fall within 3 
standard deviations of the average. Posttest scores are calculated using the same parameters and 
are placed on the same scale as the pretest. In these data, the pretest mean is 50.00, with a 
posttest mean of 59.16. 
 
      Table 1. Student (Future Teacher) Descriptive Data 

Variables Coding and Range Mea
n 

SD 

Pretest Score 17 – 79 50.00 10.00 
Prior Knowledge (CACT = 
SAT or ACT on a common 
scale) 

12 – 36 
23.17 4.38 

I like Math 0 = Strongly disagree, disagree, undecided 
1= Strongly agree or agree (Used in 
model) 
On 5 point scale (used in correlations) 

 
0.46 
3.03 

 
0.50 
1.26 

College Math Coursework 0 = none 
1 = 1 

2.47 1.12 
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2 = 2 
3 = 3 
4 = 4 or more 

SES (Mother’s Education) 0 = no higher ed, 1 = some higher ed 0.46 0.50 
 

Descriptive data for students and instructors are shown in Tables 1, 2 & 3. We developed a 
measure of prior knowledge for students using self-reported ACT or SAT scores. We put these 
on a common scale (1-36) using conversions published by ETS and named that variable CACT. 
We used a single question from the student survey to measure their attitude toward mathematics. 
They ranked from 1 (Strongly disagree) to 5(Strongly agree) the statement “I like mathematics”. 
We converted their responses to a two-point scale: 0 for a response of 1, 2 or 3; 1 for a response 
of 4 or 5. 

      
     Table 2. Correlations of Student (Future Teacher) Descriptive Data 

       
 1 2 3 4 5 Variable Explanation 

1 1.00 **0.49 **0.4
8 

-0.02 **0.20 Pretest Score 

2  1.00 **0.4
1 

-0.33 **0.21 Post test Score 

3   1.00 -0.01 **0.31 Prior Knowledge 
(C_ACT) 

4    1.00 **0.13 College Math 
Coursework 

5     1.00 “I like math” (5 point 
scale) 

*Correlation significant at the .01 level, two- tailed.   
 

For instructors, we asked them what textbook they used for the course. Based on their 
response and on the list of 13 textbooks in print written specifically for such a course (list 
available on the Web site http://meet.educ.msu.edu), we created a variable that had the value 1 if 
they use one of the textbooks on the list as their primary textbook, 0 if they use some other 
textbook or do not use a textbook at all. We also asked them about their interest in teaching the 
course before the current semester, and their interest in teaching the course again. Results of 
these questions are shown in Table 3, along with information about class size, and experience. 
         

 Table 3. Instructor Descriptive Data  
Variables Coding and Range Mean SD 
Primary Textbook from choice of 
13 

1 = a primary textbook on our 
list  

0.65  

 0 = not a textbook on our list   
Class Size 4 – 102 26 13 
CACT (mean SAT or ACT on a 
common scale) 

20 – 27 23 1.6 

Years College Teaching Experience 0 – 41 16 11 
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Level 1- Growth:       
 Y = P0 + P1*(TIME) + E   
  (TIME is 0 or 1) 
Level 2 - Student:  
 P0 = B00 + R0                   
 P1 = B10 + R1 
Level 3 - Instructor:  
 B00 = G000 + U00                  
  B10 = G100 + U10   
(E, R, and U are random error) 
 

Figure 1. Unconditional model for 
allocating variance. 

Interest in teaching this course 0=no interest at all 
1=limited interest 
2=some interest 
3=a great deal of interest 

1.26 0.59 

Interest in teaching this course 
again 

0=no interest at all 
1=limited interest 
2=some interest 
3=a great deal of interest 

1.22 0.55 

Teaching Methods (Mean of 11 
items) 

1.45 – 4.00 2.74 0.58 

 
Another variable we developed was a measure of teaching methods. For this variable we 

asked instructors: “In your mathematics course, how often do your students engage in each of the 
following activities? Please check the box that best describes what happens in your course.” The 
scale was from 1 to 4: 1. Never or almost never; 2. Some lessons; 3. Most lessons; 4. Every 
lesson. The 11 items instructors ranked included (complete list available in McCrory, 2009): 
 Explain the reasoning behind an idea 
 Work on problems for which there is no immediate method of solution 
 Listen to you explain terms, definitions, or mathematical ideas (Reversed) 
 Listen to you explain computational procedures or methods (Reversed) 

Since these are questions about what the instructor expects students to do, the last two on the list 
were reverse coded to create a scale that indicates student’s personal engagement with the 
mathematics as compared to listening to the instructor. At one extreme (4), students would be 
doing mathematics at all times. At the other extreme (1), students would be listening to the 
instructor at all times. As table 3 shows, the mean score on this variable was 1.81 suggesting that 
these instructors use a mixture of methods, leaning slightly toward student engagement. 
Although the dataset includes many more variables than described here, we include only those 
used in the models developed thus far.  

To put the student and instructor data together and investigate our hypotheses, we developed 
a growth model using HLM (Raudenbush & Bryk, 2002). Although growth models are most 
often used with more than two data points to measure growth, we chose this model because it 

allowed us to interpret the data more completely than a 
two level model with either gain or posttest score as 
outcome, and it allowed us to use level 1 data from 
students who took only the pre or post test. Because 
we are using scores from an Item Response Theory 
(IRT) model, it is possible to estimate the growth 
model with only two data points. In this model, we 
define three levels. Level 1 is the growth level with 
time set to 0 for the pretest, 1 for the posttest. Level 2 
is the student level. Level 3 is the instructor level. We 
do not have adequate data for an institutional level, 
and have not developed a state-level model (which 
would include only 2 states because of the sparse data 
in the other 2 states). 
     The unconditional model is used to allocate 
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Level 1: Growth Model 
 Y = P0 + P1*(TIME) + E  
  (Time is 0 or 1) 
Level-2: Student Level with CACT 
 P0 = B00 + R0 
 P1 = B10 + B11*(CACT) + R1 
Level-3: Instructor Level with Textbook and Methods 
 B00 = G000 + U00 
 B10 = G100 + G101(TEXTBOOK) + G102(METHODS) + U10 
 B11 = G110 

Figure 2. Model 2 with preditors at student and instructor levels. 

 

variance. There are no predictors in the model and what we learn from it is how much of the 
variance is within instructor and how much between instructors. Although we are interested 
generally in explaining achievement, the primary purpose of this analysis is to explain variation 
between instructors. This model is shown in Figure 1. 
From this model we get the following data: 

Mean Pretest score (B00): 50.56 
Average gain (B10): 7.73 
Gain Score student level variance: 3.72 
Gain Score Instructor level variance: 7.80 

Note that the mean score of 50.56 differs from the set mean of 50 because even in this simple 
model, Bayesian estimation techniques are used and error is in play. For our models, we assume 
that there is measurement error, and we use expected a posteriori (EAP) procedure for 
calculation of parameters. Variance is a pure number without units, and this tells us that if we 
assume there is measurement error, we have a lot of variation between instructors relative to the 
variance within classes.  

We built a number of models to test hypotheses and found no significance for student SES, 
instructor experience, instructor attitude toward the class, or class size. Significant predictors 
include student CACT, student attitude toward mathematics, textbook used, and method of 
instruction. We found that CACT and student attitude were correlated, so that if both are in the 
model, one loses significance. We chose to use CACT rather than student attitude in our models 
because of the measure’s greater reliability. Although we have not completely tested all 
hypotheses, the model that best predicts student outcomes so far is shown in Figure 2. 
Results of Model 2, shown in Table 4, are: 

Mean Pretest: 51.48 
Average Gain, no primary textbook, average methods: 4.79 
Average Gain, Add primary textbook 4.58 
Average Gain, Change in methods by one point: 2.92 
Average Gain, Change in CACT by one point: 0.52 

Again, the mean pretest is different from 50 and also different from the unconditional model 
because the estimation method is recursively using the data to come up with the most likely 
“true” value of the mean pretest. In this model, we predict that an instructor with average 
methods score of 2.73 (see Table 3) who did not use one of the 13 textbooks on our list would 
have an average posttest score in his/her class of 51.48 + 4.79 = 56.27. If the instructor used one 
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of the textbooks, the predicted posttest score would increase by 4.58 points; and if the instructor 
scored a point higher on the methods measure, the predicted score would increase by 2.92. 

There are numerous issues with these models and with the results, not least of which are the 
set of decisions about the role of error; which parameters are fixed and which are allowed to vary 
by instructor (e.g., in Model 2, we did not let CACT vary by instructor, indicating an assumption 
that instructors are equitable with respect to prior knowledge); and which IRT parameters to use. 
We have tried the models with different assumptions, and although the absolute numbers are 
different, we consistently see that the use of one of the textbooks and the use of different 
teaching methods are significant – statistically and practically – at the instructor level; and the 
CACT score (a measure of prior knowledge) is significant at the student level. The more 
prepared students are for this class (as measured by SAT or ACT), the better they do on the tests. 
That is no surprise, but it may be a surprise that the CACT and attitude toward mathematics are 
equally good predictors (raising a chicken and egg question that cannot be answered with our 
data). We also checked the assumption that instructors are equitable with respect to CACT and 
found it to be correct. 

 
Table 4. Model 2 Results 

 Coefficient Error T-
Ratio 

d.f. P-Value 

For INTRCPT1, P0 (pretest 
score) 

     

   For INTRCPT2, B00      
   INTRCPT3, G00 51.48 0.60  85.82 37 0.000 

 For POST slope, P1 (Gain 
score) 

     

  For INTRCPT2, B10      
   INTRCPT3, G100 4.79 1.08 4.42 35  0.000 
   TEXTBOOK, G101 4.58 1.35 3.40 35 0.002 
   METHODS, G102 2.92 1.10 2.70 35 0.011 

  For CACT, B11      
   INTRCPT3, G110 0.53 0.07 7.73  952 0.000 

 
Discussion 

Several results stand out in this analysis. First, students’ attitudes toward mathematics are very 
important. In particular, whether they like math or see themselves as capable of doing 
mathematics are both significant predictors of their achievement. This is no surprise given the 
history of research on attitudes toward mathematics, but it signals a possible leverage point for 
improving teacher knowledge. If we could make inroads into improving future teachers’ 
confidence in their mathematical ability or their attitude about mathematics, we might be able to 
teach them more effectively. An alternative hypothesis is that they dislike mathematics because 
they are bad at it and that their self-assessment is accurate. This depressing view is not borne out 
by research that suggests that students’ mathematical abilities are not fixed, but depend on their 
effort and engagement.  

Second, students’ prior knowledge is important. If students enter the class with a weak 
background, these classes generally do not make up for these deficits, although some instructors 
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are more successful here than others. On the encouraging side, even students with weak prior 
knowledge are, on average, learning from these classes. 

Third, students are learning a lot from these classes. A gain of 9 points is almost a full 
standard deviation. This is a big gain by any standards, and since we have reason (from LMT) to 
believe that what they are learning matters in their future teaching, this is an important finding.  
Fourth, students in classes of instructors who use one of the textbooks designed for a 
mathematics class for future elementary teachers are more successful than those in classes that 
do not use such a book. This may be because the books tend to treat the mathematics more 
coherently or appropriately than self-developed materials or other mathematics textbooks not 
intended for such classes. Alternatively, it may be that the textbook signifies something else 
about the class that matters. For example, it could be that instructors who use one of these 
textbooks teach in a more consistent manner across the semester, or that the department syllabus 
based on the textbook is better developed. There are many other possibilities that could explain 
this result. Without more data from different textbooks, there is little we can say to explain this 
further. 

Finally, and perhaps most surprisingly, the teaching method matters. Teachers who report 
more student engagement with mathematics and less lecturing tend to have greater student 
achievement. This may be related to the first point in this discussion: students do better when 
they have a more positive attitude toward mathematics. A class in which they have an 
opportunity to work directly on mathematics rather than only listen to mathematics may be 
instrumental in developing a more positive attitude. One could argue that agreeing to participate 
in the ME.ET project signals a different set of beliefs or commitments to mathematics education, 
making the method result an artifact of the particular instructors involved in this study. But we 
did have considerable variation on this measure, suggesting that even if these instructors are 
different than nonresponders, they are also different from one another.  

We are still analyzing these data, and will have a more complete report on model 
development. We will also develop structural equation models to try to tease out more complex 
relationships among variables (e.g., that the teaching methods may result in more positive 
attitudes that then impacts learning). In the meantime, our results suggest that there are leverage 
points in the courses that could be used to improve the mathematical knowledge of future 
elementary teachers. 
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This study examines alternatively prepared secondary school mathematics (SSM) teachers’ 
thinking and what they actually do to facilitate teaching and learning in their classrooms. After 
teacher preparation, these SSM teachers complete their first year in an urban or suburban 
school. A phenomenological approach captures and unfolds the SSM teachers’ perspectives. 
Deep caring and other authentic strategies were their pro-activities that led to success among 
their students and provided further insights and new directions to the preparation of future 
alternatively prepared secondary school mathematics teachers.  
 

Objectives and Purposes of the Study 
The impact of teachers on the education of students in urban schools has continued to be of 

concern at both local and national levels (Junor Clarke, 2008; Ingersoll, 2001). In particular, a 
high percentage of these teachers who were going into the urban classrooms were alternatively 
prepared (Wilson, Floden & Ferrini-Mundy, 2001). As a faculty member in an alternative teacher 
preparation program at an urban institution in the southeastern United States, I continue to 
inquire about the experiences of our teachers as they commit themselves to teach in urban or 
suburban classrooms. Four out of the five schools to which a cohort of our graduates returned 
would be considered moderate- to high-diversity schools because they have greater than 10% 
ethnic minority student population (Freeman, Brookhart, & Loadman, 1999). In such environ-
ments, understanding the way these teachers think and facilitate teaching and learning becomes 
necessary. The objective of this inquiry is to gain insights and to think further or rethink how 
these teachers are being prepared for the urban classrooms.  

In this study, I examine five alternatively prepared secondary school mathematics (SSM) 
teachers who have completed their first year in an urban or suburban school after teacher 
preparation at an urban research university in the southeastern United States. To understand the 
teachers’ thinking and what they actually do to facilitate teaching and learning in their 
classrooms, I ask the following research question: What are alternatively prepared secondary 
school mathematics teachers’ perspectives of the reality in their urban/suburban classrooms? 
For the purpose of this proposal, I report on two alternatively prepared SSM teachers.  

 
Conceptual Framework and Context of the Study 

A phenomenological approach provided the framework to capture and unfold the teachers’ 
perspectives as they continued to teach students in urban and suburban schools. Phenomenology 
research design allowed me to study the deep human experiences of the secondary mathematics 
teachers in their own classrooms and provided the flexibility to take every word that accurately 
depicts the rich descriptions of the teachers’ experiences (Blodgett-McDeavitt, 1997; Husserl, 
1970; Junor Clarke, & Thomas, 2009; Moustakas, 1994; Schwandt, 2001). This level of 
engagement enabled me to see data from new and naïve perspectives such that fuller, richer, and 
authentic descriptions can be rendered (Junor Clarke, & Thomas, 2009; Blodgett-McDeavitt, 
1997) and that I make meaning based on the SSM teachers’ human experiences (Patton, 2002).  
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Context for the Study 
The participants of the study are secondary school mathematics teachers, who were prepared 

at an alternative teacher preparation program in an urban institution in the southeastern United 
States. They were teaching with a provisional licensure and pursuing certification and a master’s 
degree in the program. The duration of the program was for four semesters. Upon graduation, the 
SSM teachers continued to teach in their urban/suburban schools.  

 
Methodology  

The participants of this report are two women out of the study’s five SSM teachers—three 
female and two male. The two women were assigned pseudonyms, Anna and Laura. Anna was 
chosen because she was the only one at a suburban school, and Laura was randomly selected 
from the remaining four participants who were in urban schools. While in the preparation 
program, they taught during the day and came to classes in the evenings. These teachers were 
already teaching on a provisional licensure and were in the program to gain their full certification 
and a master’s degree. After graduation, the participants remained teaching in their schools. 
Class descriptions (Table 1) and the demographics (Table 2) of Anna and Laura’s schools are 
provided below: 
 
Table 1. The Secondary School Mathematics (SSM) Teachers’ Teaching Experience, Ethnicity, 
Content Taught, Grades Taught, and Class Size  
Teacher Experience Ethnicity Content Taught Grade(s) Average Class Size 
Anna 3 yrs Latina Algebra, Calculus 10-12 10 
Laura 4 yrs Hispanic Algebra 9 18 
 
Table 2. The Demographics of the Secondary School Mathematics (SSM) Teachers’ Schools 

Teacher 
School 
Type 

Demographics of Students 

Black White Hispanic 
Black & 
Latino Latino 

Asian and/or 
White 

Anna Suburban n/a 95% n/a 5% n/a n/a 
Laura Urban 40% n/a 20% n/a n/a 40% 
 
Procedures 

A graduate research assistant (GRA) conducted the 1.5 hour-interviews using a storytelling 
approach to capture the SSM teachers’ stories that depicted their experiences (Creswell, 1998, 
p. 54). Stories are defined as socially constructed accounts of past events that are important to 
members of an organization (Junor Clarke, & Thomas, 2009; Hansen & Kahnweiler, 1993). 
These accounts are seldom factual; however, they reflect what people believe should be true. 
They differ from gossip because they have a moral. Stories permit researchers to examine 
perceptions that are often filtered, denied, or not in participants’ consciousness during traditional 
interviews. “Stories happen naturally as a way of telling one’s perceptions of past events, 
problems, or people . . . They are easy to follow, generally entertaining and are more likely to be 
remembered than other forms of written or oral communications” (Hansen & Kahnweiler, 1993).  

This approach allowed the SSM teachers to convey their thinking and understanding of the 
reality in their urban/suburban classrooms (Eisner, 1998; Mertens, 1998). The follow-up 
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questions in the interviews explored the meaning of each teacher’s lived experience (Creswell, 
1998). Through the interviews, data for this study was collected. Use of storytelling allows a 
unique aspect of analysis with respect to story components. Stories can have main characters, 
motivating difficulties, heroes, villains, turning points, and morals. After the teachers told their 
stories, the following questions were asked: (1) Who is the main character in your story? 
(2) What is the motivating difficulty? (3) Who or what is the hero(s) in your story? (4) Who or 
what is the villain in your story? (5) What is the turning point in your story? (6) What is the 
story’s moral? (7) Is there anything else you would like to add? In the interview, the following 
additional questions were asked before bringing the interview to a close: (1) What effect did your 
preparation have on your practice? (2) What were your experiences in the teacher preparation 
program that prepare you for your profession? 
Data Collection and Analyses 

The GRA informed the SSM teachers about the goals of this study and asked them to tell a 
story about mathematics teaching and learning. They were encouraged to include in their stories 
their perspectives on the impact made on their students. Their stories could be about any event 
that occurred within the past 6 months, or they could simply relate an incident that was of 
particular interest. The story should have a hero, a villain, a turning point, a moral, and anything 
else the SSM teachers may want to add. 

The GRA transcribed the teachers’ stories and I coded the data. Using the codes, I was able 
to dissect the stories in searching for essential structures. Data were extracted from each SSM 
teacher’s story about the reality in their urban/suburban classrooms. The additional questions in 
the interview provided supplemental data for the analysis. In the data analysis, I exercised the 
research process, known as epoche (Holstein & Gubrium as cited in Denzin & Lincoln, 1994) in 
which I set aside my taken-for-granted orientation about the phenomenon. The SSM teachers’ 
experiences that highlighted the content and pedagogy were the themes used to demonstrate the 
reality in their urban/suburban classrooms. 

 
Findings and Analyses 

The SSM teachers’ stories reflected on common themes that were evident in their classrooms 
and that had drawn their interest as being important to them at the time, such as (1) classroom 
culture, (2) management of students, (3) teaching content, (4) cognitive aspects of student 
learning, and (5) affective aspects of student learning. 
Anna 

Anna’s story was based on her lived experience in a calculus class, where she changed her 
students’ work ethics and development during one year. Her story describes how one student 
became upset with her after receiving the results of his test, recognizing that problems on the test 
were not the same like the ones Anna gave them in class. Anna was persistent with her approach, 
maintained the standards set, remained in charge, and helped her students. Subsequently, she was 
able to build a learning community where her students realized success and developed great 
attitudes that other teachers recognized. She established a positive reputation from her efforts not 
only in her classrooms but also in the school.  

Culture of the classroom. The main character of her story was the student who helped her to 
make all the other students understand what she was expecting from them. The students were 
expecting a different teacher, not one who was tough and demanded much from them. They 
found that lots of work and “hard” tests became the norm in the class. Anna had high 
expectations for her students to do well at any cost and she was willing to pay the price. One 
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student said to her after receiving his test, “This is not exactly what we have been doing, this is 
something new.” Anna responded, “Yes, it is something new! But there is some supplemental 
material you are supposed to get for yourself after what we have studied in class; this is part of 
your expectations.” She further expressed to her students that their expectations of her giving 
them examples of questions on the test would not happen and her expectation is that they must 
be able to work on problems they have not seen before. Anna began a new classroom culture 
where students do not have to like her but trust her. She admits that trust is important. 

Classroom management. Anna’s class was always pre-occupied with work so there was no 
opportunity for negative classroom management, except for the time when the one student 
challenged her. There was a back and forth response on which she did not give in to the student 
but tried to let him understand her expectations. This confrontation was not helping her because 
she was trying to establish positive relationships with the students. However, Anna maintained 
her position on the expectations and worked on building relationships with the students all year. 
She sets the tone for the class through maintaining a class that is well managed and organized 
and has procedures and high expectations for her students.  

Content focus. The student who challenged Anna was actually very bright, but he was 
apprehensive based on his previous experience of getting what he wanted, that is, samples of 
problems on the test. Because Anna did not accept his unwarranted needs, he responded: “Well, I 
think you need to start giving us examples of the questions you are going to put on the tests.” 
Anna made it clear to the student that, “Well, if that is your expectation then that is not going to 
happen. I expect you to work on problems you have not seen before on a test.” She continued to 
give her students problems where they could be successful but at the same time allowing them to 
explore and solve problems they did not see before. She insisted that students had to overcome 
their preconceptions about mathematics and how they learn mathematics. She maintained her 
support and fostered commitment of her students to mathematics all year.  

Cognitive aspect of learning. The one student who had complained earlier in the class did a 
wonderful job. Other students of her calculus class would attend after school sessions to work 
with students from different classes. However, one day her students’ previous teacher came to 
Anna and said, “I want just [for] you to know that I am so amazed of what you have done with 
this group of students this year because they were all in the after school [session] working and 
even though you were not even there, they had a great attitude and even though it was a tough 
problem and they did not know what to do, they were discussing the math[ematics], they were 
arguing.”  

Affective aspect of learning. Though the challenges from her students and her persistence for 
them to be accountable in the learning process, Anna recognized that over the year she and her 
students were able to build a learning community at the school, which she thought was a very 
positive and encouraging experience for their learning. She believed that she was responsible for 
establishing the relationship and helping students to achieve success. 

Connection to her teacher preparation. Anna’s confidence in teaching was credited to her 
preparation in the teacher preparation program. One of the NCTM standards is to maintain high 
expectations and Anna surely made her point and followed it through to the end with her students 
in the suburban classrooms. She also felt that she was successful in establishing a true learning 
community that she experienced with her colleagues during her teacher preparation program. Her 
definition of a high quality teacher depicts what she did with her students. 
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Laura 
Laura’s story is about the development of a notebook in one of her algebra classes. This was 

similar to an idea from one of her colleagues in a teacher preparation class where they worked in 
groups. While her colleague used the idea of a toolbox, she used the idea of the notebook as a 
“BRAIN.” When Laura tried to implement this idea at first it was “really a disaster” because she 
claimed that the students were overwhelmed and the idea just went for naught. “Trying to 
implement new ideas in the classroom and how to be successful” was the motivating difficulty in 
Laura’s story. However, she decided to be a little more organized and more committed on her 
next trial in the next semester. She gave the students time during the semester like on Fridays 
every two weeks she gave the students 30-45 minutes for the activity. As a teacher she invested a 
lot of time and resources to ensure students had their work organized. Laura struggled with the 
students’ lack of skills and the time constraints to implement the idea on a regular basis.  

Culture of the classroom. The main character and hero of Laura’s story was Ashley, whose 
work had impressed her. The activity had created a new culture in the classroom where Laura 
felt “students were talking about math,” and they were sharing and using the mathematical 
language in asking each other: “Do you have this one about solving equations [correct]? – No, I 
don’t have that one.” Laura realized that her students were really beginning to use that math 
language related to mathematical concepts that they never use. She also recognized that they had 
to be attentive to the vocabulary and be more detailed oriented for them to create notes for the 
notebooks. This was different from what they would do, as Laura said, “If you send them home 
and tell them okay this is due at the end of the month they could care less, but if you put time in 
the classroom, then they see more value” 

Classroom management. However, on her two efforts to implement the notebook “BRAIN” 
idea, she realized that she needed to give the students class time, for example, every two weeks 
on a Friday she provided 30-45 minutes to the students during the semester to work on this 
activity. Intermittingly, she found that she fell behind in the curriculum because of the students’ 
lack of skills and the time constraints. The villain of Laura’s story was her struggle to manage 
the lack of skills and the time constraints to do so effectively. 

Content focus. Laura’s students were extremely weak in the mathematics skills. The activity 
that Laura gave to her students was to reinforce the mathematics concepts they have learned and 
learning in class. The final product of the activity at the end of the semester was anticipated to be 
an organized notebook called the “BRAIN” with the important concepts and skills learned in the 
class. Her intention was that students would have a product “that they feel proud of and that was 
related to the material they were learning.” 

Cognitive aspect of learning. Laura had a plan for her students. She wanted them to see the 
value in the work of the notebooks. But she realized that she had to communicate what she 
wanted to the students and to give them time in class to process that way of thinking. Laura 
stated, “that is what made them [the notebooks] valuable to them [the students].” Though her 
first attempt was a “disaster,” she realized that in her next effort she would do it much better 
because “I knew it was something of academic importance for my students.”  

Affective aspect of learning. The hero of Laura’s story was one of the exemplar in the class. 
As Laura expressed,  

The second semester was much, much better. Most of my students participated 
during the semester. What I really liked about it was a girl who put her heart [the 
drawing of a heart] in the notebook. That showed me the talent and the potential, 
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this girl had. She really put all her heart into it [the assignment]. It [the notebook] 
had everything I had asked for. She was very proud and I was also very proud of 
her because she really dedicated her time to it. There were other stories a little bit 
similar, students who showed their personality, it was a good experience because I 
got to know the students a little bit better. 

Connection to her teacher preparation. Laura aluded in her story to her process in teacher 
preparation ending positively saying: 

It was positive because students like Ashley turned in really good work. It was 
like going through a process, sometimes when you go through college, the kind of 
work that you do in college, you have to make sure that everything is in there. 
Sometimes it is hard, but you have to go through the process and finish it and I 
think I gave that opportunity to the students. It was good because at the end of the 
semester most of the students made sure it was finished and they were talking 
about their content, in what order and I think it was a good experience.  

Laura’s persistence in retrying her notebook activity came directly from her experience in the 
teacher preparation program with one of her colleagues who tried a similar activity several times 
and convinced Laura that it will work. Therefore, Laura was confident that with a few trials, she 
would be successful, too. She revealed, “So although the first time it was not successful, I knew I 
could try again and do it much better. I knew it was something of academic importance for my 
students.”  
 

Discussion and Insights 
The stories were actually small testimonies of their teaching that provided multiple meanings 

and interpretations (Newkirk, 1992). The two SSM teachers’ data indicated that they were 
proactively reflecting and using the experiences they had in the teacher preparation program. 
Through their lens, deep caring and the authentic strategies they explored with their students 
brought them successes that were much needed in their urban/suburban classrooms (Blodgett-
McDeavitt, 1997; Junor Clarke, & Thomas, 2009; Moustakas, 1994; Schwandt, 2001). The 
meanings that I perceived from their voices (Patton, 2002) are described in the following 
sections: 
Prior Experiences from Teacher Preparation  

In the methods courses, the SSM teachers and I developed a learning community built on 
sharing, trusting, and caring. In this nurturing environment, they were expected to pull from the 
experiences of each other. Therefore, it was not surprising but fulfilling to realize that the 
graduates were actually drawing upon the expertise of each other. Specifically, Laura enacted an 
activity that Anna had shared in our learning community. I believe the graduates had a sense of 
community which began in the preparation program.  
Reflecting on Practices 

The theme of our teacher preparation program was “Teacher as Reflective Practitioner.” The 
SSM teachers were consistently reflecting as part of their preparation. I realized that this practice 
became routine in the program and even in their K-12 classrooms. Teachers who reflect on their 
practices are expected to improve, but when they do so in learning communities, the results are 
powerful (Wenger, 1999).  
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Insights and New Directions 
Unlike other mid-career changers, the SSM teachers in this study have at least 3 years’ 

experience in the mathematics classrooms. These teachers have the ability and commitment to 
remain in their schools and community. Their impetus to work with children was paramount. 
Their stories were actual experiences in their classrooms and interestingly they provided the 
challenges they face in implementing some of the ideas they learned within our program. 
Although this may be limited evidence on which to make judgments about the shared views of 
their classrooms and the discourse, some inferences could be made. The SSM teachers provided 
authentic experiences, which were growth statements depicting the changes brought to their 
classroom to assist students to achieve. However, for the episodes they focus more on classroom 
management, specifically the attitudes of the students and developing their confidence in 
engaging the students during implementation of the ideas. I felt a sense of silence in the 
collective stories (Newkirk, 1992)—no one particularly talked about their own mathematics 
knowledge for teaching students and how that knowledge was perceived by their students. This 
is the second cohort of students that I worked with in collecting similar data. From this 
experience, I believe that the nature of the methods was limiting in providing more holistic 
perspectives of what happened in their classrooms. To gain more insights would definitely 
demand different methods of data collection.  

I am encouraged to enhance the emphases on mathematics knowledge for teaching and the 
benefits/challenges of technology integration in their mathematics classrooms in such a way that 
it also becomes a continuing conversation for our graduates. 
 

Endnotes 
I acknowledge the graduate research assistant, Hender Jimenez-Saavez, who interviewed the 
secondary school mathematics teachers and worked in accommodating their busy schedules. 
Appreciation is also extended to the secondary school mathematics teachers who volunteered to 
share their time and experiences with us. 
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This study compared mathematics beliefs and content knowledge for teaching of two groups of 
preservice teachers in a changing elementary teacher preparation program: (a) those who 
completed a program with three mathematics content and two mathematics methods courses, 
and (b) those who completed a program with four mathematics content and one mathematics 
methods courses. Results show both of these programs increased personal teaching efficacy, 
teaching outcome expectancy, and cognitively-oriented pedagogical beliefs. Exchanging a 
methods course for a content course had no significant effect on content knowledge for teaching; 
further, greater content knowledge for teaching correlated with more cognitively-oriented 
pedagogical beliefs. 

 
Objective 

A teacher preparation program at a large, urban university in the southeastern United States 
recently responded to a mandate from its university system by increasing the number of 
mathematics courses for elementary preservice teachers. This change resulted in the exchanging 
of a second mathematics methods course for a fourth mathematics content course. That is, the 
Old Program included three courses in mathematics content for elementary teachers and two 
courses in mathematics teaching methods; the New Program now includes four mathematics 
content courses and a single mathematics teaching methods course. To examine the longitudinal 
impact of these programmatic changes, we created a research effort we call the Mathematics 
Education Research Project (MERP). This specific study compares longitudinal changes during 
the Old and New Programs. 

 
Theoretical Perspectives  

Relationships between teachers’ beliefs and teaching are well-established. Beliefs influence 
teacher behavior and decision-making (Thompson, 1992), and change in beliefs is a crucial 
precursor to real change in teaching. Beliefs develop over time (Richardson, 1996), are well-
established by the time a student enters college (Pajares, 1992), and develop during what Lortie 
(1975) terms the apprenticeship of observation while a student. Teacher preparation programs 
have a limited amount of time to effect any changes.  

Many studies on changing mathematics pedagogical beliefs have focused on aligning these 
beliefs with a reform perspective. These studies often looked at change during only one course or 
semester; although some reported achieving desired effects, others did not. Similarly, most 
studies of preservice mathematics teaching efficacy beliefs have examined a single methods 
course. However, these studies more uniformly reported significant increases in mathematics 
teaching efficacy. While these studies contribute to our understanding of these beliefs, it is also 
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important to examine programmatic effects on these beliefs over a longer period. Longitudinal 
effects of the Old Program on these beliefs are documented in Swars, Smith, Smith, and Hart 
(2007; 2009/2008 online) and Swars, Hart, Smith, Smith, and Tolar (2007). 

 
Research Question 

What effects has this programmatic change (one more mathematics content course and one 
fewer methods course) had on longitudinal changes in preservice teachers’ efficacy beliefs, 
pedagogical beliefs, and content knowledge for teaching? 

 
Methods 

In the elementary teacher preparation program studied, groups of teacher candidates 
completed the 4-semester professional program together in cohorts. The first three semesters 
each included on-campus courses and 2-day-a-week field placements, followed by a semester of 
full-time student teaching. Field placements prior to student teaching (and coursework, when 
applicable) followed a developmental model, with the grade level focus starting in pre-
kindergarten and finishing in fifth grade.  

The Old Program included three courses in mathematics content for elementary teachers (in 
addition to university general education mathematics requirements). This sequence of courses, 
taught by faculty and adjunct instructors in the Mathematics Department, was started before 
admission to the professional program to ensure the sequence was completed before student 
teaching. The Old Program also included two mathematics methods courses, occurring during 
the second and third semesters of the teacher preparation program. The first methods course 
focused on grades PreK-2, and the second methods course focused on grades 3-5. The methods 
courses were taught by faculty in the elementary education department, who shared a common 
philosophical orientation toward the teaching and learning of mathematics. Important goals of 
the courses included: (a) developing beliefs consistent with the perspective of the Principles and 
Standards (NCTM, 2000), (b) understanding children’s thinking about important mathematics 
concepts, (c) creating problem-solving learning environments to facilitate discourse and 
understanding, and (d) building confidence as a lifelong learner and doer of mathematics. 

The New Program exchanged the second methods course for a fourth mathematics content 
course. Although the focus of the remaining methods course was changed to P-5, the field 
experiences during the second semester continued to focus on grades 1-3. 

This study includes data from two 5-point Likert-scale surveys, the Mathematics Beliefs 
Instrument (MBI) and the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI) (Enochs, 
Smith, & Huinker, 2000). The data also includes scores from a multiple-choice content 
knowledge for teaching assessment, the Learning Mathematics for Teaching Instrument (LMT) 
(Hill, Schilling, & Ball, 2004).  

The MBI assesses beliefs about the teaching and learning of mathematics and the degree to 
which these beliefs are cognitively-aligned (Peterson, Fennema, Carpenter, & Loef, 1989, as 
modified by the Cognitively Guided Instruction Project). The three MBI subscales include: (a) 
relationship between skills and understanding (Curriculum), (b) role of the learner (Learner), and 
(c) role of the teacher (Teacher).  

The MTEBI consists of the Personal Mathematics Teaching Efficacy (PMTE) subscale and 
the Mathematics Teaching Outcome Expectancy (MTOE) subscale. The PMTE subscale 
addresses teachers’ personal beliefs in their capabilities to teach mathematics effectively;  the 
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MTOE subscale addresses teachers’ beliefs that effective teaching of mathematics can bring 
about student learning regardless of external factors. 

 The LMT is designed to identify specific knowledge and reasoning that are important for 
teaching mathematics from a reform perspective, including such understandings as how to 
generate representations, interpret student work, and analyze student mistakes. Items are 
identified in one of three content strands: Number and Operations; Geometry; and Patterns, 
Functions, and Algebra. However, only aggregate LMT scores were used for this study. 

Data from six groups of students are used in this study (three Old Program groups and three 
New Program groups). MBI and MTEBI data were collected at five points in the program, 
including the beginning of the 2-year program and the end of each of the four program 
semesters. The LMT was administered once at the end of the program (following student 
teaching), using Form E04-A. Sample sizes in the data are 1236 (630 Old, 722 New) for the 
PMTE and MTOE, 1215 (611 Old, 714 New) for the MBI Curriculum subscale, and 1218 (614 
Old, 714 New) for the MBI Learner and MBI Teacher subscales.  

 
Analysis and Results 

The data in this study involve a 3-level nested structure that warrants the use of hierarchical 
linear growth modeling (HLM) for analysis. Individual measurements over time (L1) are nested 
within persons (L2) that are in turn nested in groups experiencing Old and New Programs (L3). 
In addition, there are some variances in the number of measurements per group as well as per 
person. Both issues are compensated for when using HLM (Singer & Willett, 2003). 

Prior research suggests that content knowledge for teaching is correlated with more 
cognitively-oriented pedagogical beliefs and higher teaching efficacy beliefs (Swars, Smith, 
Smith, & Hart, 2009). Thus, the results of the LMT were included at the teacher candidate level 
(L2) of the conditional model. Teacher candidates in both programs completed one mathematics 
methods course (M1) during the second semester of the program. Only the Old Program teacher 
candidates completed a second mathematics methods course (M2) during the third semester of 
the program. The full model equation reduces to the following predictor equation (final model): 

 

000010100110200301'(LMT)(TIME) + (LMT)(TIME) +(M1)(Program )(M2) ijY γγγγγγ=+++  
 

This model was used to analyze five outcome variables: personal teaching efficacy, teaching 
outcome expectancy, and pedagogical beliefs about curriculum, the learner, and the teacher. 
Coefficients from this analysis are given in terms of values on the 5-point Likert scale used in the 
instruments. Coefficients of influencing factors indicate the changes in the linear model 
attributable to each significant factor. For each of the five variables analyzed, significant 
variances remain unexplained. 

The difference in mean LMT score (as a percentage correct based on raw score) for teacher 
candidates from the Old and New Programs was not statistically significant (p = .065), indicating 
that exchanging a second mathematics methods course for an additional mathematics content 
course did not have a significant impact (either favorably or unfavorably) on content knowledge 
for teaching as measured by the LMT. However, the LMT score was found to be a statistically 
significant factor in accounting for change in most of the other outcome variables, indicating 
again that teacher candidates with greater content knowledge for teaching also have more 
cognitively-oriented beliefs and greater personal teaching efficacy. 
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Table 1 shows the results for personal teaching efficacy beliefs (PMTE), which were 
positively impacted by LMT score, time, and the second mathematics methods course. 
 
Table 1. PMTE Significant Results* 
Fixed Effects (final model) Coefficient S.E. t-value p-value 
Mean PMTE Score at t = 0 3.048    
Influence of LMT 0.685 0.250 2.734 .041 
Change per semester (TIME) 0.179 0.066 2.713 .042 
Influence of 2nd Methods Course (M2) 0.207 0.054 3.867 .017 
* In this and all other results tables, only statistically significant results are reported. 
 

Table 2 shows the results for teaching outcome expectancy beliefs (MTOE), which were 
positively impacted only by the second mathematics methods course. This variable is not 
correlated with the LMT score.  
 
Table 2. MTOE Significant Results 
Fixed Effects (final model) Coefficient S.E. t-value p-value 
Mean MTOE Score at t = 0 3.54    
Influence of 2nd Methods Course (M2) 0.191 0.005 3.853 .017 

 
Table 3 shows the results for pedagogical beliefs about the curriculum (MBI Curriculum), 

which were positively impacted by the LMT score and the first mathematics methods course. 
 
Table 3. MBI Curriculum Significant Results 
Fixed Effects (final model) Coefficient S.E. t-value p-value 
Mean MBI Curriculum Score at t = 0 2.719    
Influence of LMT 0.693 0.196 3.532 .022 
Influence of 1st Methods Course (M1) 0.460 0.062 7.394 <.001 

 
Table 4 shows the results for pedagogical beliefs about the learner (MBI Learner), which 

were positively impacted by the interaction of time and LMT score and by the second 
mathematics methods course. 
 
Table 4. MBI Learner Significant Results 
Fixed Effects (final model) Coefficient S.E. t-value p-value 
Mean MBI Learner at t = 0 2.850    
Influence of (TIME)(LMT) 0.179 0.050 3.560 .022 
Influence of 2nd Methods Course (M2) 0.145 0.039 3.756 .019 

 
Table 5 shows the results for pedagogical beliefs about the teacher (MBI Teacher), which 

were positively impacted only by the LMT score, indicating that teacher candidates with greater 
content knowledge for teaching also held more cognitively-oriented beliefs about the role of the 
teacher. 
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Table 5. MBI Teacher Significant Results  
Fixed Effects (final model) Coefficient S.E. t-value p-value 
Mean MBI Teacher Score at t = 0 3.036    
Influence of LMT 0.495 0.146 3.386 .025 

 
Discussion and Conclusions 

Previous studies have shown that preservice teachers enter teacher preparation programs with 
relatively well-entrenched beliefs about mathematics teaching and learning (Pajares, 1992). 
However, our results indicate that this cohort-based, developmental teacher preparation  program 
had significant impacts on many of those beliefs.  

The findings reveal that during both the Old and New Programs teacher candidates’ 
pedagogical beliefs became more cognitively oriented, thus more consistent with a reform 
perspective. In general, those with greater content knowledge for teaching had more cognitively-
oriented pedagogical beliefs. In the case of cognitively-oriented beliefs about learners, greater 
content knowledge for teaching correlated with larger increases in these beliefs as indicated by a 
greater slope in the linear model for this variable for those with higher LMT scores (i.e., the 
TIME-LMT interaction).  

Teacher candidates’ beliefs about the elementary curriculum were significantly impacted by 
the first methods course in both the Old and New Programs. This course emphasizes problem 
solving and other mathematical processes fundamental to a standards-based curriculum, as well 
as student construction of both conceptual understanding and procedural knowledge. 

The second methods course in the Old Program significantly impacted teacher candidates’ 
personal teaching efficacy, teaching outcome expectancy, and pedagogical beliefs toward 
learners. The New Program did not significantly influence teacher candidates’ teaching outcome 
expectancy. Pedagogical beliefs related to the teacher were not effected significantly by either 
the first or second mathematics methods course.  

Both the Old and New Programs were effective at increasing teacher candidates’ personal 
teaching efficacy and pedagogical beliefs during the three semesters of coursework and field 
experiences prior to student teaching. During student teaching, as expected, personal teaching 
efficacy continued to increase, while teaching outcome expectancy and pedagogical beliefs 
remained relatively stable. 

Interestingly, the exchange of a second methods course for a fourth mathematics content 
course affected these program outcome variables in both expected and unexpected ways. 
Previously reported increases in personal teaching efficacy and teaching outcome expectancy 
attributed to the second methods course are, as expected, not present in the data for the New 
Program. Changes in MBI Curriculum beliefs during the first methods course continue to be 
significant in the New Program. Changes in MBI Learner beliefs are still influenced significantly 
by time in the program, even though the significant effect of the second methods course is no 
longer available. While greater content knowledge for teaching mathematics (as represented by 
LMT scores) continues to be correlated with higher scores on most of these belief variables, it is 
interesting that the additional content course did not result in a significant increase in LMT 
scores. Also, MBI Teacher beliefs continue to show an influence from LMT scores and continue 
to be more cognitively oriented at the end of the program. Unexpectedly, this increase is not 
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attributable to time in the program or a specific methods course and remains unexplained by this 
analysis. 

Limitations of this study include significant unexplained variances that warrant further 
exploration. We expect some of these variances may be explained by post-hoc analyses of 
differences due to methods course instructor or field experience location. In considering other 
research directions, we also hope to acquire data for these same teacher candidates from the ECE 
mathematics content subscale of the Georgia Assessments for Certification of Educators (GACE) 
as an additional indicator of mathematics content knowledge. 
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In this design study, we investigated 56 pre-service elementary teachers’ understanding of 
equipartitioning. Teachers’ understanding was assessed before and after an eight-week long 
teaching experiment that used a learning trajectories approach. Findings from this study 
indicate that after using a learning trajectories approach in instruction, teachers’ knowledge of 
equipartitioning and their knowledge for teaching equipartitioning increased significantly. 

 
Introduction 

In the last couple of decades, research on learning has focused on understanding how 
students reason and how this thinking changes and evolves over time. Some researchers have 
verified consistent findings relating to these constructs, which they have articulated in the form 
of learning trajectories. While this has contributed greatly to the knowledge base of how students 
learn, the field has just begun to explore the extent to which learning trajectories can be 
integrated into the practice of teaching or in the preparation of pre-service teachers (PSTs). 

 
Theoretical Perspective 

Different terminology and definitions have been used to describe learning trajectories in the 
literature. Simon (1995) indicates that a hypothetical learning trajectory, a teacher’s anticipation 
of the progression of the learning path, provides a rationale for designing instruction, taking into 
account the learning goal that defines the direction, learning activities, and the teacher’s 
prediction of the potential reasoning and learning of students. Clements, Wilson, and Samara 
(2004) indicate a learning trajectory is comprised of a mathematical goal, domain-specific 
developmental progressions that children advance through, and activities corresponding with 
distinct levels of progression. Catley, Lehrer, and Reiser (2005) suggest learning should be 
viewed as the process of developing key conceptual structures (Case & Griffin, 1990), or big 
ideas, which coordinate and integrate isolated conceptual components, indicating instruction can 
be viewed as an orientation towards core ideas that direct teaching and assessment around 
foundational concepts. They suggest teaching should trace a prospective developmental corridor 
(Brown & Campione, 1996), or conceptual corridor (Confrey, 2006), spanning grades and ages, 
with central concepts introduced early in the school experience and are progressively refined, 
elaborated, and extended (Catley et al., 2005). 

A common theme among the various terminologies is that knowledge progresses from less 
sophisticated to more sophisticated levels of understanding in a relatively predictable way. 
Building on the work of others, Confrey, Maloney, Nguyen, Wilson, and Mojica (2008) define a 
learning trajectory, as: 

a researcher-conjectured, empirically-supported description of the ordered network of 
experiences a student encounters through instruction (i.e., activities, tasks, tools, forms of 
interaction and methods of evaluation), in order to move from informal ideas, through 
successive refinements of representation, articulation, and reflection, towards 
increasingly complex concepts over time. 
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We view a learning trajectory as a tool that can be utilized by PSTs to inform key instructional 
activities, such as planning, teaching, and assessing. While student understanding cannot be 
observed directly, learning trajectories seek to identify and describe key items, constructs, and 
behaviors, which can be observed. 

Confrey (2008) defines equipartitioning as the “cognitive behaviors that have the goal of 
producing equal sized groups (from collections) or pieces (from continuous wholes) as ‘fair 
shares’ for each of a set of individuals.” Confrey makes a distinction between creating unequal 
sized parts, which she refers to as “breaking,” “fracturing,” “fragmenting,” or “segmenting,” and 
creating equal parts of a group or whole (i.e., equipartitioning). Confrey et al. (2008) conducted a 
synthesis of the literature on equipartitioning and other areas of rational number reasoning, 
where they articulate a learning trajectory for rational number reasoning concepts and organize 
children’s reasoning of equipartitioning into four cases: (A) sharing a discrete collection, (B) 
sharing a continuous object, and sharing multiple continuous objects between (C) more people 
than objects and (D) more objects than people. Confrey et al. (2008) has built a progress variable 
for equipartitioning (see Table 1), describing the behaviors and verbalizations of different levels 
of understanding of equipartitioning. Within each level (i.e., 1.1, 1.2, etc.), Confrey at al. (2008) 
describes another level of the progression of knowledge: methods, multiple methods, 
justification, naming, reversibility, and properties. 

 
Table 1. Equipartitioning Progress Variable in Relation to Cases A, B, C, and D 

Case Equipartitioning Progress Variable 

D 1.8 m objects shared among p people, m >p 

C 1.7 m objects shared among p people, p >m 

B 1.6 Splitting a continuous whole object into odd # of parts (n > 3) 

B 1.5 Splitting a continuous whole object among 2n people, n > 2, & 2n ≠ 2i 

B 1.4 Splitting continuous whole objects into three parts 

B 1.3 Splitting continuous whole objects into 2n shares, with n > 1 

A 1.2 Dealing discrete items among p = 3 - 5 people, with no remainder; mn objects, n = 3, 4, 5 

A, B 1.1 Partitioning using 2-split (continuous and discrete quantities) 

 
Methods 

This paper reports findings from a larger on-going design study that took place during eight 
weeks of a semester long mathematics methods course within the elementary education 
department of a large southeastern university in the U.S. The study occurred during part of the 
course that focused on the teaching and learning of equipartitioning. Participants included 56 
PSTs who were enrolled in two sections of the course, which met for 75 minutes twice a week. 
The first author was the instructor of both sections of the course. 

One goal of a design study is to create instructional activities or tasks for classroom use 
(Cobb, 2000) and to systematically investigate “those forms of learning with the context defined 
by the means of supporting them” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p.9). 
Thus, a series of instructional activities, or interventions, were designed and implemented to 
investigate PSTs knowledge of an equipartitioning learning trajectory. These interventions 
included the following: 
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 engagement with equipartitioning tasks to develop PST content knowledge; 
 an introduction to the articulation of an equipartitioning learning trajectory; 
 instruction in the conduct of clinical interviews with different types equipartitioning 

tasks; and, 
 instruction in the analysis of video and student work with respect to the 

equipartitioning learning trajectory. 
During the course, PSTs were first introduced to the construct of a learning trajectory. Next, 

they were introduced to the equipartitioning learning trajectory for rational number reasoning 
(Confrey et al., 2008) that situates equipartitioning within this realm of rational number 
reasoning, in order to help PSTs recognize the foundations of equipartitioning in developing a 
more robust understanding of a rational number than is currently enacted in U.S. classrooms 
(Confrey et al., 2008). Over the eight-week period, PSTs were exposed to parts of the 
equipartitioning learning trajectory and progress variable one case at a time. 

As each case was introduced, interventions initially focused on equipartitioning tasks to 
assess and support the development of PSTs’ content knowledge of equipartitioning. The 
equipartitioning/splitting construct (Confrey, 2008) was new to all PSTs. After PSTs engaged in 
equipartitioning tasks and discussed their own solutions, as well as the underlying mathematical 
structures of the tasks, they were introduced to the components of the learning trajectory and 
progress variable. When these components were introduced, video exemplars of K-5 students, 
engaged in working with equipartitioning tasks, were presented. Next, instructional activities 
focused on analyzing other video exemplars of K-5 students. The video exemplars illustrated a 
range of students’ verbalizations and activity as they participated in clinical interviews on the 
same equipartitioning tasks with which PSTs had previously engaged. Class discussion focused 
on analyzing student thinking with respect to the equipartitioning learning trajectory. Lastly, 
PSTs implemented equipartitioning tasks with students in K-2 classrooms. 

Data for this study includes pre- and post-tests developed by the research team to assess 
PSTs content and pedagogical content knowledge of equipartitioning. Many items came from or 
were modified from our synthesis work on equipartitioning or rational number reasoning 
(Empson & Turnner, 2006; Lamon, 1996; Pothier, 1981; Pothier & Sawada, 1989). Rubrics were 
created to score the assessments so that responses could be categorized into four distinct levels 
per item. Instruments were piloted with teachers who were either teaching elementary school at 
the time or who had previously taught elementary school. The pre-test was administered prior to 
the interventions and the post-test was administered on the last day of the study. Both 
assessments were administered during regular 75-minute class meetings under the same 
conditions. For the pre-test, half of the PSTs were randomly assigned to form A and the other 
half were assigned to form B; alternate forms of the assessment were assigned for the post-test. 

 
Results 

Pre-test scores ranged from 16 to 41 on a 54-point scale. Post-test scores ranged from 22 to 
48 on a 54-point scale. Pre- and post-test data were paired by PSTs and analyzed for differences 
using the Wilcoxon signed rank test. The median of the gain scores was 6 points, which was 
significantly greater than zero (S = 70.5, p < 0.0001). Four items have been selected to illustrate 
the ways in which PSTs did and did not show changes in their knowledge. Tasks were selected to 
provide an example of items used to assess pedagogical content knowledge (i.e., Tasks 1 and 2) 
and content knowledge of equipartitioning (i.e., Tasks 3 and 4). Each item and scoring rubric 
will be described, followed by a report on the frequencies of responses and illustrations. 
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Figure 1. Distribution of gain scores. 

 
Equipartitioning a continuous object (i.e., Case B) involves coordinating three components: i) 

using the entire whole; ii) creating equal sized parts of the whole; and, iii) creating the 
appropriate number of equal sized parts of the whole (Confrey, 2008). Tasks 1 and 2 required 
PSTs to generate imagined student responses for students who pay attention to only one of these 
three components (Task 1: component iii; Task 2: component ii), requiring them to consider how 
the other two components could be varied to produce an incorrect or incomplete result. Task 1 
(form A) and Task 2 (form B) are stated below, and the scoring rubrics can be found in Table 2: 

 Draw a picture of how a student might respond to the following task given the 
indicated understanding. Provide an explanation: Sharing a round cookie among 3 
people if the focus is on the number of pieces. 

 Draw a picture of how a student might respond to the following task given the 
indicated understanding. Provide an explanation: Sharing a (rectangular) pan of 
brownies among 5 people if the focus is on the size of the pieces. 

 
Table 2. Rubric for Scoring Tasks 1 and 2 

Level Response Characteristics for Task 1  Response Characteristics for Task 2 
3 Correct number of pieces (with either unequal 

sized pieces, or not filling the whole) with full 
explanation 

Equal sized pieces (with either the incorrect 
number of pieces, or not filling the whole) with 
full explanation 

2 Same as above with incomplete/poor explanation 
or no explanation 

Same as above with incomplete/poor explanation 
or no explanation 

1 Same as Level 3 with incorrect explanation, or 
correct number of equal sized pieces that uses 
whole with full explanation 

Same as Level 3 with incorrect explanation, or 
correct number of equal sized pieces that uses 
whole with full explanation 

0 Incorrect response or no attempt Incorrect response or no attempt 
 
As the results presented in this paper are part of a larger on-going study, we are considering 

the appropriateness of coding correct predicted responses (i.e., correct number of equal sized 
pieces that use the whole) on Tasks 1 and 2 of the pretest as Level 1. While these responses meet 
the criteria for the tasks, they over define it. While coding these responses as a Level 1 on the 
pre-test may be too strict, it is appropriate for the post-test, since the language used in the items 
was made clear in the context of instruction. These items will be modified in the future to clarify 
that PSTs should only focus on the number of pieces or size of the pieces. 

The percent of PST responses in each of the four levels is located in Table 3. On the post-
test, more PSTs provided Level 3 and 2 responses, 43% in comparison to 13% on the pre-test. 
Fewer PSTs provided Level 0 responses on the post-test (25%) than on the pre-test (46%). 
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Table 3. PSTs’ Pre- and Post-test Responses to Tasks 1 and 2 

Level Pre-test Post-test 
3 9% 34% 
2 4% 9% 
1 41% 32% 
0 46% 25% 

 
Examples of PSTs’ representative responses to Tasks 1 and 2 can be found in Tables 3 and 4, 

respectively. The responses are PSTs’ prediction of student strategies for that task, not their own 
strategy. The most common Level 3 response can be characterized in the following way: PSTs 
indicated that students might create 2 parallel cuts that result in 3 unequal sized pieces of the 
cookie. These PSTs explained that students using this strategy would create the appropriate 
number of pieces, but the pieces would not be the same size. Another Level 3 response by PSTs 
suggested students might split the cookie in half, and then half one of the halves, using the same 
explanation as above. PSTs providing a Level 2 response indicated that a student would use 
repeated halving to create four equal sized groups, and then throw away one of the pieces; 
however, the explanation in Table 3 does not explicitly state the child intended to create the 
appropriate number of pieces. The most common Level 1 response suggested a student might use 
the entire cookie by creating 3 radial cuts, coordinating equal sized pieces, appropriate number of 
pieces, and using the entire cookie. Even though Task 1 asks PSTs to provide a strategy for 
students who focus on the number of appropriate pieces, these PSTs presumably assumed the 
student would focus on creating equal sized pieces, as well. The Level 0 response provided in 
Table 3 does not show a student strategy that would result in creating the appropriate number of 
pieces; the PST broke the cookie into 32 pieces, which is not divisible by 3 without a remainder. 
 
Table 3. PST Responses to Task 1 (Form A) 

Level Strategy Explanation 
3 

 

They will each have 1 piece, even if they are not equal. 

 

Kids can visually see making straight cuts that don’t overlap – for some reason this comes 
more natural to them. When size is not important, they will likely do this before they will see 
making pieces equal in size. 

 

If the focus was on the number of pieces and not fair sizes, the student may make an easy 
split then just get 2 pieces from one side. 

 

I think most students don’t know thirds, so they will cut the cookie in half and then one of 
those halves in half. It just says 3 pieces not 3 equal pieces. 

2 

 

Throw away piece would be an extra and not used. Only pay attention to the other 3. 

1 

 

They will understand that they need 3 equal pieces for 3 people. 

0 

 

Simply cut into as many pieces as possible – not even knowing how many. 
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With respect to Level 3 on Task 2, PSTs suggested that students might create both the 
appropriate number of pieces, as well as equal sized pieces of brownies, by creating a 
composition, explaining that extra pieces would not be used or would be saved as leftovers. This 
was the most common Level 3 strategy and explanation provided by the PSTs. Another Level 3 
response was that students might create n cuts, instead of n –1 cuts, explaining that students who 
focused on the size of the pieces would create 6 equal sized pieces, not 5. PSTs indicated Level 2 
responses included the strategies from Level 3, but these responses by PSTs did not provide 
explanations. Almost a third of the PSTs (32%) responded with a student strategy that 
coordinated size, appropriate number of pieces, and use of the entire cake by creating n – 1 cuts. 
Even though the task asks PSTs to provide a strategy for students who focus on the size of the 
pieces, these PSTs presumably assume that students might focus on the number of appropriate 
pieces, as well. The Level 0 response provided in Table 4 shows a student strategy that focuses 
on the appropriate number of pieces, but these pieces are not the same size. 

 
Table 4. PST Responses to Task 2 (Form B) 

Level Strategy Explanation 
3 

 

Might pay attention to size but cut 5 strips (creating 6 pieces) because they know they 
need 5 brownies. 

 

It is easier to cut equal pieces if the number needed is even, so a student might cut the 
brownies in half and then cut it into thirds forming 6 equal pieces – the student will 
disregard the extra piece. 

1 

 

I think that if they know that they must be the same size, then they would make 4 vertical 
cuts to create 5 equal pieces. 

0 
 

Cut into thirds. Then, the largest 2 thirds that is bigger than the other one cut in half. 

 
PST responses were examined for strategy use only (see Table 5). Irrespective of 

explanation, PSTs showed a greater awareness of prediciting the types of strategies that students 
might use who do not coordinate all three components of equipartitioning, especially for Task 1. 
 
Table 5. PST Responses Categorized by Strategy 

 Task 1 (Form A) Task 2 (Form B) 
Strategy Pre-test Post-test Pre-test Post-test 
Level 3 Strategy 21% 58% 3% 31% 
Level 1 Strategy 68% 27% 52% 65% 
Incorrect Strategy or No Response 11% 15% 45% 15% 

 
Tasks 3 and 4 were used to assess PSTs content knowledge of equipartitioning. It should be 

noted that these responses indicate PSTs own solutions to solving the tasks. Task 3 (form A) and 
Task 4 (form B) are stated below (Empson & Turner, 2006): 

 Mustafa folded a square piece of paper and created 12 equal parts. Describe in steps, 
in as many ways as you can, how he folded the paper. 

 Mustafa folded a square piece of paper and created 18 equal parts. Describe in steps, 
in as many ways as you can, how he folded the paper. 

Level 3 responses for Tasks 3 and 4 listed four distinct methods for folding the paper to create 
the given number of partitions. Responses categorized into Level 2 describe three distinct 
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methods, whereas Level 1 responses listed one or two methods for folding the paper. Level 0 
responses included one of the following: a) the method of creating n - 1 (i.e., 11 or 17) parallel 
folds, b) an incorrect method, or c) no attempt. Distinct methods for solving Task 3 include some 
permutation of folding the paper in the following ways: i) half, half, third; ii) fourth, third; iii) 
half, sixth; and, iv) 11 parallel folds or a permutation involving a 12th. Methods for solving Task 
4 include some permutation of folding the paper in the following ways: i) half, third, third; ii) 
sixth, third; iii) half, ninth; and, iv) 17 parallel folds or a permutation involving an 18th. 
 
Table 6. PSTs’ Pre- and Post-test Responses to Tasks 3 and 4 

Level Pre-test Post-test 
3 2% 4% 
2 2% 9% 
1 20% 59% 
0 76% 29% 

 
On the pre- and post-tests, the majority of PSTs were unable to describe more than one 

method for folding the paper to obtain the correct number of equal sized regions. The most 
typical response for Task 3 was some permutation of folding into a half, a half, and a third; the 
most common response for Task 4 was some permutation of folding into a half, a third, and a 
third. On both the pre- and post-tests, PSTs who did not provide the above strategies, often 
responded with an unproductive strategy that involved folding in half or repeated folding in 
halves. Others did not attempt to respond. Very few PSTs utilized the strategy of creating n - 1 
(i.e., 11 or 17) parallel folds; however, more PSTs used this strategy on the post-test than the pre-
test, sometimes in conjunction with other methods. Although very few PSTs were able to list 
three or more distinct strategies for folding a piece of paper to create a given number of equal 
sized partitions, PSTs showed a better understanding on the post-test. More than half of the PSTs 
(59%) were able to describe one or two strategies on the post-test, while more than three-fourths 
(76%) of the PSTs could not elucidate one strategy for folding a piece of paper to create a given 
number of equal sized partitions on the pre-test. Of all the items from the pre- and post-tests, 
PSTs performed the poorest on Tasks 3 and 4. Responses to these items were scored significantly 
lower than any other item. 

 
Discussion 

PSTs knowledge of partitioning and knowledge for teaching equipartitioning increased 
significantly after their participation in instruction that used a learning trajectories approach. 
There is also evidence to suggest that PSTs used components of the equipartitioning learning 
trajectory (Confrey et al., 2008) in their responses relating to students’ understanding. For 
example, consider Task 3. Current work by the DELTA research team and earlier work by 
Confrey (2008), have identified distinct behaviors of students who cannot coordinate creating 
both equal sized parts and the appropriate number of parts when splitting a circle into three parts. 
In this specific case, students often create 2 parallel cuts or might split the circle in half, and then 
half one of the halves. Almost half of the PSTs (43%) showed evidence of anticipating and 
adequately interpreting such a student response on the post-test. To be prepared for the 
complexity and range of diversity in student knowledge that they will encounter as they enter the 
profession, drawing such distinctions is key. 
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Although PSTs’ gain scores significantly increased after the intervention, most PSTs scored 
very low on Tasks 3 and 4 in comparison to the other items. In a study examining children’s 
multiplicative reasoning, Empson and Turner (2006) investigated the role of repeated halving in 
relation to first, third, and fifth graders’ multiplicative thinking as they engaged in paper folding 
tasks. They found that children initially connected the action of folding and the outcome in non-
recursive ways. Other children used an emergent recursive strategy, such as recursive doubling, 
understanding that creating a half fold could double the number of partitions. Few children used 
a recursive strategy to connect the fold and subsequent number of partitions. On the pre-test, 
76% of PSTs used non-recursive strategies that were nonproductive. On the post-test, only 29% 
of PSTs utilized non-recursive strategies in the paper folding tasks. Like the children in the 
Empson and Turner study, very few PSTs used recursive strategies. Even on the post-test, the 
majority of the PSTs needed a concrete material for the paper folding task and only provided one 
or two methods. The first author observed the majority of the PSTs folding paper as they worked 
on both assessments. This is further evidence that few PSTs were using recursive strategies. 
Further on-going item analysis needs to be completed before definitive conclusions can be made 
about PSTs multiplicative reasoning. 

Further analysis is underway to gauge the impact of a learning trajectories approach on PSTs. 
A complete analysis will include examining how their participation in the course tasks generated 
changes in their knowledge of both student thinking and equipartitioning. In addition, a detailed 
analysis of their subsequent interactions with children will begin to permit us to evaluate the 
degree to which a learning trajectories approach can be a productive strategy in pre-service 
teacher education. 
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In this study, I use the tools of critical linguistics analysis to explore how preservice elementary 
school teachers’ beliefs about the nature of mathematics may be influenced within a primary 
source of mathematical activity in classrooms: textbooks. The language within these textbooks 
implicitly promotes particular views about mathematics, which we analyze here. I discuss how 
the textbook authors’ choices related to Halliday’s (1973) ideational function of language—
which includes the actors within the text as well as the processes present—can promote three 
particular views about the nature of mathematics: the Platonist view, the instrumentalist view, 
and the problem-solving view. 
 

Introduction 
Though it has been well-established that textbooks play a substantial role in teachers’ 

decisions about what is taught in K–12 classrooms (Stein, Remillard, & Smith, 2007), less is 
known about the nature of preservice teacher mathematical beliefs and textbook interaction 
before entering those classrooms, particularly within their teacher preparation programs.  Just as 
textbooks influence what is taught and learned in elementary through high school mathematics 
classrooms, they “exert a major influence on the content and approach of courses for prospective 
elementary teachers” (McCrory, Siedel, & Stylianides, 2007, p. 5), reaching over 80,000 students 
in teacher preparation programs each year. Textbooks work from an underlying philosophy about 
the nature of mathematics as a discipline, as well as the assumed knowledge that students bring 
with them to the classroom. These ideas “combine to create a distinct view of mathematics and 
mathematics learning that permeates each textbook” (McCrory et al., 2007, p. 13), one that has 
the potential to influence the development of the beliefs of their readers. While this study does 
not provide a complete picture of that development, it aims to provide a good starting point by 
using the tools of systemic functional grammar (Halliday, 1975) to address my research question: 
what views about the nature of mathematics are being promoted in textbooks for preservice 
elementary school teachers? 
 

Conceptual Framework 
 The critical discursive framework developed for this analysis is shown below (see Figure 1). 

Its foundation is in the work of Morgan (1996), whose ideas about critical discourse analysis 
closely reflect those used by linguist Norman Fairclough (1993) and are grounded in his 
assumption that every text somehow contributes to an individual’s identity within their culture. 
Both claim to have their ideas rooted in the multifunctional linguistic theories represented in 
Halliday’s (1985) functional systemic linguistics.  
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Figure 1. Conceptual Framework. 
 

The framework has two dimensions, the first comprised of the components of linguistic 
analysis and the second being the different views about the nature of mathematics. I adopt the 
three distinct views Ernest (1988) detailed in his review of empirical studies focusing on 
teachers, namely the problem-solving view, the Platonist view, and the instrumentalist view.  
While others have suggested different characterizations about the nature of mathematics, my 
choice to use these three is supported by Thompson’s (1984) findings that these views parallel 
those most frequently observed in mathematics teaching. 

This framework proposes ways in which the linguistic components of actors and processes 
can be connected to these different views about the nature of mathematics by indicating the 
probable actors present as well as the types of processes in which they would likely participate 
within each view, with these intersections indicated by the stars. For example, according to the 
star placement in the framework, the Platonist view supports the intersection of non-human 
actors participating in material processes. Next, I elaborate further on the different dimensions of 
the framework and how they intersect. 
The Platonist View 

So named due to its roots in ideas of Plato, the Platonist view portrays mathematics as a static 
body of knowledge, “bound together by filaments of logic and meaning” (Ernest, 1988, p.10), 
waiting to be discovered as opposed to being created.  A textbook working from the Platonist 
view would indicate the presence of the reader as an actor in the discourse by using the personal 
pronoun you, with phrases such as you see controlling the ways in which the mathematics is seen 
and understood. Mathematics is not created but is depicted as an entity that exists independent of 
the student. In addition to human actors, this view would support the frequent use of 
nominalization within the text, where mathematical objects themselves are positioned as actors 
in control of the understandings and the human actors positioned as passive recipients of the 
knowledge. Given that both human and nonhuman actors are present, use of both the active and 
passive voice is possible, obscuring the agency of the reader as well as any other human 
participant. Morgan (1996) suggests that having a large portion of “mental processes (e.g., 
seeing, thinking) may suggest that mathematics is a pre-existing entity that is discovered” (p. 4), 
in agreement with the followers of Plato. These processes involve the inner experience of the 
participant, representing their perceptions, desires, and emotions such as think, observe, and 
recall.  
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The Instrumentalist View 
Textbooks working from an instrumentalist view see the discipline as a collection of 

“unrelated but utilitarian” (Ernest, 1988, p.10) facts and procedures used by those trained with 
the tools to accomplish a particular end. Emphasis on procedures here necessitates the presence 
of human actors to carry out those procedures, yet with a very restricted role in the creation of 
the knowledge. Though the use of an active voice would be expected, the reader’s actions would 
stress the importance of systematic, rote exercises in order to promote precision and mastery of 
tools. Of all the views, it is the instrumentalist view that is most likely to use the pronoun you 
with expressions of the form you + (a verb), such as in you calculate, often accompanied by 
temporality sequences that consequently restrict the reader’s activity. Such a focus on procedures 
indicates a large proportion of material processes, which “may be interpreted as suggesting a 
mathematics that is constructed by doing” (Morgan, 1996, p.3), procedures taking precedence 
over conjectures. These processes deal with the actors participating in some kind of activity 
outside of themselves in the physical world involving some other actor within the situation, using 
verbs such as write, draw, and calculate.  
The Problem-Solving View 

Textbooks grounded in the dynamic problem-solving view suggest that new mathematics is 
constantly being invented through a process of inquiry that is open to revision. Given the 
emphasis placed on the student’s role as an active participant in the creation of knowledge, a 
textbook promoting this view would not only suggest the presence of human actors within the 
activities, but that the reader is actively included as a decision maker within those activities. 
Pronouns such as I and we may point to the acknowledged presence of the reader, and the high 
level of interaction on the part of the student required by this conception suggests the use of the 
active voice promoting the actors present performing the action. Since “a high proportion of 
material processes may be interpreted as suggesting a mathematics that is constructed by doing” 
(Morgan, 1996, p. 4), that is the mathematics promoted within the problem-solving view. 
Relational processes are those that identify and associate one experience with other experiences, 
using verbs such as is, connects, and relates.  

 
Methodology 

Textbook Selection  
The textbooks included in this analysis were chosen based on the work done by McCrory et 

al. (2007), which explored and compared the content of 14 textbooks used in mathematics 
courses for prospective elementary school teachers. One of many dimensions discussed there, the 
mathematical stance of a textbook was described as “addressing the conception of mathematics 
that the book presents: What is important? What is the nature of mathematics? How does 
mathematics work as a discipline?” (p. 13). Given that my goal was to analyze the nature of 
mathematics being presented in these textbooks, I concentrated my exploration on three of the 
four textbooks described as possessing explicit mathematical stance in the McCrory et al. (2007). 
These textbooks were found to be consistently explicit in describing the general function and 
importance of mathematical ideas. However, this earlier analysis was not able to illustrate what 
the authors’ proposed as being the general function and importance of mathematical ideas, 
indicators of the view about the nature of mathematics being promoted. Therefore, these explicit 
textbooks offered the greatest opportunity to capture a text’s promoted view using my analytic 
tools. Written by Darken (2003), Parker & Baldridge (2004), and Wu (in preparation), the texts 
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will be referred to by their authors’ names from this point forward. I could not obtain a copy of 
the fourth book classified as explicit in time to include it in this analysis.  
Focus on Number Theory and Definitions 

Here, we restrict our discussion to only definitions found within the chapter in each book 
related to number theory topics. The fact that number theory is a customary topic covered in 
most mathematics courses for preservice elementary school teachers serves as the rationale for 
its selection. At the author’s request, Wu supplied an electronic copy of his number theory 
chapter for my analysis, as the complete textbook is still being revised for publication. 

The choice to focus my analysis on definitions in textbooks was not arbitrary. In addition to 
playing an important role in mathematical activity, the presentation of definitions in textbooks 
can capture how the textbook promotes different mathematical views. For example, one text may 
simply provide the reader with a single definition and present it as being the only definition 
possible, while another may engage the reader in the creation of a definition that is open to 
modification. These two textbooks would be promoting vastly different views about the nature of 
mathematics, the first Platonist and the second problem-solving.   
Coding 

Though one of the three textbooks did not contain a chapter explicitly titled “Number 
Theory”, the chapter chosen had the greatest intersection of topics with the other two textbooks’ 
number theory chapters. The analyses that follow focus only on the following concepts: factors, 
divisors, divisibility, even and odd numbers, prime numbers, LCM, and GCD. I determined the 
section to be analyzed to include the introduction, statement, and discussion of each definition. 
This did not include examples or related theorems or lemmas. Each sentence in these sections 
was coded according to the actors present and the type of process used. Human actors were 
coded according to personal pronouns used (you, we), while third-person participants (e.g. the 
student, someone) and non-human actors (e.g. mathematical objects) were simply coded as 
belonging to one of the two groups. A list of all verbs used in within the sections of interest were 
generated and classified as representing either a mental, material, or relational process and then 
shared with two other mathematics education doctoral students. These classifications were 
discussed and modified until all three parties reached agreement, and each sentence was given 
the appropriate process code. Since there were several sentences in each section, it was possible 
for concepts to have multiple codes. In addition to the quantitative code frequency measures, I 
also share sample qualitative analyses of the findings.  
 

Results and Discussion 
General Findings 

Table 1 shows the results of my analysis, with the values representing the percentage of 
codes falling into each intersection of the different actors and processes. By summing the 
columns or rows, this table also provides the frequencies of each individual actor or process, 
respectively, for each analyzed text. 

Considering the high proportion of both human and non-human actors participating in 
material processes (62% overall), Parker and Baldridge (2004) appears to strongly support an 
instrumentalist view of mathematics. The very first sentence of the chapter supports this 
categorization and sets the tone for all of the activities that follow: “Mathematics is built on 
precise definitions and proceeds using clear reasoning” (p. 109). As described in the case of 
prime numbers and to some degree common to all three texts, the majority of the discussions 
surrounding the various terms defined in the chapter acknowledged the presence of human actors 
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(the student), yet those actors had a very restricted role in the creation of the knowledge being 
developed. While the use of we may imply that the author is establishing solidarity with the 
reader and placing them at equal positions of power within the text, there are several instances 
within discussions that indicate this we is more exclusive than inclusive. For example, in the 
section dealing with divisibility tests, the authors precede the definition of divisible with the 
following statement: “In the remainder of this chapter, we will often use letters A, B, …, k, l, … 
and a, b, … to represent whole numbers. At any time, you may assign them specific values (like 
A=20, k=5) to aid your understanding” (p. 113, italics added). Therefore, while the students are 
certainly present, the processes in which they are to engage are purely material, constructing a 
mathematics which is about practical activity that is carried out in a procedural way. I also found 
a large proportion of the codes (20%) showed non-human actors participating in relational 
processes, which my framework suggests would be promoting a problem-solving view of 
mathematics by focusing on connections between mathematical ideas. Non-human actors 
engaged in material processes points towards a more Platonist view.  

  
Table 1 

(Rounded) Percentages of Actors and Process Found in the Textbooks 
                           Frequencies (in percentages) 

 Darken (2003) Parker and Baldridge (2004) Wu (in preparation) 

 

Actors We You 3rd 
person 

Non- 
human We You 3rd 

person 
Non-

human We You 3rd 
person 

Non- 
human 

Pr
oc

es
se

s Material 13 21 8 11 14 12 16 20 33 2 4 9 

Mental 5 5 2 0 3 6 6 1 15 12 2 1 

Relational 0 5 0 30 0 0 2 20 1 1 0 20 

 
The picture of mathematics presented by Wu (in preparation) has some similarities to Parker 

and Baldridge (2004). Though I found we to be the most prevalent actor in the text (accounting 
for almost half of the codes), which suggests human agency in the discussion, there is strong 
evidence that the reader is not assumed to be actively participating in the knowledge being 
introduced. When describing “our enduring interest in the primes” (p. 10), Wu places himself in 
the authoritative role, considering that prime numbers had only been defined in the previous 
sentence and the reader has not yet had a chance to fully understand what prime numbers are, let 
alone develop such a powerful interest in them. The mathematics is introduced in a very matter-
of-fact manner, with each new idea logically derived from the former in a linear fashion. Like 
Parker and Baldridge, the presence of non-human actors involved in material processes is 
evidence of what linguists call nominalization, which “describes language structure that obscures 
human agency” (Herbel-Eisenmann & Wagner, 2005, p.123), where inanimate objects (in this 
case, mathematical objects) perform activity usually related to humans. Almost every definition 
described in the chapter, and more generally the entire book, is followed by a collection of 
theorems using those definitions. In this area, it is common to find a phrase such as “the theorem 
tells us”, or “the theorem says”, which “depicts an absolutist image of mathematics, portraying 



Vol. 5  1216 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
 

mathematical activity as something that can occur on its own, without humans” (Herbel-
Eisenmann & Wagner, 2005, p.123). Indeed, the reader has little to do with the creation of 
definitions or related mathematical knowledge, asked to serve as a mere spectator of the 
activities, and to accept that which has been “clearly” outlined. Though material processes such 
as “check”, “remove”, and “define” were most commonly found throughout the chapter, at 30%  
Wu contained the largest proportion of mental processes of the analyzed text, processes that 
Morgan (1996) claims “may suggest a mathematics that is a pre-existing entity that is discovered 
by mathematicians” (p. 2). These things considered, I suggest that Wu’s text works from and 
portrays a more absolutist view of mathematics, having instrumentalist tendencies but more 
Platonist considering the overwhelming restriction of reader activity (the exclusive we) and the 
12% of codes describing mental processes in relation specifically to the reader (you), which was 
the was the highest frequency any processes. 

Though being the least common human actor present (at 18% of the total), Darken’s (2003) 
we not only suggests an awareness of human agency, but the ways in which it is used also 
includes the reader as a participant of mathematical activity.  Most of the 21% of you actors 
participating in material activities were in the form of imperatives, commands which were seen 
as inclusive, welcoming into the community as an active participant first given the chance to 
construct their own knowledge with the formal definition coming later. This is in sharp contrast 
to the similar activity described in Parker and Baldridge (2004), where the definition was given 
with little reader contribution, after which the student is lead temporally through a procedure. 
Whereas Parker and Baldridge employed a narrow to broad pathway (meaning they began with 
the definitions and then used a variety of problems to discuss the term), Darken’s approach 
started broad, narrowed, and then broadened once again, starting the conversation with a reader-
driven activity that better prepared them for a more formal discussion of prime numbers. Despite 
a clear emphasis on certain procedures, there is evidence to characterize this text as promoting a 
problem-solving view of mathematics, with some instrumentalist tendencies. At 35%, the book 
contained the largest proportion of relational processes found in any of the analyzed texts, with 
most of the 52% material processes related to human actors (excluding the 11% with non-human 
actors) being classified as inclusive imperatives. More importantly, these processes are combined 
with a picture of the reader/student that often appears to be invited to share in the mathematical 
activity of defining, as well as to be engaged in considering the evidence supporting the 
developed argument. 

Now that I have provided an overview of the general findings of my discourse analysis, I 
next focus on the particular definition of prime numbers. In describing the actors and processes 
used in the different text in relation to this common concept, I attempt to illustrate the different 
views about mathematics that may be promoted by each textbook. 
Prime Numbers: An Illustration 

Though each textbook acknowledges that the student has a role within the discussion of 
prime numbers, the authors’ choice of processes in which the students are involved seem to 
promote different ideas about what that role entails. In addition to using we as a means to 
construct the student as an active member in the mathematics, Darken (2003) encourages the 
student to initially share in the responsibility of creating their knowledge about primes. With 
prime numbers in particular, Darken asks the student to initially share in the responsibility of 
creating new knowledge instead of simply stating the definition for the reader to accept 
unquestioningly.  The chapter opens with an activity meant to fuel the students’ investigations 
into possible emergent patterns that moves them toward the notion of prime numbers. 
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Instructions are given about how to use the chart, but the authority is quickly given to the reader, 
where the author makes comments about “your work” and “your patterns” at the heart of the 
activity. By participating in the relational processes of investigating and observing patterns, the 
students are presented with “a picture of mathematics as a system of relationships between 
objects or between objects and their properties” (Morgan, 1995, p. 3), in this case natural 
numbers, their factors, and the property of being prime. 

In contrast, Parker and Baldridge (2004) and Wu (in preparation) restrict the student’s role as 
an active participant in the mathematics.  While Darken (2003) asks the student to explore the 
mathematical terrain of prime numbers and to share in decision-making activity, a student using 
Parker and Baldridge is directed to carry out material tasks related to a described procedure to 
follow, using imperative instructions. While the former suggests a view of mathematics that is 
dynamic and creative, the focus of material processes in the latter “may be interpreted as 
suggesting a mathematics that is constructed by doing” (Morgan, 1995, p. 3), procedures taking 
precedence over conjectures. Though not immediately clear, the use of imperatives in both texts 
is related to their seemingly more exclusive use of we. Instead of interpreting imperative 
commands like find, list, and explain as mathematical convention, the reader may interpret their 
role in relation to mathematics as only that of a follower of rules in a procedure-centered 
discipline. As in earlier discussions, I use Rotman’s (1988) dichotomy of imperatives as being 
either inclusive or exclusive, with the first constructing a reader whose actions are included in a 
community of people doing mathematics, whereas the other constructs one whose actions can be 
excluded from such a community. I illustrate the difference between these imperatives as used in 
two of the texts, and discuss the corresponding consequences. 

Parker and Baldridge (2004) and Darken’s (2003) main activities within the discussion of 
prime numbers appear at first glance to be superficially similar. While both seem to acknowledge 
the student as an active participant, their efforts to demonstrate the relationship between the 
factors of a number and the attribute of being prime, the differences and the processes that are 
entailed highlight contrasting views about where the authority in that knowledge lies. Before any 
mention or definition of the term prime, Darken opens the chapter with a mostly blank chart that 
is meant to fuel the students’ investigations into possible emergent patterns. Instructions are 
given about how to use the chart, but the authority is quickly given to the reader, where the 
author makes comments about “your work” and “your patterns” at the heart of the activity. The 
commands are inclusive, welcoming the reader into the community as an active participant. 
Parker and Baldridge on the other hand, acknowledge this relationship between factors and the 
condition of being prime, but instead of promoting exploration the students are guided through a 
process driven by exclusive imperatives such as “proceed, circle, cross out”, not giving them a 
choice to act otherwise or question the command. Though both are grounded in the same 
mathematical ideas, the different processes engaged in by the reader (mental vs. material) in 
discussing prime numbers have the potential to present two very different views about 
mathematical activity, the first situating them as creators and the second as followers. 

 
Conclusions and Implications 

This analysis explored how linguistic choices made by textbook authors can promote 
different views about the nature of mathematics. I observed distinct contrasts in the ways the 
authors of the three textbooks examined have chosen to create, discuss, and use definitions, 
affecting the ways in which those views are being promoted. Are pronouns such as you and the 
inclusive we present with imperative verbs, inviting the reader to play an active role as a problem 
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solver in the discussion? Does the author place actions in the hands of inanimate mathematical 
objects, Platonistic and existing independent of human activity? Does the student feel present in 
the mathematical conversations, but only as an individual meant to accept given material and 
procedures to follow as unquestionable? 

In conjunction with the work done by Morgan (2005), the sample analyses of this study can 
provide textbook authors, curriculum developers, and teacher educators charged with selecting 
textbooks with linguistic tools that can help them “anticipate the meanings, both substantive and 
positional” (Morgan, 2005, p. 9) relating to views about mathematics that is being supported by 
textbooks for elementary school teachers. Also, it may help those authors realize the views about 
mathematics being promoted in their texts about which they may have not even been conscious. 
These tools can serve as a guide to develop textbooks that construct the roles and authority, the 
relationships between the reader, author, and mathematics, and the overall vision about the 
nature of mathematics more purposefully in alignment with the view of mathematics desired by 
the author. In attempts to investigate consistencies in linguistic choices, an interesting direction 
for future research would be to examine other content areas in addition to number theory and 
compare the results with those found here. While textbooks are certainly not the only potential 
source that influences preservice elementary teachers’ beliefs about the nature of mathematics, 
they are certainly a prevalent feature in the majority of classrooms in this country, from the 
elementary to the university level. Therefore, whether intentional or not, the language choices 
made by textbook authors promote particular views about the nature of mathematics that may 
influence the reader’s view of the nature of mathematics and their position with respect to the 
discipline, and so those choices should be made carefully and consciously.  
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Preservice elementary school teachers (PSTs) struggle to understand numbers in our base-10 
number system, but uncovering their base-10 conceptions is difficult because the underlying 
mathematical structure is masked by language and prior experience operating on numbers in 
base-10. PSTs’ conceptions of numbers were explored through work on identifying numerals in 
the Mayan number system (base twenty) during which PSTs drew on their base-10 conceptions. 
Of 24 participants only 6 could identify a 3-digit and a 7-digit Mayan numeral correctly. Both 
those numerals were the digit equivalent to 1 with 2 and 6 zeros, respectively, attached. The 
PSTs’ answers are categorized and explained. Implications for mathematics education are 
discussed. 
 

Background and Theoretical Framework 
Place value is an essential part of the elementary school mathematics curriculum. However, 

PSTs as well as teachers often struggle explaining numbers beyond procedural applications 
(Ball, 1988; Ma, 1999; Ross, 2001; Thanheiser, 2005). Previous work (Thanheiser, 2005) has 
shown that only 3 of 15 PSTs were able to draw on the underlying structure of our number 
system to interpret the values of the digits in a number and relate them to one another. Because 
of this underlying structure of the base-ten power sequence, the relationship among adjacent 
digits is a multiplicative relationship with a factor of 10.  Each place represents a value 10 times 
as large as the next lower place. Thus, if one moves a digit one place to the left, its value is 10 
times as great as previously. One difficult aspect of understanding the underlying structure on 
which our numbers are built is that it is implicit, not explicit. Many PSTs use a tens and ones 
language; that is, they use phrases such as “I borrowed a ten.” However, that tens and ones 
language is often only procedural (Ball, 1988; Thanheiser, 2005). For many prospective 
teachers, facility using base-ten language masks lack of understanding (Ball, 1988). Even 
though PSTs read 367 as “three hundred sixty-seven,” they may not think of the individual 
digits as representing 3 groups of 100, 6 groups of 10, and 7 groups of 1 or that a hundred is 10 
tens and a ten is 10 ones— both important aspects of understanding numbers in our base-ten 
number system. To avoid the use of this tens-and-ones language and other masking aspects of 
our base-ten language, we explored a different number system (the Mayan base-twenty system1) 
and related it to the base-ten system. We conjectured that considering mathematics through the 
lens of a different numeral system would help teachers recognize the complexities of the base-
ten system.  

Our research grows out of a rich cognitive-science paradigm focused upon children’s prior 
knowledge in learning situations, a consideration that is equally important in work with adults 
(Bransford, Brown, & Cocking, 1999). To help PSTs develop a solid understanding of 
mathematics, we need to build upon their initial conceptions, which both determine what they 
understand when looking at a number and serve as a basis for building more sophisticated 
conceptual structures. Our goal in this study was to further understand how PSTs think about 
numbers in our number system and how we could use those conceptions to design instruction.  
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Method 
The data analyzed are drawn from four 160-minute teaching sessions and a preinterview, and 

a pre- and post-assessment with each with 24 preservice teachers at a large, urban, 
comprehensive state university. All participants were enrolled in a preservice teacher elementary 
mathematics methods course and were about to begin student teaching. The teaching sessions 
were part of the regular methods course.  

In the pre- and post-assessments, we asked the PSTs to explain regrouped digits in 
addition and subtraction problems (e.g., see Figure 1).  

 

 
1. Please explain what the “1” above the 8 represents. 
2. Please explain what the “1” above the 3 represents. 

Figure 1. Sample task from pre- and post-assessment. 
 

During the teaching sessions, the PSTs explored Mayan numerals, a base-twenty place-value 
system that uses three symbols. A dot represents one unit, a bar represents five units, and a shell 
represents zero units. These symbols are grouped to create digits from 0 to 19. Five dots are 
grouped into a bar. Thus, the number 13 would be represented by two bars and three dots. Four 
bars are regrouped as one dot on the next higher level. Place values increase from bottom to top. 
That is, symbols on the lowest level represent groups of ones, and thus have values 1–19, 
whereas symbols on the second level represent groups of 20 and thus have values 20–380, and so 
forth. Participants began by exploring Mayan numerals in a homework assignment in which they 
converted between Mayan numerals and standard (base-ten) notation and performed simple 
addition problems with Mayan numerals. The assignment was taken from Teaching Mathematics 
in the Middle School (Overbay & Brod, 2007). Included in the homework was a reference table 
that listed the Mayan numerals equivalent to 1–29 in base-ten notation (for some sample 
references and problems, see Figure 2).  

 

 
Figure 2. Examples of references and questions on homework assignment. 

 
During the class period following the Mayan homework assignment, PSTs worked in groups 

to answer the questions in Figure 3. The homework assignments and in-class writing assignments 
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were collected and analyzed using open coding (Strauss & Corbin, 1990). The analyses of the 
answers to the questions in Figure 1 are reported in this paper.  

 

 
Figure 3. In-class task for preservice teachers. 

 
Results and Discussion 

Only 7 of 25 PSTs in the class correctly explained the regrouped 1s in a three-digit addition 
problem (see Figure 1) at the beginning of the class. Nine PSTs said that both 1s represented 10, 
and 8 PSTs said that both 1s represented 1.  

 
Table 1. PSTs’ Explanations for the Regrouped 1s in Three-Digit Addition on Pretest 
   Values attributed 
to the 1s in  

     

1—10 regrouped from 
the one’s place 
1—100 regrouped from 
the ten’s place 

1—10 (from the 14) 
1—10 (from the 16) 

 
1—1 (from the 14) 
1—1 (from the 16) 
 

Number of PST 
responses  7 9 8 

 
Developing an understanding of the values of the digits in a number is nontrivial 

(Thanheiser, 2008). The Mayan-numbers task was designed to illuminate the PSTs’ conceptions 
of how numbers are built on the underlying structure of the number system.  

All PSTs correctly represented 20 as dot, shell for Question 1. This result is not surprising 
inasmuch as PSTs used the Mayan numeral for 20 in their homework assignment. The correct 
answer for Question 2 is 400 in the base-twenty system in which the value of dot in the third 
place is 202, 20 × 20, or 400. Only 11 PSTs correctly answered this question (see Table 1), and 
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13 PSTs incorrectly answered 200 on the basis of (a) interpreting the dot, shell as 20 and the 
shell as a zero that is appended, (b) interpreting the dot, shell as 20 and appending another place 
value, or (c) using the fact that the number had three symbols to assign the highest place value as 
hundreds. J, for example, explained, “Dot, shell = 20, and shell = 0. [The] shell symbol 
represents the 0 place holder, so the 0 will be added [meaning appended2] to the 20 making the 
number 200.” E stated, “There is a symbol for 20 with one more for the place value.” And T 
explained, “Because dot, shell represent 20 and another shell underneath represent another place 
value, hundreds.” These answers reflect the rules of our base-ten system in which a symbol with 
1 zero has a value in the tens and a symbol with 2 zeros has a value in the hundreds (e.g., a 3 
with 1 zero is 30, and a 3 with 2 zeros is 300). PSTs are able to read such numbers without 
thinking of the underlying structure of our base-ten system. This structure relates adjacent place 
values by a multiplicative factor of 10 (i.e., in 33333, the second 3 from the right is 10 times the 
value of the first 3 on the right, etc.). This multiplicative relationship between number places is 
not obvious to PSTs (Ross, 2001; Thanheiser, 2005). The rule of appending a zero for each place 
value when we move to the left combined with the fact that most adults are fluent readers of 
numbers masks the fact that the value of each digit in a number is 10 times the value of the digit 
to its right. More than half of the PSTs in this class did not utilize this multiplicative relationship 
to determine the value of dot, shell, shell.  

All 13 PSTs who incorrectly interpreted dot, shell, shell as 200 incorrectly answered 
Question 3. Twelve interpreted a dot with 6 shells as 2,000,000, and one interpreted it as 
20,000,000. Justifications were consistent with those used for 200 in that most students discussed 
appending zeros to a number each time they saw a shell. For example, W explained, “As the 
above problem, we used 20 because it’s a base-twenty system and then added the zeros after.” W 
explicated her understanding of a base-twenty system as a 20 with zeros added for increasing 
place values. Instead of viewing the succeeding values of the symbols in a base-twenty system as 
20 times as great as the preceding, W saw the values of the symbols as increasing according to 
appended zeros. Other PSTs’ ideas were similar to W’s. J explained, “Dot, shell represents 20 
plus 5 shell so add 5 zeros to 20, which equals 2,000,000.” C explained, “Dot, shell is our 20, 
and the remaining shells stand as place holders.” 

As noted, all 13 PSTs who incorrectly answered Questions 2 and 3 had correctly said that 
dot, shell represents 20. Their Question 1 explanations often lacked the specificity needed to 
determine how they thought about the number. H, for example, explained, “The dot above stands 
for 20, and the shell is zero. So 20 + 0 = 20.” If not probed further, this answer could represent 
multiplicative thinking; her explanation for dot, shell, shell as 200, however, revealed that she 
was thinking of the shells in terms of place holders to the right of a 2: “Two shells are place 
holders.” Similarly C explained dot, shell as “top is one group of 20; shell means zero.” Again 
this response could be indicative of multiplicative thinking, but her explanation for dot, shell, 
shell as 200 revealed that it was not: “Dot zero is 20 so if you add a zero (shell),” it is 200. Thus, 
because the PSTs knew that dot, shell represented 20, some gave explanations that sounded 
multiplicative but that when probed we saw were not.  
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Table 2. The PSTs’ Interpretation of Mayan Numerals 

Task 
Dot shell shell  

and  
dot with 6 shells 

Responses 200 and 2,000,000 / 
20,000,000 

400 and 
other incorrect second 

response 

400 and  
64,000,000 

Nature of 
response Both incorrect First correct 

second incorrect Both correct 

 
Number of 

PSTs giving 
the response 

 
13 

 
5 

 
6 

 
Of the 11 PSTs who correctly answered Question 2 as 400, 5 gave incorrect answers for 

Question 3. Four of these 5 PSTs explained the 400 for Question 2 similarly3: Because of the 20 
in the second place value, the value is 20 × 20 with a zero in the first place value, yielding 400 + 
0. Three of these 4 gave 40,000 as their answer to Question 3.4 K, for example, explained, “Dot 
shell is in the raised spot and is multiplied by 20 which equals 400, then the shell is equivalent to 
0, so 400 + 0 = 400.” For Question 3 she explained, “The top = 400 then the next two reps. a 
place value of 0 in the 1000’s + 10,000’s spot.” D used a similar explanation for dot, shell, shell: 
“It is 20 groups of 20 (shown by the top) and zero on the bottom—20 × 20 = 400.” For Question 
3 she explained, “Mayans may have written numbers from top to bottom rather than left to right 
like we do.” D and K seemed to see the dot shell as one numeral (20) on the second level worth 
20 twenties rather than dot as a 1 on the third level worth 1 four-hundred. This is equivalent to 
seeing 500 in the base-ten system as 50 tens and 0 ones. This is a correct interpretation of the 
number, but interpreting the dot, shell as one symbol masks the nature of the place-value 
structure as iterations of multiplication by 20. D’s interpretation does not show that she 
understands 20 twenties as equivalent to 1 four-hundred. This connection between 20 twenties 
and 1 four-hundred is an important connection for understanding these numbers. In our base-ten 
system it translates to being able to see 100, for example, as 1 hundred as well as 10 tens. This 
connection has been shown to be nontrivial for PSTs (Thanheiser, 2005). In addition 100 is 
connected to 100 ones, as is inherent in the place-value language in the base-ten number system. 
This connection becomes important, however, when we move beyond interpreting the symbol for 
hundreds to interpreting symbols for larger numbers and operating on numbers. G explained the 
answer 40,000: “Mayans might’ve written numbers top to bottom & two symbols (top & bottom) 
make a number set & just write it out in order. Shell, shell = 0 (because 0 × 20 + 0 = 0) and the 
second set of shell, shell is also zero, so place it next to 400.” Thus G seemed to interpret Mayan 
numerals in double-digit sets. She seemed to think two shells together were equivalent to 
appending a zero as a placeholder in the base-ten notation of the number. She seemed to interpret 
the dot followed by six shells in three parts: dot, shell, shell on the top is 400, shell, shell is a 
zero placeholder; and the following shell, shell is another zero placeholder, which gives 40,000.  

The interpretations of dot shell as 20 and thus dot, shell, shell as 200 or of dot, shell, shell as 
400 and thus a dot with 6 shells below it as 40,000 may be rooted in the notion that in base ten 
we merely append zeros to a number. In base ten, this practice of appending zeros is equivalent 



Vol. 5  1225 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

to multiplying by 10, but in different base appending zeros is equivalent to multiplying by that 
base (i.e. in base 4 the number 12 multiplied by 4 is 120). One reason to work with PSTs in a 
different base is to explicate some of these underlying structures of our base-ten system. PSTs 
often operate on numbers without understanding the reasons underlying those operations (Ball, 
1988; Ma, 1999), and because the language facilitates the connections between numbers and 
values, these underlying structures are often difficult to explicate in base ten. 

All 6 PSTs who correctly answered Question 2 (400) and Question 3 (64,000,000) indicated 
the use of iterative multiplication by 20 as their source for their answers to Question 3. Z, for 
example, justified his answer that dot followed by six shells was 64,000,000 as follows: “Each 
level is 20 of the previous level. 1 × 20 × 20 × 20 × 20 × 20 × 20 = 64,000,000.” Similarly, A 
explained the same answer: “There is a pattern where each dot on each level is 20 times more 
than [sic] the dot on the previous level,” indicating that she understood the nature of a base-20 
number system in which the value of each place is 20 times the value of the place to the right. 
However, not all 6 of these PSTs used this reasoning to answer Question 2. Three PSTs argued 
that one must regroup to the next higher level once there are “too many” in the second place. M, 
for example, stated, “Because the dot is the 3rd level, and once you are at 4 bars, you go up 
another level for a dot. Each bar in the second level equals 5 dots, and thus 5 × 20 or 100. Thus 
four bars equal 400 and would need to be regrouped into a dot at the next level.” This is a valid 
argument, but impractical for explaining large numbers. Two PSTs used the argument that they 
had a 20 in the second place value; thus 20 × 20 = 400. One PST gave no explanation. 
  

Conclusion 
The Mayan-numeral activities described were designed to assess PSTs’ understanding of the 

underlying structure of numbers in our place-value system. Although the PSTs had worked with 
2-place Mayan numerals for homework, more than half of the participants were unable to 
correctly interpret 3-place Mayan numerals. Most PSTs did not attend to the underlying structure 
of base twenty. They either interpreted the dot as a 2 and appended 2 zeros for the two shells or 
interpreted the dot, shell as 20 and appended 1 zero. Appending a zero to a digit is equivalent to 
multiplication by 10 in our base-ten number system, but doing so in the Mayan (base-twenty) 
system is equivalent to multiplication by 20. Although the PSTs were able to read a dot shell in 
the Mayan system as 20, most were unable to assign the correct value (1 × 20 × 20) to dot, shell, 
shell. The underlying structure of numbers in our base-ten system remains implicit when PSTs 
work with numbers in base ten. PSTs become accustomed to reading base-ten numbers, in which 
each digit is 10 times the value of that to the right of it. In doing so, they may miss the number 
meaning in the base-ten number system. Making the structure of the base-ten system explicit 
while working within base ten is difficult because the labels we use for the places (ones, tens, 
hundreds) are the same as their quantities; thus, whether PSTs are using labels or quantities is 
unclear. In coming to understand a different base, PSTs must explicate the underlying base 
structure and relate it to our base-ten system. A thorough understanding of number and place 
value is essential for teachers, especially elementary school teachers. With follow-up discussion 
and practice, the activities used in this study may be effective for helping PSTs recognize the 
complexities of all number systems, including our base-ten system. By working with a number 
system with which they are less comfortable, PSTs can explore the meaning of a place-value 
system. We close with two PSTs’ reflections:  
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• The most important thing that I learned about my own understanding of the base-ten system I 
realized through discovering the Mayan number system.  … Just as the Mayans multiplied 
each new level by 20 since it was a base 20 system, our system is really just multiplying each 
place by ten more then the line [place] below.  For example in the number 326, this can be 
seen as 6 + (2*10) + (3*10*10) since each level up is another times ten.  

• We know base-ten means that each place value is multiplied by 10, and that we group and 
regroup when a certain place value exceeds 10. … What really broke it down for me was 
when we got into working with the Mayan system. It allowed me to compare and contrast the 
difference between their system and ours. Theirs is a base-twenty system and follows the 
same concept as us, except they would regroup after 20 in a place value (level) and each level 
is multiplied by 20 instead. I first struggled with any number beyond the second level in the 
Mayan system, but as we discussed more in class and I did some self-discovery at home, I 
came to see how similar our systems are. 

 
Endnotes 

1  In our class we considered the Mayan numbers as base-twenty numbers. In the literature the 
Mayan numeral dot shell shell can be found as representing 18 × 20 rather than 20 × 20 as we 
would expect in a base-twenty system. We disregarded this aspect in this lesson (Bennett & 
Nelson, 2007). 
2  Students often use the adding zeros when they mean appending.  
3 The other PST gave a generic explanation: “In order to get 400, … the top number must be 
multiplied.” 
4 The other PST gave 64,000 as her answer; her explanation, however, was insufficient for us to 
interpret. 
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What influences a pre-service teacher to decide to teach in an urban school? Despite challenges 
associated with teaching in urban schools, there are per-service teachers making this decision. 
This study takes a phenomenological look at a secondary mathematics pre-service teacher’s, 
who has made the conscious decision to teach urban learners, journey through student teaching. 
It details factors that influenced her decision to teach in urban schools and how student teaching 
further effected her decision.  

 
Introduction 

There has been a plethora of literature on the shortage of teachers in urban environments and 
an ample amount of research dedicated to acknowledging the need for increased teachers of 
mathematics (Bracey, 2002; Cavallo, Ferreira, & Roberts, 2005; Follo, Hoerr, & Vorheis-
Sargent, 2002; Howard, 2003; Ingersoll & Smith, 2003; Ng, 2003). According to a study by 
Villegas and Clewell (1998, as cited in Valli & Rennert-Ariev, 2000), 13% of 3000 teachers state 
they do not want to teach in an urban setting. The participant for this study, however, has made 
the conscious decision to teach in an urban school. Thus, this research will provide a glimpse 
into possible influences that encourage or hinder a teacher candidate from continuing a career as 
a teacher of urban learners after completing student teaching in an urban school. Understanding 
possible influences may also provide insight into the retention of new teachers in urban schools. 

 
Philosophical Framework 

The tenets of phenomenology provided the philosophical framework for this study. 
“Phenomenology is oriented…toward describing the experiences of everyday life as it is 
internalized in the subjective consciousness of individuals” (Schwandt, 2001, p. 191). Therefore, 
the crux of phenomenology is to understand the experiences of an individual from his or her own 
unique perspective. Schutz (1967) combined the tenets of Husserl’s descriptive phenomenology 
with Max Weber’s sociology. In his version of phenomenology, as one reflects on an experience, 
the reflection is not purely based on the individual but is influenced by social interactions with 
others. Conversations, other experiences, and subconscious and conscious thoughts influence 
how one reflects on an experience. These reflections provide a foundation for the construction of 
knowledge (Wagner, 1970). Schutz acknowledged the importance of interpreting phenomenon in 
context and he also valued the social influences that impede upon the perceptions of the 
experiencer (Schutz, 1967; Wagner, 1970). Schutz’s standpoint on phenomenology encompasses 
both the internal processes involved in knowledge construction and the social aspects that 
influence that development. The influences of the interactions between Tanjala (the pre-service 
teacher of this study) and her cooperating teacher, her students, other teachers, and parents factor 
into how Tanjala interpreted her experiences and thus influences her decisions regarding 
maintaining a career in an urban environment.  

There are two attitudes that are presented in the philosophy of phenomenology. They are the 
natural attitude and the phenomenological attitude.  
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The natural attitude is the focus we have when we are involved in our original, world-
directed stance, when we intend things, situations, facts, and any other kind of objects. The 
natural attitude is, we might say, the default perspective, the one we start off from, the one 
we are in originally. We do not move in to it from anywhere more basic. The phenomeno-
logical attitude, on the other hand, is the focus we have when we reflect upon the natural 
attitude and all the intentionalities that occur within it. (Sokolowski, 2000, p. 42) 

The natural attitude and the phenomenological attitude offer viewpoints of how the Tanjala 
experiences student teaching as she develops her views on teaching in urban contexts. The natural 
attitude illustrates her naïve thoughts on teaching in urban schools. The phenomenological attitude 
then validates or contradicts Tanjala’s initial thoughts as she reflects upon her experience. Both 
positions are depicted through her journey. 
 

The Participant and Research Methodology 
A phenomenological approach was taken to gain insight into the phenomenon from the 

participant’s perspective. The participant, Tanjala, is a 40-ish African American woman, who 
was enrolled in an alternative teacher preparation program. The program in which she attended 
admits individuals who have a degree in mathematics or a related field. Through an intensive 
four semester program the students earn a Masters of Arts of Teaching degree along with their 
initial certification. This program, located at a large metropolitan university in the southeastern 
region of the United States of America, has obtained funding to financially support students who 
wish to focus on teaching urban learners. Tanjala was awarded $10,000 to support her as she 
matriculated through the program. 

Data was collected in several phases. Tanjala participated in an interview prior to any field 
experience. She shared stories of her years as a student of mathematics, how she came to want to 
be a teacher, more specially a mathematics teacher of urban learners, how she defined urban, and 
what she expected to gain from her student teaching experience which would be in an urban 
setting. As Tanjala completed her student teaching experience, she maintained journals detailing 
her successes and challenges. After student teaching was completed, she shared her reflections of 
the experience during a phenomenological interview. 

 
Data Analysis 

The three data sources were used to construct a textual description of Tanjala’s experience. 
The textual description is a rich and detailed account of the participant’s experiences prior to 
student teaching, during and after. The textual description provides Tanjala’s naïve and 
phenomenological attitudes (Colaizzi, 1978; Moustakas, 1994; Polkinghorne, 1989).  

Tanjala was provided an opportunity to read her textual description and provide approval or 
suggest revisions. Tanjala’s has approved her textual description as it appears as accurate and 
acceptable (Colaizzi, 1978). From the textual descriptions, the meaning of the phenomenon is 
drawn, providing structural descriptions. To form the structural description, I began the analysis 
by reading the data to gain an in-depth awareness. Next, I separated phrases that pertained to the 
phenomenon from non-revelatory material. Once only relevant material remained, the statements 
were clustered, themes emerged, and then were phenomenological reduced into eight themes. 
These eight themes are (a) evidence of mentoring versus lack of mentoring; (b) individual versus 
collective behaviors; (c) relating to the characteristics of an urban teacher; (d) to stay or not to 
stay (in urban schools); (e) influencing factors; (f) anxieties; (g) classroom management; and 
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(h) pedagogical style. A zigzag approach between these themes and the participant’s narratives 
was utilized to establish the structural descriptions of the phenomenon (Colaizzi, 1978).  

 
Tanjala’s Textual Description 

I open Tanjala’s textual description with a story that she shared with me that affected why 
she wanted to be a teacher. 

 
I was born into a family of nine children. I am number seven of nine. My father was an 
alcoholic and he was really abusive to my mother. We would see him give her black eyes, 
split her arm, do this, do that, and on and on. When I was 7, my father and mother had an 
argument. My father went into another room and got a gun. I think at this time they had been 
married 15 years. She was really tired and she let him know. She said I know it is loaded so 
go ahead and shoot. She told us to get ready to go over to her sister’s house. My brother ran 
out to call the police. When the doorbell rang, my father said, “If it is the police I’m going to 
shoot you.” In the meantime, they were arguing about something, and she was pressing my 
hair. I remember being on the floor by the stove while she was pressing my hair. My father 
went to the door and of course it was the police. So he came back and he shot her. We 
actually saw her die. The next day we went to live with my auntie. My auntie, God bless her 
soul, was such a strong lady. She took 8 of us. She lived in a project in a large metropolitan 
city. This happened in 1971. The projects were bad, but they weren’t horrid, like they are 
now, but there was still a lot of crime. There were a million people that were kind of 
unmanaged living in these conditions. At my auntie’s house I learned to love school. School 
is where I could found safety, where I could find consistency. So I just kept running to 
school. When I became a teenage, that place [of safety] became church. Church is where I 
found love and consistency. So I kept running to there. That whole experience happened over 
two decades or even longer of my life. This is how I developed a love for education and for 
helping people. My brothers would say if you want to get out of the projects you needed to 
go to school. So school was no problem. No question for me. I loved it anyway, so I am 
going. All of my brothers and some of my sisters had a love for education. So that is 
basically the foundation of why I am here. I really love school and I want to help women 
who sometimes feel like they are trapped. I think my mom may have felt trapped. It was the 
70s. She didn’t work. My father worked. He actually had three businesses: a moving 
business, a furniture business, and a trucking business. So he was doing really well, but I 
think she felt trapped in that abusive situation ‘cause she didn’t work and she had 9 kids. So I 
want to help women or help people, specifically women, who are in situation no matter why 
or whatever the cause, to know that they have options and education always brings options. It 
is not the only option, but it helps to open you up to a lot of different options that weren’t 
available before. 
 
Prior to making the decision to become a teacher, Tanjala worked as a data analyst but found 

no personal rewards in this work. Therefore she took a sabbatical and worked as an urban 
missionary. Tanjala found this work extremely fulfilling and thought, “I would make an even 
better impact as a professional teacher.” So at the age of 42, Tanjala enrolled in an alternative 
preparation program to become a secondary mathematics teacher of urban learners. 

Through her childhood experiences, Tanjala had a connection with the urban community, 
which she defined as “a metropolitan area, inside the city limits...a ghetto…ghetto meaning 
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lower economic status.” She believed that her connections would aid her in reaching urban 
youth. Connecting the content to the students’ life would assist her in teaching mathematics and 
her cultural connections with the students would support positive relationships and interactions. 
Tanjala also believed that creating a safe environment, where the students can ask questions 
without being ridiculed, provided further benefits to an effective learning environment. 

In preparing to teach urban learners, Tanjala wanted to learn how to put information she 
learned from books into action. She wanted a mentor who would be open to sharing his or her 
experiences as well as communicate openly. A perfect mentor for Tanjala was “somebody who is 
more experienced, walking besides [her] through an experience, to guide [her] or just be there as 
a sounding board and possibly to be a model.” 

Throughout Tanjala’s student teaching experience, she was constantly seeking guidance for 
improvement in her performance as a teacher. She used resources, such as books, peers, other 
teachers, her college supervisor, and her cooperating teacher, Ms. Stanley. These resources 
provided a source for Tanjala to improve upon her pedagogical skills. Below are some excerpts 
to substantiate this claim: 
 

My cooperating teacher has modeled a lot of constructivist activities for me and I feel 
comfortable using them in my lesson plans. However, I am still lost as to how to make 
Algebra more appealing. I will talk with my peers and supervising teacher for help. 

 
Started using the foldables a few weeks ago and they were a lifesaver. I found that the 
students are more engaged when using the foldables and they produce “neater” work, namely 
graphs. I am glad that my mentor teacher introduced me to this tool. 
I observed another seasoned teacher today. The objectives were clearly written along with the 
agenda. The teacher was VERY effective in leading a class discussion on finding the roots of 
polynomial equations. When one student inquired about the definition of a root, she asked the 
entire class if they knew the definition. When no one was able to explain, she said that I will 
draw a picture and you tell me what you notice. She drew x-y axis, an up-open parabola and 
from the x-axis began to draw flowers, trees, daisies, etc. The students began guessing and 
eventually stated that a root is where the parabola crosses the x-axis. This discourse was 
amazing. The students were actively engaged the entire session. I was so encouraged by 
seeing her example. 
 
Spoke with my peer about the review and I was given some good tips on conducting review 
sessions. One method suggested was to give the review on a day prior to the scheduled 
quiz/exam/test, and provide sample problems so that the students can practice/study for the 
exam. On the day of the exam, ask students if there are any questions about the problems. Do 
not work the problems, instead have the students articulate the concept, process or step that 
presented their problem and briefly discuss that issue. 
 

The advice Tanjala received helped her to form reflective practices as well as be observant of her 
students’ behaviors that may affect their opportunities to learn. Even though Tanjala was 
audacious enough to seek guidance, she had anxieties about being effective in an urban 
classroom: 
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I am feeling so overwhelmed. Why am I doing this again???? Oh, I love the city and want to 
serve in the city. Lord, I could really use a lift today. I could use some event or something 
that would make it easier for me to choose to be positive. 

Today, I assessed the students on the four methods used to solve quadratic equations. The 
assessment was planned to be in the form of a game. Before the assessment, I conducted a 
review of the key issues. The review took a very long time. I feel as if I had to re-teach the 
lesson. The students apparently did not “get” it the first 3 times I taught it. I feel frustrated 
because I am running out of ideas to actively engage the students in learning. 

I am so tired and I am not quite sure why, the work of preparing lessons daily or the 
emotional work of keeping a good attitude in this atmosphere. I know that I am 
called/purposed/destined to be in education—so I will press on. I sure can use a break. 

In spite of these anxieties, Tanjala commanded respect and took a position of authority in the 
classroom by not allowing students to interrupt the learning environment or break school or 
classroom rules: 

I told one pair of students, who I caught kissing when I exited the restroom that they had to 
clear the halls. The male student was very upset that I stood there until they began to walk 
towards the exit. 

During my discourse, I just fell silent, looked straight ahead and said that I will not be able to 
continue until there is silence. The silence lasted for almost thirty seconds and then there 
were distractions from two members of the classroom. I asked to speak with one young man, 
who by co-incidence was White, outside. During our conference, I asked if everything was 
all right with him and if I could help him in any way. He said that everything was fine; he 
just did not like me. I began to laugh on the inside and told him that his “liking me” was not a 
requirement for the class, but his respecting the class guidelines and me was a requirement. I 
asked him if he was ready to respect the rules of the school and the classroom. He said “no.” 
I told him that he would not be able to return until he was ready to do so. He did not return 
until after the bell rang to collect his belongings. This challenge of my authority was intense 
and I felt a little threatened by his influence on the class’ behavior. 

After student teaching was completed Tanjala responded that she was glad it was over. 
Tanjala realized that even though she had dealt with challenging situations during student 
teaching; she had anxieties about her personal safety and the support she would receive from 
school administration. Once she completes her scholarship requirements, she stated she would 
like to teach at the college level. 

Tanjala saw herself as a compassionate teacher with a passion for teaching mathematics. She 
viewed herself as someone who strived to help others accomplish their goals. Her confidence in 
the classroom was correlated to her pre-lesson preparation. If she rehearsed the lesson several 
times prior to teaching it, she felt more confident in her abilities. Through her experience she 
viewed teaching as an activity where “I do it, we do it, you do it.” However, she planned to 
incorporate the hands-on method of “foldables” introduced to her by her cooperating teacher. 
Tanjala attributed the construction of her identity to her faith in God, diligent search of the 
literature, and the events of her childhood: 
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The compassion I believe really came from my faith. It is attributed to God because I really 
had to learn how to love people when they come to you and say I just can’t stand you. Okay 
let it bounce off kind of thing. That was just something in my personal life that I had to learn. 
As far as being an effective teacher in other areas, I just kept searching. I was like I know 
there is somebody out there who has an answer for me on how to do this successfully and 
that is why I read a lot. I just kept looking and looking and looking. One day the light came 
on. (Williams, 2007, pp. 50 - 55) 

Conclusions 
It has been reported that most pre-service teachers prefer to teach in schools similar to the 

schools they attended, thus teaching students who are similar to them (Quality Counts, 2000). 
According to Zeichner (1996) economically disadvantaged students of color traditionally do not 
excel with teachers from different cultural backgrounds then their own. Therefore, one would 
presume that Tanjala, who grew up in a poverty-stricken urban environment, would thrive in 
such an environment. In fact, she mentioned in her textual description that she felt that personal 
history would help her connect with her students. However, classroom management challenges 
led her to have reservations about teaching teenagers: 
  

I had a student. I think I talked about him the journal. He appeared to be a White student and 
his mom was . . . he was mixed with something. But anyway, from the first day that I started 
teaching, his class was a geometry class. He [would] just sit in the back of the room and I 
could feel him like staring at me that did not bother me. So I would just keep teaching and on 
and on, but like a week or two later he would start really acting out while I was teaching, like 
I could be in the middle of saying something about a circle or inscribed triangle or whatever 
and he would just bust out HA or whatever. He would say something disruptive and the first 
time I did call him on it and I said is there a problem? Is there something I can help you 
with? No, Huh and he would be sort of a little disruptive. He had two friends that he was 
always sitting with and they were never disrespectful to me, the two friends. They could get 
disruptive in the class, but they were never disrespectful to me, but I always felt like he was 
attacking me. So one day I asked him . . . one day after he was going through his normal “ha 
. . . I don’t want to do this” and his grades was really low and if I looked at his handwriting. 
He writes like a 3rd grader. I mean it is probably not even a 3rd grader, but a second grader. It 
is never straight on the line. None of his letters are even, even if he is writing on lined paper. 
It is always up and down and up and down and his letters are not always complete. The “A” 
and it would not be in the middle, but one day I asked him to step out into the hall so we 
could talk for a minute while everyone else was working and I said what is the problem? Are 
you doing well today or are you having a good day? Yeah and he would never look at me and 
he would be like Yeah. I would say okay. Is there a problem with your work or do you need 
some extra help with it? Can I help you do it or something? “No.” So why aren’t you doing 
it? “I don’t want to” So I said is there a problem with me? I forgot what else I said, but I 
jumped to the quick of it...is there a problem with me? “No, I just don’t like you”. So I look 
at him. At first I was like ouch and then I said okay and I laughed and said you don’t have to 
like me that is not going to affect…that is not what I am grading you on, but you have to 
respect the rules of the classroom and while I am talking there can be no other talking unless 
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I am asking you a question. There can’t be any disruptive talking or something I said and he 
said HUH and I said well are you ready to respect the classroom rules and he said NO. I said 
well I don’t think you should enter classroom the again until you are ready to respect the 
rules and he was like well and I was like okay then you can stand right here until you are 
ready, let me know when you are ready and he did not come back until the end of the class. 
Then I let him in to get his stuff and went on. He was a little challenged (Williams, 2007, pp. 
101-103). 
 
Despite the challenges of classroom management, Tanjala remained encourage to be 

successful at teaching urban learners. After Tanjala narrated this story, I asked her how she felt 
now about handling challenging situations. She replied: 

 
He gave me a lot of experience. Now I am . . . I mean really that was good experience and 
now I can go back I just need to know I am the teacher. That is the fact. I am the teacher and 
he does not have to like me, but it is my responsibility and role to make sure that the class 
climate is safe for other people to learn (Williams, 2007, pp. 104-106). 

 
Discussions 

Various factors may influence pre-service teachers to make the decision to establish careers 
in urban schools. For Tanjala, is was the connection with the urban life and desire to want to help 
young women know they have options through education. However, student teaching in an urban 
environment may increase pre-service teachers’ ability to teach urban learners, it may also 
reduce their desire and commitment to establishing a career within urban schools (Wiggins & 
Follo, 1999). This reduction may be due to the factors often connected with urban schools 
including, but not limited to, issues of classroom management, lack of resources, lack of teacher 
support, and lack of student interest in their own education (Bracey, 2002; Brown, 2002; 
Gormley, Hammer, McDermott, & Rothenerg, 1993; Ingersoll & Smith, 2003; Matus, 1999). 
Despite these challenges there are teachers, like Tanjala, who want to make a difference in the 
lives of urban learners. It is the responsibility of teacher educators and the larger community to 
nurture these teachers into what Haberman (1995) refers to as “star teachers”: teachers with 
persistence, resilience, resourcefulness, a connection with students, and a board perspective on 
factors that contribute to student failure.  
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This study investigated the extent to which seven professional and sociomathematical norms 
intentionally fostered in a mathematics methods course through the use of a video case 
professional development curriculum re-emerged in a later course with a different cohort. All 
seven norms were evident, to varying extents, in the written analysis and group discussion of 11 
prospective teachers who engaged in a video case analysis similar to those they had participated 
in during their first methods course one to four semesters earlier. This paper discusses the 
norms, evidence, and counterevidence for their re-emergence, and implications for teacher 
preparation. 
 

Objectives 
A key intended outcome of our mathematics teacher education program is for prospective 

teachers to experience self-sustaining generative change, defined by Franke, Carpenter, 
Fennema, Ansell, and Behrend (1998) to involve “teachers changing in ways that provide a basis 
for continued growth and problem solving” (p. 67). This paper analyzes the durability of one 
component of our efforts to achieve this outcome—the development of professional and 
sociomathematical norms embedded in the Learning and Teaching Linear Functions (LTLF) 
video case professional development curriculum (Seago, Mumme, & Branca, 2004). 
Specifically, we address the extent to which professional and sociomathematical norms 
intentionally fostered in a mathematics methods course re-emerge in a similar context later in the 
program with a different cohort of prospective teachers. 

 
Perspectives 

Since the identification of sociomathematical norms as critical contributors to school 
mathematics learning (Yackel & Cobb, 1996), a growing body of research has investigated the 
subtle power of these norms to support the development of mathematical learners (e.g. Kazemi & 
Stipek, 2001; McClain & Cobb, 2001).  More recently, researchers have turned their attention to 
the role of such norms in supporting teachers’ learning during professional development (e.g. 
Elliott et al., in preparation; Grant, Lo, & Flowers, 2007).  

Recognizing that sociomathematical norms have the potential to support teachers’ learning, 
Seago, Mumme, and Branca (2004) incorporated the development of such norms, as well as a set 
of professional norms, into the LTLF materials that we adapted for use in our mathematics 
methods course. These professional and sociomathematical norms are listed in Column 1 of 
Table 1 and form the basis of our study. We see these norms as important to preparing teachers 
in three ways: (1) supporting the development of their own mathematical understanding; 
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(2) learning to view and analyze classroom practice in productive ways; and (3) thinking about 
what norms should be developed in mathematics classrooms with students. 

One of the challenges of investigating norms is the difficulty of determining normative 
behavior from a snapshot of practice. For example, in one class session, there may not be time 
for each participant to present a solution to a mathematical task, but if most who do include a 
mathematical argument, a reasonable inference is that mathematical argumentation is a norm for 
that class. On the other hand, if few include a mathematical argument, it is safe to conclude that 
it is not a norm. Another way to infer the presence of a norm is when the norm is not exhibited 
and this is recognized and corrected by other members of the group. 

We approach both the development of the program and our research from a situated 
perspective (e.g. Borko et al., 2000). That is, we generate learning situations that are similar to 
those in which we intend prospective teachers to use the learning in their future teaching, and we 
study the way in which they interact in these situations. We also follow Cobb, Stephan, McClain, 
and Gravemeijer (2001) in our interest in coordinating the social and psychological perspectives. 
For the study reported here, this means that we have concerned ourselves with evidence of 
professional and sociomathematical norms in both group interactions (social perspective) and in 
the prospective teachers’ individual written work (psychological perspective). 

 
Modes of Inquiry 

The participants in the study were 11 prospective mathematics teachers (PTs) enrolled in 
their final mathematics methods course who had used the LTLF video case curriculum in their 
first mathematics methods course one to four semesters earlier. During one 80-minute class 
session, these PTs were engaged in a video case discussion similar to those they had participated 
in during their first methods course. Prior to the session, the PTs solved the mathematics problem 
(see Figure 1) individually (Data Source 1) and predicted possible student correct (DS 2) and 
incorrect (DS 3) thinking. The session began with a group discussion about the mathematics. 
Next, the PTs watched a video of middle school students discussing their thinking about the 
same problem and responded in writing to questions about what they noticed (DS 4), student 
thinking (DS 5 and DS 6), and teacher actions (DS 7) in the video, and then engaged in a group 
discussion about these ideas. At the end of the session, the PTs reflected in writing about what 
they learned from the discussion (DS 8). In addition to these written data sources, the group 
discussions of the mathematics and the video were videotaped and transcribed (T).  
 

 Study the sequence of cube buildings below. Assuming the sequence continues in the same 
way, how many cubes will there be in the 4th building? The 17th building? The nth building? 

 

 

Figure 1. Counting Cubes problem solved by the PTs and the students in the video. The problem 
and the video are from the Turning to the Evidence project (see Seago & Goldsmith, 2005). 

The first two authors facilitated the session. Both had taught the first methods course, but 
half the participants had taken it from other instructors. The facilitators made a point of not 
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introducing professional or sociomathematical norms in order to see if any of the norms 
established in the first methods course would spontaneously re-emerge. 

In order to analyze the data for evidence of the seven professional and sociomathematical 
norms (see Column 1, Table 1), transcripts of the mathematics and video discussion and all 
written work were coded independently by at least two researchers for examples and 
counterexamples of each norm. Any differences were resolved through refining the code 
definitions. The analysis was completed using multiple charts that cross-referenced evidence and 
counterevidence of each norm by PT. These charts were then collapsed into the summary chart 
shown in Table 1. 

 
Results and Discussion 

Overview 
Table 1 summarizes the professional and sociomathematical norms exhibited by each PT, as 

well as the identifier of the data source in which each norm was exhibited [1-8, T]. “C” indicates 
that a counterexample of the norm was identified.  For example, Abby’s “TC” for talking with 
respect yet engaging in critical analysis indicates that she was critical, but not respectful of the 
teacher in the video in at least one instance in the class discussion.  

The bottom two rows list the number and percent of speaking turns during the discussion. It 
is worth noting that Hana spoke only during the mathematics portion of the discussion when she 
presented a possible way that students might think about the problem, Abby spoke at the end of 
the video discussion after being encouraged to do so by the facilitator, and Ruth did not speak at 
all, despite a direct invitation. 

 
Table 1.  
Professional and Sociomathematical Norms Exhibited by Prospective Teachers 
 Norm Abby Evan Hana Iris Jim Ken Leah Lily Lew Roxy Ruth 

Pr
of

es
si

on
al

 N
or

m
s 

Listening to and making sense of 
or building on others’ ideas 4, 6 T, 6, 

8 7 8 T, 8 
T, 1, 
4, 5, 

8 

T, 4, 
8 4 T, 8 T, 4   

Adopting a tentative stance toward 
practice – wondering vs. certainty 8     T 8 T T, 

TC   T, 8 T, 
TC   

Backing up claims with evidence 
and providing reasoning T, 7 T   T T, 7 T T 7 

T, 
4, 6, 

8 

T, 4, 
6   

Talking with respect yet engaging 
in critical analysis of teachers and 
students portrayed on the video 

TC T   T 
T, 

TC, 
7, 8 

T T, 4 T, 6 T T   

So
ci

om
at

he
m

at
ic

al
 N

or
m

s Naming, labeling, distinguishing, 
and comparing mathematical ideas 

4, 5, 
8 

T, 4, 
5, 6, 

7 

4, 5, 
7 

T, 
4, 5 

T, 
4, 5, 

8 
T T, 4 T, 

4, 5 
T, 

4, 8 
T, 6, 
7, 8 4, 7 

Using mathematical explanations 
that consist of a mathematical 
argument, not simply a procedural 
description or summary 

T, 1, 
4, 6 

T, 
TC, 1 1 T, 

1, 5 

T, 
TC, 
1, 6 

T, 1, 
6 

T, 1, 
6 

T, 
1, 4, 

6 

T, 
1, 5 T, 1 1 

Raising questions that are related 
to the mathematics and push on 
understanding of one another’s 
mathematical reasoning 

7, 8 4   7, 8 T, 7 T, 4, 
7, 8 T   4 T, 7 8 

 Total Speaking Turns 3 21 9 12 22 18 15 6 17 19 0 
 % Participant Speaking Turns 2% 15% 6% 8% 15% 13% 11% 4% 12% 13% 0% 
Note. Professional and sociomathematical norms are from Seago, Mumme, and Branca (2004). 
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As can be seen in Table 1, 3 of the 11 PTs (Iris, Ken, and Lew) exhibited each of the seven 
norms in the discussion and/or their written work with no counterexamples. An additional 2 PTs 
(Jim and Leah) exhibited each of the seven norms, but Leah also had a counterexample for the 
norm of adopting a tentative stance toward practice, while Jim had counterexamples of both 
talking with respect, yet engaging in critical analysis and using a mathematical argument. Three 
of the remaining PTs exhibited six norms overall (Abby, Evan, and Roxy), 1 exhibited five 
norms (Lily), and 2 PTs exhibited three (Hana and Ruth).  

In the whole-group discussion, 7 of the 11 PTs (Evan, Iris, Jim, Ken, Leah, Lew, and Roxy) 
exhibited at least five of the norms. The other 4 PTs exhibited zero (Hana and Ruth), two 
(Abby), and three (Lily) of the norms, but they all participated in the discussion in a very limited 
way. As might be expected, there appears to be a general correspondence between the percent of 
speaking turns during the discussion and the number of norms exhibited, with the largest number 
of norms exhibited by those PTs who participated the most. Iris is an exception to this, however, 
as she had only 8% of the speaking turns, yet exhibited five of the seven norms. 

To better understand evidence and counterevidence of the norms during the discussion, 
consider an exchange that occurred at the end of the session and contained Abby’s entire 
contribution to the video component of the discussion: 

F2: There’s a few people that we haven’t heard from yet. Wondering if any of you who’ve 
not talked a lot have something that you want to add to [previous comment]. Like Abby. 
Abby: I didn’t like the teacher. I didn’t like that he didn’t ask about the picture. I felt like he 
was feeding them the answers. I hated line 85. So I have nothing good to say about the 
teacher, which, 
F2: Can you say a little bit more about what it was that— 
Abby: I feel like he should have tried to make more connections about the picture, because, 
like we were talking about, group 2 didn’t really know what the minus 4 was; it just worked 
for the numbers, and I think he could have tried to pull more out of them. Same with what 
Iris was saying about group 3. We know nothing about their method. He just kind of let them 
put that up there, and then used it to make the, the number connection about the expressions, 
the algebraic stuff. Like he could have made more connections with the visual, uh, aspect of 
it. And then I just didn’t feel, like he just talked [brief pause] at the end, in line 85, like he 
could have let them explain that more. 
F2: Okay. You were storing up a lot. [laughter] So there’s several things to respond to there.  
Jim: I felt the same way, because in line, 26, he, you know, “How many cubes would be in a 
[seventh] building?” And Cassie says “31,” and how, you know, he asked how they got that. 
They’ve already made it apparent that they know how to substitute, because, before that, 
Cassie says that they first thought it was 5n + 1, but they found out that it didn’t work for the 
first one. And so, he just asks a redundant question, and, by asking them what the seventh 
one was, all they have to do is plug it in. But he never asks why it’s 5n – 4. He just, they give 
him the answer, he asks what the seventh one is, they give the right answer and it’s over. But 
never why, where did the minus 4 come from? Again, never relates it to the picture.  
Iris: I guess it kind of depends on what his teacher goal was for the day. [laughter]  
[T539-564] 
Both Abby and Jim were coded as exhibiting a counterexample (TC) for the critical yet 

respectful norm because they did not talk about the teacher’s practice in a respectful way during 
this exchange. Iris, on the other hand, shifted the conversation back toward showing respect 
towards the teacher by raising the question of whether his actions might have been appropriate 
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for his goals for the day. Although it is difficult to see emotions in a transcript, the points at 
which the laughter occurred support the facilitators’ sense that Abby’s and Jim’s comments 
made the group uncomfortable, and thus were not normative. It seems that the laughter served 
the role of diffusing tension caused by a violation of a group norm and the action taken by Iris to 
re-establish it. Also interesting to note is that both Abby and Jim used evidence to back up their 
claims, demonstrated that they had been listening to the prior conversation, and, in fact, raised 
valid concerns about the teacher’s actions. Thus, even though they were not respectful, they were 
critical in a potentially productive way. In our experience, however, the respectful component is 
important to developing an atmosphere where teachers feel comfortable talking about their 
teaching and, in so doing, are able to identify and act on specific opportunities to improve their 
practice. If the group had not self-corrected, the facilitator would have used this exchange to 
point out the importance of being critical in a respectful way and to remind the PTs that their 
analysis should focus on the instance of teaching practice, not the teacher himself. 

In the written work, all 11 PTs exhibited at least three norms, with 5 exhibiting five or more 
of the seven norms. The PTs demonstrated the norms in two ways: by participating in the norms 
themselves and by making a statement that indicated they recognized that the norm was 
important in the classroom. For example, Lew exhibited the norm of using a mathematical 
argument both ways.  First, he made a mathematical argument to justify a mathematical 
expression: “A better more visual formula would be 5(n – 1)  + 1, since I have five ‘arms’ that 
are (n – 1) long and one single ‘central’ block” [DS 1]. Second, he recognized the importance of 
the norm in the classroom when he reflected that the students in the video “were very thorough 
and were very aware of what everything stood for in their solution” [DS 5]. Each PT 
demonstrated between two and five norms in their own analyses and reflections, and made 
statements indicating they recognized the importance of between one and five norms.  Looked at 
in another way, over half of the PTs made statements alluding to the importance of the norms 
that could be considered most relevant to their future classrooms: listening to and making sense 
of others’ ideas; backing up claims with evidence; naming, labeling, distinguishing, and 
comparing mathematical ideas; using mathematical arguments; and raising questions that push 
on others’ understanding. This is important as these future teachers will not likely work to 
establish these norms in their own classrooms unless they are explicitly aware of the norms and 
recognize them as important to developing mathematical understanding. 

In sum, all seven norms fostered in the first mathematics methods course through the use of 
the LTLF materials were evident during a video case written analysis and group discussion that 
occurred at the end of the program with a different cohort. This is significant in that the PTs had 
not explicitly discussed the importance of these norms, nor were they reminded of the norms 
prior to the session. In addition, the PTs had participated in the prior video case discussions with 
at most three others, and thus had not constituted the norms as a group.  Rather, the norms had 
been developed in four separate classrooms, yet appeared to re-emerge naturally during a similar 
discussion focused on analyzing teaching and learning.  

To give the reader a further sense of what it means to exhibit the professional and 
sociomathematical norms examined in this study, we now turn our attention to a more detailed 
analysis of three norms that are particularly relevant to developing students’ mathematical 
understanding and to teachers’ continued professional development. We will first discuss results 
related to the professional norm of backing up claims with evidence—a norm that is critical to 
becoming a reflective practitioner. We then focus on the sociomathematical norms of naming, 
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labeling, distinguishing, and comparing mathematical ideas, and using mathematical arguments, 
both which are critical to supporting students’ understanding of mathematics. 
Providing Evidence 

All seven of the PTs who participated substantially in the video discussion, as well as one 
who did not, made at least one claim during the discussion that they backed with evidence and/or 
reasoning, referring either to specific line numbers in the video transcript or directly referencing 
the transcript in another way (e.g., “on page 1 it says …”). Of the 13 instances where PTs 
referenced the video transcript, 10 (77%) occurred without any prompting, three were prompted 
by the facilitator and one by another PT. Notably, all four PTs who were prompted to use 
evidence also had instances where they used evidence without prompting.  

The following exchange illustrates how the practice of providing evidence to back claims 
was normative in the group:  

Ken: Well, Arden’s [expression] works if you have his variable. 
Jim: Exactly. So it works for all of them, if you use his variable, which he specified in the 
very beginning. But apparently the girls weren’t listening to what he said. 
Ken: Where did he explain that? Because I— 
Jim: Line 7. The equation was that 5n + 1 equals the volume, and n equals the length of one 
individual arm. So he told people, but everyone was just so caught up on the building 
number. [T326–332] 

Here, one PT, Ken, actually prompts another to refer back to the transcript to back up his claim 
that a student had clearly defined his variable. 

Yet another source of evidence of this norm is the use of line numbers in the PTs’ written 
work, which was completed before the group discussion, and thus before any prompting was 
provided. In this case, four of the PTs cited specific line numbers in their reflections, while 
another provided more indirect evidence. It is important to note that using evidence does not 
come naturally to PTs and, in fact, takes some time to develop in the first methods course. 
Comparing Mathematical Ideas 

All 11 of the PTs named, labeled, distinguished, and compared mathematical ideas either in 
the video discussion or their written reflections, providing strong evidence that doing so was 
normative in the group. Ten participated in the norm by directly comparing students’ thinking, 
and six, including the one who did not directly compare, made statements that indicated they 
thought comparing solutions was important. 

In the video discussions, all eight of the participants who substantially contributed to the 
conversation exhibited this norm in at least one of three ways: (1) comparing their mathematical 
thinking to that of other PTs (“I was just going to say that I came up with the same formula, 5(n–
1), but I saw it in a different way” [Lily, T65–66]); (2) comparing their thinking to the students’ 
in the videos (“They were adding 1 for that middle cube.  They were kind of looking at it the 
same way I did.” [Evan, T338–340]); or (3) comparing the students’ thinking in the video to each 
other’s and/or recognizing that it was important that the teacher did so. The following, which 
immediately preceded the exchange with Abby and Jim cited above, illustrates this recognizing: 

Well, a lot of it seemed to me like [the teacher]’s checking them for their own understanding. 
… asking them to like compare and contrast is showing like if they understand their own 
method enough to talk about how it’s different from the way someone else did it, and how, 
how they’re the same. [Lew, T533–538]  
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In the written work, all but two of the PTs responded to at least one reflective prompt by 
discussing the different ways students in the video were defining their variable, which indicates 
that they were comparing students’ solutions as part of their individual analyses.  Evidence of 
this norm was also shown in a variety of other ways in the written work, including recognizing 
that the teacher pushed students to compare their solution methods, directly discussing and 
comparing student solution methods, and discussing whether students really understood each 
other’s solutions.  In addition, five PTs noted that comparing and contrasting solutions was 
important in their end-of-day reflection.  For example, Roxy reflected that “It is important to tie 
everything together and see how or if different solutions are related to each other” [DS 8]. 
Mathematical Arguments 

All of the PTs attempted to use mathematical explanations that consisted of a mathematical 
argument—not simply a procedural description or summary—in their own solutions to the 
problem [DS 1] and all but two either did so again or noted the importance of doing so when 
analyzing the student thinking or teacher moves in the video [DS 4–8, T]. In justifying their own 
solutions the PTs were successful in using a mathematical argument to varying degrees. To 
illustrate, consider Leah’s justification for her expression, 4(n – 1) + n: “The solution supports 
the picture since you have four branches that are the size of the previous building (n – 1), and 
one branch that is the size of the current building (n)” [DS 1]. Here, Leah justifies each part of 
her expression in relation to the diagram provided with the problem, though it would have been 
clearer if she had said “building number” instead of just “building.” In contrast, to justify her 
expression, 5n – 4, Hana says, “My solution accommodates my visualization of 5 blocks adding 
every [time] to the original cube: one cube spreading out at its arms”  [DS 1]. While Hana 
adequately justified the coefficient in her expression, she did not make any attempt to justify the 
– 4, rendering her argument incomplete. 

Further evidence that the behavior is normative can be seen in the fact that seven of the PTs 
made statements in their written reflections on the teacher and students in the video indicating 
that they recognized the importance of using mathematical argument. In the following reflection, 
for instance, Abby demonstrated the norm by noticing a lack of argumentation: 

One thing that stood out was that the teacher never asked Cassie to explain where the minus 
4 came from.  During her explanation, at the end she would just say, “and then you subtract 
4.”  There was no connection to the picture or explanation of where that came from. [DS 4] 

In the end-of-day reflection that prompted for insights/connections related to teaching that the 
discussion generated for them, Iris wrote, “Teachers should ask questions that prompt 
connections between pictures and expressions/equations” [DS 8]. 

Similar statements related to this norm were made throughout the video discussion.  In total, 
24 instances of this norm were coded, involving nine different PTs.  In one telling utterance, 
Roxy discusses how the students in the video were able to justify a part of a mathematical 
expression that the PTs could not in their own mathematical discussion:  

Yeah, because that’s what I had trouble seeing. I couldn’t figure out like how to 
describe where you take away the 4. ‘Cause I did it like Leah did it, with the 4—well, 
I did it in a table, but then I also saw the 4(n – 1) + n. I was like, oh, well, that’s how 
you get your minus 4. But I like how [the solution looking at the minus 4 as 
subtracting the overlap when the middle is included in each “leg”] actually shows this 
is how you take away the 4. [T215–219] 



Vol. 5  1243 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

Thus, Roxy recognizes the students’ mathematical argument, while at the same time indicating 
its importance by noting her own inability to fully justify a mathematical expression. 
 

Conclusions 
Professional and sociomathematical norms developed early in a teacher preparation program 

seem to be durable in the sense that they re-emerged in a similar situation at the end of the 
program. This is encouraging because these norms support a richness of discussion about the 
teaching and learning of mathematics that is not prevalent in descriptions of practicing teachers 
in research on teacher learning. In particular, the PTs in this study focused on student thinking 
and the implications of the teacher’s actions for supporting student thinking in a way that is not 
commonly seen. The fact that we were able to foster these professional and sociomathematical 
norms through use of a practice-based video case curriculum in a methods course (Stockero, 
2008), combined with the findings from this study regarding the durability of the norms, suggests 
the value of making the development of such norms a key part of curricula used in university 
methods courses. Not only will moving PTs further along the teacher development trajectory 
during their university education give them a solid start, experiencing self-sustaining generative 
change will position them to accelerate their movement along the teacher professional 
development trajectory as they become more experienced teachers. 
 

References 
Borko, H., Peressini, D., Romangnano, L., Knuth, E., Willis-Yorker, C., Wooley, C., et al. 

(2000). Teacher education does matter: A situative view of learning to teach secondary 
mathematics. Educational Psychologist, 35(3), 147-217. 

Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom 
mathematical practices. The Journal of the Learning Sciences, 10(1/2), 113-163. 

Elliott, R., Kazemi, E., Lesseig, K., Carroll, C., Mumme, J., & Kelly-Petersen, M. (in 
preparation). Conceptualizing the work of leading mathematical tasks in professional 
development. 

Franke, M. L., Carpenter, T., Fennema, E., Ansell, E., & Behrend, J. (1998). Understanding 
teachers' self-sustaining, generative change in the context of professional development. 
Teaching and Teacher Education, 14(1), 67-80. 

Grant, T. J., Lo, J.-J., & Flowers, J. (2007). Shaping prospective teachers' justifications for 
computation: Challenges and opportunities. Teaching Children Mathematics, 14(2), 112-116. 

Kazemi, E., & Stipek, D. (2001). Promoting conceptual thinking in four upper-elementary 
mathematics classrooms. The Elementary School Journal, 102(1), 59-80. 

McClain, K., & Cobb, P. (2001). An analysis of development of sociomathematical norms in one 
first-grade classroom. Journal for Research in Mathematics Education, 32(3), 236-266. 

Seago, N., & Goldsmith, L. (2005). Turning to the evidence: Examining the impact of two 
professional development programs focused on algebraic thinking. Paper presented at the 
American Educational Research Association. 

Seago, N., Mumme, J., & Branca, N. (2004). Learning and teaching linear functions: Video cases 
for mathematics professional development, 6-10. Portsmouth, NH: Heinemann. 

Stockero, S. L. (2008). Using a video-based curriculum to develop a reflective stance in 
prospective mathematics teachers. Journal of Mathematics Teacher Education, 11, 373-394. 

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in 
mathematics. Journal for Research in Mathematics Education, 27(4), 458-477. 



Vol. 5  1244 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

JUXTAPOSITIONAL PEDAGOGY: DESIGNING CONTRASTS TO ENABLE AGENCY 
IN METHODS COURSES 

 
Thomas Ricks 

Louisiana State University 
tomricks@lsu.edu 

 
Powerful forces resist the preparation of teachers, especially the ‘apprenticeship of observation’ 
and critical professional colleagues. This paper describes a pedagogy of juxtaposition for 
mathematics methods courses, namely: (a) critically examining polarized videos of teachers’ 
practice, (b) considering contrasting opinions about mathematics education, (c) participating in 
modified lesson study, (d) co-teaching the method curriculum to peers, (e) public school teaching 
during two separate field experience blocks, (f) solving dual part problems, and (g) reflecting on 
previous personal reflection. Student data is presented that confirms the cognitive dissonance 
such a juxtapositional approach creates, and positive results for independent student thought. 
 

Statement of the Problem 
Elementary education preservice teachers hold deeply held beliefs (Ball, 1990), beliefs so 

entrenched by long years in the “apprenticeship of observation” (Lortie, 1975), that receptiveness 
to alternative teaching possibilities is unfortunately curtailed. Worse yet, new teachers embracing 
university methods often encounter conflicting messages from veteran teachers (Skempp, 
Sparkes, & Templin, 1993) skeptical that university theory is just that—theory unconnected to 
classroom realities where discipline issues, testing pressures (Webb & Coxford, 1993), and lack 
of time (Stanley, 1998; Wildman & Niles, 1987) demand a more pragmatic (indeed, 
straightforward) approach to instruction. And not just new teachers face this hardship; Mr. 
Murano, an eighth-year middle school teacher selected to participate in a research project 
because of his dynamic whole-class discussions, admitted feeling considerable pressure, and 
even animosity, from more traditional colleagues over his unique teaching approaches (Ricks, 
2007). Another teacher of 15 years experience, Ms. Auburn, had even considered transferring to 
another school and hand-picking teachers herself, so as to alleviate adverse colleague pressures. 
Ms. Auburn was also aware of other pressures new teachers face besides disagreeable peers; she 
had served as the district’s mathematics specialist when the district’s adoption of an NSF-
approved curriculum resulted in a tidal-wave parent backlash that forced the district to drop the 
mandatory curriculum implementation (Ricks, 2007). 

In the context of these difficulties, I have tried an atypical approach to influence preservice 
teachers’ beliefs about the nature of teaching during the few short weeks they are under my 
tutelage. Rather than plunging them as rapidly and as deeply as possible in a vat of reform ideas, 
hoping a pressurized, 16-week saturation will infuse into them enough concentrated reform 
antidote to overcome the previous poisonings and outlast the upcoming epidemics, I have opted 
for a milder approach of careful comparison of teaching possibilities through an appeal to 
juxtaposition, which allows preservice teachers the opportunity to develop and defend their own 
conceptions of effective teaching practices as they experience contrasting situations. 

The purpose of this paper is to describe this juxtapositional stance that guides my actions 
during preservice teacher methods courses at Louisiana State University. This paper draws on 
ideas being tried during the longitudinal Teaching in Mathematics Education (TIME) study, an 
ongoing 5-year study at Louisiana State University investigating practical, implementable 
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strategies to significantly improve preservice teacher preparation by participation in a reflective 
curriculum of juxtaposition. As the project is only in its initial stages, this paper is designed to be 
a descriptive account of the course, a medium known to contribute to furthering avenues of 
possible research (Bush, 1986).  

 
Juxtapositional Pedagogy 

I consider a juxtapositional pedagogy to be a pedagogy respecting the preservice teachers’ 
inherent, inalienable right to choose and pursue for themselves their own pedagogical paths, 
which in mathematics education involves navigating terrain often overly-stereotyped as an 
either-or, traditional-reform quagmire. This juxtapositional pedagogy comprises sufficiently-
contrasting experiences, coupled with the adequate time and social support, to augment 
preservice teachers’ evaluative cognitive capacities.  

In particular, I view teaching as a constant form of judgment-in-action; teachers are 
relentlessly making decisions, whether privately as they ponder and reflect on past teaching and 
future plans, or publicly as they think on their feet during dynamic whole class discussions 
(Yackel, Cobb, & Wood, 1999). Teachers must make instantaneous decisions with limited access 
to information and time to consider the results of their actions. Good teachers are able to choose 
among many possible paths of action to further propel learners in productive directions.  

The underlying theoretical premise of the course envisions teachers—ultimately—as rational, 
reasoned, decision-making agents (Bush, 1986; Dewey, 1981/1933). The course attempts to 
augment teachers’ decision-making powers. Believing that social interactions play a pivotal role 
in forming new understandings (Cobb, Wood, & Yackel, 1990; Vygotsky, 1978), I attempt to 
present carefully constructed juxtapositional experiences to form the catalysts for intellectual 
conversations between class members. When presented with polarized viewpoints, preservice 
teachers can begin to critically reflect on their own beliefs. This reflection becomes especially 
potent when their own thinking is juxtaposed with others’ differing viewpoints in social contexts 
(Feldt, 1993). The following juxtapositional features are described in this paper: (a) critically 
examining polarized videos of teachers’ practice, (b) exposure to contrasting opinions about 
mathematics education, (c) the collaborative environment of modified lesson study, (d) co-
teaching the method curriculum to peers, (e) two separate field experience blocks in a local 
public school, (f) dual problem parts, and (g) reflecting on previous personal reflection.  
Critically Examining Polarized Videos of Teachers’ Practice  

Drawing from a variety of video sources such as TIMSS (NCES, 2003), professional 
development mediums, and a growing, personally-videotaped collection (Ricks, 2007), I show 
short segments of contrasting teachers’ practice. These episodes are strategically chosen to bring 
a pedagogical issue to the forefront, or to highlight certain principles arising in our own class 
discussions. By using video mediums, portions of the videos can be re-watched and revisited, 
aiding class reflection; additionally, encapsuled experience in video form, although not equal to 
the ideal (observations of student thinking in actual classrooms), do provide a manageable nexus 
for coherent whole class discussion as the camera is only pointing in one direction, a redundant 
component helpful in whole-class discussions (Davis & Simmt, 2003).  

Watching videos has the added benefit of showing alternative strategies for reform 
instruction. Using the words of Stigler and Hebert (1999), videos provide “a penetrating and 
unparalleled look into classrooms” (p. 9). Most of my students have never experienced a 
mathematics class taught in a reform manner; preservice teachers struggle to conceive of what 
the NCTM, for example, is describing in their vision of school mathematics (NCTM, 2000), 
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having no concrete mental models. The nebulous terminology of constructivism (Kilpatrick, 
1986), community (Grossman, Wineburg & Woolworth, 2001), and discovery learning (Davis, 
1994) takes on new meanings with these solidly accessible images of practice. It also is 
convincing proof that such instruction can be done, and done well; a video of Deborah Ball 
teaching 3rd grade is one of my personal favorites in assisting the preservice teachers’ paradigm 
shift that students can think powerfully about mathematics in unexpected ways even in the early 
grades, and grapple with issues they themselves as adults have never considered. 
Exposure to Contrasting Opinions about Mathematics Education  

Another fundamental part of the pedagogy of juxtaposition involves preservice teachers 
reading articles by individuals with sharply contrasting beliefs about mathematics education; the 
preservice teachers begin to understand the arguments of anti-reformers and the rhetoric of 
reformers. They recognize that this country is deeply and passionately divided over instructional 
methods for their children (Jackson, 1997), and that they need not only to better situate 
themselves on the battleground of the math wars (Ball, Ferrini-Mundy, Kilpatrick, Milgram, 
Schmid, & Schaar, 2005; Schaar, 2005), but should be able to justify their position as well. 
Stigler and Hiebert’s (1999) The Teaching Gap is a particularly good reading that inherently 
emphasizes juxtaposition within the text itself through international comparisons of Japanese, 
German, and American classrooms. 
Modified Lesson Study  

I engage my preservice teachers in four-person lesson study groups modeled after the 
common form of Japanese lesson study discussed in Stigler and Hiebert (1999). Typically, 
American teachers work in isolation (Hart, Schultz, Najee-ullah, & Nash, 1992; Shulman, 1987; 
Stepanek, 2000; Valli, 1997); lesson study forces the preservice teachers to work together to plan 
a lesson (Lewis & Tsuchida, 1998). This can be for them a frustrating form of juxtaposition 
because how their peers think about mathematics often differs in substantial ways from their own 
conceptions, providing a rich social environment for discussion, negotiation, and cooperation 
(Davis & Simmt, 2003; Feldt, 1993). Ideally, the research lesson is eventually taught in a local 
public school classroom, revised, and taught again to a different elementary class a few weeks 
later, which forms another opportunity to juxtapose experiences through personal reflection on 
the two lessons’ effectiveness. 
Co-teaching the Method Curriculum to Peers  

I also have pairs of preservice teachers teach portions of the class curriculum to their peers. 
Having videotaped their teaching, I then provide them with a reflection assignment—they report 
this experience is one of the most eye-opening experiences in their entire teaching program 
(especially as for many, this is their first time watching a videotaping of their own teaching). In a 
way, watching oneself teach is the ultimate form of teacher juxtaposition, because the imagined 
self usually appears very different from how reality (or at least a video rendering of reality) 
really is. Co-teaching becomes another opportunity besides lesson study to juxtapose one’s ideas 
against that of another teacher. 
Public-school Teaching: Two Separate Field-experience Blocks  

A fifth form of juxtaposition is teaching two blocks in a local elementary school. This 
achieves juxtaposition in a variety of ways. First, the exposure to their cooperating in-service 
teachers’ mathematics instruction is eye-opening, especially in light of their developing opinions 
on good teaching practice formed in the weeks before—the preservice teachers are beginning to 
see with new eyes and return two weeks later after this first block transformed. Then, for three 
weeks we engage in energized discussion as the preservice teachers are now recognizing the 
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national generalizations Stigler and Hiebert discussed (1999) about American teachers all 
teaching the same. The preservice teachers are dismayed, discouraged, and yet determined. 
Dismayed by what they saw—the lack of high-quality math instruction; discouraged because 
they themselves tried to teach in a more engaging way, by posing challenging mathematical 
tasks, but found it exceedingly difficult; and determined because they know it can be done—they 
have seen videos of Japanese and selected American teachers succeed in engaging students in 
meaningful, exciting mathematics lessons. As Goethe wrote: “Every new object, clearly seen, 
opens up a new organ of perception in us” (von Goethe, 1988, p. 39). 

Additionally, the first lesson study lesson is taught by each group during the first block. The 
three-week interim also gives time for lesson study groups to analyze the effectiveness of their 
first lesson attempt, and re-plan for a better second attempt in a different class later in the second 
block. 

It is during this three-week hiatus between field experience blocks that I detect a  palpable 
shift in the preservice teachers’ desires regarding the course—something I can best describe as a 
new hunger. They now recognize that they lack something needed to teach mathematics at a 
level they know is possible. I change the thrust of the course during this crucial time. Whereas 
the first part of the semester focused on recognizing, modifying, or developing challenging 
mathematical tasks, I shift the course’s focus to emphasize the implementation (Stein, Smith, 
Henningsen, Silver, 2000) of these well-designed tasks. The first half focused on what teachers 
might do effectively, and the second half now focuses on how to actually do it successfully. The 
second round of field-experiences allows the preservice teachers to better practice what they 
tried in the first go-around.  
Strategically-designed, Dual-part Problem-posing  

These juxtapositional activities, which permeate the course, are designed to illustrate a 
particular learning issue by dividing an instructional task into two parts to allow the preservice 
teachers the opportunity to compare and contrast their own experiences in the task solution. For 
example, to illustrate the difference between doing mathematical computations through rote 
memorized procedures (which many unfortunately believe is ‘mathematical activity’) and 
understanding the underlying conceptual principles, I choose a simple fraction division problem, 
such as: 1 ¾ ÷ ½  (Ma, 1999). Students can easily solve this problem through an appeal to the 
invert-and-multiply maxim, but struggle writing a real-life story that would be applicable to this 
computation.  

A second dual-part problem I find effective is 198 divided by 12. Again, the preservice 
teachers are able to implement the long division algorithm and arrive at the correct answer, but 
struggle explaining the second part of the problem which asks to detail what mathematical 
reasoning is encapsulated by each step of the algorithm. This is not at all trivial. Even though 
many preservice teachers recognize the repeated-subtraction conceptual structure of the 
algorithm, the most difficult step is understanding the place value placement of the quotient’s 
numerals. Their natural inclination is to think “How many times does 12 go into 1? No times. 
How many times does 12 go into 19? One time.” But 12 is neither being divided into 1 or 19 in 
the algorithm. Further class discussion reveals asking “How many times does 12 go into 100 (or, 
similarly, 190)?” The mathematical concepts embodied in this algorithm are deep, fascinating, 
and accessible to even young children, but the preservice teachers have never thought about the 
mathematics in this way. It is left to the reader to ponder why in this particular algorithm 
(knowing there a multitude of different long division algorithms, each with their own conceptual 
base) students do not write an 8 over the dividend’s 1 place, as 12 goes into 100 eight times 
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(hint: asking “How many times does 12 go into…?” is an incorrect understanding of what the 
algorithm is doing mathematically, although it is often erroneously taught that way, even by 
mathematics educators). These dual-part problems help preservice teachers ponder the 
differences between, for example, procedural and conceptual understandings, and how certain 
tasks may reveal little about one or the other type of learning. 
Reflecting on Previous Personal Reflections  

A final form of juxtaposition utilized in this course is the course’s purposeful repetitive 
nature, designed to allow preservice teachers the chance to reconsider previous ideas from a new 
perspective, resume work on difficult, unresolved issues, or to allow them to consider how their 
views are changing during the course. For example, students re-respond to certain notebook 
prompts later in the semester, such as: What is mathematics?, How is it best taught or learned?, 
and What is the purpose of a methods course?. These can be contrasted to their previous answers 
kept in their notebooks. Many of the above mentioned videos are re-watched and re-discussed 
for a second time. Because of the intervening experiences, the re-watching and resulting 
discussion is always different than before, revealing substantial changes in perception about 
teaching mathematics. As the Greek philosopher Heraclitus claimed, one can never step into the 
same river twice. 

We also re-watch a promotional video at the end of the semester which touts the virtues of a 
traditional drill-and-kill approach, and it is remarkable the change in student disposition by the 
end of the course toward this regimented approach. In particular, preservice teachers discern the 
pithy, superficial phraseology saturating the video, as well as the lack of mathematical thinking 
expressed by the elementary students in the video. 

 
Discussion and Conclusions 

I attempt to design components of my class to be matching compliments of one another to 
stimulate my preservice teachers’ judgmental awarenesses using contradicting and/or 
paradoxical circumstances for personal introspection. In particular, this juxtapositional approach 
tries to respond to factors which are known to erode preservice teacher education, namely: (a) the 
apprenticeships of observation (Lortie, 1975) and (b) corrosive collegial atmospheres 
undermining university theory supposing it is unconnected to the realities of classroom practice 
(Schempp, Sparkes, & Templin, 1993).  

Although still in its early stages, the TIME project at Louisiana State University is 
demonstrating through circumstantial evidences and initial indicators the positive effect a 
curriculum of juxtaposition has had on preservice teachers’ fundamental perspectives of 
mathematical pedagogy. The following excerpts are anonymous student comments from end-of-
semester university evaluations that reflect this positive aspect of juxtapositional instruction. A 
student wrote: “The beginning of the semester was a shock and I thought this class was going to 
be terrible, but I ended [up] learning so much and [I] became open to a new style of teaching.” 
One student said:  

This was quite an interesting course. At the beginning I was unsure as to where this 
class would go. However, [the approach] challenged us, our minds, in ways that had 
never been challenged before. The end result was quite phenomenal.… I believe that I 
will go into the classroom as a more powerful teacher. 

Another student wrote: 
It was a very different form of instruction but it was very interesting to learn. It 
opened my eyes to a different type of teaching and student learning. Even though this 
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was a tough course it allowed me to learn lots of new ideas. 
Admittedly, the beginning of the course was unusually stressful; the preservice teachers were 
purposefully placed in overwhelmingly uncomfortable positions of ambiguity (Stigler & Hiebert, 
1999). Another student bluntly confirmed this in the end-of-course evaluation: “The course 
started out rough.” Such tenor is echoed by this student’s comment: “The beginning of the 
semester was rocky because [the approach was] unconventional… but…. I learned so much 
about education and myself.” Where they expected a typical methods course’s rigidly determined 
calendar (i.e., this reading to be done by this date), concise grading rubrics (i.e., so many points 
for this aspect of the assignment—checklist-like), and traditional memorize-regurgitate exams, I 
offered a litany of tasks and activities that had little immediate closure and unusually difficult 
cognitive demand, forcing them into the position of decider—or common judge—for themselves: 
“I will admit that there were times I was extremely frustrated but I know that a lot is learned 
through frustration. I think [the approach to be] very innovative…. [The course] turned out to be 
really good!”, said another student. 

Hopefully, these quotes capture the flavor of the initial shock that gave way to the ennobling 
freedoms offered by the juxtapositional approach. I believe such action provides for significant 
learning experiences—issues remain open for weeks, problems unsolved, opinions shared but 
with no teacher judgment passed (e.g. Carpenter, et al., 1989). They are thinking about this class 
outside of class, chewing things over, letting their subconscious go to work. This approach also 
mimics typical inservice-practice: no authority to turn to for quick, immediate answers or 
approval in one’s own classroom. One student expressed in their evaluation:  

Class started somewhat slow and with a disoriented feel…but by fall break things 
picked up…. By the second half of the semester things were going really well and I 
enjoyed the class. I feel that I have really learned a lot about how to teach. Real stuff, 
not busy work, but real applicable knowledge and practice. 

I consider that these comments hold some degree of credibility as they were comments turned in 
anonymously to the university as part of the university’s evaluation procedures—also, not all 
comments were optimistic. One student grumbled: “He never answered questions.” But such is 
the way of juxtapositional pedagogies—the answers (or ‘learning’) students seek is not doled out 
by the professor, but is generated through cognitive consideration of the contrasting curriculum 
components. 

My ultimate strategy with using a juxtaposition strategy in my courses is for the preservice 
teachers to consider knowledge as problematic, uncertain, fallible, socially determined, and 
revisable (Boaler, 1999; Ernest, 1990; Richards, 1991; Romberg, 1994; Schwartz & 
Hershkowitz, 1999; Thom, 1973; von Glasersfeld, 1985; Woods, 1992; Yackel, 2000). They then 
formulate (construct?) their own understandings and positions on issues. In other words, they 
must make decisions themselves about what is considered ‘good’ teaching practices, grounded 
through reflective analysis (Dewey, 1981/1933)—I will not make the decisions for them. 
Hopefully, self-formed preservice teacher reasonings will better withstand school enculturation 
buffetings that are known to minimize university teaching.  

And I think they may well do just that. Many of the students’ comments hint at a deep, 
underlying paradigm shift about the way teaching and learning is construed:  

I wish I had been exposed to [these] methods much earlier in my college career. I 
believe [it] could have a great impact on [the university’s] college of education if 
allowed to continue. 
I ended up loving the class. In the beginning I wanted to drop, but ended up learning 
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so much from this class. There should be more [approaches like this] in the college of 
education.  
[The approach] did an excellent job in opening my mind about mathematics. I learned 
a lot about math concepts through discussion. A lot about math concepts were de-
mystified. I feel like I am ready to go into the schools and effectively teach math. 

Such is the potential of a juxtapositional pedagogy. In particular, as these comments express, 
preservice teachers regularly demonstrated the expected cognitive dissonance needed to 
effectuate an inward-motivated, long-lasting paradigm shift from traditional pedagogical thrusts 
to more meaningful forms of mathematics education (Carpenter, Fennema, Peterson, Chiang, & 
Loef, 989; Stigler & Hiebert, 1999). And their lessons reflected such a shift by the end of the 
semester. The fact that the science educator (who teaches science methods in the same semester 
as the elementary math methods block) noticed that their science lessons were incorporating the 
core structural features of their math methods lessons adds credence to the belief that the 
preservice teachers’ apparent belief changes were not a mere superficial surface adjustment to 
my course expectations, but were a deeper paradigm shift about what teachers do, a shift that was 
now spilling over into other aspects of their teaching. I believe the juxtapositional approach helps 
the preservice teachers to become reasoned, purposeful practioners because it instills in them a 
reflective attitude toward their actions: 

[Reflective thinking] emancipates us from merely impulsive and merely routine activity…. it 
enables us to act in deliberate and intentional fashion to attain future objects or to come into 
command of what is now distant and lacking. By putting the consequences of different ways 
and lines of action before the mind, it enables us to know what we are about when we act. It 
converts action that is merely appetitive, blind, and impulsive into intelligent action. (Dewey, 
1981/1933, p. 125, emphasis in original) 

A curriculum of juxtaposition may provide a suitable environment for developing reflective 
habits of mind because the nature of contrasting points of view causes the open-minded to 
reconsider in the face of seemingly-contradictory yet equally-plausible data their own reasons 
and justifications for supporting their own actions and beliefs. By placing opposing ideas, each  
which appears to have legitimate support from other intelligent individuals, next to their own 
cherished beliefs, the way is open for resisting the urge to dismiss the opposition (Rodgers, 
2001), and to begin forming habits of accepting or rejecting positions based on appeals to data 
(Dewey, 1981/1933). The purpose of juxtaposition strengthens future teachers’ decision-making 
and respects their agency, even if they are not accustomed to this mode of university instruction 
at the outset of the course. In particular, juxtaposition allows preservice teachers to 
simultaneously consider various viewpoints and to make judgments themselves about which 
attributes from the differing positions they really value, enhancing their teaching potentials by 
grounding their actions in “wide-awake, careful, thorough habits of thinking” (Dewey, 
1981/1933, p. 177, emphasis in original). 
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Math for Teachers courses are specialised mathematics content courses whose nominal aim is to 
build conceptual mathematics understanding in prospective elementary school teachers. But who 
teaches these courses? This paper offers some insights into this question, exploring the views of 
two particular instructors whose interview responses reveal very different perspectives on their 
goals for this course with respect to knowledge-for-teaching, beliefs about mathematics, and the 
attitudes/emotions of their students. 

 
Background 

Prospective elementary school teachers are often expected to exhibit proficiency in 
mathematics by completing a university level mathematics content course before entering their 
accreditation programs. In an effort to provide this group of students with a course that is 
potentially more appropriate to their needs than a calculus or statistics course, mathematics 
departments at many colleges and universities have developed specialised “Math for Teachers” 
courses. Though they differ from institution to institution, these courses typically cover 
elementary school arithmetic and geometry topics, with an aim to help prospective teachers 
develop a strong conceptual understanding of the mathematics they will one day teach.  

Relatively little research has been done to explore the role that these specialised content 
courses play in the development of teachers. As part of this larger project this qualitative study 
focuses on the instructors of these courses. Despite the surface similarities between Math for 
Teachers courses offered within and between institutions, given the autonomy that most post-
secondary educators enjoy, the course-as-delivered has the potential to be significantly 
influenced by the individuals who teach the course. This study seeks to shed light on who the 
instructors of the Math for Teachers course are and how they attempt to contribute to the 
development of future teachers. 

 
Theoretical Perspectives 

Our inquiry is both informed by and informs a number of theoretical perspectives including 
classic and contemporary views on knowledge-for-teaching and sociomathematical norms.  

Initial review of curriculum descriptions for Math for Teachers courses suggested that 
Shulman’s (1986) framework for classifying knowledge for teaching might be helpful in 
understanding the types of knowledge that instructors of these courses hope to transmit to their 
students. Shulman identifies three major categories of knowledge: subject content, pedagogical 
content and curricular content. Given that the Math for Teachers course is intended to be a 
content course, we anticipated that in interviews instructors would address subject content 
knowledge, but not curricular content in their descriptions of their goals for this course. 
However, we were interested to see the extent to which pedagogical content issues would be 
addressed. Under this type of teacher knowledge Shulman includes: the most useful forms of 
representation of those [mathematical] ideas, the most powerful analogies, illustrations, 
examples, explanations, and demonstrations—in a word, the ways of representing and 
formulating the subject that make it comprehensible to others. (Shulman, 1986, p. 9)He goes on 



Vol. 5  1254 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

to add: an understanding of what makes the learning of specific topics easy or difficult: the 
conceptions and preconceptions that students of different ages and backgrounds bring with them 
to the learning of those most frequently taught topics and lessons. (Shulman, 1986, p. 9) 

The work of Ball and Bass (2003) also contributes to our perspective on the scope of 
pedagogical content knowledge. They identify an ability to unpack (or break-down) 
mathematical ideas, to understand the connectedness of mathematics concepts both at a 
particular level and across levels, and how students conceptions of mathematical concepts will 
evolve over time, as examples of mathematical knowledge required for teaching. Furthermore, 
they include knowledge of conventional mathematical practices, such as the role of definitions, 
and what constitutes an adequate explanation. 

Though theories of knowledge-for-teaching influenced our initial interview questions, 
recurrent themes led us to broader and deeper considerations. Early interviews revealed that 
students’ beliefs and attitudes are also of particular concern for instructors of this course.  They 
can affect the students’ ability to acquire knowledge content (Ball, 1990), and contribute to the 
development of the attitudes, beliefs and values that they will carry forward with them into their 
teaching careers. It also became apparent that any analysis of these affective issues would need 
to consider not only the aspects of their students’ attitudes and beliefs which the instructors hope 
to influence, but also the instructors’ beliefs and attitudes about mathematics and the teaching of 
mathematics that ultimately influence their own practice (Ernest, 1989).  

Cobb and Yackel’s (1996) notion of sociomathematical norms offers a lens through which to 
view this complex interplay between the beliefs and attitudes of the instructors and their 
students. Sociomathematical norms are normative understandings, negotiated through the 
interaction of teacher and students, which relate specifically to mathematical activity. Research 
supports the view that the development of these norms is closely integrated with the mathematics 
beliefs and attitudes of the teacher and students:  
With regard to sociomathematical norms, what becomes mathematically normative in a 
classroom is constrained by the current goals, beliefs, suppositions, and assumptions of the 
classroom participants. At the same time these goals and largely implicit understandings are 
themselves influenced by what is legitimized as acceptable mathematical activity. (Cobb & 
Yackel, 1996, p. 460)  

Though the negotiation of norms involves participation of the students as well as the teacher, 
the teachers’ various roles (as initiator, facilitator and validator) underscore the relevance of 
examining the beliefs and attitudes that the instructors bring to this negotiation. Integral to Cobb 
and Yackel’s (1996) emergent perspective is the view that these social constructs are reflexively 
related to the individual’s mathematical beliefs and values. From this perspective, references to 
beliefs about the nature or activity of mathematics can suggest the sociomathematical norms the 
instructors hope to establish in Math for Teachers courses, and vice versa. 

 
Methodology 

Interviews were conducted with instructors of Math for Teachers courses at post-secondary 
institutions in a metropolitan region. The Math for Teachers courses offered at these institutions 
are locally developed but are sufficiently similar that students can transfer credit for this course 
from one school to another. 

The interviews, which lasted approximately one hour, began with a standard set of questions 
about the backgrounds of the instructors, their education, number of years of teaching, and 
number of years of teaching Math for Teachers. These questions were followed with questions 



Vol. 5  1255 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

about their initial orientation (preparation) for teaching the course, about what they do differently 
with this group of students compared to their other mathematics students, about their goals in 
teaching the course, and the outcomes they believe they achieve. As each interview was 
completed it was transcribed and coded for emergent themes through a process of constant 
comparative analysis (Cresswell, 2008; Corbin & Strauss, 2008). As part of this reflexive process 
the interviews were only semi-structured. This allowed the interviewer to incorporate additional 
and/or deeper questions to respond to new themes as they arose. To compensate for any bias that 
our own personal experience as occasional instructors of this course may introduce, the interview 
coding was corroborated by a more neutral colleague. Furthermore, narrative descriptions of the 
interview subjects were read and verified by the subjects themselves. 

Through the analysis of the transcripts nine themes emerged: two related to teacher 
knowledge (subject content and pedagogical content), five related to sociomathematical norms 
(beliefs about mathematics, emotions/attitudes, aesthetics, communication, and community) and 
two others (teaching methods and tensions). Due to space limitations, in this report we will 
restrict our discussion to the two themes related to teacher knowledge, as well as two of the 
themes related to sociomathematical norms: beliefs about mathematics and emotions/attitudes. 
To facilitate readability, we will further limit ourselves to quotations from only two of our 
interview subjects, Harriet and Bob. Elaboration on these cases will permit us to illustrate two of 
the very different approaches that were revealed through our study. 

We will begin our discussion of results with brief narrative descriptions of Harriet and Bob, 
and follow this with analysis of the selected themes. 

 
Narrative Descriptions 

Harriet 
Harriet is an experienced Mathematics instructor who has been teaching for 22 years. She is 

relatively new to teaching Math for Teachers, but has taught the course six times over the last 
three years. She has neither taken any Mathematics Education courses, nor does she have a 
formal teaching designation. She has a Masters Degree in Mathematics, and has a special interest 
in the history of mathematics. Harriet was initiated into the teaching of this course by a colleague 
who has a Masters Degree in Mathematics Education, has taught Math for Teachers for many 
years, and has a particular passion for the course. This colleague provided information about 
course materials and the nature of the students and their difficulties. She also provided teaching 
resources, including suggestions for activities.  

Harriet feels strongly about the need for good teachers of mathematics in the elementary 
schools, and has put a great deal of thought into what can be done in a Math for Teachers course.  
Her priority when teaching the course is to change students’ attitudes towards mathematics and 
their own mathematical abilities. She hopes students will come to see mathematics as enjoyable, 
even when it is challenging, and will develop confidence, based on a solid conceptual 
understanding of elementary mathematics.  
Bob 

Bob has been teaching mathematics for 13 years and has taught the Math for Teachers course 
nine times over the last nine years. He has a Masters Degree in Mathematics, has not taken any 
Mathematics Education courses, and has not had any formal teacher training. Bob’s first forays 
into teaching the course were guided by the established curriculum, the textbook that had been 
selected by colleagues who had taught the course before, and through informal discussions with 
those colleagues.  
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Bob is passionate about mathematics. He enjoys its logic, its structure, and the challenges 
presented by a good problem. He cares about producing students who will be successful 
elementary teachers in the future, and to that end he hopes to equip them with a solid 
understanding of fundamental mathematics concepts, good communications skills, and a capacity 
to enjoy mathematics. 

 
Analysis of Interviews 

Knowledge for Teaching: Subject Content and Pedagogical Content 
Harriet and Bob’s interviews are illustrative of two quite different conceptions of the role of 

the Math for Teachers course in developing prospective teachers’ knowledge-for-teaching. 
Harriet’s description of her goals and strategies for teaching the Math for Teachers course are 

permeated with comments coded under “pedagogical content knowledge”. When describing the 
content of her course she mentions varieties of algorithms for arithmetic operations, along with 
models for their representation. Although these topics are part of the prescribed curriculum, her 
comments indicate that she goes beyond merely delivering this as subject content. She explicitly 
considers its relevance for teaching mathematics, noting: “We spend some time on the basic 
algorithms and different approaches to them, and how those can lead into different 
understandings of what you’re doing when you’re multiplying, or adding…”  

This notion of developing multiple understandings arises again when she is asked if there is 
anything that she teaches her Math for Teachers students about fractions that she wouldn’t teach 
someone who just wanted to learn how to use fractions. She states: “The fact that there are 
different models, there are different ways of picturing what’s going on, and that they are 
appropriate for...what may work well for some situation, or for some student, may not work for 
some other one”. For Harriet, access to a variety of representations and approaches is 
mathematics content that is particularly relevant for her students as prospective teachers.  

Connections between mathematical ideas also play a central role in Harriet’s conception of 
the knowledge content of the course. She explains: “…what you can do with a grade three 
student, and what you can do with a grade six student are quite different and I want them to see 
that it’s all interconnected…” Her evident appreciation for these connections echoes Ball and 
Bass’s (2003) description of knowledge-for-teaching, addressing both the connections within and 
across grade levels. In her words: 

I emphasize it [connections between topics] all the way through. I don’t try to plan the 
course to start from the beginning and go through to the end with an obvious thread, because 
mathematics is way too big for that. […] But at all times I connect it, as far as I can, to what 
goes on at different levels. What you might do with a grade 1 class, how that connects to 
what they’re going to see in, you know grade 4 or 5 or something like that, how that connects 
to what they might do in high school and how that connects to what I’m doing in Calculus. 
Because they’ve got to see how it’s connected, and how we build bigger and bigger, you 
know, understandings of sets of numbers, or calculations, or whatever. 
Harriet does not just pay lip-service to these ideas. She describes assignments and activities 

for her classes that provide them with opportunities to exercise their pedagogical content 
knowledge: her students engage in analyses of pupil errors, as well as activities that allow them 
to compare alternative methods for solving math problems. While Harriet is concerned to ensure 
that her students build proficiency in mathematics subject content, her interview stands out from 
the others in that she constantly returns to comments related to how the content would be used by 
her students in their future roles as teachers. 
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In contrast, Bob’s interview stands out for its lack of statements that can be coded as 
pedagogical content knowledge. His emphasis is instead on the notions of developing both a 
strong understanding of fundamental mathematics and communication skills in his students. 
When comparing the Math for Teachers course with his other mathematics courses he notes 
“...this one focuses on their ability to communicate and convey the ideas that they should, 
hopefully, be already familiar with and capable of doing.” Bob describes teaching various 
algorithms and models as part of the course content, but does not specifically address any 
comments to consideration of how this information can be used differently at different grade 
levels.  

Bob needed to be pressed by the interviewer to consider what aspects of the course content 
might be particularly relevant to prospective teachers as opposed to general learners of 
mathematics. Initially his comments revolve around his methodology, the use of group work and 
manipulatives (both coded under “teaching methods”), but he makes no reference to any special 
mathematics knowledge for teaching. Eventually an association between the mathematics that he 
teaches and the students’ future role as teachers appears when he describes challenging his 
students to think about the kinds of questions that they will encounter as teachers: 

…what kinds of questions will you encounter? And why is it important that you to be able to 
communicate your ideas effectively, […], why should you understand this material to the 
most, [...], fundamental and basic level, and understand all of the structure? 

Even then, this response seems to be a justification for developing strong subject matter content 
knowledge and communication skills. There appears to be a strong connection for Bob between 
knowing the mathematics subject content and being able to teach it. He goes on to note: 

...when you get some of these obtuse questions, that are seemingly [...] obtuse, you have to be 
able to appreciate it and be able to differentiate whether that’s something that can lead you 
into a teachable moment... 
His focus on subject content knowledge is echoed in his description of what his students 

leave the Math for Teachers course with: 
…I think that they […] leave having had some sense of the structure of mathematics, because 
there’s a sufficient amount of that in the course, and I think that they also leave the course 
feeling that they can solve problems, on their own. […] probably it’s the technical skills that 
they have [...] solidified the most. 

Bob’s views on the readiness for teaching of those who complete his course shed further light on 
this. Though he admits that they are not ready, he describes his students as still lacking maturity, 
confidence and communication skills. But in regard to their mathematics skills he relates:  

...[for] my A’s and high B students I wouldn’t have any problem giving a recommendation in 
terms of how they’re outfitted to [...] go into a classroom, and [...] I think other aspects of 
their [...] education career, will help fill out all of their [...] professional skills, in terms of 
knowing what’s in the better interests of kids... 

It appears that for Bob, mastery of the subject content along with general pedagogical skills are 
sufficient for the teaching of mathematics—a traditional and not unfamiliar point of view (Hill et 
al, 2007).  
 
Beliefs about Mathematics 

Interview subjects commonly commented on the beliefs about mathematics the prospective 
teachers brought with them into the course, and about their efforts to influence those beliefs, 
though both the specific beliefs they addressed and their approaches differed. 
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Bob describes his students as believing that mathematics is arbitrary and incomprehensible: 
“So many things seem magical to them.” He affirms that “it’s not your standard sort of math 
group, it’s one that has encountered some challenges along the way, and it hasn’t always left 
them with a positive impression of mathematics.” More than once in his interview he describes 
the Math for Teachers course as a second start for these students, an opportunity to reshape their 
beliefs about mathematics and their own mathematical ability.  

For Bob, this reshaping is attempted by providing his students with opportunities to see the 
logical structure of mathematics, which in turn will improve their ability and their conceptions of 
their ability to do and understand mathematics. In his words, the course “focuses on a very sound 
fundamental ability to appreciate it [mathematics], in a theoretical way, why things work, as 
opposed to technical aspects of how do you do mathematics”. He tries to “give them a sense that 
“yes, they can” but also ...force[s] them to dig a little bit deeper, so that they also know that they 
can understand this as well”. He also challenges their presumptions about the root of authority in 
mathematics, attempting “to make sure that they know I’m not just saying this stuff because “It’s 
the way it is” and Math isn’t just something handed down by the gods, it’s understandable”. 

Harriet focuses on quite different aspects of her students’ beliefs. Her comments indicate that 
her students believe that mathematics is rigid (allowing for only one right answer), that 
mathematics is arithmetic, and that at least some of it is irrelevant. She observes: “It’s never 
occurred to them that there’s more than one way to do something.” In response to this, she takes 
the time to reinforce the existence of multiple representations and methods of solution. This is 
clearly a belief about mathematics that she values highly, as later in the interview she reiterates 
“if I get across to them that they have to be aware that there are different ways to think about 
things, and they are all correct, even if they don’t remember the details, then they’ve learned 
something”. Harriet also makes an effort, through course content, activities and assignments, to 
expand her students’ conception of what mathematics is, noting that by the end of the course 
“they’re more open to the idea that geometry is a big part of mathematics than they might have 
been before.” She also tries to “explain why it is that fractions are important”, challenging 
beliefs that a portion of the elementary school mathematics curriculum is dispensable. 

Harriet’s comments about beliefs seem directed not only towards students’ beliefs about the 
nature of mathematics, but also to beliefs about the teaching of mathematics. A nice example of 
this is the following comment which she makes in her discussion of teaching about division of 
fractions:  

The students know the algorithm so well, they don’t remember learning it. They don’t 
remember a thing about how they learned to do these things. They just remember the rules. 
And their idea of helping somebody find their mistakes is to say “Oh! You’re supposed to 
cross that out, and carry the one.” Which isn’t going to help anyone understand anything. 

This quote brings out the students’ frequent belief that mathematics is a set of static rules that 
need to be memorised (Szydlik, Szydlik and Benson, 2003), as well as Harriet’s contrary beliefs 
that not only can mathematics be understood, but it is the responsibility of the teacher to foster 
that understanding. Harriet provides her students with activities that allow them to analyse and 
discuss pupil errors. Through their discussion of these errors, she seeks to counter the belief that 
teaching mathematics merely involves showing someone how to execute the correct procedure. 

It is worth noting that although the instructors are conscious of their students’ beliefs about 
mathematics, and comment on how the activities and methods hope to contribute to a 
renegotiation of those beliefs, the development of positive beliefs and attitudes towards 
mathematics is not normally listed in the official course curricula for Math for Teachers courses. 
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Emotions/Attitudes 
We bring our description to a close with a few comments related to the theme of 

emotions/attitudes that arose in the interviews. Once again this was a common concern, with 
instructors categorically describing their students as suffering from mathematics anxiety and lack 
of confidence in their ability to do mathematics. There were however, considerable differences in 
instructors’ approaches to these negative feelings. Bob and Harriet represent two of the views 
expressed. 

Bob describes his students as suffering from confusion and anxiety, which is closely linked 
to poor performance: 

in many cases, some of the very elementary arithmetic operations are in fact, confused in 
their minds and so when they hit upon things, in particular when you hit rational numbers, as 
an example, that’s one place where students have a great deal of anxiety and they would 
demonstrate poor understanding of ideas. 

For Bob the source of their anxiety is their lack of skill. It is his belief that improved skills will 
lead directly to increased confidence, however he confesses that the realities of the course 
conspire against this. At the beginning of the interview he expresses a wish that the students in 
his course develop a love of math, but when asked about whether this goal is accomplished, he 
admits: “...in terms of the other goal, for love of math? Unfortunately, the course is so packed, 
that in some ways, I think they do get a little bit beaten by the end, and they’re just tired.” This 
begins to touch on the theme of “tensions” (not discussed here) however it illustrates Bob’s 
realisation that the volume of subject matter content that he needs to cover in the limited amount 
of time he has with his students is at odds with his objective of instilling a “love of math” 
through building subject competence. 

Harriet is also very concerned about her students’ math anxiety: “they are very anxious 
around problem solving. They are just terrified, most of them, of a problem they haven’t seen 
before.”  In contrast to Bob, her efforts to address this seem to be centred on changing their ideas 
of what the enterprise of mathematics is all about. She tries to convince them that “we’re 
supposed to have fun with this” and tells her students that “you may never have seen it; you might 
not get all the way through it. But what I’m looking for is how far did you get, and how well can 
you explain what it is that you got”, shifting the focus away from getting the right answer, 
towards less threatening goals. By the end of the course she hopes her students have grown in 
confidence and also “they have more of a sense of play...I think they’re more flexible. They think 
they’re more flexible. They’re not as scared if... that someone will ask them a question that they 
can’t answer.” It is not clear if Harriet needs to compromise on time spent on building 
mathematical proficiency in order to make time for students to approach the course in this way. 

 
Conclusion 

In her 2002 plenary address to the PME-NA, Ball noted that “we have not put in the 
foreground the “who” of teacher learning as often as we might” (Ball, 2002). The partial results 
of our study presented here provide a glimpse into the “who” of instructors of the Math for 
Teachers course, a course that is often the final mathematics content course taken by prospective 
elementary school mathematics teachers.  We have shown that despite the course’s nominal 
focus on subject content knowledge, there is also potential for instructors to address pedagogical 
content, beliefs about mathematics and the teaching of mathematics, as well as attitudes.  

The comments of the interview subjects reveal intentions for the course that go beyond the 
transmission of mathematical proficiency, providing examples of instructors’ efforts to expand 
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students’ conceptions of mathematics and their relationship with it. However, we are aware that 
our methodology permits only a description of the instructors’ espoused beliefs and intentions of 
practice, which may not be consistent with their actual practice (Liljedahl, 2008). Classroom 
observations, follow-up interviews, and examination of artefacts (such as assignments and tests) 
will be useful in providing validation for our conclusions. Furthermore it is our hope that the full 
report of this study will help inform future investigations into the contribution that mathematics 
content courses can and do make in the development of mathematics teachers. 
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Use of multiple representations can positively influence students’ mathematical learning and 
problem solving performance. In this study, we investigate how two preservice teachers utilized 
multiple representations in solving a pattern task. In characterizing their solution strategies and 
the difficulties they encountered, we make use of concept images and concept definitions. Our 
results suggest that translating between multiple representations can help students solve a 
problem that they have difficulties with in the given representation. Furthermore, once they find 
the solution they can revisit the initial representation they struggled with and make necessary 
corrections in their solution strategies. 

 
Introduction 

NCTM standards emphasize the importance of different representations as they enable 
multiple ways of thinking about mathematical objects (NCTM, 2000). Using different 
representations facilitates learning algebra meaningfully and effectively (Friedlander & Tabach, 
2001). Students can explain their mathematical strategies in multiple ways such as verbally, 
numerically, algebraically and graphically to gain a deeper understanding of mathematical 
concepts. Janvier (1987) supports that all meanings of an object cannot be encompassed within a 
single representation, as a result students need to translate between different representations to 
gain a richer knowledge. In order to translate between multiple representations effectively, 
students should have correct and strong links between each representation (Dreyfus, 1991). This 
study examines how pre-service teachers utilized multiple representations and the difficulties 
they encountered as they solved an algebra task.  
 

Theoretical Framework 
NCTM defines representation both as a process and product. It is a process because a 

representation is the act of capturing a mathematical concept or relationship in some form, and it 
is a product because it is the form itself (NCTM, 2000). The ability to use multiple 
representations is an important skill for solving mathematical problems, as it allows students to 
view problems from different perspectives. To use multiple representations effectively, students 
should know how to translate between different representations, and how to apply 
transformations within a single representation. Strengthening and remediating these abilities can 
positively influence students’ mathematical learning and problem solving performance (Lesh, 
Post, & Behr, 1987). 

A mathematical object can be defined formally which is called the concept definition of that 
object (Tall & Vinner, 1981). What students usually remember, however, is not the concept 
definition, but the concept image which is a set of all mental constructs and processes that are 
associated with that object (Vinner & Dreyfus, 1989). A concept image may be contained within 
a single representation (e.g. slope may be associated only with the coefficient of x), or it may 
encompass multiple representations (e.g. in addition to coefficient of x, a student may think of 
the coordinate system or a numerical pair of x-y values for slope). Additionally, one may have 
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Figure 1. The beam task. 

 

 
(a) (b) 

 

.    

(c) 
 

 

 

multiple concept images for the same concept definition. If these concept images are 
incompatible with each other, we can speak of a cognitive conflict (Tall & Vinner, 1981). In 
studying how pre-service teachers solved an algebra task, we have particularly focused on these 
theoretical perspectives.  
 

Methodology 
We investigated how prospective teachers’ used different representations while they were 

solving an algebra task. Seven senior-level prospective teachers were interviewed who had 
already enrolled in two method courses at the time of the study. The study was conducted with 
students who took method courses as they were more likely to use different solution strategies 
and representations that they learned in these courses. Based on the interviews, we particularly 
focused on two cases, that of George and Linda (pseudonyms), as they explicitly used different 
representations in their solutions. The interview task was finding the general formula of a pattern 
problem which was taken from Professional Development Guidebook for Perspectives on the 
Teaching of Mathematics (Bright & Rubenstein, 2004). We chose a pattern problem as we 
expected it to require students to use different representations such as algebraic, numerical, and 
graphical to solve the problem.   

 
Results 

The problem we asked to the prospective teachers 
was to find the general formula of the pattern sequence 
shown in Figure 1, given the following instructions: 
“Please write a formula that gives the number of rods 
(R) needed to build a beam of length (L). Explain why 
your formula works. Can you come up with different 
ways? If yes, explain the different ways.”  

In order to find the general formula of the pattern sequence, George started by drawing a 
table with two columns (Figure 2a). The first column indicated the length (1, 2, 3) and the second 
column indicated the number of rods (3, 7, 11). Based on this, he observed that the difference 
between the number of rods in consecutive table entries is 4. After he created the table he stated 
that he could not find the formula by just using the table, so he drew a coordinate system and 
plotted the data points (Figure 2b). Using this he found the (x1,y1) and (x2,y2) pairs which he used 
to calculate the slope with the algebraic formula (Figure 2c). 

Figure 2. George’s solution. 
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Figure 4. Linda’s 

table. 
 

 
Figure 3. George’s solution 
(continued from Figure 2). 

By translating the numerical representation to a graphical one, George was able to find the x 
and y values that can be used in the algebraic formula. This suggests that his algebraic concept 
image for slope was more accurate, and therefore he felt more comfortable in this representation. 
Once George found the slope using the algebraic formula, we asked if he can make sense of what 
4 was in his table: 

Interviewer: What does this difference of 4 tell you?  
George:  This 4 here with respect on R [number of rods] is going to be the change. It is 

going to be the rate of y. Well yes of course it is going to be the rate of change 
because you are doing this [pointing to Figure 2c] to find the slope. 

This dialogue shows that George was initially confused about interpreting his table, but once 
he noticed the correspondence between the algebraic result and his numerical solution, he 
realized that the difference between the successive entries in his table also gave the slope value. 
Thus, George was able to make sense of his table by referring to his algebraic solution.  

He then continued to solve the problem by trying to find b using the linear equation,              
y = mx+ b. Although he described b as the y-intercept, he had difficulty to use this 
representation: 

George:  For the y-intercept we already have the slope. Let’s see y equals to zero. No 
[erase what he wrote]. I can write this in standard form. y equals the same 
formula y = mx + b where m is 4. I want to find the y-intercept [long pause]. 

This time George had difficulty to use the algebraic representation to find the y-intercept. 
Therefore, he was encouraged to solve the problem by using another representation. He then 
went back his numerical representation (i.e. table), and noticed that he needed to find the value 
of x when it is equal to zero to find the y-intercept. He found that when x is zero y becomes -1 
(see Figure 2a). The following excerpt shows how he used 
the numerical representation to find the y intercept and the 
final result (Figure 3):  

George:  So if x is 0 I have to subtract 4 from 3 which 
give me -1. So this one now became y = 4x – 
1 [Then he changes the variables back to R 
and L to obtain, R = 4L - 1] 

George’s solution suggest that he had difficulties when 
using only one representation, but his ability to translate 
between different representations helped him to find the correct answer. Furthermore, once he 
found the answer, he was able to revisit the representations that he 
had difficulties with, and could make better sense of them. 

Linda also started to solve the problem by drawing a table. She 
first wrote the given information in the task into a table as shown in 
Figure 4. Then she tried the check-and-guess approach to find the 
general formula of pattern sequence:  

Linda:  Maybe 2n + 1. That is not going to work for that 
one [shows the second value which is 7]. How 
about 3n + 1? But this is not going to work for the 
first one. 

After she tried several formulas, she found the difference 
between the numbers of rods (R) in successive table entries which was 4. Then she was asked to 
explain what the number 4 represents in her table. Linda stated that the number shows that it 
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 Figure 5. Linda’s graph 
 

should be plus 4 in the general equation of the pattern task. The following excerpt show how she 
interpreted number 4 in her numerical representation: 

Linda:  So it should be plus 4 in the equation, because every time it goes up by 4; from 
one pattern to the other pattern. 

Linda considered 4 as the y-intercept instead of the slope. This may suggest a mismatch 
between her concept image and the concept definition of slope when she is using the numerical 
representation. Since she had difficulty to find the answer using the numerical representation, she 
was encouraged to use another approach. Then she drew a graph and plotted the points in the 
table. After that she connected the points and found the slope geometrically by computing the 
ratio of vertical change versus horizontal change (Figure 5):  

Linda:  [Using data points in her table] One is three, two 
is seven. I can find the slope [Linda finds the 
slope as rise-over- run by using the graphical 
representation].  

Interviewer:  So what is the slope? 
Linda:  4 
Once Linda found the slope using the graphical 

representation, she revisited her table and realized that the 
difference 4 between the successive table entries corresponded to 
the slope rather than the y-intercept. She then revised her answer 
as “4x plus something” instead of “something plus 4”. Thus, 
graphical representation helped her to translate from numerical 
representation to algebraic representation. Next Linda also found the y-intercept as -1 using the 
graph (Figure 5).  

Linda’s solution illustrates the case where the student has multiple concept images of the 
same object, but these images conflict with each other. As this example shows, in these cases it 
may be possible for the student to revisit the representation she struggled with and make the 
necessary corrections.  
 

Conclusion 
In this study, we observed that students used their concept images when solving a 

mathematical problem. Furthermore, they had multiple concept images, and when their concept 
images were misaligned with the actual concept definition, they struggled to find the solution. 
However, students were able to translate between different representations, and as a result they 
could solve the problem in a representation where their concept images were accurate. This 
allowed them to revisit the representations they had difficulties with and discover the problems 
in their understanding. 

To conclude our brief analysis, we believe that using multiple representations by having 
correct concept images of the mathematical objects involved and practicing those representations 
in different forms of the same task can positively influence mathematical learning and problem 
solving performance. 
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This study examines preservice secondary mathematics teachers’ understanding and sense-
making of polynomial multiplication modeled with algebra tiles. I base this research within a 
framework of concepts and theorems-in action (Vergnaud, 1983, 1988, 1994, 1997). My data 
consist of videotaped qualitative interviews. I generated a thematic analysis by undertaking a 
retrospective analysis, using constant comparison methodology. The main result of this study is 
that representational Cartesian products-in action at two different levels, indicators of 
multiplicative thinking, were available to two research participants only. 

Background 
The study of multiplicative structures has been conducted by mathematics education 

researchers since the 1980s. In his 1983 article, Vergnaud defines the notion conceptual field as a 
“set of problems and situations for the treatment of which concepts, procedures, and 
representations of different but narrowly interconnected types are necessary.” (p. 128). In 
particular, he views the multiplicative structures, a conceptual field of multiplicative type, as a 
system of different but interrelated concepts, operations, and problems such as multiplication, 
division, fractions, ratios, similarity. Although multiplicative structures can to some extent be 
modeled by additive structures, they have their own characteristics inherent in their nature, 
which cannot be explained solely by referring to additive aspects. Behr, Harel, Post, and Lesh 
(1994) developed two representational systems – extremely generalized and abstract – in an 
attempt to transcribe students’ additive and multiplicative structures in which the notion “units of 
a quantity” plays the main role. According to Steffe, “for a situation to be established as 
multiplicative, it is always necessary at least to coordinate two composite units in such a way 
that one of the composite units is distributed over the elements of the other composite unit.” 
(1992, p. 264). Confrey provides splitting, “an action of creating simultaneously multiple 
versions of an original,” (1994, p. 292) as an explanatory model for children’s construction of 
multiplicative structures. 

Theoretical Perspectives 
Vergnaud’s conceptual field theory asserts that “one needs mathematics to characterize with 

minimum ambiguity the knowledge contained in ordinary mathematical competences. The fact 
that this knowledge is intuitive and widely implicit must not hide the fact that we need 
mathematical concepts and theorems to analyze it.” (1994, p. 44). I base this present study within 
a framework of concepts- and theorems- in action (Vergnaud, 1983, 1988, 1994, 1997). 
According to Vergnaud, theorems−in−action are “mathematical relationships that are taken into 
account by students when they choose an operation or a sequence of operations to solve a 
problem” (1988, p. 144). He goes on to state “To study children’s mathematical behavior it is 
necessary to express the theorems−in−action in mathematical terms.” (p. 144). Concepts-in-
action serve to categorize and select information whereas theorems-in-action serve to infer 
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appropriate goals and rules from the available and relevant information (Vergnaud, 1997, p. 
229). 

Vergnaud (1988) claims that “a single concept does not refer to only one type of situation, 
and a single situation cannot be analyzed with only one concept” (p. 141). He argues that 
teachers and researchers should study conceptual fields rather than isolated concepts. He then 
goes on to define a conceptual field as “a set of situations, the mastering of which requires 
mastery of several concepts of different natures” (p. 141). Grounded in this theory, I developed a 
series of terminology in an attempt to reveal my research participants’ concepts-in-action arising 
from their verbal descriptions, actions, statements, hand gestures, and drawings in the context of 
polynomial multiplication problems modeled with algebra tiles. 

Research Questions 
1. How do preservice secondary mathematics teachers make sense of polynomial multiplication 

problems modeled with algebra tiles?  
2. What types of concepts- in action are available to these preservice teachers?  

Methodology 
I conducted my study with (2 middle and 3 high school mathematics) preservice teachers 

enrolled in the Mathematics Education Program in a university in the southeastern United States. 
I interviewed 5 people individually twice during Spring 2007 semester. Duration of each 
interview was about 75 minutes and each session was videotaped using one camera.  

The focus of this present study is on problems on identities of the form “product = sum” for 
products of polynomials modeled with algebra tiles. In this model, each little black square tile 
represents the number 1, purple bar represents the x, blue bar represents the y, purple square 
represents the ,2x  blue square represents the ,2y  and green rectangle represents the xy. The 1, 
the x, and the y are called Irreducible Linear (or Areal, depending on the context) Quantities 
(ILQ or IAQ); whereas the ,2x  the ,2y  and the xy are called Irreducible Areal Quantities (IAQ). 
Preservice teachers constructed rectangles with specified dimensions of the form ),( cbyax ++  
where a, b, and c were natural numbers. They were also asked to write their answers for the area 
of the polynomial rectangle as a product and as a sum. 

After the end of data collection, I reviewed each interview data in order to generate possible 
themes for a more detailed analysis. I transcribed significant events of these interviews. A 
retrospective analysis, using constant comparison methodology, was then undertaken during 
which the interviews were revisited many times in order to generate a thematic analysis from 
which the following results emerged. 

Results 
On the first polynomial multiplication task, my instruction was “Use the algebra tiles to 

multiply the polynomials x + 1 and 2x + 3 on the multiplication mat.” Ben first placed the 
dimension tiles (irreducible linear quantities) on the side and at the top. He then followed a 
“filling” process during which he tried to fit the areal tiles (irreducible areal quantities) in the 
polynomial rectangle outlined by the dimension tiles. Rather than a pair-wise multiplication, he 
relied on a Filling in the Puzzle Strategy, a concept-in-action, indicative of his additive thinking; 
despite the fact that he was asked to “multiply” these polynomials. Figure 1a depicts Ben’s 
polynomial rectangle, which he obtained by the filling in the puzzle concept-in-action. Figure 1b 
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depicts what he would have produced if reasoned multiplicatively. Figures 1c-d depict, another 
preservice teacher, Ron’s Filling in the Puzzle Strategy, while commenting “Any chance of 
fitting this [green tile] there [right next to the purple square]”? 
 

 
Figure 

13a 

 
Figure 

1b 

 
 

 
 

 
John, when working on the second task on the x + 1 by 2y + 3 polynomial rectangle, 

produced a polynomial rectangle with blue squares, blue bars, and black squares only (i.e., the 
polynomial rectangle was independent of x). Filling in the Puzzle strategy appeared in that John 
started with blue squares instead of green rectangles, which indicated that what he was doing was 
definitely not term wise multiplication (Figure 2a). Below the two blue squares, he placed 3 blue 
bars (Figure 2b). Right next to the two blue squares, he placed 6 blue bars (Figure 2c). Figure 2c 
stands as visual evidence that John was not using multiplication. In fact, John said “I am making 
the rectangle by parts.” Therefore, John's statement validates my previous hypothesis that the 
“Filling in the Puzzle” strategy seems to be related to an “area as a sum” strategy, namely calling 
for an additive nature. This contrasts with the “Term Wise Multiplication of Irreducible Linear 
Quantities” strategy, which naturally defines the irreducible areal quantities (IAQ) as products, 
namely of multiplicative nature. Finally, he placed 9 black squares right below the previous three 
blue bars hence completing his puzzle (Figure 2d). 
 

 
Figure 

1c 

 
Figure 

1d 
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Figure 
2a 

 
Figure 
2b 

 
Figure 
2c 

 
Figure 
2d 

 
Though he obtained a totally different polynomial rectangle for this second task, John's 

written answers and verbal descriptions were consistent in that he was always referring to his y–
dependent–only polynomial rectangle. Because the initial instruction was to make a polynomial 
rectangle with length x + 1 and width 2y + 3, at some point he had to write an identity in the last 
column of the activity sheet. In fact, he wrote the identity “(x + 1)(2y + 3) = 2y2 + 3y + 6y + 9” 
as his answer. John's written answer warrants a disconnect as well, in that John was unable to 
write an area as a product expression (LHS) based on the actual dimensions of his rectangle. If 
he was able to refer the actual dimensions of his rectangle, the correct identity would then be “(y 
+ 1)(2y + 3) = 2y2 + 3y + 6y + 9” instead of “(x + 1)(2y + 3) = 2y2 + 3y + 6y + 9.” The following 
protocol takes this issue into account and reflects how John reconciled the equivalence of x– and 
y–dependent LHS with the y–dependent–only RHS: 

 
Protocol 1: John establishes the LHS–RHS equivalence. 

Interviewer: Are they equal? [about the LHS and the RHS of his identity “(x + 1)(2y + 3) = 
2y2 + 3y + 6y + 9”] 

John: I mean... they're equal... they have to be equal... 
Interviewer: Do you want to verify? 
John: Do you want me to multiply that [the LHS] out? [I then ask him to do it on the board. 

Here is the first step of his verification. Figure 3a] 
Interviewer: Is there something wrong? 
John: No... It's just that... we don't know what x is... so... if you knew what x was you'd 

probably... x probably equals... [He looks at his figure] It looks like x equals y plus 2 [He 
then substitutes x = y + 2 and completes his verification. Figure 3b]  

Interviewer: So it works with the condition that... 
John: With the condition that x equals y plus 2. 
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Figure 

3a  
Figure 

3b 

 
At the beginning of the conversation, John was so certain about his equality that he did not 

feel the need to question it. Upon my request to verify his findings, he obtained “2yx + 3x + 2y + 
3 = 2y2 + 9y + 9” (Figure 3a). At this point, he realized that the RHS is y–dependent–only 
whereas the LHS has “x”s and “y”s, and deduced that he somehow had to get rid of the “x” on 
the LHS. He then referred to his figure made of tiles. He actually measured the x at the top of his 
figure using the “y” and the “1” tiles. In order to get rid of the “x” on the LHS, he substituted x = 
y + 2 (Figure 3b), based on his measurements. In other words, John made sense of the dimension 
tiles for the first time. For him, the dimension tiles do not stand as irreducible linear quantities 
(ILQ) whose term wise multiplication yields the corresponding irreducible areal quantity (IAQ), 
though. They rather stood as some sort of measurement tools helping John establish the LHS–
RHS equivalence of his written identity. 

On the third polynomial multiplication task, my instruction was “Use the algebra tiles to 
multiply the polynomials 2x + y and x + 2y + 1.” Both Nicole and Sarah, when placing the 
dimension tiles, followed the “x tile followed by the y tile followed by the 1 tile” ordering. As 
was the case with all the polynomial multiplication problems, both Nicole and Sarah actually did 
each term wise multiplication carefully by pointing to the corresponding irreducible linear 
quantities, and placed the resulting irreducible areal quantity accordingly (Figure 4). 
 

 
Figure 4a 

 
Figure 4b  

Figure 4c 
 

Figure 4d 

 
Both Sarah and Nicole thought aloud and pointed to the irreducible linear tiles at the top and 

on the side for each multiplication. The “multiplicative nature” of the “irreducible areal 
quantities” seems to be warranted by Sarah’s statements in the following protocol: 

 
Protocol 2: Sarah’s reference to a Representational Cartesian Product of Type I. 

Sarah: This is [pointing to and placing the areal x squared tile] x [pointing to the linear x tile 
on the side] times x [pointing to the linear x tile at the top]. This one is also x times x [in a 
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similar manner]. This one is x times y [pointing to and placing the green tile representing 
the areal unit xy]. And x times y [in a similar manner]. 

Interviewer: Where is the x times y? 
Sarah: y [pointing to the linear y tile at the top] and x [pointing to the linear x tile on the side]. 

And x times y [in a similar manner]. And x times y [in a similar manner]. And this is x 
times y [in a similar manner]. And then this is y [pointing to the linear y tile at the top] 
times y [pointing to the linear y tile on the side]. And y times y [in a similar manner]. This 
is x [pointing to the linear x tile on the side] times 1 [pointing to the linear 1 at the top]. 
And x times 1 [in a similar manner]. And y [pointing to the linear y tile on the side] times 
1 [pointing to the linear 1 at the top]. 

 
Sarah did not say “x squared,” nor “y squared.” She rather said “this is x times x,” “and then this 
is y times y,” i.e., multiplicative in nature. Her language “y and x” is also indicative of an ordered 
pair (y, x) of linear quantities. In this vein, both Sarah and Nicole can be said to construct a 
Representational Cartesian Product of Type I defined on the Representational Sets of 
Irreducible Linear Quantities (RSILQ). With relational notation, Sarah and Nicole's verbal 
descriptions accompanied by their hand gestures can be modeled with the following 
(Representational) Cartesian Product-in-action of Type I: 

• RCP1 = RSILQ1 × RSILQ2 = {x, x, y} × {x, y, y, 1} = {(x, x), (x, y), (x, y), (x, 1), (x, x), (x, 
y), (x, y), (x, 1), (y, x), (y, y), (y, y), (y, 1)}. 

When we discussed the “area of the boxes of the same color as a product” column on the 
activity sheet for the same polynomial multiplication problem 2x + y times x + 2y + 1, Nicole’s 
answers, once again, were areas defined as the product of two quantities, i.e., multiplicative in 
nature. The following protocol illustrates Nicole’s multiplicative thinking. 

 
Protocol 3: Nicole's reference to a Representational Cartesian Product of Type II. 

Interviewer: You are saying 2x times x [About Nicole's expression (2x) · (x), which she wrote 
on the activity sheet]. And why not 2 times x2? 

Nicole: Because I just saw these as a pair together... [pointing to the linear 2x] same things 
you can group them together. So it's just A [pointing to the linear 2x at the top] times B 
[pointing to the linear x on the side]. Because when you look at this whole thing, this 
whole purple area [pointing to the 2x by x “same−color−box”] as one area... so you look 
the length as one number, 2x, instead of 2 times x. 

Interviewer: So what is the difference between this and the other way [I am asking her to 
compare the expressions (2x) · (x) and (2) · (x2)] representationally? 

Nicole: I did it [About her expression (2x) · (x), which she wrote on the activity sheet] in 
terms of the length times the width. Now it [About the expression (2) · (x2) via which I 
am trying to challenge her] would be... talking about... how many of these [pointing to 
the purple squares] you have. In the other case, length times width gives the area of the 
whole thing [pointing to the 2x by x “same−color−box”]. 

Interviewer: Please do the same for this one... [pointing to her expression (2x) · (2y), which 
she wrote on the activity sheet] why not 4 times xy? 

Nicole: Again I did this [pointing to the 2x by 2y “same−color−box”] as one area. I did it as 
length times width. Now this [about the expression 4 times xy I am trying to challenge 
her with] means I have 4 of them [meaning 4 green rectangles] and each one is an xy. 

 
Nicole showed a mathematically fruitful performance in creating a Representational Cartesian 
Product of Type II, in her comparison of “2x times x” vs. “2 times x2.” The “pair” in Nicole's 
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statement “I just saw these as a pair together” refers to the pair of linear “x”s in “2x” and not to 
the ordered pair (x, 2x) of linear quantities. In other words, at the initial stage of defining a 
Representational Cartesian Product of Type II, she first identified the elements of the 
Representational Sets of Combined Linear Quantities RSCLQ1 = {2x, y} and RSCLQ2 = {x, 2y, 
1}. Her later usage “So it's just A [pointing to the linear 2x at the top] times B [pointing to the 
linear x on the side]” signaled the onset of a Representational Cartesian Product of Type II, 
another concept−in−action, an indicator of Nicole’s multiplicative reasoning. In this way, she 
established the existence of her concept−in−action: Nicole first picked an element, “A” from the 
set RSCLQ1 = {2x, y} and then picked another element, “B” from the other set RSCLQ2 = {x, 2y, 
1}. She then formed pairs (A, B) − another concept−in−action − of combined linear quantities 
(CLQ) by which she generated her RCP. In fact, what she referred to is an abstract definition of a 
Representational Cartesian Product RCP = 

� 

{(A,B) | A ∈ RSCLQ1,B ∈ RSCLQ2}  where RSCLQ1 
= {2x, y}, RSCLQ2 = {x, 2y, 1} with the set builder notation. A and B can be anything as long as 
they are coming from the first set RSCLQ1 and the second set RSCLQ2, respectively. Nicole did 
not describe the expressions (2)·(x2) and (4)·(xy) as representationally multiplicative, as opposed 
to Ben and Ron, who embraced the Filling in The Puzzle Strategy, which is an indication of their 
additive thinking. Although (2)·(x2) and (4)·(xy) are representationally additive, as Nicole 
explains in Protocol 3 above, for Ben and Ron these expressions are misinterpreted as of 
multiplicative nature. The algebraic symbols (2)·(x2) and (4)·(xy) can be deduced only within an 
additive context, according to Nicole, representationally.  

In the same vein, I asked Sarah to outline the same-color-boxes on her 2x + y by x + 2y + 1 
polynomial rectangle (Figure 4d). The multiplicative nature of the areas of these “same-color-
boxes” was prevalent, as reflected in the protocol below: 

 
Protocol 4: Sarah's reference to a Representational Cartesian Product of Type II. 

Sarah: This one is 2x [pointing to the linear 2x on the side] times x [pointing to the linear x on 
the top]. This one is 2y times 2x [pointing to the corresponding linear tiles in a similar 
manner]. This one is 2x times 1 [pointing to the corresponding linear tiles in a similar 
manner]. This one is x times y [pointing to the corresponding linear tiles in a similar 
manner]. This would be y times 2y [pointing to the corresponding linear tiles in a similar 
manner]. And this would be y times 1 [in a similar manner]. 

Interviewer: So the product... each time you were doing the same thing... tell me more about 
that... I just want to make sure that I understand that... 

Sarah: I was using the area as a length times width where... this is a length or... and this 
would be the width... and basing it of like that... otherwise I could have added the insides 
[pointing to the areal tiles]... the way I did it was length times width.  

 
In other words, Sarah was aware that what she was doing was term wise multiplication of the 
combined linear quantities, and not addition. Her statement “otherwise I could have added the 
insides” combined with her gestures indicate that there are only two possibilities: The areas of 
the “same−color−boxes” could be modeled either via multiplication, or addition, 
representationally. But since she was asked about the areas of these boxes as products, the other 
option, namely additiveness is irrelevant as she responded “the way I did it was length times 
width.” This is in contrast to Ben and Ron's written answers and verbal descriptions of these 
“boxes” indicating an additive nature. Using set notation, Sarah's descriptions can be modeled 
via a Representational Cartesian Product–in-action of Type II defined as follows. 
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• RCP2 = RSCLQ1 × RSCLQ2 = {2x, y} × {x, 2y, 1} = {(2x, x), (2x, 2y), (2x, 1), (y, x), (y, 
2y), (y, 1)}. 

Preservice Teachers’ Concepts-In-Action 
In this research study, all five research participants worked on all three tasks. Due to the page 

limitation, I could not include fifteen different participant-task pieces. In this section, without 
loss of generality, I summarize the research participants’ concepts-in-action pertaining to the 2nd 
polynomial multiplication task “Multiply x + 1 by 2y + 3 using algebra tiles” for the sake of the 
constant comparison analysis methodology. 

On the first level (Figure 5a); Ben, Ron, and John interpreted the ¨Irreducible Areal 
Quantities” as meaningless Areal-Singletons, which corroborates their Filling in the Puzzle 
concept-in-action, indicative of their additive thinking. Sarah and Nicole, on the other hand, 
interpreted these ¨Irreducible Areal Quantities” as Areal-Singletons resulting from the 
multiplication of the corresponding pair of irreducible linear quantities, which corroborates their 
Term-Wise Multiplication of Irreducible Linear Quantities concept-in-action. 
On the second level (Figure 5b); Ben, Ron, and John interpreted the “Same-Color-Boxes” 
additively, whereas, Nicole and Sarah interpreted these areal quantities multiplicatively. Table 1 
illustrates my research participants’ additive/multiplicative interpretation of the area of the same-
color-boxes as a product phrase for the x + 1 by 2y + 3 polynomial rectangle. 
 

 
Figure 5a 

– 
Irreducible 

Areal 
Quantities 

 
Figure 
5b – 
Same 
Color 
Boxes 

 
Table 1  

Areas of the Same-Color-Boxes as a Product for the x + 1 by 2y + 3 Polynomial Rectangle 
Ben, Ron, John Sarah, Nicole 
Interpret Same-Color-Boxes additively: 

• The green box as 2 times xy. 
• The purple box as 3 times x. 
• The blue box as 2 times y. 
• The black box as 3 times 1. 

Interpret Same-Color-Boxes multiplicatively: 
• The green box as x times 2y. 
• The purple box as x times 3. 
• The blue box as 1 times 2y. 
• The black box as 1 times 3. 

 
Figure 6a shows Sarah and Nicole’s construction of RCP1 by applying a Cartesian Product on 

the Representational Sets of Irreducible Linear Quantities RSILQ1 and RSILQ2. In the same vein, 
Figure 6b shows Sarah and Nicole’s construction of RCP2 by applying a Cartesian Product on 
the Representational Sets of Combined Linear Quantities RSCLQ1 and RSCLQ2. 
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Figure 

6a 

 
Figure 

14b 

 

Discussion 
Concepts− and theorems−in−action framework in this present study helped me produce a set 

of terminology closely related to mathematical terms (Representational Cartesian Products, 
Representational Sets, Irreducible Linear Quantities, Irreducible Areal Quantities, Combined 
Linear Quantities, Filling in the Puzzle Strategy, Term Wise Multiplication of the Irreducible 
Linear Quantities Strategy) to describe what my preservice teacher research participants were 
doing. These notions, as a mathematics teacher educator, helped me make sense of what my 
preservice teacher research participants were doing and delve further into their understanding of 
the mathematical situations.  

Distinguishing how quantities interact with one another (e.g., additive vs. multiplicative) is an 
important element of algebraic reasoning. In that regard, concepts–in–action and theorems–in–
action formalisms are powerful instruments to illustrate and explain the continuing progress of 
students’ mathematical proficiency in a certain conceptual field (e.g., multiplicative structures, 
relational structures, mapping structures, quantitative structures). They also present a way to 
analyze, compare, and transform students’ knowledge intrinsic in their mathematical 
performance (e.g., hand gestures, actions, operations, verbal descriptions) into the actual known 
and written algebraic identities and mathematical theorems. In that sense, these tools help 
teachers and researchers get a better sense of how students make sense of, reconcile, and shift 
among physical observables at different cognitive levels (e.g., algebraic expressions, their 
various representations, etc.). Using concepts– and theorems–in–action, teachers and researchers 
can come up with better strategies to diagnose what students do or fail to understand, to reveal 
the source of their misconceptions and conceptual flaws, and to help them see the internal and 
external connections. In this way, students are provided with a set of more interesting, better-
prepared activities, and mathematically fruitful situations, which help them strengthen their 
knowledge, and increase their mathematical proficiency. 
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A classroom teaching experiment, focusing on number and operations, was conducted in a 
semester-long mathematics content course for preservice elementary teachers. The focus of the 
study was on preservice teachers’ understanding of mathematics related to their development of 
the mathematical knowledge needed for teaching. This paper presents the results from preservice 
teachers’ development of fraction multiplication. The results indicate that preservice teachers’ 
knowledge develops in three phases. 
 

Background 
Teachers are entering the profession without a profound understanding of the mathematics 

they are to teach (Ma, 1999). Mathematics content courses for preservice teachers that provide 
nothing more than a reiteration of the traditional algorithms do not aid in preservice teachers’ 
development of pedagogical content knowledge any more than what was provided in their K–12 
education. Studies show that teachers with a deep understanding of mathematics positively 
impact student achievement (Kaplan & Owings, 2000); however, little research documents how 
classroom teachers develop the knowledge base they need to be effective. The knowledge base 
of effective teachers, which includes using students’ knowledge to inform instructional 
decisions, is beyond the experiences typically received in preservice teacher mathematics 
education classes (NCTM, 2000). In order for teachers to assess students’ knowledge accurately, 
they themselves need a deep understanding of the content. This is especially important for 
elementary teachers, as they typically do not have a substantive mathematics background. 

The knowledge base that elementary and middle school teachers bring to the classroom is 
procedurally based and largely misunderstood (Ball, 1990a, 1990b; Ma, 1999; Tirosh, 2000; 
Tzur & Timmerman, 1997). This is particularly true with teachers’ understanding of fraction 
operations. Several studies have documented the difficulties that preservice and inservice 
teachers have in conceptualizing fraction operation situations; however, research has lacked in 
describing the ways in which preservice teachers develop a conceptual understanding of these 
topics. 

Previous studies have documented that teachers need similar experiences to what children 
need before they can conceptually understand the algorithms used in fraction operation situations 
(Tzur & Timmerman, 1997). Rather than being presented with an algorithm first and then asked 
to solve several problems using that algorithm, teachers first need the opportunity to use models 
and pictures to solve the problems. From there, teachers can develop their own algorithms for 
solving problems involving fraction operations. 
 

Methodology 
This study was conducted at a large metropolitan university in the southeastern part of the 

United States during a semester-long undergraduate course focusing on mathematics for teaching 
elementary school. There were 33 participants in this study. Participants were all female 
undergraduate students majoring in either elementary or exceptional education. They were all at 
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least in their sophomore year of college. The research team consisted of 2 professors and 6 
doctoral students all in mathematics education. One of the mathematics education faculty 
members was the instructor for the course. The other members of the research team observed 
every class session. 

This study was conducted during a spring semester. The course met twice a week for one 
hour and fifty minutes each day. Students in the course were situated at tables of at least four and 
no more than six. The classroom was equipped with a document camera as well. 

Data were collected from 10 class sessions, which focused on a rational number unit. The 
rational number unit was part of a larger study which also included a unit focusing on place 
value and whole number operations in base 8 (Roy, 2008). The rational number unit constituted 
the second unit in the course, thus students were already accustomed to being videotaped and 
observed in every class. The data collected included video and audio recordings, student work, 
pre and post-test scores, and research team notes. 

Three video cameras were used to capture varying aspects of the classroom. Facing the front 
of the room, one camera was situated at the back right of the classroom and focused on the whole 
class and individual students. The second camera was placed at the back of the classroom and 
focused on the work done at the board and the work presented on the document camera by both 
the instructor and students. The third camera focused on the instructor and individual students 
from the front left of the classroom. 

Audio recordings documented small group interactions during class work activities. Three 
small groups were chosen to have audio recorders placed at their tables.  Each of these groups 
consisted of at least one person who was interviewed individually, which is how the group was 
chosen to have the audio recorders placed at their table. 

Students were given a pre and post-test before and after the rational number unit. The test 
used was the Content Knowledge for Teaching Mathematics (CKT-M) instrument developed at 
the University of Michigan (Hill, Rowan, & Ball, 2005). Scores from the test were used to 
document the changes in students’ rational number understanding. 

Five students were interviewed individually before and after the rational number unit. Each 
interview was videotaped and lasted approximately 40 minutes. During the interview students 
were asked to solve several rational number problems. Students’ work from each interview was 
collected. These students also participated in a focus group session halfway through the rational 
number unit were the focus was on students’ overall feelings of the classroom structure, their 
mathematical activities, and thoughts of the rational number unit thus far. Students were selected 
for interviews based off of their pre-test scores, their normative ways of working mathematically 
(i.e. some students preferred to solve problems algorithmically whereas others relied on 
alternative methods), and students whose mathematical beliefs and values were diverse. 

Other data collected from students included class work, homework, and exams. The data 
collected from the research team included field notes and reflective journals from class 
observations. The research team met after every class session to discuss if the learning goals for 
the day were met and to plan the next class session. Each of these team meetings were audio 
taped. 
 

Theoretical Framework 
The emergent perspective was used as the foundation for which the classroom structure was 

designed so that social and sociomathematical norms were established and sustained throughout 
the course (Cobb & Yackel, 1996). The social norms established as part of this course included 
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student’s explaining and justifying solutions and solution strategies, making sense of others, and 
questioning others when misunderstandings occurred (Roy, 2008). Sociomathematical norms 
included understanding what constitutes a different and acceptable solution and solution strategy 
(Roy, 2008). 

The instructional unit used in this study was designed around the theory of Realistic 
Mathematics Education (Gravemeijer, 2004). The preservice teachers were first presented with 
problems situated within a context. They were then asked to solve the problem using their own 
methods. Finally, selected problems were discussed within a whole-class setting. Throughout the 
course, preservice teachers were encouraged to develop their own methods of solving problems 
through pictures. Tasks were designed so that the preservice teachers could reconstruct the 
mathematics for themselves. 
 

Results 
The results indicate that preservice teachers’ development of a conceptual understanding 

progresses through three phases. Within the first phase, preservice teachers revert to a procedure 
to solve a given problem. The second phase includes developing ways to explain and justify 
solutions and solution strategies. Within the third phase, new concepts are developed. 

For illustration purposes, the results described will pertain specifically to preservice teachers’ 
development of fraction multiplication. Fraction multiplication occurred over a day and half of 
instruction. When this topic was introduced, preservice teachers were given a set of 
contextualized situations and asked to solve them without any prompt from the instructor. 
Revert To Procedures 
The following is a contextualized problem that was presented: 
 
Sue ate some pizza. 2/3 of a pizza is left over. Jim ate 3/4 of the left over pizza. How much of a 
whole pizza did Jim eat? 
 
When presented with this problem, students knew that the problem represented a fraction 
operations situation, however were not instructed or given any information to indicate that the 
situation was multiplication. When initially solving this problem, many students reverted to 
using a known procedure to solve the problem as indicated by the following students’ work 
(Figure 1). 
 

 
Figure 1. Student 15 uses subtraction procedure for multiplication. 
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Figure 2. Student 2 uses multiplication procedures. 

 
Both students’ answers represented a typical solution presented by most students. As seen, both 
students reverted to using procedures to solve the problem. Though the first student was 
incorrect in her thinking that the problem represented a subtraction situation, she still used a 
procedure to solve the problem. The second student was correct in that the problem was 
multiplication; however, could only solve and explain the problem in terms of the algorithm used 
to multiply fractions (Figure 2). The class went on to discuss this problem as a whole group in 
which they established the notation of multiplication representing a ‘groups of’ meaning and also 
went on to solve the problem using a model. 
Develop Explaining and Justifying 

The class then moved from contextualized problems to problems situated without a context. 
To further discuss multiplication, the following problem was presented: 
 

4
3

3
11 ×  

 
The class as a whole was asked to develop a model to solve the problem. When students were 
having difficulties representing the problem, the instructor further encouraged their 
understanding development by having them think of the problem in terms of a “groups of” 
situation. 

Instructor: 
 

What if we thought about this as groups of objects? 1 1/3 groups of 3/4. 
How might we approach it that way? 1 1/3 groups of 3/4. 

Claire: You draw 3/4, 1 1/3 times. 
Instructor: Draw 3/4, 1 1/3 times. Okay. 
Caroline: Wait. 
Jackie: To figure out 1 1/3 times what do you mean? 
Instructor: Well there’s one time of 3/4. Are we okay with that? 
Class: Yeah. 
Instructor: What’s a third time of 3/4? 
Olympia: Don’t you have to break it into pieces? Split the slices. 
Instructor: Do I? 
Olympia: Yeah because you have to get three wait. 
Instructor: What is 1/3 of this? 
Caroline: A fourth. 
Instructor: A fourth? 
Caroline: Yeah out of the 3/4. 
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Instructor: She didn’t split anything up. 
Claudia: My answer’s 1. 
Instructor: I don’t really care. That’s true but I didn’t mean it that way. I don’t care 

about the answer I want to know why. 
Claudia: No I know because I don’t know I’m thinking of it as if 1/3 is 1/4 so 

then  
Instructor: Is 1/3, 1/4? 
Students: No. 
Caroline: What? 
Claudia: Forget it. 
Instructor: No keep going. 
Olympia: I understand what you’re saying. 
Instructor: What is she saying? 
Edith: Well because you showed the 3/4 out of 1 and so a third of the 3/4 

would be 1/4. 
Instructor: Claudia is that what you said? 
Claudia: Yeah. 

Throughout this discussion, the following picture was drawn on the board. 

 
The first circle represents the one group of 3/4 and the second is the 1/3 group of 3/4. 
Throughout this discussion, students had to develop ways of explaining so that concepts such as 
1/3 being 1/4 could be understood. As seen from this discussion, several students contributed to 
each others’ development of explaining and justifying how to represent this situation. The same 
problem was then the first problem revisited during the next class session in which the class went 
on to discuss and develop the answer of one, and how the model represents that solution.  
Develop New Concepts  

After the previous problem was discussed on the second day of fraction multiplication, the 
class was then presented with the following problem, again out of context: 
 

3
21

5
11 ×  

 
When the class was discussing how to solve this situation, one student asked to come to the 
board to explain 1 1/5 groups of 1 2/3. 

Claudia: So if we start off with two of these and divide them into thirds and then 
we find 1 2/3. Right? So then it would be this one, this one, this one, 
that’s one. And then 2/3 would be this much. 
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So let’s like draw because now 1 2/3 is our new whole because we’re 
trying to find 1 1/5 of it. So if we just draw it altogether and make that 
our new whole. That’s right, right? Yeah. So then we look at this and 
we know 

Instructor: How did she know that was right? What did she just check? You guys 
following her so far? 

Claudia: So I’m just combining these into here to make that our whole. 

 
 
Everybody follows? 

Class: Yeah. 
Claudia: Okay. So now this is our whole and now this is our whole and it’s 

divided already into five. So then this is one and then one more would 
be 1/5, right? Because this would be 1/5 since this is our whole and 
then this is one piece of that. 

Suzy: I thought it had thirds, is that not a third? 
Claudia: Yeah this is a third of one thing. But then 
Suzy: Each of those thirds right? 
Claudia: But then of this new whole which is 1 2/3, this is 1/5 of that  
Suzy: Alright. 
Claudia: because it’s divided into five. Does anybody not follow that? 
Alex: I’m not following it. Sorry. 
Suzy: Say it again. It took me a second, but that made sense. 
Claudia: This is what 1 2/3 are right? Right here what I shaded. 
Suzy: Because we’re finding 1 1/5 times 
Claudia: And 1 2/3 is going to be our new whole though because we’re trying to 

find 1 1/5 of that. So I just drew that as a new whole. Everybody okay 
up to there? 

Class: Yeah. 
Student: So you have that and then 1/5? 
Claudia: Yeah so then one more of these would be 1 1/5 because this is 1/5, right 

of this 1 2/3? And then one more would be that and it would be two. 
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From this diagram the classroom conversation then continued with the class taking time to 
understand where the answer of 2 comes from. Within this discussion, new concepts started 
being developed. The concept of a new whole is presented within the context of fraction 
multiplication, which was the first time students started discussing the idea that the whole 
changes throughout the problem. 
 

Discussion 
Fraction multiplication was used to illustrate the ways in which preservice teachers’ develop 

an understanding of elementary mathematics. The results indicate that preservice teachers’ 
conceptualization of elementary mathematics occurs in three phases. The first phase involves 
reverting to procedures to solve a given problem. Though these procedures are not always 
correct, many of the participants in this study initially used known procedures to solve the 
problem. The second phase involves learning to explain, justify, and conceptualize the 
mathematics within the problem. As illustrated within the class discussion of the problem 1 1/3 x 
3/4, the class as a whole worked together to develop an understanding of taking 1 1/3 groups of 
3/4. Finally, the last phase of conceptualization involves the development of new concepts. As 
seen with the discussion on the second day of multiplication, the idea of a new whole in 
multiplication was developed out of the idea of taking a group of something. These phases are 
summarized in Table 1. 
 

   Table 1 
                           Phases of Developing an Understanding of Mathematics 

Phase Indicator 
1 Reverts to Procedures to Solve Problems 
2 Developing Ways in Which to Explain, Justify, 

and Conceptualize Mathematics 
3 Develop New Concepts 

 
These phases are not meant to be stringent in that if a problem is presented where a procedure is 
not readily known, students could start at the second phase instead of the first. However, being 
aware of the progression of preservice teachers’ knowledge development could provide a better 
indicator of the types of instruction they need to receive in college teacher education programs. 
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This study investigates how different educational contexts influence student perspectives and how 
those perspectives are applied to effective teaching of mathematics. Data shows that four 
criteria—desirable personal characteristics, student-oriented teaching, the use of various 
instructional strategies, and professionalism—were used to evaluate teacher effectiveness by 
participants. Preservice teachers in Spain and U.S. tend to identify nonexemplary teaching 
practice with a teacher’s personal characteristics rather than their teaching approach. Results 
also show differences between two groups. Unlike U.S. students, Spanish students did not 
distinguish teacher characteristics from their instructional approaches. In conclusion, teaching is 
complex and multidimensional, and it is important to discuss teaching from multiple perspectives. 

 
Introduction 

Many mathematics teachers and mathematicians are concerned about students’ inability to 
demonstrate mathematical understanding and convey any interest in the subject. Mathematics 
educators also have great concern when mathematics teachers are confused or have an unclear 
understanding regarding effective teaching of mathematics or their own perception of an effective 
teacher. 
 

Theoretical Framework 
A large body of research suggests that a preservice teacher’s entering beliefs greatly influence 

their development as a teacher (Minor et al., 2002; Tabachnick & Zeichner, 1984; Weinstein, 
1989). In addition, “the combinations of characteristics and methods that teachers use to achieve 
those results may seem endless” (Polk, 2006, p. 23). Other studies also support that the quality of 
instruction influences student learning and its outcomes (Brown et al., 2006; Darling-Hammond, 
2000a & 2000b; Darling-Hammond & Sykes, 2003; Rice, 2003). 

Polk (2006) identified ten basic characteristics of effective teachers: good prior academic 
performance, communication skills, creativity, professionalism, pedagogical knowledge, thorough 
and appropriate student evaluation and assessment, self-development or lifelong learning, 
personality, talent or content area knowledge, and the ability to model concepts in their content 
area. A similar list of effective instruction characteristics is given by Brown et al (2006): 
instructional techniques, personal qualities, use of the instructional technology, social skills, 
consistency, and classroom organization. Studies on student beliefs about poor teaching listed the 
most disliked teacher qualities: inability to communicate and deliver the subject; boring and 
monotonous; lack of knowledge, uninformed in subject; disorganized; insensitive to students and 
their needs; aloofness, arrogance; no sense of humor and unenthusiastic; and unprepared (Kardash 
& Wallace, 2001). 

Walls and his colleagues (2002) investigated beliefs about the characteristics of effective and 
ineffective teachers and characterized teacher behaviors in five categories: emotional environment, 
teacher skill, teacher motivation, student participation, and rules and grades. Some studies 
compared perceptions of effective teachers and instruction between prospective teachers and 
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experienced teachers. Prospective teachers are far more concerned with teacher enthusiasm, the 
student-teacher relationship, and teacher stimulation of interest in the subject or the course, while 
an experienced educator’s emphasis is on teaching technique, the teacher’s ability to provide 
intellectual challenge and to stimulate students’ intellectual curiosity. 

According to Barns (1992), student beliefs on education are already formed by the time 
students begin the university. Teacher’s beliefs can be challenged or nurtured throughout the 
teacher preparation program. The need to challenge preservice teachers’ existing knowledge, 
beliefs, and attitudes is strongly addressed by many teacher educators (Doyle, 1997; Driel et al, 
2001; Sunal et al, 2001). Thus, “it seems imperative that teacher education programs assess their 
effectiveness, at least in part, on how well they nurture beliefs that are consistent with the 
program’s philosophy of learning and teaching” (Hart, 2002, p. 4). In order to identify appropriate 
experiences, discussion on effective teachers and teaching is a common activity in a teacher 
preparation program. Minor et al. (2002) suggest to have students examine textbook definitions of 
effective teachers, exemplify characteristics of effective teachers in their experience, think about 
past teachers, or list characteristics they believe reflect effectiveness. 

The purpose of this study is to provide preservice teachers with an opportunity to reflect on 
their knowledge and beliefs about teaching mathematics. We hope to better understand how 
preservice teachers apply their understanding of effective teaching in evaluating teachers in 
practice. Data from Spain and the US were collected in order to see how different educational 
contexts and programs influence student perspectives and how those perspectives are applied to 
effective teaching of mathematics. 

 
Data Collection and Analysis 

In Spain, we conducted a survey study with 245 Spanish undergraduate students, enrolled in 
their first course of an education program. Fifty percent of the participants intended to become 
elementary school teacher; the other fifty percent were students of physical education. 
Participant age ranged from 18 to the 40s, but almost all were in their early 20s. 

In the United States, thirty-five preservice teachers, enrolled in a 5th year initial teacher 
preparation program at a Midwest state university, participated in the study: twenty-three early 
childhood education (ECE) and twelve middle childhood education (MCE) graduate students. 
Students in the early childhood education program will be licensed to teach pre-K – 3, while the 
middle childhood preservice teachers desired to teach Grades 4–9. Participant age ranged from 
the early 20s to the mid 40s. 

During the first week of class, participants were asked to describe the characteristics of the 
best, respectively, worst, mathematics teachers they ever had. Students were also asked to identify 
their perspectives on effective teaching of mathematics, and what teachers need to know in order to 
be an effective mathematics teacher. 

A multistage qualitative-quantitative analysis was used to analyze the data. The data were 
analyzed sequentially. The first stage consisted of a phenomenological mode of inquiry (inductive, 
generative, and constructive) to examine student perceptions of their best, respectively, worst, 
teachers (as well as the characteristics of effective teaching and an effective teacher). These data 
were rephrased in simpler terms. We categorized units that appeared similar in content. Each one 
of the categories represented a distinct theme. Several themes were revealed during this process. 
Next, we used descriptive statistics to quantify the themes. The data were coded by giving a 
number to represent each theme, and frequencies of these codes were calculated. From these 
frequencies, we computed percentages to determine the rates of each theme.  
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Results 
An Effective Teacher 

Figure 1 depicts participant perceptions about an effective teacher. Spanish students’ views 
on effective teacher characteristics were more divergent than those of U.S. students. Preservice 
teachers in the U.S. valued teacher characteristics in the following order: communication skills, 
caring nature, higher order thinking, motivation skills, flexibility, and classroom management 
skills. On the other hands, Spanish students value knowledgeable teachers the most, secondly 
motivation skills and enjoying teaching, flexibility, and caring nature. Interestingly, no Spanish 
students considered communication skills as a necessary characteristic to be an effective teacher. 
Spanish students also believe that an effective teacher should enjoy teaching, believe in lifelong 
learning, interact with students, and see teaching as a mutual learning experience. No American 
students mentioned these characteristics to define an effective teacher. 

 

 
Figure 1. Characteristics of an effective teacher. 

 
The Best Teacher, the Worst Teacher, and Their Teaching Approaches – Spain 

Spanish students used an average of 5 items to describe the best/worst teachers and their 
teaching styles: a total of 1225 items for best and worst teachers, 1162 items for best teaching 
styles, and 1175 items for worst teaching styles (see Tables 1 & 2). As can be seen in Table 1, 
fifteen categories for best teachers and 16 for their teaching styles are identified. Twelve 
categories are found in both areas, and students emphasized the following areas: Innovative, 
creative, and uses various instructional strategies (17.6% for best teachers and 21.3% for their 
teaching styles); Close, pleasant, and amiable relationship with students (16.7 % for best teachers 
and 15.8% for their teaching styles); and Explains with clarity (9.8% for best teachers and 8.5% 
for their teaching styles). 
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Table 1 
Characteristics of the Best Teacher and Their Teaching Style – Spain 

Characteristics of best teacher % Best teacher’s teaching style % 
Caring: understand and aid 
students 

16.7 Close relationship with students, 
caring, pleasant, amusing 

15.8 

Patient and tolerant 7.0 Patient and tolerant 5.0 
Good communicator 4.7 Good communicator 4.9 
Encourage students to be confident 
and motivate them 

7.9 Motivate students, concern about 
student learning 

7.4 

Innovator: creative, active, uses 
various teaching methods 

17.6 Uses several instructional methods 
and activities. Active and innovative 
classes 

21.3 

Explains well 9.8 Explains with clarity 8.5 
Respects students 7.0 Respects students and has confidence in 

them 
7.7 

Desire to teach, enjoys teaching 6.5 Desire to teach, has a passion for their 
profession 

7.0 

Organized deliberation in teaching 
content 

3.6 Orderly: well organized, and well 
prepared explanations 

6.2 

Impose authority, earn respect  2.8 Know to prevail when it is necessary, 
put order and respect 

3.4 

Demanding 2.8 Demanding: encourages students to 
challenge 

2.3 

Flexible: Allow various solutions 1.4 Corrects solutions 2.5 
Uses games and activities in group 
work  

6.1 Teaches in a practical way and use real 
life examples 

2.7 

Encourages students to reason and 
not to memorize 

1.4 Creates pleasant class atmosphere 1.2 

Holds strong professionalism  4.7 Competent in subject matter knowledge 3.2 
  Uses positive reinforcements, awards 

student work  
0.9 

 
As shown in Table 2, 11 categories for worst teachers and 16 for their teaching styles are 

identified, which indicate a similarity up to the 11th category in both areas. In the area of worst 
teachers the order of the categories are: No desire to teach (21.4%), Authoritarian, unpleasant, 
strict, demanding, edgy (20.0%), and Boring (14.4%). In the order of teaching styles of worst 
teachers are Unpleasant, disagreeable, poorly educated, authoritarian, severe, strict, and 
demanding (20%), Not interested in teaching (18.7%), and Lack of respect for students, and 
favoritism (10%). 
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Table 2 
Characteristics of the Worst Teachers and Their Teaching Style – Spain 

Characteristics of worst teacher % Worst teacher’s teaching style % 
Authoritarian, edgy, unpleasant, 
strict, demanding  

20.0 Unpleasant, disagreeable, poorly 
educated, authoritarian, severe, 
strict, demanding 

20.0 

Boring 14.4 Boring  7.5 
Distant, lack of communication 
with students  

4.7 Keeps a distance from pupils 5.4 

Favoritism, discrimination, lack 
of respect to students  

12.1 Lack of respect to students, 
favoritism  

10.0 

No desire to teach  21.4 Not interested in teaching 18.7 
Imposes fear and tension in class 
(threatening, aggressive). 

5.1 Abuses the norms (threatening, 
aggressive) 

3.7 

Explains poorly 9.8 Does not know how to 
explain/answer questions 

7.5 

Disorganized in explaining. 2.8 Disorganised in explaining, lack of 
preparation  

1.3 

Intolerant, not flexible 6.5 Not comprehensive, intolerant, or 
impatient  

6.0 

Poor communicator 1.8 Poor communicator 2.5 
Does not encourage student 
participation 

1.4 Inactive classes 1.5 

  Lack of class direction (do not 
impose respect or control of the 
class, disorder) 

1.7 

  Does not correct student work or 
lacks criteria 

2.4 

  Poor teaching ability (traditional 
method: read, copy and follow 
book)  

9.8 

  Does not dominate the matter, 
incompetent 

1.3 

  Does not have “education/teaching 
style”  

0.7 

 
The Best Teacher, the Worst Teacher, and Their Teaching Approaches – USA 

Tables 3 and 4 include characteristics of the best and worst teachers and their teaching 
approaches, as identified by U.S. students. A difference from the Spanish data occurs in the 
number of items used in student descriptions: an average of 4 items (total 128) to describe best 
teachers, 2 items (total 86) for the worst teachers, and 3 items for instructional strategies used by 
best and worst teachers (total 94 and 93). 

As can be seen in Table 3, ten categories for best teachers and 14 categories for their 
instructional styles were identified. Only three categories are found in both areas. Students listed 
teachers who are: Caring (28.6%), Helpful/motivating/encouraging (18.4%), and Make learning 
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fun/interesting (15.1%) as best teachers. With regard to best teachers’ instructional styles, 
students described their best teachers as using: Various teaching methods (14.3%), 
Scaffolding/guided instruction (13.5%), and Higher order thinking (11.9%). 

 
Table 3 

Characteristics of Best Teacher and Their Teaching Style – USA 
Characteristics of best teacher % Best teacher’s teaching style % 

Classroom management 7.3 Classroom management 11.2 
Knowledgeable 6.1 Knowledgeable 3.7 
Higher order thinking 5.0 Higher order thinking 11.9 
Caring 28.6 Review and support 6.0 
Made learning fun/interesting 15.1 Variable teaching methods 14.3 
Good listener 2.2 Concise/good communicator 11.2 
Sense of self 6.7 Individual projects 2.2 
Likes teaching 5.6 Integrates subject areas 6.7 
Helpful/motivating/encouraging 18.4 Scaffolding/guided instruction 13.5 
Has high expectations 5.0 Direct instruction 3.7 
  Group work/discussion 5.2 
  Hands-on 2.2 
  Student centered 6.0 
  Explores real world 2.2 

 
There are 9 categories in the description of worst teachers and 11 categories in their 

instructional strategies; three categories are common to both. The most frequently listed worst 
teacher characteristic is Uncaring (51.0%) followed by Closed-minded (11.3%) and Disliked 
teaching (10.5%). Students said that instructional strategies used by worst teachers are: Poor 
teaching skills (29.7%), Only reading (16.4%), and Not helpful (14.8%). 
 

Table 4 
Characteristics of Worst Teacher and Their Teaching Style – USA 

Characteristics of worst teacher % Worst teacher’s teaching style % 
Uncaring/mean 51.0 Uncaring/mean 5.5 
Poor communication 4.5 Poor communication 7.0 
Poor classroom management 5.3 Poor classroom management 12.5 
Dislikes teaching 10.5 Poor teaching skills 29.7 
Student fear or didn’t want to be 
there 

3.8 Not helpful 14.8 

Boring 3.8 Only lecture 16.4 
Unknowledgeable of subject 6.0 Teacher centered 3.1 
Favoritism 3.8 Rote memorization 1.6 
Closed-minded 11.3 Worksheets 1.6 
  Too much homework 5.5 
  No hands-on/exploration 2.3 
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Cross Comparisons 
Student responses are grouped in broader categories in Table 5, which compares the 

characteristics and instructional strategies of the best and worst teachers. Student responses may 
be grouped among four themes: Desirable/Undesirable personal characteristics; Teaching 
with/without consideration for students; Uses/Does not use various instructional strategies; and 
Professional or not. Table 5 also compares Spanish and U.S. student perspectives in each 
category. 
 

Table 5 
Comparative Analysis 

Categories Best 
teach
er 

Instructiona
l strategies 
of best 
teacher 

Country Worst 
teacher 

Instructio
n-al 
strategies 
of worst 
teacher 

Categories 

Desirable 
personal 
characteristics 

28.4% 25.7% Spain 33% 33.9% Undesirable 
personal 
characteristics  

37.5% 11.2% USA 62.3% 20.3% 

Teaching with 
consideration 
for students 

17.7% 18.3% Spain 17.2% 13.7% Teaching 
without 
consideration 
for students 

33.5% 6.0% USA 12.1% 10.1% 

Uses various 
teaching 
strategies 

39.9% 45.6% Spain 28.4% 33.7% Does not use 
various 
teaching 
strategies 

11.1% 71.6% USA 15.1% 69.6% 

Professional 14% 10.4% Spain 21.4% 18.7% Not 
professional 17.9% 11.2% USA 10.5% 0% 

 
Table 5 indicates that Spanish students did not distinguish characteristics of teachers from 

instructional approaches. On the other hand, students in the U.S. described their best and worst 
teachers in terns of their personal characteristics, while their teaching styles were discussed in 
terms of the instructional strategies implemented in class. Students in both countries described 
their worst teachers in terms of their personal characteristics rather than evaluating their teaching 
strategies. 
 

Implication 
The results support other studies that effective teaching requires more than technique 

(Schaeffer et al., 2003; Shannon, 1998; Walls et al., 2002). As can be seen in Figure 1 and Tables 
1–5, the characteristics of effective teaching and an effective teacher are complex and 
multidimensional constructs that are unpredictable, ambiguous, and contextual. Therefore, it is 
important to view the teaching enterprise from multiple perspectives. Research has explored 
variables that impact teaching, characteristics of teachers, students, and contexts in which 
teaching and learning occur (Shannon, 1998). For that reason, it becomes necessary to extend the 
different studies of educational contexts and countries so that new data may be gathered. 
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Recognizing and discussing specific effective teaching behaviors is one piece of the puzzle. “The 
commitment to use what has been found to be effective is one of the avenues that could help 
raise the teaching profession above the level it currently occupies…. If such qualities are not 
modeled we are far less likely to adopt the presented idea in classroom practices” (Sheeran & 
Vermette, 1995, p. 26).  
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Six preservice teachers (PSTs) participated in a 1-week teaching experiment designed to assist 
them in developing more sophisticated conceptions of numbers using tasks based on a 
framework for PSTs’ conception of multidigit numbers developed in previous work. All 6 PSTs 
developed more sophisticated conceptions; however 3 PSTs did not develop a conception that 
enabled them to relate adjacent digits multiplicatively. In this study I describe and analyze the 
first of 5 teaching sessions. I trace the development of the PSTs’ conceptions and show that (a) 
exposure to correct conceptions is insufficient to help PSTs develop more sophisticated 
conceptions and (b) conceptual change is slow. These facts counter the commonly held notion 
that if one simply tells PSTs the value of the digit, they will understand base-10.  

Number is the central theme in the elementary mathematics curriculum. “Proficiency with 
numbers and numerical operations is an important foundation for further education in 
mathematics and in fields that use mathematics”(Kilpatrick, Swafford, & Findell, 2001, p. 1). 
However, although most PSTs and teachers can execute algorithms, many struggle when asked 
to explain them conceptually (Ball, 1988/1989; Ma, 1999; Thanheiser, 2005). Consider, for 
example, one PST’s explanation for the regrouping in 527 – 135 (see Figure 1): “You put a 1 
over next to the number and that gives you 10. … I don’t get how the 1 can become a 10. One 
and 10 are two different numbers. How can you subtract 1 from here and then add 10 over here? 
Where did the other 9 come from?”  
 

 
Figure 1. Standard subtraction algorithm for 527 – 135. 

For students to come to understand the underlying concepts, teachers (and thus PSTs) 
must have “solid understanding of mathematics so that they can teach it as a coherent, 

reasoned activity and communicate its elegance and power” (Conference Board of 
Mathematical Sciences, 2001, p. xi). The PST described above would be unable to help a 

child make sense of the regrouping.   
 

Theoretical Framework 
My research grows out of a rich cognitive-science paradigm focused upon children’s prior 

knowledge in learning situations, a consideration that is equally important in work with adults 
(Bransford, Brown, & Cocking, 1999). To help PSTs develop a solid understanding of 
mathematics, we mathematics educators need to build upon their initial conceptions, which both 
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determine what they understand when looking at a number and serve as a basis for building more 
sophisticated conceptual structures.  

In previous work (Thanheiser, 2005), I categorized PSTs’ conceptions of multidigit whole 
numbers into four major groups: thinking in terms of (1) reference units, (2) groups of ones, (3) 
concatenated-digits plus, and (4) concatenated-digits only. The distribution of the conceptions of 
the 15 participants in that previous study can be seen in Table 1. Because 10 of the 15 PSTs held 
an incorrect conception of number and only 3 explained all aspects of regrouping in detail, I 
considered how to assist PSTs in developing more sophisticated conceptions, keeping in mind 
that adults cannot simply forget the algorithms they know and value to invent new ones.iv 

 
Table 1  
Distribution of Conceptions in the Context of the Standard Algorithm for the 15 PSTs in the 
Study 
Conception held # (%) of PSTs 
Reference units.  PSTs with this conception reliably conceive of the 
reference units for each digit and relate reference units to one 
another, seeing the 3 in 389 as 3 hundreds or 30 tens or 300 ones, 
the 8 as 8 tens or 80 ones, and the 9 as 9 ones. They can reconceive 
of 1 hundred as 10 tens, and so on. 

 

 3 (20%) 

Groups of ones.  PSTs with this conception reliably a conceive of 
all digits in terms of groups of ones (389 as 300 ones, 80 ones, and 
9 ones) but not in terms of reference units; they do not relate 
reference units (e.g., 10 tens to 1 hundred). 

 

 2 (13.3%) 

Concatenated-digits plus. PSTs with this conception conceive of at 
least one digit as an incorrect unit type at least sometimes. They 
struggle when relating values of the digits to one another (e.g., in 
389, 3 is 300 ones but the 8 is only 8 ones). 

 

 7 (46.6%) 

Concatenated-digits only.  PSTs holding this conception conceive 
of all digits in terms of ones (e.g., 548 as 5 ones, 4 ones, and 8 
ones). 

 3 (20%) 

aReliably in these definitions means that after the PSTs were first able to draw on a 
conception in their explanations in a context, they continued to do so in that context. 
 

Method 
The data analyzed are drawn from the first of five 150-minute teaching sessions and pre and 

post interviews with each of 6 PSTs at a large, urban, comprehensive state university. All 
participants were volunteer preservice teachers who participated in a 1-week summer teaching 
session. Two PSTs had completed their methods course and were about to begin student 
teaching. The other four PSTs had not yet taken their mathematics methods course.  

The pre and post interviews, each 60–90 minutes in duration, were conducted immediately 
before and after the sequence of teaching sessions. Questions for the interviews were designed to 
elicit the PSTs’ conceptions. The tasks for the teaching sessions were designed to build on the 
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PSTs’ initial conceptions and to enable them to develop more sophisticated conceptions. Tasks 
for Day 1 were designed on the basis of the preinterviews and those for the succeeding days were 
based on PSTs’ changing conceptions. Tasks for the teaching sessions included addition and 
subtraction of 3-digit numbers using various manipulatives; discussion of artifacts of children’s 
mathematical thinking, such as video clips of children solving problems; discussion of various 
manipulatives; and exploration of Mayan numbers (a base-twenty system). All teaching sessions 
and interviews were video taped. The interviews and critical moments of the teaching episodes 
were transcribed. The analysis focused on the PSTs’ developing content knowledge throughout 
the teaching sessions using the framework introduced above. In this paper, I analyze the first day 
of the teaching experiment. 
 

Results and Discussion 
Results indicate that carefully chosen mathematics tasks in conjunction with artifacts of 

children’s mathematical thinking addressing the PSTs’ preexisting conceptions enable PSTs to 
re-examine their conceptions and develop more sophisticated conceptions. Five of the 6 
participants developed more sophisticated conceptions (the sixth already held the most 
sophisticated conception; see Table 2), however, only 3 of the 6 PSTs held the most 
sophisticated conception in the post interview. In this paper I trace 2 PSTs’ conceptions to 
illustrate the difficulties PSTs encounter when asked to make sense of multidigit whole numbers 
and operations on such numbers. 
 
Table 2  
Conceptions in the Context of the Standard Algorithm for the 6 PSTs in a Teaching 
Experiment Before and After the Study 
Pseudonym Preinterview Post interview 
Silvia Reference Units Reference Units 
Holly Groups of Ones Reference Units 
Saskia Concatenated-digits plus Groups of ones 
Jason Concatenated-digits plus Groups of ones 
Beatrice Concatenated-digits only Groups of ones 
Isabelle Concatenated-digits only Reference Units 
 

Because most PSTs enter our classrooms (and the teaching experiment) with one of the 
concatenated-digits conceptions, the tasks for this teaching session were developed to address 
those conceptions. For example, students were presented with digit cards (see Figure 1a) and 
asked to build numbers (see Figure 1b).  

 

 

 
 

Figure 1a. Digit cards representing the place value 
of each digit 0–9 (increments of 1, in green), 10–
90 (increments of 10, in blue), and 100–
900(increments of 100, in red). 

 Figure 1b. Representing 423 with 
digit cards. 
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This task was designed to help PSTs connect the symbol to its value. Beatrice and Isabelle 
both held a concatenated-digits conception at the beginning of the teaching sessions; however 
their approaches to this task differed. Isabel, on the one hand, used the cards in a concatenated 
way. She stated, “You can really make so many numbers by putting them together to make them 
bigger. Putting tens together can give you thousands, and so on” (see Figure 2a). Beatrice, on the 
other hand, overlaid the digit cards to build a three-digit number: “For me, I actually just stayed 
with like 3-digit numbers. … I didn’t do the thousands, and, you know, like this was 400 and 
then I put the 80 and then the 6 to make 486” (see Figure 2b). 
 

  

 
 

Figure 2a. Isabel put 40 next to 30 to make the 
number 4,030. 

 Figure 2b. Beatrice overlaid 400, 80, 
and 6 to build 486. 

 
Thus, whereas the cards enabled Beatrice to connect symbols and values, they did not help 

Isabel do so. During the class discussion of the usefulness of the cards, Silvia (who held a 
reference-units conception at the outset) explained, “And the first thing I realized was that this 
would be a very good way to get students to realize that each number … represents more—like if 
it … it was 211, that the 2 is not just 2, but 200.” Even though Silvia explicitly stated the 
relationship between the digit and its value, Isabel did not make that connection for herself. She 
realized that her way differed from the others’ way but did not evaluate one way as better than 
the other. When asked how she was thinking about the 40 in her 4,030, she said, “As just a 40.”  
After they had built numbers with the digit cards, students were asked to solve 389 + 475 in as 
many ways as they could, using digit cards, base-ten blocks, paper and pencil, and so on. The 
students were also asked to make notes on their methods in a way that would be understandable 
to a third grader. Saskia, who held a concatenated-digits-plus conception in the preinterview, 
developed a horizontal addition strategy using the digit cards (see Figures 3, 3a, and 3b). She 
explained: 

I split them all up, like into parts, like 300, 80, and 9; 400, and 70, and 5. So I added across: 9 
+ 5 = 14, so that is a 10 and a 4, so the 10 moves up in the ten’s column and the 4 would stay 
in the one’s column. Then 80 and 70 equals 150, so that’s 100 and 50 and the 10 from last 
time. So then the 100 moves up to the next column, and then 50 + 10 would just be 60, and 
then 700 + 100 is just 800. And then you just combine it all, so it is 864. 

  
Hundreds:   300    400          700               700 + 100 = 800 
Tens:    80   70          100    50                50 + 10   =   60 
Ones:         9     5            10      4                 4             =     4    

            Figure 3. One PST’s invented addition strategy to add 389 + 475. 
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Figure 3a. Saskia’s strategy to add 389 + 
475 before regrouping. 

Figure 3b. Saskia’s strategy to add 
389 + 475 after regrouping. 

 
Saskia shared a second strategy for adding the numbers (see Figure 4a) by decomposing the 

number into their reference units and relating those to one another.  She explained, “Fourteen 
ones is just 1 ten and 4 ones, and16 tens is actually 1 hundred and 6 tens.” Thus, through 
working with cards and blocks to invent strategies to add two 3-digit numbers, Saskia developed 
more sophisticated ways of conceptualizing numbers. Through inventing these strategies, she 
was able to draw on more sophisticated conceptions than she had before. 
Beatrice, who held a concatenated-digits-only conception in the preinterview, also developed a 
horizontal addition strategy using the digit cards (see Figure 4b) and translated that into a written 
strategy (see Figure 4c), seeming to draw on a groups-of-ones conception. However, when 
working with base-ten blocks, she represented each digit in terms of ones (see Figure 4d) and 
added those ones, reverting to a concatenated-digits conception. Beatrice showed that providing 
evidence of holding a correct conception in one instance does not establish that a student holds 
that conception across multiple contexts.  
 
 
 
 
 
 
 

   

Figure 4a. Saskia’s 
second strategy to add 
389 + 475 before 
regrouping. 

Figure 4b. Beatrice’s 
strategy to add 389 + 
475 with cards. 

Figure 4c. Beatrice’s 
written strategy to 
add 389 + 475. 

Figure 4d. Beatrice’s 
strategy to add 389 + 
475 with blocks. 

 
Isabel, even after being confronted with various students’ conceptions and having access to 

the digit cards as well as base-ten blocks, still drew on a concatenated-digits conception. She 
used the cards to explain: 
 

I did the 389 and then 475, and I was just going by colors. … The pencil and paper way, like 
that [one’s column] would be 14; I took away my 1 [not 10]—and then carry over the 1. ... 
Like it [using cards] will just help them [children] to see like the 4 goes here; then you add 
over the 1, and then this lines up.  

 
In her use of the cards (see Figure 5), Isabel clearly showed that she saw the regrouped digit in 
terms of ones (1 one) rather than in terms of a ten or a group of 10 ones. Thus exposure to more 
sophisticated, correct conceptions may be insufficient to assist a PST in developing a correct 
conception herself. 
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Figure 5. Isabel’s strategy to add 389 + 475 with the digit cards. 

 
After using various manipulatives to add numbers, the group watched a video clip of a child 

attempting to add 638 + 476 using the partial-sums algorithm, which is similar to the horizontal 
addition strategy invented by the participants of this study. In this algorithm, one adds the 
hundreds first, then the tens, then the ones, and then adds these partial sums (see Figure 6a). The 
child added the single digits rather than the partial sums, providing evidence of viewing the 
numbers in a concatenated way. 
 
 

                 638 
                 476 
                1000 
                  100 
                    14 
                      1114 

638 
476 
10 
10 
14 
34  

 
Figure 6a. Partial-sums algorithm for 
adding 638 + 476. 

Figure 6b. Child’s attempt to use partial-
sums algorithm. 

 
When commenting on the video clip, Beatrice stated, “I think she doesn’t see the 600; she is 

just thinking about single digits. … Instead of doing 600 and 400, she does 6 + 4, and that is why 
she is getting the wrong answer.” Thus, Beatrice again drew on a groups-of-ones conception. In 
commenting on this video clip, Isabel, for the first time, acknowledged that her conception of 
numbers (concatenated digits) is insufficient to explain various situations: 

 
She [the child] is just adding them as single digits, like 6 + 4, and then that’s one problem, 
and then 3 + 7 is another problem, and then taking those numbers and making it a third 
problem or a fourth problem … instead of looking at it [the numbers] as one whole.  
 

Although this statement does not suffice to establish that Isabel drew on a more sophisticated 
conception, it does demonstrate that she recognizes the deficiency of her conception. 
 

Conclusions  
The tasks discussed in this paper were developed to address the concatenated-digits 

conceptions of multidigit numbers and to help students connect the symbols to their values. 
Although the tasks served to help some (like Beatrice) connect symbols and values fairly 
quickly, others (like Isabel) maintained their concatenated-digits conceptions throughout most of 
the activities. Thus, simply exposing students to correct conceptions (telling them the meanings 
of the digits) does not help them develop such conceptions. Even for students who seem to make 
those connections, their newly established conceptions may be unstable. Whereas most students 
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were able to use a groups-of-ones conception to explain addition and talk about the video clip by 
the end of the first teaching session, multiple sessions with additional experiences were needed 
to solidify the PSTs’ understanding. I am often asked whether telling students the meanings of 
the digits would suffice: “Can’t you just tell them it is 10?” This study clearly shows the 
inadequacy of such an approach. Although all 6 PSTs held a correct conception at the end of the 
study, developing these conceptions is a complex task, requiring multiple sessions. Mere 
exposure to correct conceptions is neither enough to enable all students to recognize that their 
conceptions are incorrect nor to allow them to develop more sophisticated ones. Even after 
engaging in carefully designed tasks and in-depth discussions, only half the PSTs developed the 
most sophisticated, reference-units, conception. Thus, the fact that many teachers leave their 
teacher education programs without a deep understanding of number is unsurprising (Ma, 1999).  
 

Endnotes 
1This has, however, been successfully done with children (Ambrose, 1998; Hiebert & 

Wearne, 1996; Kamii, 1994; Kamii, Lewis, & Livingston, 1993; Sowder & Schappelle, 1994). 
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This study reports on teacher educators’ learning on-the-job. In this study, two novice teacher 
educators worked with an experienced teacher educator reflecting on the process of supporting 
elementary pre-service teachers in developing adult-level understandings of foundational 
mathematical ideas. Using reflective teaching-learning cycles and incorporating ideas from 
lesson study we reflected on our experiences teaching a mathematics content course for pre-
service elementary teachers via problem solving. A dominant theme from our preliminary data 
analysis indicates that the mathematics knowledge for teaching needed by teacher educators is 
even more complex when teaching via problem solving than in more traditional instructional 
approaches. 

 
Researchers have argued that it is vital that pre-service elementary teachers develop deep and 

connected understandings of important mathematical ideas (Ball & Bass, 2000, Ma, 1999).  The 
Conference Board of the Mathematics Sciences (CBMS) (2001) has called for engaging pre-
service elementary teachers in doing mathematics and supporting them in developing adult-level 
understandings of foundational mathematical ideas that are taught in grades K-8. It is argued that 
teachers’ mathematical knowledge significantly influences how and what teachers teach and how 
and what their students learn (Ball & Bass 2000, Borko et al., 1992; Hill & Ball, 2004; Hill, 
Rowan, & Ball, 2005).  Ball and Bass (2000) argue that teachers’ mathematical knowledge needs 
to be strong in order to allow them to deal flexibly with the complexity of teaching mathematics 
to diverse student populations.  They further claim that “not providing teachers with this 
[mathematical knowledge] undermines and makes hollow efforts to prepare high-quality teachers 
who can teach all students, teach in multi-cultural settings, and work in environments that make 
teaching and learning difficult” (Ball & Bass, 2000, p. 94).  This need to adequately prepare new 
teachers has been highlighted in the reform movement in mathematics education and has 
necessitated not only calls for different approaches to teaching mathematics, but also the 
reinvention of teacher education (Simon, 2000).  An immediate consequence of this is the need 
to adequately prepare educators of prospective teachers for the job of preparing and supporting 
the development of teachers. 

We propose that one way to foster deep mathematical knowledge development in pre-service 
elementary school teachers (PSTs) is to engage them in learning mathematics via problem 
solving (Masingila, Lester & Raymond, 2006; Schroeder & Lester, 1989).  In an analogous 
manner, it is important that teacher educators learn to support PSTs’ development through 
learning via problem solving.  We claim that learning to support PSTs’ mathematical 
development via problem solving is also a problem-solving activity for teacher educators.  Thus, 
they are also learning via problem solving, and their learning is about supporting PSTs’ 
mathematical development.  Further, in ways that are similar to how in-service teachers grow 
through interactions with teacher educators and peers in professional development work, we 
propose that teacher educators learn through working with mentors and peers in reflective ways.  
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In this study, two novice teacher educators (the first two authors, PK and DO) worked with 
an experienced teacher educator (the third author, JM) in a supportive professional community, 
and reflected together on the process of supporting pre-service teachers in developing adult-level 
understandings of foundational mathematical ideas that are taught in grades K-8.  This was 
achieved through interconnecting theory, participation in a community of practice, and being 
reflective about our experiences in teaching a mathematics course for pre-service elementary 
teachers via problem solving.  We took a position of inquiry as stance—within an inquiry 
community “to generate local knowledge, envision and theorize” our “practice, and interpret and 
interrogate the theory and research of others” (Cochran-Smith & Lytle, 1999, p. 289)—
throughout this research study. 

 
Perspectives and Guiding Frameworks 

Our theoretical framework is grounded in two bodies of research.  The first involves research 
regarding mathematics teacher educator learning.  In recent years, there has been an emergence 
of literature about how mathematics teacher educators learn (García, Sánchez & Escudero, 2006; 
Zaslavsky & Leikin, 2004).  These researchers draw some parallels between ways in which 
mathematics teacher educators learn on the job and the ways mathematics teachers learn on the 
job (Jaworski, 1994).  Reflection-on-action and reflection-in-action (Schön, 1983) are the notions 
underlying the interpretive processes through which these two communities of practice learn.  
The former refers to ways in which members of a community of practice (in our case, 
mathematics teacher educators) reflect on past experiences with the intention of refining their 
work to achieve their instructional goals, while the latter refers to “thinking on your feet” 
(Schön, 1983, p. 54). 

One way in which teachers have operationalized Schön’s reflective practice is through lesson 
study (Lewis & Tsuchida, 1998; Lewis, Perry & Murata, 2006; Stigler & Hiebert, 1999).  When 
lesson study was introduced in the United States, it was initially looked at as a way for American 
teachers to learn from each other by forming communities of practice.  Some researchers have 
tried to extend this idea to university professors with the view of providing them with 
professional development opportunities (Cerbin & Kopp, 2006).  

Another approach that mathematics teacher educators have used to generate a framework or 
scheme for thinking about their evolving knowledge about preparing pre-service teachers is the 
Teacher Development Experiment (TDE) (Simon et al., 2000).  The TDE provides 
researchers/teacher-educators opportunities to study the complex interactions that occur in a 
teaching-learning cycle.  Knowledge is developed through “multiple iterations of a reflection-
interaction cycle” (Simon, 2000, p. 339) (see Figure 1).  A TDE methodology uses both 
retroactive and ongoing analysis of data to track the development of the students and the 
researcher/teacher-educator. 

 
 

 

 

Figure 1.  Knowledge development (Simon, 2000, p. 339). 
 

Analysis 
Hypothesis generation 

Model building 

Inquiry 
Hypothesis testing 
Promoting development 



Vol. 5  1301 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

The second body of literature involves research regarding the use of problem solving to teach 
mathematics.  This approach to teaching mathematics hinges on the use of a constructivist theory 
of learning.  Researchers argue that students acquire new knowledge by actively participating in 
the learning process (Grouws, 1992; Journal for Research in Mathematics Education, 1994) and 
not through passive absorption of what their teacher models (Masingila, Lester & Raymond, 
2006).  In a problem-solving approach, the role of the teacher changes from that of a 
disseminator of knowledge to that of a facilitator.  Masingila and her colleagues (2006) argue 
that the teacher’s responsibility is to “establish a mathematical community in the classroom 
where everyone’s thinking is respected and in which reasoning and discussing mathematical 
ideas and meanings is the norm” (p. xxi).  This means that in the case of learning via problem 
solving, both the students and the teacher take on roles that are potentially different from what 
they are used to.  In their review of research on problem solving, Stein, Boaler, and Silver (2003) 
document many advantages of using this approach to teach mathematics  equal or better 
student performance on standardized tests, more positive and broader student attitudes about 
mathematics, and more equitable student performance with no achievement differences along 
social class or gender lines.  However, the authors also point out the difficulty of teaching 
mathematics via problem solving, and state that “much remains to be learned about how to teach 
mathematics through problem solving in ways that enhance the learning of all students” (p. 254).   
We hope through this research project to contribute to this knowledge base. 

 
Research Goal and Methods 

Situated in research on how mathematics teacher educators learn, and research on teaching 
via problem solving, our goal in this study was to reflect critically on the process of learning to 
teach via problem solving and to support PSTs in learning mathematics via problem solving.  In 
Fall 2007, each of the authors was the instructor for a section of a mathematics content course for 
pre-service elementary teachers that was taught via problem solving.  The content of the course 
included the concepts of numeration, operations, number theory, probability and statistics, and 
functions.  The course met two days a week for 80 minutes each day; the third author taught the 
first section of the course, and the first and second authors taught their sections on the same day 
after they had observed the third author teach the first section.  In Spring 2008, each of the 
authors was the instructor for a section of the other course in a two-course sequence.  The 
content of the second course included the concepts of rational numbers, geometry, and 
measurement.  The emphasis in both of these courses is on learning mathematical concepts 
through solving problems in a cooperative learning situation.  The courses were developed using 
five principles as a guiding framework: (a) solving many problems is an essential ingredient in 
becoming a good problem solver, (b) problem solving involves a very complex set of processes, 
(c) the instructor’s role in fostering productive problem-solving performance is vitally important, 
(d) cooperative, small-group work is encouraged, and (e) assessment practices should be closely 
connected to instructional emphases. 

It is within the context of teaching these mathematics content courses via problem solving 
that we carried out this research study.  We modeled our critical reflection process on the TDE’s 
(Simon, 2000), “reflection-interaction cycles,” and also on Schön’s (1983) ideas of reflection-in-
action and reflection-on-action.  While we incorporated ideas from lesson study, since we taught 
each lesson only once during the semester, it was not practical to model our research directly on 
lesson study itself; however, the reflection-interaction cycles constituted a type of modified 
lesson study. 
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In our version of the reflection-interaction cycle, all three of the authors filled the role of 
teacher-researcher, and we reflected upon our own teaching while interacting with each other, as 
well as with our students.  We had a number of data sources.  The first two authors both 
observed the third author’s lesson each class period.  The rationale for this was that she has the 
most experience teaching in general, and has experience in supporting pre-service teachers in 
learning mathematics via problem solving.  As mentioned previously, following the 
observations, the first two authors each taught the same lesson in their own sections of the 
course.  As teachers and professionals, we incorporated reflection-in-action (Schön, 1983) while 
we were teaching.  After each class/observation period, each of the authors wrote a memo of the 
day’s lessons.  These memos were part of our reflection-on-action.  We reflected on the day’s 
teaching and observing, noting things that we wanted to discuss with the group of teacher-
researchers.  On the day following the second classes of the week, we met for approximately one 
hour to discuss our observations, how the class was going, particular struggles that we noticed 
either students having or that we were having.  We also used these meetings to plan our future 
lessons based on our reflections.   

We audiotaped these meetings and transcribed portions that we found significant for our 
results.  Thus, our meetings and memos cover the first part of Simon’s (2000) model— 
hypothesis generation, model-building, and analysis—and our teaching and class observations 
correspond to the second part of the model—inquiry, hypothesis testing, and promoting 
development.  We continued this reflection-interaction cycle throughout the semester.  The data 
sources for this project are our collective memos, the transcribed notes from our meetings, and 
our experiences teaching in the classroom itself. 

Following the methodology of the Teacher Development Experiment, we used both ongoing 
and retrospective analyses of the data.  The ongoing analysis, which occurred during the teacher 
development experiment, was the basis for continued reflection on our teaching and learning 
about our teaching, the testing of emerging hypotheses, and the strategies for promoting further 
development of the pre-service teachers’ mathematical understandings.  During the retrospective 
analysis of the data, which is continuing, we are examining the larger corpus of data through a 
carefully structured review of all relevant data of the teacher development experiment.   

We began coding our data at the end of the first course.  We started by each looking at the 
data (memos and meeting transcripts) from the first two weeks of the semester and identifying 
themes that emerged.  After looking at the data individually, we met and compiled a list of the 
themes that we had identified.  Using this list, we then individually looked at five weeks’ worth 
of data to see if these codes matched our data.  We met together again, and as a group refined our 
list.  During this meeting, we compiled a list of code definitions and examples, so that we were 
using the codes consistently. 

 We continued to code the data individually, focusing on one month’s worth of data at a 
time.  Each of the three researchers coded all of the memo data individually.  At our weekly 
meetings we spent time discussing our coding in an effort to triangulate the coding.  We 
discussed any areas where we were uncertain of the coding, and came to agreement.  Following 
our group discussions, we coded our data electronically using a coding software package and ran 
reports to analyze the data within and across codes. 

 
Results 

While the retrospective analysis continues, a dominant theme that emerged from the data is 
that the mathematics knowledge for teaching needed by mathematics teacher educators is even 
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more complex when attempting to teach via problem solving than in more traditional 
instructional approaches.  Our goal as instructors was to support these PSTs’ growth both as 
learners and doers of mathematics, and also as problem solvers.  Parallel to this, our main goals 
as researchers were to understand the processes of learning to teach mathematics via problem 
solving and learning to support PSTs in learning mathematics via problem solving.  

In analyzing our data, we found that we supported PSTs’ growth through (a) understanding 
and deciding on the mathematical goals of individual lessons and the two-course sequence as a 
whole, (b) choosing and facilitating tasks, (c) using questions and modeling to scaffold PSTs’ 
learning, (d) assessing PSTs’ understandings, and (e) monitoring PSTs’ dispositions.  We discuss 
the first two of these results in this paper.  Since we taught these mathematics content courses via 
problem solving, our efforts to support PSTs’ growth in mathematics and in problem solving 
were intertwined, as we found ourselves consciously and continually working to support PSTs in 
deepening their mathematical understandings and become more proficient problem solvers. 
Deciding on Mathematical Goals 

We see mathematics as an active venture in which students are encouraged to explore, make 
and debate conjectures, build connections among concepts, solve problems growing out of their 
explorations, and construct meaning from all of these experiences.  Perhaps the most important 
goal of these mathematics content courses for PSTs is to support them in developing adult-level 
perspectives and insight into the nature of foundational mathematics.  Another goal is to expose 
PSTs to key, recurring themes, processes, and tactics in mathematics and support them in making 
connections among mathematical ideas through these themes, processes, and tactics. We want 
PSTs to realize that elementary mathematics is foundational mathematics, and is not 
“elementary” (Ma, 1999). 

Teaching mathematics via problem solving requires the instructor to understand the 
mathematical ideas involved in a problem in a deep and connected way, and further requires the 
instructor to anticipate the different approaches that students may use in solving the problem.   
Our data revealed that we first made sense of the mathematical goals of activities, of units, and 
of the course, then facilitated student engagement of activities so that these mathematical goals 
were accomplished, and then reflected upon this process. 

Making sense of the mathematical goals sometimes involved thinking about how 
manipulative materials support or fail to support student understanding.  For example, when 
using base ten blocks to model operations with whole numbers, there are limits to using this 
representation:  “You can think about having three flats, four times, and it makes sense [3 + 3 + 3 
+ 3].  However, as we found, it doesn’t make sense to think about three flats times four flats, at 
least pictorially” (DO, Memo 9/12/07).  We found that as instructors it was important for us to 
think through carefully the relationship between the materials and the mathematical activities in 
which we want to engage the PSTs. 

Making sense of the mathematical goals engaged us as instructors in thinking critically about 
what concepts and processes we wanted our students to engage with, and how to facilitate this 
happening.  For example, each of us found the chapter on probability and statistics to be 
problematic in the sequencing of activities and the inclusion or exclusion of particular ideas.  We 
decided that we did not want the probability activities to become an exercise in which the PSTs 
tried to determine whether to use the command on their calculator for permutations or 
combinations, but rather we wanted to engage them with methods of counting and have them 
reason through the solutions.   
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I decided to talk about combinations without really calling them combinations.  This worked 
out all right in class when I was thinking about making the slots and then dividing by the 
possible number of orders because order doesn’t matter.  However, when trying to answer the 
homework questions, this proved to be much more challenging.  The question that [student] 
asked was, if you flip eight coins, how many outcomes have exactly three heads.  In my 
head, I knew the answer was just eight choose three.  You have eight coins and you want to 
choose three of them to be heads.  This makes total sense to me and I usually teach it that 
way.  However, since I am not doing “choose,” I had a lot of trouble explaining it.  In fact, I 
had so much trouble, that I told her I would figure it out and tell them on Wednesday.  Grrr.  
I really wanted this to be a good way.  I finally worked it out that we would need three slots 
for the three heads.  We have eight choices for the first head (coins 1-8), seven choices for 
the second head, and six choices for the third head.  Then, since order doesn’t matter (coins 
1, 3 and 4 being heads is the same as coins 4, 1 and 3), we have to divide by the number of 
ways of arranging three things.  (DO, Memo 11/5/07) 

A challenging aspect of teaching mathematics via problem solving is that in the same way that 
we want to support PSTs in developing deep and connected mathematical understandings, we as 
instructors need to have even deeper and more connected understandings ourselves. 

Deciding on mathematical goals involves focusing on some things instead of others.  As with 
all instruction, teaching via problem solving engages the instructor in balancing depth of 
exploration versus quantity of concepts.  

I hesitated with trying to decide whether to get into a deeper discussion of what larger than 
single-digit multiplication is when discussing multiplying two-digit numbers in bases other 
than ten.  In the end, I did go into the meaning of multiplication using partial products.  I 
think this did prompt the students to think more deeply about multiplication and their talk 
showed this, but is also slowed them down and was more difficult.  Trade offs!  (JM, Memo 
9/12/07) 

We found that deciding upon, implementing and reflecting on mathematical goals are critical 
aspects of the process of teaching mathematics via problem solving and learning to teach via 
problem solving. 
Choosing and Facilitating Tasks 

Given that the mathematics courses we taught had an activity-based textbook (Masingila, 
Lester & Raymond, 2006), most of the mathematical tasks were already chosen for us.  We 
found that our focus was not in picking tasks (although for one lesson we designed alternate 
tasks), but in sequencing tasks, modifying them and deciding how to have the PSTs engaged 
with the tasks.  One of the biggest challenges, we found, was to scaffold and support students’ 
problem-solving efforts without taking the problem solving out of the work, and to facilitate so 
that powerful mathematical ideas emerged.  Our data reflect our process of making sense of the 
tasks, facilitating their implementation, and reflecting upon the PSTs’ engagement with and our 
facilitation of the tasks. 

As discussed previously, we found the chapter on probability and statistics in need of 
revision and so we did some revising in the midst of teaching the chapter:  “I prepared an 
alternate activity reinforcing the ideas of mean, median and mode, and then engaged students in 
working with and representing paired data.  Again, we used graphing calculators to input data 
into lists and plot them as scatter plots” (JM, Memo 11/7/07).  
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While choosing activities and deciding how to use them is important, an equally important 
part is facilitating their use.  Reflecting on the alternate activity, PK discussed how he facilitated 
the PSTs’ engagement with the activity: 

Contrary to other questions that asked the students to find a five-number summary for a set of 
data, the first question in this alternate activity asked the students to generate a data set that 
would have a specified five-number summary.  I had the six groups put up their data sets on 
the chalkboard and led a whole class discussion on the data generated.  While all the groups 
had data sets that worked, it was interesting to see that all the groups came up with data sets 
that utilized only natural numbers.  I asked the students if this was necessary.  They decided 
that other values could be used also and we as a group came up with one such set.  (PK, 
Memo 11/7/07) 
A third aspect of the instructor’s role related to tasks is reflecting on the tasks used, their 

facilitation, and the PSTs’ interaction with them.  One set of activities engaged PSTs in 
exploring and understanding algorithms, including ones that are different from ones that are 
traditionally used in school.  In our memos, we reflected on these algorithms and their relevance 
to our PSTs:  “I think that the Cashier’s Algorithm may be a bit outdated.  Nowadays, cash 
registers just tell you what change to give back, and so many people use credit cards, that the 
students are not really able to relate giving back change with subtraction.  There may be some 
value in just calling it “adding up,” and changing the activity” (DO, Memo 9/24/07). We found 
that choosing, facilitating and reflecting on tasks are critical aspects of the process of teaching 
mathematics via problem solving and learning to teach via problem solving. 

 
Discussion 

In the same way that “prospective teachers need mathematics courses that develop a deep 
understanding of the mathematics they will teach” (CBMS, 2001, p. 7), novice mathematics 
teacher educators need experiences that will develop a deep understanding of the mathematics 
that they will teach to pre-service elementary teachers and support these PSTs in understanding 
deeply.  The importance of the mathematical knowledge for teaching for mathematics educators 
cannot be overemphasized.  We found that using a teacher development experiment and 
modified lesson study framework allowed us to think critically about many aspects of teaching 
mathematics via problem solving and supporting PSTs in learning mathematics via problem 
solving. 

This framework, along with our position of inquiry as stance, also facilitated us developing a 
community of practice among the three of us as the course instructors.  Within this community of 
practice, we were able to establish trust where any of us could make observations about the 
course materials, the questions we asked, the decisions we were pondering, etc. and these 
observations were received by the other instructors as valid and were considered within the 
context as we made instructional decisions.  The establishment of trust also mediated the balance 
of power within our community of practice.  JM, as the experienced teacher educator, a faculty 
member and one of the co-authors of the textbook we used, came with more power, by default, 
into the relationship.  However, because we worked diligently and purposefully to form a 
community of practice with full participation by all three of us, the power relationship was held 
in check. 

In reflecting on the processes of learning to teach via problem solving and supporting PSTs 
in learning via problem solving, we recognize the importance and are working toward 
developing a principled way of making pedagogical decisions.  These include deciding when to 
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have PSTs continue working on an activity and when to move on, what level of justification is 
sufficient, when should mathematical ideas be introduced by the instructor and when should they 
arise from the PSTs’ activity. 

There is much more analysis to do on this rich set of data.  We anticipate coming to better 
understand how and what we, as mathematics teacher educators, learn about the processes of 
teaching mathematics via problem solving and supporting pre-service teachers in learning 
mathematics via problem solving. 
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This study examined 96 elementary pre-service teachers’ active-learning experiences in the first 
of a sequence of three mathematics content courses intended to provide them with opportunities 
to experience as learners Standards-based mathematics teaching.  Participants indicated that 
they had many opportunities to engage in active learning that they had not experienced in their 
previous mathematics content courses. Participants also described how active learning 
influenced their level of confidence in their ability to do and discuss mathematics. 
 

Purpose of the Study 
In recent years teacher preparation programs have been criticized for failing to adequately 

prepare K-12 teachers to teach mathematics according to the standards set forth by the National 
Council of Teachers of Mathematics in Principles and Standards for School Mathematics 
(NCTM, 2000). For example, the National Research Council (2001) notes that elementary 
teachers “possess a limited knowledge of mathematics, including the mathematics they teach. 
The mathematical education they received, both as K-12 students and in teacher preparation, has 
not provided them with appropriate or sufficient opportunities to learn mathematics” (p. 372). 
Similar concerns have been raised by the National Mathematics Advisory Panel (2008), which 
argues that “the preparation of elementary teachers must be strengthened by providing teachers 
with ample opportunities to learn mathematics for teaching” (p. 38).  

One way of helping elementary pre-service teachers (hereafter referred to as PSTs) develop 
and strengthen their mathematics knowledge for teaching (Ball, Bass, Delaney, Hill, Phelps, 
Lewis, Thames, & Zopf, 2005) is to provide them with consistent opportunities to engage in 
active-learning activities in their mathematics content courses (Conference Board of the 
Mathematical Sciences, 2001; Mathematics Association of America, 1998). In such activities, 
PSTs have opportunities to collaborate with peers, make meaningful mathematical connections 
through discussion, engage in higher-order thinking, and develop new mental structures 
(Bonwell & Eison, 1991; Meyers & Jones, 1993). Proponents of this paradigm shift towards 
active-learning argue that new ideas are formed and discoveries are made not by individual 
competition but through collaboration with others. Furthermore, they claim that the notion of 
learners constructing their own understandings of mathematics concepts is central to the nature 
of the subjects (Atwater, 1994; Becker, 1995). Rogers (1992) states: 

A pedagogy that emphasizes product deprives [learners] of experiencing the process by 
which ideas in mathematics come to be and perpetuates a dualistic view of mathematics in which 
right answers are known by authorities and are the property of experts. Such a pedagogy strips 
mathematics of the context in which it was created and is based on misconceptions about its very 
nature. (p. 42) 

The shift from studying mathematics as a product of human activity to studying it as a 
process of human activity places greater emphasis on the development of mathematical ideas and 
encourages K-12 teachers to develop their mathematical power – that is, a positive disposition 
toward, curiosity about, and self-confidence in mathematics; the ability to logically reason about 
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and analyze mathematics; a deeper and more connected understanding of mathematics across 
strands of mathematical content (e.g., algebra and geometry) and to disciplines outside of 
mathematics; and the ability to communicate mathematical ideas (Baroody & Coslick, 1998; 
NCTM, 1989; Orrill, & French, 2002). The notion of mathematical power aligns closely with 
NCTM’s (2000) five process standards (problem solving, reasoning and proof, communication, 
connections, and representation). Therefore, if teachers are to provide their students with 
opportunities to engage in these process standards, they too need opportunities to participate in 
learning experiences that emphasize the process standards and develop their mathematical 
power.  

The work described in this paper is part of a larger project that seeks to understand 
elementary PSTs’ learning in a sequence of three mathematics content courses specifically 
designed for this population and to identify the sources of their learning. The focus of this paper 
is on one source of this learning, namely, the active-learning opportunities PSTs had during the 
first of a sequence of three mathematics content courses that are intended to provide them with 
opportunities to engage in active-learning as a way of making sense of mathematics. In this 
paper, we seek to explore the following research questions:  

1. To what extent do elementary PSTs engage in active learning in a mathematics content 
course?  

2. In what ways does active learning influence PSTs’ learning and mathematical power? 
Thus, the current study considers the opportunities PSTs have to learn mathematics and how 
engaging in those experiences influences their learning and mathematical power. 
 

Theoretical Framework 
This study was guided by Astin’s (1996) theory of student involvement which defines 

involvement as “the amount of physical and psychological energy that the student devotes to the 
academic experience” (p. 518) in formal and informal contexts both in and outside the 
undergraduate classroom. This theory is particularly relevant to studies of the relationship 
between active learning and academic outcomes because active learning inherently requires 
undergraduates to invest physical and psychological energy in the learning process. Reform 
efforts that incorporate active-learning opportunities in undergraduate mathematics education 
seek to change the focus from faculty members’ intentions for the undergraduate experience to 
students’ lived experiences. Similarly, the theory of student involvement shifts the emphasis 
away from faculty content knowledge, university resources, and individualized instructional 
approaches to focus on what students actually do by examining how students invest their time 
and energy and understanding the effect that this has on important learning outcomes. Astin 
asserts that of the three forms of involvement that have the greatest influence on cognitive and 
affective outcomes – academic involvement, involvement with faculty, and involvement with 
peers – involvement with peers has the most powerful influence on undergraduate students’ 
academic and personal development (Astin, 1996). 
 

Method 
Setting and Participants 

The study was conducted at a four-year public university in the Southeastern United States. 
The 96 participants (93 female; 3 male) in this study were elementary PSTs who were enrolled 
during either the spring 2008 semester (72 participants) or fall 2008 semester (24 participants) in 
the first of a sequence of three mathematics content courses, each of which had a particular 
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mathematical focus (Course 1 focused on whole numbers and whole-number operations, Course 
2 focused on rational number, and Course 3 focused on geometry and measurement). The spring 
2008 participants were enrolled in one of five sections of Course 1 taught by two different 
faculty members, and the fall 2008 participants were enrolled in one of two sections of Course 1 
taught by one faculty member. These three faculty members used the national and state standards 
for elementary mathematics as a backdrop for the course and created opportunities for PSTs to 
be actively engaged in the learning process. For example, PSTs had opportunities to solve 
mathematical tasks in multiple ways, share and discuss their thinking with their peers, use 
manipulatives such as base-10 blocks, and analyze children’s mathematical thinking in the form 
of written work and video. 
Data Collection and Analysis 

The study employed a mixed methods approach that involved both quantitative and 
qualitative data collection and analysis. First, the Developing Mathematical Power Learning 
Experiences Survey (hereafter referred to as the DMP Survey) was administered to PSTs in 
electronic or paper form to participants at the beginning and end of the course. The DMP Survey 
used Likert-scale items to assess PSTs’ perspectives of their opportunities to engage in active-
learning. For each of the 13 items (shown in Table 1) that addressed in-class experiences, PSTs 
were asked to indicate the frequency in which they engaged in particular active-learning 
activities during the course by selecting “Not at All,” “About Once or Twice a Month,” “About 
Once Every Week,” or “Almost Every Lesson.” The DMP Survey also assessed PSTs’ 
perspectives on their mathematical power with the four items shown in Table 2. In these items, 
PSTs indicated their level of agreement relative to their experiences prior to taking the course by 
selecting “Strongly Disagree,” “Somewhat Disagree,” “Somewhat Agree,” or “Strongly Agree.” 

A small subset, six PSTs, participated in semi-structured interviews conducted at the end of 
the course in which they described their learning and their experiences in the course. A final data 
source was a writing assignment in which PSTs were asked to consider what mathematical 
power is, and how they think their mathematical power had changed during the course. This 
assignment was used by one faculty member, for a total of 18 PSTs enrolled in the course during 
Spring 2008 completing this assignment. 

The DMP Survey data were analyzed using descriptive statistics and correlation analyses to 
explore the context and frequency PSTs’ participation in active learning of mathematics during 
the course and to examine relationships between and among reported levels of active-learning 
experiences in previous mathematics content courses, during the current mathematics content 
course, and participants’ mathematical power after taking the course. The interview data were 
analyzed using the constant comparison method (Strauss, 1987). Patterns and themes were 
identified, merged, discarded, and revised as the researchers compared and contrasted the 
interview transcripts. The data from the writing assignments were also analyzed in this way. 
Quotations selected from the interviews and writing assignment on mathematical power are 
illustrative of the experiences of the majority of the PSTs and are similar in context and meaning 
to other PSTs’ responses and descriptions. 
 

Results 
In this section, we compare the experiences of PSTs who had previous experience with active 

learning in mathematics to those who did not. Of the 96 PSTs who completed the DMP Survey at 
the beginning of the course, only 36 (37.5%) indicated that they had regular opportunities to 
actively engage in the learning of mathematics prior to taking this mathematics course. 77 PSTs 
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completed the DMP Survey at the end of the course, of those, 70 (90.1%) indicated that they had 
high-levels of active-learning experiences during this mathematics course. This number includes 
41 PSTs who indicated low-levels of active-learning experiences in mathematics prior to taking 
the course. There were 11 (out of 13) active-learning opportunities in particular for which a 
majority of PSTs indicated that they agreed or strongly agreed to having had engaged in during 
the course, as shown in Table 1. 
 
Table 1. End-of-Course Reported High Levels of In-Class Active-Learning Experiences 
 Freq 

(n=77) 
Percent 

“I listened to and evaluated other students’ ideas, solutions, or points of 
view.” 

74 96.1 

“I was challenged to defend, extend, clarify, or explain how I derived my 
answers or ideas.” 

68 88.3 

“I was expected to ‘investigate’ or ‘discover’ mathematical principles and 
ideas.” 

74 96.1 

“I worked with other students to explore new ideas/concepts through problem 
examples.” 

69 89.6 

“I shared strategies with other students for approaching or solving a problem.” 69 89.6 
“I justified my reasoning in a problem or steps in a proof.” 58 75.3 
“I discussed connections between mathematical ideas/concepts with other 
students.” 

66 85.7 

“I worked with other students to evaluate or construct proofs or make 
conjectures/propositions.” 

54 70.1 

“When students were working together, we were encouraged to admit 
confusion and ask questions.” 

66 85.7 

“I taught a particular mathematical idea to the class.” 9 11.6 
“I directed questions to other students about mathematical ideas/concepts.” 43 55.8 
“I put individual or group work on the board for classmates to examine or 
comment on.” 

28 36.4 

“I worked in groups with other students on projects to be turned in for a grade 
or extra credit” 

39 50.6 

 
These results indicated that PSTs engaged in a variety of active-learning experiences during 

the course. It is also important to note that although this data was collected from PSTs who took 
the course from one of three different faculty members, correlation analyses indicated that the 
active-learning opportunities were not statistically different across the courses. Moreover, many 
of these experiences emphasized the process involved in the study of mathematics rather than the 
product of mathematical activity. These findings were supported by the data from interviews and 
writing assignment as well. During the interviews, PSTs consistently spoke of their professors’ 
expectations to explain their ideas, solve problems collaboratively with their peers, and share 
their ideas publicly and in writing. Some PSTs in interviews and on the writing assignment noted 
how these expectations were different from their experiences in previous mathematics 
classrooms.  
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PSTs indicated on the DMP Survey administered at the end of the course that some aspects 
of their mathematical power increased during the current mathematics content course. As shown 
in Table 2, a majority of teachers agreed or strongly agreed with the four statements used to 
assess their mathematical power relative to their experiences prior to the course.  
 
Table 2. End-of-Course Responses to Mathematical Power Items 
 Freq 

(n=77) 
Percent 

“I feel more comfortable with elementary mathematics content.” 66 85.7 
“I am more knowledgeable about pedagogical issues related to teaching 
elementary mathematics content.” 

62 80.5 

“I feel more comfortable discussing mathematics with others.” 66 85.7 
“I feel more confident in my ability to do mathematics. 65 84.4 

 
In addition to finding that PSTs’ perceived mathematical power increased during the course, 

correlation analyses revealed that all of the mathematical power items were highly correlated 
with statistical significance at the alpha = 0.01 level. This data indicates that PSTs developed 
their sense of their ability to understand, do, and communicate mathematics in tandem. 

Common themes from the writing assignment were consistent with the quantitative analyses 
and interview data and suggested that PSTs mathematical power may have been influenced by 
the types of active-learning experiences in which they engaged. For example, Margorie described 
how considering different strategies influenced her confidence to participate in discussions about 
mathematics: 

All the way up through high school my worst subject was math. I would always fear having 
to speak out in class or answer a problem on the board. I would do what I had to do to get by. 
It was not until college that this changed. I began to have teachers that would challenge me, 
but at the same time help me to understand different way of thinking and going about solving 
math problems. I began to feel more confident in my mathematical abilities and I am now 
able to speak out in class…  I love being able to discuss a problem with other students and 
get their point of views on how to go about solving a problem. I feel that I learn so much 
more through interaction rather than just lecture and taking notes. 
The data collected from the interviews also indicated that PSTs recognized that the 

opportunities to talk with their peers and listen to others' solutions played an important role in the 
development of their mathematical power. For example, Teaghan suggested that her experiences 
even influenced her confidence in other classes: 

... because at first, I mean nobody wanted to say anything. We were all like, ‘Oh my gosh, I 
hope [the professor] doesn’t call on me.’ And now, you’re expecting it. I mean, you still may 
not like it. But at least, I know now, that I can say whatever, and, I might say it one way, or 
might get kind of stuck on a word, and then the girl in the front will chime in, and then they 
take over and stuff like that, so it’s definitely helped my confidence in this, and I mean, other 
classes. 

 
Discussion 

The results reported in this paper offer some promising support for on-going efforts by 
mathematics teacher educators in the United States to enrich the mathematics content courses for 
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prospective elementary school teachers. In particular, the results of the current study show that 
PSTs who are actively engaged in learning tasks in these courses do feel that their mathematical 
power has increased. Although our results are based on PSTs' self-reporting, we believe it is 
essential that prospective teachers perceive the usefulness of the active-learning experiences if 
we want them to incorporate opportunities for such experiences in their own classrooms. If it is 
indeed the case that teachers teach the way they were taught, then, an important role of 
mathematics content courses for prospective elementary school teachers is to help them 
experience the type of teaching we want them to practice in their future classrooms. 

This notion of "modeling" the type of instruction that prospective teachers are expected to 
implement in their classroom practice becomes even more critical when we realize that in many 
elementary teacher preparation programs, prospective teachers take more mathematics content 
courses than mathematics methods courses. It is very difficult, if not impossible, for a single 
mathematics methods course to develop a new vision of mathematics teaching and help 
prospective teachers learn to implement this new vision. Therefore, mathematics content courses 
might be promising sites for not only developing PSTs' content knowledge, but also begin to 
help them confront their own beliefs regarding what it means to teach, by providing them 
firsthand experience in being students in mathematics courses that likely look very different from 
their K-12 mathematics experiences.  

The study reported in this paper also suggests some specific features of active-learning 
experiences that may be useful in mathematics content courses. Those experiences include 
opportunities for PSTs to talk with each other about their mathematical thinking, justify and 
explain their ideas to their peers and to their instructors, and explore and discover new 
mathematical relationships through problem solving.  

Opportunities for PSTs to talk with each other may be particularly important given that this 
particular population is predominantly female. Existing literature suggests that female students 
are often excluded from classroom discourse about mathematics (Fullerton, 1995; Linn & 
Kessel, 1996; Moreno & Muller, 1999; Seymour & Hewitt, 1997). Drawing upon Belenky, 
Clinchy, Goldberger, and Tarule’s (1986) work, Becker (1995) argues that traditional lecture 
teaching methods support separate knowing and devalue connected knowing and create little 
opportunity for women to develop the participatory competence that would enable them to be 
self assertive in mathematics. She describes connected knowing and separate knowing as being 
analogous to inductive and deductive reasoning in mathematics, respectively, and claims that 
women are more often connected knowers and men are more likely to be separate knowers. 
Moreover, these practices disempower women and discourage them from developing their own 
voice (Mau & Leitze, 2001; Rogers, 1992). Mau and Letize (2001) assert that empowering 
curricula would place women in a position where they not only could participate but would 
participate in the articulation of meaningful mathematical understandings without fear of 
ridicule. 

The current study is limited in a number of ways. However, its limitations and some of the 
findings suggest some potentially important and fruitful future studies. Philipp, Ambrose, Lamb, 
Sowder, Schappelle, Sowder, Thanheiser, & Chauvot, (2007) reported the usefulness of 
incorporating opportunities to examine children's thinking in mathematics content courses for 
prospective teachers. In this study, a number of participants indicated how their experiences with 
children influenced their perception of the course work. Some of them noted how much better 
they were able to help children, whether their own or tutees, with mathematics after their course 
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experiences. For example, when asked how the course has influenced her level of confidence in 
her ability to communicate mathematics, Teaghan commented:  

…last year when I worked at an after school program, I was helping kids do math. And I was 
telling them the answers cause I just didn’t know how to teach it to them…But this year I’ve 
noticed that I’m able to help the kids a lot more…Like one of the kids at [the after-school 
program], it was just a simple worksheet, 20 minus 8 or something like that, but he just 
couldn’t do it. And I just got out little cubes and we did it that way. And he put 20 together 
and took 8 [away] and I mean, he got it when he could use things. But he couldn’t just look at 
it and say, ‘Ok, 20 minus 8.’ And I definitely didn’t know how to do that last year…So I 
mean, I just thought back to when I was in class, how did [the instructor] teach it to us, and 
just kind of remembering all the different things we did… yeah, it’s easier to help the kids at 
[the after-school program] than it was last year. 
Others PSTs indicated how viewing brief video clips of children doing mathematics 

influenced the way they approach these courses. However, what is not clear is how these 
experiences influenced their learning of mathematics. In some cases, the role these experiences 
plays is limited to motivational. In other cases, these opportunities may be directly related to 
PSTs’ learning of mathematics content. A further investigation into relationships between 
examining children’s thinking and PSTs mathematics learning is needed. 

Another potentially important future study involves the role of manipulatives in these 
courses. A number of teachers indicated that the "hands-on" nature of the courses influenced 
their learning. However, several of the interviewees noted that they found it more difficult to 
solve mathematics problems using manipulatives. One of them even admitted that she solved the 
problem first and then matched her use of manipulatives to that solution. Yet, all of the 
interviewees indicated how manipulatives would be useful in their future classrooms. It is not 
quite clear why they felt the use of manipulatives to be positive when they themselves did not 
experience the benefits of manipulative use. A further investigation on prospective teachers' 
experiences with manipulatives and their beliefs of the roles of manipulatives in their own 
classroom may be necessary if we want teachers to use manipulatives meaningfully. 

Finally, probably the most significant limitation of the current study as reported is the lack of 
objective measures of prospective elementary school teachers' learning of mathematics content 
knowledge. We did administer the Mathematical Knowledge for Teaching (MKT) measures 
(Learning Mathematics for Teaching Project, 2006) to some participants, and there were general 
upward trends. However, due to a small sample size, we are unable to report any conclusive 
finding. It is hoped that we will be able to incorporate the MKT measures in our future studies.
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This study sought to examine the merits of TeachME – an innovative virtual teaching 
environment for teacher training – in teacher education programs. TeachME, Teaching in 
Mixed-Reality Environments, provides an environment in which the students are virtual and the 
teaching is real. In a semester-long methods course, prospective secondary mathematics 
teachers developed and taught lessons in this virtual environment. In this collaborative training 
environment, the prospective teachers focused primarily on delivery of a lesson to accommodate 
the diversity of students and how to manage the classroom. Our results suggest the use of virtual 
environment can be beneficial to teacher training. 

 
Introduction 

Traditional teacher training programs focus primarily on developing prospective teachers’ 
content and pedagogical knowledge – what to teach and how to teach it in ideal environments. 
Environments for teacher training often include field experiences, microteaching experiences, 
and internships. These are widely used and accepted methods for training prospective teachers 
for the classroom, yet teachers in their first years of teaching often face difficulties related to 
classroom management. Without adequate management of student behavior the content 
knowledge of the teacher becomes irrelevant. This begs the question as to whether there may be 
an additional method for teacher training which could assist beginning teachers, particularly in 
classroom management. This study reported here sought to examine the merits of TeachME – an 
innovative mixed-reality teaching environment for teacher training.  
 

Development of TeachME 
Given high teacher attrition and turnover in public school settings due to difficulty managing 

classroom behavior (Swan, 2006; Veenman, 1984; Hollingsworth, 1988), a discussion began 
amongst the education faculty at a large university in central Florida. The question became, “How 
can we prepare teachers to manage the classroom and student behavior without putting teachers 
and students at risk?” The answer was a mixed-reality teaching environment for teachers to 
practice their skills prior to entering the classroom (Hughes, Stapleton, Hughes, & Smith, 2005).  

The mixed-reality environment is called TeachMe (Teaching in Mixed-Reality 
Environments) and is housed at the University of Central Florida (UCF). TeachMe is the result 
of a unique collaboration rarely seen in education to develop the educational technology for 
teachers of the future. The outcome of this collaboration between education, computer sciences, 
and simulation technology provides a path to address the problem of teacher attrition by creating 
a working, mixed-reality environment to train beginning teachers (Dieker, Hynes, Hughes, & 
Smith, 2008).  

The initial prototype focused on behavior and classroom management, an area of concern for 
most beginning professionals (Goodell, 2006; Van Zoest, 1995). One goal of the mixed-reality 
environment is to create an interactive, simulated environment to train beginning teachers in 
mathematics, science and special education before they enter the teaching force. The methodology 
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for developing the virtual environment was built on strong, scientifically based-research related to 
the training of people in the military and corporate America, made possible through UCF’s long-
standing record as a leader in simulation technology (Dieker, Hynes, Hughes, & Smith, 2008). In 
order to have a successful virtual environment, students in the virtual classroom must be 
representative of real middle school students. The characters were developed using the American 
Academy of Child and Adolescent Psychiatry’s description of adolescent development, William 
Long’s classification of adolescent behavior, Rudolf Driekurs’ theory of understanding adolescents 
maladaptive behavior, and the work of other early theorists in human development such as Piaget, 
Freud, Kohlberg, Erikson and Maslow (Dieker, Hynes, Huges, & Smith, 2008). The result is five 
students who have distinct and specific personalities designed using the conceptual framework for 
adolescent development of William Long. 

One interactor is the human avatar for all five students. The interactor can escalate or de-
escalate the level of behavioral responses depending on teacher interaction. Furthermore, the 
interactor can create behavior issues between students if the specific needs of students are not 
addressed, creating a simulated classroom with real student-to-student interaction. The teacher 
faces a large screen that displays all of the students. By stepping towards the screen and leaning 
towards the child, the teacher can interact individually with each student, or stand in the front of 
the room to address the group. 

 In the mixed-reality environment, the teacher feels a sense of realism in trying to get the 
students to stay on task and complete a lesson, yet also has the ability to go back and try again as 
the virtual students can be reset, unlike a real classroom environment. This puts a safety net under 
the novice teacher and protects actual children from any harm. Teaching in a simulated classroom 
environment allows for teachers to deliver instruction, self-analyze the teaching experience, make 
changes in the lesson based upon the teaching results, and re-teach the lesson to increase mastery 
of teaching and learning concepts in a way that does not put children at risk.  
 

Theoretical Framework 
According to Prensky (2001), our education system fails to teach today’s students, growing 

up with new technologies, and the biggest problem facing education is educators, who are Digital 
Immigrant educators, who speak an outdated language to today’s students, who are Digital 
Natives, native speakers of new technologies. New technologies are integral parts of our 
students’ lives, and we as educators must use emerging technologies in our teacher education 
programs to prepare prospective teachers for diverse classrooms. In integrating the new 
technologies into our mathematics teacher preparation program, we sought a theoretical 
framework that takes into account the dynamic nature of the virtual environment and at the same 
time addresses the complexity of designing learning experiences for prospective teachers in a 
virtual environment. We find the instructional design framework of Model Facilitated Learning  
(Milrad, Spector, & Davidsen, 2003) particularly useful to achieve such goals.  As a theoretically 
grounded framework, Model Facilitated Learning (MFL) draws on well-established learning 
theories and methods of system dynamics to manage complexity in technology-enhanced 
learning environments in order to achieve meaningful learning and deep understanding. The 
MFL framework allows learners to build models and/or experiment with existing ones as part of 
their effort to understand the structure and the dynamics of a complex phenomenon, in this case 
teaching mathematics to diverse learners. Following the MFL framework, we designed learning 
experiences for prospective secondary teachers. The MFL is guided by four principles: 1) Situate 



Vol. 5  1319 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

the learning experience: The prospective teachers worked in groups of three, and we asked the 
groups to plan and write a detailed lesson plan for the same algebra problem, an algebraic 
reasoning problem involving generalizing a non-linear pattern; 2) present problems and 
challenges of increasing complexity: We presented the prospective teachers with correct, 
incorrect, and incomplete student work samples to the algebra problem for which they wrote 
lessons, and asked them to discuss these work samples; 3) involve learners in responding to a set 
of increasingly complex inquiries about the problem situation: After each teaching session, each 
group member wrote a reflection based on his/her role in the teaching (i.e., teacher or observer), 
then watched their own videos and revised their lesson plans in preparation for the next cycle of 
teaching; 4) challenge learners to develop decision–making rules and guidelines for a variety of 
unanticipated situations:  In an attempt to help the prospective teachers develop appropriate 
solutions and strategies for challenging student behaviors in a virtual environment, we 
challenged the prospective teachers by escalating or de–escalating the level of behavioral 
responses. 
 

Design of the Study 
We sought to examine the merits of TeachME in teacher education programs through a 

mixed study with fifteen prospective secondary mathematics teachers. Data were collected in a 
semester-long methods course for prospective mathematics teachers through videos of the 
teaching episodes and classroom discussions, interviews, classroom observations, students’ 
lesson plans and reflections. Analysis and data collection were an ongoing process throughout 
the study, and the research team held weekly meetings during the study.    

All teaching episodes were video-taped and student reflections and lesson plans were 
collected for each teaching cycle. Additionally, members of the research team observed the 
teaching episodes. Student conversations during class time in which the groups were discussing 
their teaching episodes were audio-taped.  Video and audio tapes were transcribed by members 
of the research team. 

The prospective teachers were randomly divided into 5 groups. All groups wrote lesson plans 
for the same problem, an algebraic reasoning problem involving generalizing a non-linear 
pattern, which they had previously solved in class. The groups followed a three-stage cycle of 
teaching in which one member taught the lesson and the other two members observed. The 
member responsible for teaching changed with each teaching cycle. An interactor behind the 
scenes acted for the virtual students and provided realistic interactions as might occur in an urban 
middle school classroom.  

In order to deepen the prospective teachers’ thinking about various solutions to the problem, 
eleven correct, incorrect, and incomplete student work samples for the problem were created by 
the research team and were then assigned to the virtual students in TeachME (See Figure 1).  All 
groups received the same work samples in each teaching cycle, and the prospective teachers 
were asked to discuss these work samples during their 15-20 minute TeachME sessions. The 
work samples were changed for each teaching cycle. 
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Figure 1: Examples of incomplete, correct, and incorrect solutions. 
 
All sessions were videotaped. After each teaching session, each group member wrote a 

reflection based on their role in the teaching cycle (i.e., teacher or observer). During the next 
class session, the groups watched their own videos and revised their lesson plans in preparation 
for the next cycle of teaching.   
 

Data Analysis 
The prospective teachers developed and taught lessons in TeachME environments. From 

these fifteen teaching episodes, two virtual teaching episodes will be presented which illustrate 
various challenging student behaviors the prospective teachers encountered in the mixed-reality 
environment, TeachME. In the first, we examine the teacher, Mr. Jeffrey, interacting with the 
five virtual students, whom we will call Monica, Michael, Victor, Michelle, and Freddy. 
Following this, we examine the teacher, Ms. Jennifer, interacting with the same five virtual 
students. 
Episode One 

 In this episode, the teacher, Mr. Jeffrey, interacted with the five virtual students during 
the first teaching cycle. Each student had a different solution and Mr. Jeffrey was asked to teach 
the classroom discussion portion of the lesson. At one point in the episode, Mr. Jeffrey had to 
interact with Michael’s incorrect solution a shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure #1 # of Blocks 
1 12 

2 22 – 1 
N N2 – (N-1) 

 

Figure 2. Michael’s solution. 
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Mr. Jeffrey asked Michael what would happen if he used his formula to find the number of 
blocks in figure 3 of the problem. Despite Mr. Jeffrey’s encouragement that Michael had done 
good work, Michael’s response was concern and frustration that his work was wrong. Mr. Jeffrey 
dealt with Michael’s attitude and continued to encourage Michael to find a generalization that 
would work for all the figures. As the teaching episode continued, Mr. Jeffrey then interacted 
with Monica related to her solution. Monica had a correct solution as shown in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Monica is a high achieving student, but she does not like to participate in class discussions. 

As Mr. Jeffrey worked to elicit her thinking, Monica was uncooperative said “I learned this in 6th 
grade”. In an attempt to further explore Monica’s thinking with the rest of the class, Mr. Jeffrey 
asked Monica to explain her solution in a whole group discussion. She was resistant, saying “I 
just told you.” When asked to tell the whole class, she explained her work in an extremely 
concise way and only provided discussion when directly asked. 

As the episode continued, Mr. Jeffrey continued to have to deal with the management of the 
classroom, particularly in leading a whole class discussion. As he worked with Victor and 
Michelle, Mr. Jeffrey’s goal was to get Victor and Michelle to understand Monica’s method for 
generalizing the formula. Victor and Michelle interpreted the discussion as their solutions being 
wrong and Monica’s being correct, even though their solutions were correct. 

Mr. Jeffrey:  Michelle, can you tell us about the solution you got? 
Michelle:  Um, yeah, my solution, I got the same answer I just did a lot more adding 

and Monica did multiplication and division and adding and I just did 
straight adding, but I got the same answer.  

Mr. Jeffrey:  Very good. Did you understand the way Monica did it? 
Michelle:  Does that mean I am wrong because I didn’t do it the way Monica did it? 

A similar interchange occurred between Mr. Jeffrey and Victor, with similar thoughts stated 
by Victor when he said “So I should have done it like Monica?”. Both Victor and Michelle knew 
that Monica usually had a correct answer and interpreted the efforts of Mr. Jeffrey to get the 
students in the class to make sense of Monica’s solution as their solutions were unvalued or 

 
     

     

     

     

 

( )
2

1+nn  
 

Figure 3. Monica’s Solution. 
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incorrect. Mr. Jeffrey tried to manage this situation and to encourage the students that their 
solutions were as equally valued as Monica’s solution. 

In leading a whole class discussion, Mr. Jeffrey had to deal with the emotional aspects of 
teaching children in dealing with Victor’s and Michelle’s reactions to his asking them to make 
sense of Monica’s work. These interactions provided for a realistic picture of classroom 
dynamics. 
Episode Two 

In a second teaching episode, Ms. Jennifer was teaching in TeachME during the second 
teaching cycle. Ms. Jennifer began teaching and was immediately encountered with a 
confrontation with Michael who had been throwing virtual spit balls at Michelle. Michael 
admitted to throwing the spit balls and a confrontation ensued as to who was in charge of the 
classroom. 

Ms. Jennifer:  Are you throwing spit balls at Michelle? 
Michael:  Yeah. 
Ms. Jennifer:  Why? 
Michael:  Because this is my classroom and that’s what I felt like doing. 
Ms. Jennifer:  Oh, I thought this was my classroom. 
Michael:  Well you thought wrong, now didn’t you. 
Ms. Jennifer:  Oh, really? Well, we are going to work on our staircase problems and, this 

is my classroom, and that is what we are going to do. 
Michael:  Ha. Your classroom! Did you hear that Victor? She said this is her 

classroom. 
This interaction began the lesson which proved to be difficult for Ms. Jennifer. As Ms. 

Jennifer continued to interact with the other students in the class, the confrontation which began 
with Michael contaminated the entire classroom, as it often does in reality. Ms. Jennifer’s 
difficulty managing the behavior and responding appropriately to Michael’s claim that it was his 
classroom undermined Ms. Jennifer’s authority and affected her interactions with all the other 
students in the class. The students became hostile and Ms. Jennifer tended to be hostile as well. 
As Ms. Jennifer interacted with Monica, for example, Monica’s response was not only 
unmotivated as in the episode with Mr. Jeffrey, but was also disrespectful.  

Ms. Jennifer:  How’s it going with the staircase problem? Do you have an answer? 
Monica:  Yep. 
Ms. Jennifer:  Can I see it? 
Monica:  Yep. 
Ms. Jennifer:  Can you explain to me what you did? 
Monica:  Used the formula that we learned in sixth grade. 
Ms. Jennifer:  And how did you get that formula? 
Monica:  We learned it in sixth grade. 
Ms. Jennifer:  Okay, so then you can tell me what this means. 
Monica:  You plug the numbers into the formula and you get the right answers 

depending on what number you want. 
Ms. Jennifer:  No. What does the formula mean? What does n squared over 2 plus ½ 

times n mean? 
Monica:  You don’t know? I thought you were the teacher. 
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Not only did Ms. Jennifer have to deal with Monica’s behavior, she also had to deal with the 
impact of her inability to manage Michael’s behavior and its impact on Monica who challenged 
Ms. Jennifer’s authority in the classroom. The focus of the lesson became managing behavior 
and the content was left to the wayside. Without the ability to manage the behavior of the 
students, the content involved in the lesson became irrelevant. 

 
Conclusions 

In the virtual teaching environment, TeachME, the students were real, sometimes 
disrespectful, unmotivated, and unenthusiastic. The teachers could not rely on anyone but 
themselves for delivery of content and the added component of behavior management, even on a 
small scale as in Mr. Jeffrey’s case, provided for an enhanced and realistic environment for 
learning to teach, particularly with aspects of management of behavior.  

We conclude that there are potentialities in TeachME for not only deepening content 
knowledge through discussion of correct, incorrect, and incomplete student work samples, but 
also for developing behavior management strategies. The virtual teaching environment sharply 
differs from other teacher training environments (e.g. microteach). Rather than a focus on 
teaching content, the virtual environment allows for a focus more on managing student behavior 
in order for delivery of content to occur. This is by no means to say that other training 
environments, such as microteaching and internships, are not useful in teacher training, but rather 
that we as teacher educators must see the weaknesses and strengths of these teaching experiences 
and find ways to enrich the student teaching experience. Moreover, we argue that the realistic 
aspects of the virtual environment can, in fact, enhance prospective teachers’ preparation for 
classrooms, particularly in urban schools. The incorporation of the virtual in complement to 
other environments provides for multiple experiences which can focus on both mastery of 
content and its delivery as well as behavior management strategies which can be effective in 
schools. 
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In this empirical study we examine the preservice training the New York City Teaching Fellows 
(NYCTF) program provides its middle school and secondary mathematics teacher candidates. 
Drawing on in-depth survey and journal data we present findings about the preservice programs 
at the four NYC-area universities that partner with NYCTF program to train mathematics 
fellows. We describe the scope and sequence of the four programs, compare and contrast them, 
and document the experiences and perspectives of first-year mathematics teaching fellows in 
these programs. 

 
Background 

The New York City Teaching Fellows (NYCTF) is the largest alternative certification 
program in the U. S. and currently places some 300-400 new mathematics teachers in high needs 
NYC schools every year.  Established in 2000, the NYCTF program prepares teachers for in-
demand and high turnover disciplines like mathematics, science, bilingual education, and special 
education. It is a collaborate effort between the New York State Education Department 
(NYSED), the New York City Department of Education (NYCDoE), The New Teacher Project 
(TNTP), and a number of colleges/universities. The program, which combines full-time teaching 
in a New York City public schools with part-time academic coursework, leads to a Master’s 
degree and New York State initial certification in the teaching field (Boyd, Grossman, Lankford, 
Loeb, Michelli & Wykoff, 2006).  

The first cohort of 250 teachers in 2000 was relatively small, but the NYCTF program has 
grown rapidly over its brief existence. According to the NYCTF website, there were 16,700 
applicants for approximately 2500 positions in 2004 including 317 positions for middle and high 
school mathematics teachers. Since that time, 60% or more of all new mathematics teachers 
entering NYC schools were participants in NYCTF (Bernstein, 2006). Due to this growth, it is 
expected that the influence on the entire New York City mathematics teaching force of those 
teachers prepared through NYCTF has increased substantially. 

 
Theoretical Framework 

We situate this empirical research in studies of alternative certification and alternative route 
programs (Darling-Hammond & Youngs, 2002; Feistreizter & Chester, 2003; Hawley, 1990). 
We note that, to our knowledge, none of the extant research literature examines the preparation 
of alternatively certified mathematics teachers. Additionally, while not focused on mathematics 
teachers, we find that there are five studies that report results on the NYCTF program and its 
teachers, including three qualitative studies (Costigan, 2004; Goodnough, 2004; Stein, 2002) and 
two statistical analyses of student achievement (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 
2006; Kane, Rockoff, & Staiger, 2006).  

In an early small-scale survey study of the NYCTF program, Stein (2002) found that 
approximately 90% of the 31 fellows she surveyed were already considering leaving the high 
needs schools in which they initially were placed, after they fulfilled a two-year commitment. 



Vol. 5  1326 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

Despite this, Stein concluded that the NYCTF program is an “unqualified success,” citing the 
fact that it includes a mentoring component and that recruits have strong academic credentials. 

Nevertheless, the qualitative and quantitative evidence indicates the fellows may not teach 
that differently than both uncertified and traditional route (college certified or recommended) 
teachers in similar NYC schools. Two qualitative studies indicate that novice teaching fellows 
are similar to other novice teachers in many regards (Costigan, 2004; Goodnough, 2004). In 
particular, the novice teaching fellows in these studies articulate similar high-minded ideals as 
traditionally prepared novices (e.g., about “molding students”). However, the fellows switch into 
“survival mode” once they become teachers of record – a mode characterized by a narrow focus 
on management concerns and teacher-centered instruction.  

It is not clear what teacher preparation programs – alternative or traditional – can do to help 
novice teachers maintain and realize the student-centered ideals that many aspire to (Flores, 
2006). Those who have studied the NYCTF program raise concerns about the program design, 
particularly, the preservice component that is less than two months in duration. Costigan (2004) 
writes that the NYCTF “immersion model may not, through a 2 year reduced credit program 
with full time teaching, adequately prepare self-identified ‘urban pioneers’ … to teach in the 
increasingly complex and intensified educational situation today, particularly in poor urban 
neighborhoods” (132). Goodnough (2004) expressed similar concerns, referring to the NYCTF 
preservice program as a “boot camp” and pointing out that many uncertified teachers had more 
formal preparation than first-year fellows. To be clear, neither Costigan or Goodnough focused 
on the NYCTF preservice training of teaching fellows in their research.  

The question is what effect, if any, might a shorter “boot camp” style preservice training for 
mathematics teachers have on student learning? Two quantitative studies of NYC schools 
address this question, though only one was peer-reviewed. In their peer-reviewed study, Boyd, et 
al. (2006) find that there are statistically significant, if modest, differences in student 
mathematics achievement (4th to 8th grade tests) between alternative and traditional route 
teachers; the students of the NYCTF teachers scored about 3.5% of a standard deviation lower 
respectively on standardized state mathematics exams than that of comparable traditional route 
(i.e., “college recommended”) teachers. There was some evidence, though not statistically 
significant, that the fellows catch up to the college recommended teachers if they stay in the 
classroom for three or more years. This might make sense given that, by their third year, the 
NYCTF’s have completed a comparable amount of educational coursework to traditional route 
teachers in NYC (though not necessarily in mathematics). At the same time, Boyd, et al. (2006) 
include data showing that the fellows have significantly lower rates of retention than traditional 
route teachers who teach at similar urban schools.  

 
Research Questions 

1. How are alternatively certified middle school and secondary school mathematics teachers 
prepared to teach during their preservice training? 

2. What are alternatively certified teachers’ experiences and perspectives during the preservice 
component of their training?   
  

Methods 
This large-scale qualitative study of the NYCTF program and its mathematics teachers 

involves a team of more than a dozen researchers and an extensive amount of data (e.g., 



Vol. 5  1327 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

videotaped lessons, administrator interviews, in-depth surveys). The study of the NYCTF 
program for mathematics was designed to compliment aforementioned quantitative research on 
the NYC teachers from various pathways already under way (Boyd et al., 2006). In this paper we 
focus on survey and teacher journal data collected about the preservice programs at the four 
NYCTF partnering universities for mathematics. These preservice programs have three major 
components: (1) university coursework, (2) fieldwork in NYC summer schools, and (3) “Fellows 
Advisory.” Fellows Advisory is a highly structured program primarily delivered by former 
teaching fellows (i.e., those with regular certification and still in the classroom) and is designed 
to provide pragmatic information about teaching in NYC schools and navigating the NYC public 
school system.  
Survey Data  

We collected 269 in-depth surveys from first-year mathematics teaching fellows (MTFs) at 
the four university partners during their last week of their summer preservice programs. This was 
more than 90% of the MTF population who entered in the summer of 2007. The survey included 
closed (Likert-scale) items and open-ended items. About 25% of the survey questions concerned 
aspects of the preservice programs. Another 10% of questions were indirectly relevant and asked 
questions related to the MTFs personal views of themselves as urban mathematics teachers.  
Journal Data  

In early June of 2007, we met with officials at the four partnering universities and explained 
our study to them. After getting their consent, we next met with 9 newly recruited MTFs who 
agreed to collect information on their preservice programs – 3 of the MTFs attended the largest 
program and the other six were split evenly between the 3 other university partners. The 
participating MTFs varied in terms of being prepared for middle or high school mathematics 
teaching. They were each paid $75 a week to: (1) collect handouts (e.g., syllabi, assignments, 
articles) from university coursework and other NYCTF professional development sessions held 
off-campus; (2) keep a written daily overview – one or two pages – organized by the lesson, 
session, or activity, and that provided information about what they and their instructors were 
doing during that time (i.e., taking notes, math problem solving, role playing); and (3) reflect 
daily about a particular activity or the day as a whole and, once summer school began, their 
experiences in fieldwork classrooms and the interplay between their university coursework, 
NYCTF profession development, and fieldwork experiences.  They kept both written accounts 
and also audio reflections and notes in digital recorders supplied to each of them. The written 
data and transcriptions of the audio data were then organized to create week-by-week folders for 
each of the nine fellows. 
Survey Analysis  

Responses to the survey were analyzed using a mixed method approach, including classic 
statistics, exploratory data analysis, and coding of expository responses, as appropriate. The 
closed, Likert-scale items were entered into a spreadsheet, electronically counted and compiled 
into a distribution table. For the open-ended survey items, we used open coding schemes 
(Emerson, Fretz, & Shaw, 1995). In order to understand how the four partnering university 
preparation compared, we disaggregated both closed and coded open item responses by the 
partnering universities. 
Journal Analysis  

The three authors read and reviewed the data folders of the 9 fellowss. We then created one-
page overviews that summarized the content that each program covered and activities the 
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individual fellows engaged in on a week-by-week basis. From this we were able to successfully 
hone the content that each university program generally covered and, to a lesser extent, how this 
content was organized and presented. Within and across program comparisons of these 
overviews allowed us to examine both (potential) within program variation and to compare the 
four programs. These overviews were then analyzed in the context of five survey items that 
reported on the content and instruction of the four university programs. 

 
Results 

The MTFs at the four university partners report reviewing similar content in the preservice 
programs – approximately 1/3 of their time on general education issues (e.g., classroom 
management, lesson planning), 1/5 on mathematics content, 1/5 on mathematics teaching 
methods, 1/8 on multicultural education, and 1/10 on educational psychology. Special education 
received minimal coverage. 

In spite of these commonalities, there were also significant variations in the preservice 
curricula at the four partnering universities, which we refer to as University A, B, C or D in order 
to organize the results. In particular, fellows at university A reported spending over half their 
time on general education issues. In their journals, the two MTFs at this university reported 
viewing a series of videos on classroom management and completing repeated assignments on 
lesson planning. University A MTFs reported spending less time learning about mathematics-
specific teaching methods and mathematics content than MTFs at other university partners. They 
overwhelmingly evaluated their coursework favorably on the surveys. MTFs at University B 
spent more time on mathematics content, multicultural education, and mathematics specific 
teaching methods than the other three partners. Fellows at this program generally evaluated this 
preservice program negatively on the surveys. To be clear, these negative evaluations have been 
a result of many factors other than the content of the courses, such as university setting or quality 
of instructors. As a group MTFs at University B felt less prepared to handle classroom 
management issues than MTFs at University A – though they may be better prepared to teach 
mathematics. 

In the survey data, the MTFs also reported significant variation in fieldwork experiences. To 
clarify, there was far more variation in fieldwork within programs than between program. While 
some MTFs report being in their summer school site for 75 or more hours, another group report 
completing less than 35 hours. They also appear to have had different opportunities depending 
on their fieldwork placement. A small number report teaching their classes more than 75% of 
their time instructing the whole class, while others report spending most of their time working 
with individual students or observing their mentor. (Still others were not placed in mathematics 
classrooms at all.)  

Initial results from a follow up survey with those math Fellows who remained in teaching 
after one year provided additional insights about NYCTF summer preservice training. In 
particular, while most of these experienced MTFs were able to point to strengths of the program 
– fieldwork was the most oft cited strength – many MTFs reported that the summer program was 
too short, too accelerated, or too theoretical. That said, the majority of the “experienced 
survivors” felt prepared – though generally “not well prepared” – to teach their assigned courses. 
They were about equally split between those who felt prepared and those who felt poorly 
prepared to handle a range of management/disciplinary concerns and teach using a variety of 
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instructional methods. That said, most did not feel prepared to teach mathematics to ELL 
students and those with learning difficulties.   

 
Discussion 

The NYCTF program has had a profound effect on high needs NYC schools – replacing 
uncertified teachers in such areas in mathematics, science, and special education. The NYCTF 
program has also had a national impact; since its inception in 2000, a number of Teaching 
Fellows programs, modeled after the NYCTF program, have emerged in a number of high needs 
districts across the U. S.. While the extant research on alternative certification programs, 
including the studies of the NYCTF program, suggest that novice alternative route teachers are 
underprepared in comparison to novice traditional route teachers (who may also be under-
prepared in some respects), we know little about the nature of alternative route teacher 
preparation – both in general and in mathematics in particular. That is, while the research 
literature points to significant variability in teacher effectiveness and retention, it says little about 
what type of preparation helps to produce effective teachers and how it might be a factor in 
keeping them in the classroom. This study begins to address this shortcoming in the existing 
literature on alternative route programs, in particular, those for urban mathematics teachers. 
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This article reports on activities within a mathematics methods course designed to deepen PSTs’ 
understanding of the multiplication of fractions. PSTs examined students’ work concerning 
fraction multiplication from the National Assessment of Educational Progress. The PSTs then 
posed and investigated a set of multiplication problems in groups. These problems and the PST 
explanations of the solutions of these problems were analyzed. Results revealed features of PSTs’ 
conceptions of fraction multiplication.  
 

Background 
Often, the arithmetic of whole and rational numbers, which forms the bulk of elementary 

school curriculum, is taught to PSTs in a maximum of 2 courses. A question we should consider 
is, When preservice teachers emerge from an elementary mathematics methods class, what 
understandings do they possess regarding the multiplication of fractions (including improper 
fractions) and how will they approach instruction?  This paper describes an investigation of 
PSTs’ responses to questions regarding multiplication of fractions. An instructional approach is 
described, as are findings concerning PSTs’ responses before and after class investigations. 
These results are explored for implications concerning how best to develop and sequence tasks to 
help PSTs achieve a more profound understanding of fraction and mixed number multiplication. 
First, the relevant research literature is examined to provide a conceptual framework. 
 

Conceptual Framework 
Ma (1999) contends that elementary teachers must understand elementary mathematics at a 

“profound level” (p. X) in order to be able to understand and apply knowledge of appropriate 
pedagogy. This is consistent with Sowder, Philipp, Armstrong and Schappele’s (1998) 
observations that as teachers’ gain in content and pedagogical knowledge, they view students as 
more capable and are willing to use student-centered teaching approaches. Thus, appropriate 
experiences in mathematics teacher education have a potential to affect instruction.  

Researchers have explored several areas of fraction knowledge development in children and 
teachers. The development of the fraction concept in children has been explored (Keiren, 1993; 
Behr, et. al 1993, 1997; Steffe,  2004), as has the development of children’s understanding of the 
multiplication of fractions (Fischbein, Deri, Nello, & Marino,1985), and preservice and inservice 
teachers’ understanding of this concept (Harel & Behr, 1995; Post, Harel, Behr, & Lesh, 1991; 
Cluff, 2005; Iszak, 2006). Kieren (1976) postulated that fraction concepts were difficult for 
children to learn because they consisted of many subconcepts that must be constructed first, 
including partitioning (1993). Behr and colleagues (1993, 1997) expanded these notions in the 
Rational Number Project developing a theoretical model of fraction understanding based on the 
notions of part-whole, quotient, ratio number, operator, and measure. Recently, Charalambous & 
Pitta-Pantanzui (2007) used structural equation modeling techniques to study the understanding 
of fractions among 5th and 6th- grade students in Cyprus using the Behr subconstructs as their 
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theoretical frame. The findings confirmed theorized associations between the subconstructs. 
They also noted that, “a profound understanding of the different interpretations of fractions can 
uplift student’s performance on tasks related to the operations of fractions and to fraction 
equivalence” (p. 311).  

However, other researchers contend that the Behr model considers fraction understanding 
from a “top-down” view of an instructional expert, rather than from a learner’s perspective. 
Hence, in a series of teaching experiments Steffe (2001, 2003, 2004), Steffe and Olive (2001) 
and Iszak (2006) pursued a separate line of investigation of the development of fraction concepts 
based on children’s thinking. Steffe’s model is based on the notion of conceptual units and 
nested levels of units, i.e. the standard part-whole approach to fractions illustrates two levels of 
units.  

In early research concerning children’s understanding of multiplication, Fischbein, Deri, 
Nello, & Marino (1985) posited that the intuitive model for multiplication is repeated addition. 
The inherent issues associated with the repeated addition model is that it leads one to assume that 
the multiplier needs to be a whole number which leads to a further assumption that multiplication 
always yields a larger quantity. These results were confirmed in several studies that examined 
elementary school teachers’ knowledge (Graeber, Tirosh, & Glover, 1989; Harel & Behr, 1995; 
Post, Harel, Behr, & Lesh 1991) and demonstrated that they experienced difficulties in solving 
word problems where the multiplier was less than one.  

More recently, Cluff (2005) defined three case studies of elementary PSTs that described 
their growth in knowledge concerning fractions, fraction multiplication, and fraction division 
during a mathematics methods course. Cluff’s study demonstrated that PSTs can exhibit an 
expansion of their conceptual understanding of fractions and fraction operations based on 
interactions with multiple representations. Another example of recent work is Iszak’s (2006) 
study of inservice teachers’ understandings of fraction multiplication which is described below. 

Iszak (2006) examined the knowledge applied by two sixth-grade teachers (Ms. Reese and 
Ms. Archer) in the context of teaching fraction multiplication. The fraction concepts were 
situated in problems that use lengths and rectangular areas as fraction representations. Iszak’s 
case studies emphasized that the unit structures produced by these teachers fundamentally shaped 
the ways in which they used drawn representations and the extent to which they could adapt 
these representations. This study highlighted disconnections between teachers’ conceptual 
foundations of fractional multiplication, their inability to use various representations 
pedagogically, and the expectations of current curriculum in regard to teacher expertise.  

Purpose and Research Design 
The purpose of the study is to assess PSTs’ understandings of fraction and mixed number 

multiplication in the context of an elementary mathematics methods course. The study employed 
an action research model as defined by del Mas, Garfield, & Chance (1999). 
1. What is the teaching/learning problem? In addition to the literature cited, the paper 

describes PST’s responses to two situations intended to provoke discussion of their initial 
understanding of the concept of fraction multiplication. Fraction multiplication is initially 
explored by 1) examining a set of problems and student performance data from the 
National Assessment of Educational Progress (NAEP); and 2) placing PSTs in small 
groups and asking them to create word problems that can be solved by fraction 
multiplication and asking them to explain why and how the algorithm works. Examining 
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NAEP student performance data motivates PSTs and helps them focus their attention on 
developing sound problems in their small groups.  I chose to have them develop fraction 
multiplication problems in groups based on the strategy employed by Ma (1999) in 
gathering information about teachers’ understanding of fraction division by asking them 
to create a representative problem. 

2. What techniques can be used to address the learning problem? Using prior research 
concerning PSTs’ understanding of fraction division as a guide, and Crespo & Nicol’s 
(2006) approach to developing a series of pedagogical tasks for PSTs in the context of 
division by zero, I designed a series of instructional tasks to assess PSTs’ initial 
understandings of the multiplication of fractions followed by content and pedagogical 
instruction on the concept. 

3. What type of evidence can be gathered to show whether the implementation is effective? 
Following a series of instructional activities, the PSTs answered extensive take-home test 
questions to assess their understanding of the concept following instruction. 

4. What should be done next, based on what was learned? Based on results of PSTs’ 
responses to questions about fraction multiplication before and after instructional 
interventions, I make recommendations for further study. 

The research questions for the design and conduct of the study were: 
1. How do prospective elementary teachers approach the multiplication of fractions, 

including mixed numbers, before, during and after instruction regarding the topic? What 
types of explanations do they use to justify their answers? 

2. How do prospective elementary teachers respond to questions about the multiplication of 
fractions, including mixed numbers following an instructional sequence? Can they use 
arguments from the instructional sequence to help them solve and explain problems? 

3. What do the results for Questions 1 and 2 suggest regarding instructional methods and the 
amount of instructional time required for PSTs to learn the multiplication of rational 
numbers (including mixed numbers) to the profound depth required for sound elementary 
instruction? 

 
In order to assess the readiness of PSTs to provide conceptually-based explanations of 

algorithms (Ma, 1999) to their students, it is necessary to assess their ability to move beyond 
rule-based explanations of concepts and construct well-reasoned arguments themselves (Weston, 
2000). Well-reasoned arguments explain a concept by: 1) providing examples or 
counterexamples that confirm or contradict given premises; 2) using deductive logic to test 
premises; and/or 3) providing an alternative representation that illustrates the concept in a new 
manner (Crespo & Nicole, 2006). It is also informative to examine the locus of control that 
appears to underpin PSTs’ explanations. Specifically, is this locus of control internal or external? 
 

Participants and Setting 
In the elementary teacher education program at Appalachian State University, PSTs are 

required to take 9 hours of mathematics and mathematics methods courses beyond general 
education. The subjects for this study were enrolled in Curriculum & Instruction (CI)-3030 –
Investigating Mathematics and Learning, a methods course focused on the number and operation 
strand of the NCTM Standards. There were 71 participants in this study enrolled in four sections 
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of CI 3030, two during fall 2006 and two during spring 2007—all four taught by the author. CI 
3030 is a 3 hour class, meeting twice a week for 2 hours over 12 weeks, followed by an 8-day 
practicum in the elementary schools. The demographics of the participants were: 95% below the 
age of 25; 96% Caucasian; 2% African-American; 2% Hispanic; 94% female; and 6% male.   

The paper describes only a portion of the first stage of the study— PST’s responses to two 
situations intended to provoke discussion of their initial understanding of the concept of fraction 
multiplication. Fraction multiplication is initially explored by 1) examining a set of problems and 
student performance data from NAEP; and 2) placing PSTs in small groups and asking them to 
create word problems that can be solved by fraction multiplication, explaining why and how the 
algorithm works. The results of the after-intervention will appear in a separate paper. 

 

Data Collection and Analysis 
The data included individual subjects’ written responses to in-class tasks, individual 

reflection papers, and tests. The data included sheets of poster paper where groups recorded their 
responses to in-class tasks, and the instructor’s observation field notes kept during two semesters 
and four sections of the course. The researcher categorized subjects’ responses to pre-instruction 
tasks, in-class group activities, and after-instruction tasks looking for evidence of well-reasoned 
arguments. Groups were given task sheets on which to record the groups’ main points. 

The analysis of the PSTs’ preliminary notions about fraction multiplication began by 
classifying their responses to the NAEP problems. Next, I classified the types of fraction 
multiplication problems they created in their small groups. Their initial responses to the question, 
Why does the fraction multiplication algorithm solve your problem? were grouped and coded by 
determining their correctness, their locus of authority, and their use of mathematical language 
and representations. The PSTs’ responses to test questions are also described.  

 
Results: PSTs NAEP Problem and Analysis of Student Performance Results 

The classes were given a set of 20 NAEP questions involving fractions to solve individually.  
(Four of these problems involved fraction multiplication and division and are discussed here. 
While the paper focuses on fraction multiplication, PSTs were asked to examine and think about 
fraction division within these problems, in order to help them compare and contrast these 
concepts.) Then, they were placed in small groups and assigned specific problems to discuss in 
more depth within the groups. The groups were given a page of questions to guide their 
discussion and were asked to record their answers. For each NAEP question that the group was 
asked to discuss, they were asked to respond to the following questions: 

1) NAEP Problem Number; 2) Complete the question; 3) What math concept is being tested?  
4) How is this concept being approached?  5) Does it relate to anything we have talked about 
in class, thus far?  6) How would you explain how to do this problem to students? 7) What 
percent of students would you expect to complete this question correctly? 8) What kinds of 
mistakes would you expect students to make on this problem? 10) How did the actual test 
results for the problem and the student work you examined compare to your predictions?  
Were you at all surprised by the results?  Why or why not?  

The PSTs solved the problems, predicted erroneous student reasoning, and predicted students’ 
performance results. They then discussed their predictions within small groups. After completing 
these activities, the PSTs were shown actual NAEP results, including examples of student work 
for the constructed response problem.  PSTs were largely successful in solving these problems. 
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However, while many could solve the problems computationally, they were unable to provide an 
explanation of why they chose to use a particular algorithm, and were unable to explain how and 
why the algorithms work.  
 

Development of Fraction Multiplication Word Problems by Groups 
As the class began the study of multiplication of fractions, I encouraged them to think about 

what they knew about the topic beyond the algorithms. The PSTs were asked to form groups and 
to write a word problem that would require students to multiply fractions. They were also asked 
to show the completed solution for their problem. The PSTs were asked to think about and 
record any materials, manipulatives, or diagrams that could be used to help explain their 
problem. They were not given any directions concerning whether they should use proper or 
improper fractions, or whether whole numbers or mixed numbers could be used. The following 
shows the list of problems created by the groups of PSTs.  
 
Fraction Multiplication Problems Created by Preservice Teacher Groups (in Class) During 

One Method Course 
Problem 1. Ms. Smith’s class is going on a field trip. For their lunch  of the students want a peanut 
butter and jelly sandwich. Of the  who want peanut butter and jelly,  of them want the sandwich with 
grape jelly? [sic]  

 x  =  
Models and Representations: PSTs suggested actually modeling making the sandwiches. PSTs were 
confused when asked to model the problem in another way. 
Why does the fraction multiplication algorithm solve your problem? “Well, you know you need to 
multiply because, 1) you see the word “of”, and 2) you know only  of the group wants jelly.” 
Researcher’s comments: This group seemed unaware that their problem did not clearly state an actual 
question until this fact was pointed out by classmates. When asked if there were other ways of modeling 
the problem other than actually making sandwiches, the group seemed puzzled, as were several other 
students in the class. When asked, What does  represent? The group explained that you get  by 
“multiplying the numerators and putting that answer over where you multiplied the denominators 
together.  shows how many students want jelly.” Then I asked them, “OK, so if you are going to make 
the sandwiches with the class, how many sandwiches will you need to make?” There were some audible 
“Ohs!” as some students grasped the point of my question. During the subsequent discussion, we 
specified that the problem was really indicating that, regardless of the number of people in the class, and 
therefore the total number of sandwiches to be made, only  of the entire class wanted peanut butter and 
jelly, and only  of that  wanted grape jelly on their sandwich. One preservice teacher then made the 
comment, “OK, so we’re taking part of a part!” 
Locus of authority: External 
Problem 2. There are 6 students in class, each student received and ate  an apple. How many apples 
did they eat altogether? 
6 x  = 3 
Models and Representations: PSTs recommended modeling the problem with apples and showed a 
picture of six students, each with ½ of an apple. 
Why does the fraction multiplication algorithm solve your problem? “You can see that if each of the 6 
students gets  an apple, then you can add  six times and get 3. That’s the same as saying 6 x  = 3 
Researcher comments: This problem was interesting because it showed the use of a whole number being 
multiplied by a fraction. It also provided an example of preservice teachers visualizing fraction 
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multiplication as repeated addition. The group’s solution was also noteworthy in that it was written as 6 x 
 rather than  x 6 or “  of 6”.  

Locus of authority: Internal. The locus of authority was judged to be internal with this group because they 
were focused on reasoning within the problem context rather than on the computational process. 
Problem 3. Margaret wants to make her Super-Puppy a cape. Her fabric is  ft. long by  ft. wide. 
How big is the cape? 

 x  =   ft. 
Models and Representations: PSTs provided a rectangular diagram to accompany their problem. 
Why does the fraction multiplication algorithm solve your problem? “It makes sense to use an area 
representation here. So, we showed it was  foot on one side and  foot on the other side, and then we 
multiplied to get the answer.” 
Researcher comments: As the group read and explained their problem, they encountered some objections 
from their classmates, notably from one who sewed. “  foot doesn’t make sense.” I asked the class 
what  of a foot was and a student replied, “1 inch.” Others in the class quickly agreed that  of a 
foot couldn’t be right. I then encouraged the class to think about how they could go about making Super-
Puppy’s cape. The seamstress pointed out that  foot would be the same as 4 inches and that  foot 
would be 3 inches and so the cape would be 12 square inches. Another student then pointed out that this 
was the same as  of a square foot. At this point, several students stated that they did not think 
elementary students would understand this problem well because of the measurement complications.  
Locus of authority: Both internal and external. I ranked this group’s work as showing both internal and 
external authority because, while they attempted to make a diagram to support their computations, the 
diagram and subsequent discussion revealed that they did not understand completely what the diagram 
and computation represented. 
Problem 4. Maggie the mechanic had  of a quart of oil. She only wanted to use  of that quart. How 
much oil did she use?  x  =  
Models and Representations: PSTs made a drawing of a jar with showing  full and then drew another 
jar pouring out . Then a third jar was drawn showing a lesser amount than  labeled . The PSTs 
also suggested using beakers and water to model the problem. 
Why does the fraction multiplication algorithm solve your problem? “Maggie started out with  of a 
quart of oil, then she used some oil,  of a quart. So, we’re showing how much is left in the bottle. If you 
multiply the numerators together and the denominators together, then you get that amount.”  
Researcher comments: The group explained their problem, its diagram, and the solution process to the 
satisfaction of their classmates. I then asked them why they drew a second jar, labeled with . “Is this a 
separate container of oil?” I asked. The group replied, “No, it’s really being poured out of the first one, 
but that’s kinda hard to draw.” I replied, “OK, can you show me where the 18ths come into play here?” 
Some of the group members pointed to the algorithm and explained, “It comes from multiplying 6 times 
3.” To which I replied, “OK, I see, but how can you show the 18ths in your diagram?” At this point, most 
of the class was puzzled, but a couple of students asked, “Could we use paper-folding here, instead?” (I 
account for this by some of the students having completed the assigned readings in the van de Walle text 
prior to class.) I encouraged them to try this approach, and following the creation of their successful 
model, we ended the discussion of this problem by discussing how the answer represented  or nearly 

 of one quart and we also discussed why this physical representation illustrated the solution better than 
the original drawings. 
Locus of authority: Both internal and external. I ranked this group’s work as showing both internal and 
external authority because, while they attempted to make a diagram to support their computations, the 
diagram and subsequent discussion revealed that they did not understand completely what the diagram 
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and computation represented. The locus of authority for some of the students changed to internal, 
however, as they decided to use the paper-folding model and could explain its significance. 
Problem 5. Izzy was making cookies. The recipe called for  cup of flour. If Izzy wanted to make  of 
the recipe, how much flour did she need to use?  x  =  
Models and Representations: PSTs recommended modeling with cups and flour and also made a drawing 
of a series of cups, showing  of a cup with half of the contents marked out, and then a second cup 
showing  cup of flour. 
Why does the fraction multiplication algorithm solve your problem? “Well, the original recipe calls for  
cup of flour but since you’re only making  of the recipe, you only need  that much. So, multiplying 
by  is like dividing the recipe in half here.” 
Researcher’s comments: The group commented that their problem was, “Sort of like one of the NAEP 
problems.” They explained the problem situation and their application of the multiplication algorithm to 
solve it. The group was able to explain to their peers that the solution represented  of one cup. When I 
asked them if they could show a different diagram, they were initially bothered until one student 
exclaimed, “We could use paper-folding here, too!”  
Locus of authority: Both internal and external. I ranked this group’s work as showing both internal and 
external authority because, while they created a diagram and could explain the context of the problem and 
its solution, they experienced difficulty in applying more than one representation to the problem. It is not 
clear that if they had not seen paper-folding used in the previous problem, whether they would have 
thought of using it here. 

These problems and their solutions were recorded on large sheets of poster board with 
markers and posted in the classroom during our subsequent discussions. For the sake of brevity, 
only one set of word problems developed by the methods classes is explored. However, this class 
was extremely representative of the problems developed in the other sections. The author asked 
the PSTs to solve their problems and followed with a class discussion concerning why the 
fraction multiplication algorithm provided a correct answer to the problems they constructed. 
The PSTs, were asked to respond to the questions, So what does this mean? Why does the 
algorithm solve your problem? They were asked to respond to these questions within their small 
groups and record their answers on posters. 

 
Summary Analysis of the PST Created Problems 

Analysis of the problems created by the groups reveals several interesting features. First, 
most of the groups wrote problems that used only proper fractions. Only one group chose to use 
a whole number in a problem and none of the groups chose to use a mixed number or an 
improper fraction. Second, at least one group in each methods class experienced some difficulty 
in writing a question that made complete sense either in terms of grammar, punctuation, or in 
phrasing an answerable question. Third, in choosing the numbers for their questions, most groups 
chose familiar fractions, such as  , , or . In our class discussion, I asked each group to 
explain how they chose the numbers for their problem. They commented that they chose what 
they thought were “easy numbers” and did not think ahead about whether the numbers they 
chose would be easy for them (or their students) to model or diagram. Fourth, until the groups 
developed their own problems, they did not appreciate the intricacies associated with choosing 
appropriate pedagogical models to illustrate fraction multiplication. For example, at the close of 
our discussion of Problem 1-The Sandwich Problem, I asked them what models we could use to 
illustrate the problem in place of making sandwiches. They did not appreciate the differences in 
using a set model versus an area model until we attempted to illustrate the solution in both ways. 
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After the problems were posted in the class, and prior to our discussions of each problem, we 
discussed as a group which problem they ranked as most difficult (Problem 1) and which they 
thought would be easiest for students (Problem 3). The PSTs thought Problem 1 would be the 
most difficult for students because of how it was worded and because three numbers appear in 
the problem. They chose Problem 3 as the easiest problem because they found the group’s 
diagram easy to understand. At the close of the class, I asked them to re-rank the group 
problems. This time, they ranked Problem 2 as the easiest and Problem 3 as the most difficult. 
The responses reported in the preceding section are consistent with the types of responses I have 
encountered in several semesters of using such tasks in the methods class. 
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Purpose of this study was to examine the nature of preservice secondary teachers’ instructional 
strategies and views about teaching and learning mathematics as they planned and taught 
algebra lessons. The study also looked at how the preservice secondary teachers’ views 
influenced their instructional practices as a result of their participation in reflection activities. 
The results of this study revealed that reflection activities helped the preservice secondary 
teachers identify strengths and weaknesses in their lessons and teaching. They also began to 
think about issues associated with planning, teaching, and assessment as a result of self-
reflection and analysis their own thinking. 

 
Introduction 

Reflection is defined as looking at one’s experiences, making connections with his/her 
thoughts and feelings, then utilizing in actions. Reflection-in-action is described as one’s 
thinking about the teaching/learning process or when he/she is engaged in teaching. Effective 
reflection-in-action appears when one changes his/her teaching approach and recognize that 
his/her way of teaching is not working. Reflection leads to building new understandings to 
describe one’s actions for teaching (Schön, 1983). 

Reflection is viewed as a key element in an on-going learning process since teachers continue 
to learn about teaching and about themselves through reflection (Llinares & Krainer, 2006). In 
addition, learning to teach is a complex process that different factors (e.g., teacher’s content 
knowledge, pedagogical content knowledge, organization of content for teaching) affect the 
nature of teachers’ decisions before, during, and after teaching. In this process, reflection and 
development of reflection activities may enrich teacher’s learning experiences and teaching 
practices as they become more effective teachers of mathematics (Kaminski, 2003). Davis (2006) 
suggests that tasks, allowing teachers to integrate different aspects of teaching such as learning, 
teaching and instruction, be used to promote productive reflections. To answer the question of 
what makes a reflective teacher, we need to focus on what types of experiences and tasks 
preservice teachers would need in order to become effective teachers of mathematics.  

Curriculum reform for mathematics teacher education has been considered as a crucial aspect 
in education. With assistance from the World Bank, Development of Ministry of Education 
Project–Higher Education Council restructured Turkish teacher education programs to increase 
quality in all primary and secondary education programs in education colleges (Higher Education 
Council [HEC], 2007) and proposed two teacher education programs. One of these programs, 
offered under the guidance of education colleges, required high school students to take the 
nationwide university exam to enroll in this program. The other teacher education program, 
housed within education colleges, is designed for college graduates with a Bachelor’s degree in 
mathematics. The latter is called Masters of Science degree without thesis (4+1), and in this 
program, preservice teachers are required to enroll in courses in two major areas: pedagogy 
courses and mathematics teaching methods courses.  
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I present data from a semester–long study conducted enrolled in methods courses. In an attempt 
to investigate how preservice teachers’ views about teaching and learning of mathematics 
influenced their instructional practices, they were encouraged to plan and teach lessons 
collaboratively and participate in reflection activities. I describe the results of the study and 
discuss pedagogical implications of these results in a final section.  

Background 
Research studies emphasized teachers' experiences as they develop and teach lessons as a 

focus for reflection (e.g., Jaworski, 1998). Over the past two decades, researchers (e.g., Artzt & 
Armour–Thomas, 1999; Artzt & Armour–Thomas, 2002; Shulman, 1986) have investigated the 
relationships between teachers’ views and their instructional practices. In an attempt to answer 
the question of what makes a reflective teacher and explore the relationship between teaching 
practice and reflection, research studies (e.g., Fendler, 2003; Marcos & Tillema, 2006) have been 
conducted. Researchers (e.g., Jaworski, 1998) emphasized the importance of enabling teachers to 
reflect on their practice as a means for the improvement of mathematics teaching. However, 
these studies have been challenged to explain what has been learned (Darling-Hammond & 
Youngs, 2002).   

On the one hand, Nicole and Crespo (2003, cited in Llinares & Krainer, 2006) suggested that 
introducing analysis and reflection through teaching practice provide preservice teachers with 
better opportunities to integrate theory and practice. On the other hand, research studies, 
conducted with preservice teachers in Turkey, revealed that preservice teachers were limited to 
discussions and reflections on teaching practices in their teacher education courses (e.g., 
Çakıroğlu & Çakıroğlu, 2003; Sahin–Taskin, 2006). Moreover, many teacher education 
programs in Turkey have provided preservice teachers with inadequate opportunities to engage 
them actively in developing and teaching lessons and to help them connect research and practice 
as well as develop research–based teaching strategies. I agree with Alp and Şahin–Taşkın that an 
increased attention should be given on research studies examining preservice teachers’ 
reflections and practices in Turkish teacher education program.   

Theoretical Framework 
This study is framed by the research of Artzt and Armour–Thomas (1999). Artzt and her 

associate posited a model with reflection activities (i.e., pre–lesson, post–lesson reflections, and 
self assessment) to facilitate preservice teachers’ analyses of their views and instructional 
practices before, during, and after teaching. The model was influential in my descriptions of 
preservice secondary teachers’ reflection activities and was also used as a guide as preservice 
teachers reflected on their instructional practices. For instance, the preservice teachers were 
asked to describe how they would teach their lessons by writing reflections on the following 
components suggested by Artzt and Armour–Thomas: (1) goals for students, (2) knowledge for 
students, (3) knowledge of content, (4) knowledge of pedagogy, (5) the teacher’s role in the 
lesson, (6) the students’ role in the lesson, (7) anticipated difficulties and (8) resources used to 
get ideas and criteria for selection. These items of the pre–lesson reflections were aimed at 
helping preservice teachers consider goals of the lessons for their future students. The four 
components (1–4) were used to encourage preservice teachers to utilize their content knowledge 
and pedagogical strategies to design their lesson. The three items on the list (5–7) were expected 
to assist preservice teachers to envision the engagement and interaction between the teacher and 
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their future students, and to be aware and plan for possible difficulties that might occur during 
their teaching. The last item (8) was designed to encourage preservice teachers to utilize different 
resources to improve their knowledge and to consider alternatives to design their lesson.  

 
Methods 

This study sought to examine the nature of the preservice secondary teachers’ instructional 
strategies and views about teaching and learning mathematics as they planned and taught algebra 
lessons. Thirty–eight preservice teachers who were enrolled in secondary teacher education 
program at a university in the north eastern Turkey (i.e., Masters of Science degree without 
thesis) participated in the study. Data were collected through the preservice teachers’ written 
reflections, activities, class discussions, and observations in a semester–long study. The 
preservice teachers were placed in groups of 2 or 3, and each group was asked to choose a topic 
in algebra. Although members of each group would be teaching the same topic, each preservice 
teacher was asked to plan and teach individual lessons with two components: 1) Teaching 
strategies (e.g., student–centered, teacher–centered, problem solving) and 2) Use of various 
teaching technologies. Since the preservice teachers had a lack of experience in designing a 
lesson plan, they were asked to use a lesson plan from Ministry of Education as a guideline. 
Having determined mathematical topics for their lessons and written reflections on the eight 
components suggested by Artzt and Armour–Thomas (1999), each preservice teacher taught 
his/her lesson in 25 minutes to their classmates acting as students. In post–lesson reflection, they 
were asked to reflect on the entire experience considering factors that influence their teaching 
and ideas to improve their lessons if they were to teach it again. These reflections provided 
perspectives about what factors influenced preservice teachers’ planning and teaching as well as 
whether or not their views about teaching and learning of mathematics changed as a result of 
their participation in this study.  

 
Results 

Pre–Lesson Reflection 
In the pre–lesson reflection, the preservice teachers discussed the resources such as materials, 

textbooks, and teaching strategies that they considered utilizing for their lesson planning and 
teaching. Twenty–seven preservice teachers emphasized that teacher-centered approach would 
be appropriate for their teaching. Eleven preservice teachers considered student-centered 
teaching strategy as an effective way to teach their lessons. Seven of these eleven preservice 
teachers considered using hands-on material for their lesson. Consider the following excerpts 
from their reflections: 
S1:  I think the most effective way to teach this topic is teacher-centered approach. I would 

first introduce the key concepts related to this topic. Then, I would solve examples to 
have students grasp the concept. At the same time, students would be asked to solve 
problems. Students should listen carefully and participate actively in class activities. I 
plan to teach my lesson using overhead, I think I would not have any difficult getting 
students’ attention. 

S2:  In my lesson, role of a teacher is to introduce key concepts and then guide students to 
help them to learn by themselves. With this pre-knowledge, students could be active in 
the learning process and develop their skills. At the beginning of the lesson, I plan to use 
real life examples to attract students’ attention to the lesson. I will include hands-on 
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material to teach my lesson, but I am going to utilize discovery learning. I am going to 
ask them questions to have them involve in the lesson. My only concern about the lesson 
is interaction between me as a teacher and students. That is why I am thinking of using 
simple language to teach my lesson. 

S3:  I will be guiding the students in my lesson. I am going to help them to reach the goal by 
asking them questions. My only concern about this lesson is related to the examples. 
Students might have difficulty in solving examples and comparing their results. Since I 
will not use teacher-centered approach, it won’t be difficult to get students’ attention. In 
addition, student-centered approach would be extraordinary and enjoyable for them. I 
will give the key concepts and write notes on the board. After that I will start asking 
questions to students.  

In his reflections, S1, a preservice teacher, thought that the most appropriate way to teach his 
lesson was to use teacher-centered strategy. He also wanted his students to be active in problem 
solving during his lesson. Therefore, he planned to use an overhead as a teaching technology to 
attract students’ attention during his teaching. S2 considered student-centered teaching strategy 
with using discovery approach for her lesson. She said the use of simple language (e.g., 
describing concepts in her own words) in her lesson would help her increase interactions among 
her students. S3 wanted to utilize a student-centered teaching strategy for her lesson. She said it 
would be easy to engage her students in the lesson by using a question-and-answer technique in a 
student-centered approach.  

All three preservice teachers were asked to consider the possible difficulties that might arise 
during their teaching. S1 thought that teaching the lesson with an overhead projector may not 
motivate his students to participate in the lesson. Both S2 and S3 were concerned about 
interaction between the teacher and the students. To prevent lack of communications among 
students and attract their attention for the class activities, the preservice teachers, S2 and S3 said 
they would create a student-centered learning environment.  

Pre-lesson reflections were informative for the preservice teachers. The preservice teachers 
were given an opportunity to verbalize their ideas and concerns as they envisioned interactions 
among their students. Descriptions of pre-lesson reflections also provided opportunities for them 
to understand their envisioned practices and decision making processes.   
Post-Lesson Reflections and Self Assessment 

Most of preservice teachers were concerned about finding ways to make introduction of 
mathematics concepts interesting or strategies to interact with their students. Although the 
preservice teachers emphasized that the lessons could be taught using different teaching 
strategies, most of them claimed that their teaching strategies were more appropriate for their 
lessons. Twenty–seven preservice teachers described teachers as dispensers of knowledge and 
chose a teacher–centered approach for their lessons.  The remaining eleven preservice teachers 
preferred a student–centered approach to guide student learning. 

Regarding the weakness of their teaching, eighteen preservice teachers found rather difficult 
to implement the teaching strategies. Thirteen of them thought that they went over the key 
concepts quickly. Eleven of them were concerned about lack of communication between 
themselves as a teacher and their students. Seven preservice teachers had difficulty selecting 
appropriate examples. Following excerpts illustrate the preservice teachers’ post-reflections on 
their teaching: 
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S4:  I had a problem with my material. I wanted to put on the board but I had a problem with 
magnets.  Somehow magnets did not hold the material on the board. I ended up spending 
too much time with material.   

S5:  I knew what I needed to teach, but I could not help myself going over to content quickly.   
S6:  I lectured the students. They were not active during the teaching because I did not ask 

any question.  
S7:  Number of examples I presented was not enough. I could not relate to real life.  I should 

have solved more examples. 
In reflecting on their teaching, the preservice teachers identified appropriate teaching 

strategies, introduction of the concepts, and communications with students as factors influencing 
their instruction.  

Regarding the strengths of their teaching, one third of the preservice teachers said that that 
they had a good introduction and selected appropriate examples for their lessons.  Some of the 
preservice teachers, who implemented student–centered teaching, were satisfied with the 
questions to engage students in the lesson. Few pointed out class management, interactions with 
students, and the use of technology as the strengths of their teaching. Consider the following 
excerpts: 
S8:  I did not have any problem introducing key concepts, but it would have been easier for 

students to understand if I had given examples that started from basic to more complex.  
S9:  I wanted to get the students attention at the beginning of the lesson but I could not say 

something to attract their attention. Overall, I was able to choose appropriate examples. I 
selected questions from easy to more complex questions. I believe they were good 
examples introducing the math content in a logical order.  

S10:  The best part of my teaching was students were active in the learning. That is why I chose 
student-centered teaching method. If I could teach this topic again, I would also include 
slides in my teaching. 

S11:  I thought material that I used was simple and fun. I thought I was able to have student 
involve and participate in their own learning. 

The preservice teachers reconsidered several components of their teaching when asked what 
they would change if they had an opportunity to teach this lesson again. Eleven preservice 
teachers said that they would use different teaching materials (e.g., worksheets, transparencies) 
for their lessons. Six preservice teachers wanted to change their examples and pay more attention 
to interactions with students in their teaching. Due to their difficulties in communicating with 
students and engaging the class in the lesson, five of them said they would change their teaching 
strategies (see Table 1).  

 
 Table 1. Preservice Teachers’ Suggestions about Their Lesson 

Changes on teaching Frequency of responses 
Pay attention to communication with students 6 

Spend more time on contend 7 
Changing teaching strategies 5 

Selecting appropriate examples 6 
Using different teaching material 11 

Utilizing time efficiently 3 
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Although the preservice teachers were given an opportunity to teach this lesson once, they 

expressed various components in their lessons and teaching that they wanted to change. Consider 
the excerpts from their written reflections:  
S12:  This was my first time for teaching.  I could not manage the class well. I don’t think I 

paid enough attention to my students. Overall students were listening. After my teaching 
I realized that it was very important to plan the lesson ahead of time. I lectured in my 
teaching but if I could teach it again I would use an activity to teach Cartesian coordinate 
system. 

S13:  I prepared various math problems, but I was not successful at engaging students in 
solving the problems. I should have practiced and utilized different questioning 
techniques.  

S14:  Presenting the concepts with manipulatives was beneficial but I did not spend enough 
time on introducing the key concepts related to my lesson topic. If I could teach again, I 
would have introduced the concepts slowly.  

In their reflections, it appears that the preservice teachers observed the outcomes of their 
instructional decisions and actions in their teaching. As a result, they began to think about how 
mathematical concepts could be represented to teach effectively and consider utilizing teaching 
techniques, instructional materials, and activities to actively engage students in learning 
mathematics.   

Discussion 
In Turkish teacher education programs, preservice teachers take internship, called School 

Experience, to be prepared for teaching and exposed to various aspects of the profession under 
the guidance of both supervisor and cooperating teacher. Preservice teachers are expected to 
observe mathematics classes and write reports about the entire experience at their internship 
schools. Preservice teachers do not receive much benefit from classroom observations. Having 
stated that preservice teachers’ internship experiences involving only class observations do not 
prepare them for teaching and preservice teachers must actively participate in classes by assisting 
teachers and students, we as educators can create a rich learning environment in which 
preservice teachers are encouraged to develop lessons collaboratively and teach to their students. 
In methods courses, preservice teachers should be challenged with issues associated with 
planning, teaching, and assessment that emphasize self-reflection focusing on the analysis of the 
teacher’s own thinking and dealing with students in a way to plan their education (Ticha & 
Hospesova, 2006).  

In this study, prior to their internship in schools, the preservice teachers gained experience in 
planning and teaching lessons as they worked with their classmates collaboratively. By reflecting 
on their teaching and observing different teaching strategies, they identified their weaknesses and 
strengths in their lessons, and analyzed issues in teaching. It was observed that with the 
reflection activities, the preservice teachers had opportunities to work together to refine and 
revise their lessons and improve their teaching.  

The model of Artz and Armour–Thomas (2002) provides an insightful framework to describe 
preservice teachers’ analyses of their views and instructional practices before, during, and after 
teaching as well as assessment of their thoughts and decisions in a structured way. Under the 
supervision of their professors or supervising teachers, this model  could be an excellent tool for 
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professional growth, and preservice teachers utilize this model to assess and reflect on their 
teaching in a structured way. If preservice teachers get used to thinking about their lesson in such 
a structured way, it could become a natural part of their reflective practices. 
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As learning unfolded in an elementary education mathematics classroom, a classroom 
teaching experiment was conducted to document preservice teachers’(PST) development of 
whole number concepts (Cobb, 2000). The development of PSTs’ understanding of whole 
number concepts was emphasized in this study for two reasons. First, whole number concepts are 
a core component of elementary school mathematics; therefore, the importance of whole number 
concepts is inherent on future mathematics learning (National Council of Teachers of 
Mathematics, 2000). Second, PSTs entering the profession need a depth of knowledge necessary 
to support children’s unique understandings of whole number concepts (National Mathematics 
Panel, 2008, National Research Council, 2001). 

As stated by Hopkins and Cady (2007), familiarity with base-10 can prevent adults from 
fully comprehending various whole number concepts, as such, this study had PST’s participate in 
an instructional sequence where learning tasks were situated in base-8. By having the PSTs 
reason solely in base-8, it provided them a similar mathematical experience to children learning 
the same concepts in base-10. In addition, the results of this study found that many of the PSTs 
reasoned in base-8 in similar ways that children reason in base-10, such as making mathematical 
connections between place value, number sense, properties of operations, and conservation of 
number (Huinker, Freckman, & Steinmeyer, 2003; Kamii, Lewis, & Livingston, 1993). Most 
importantly, PSTs were able to reconceptualize their understanding of whole number concepts, 
and as a result, strengthen their conceptual understanding of children’s unique ways of thinking. 
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Research on posing mathematical tasks has focused on student-independent task analysis  

(e.g. Silver, 1996). In contrast, this study used student-dependent analysis by studying responses 
to mathematical tasks. Continuing the work of Norton and Rutledge (2007) and Crespo (2003), 
this research examines NCTM process standards (NCTM, 2000) and levels of cognitive demand 
(Stein et al., 2000), elicited by tasks designed by preservice teachers (PSTs). 

PSTs enrolled in a mathematics course were partnered with precalculus high school students 
and exchanged 6 biweekly letters. In the letters the PSTs posed discrete mathematics tasks 
seeking to elicit NCTM processes and high levels of cognitive demand, the highest of which is 
‘doing mathematics’ (Stein et al., 2000). The PSTs attempted to predict the NCTM processes and 
levels of cognitive demand in which their student partners would engage. They later assessed 
students’ actual responses. This arrangement provided PSTs with an authentic experience in 
designing individualized tasks and analyzing student thinking.  

In this 3rd iteration of the study, PSTs engaged in weekly letter-writing workshops in which 
they shared student responses and worked together to make inferences about the students’ 
mathematical thinking. At the conclusion of the project PSTs completed surveys on their 
experiences. Our research team is using this data to answer the following questions: 
• Did the project help PSTs pose tasks that elicited more processes and higher levels of 

cognitive demand?  
• What factors led to elicitation of processes and high levels of cognitive demand?  
• Did the PSTs’ predictions of responses improve? 

Preliminary results from analysis of PST feedback show a positive response to the project; 
they found it valuable in learning to pose mathematical tasks and investigate student thinking. 
Ongoing data analysis will compare processes and levels of cognitive demand elicited from week 
to week, as well as identifying important factors in PSTs’ growth. 
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Classroom teachers and researchers suggest that understanding student identity, including 

beliefs, dispositions and self-understandings, may allow classroom teachers to better meet the 
needs of students as learners. Similarly, teacher educators also need to understand their 
students—teacher candidates (TCs)—as learners to better prepare them to teach. Research has 
shown that teacher identity influences a teacher’s instructional decisions and shapes whether and 
how teachers construct and take up professional learning opportunities (Collopy, 2003). 
Comparing case studies of TCs in two elementary Masters-credential programs, we investigate 
how their identity as narrative activity (Sfard & Prusak, 2005) shapes their participation in 
practices constituting attention to student thinking (Kazemi & Franke, 2004) in math methods 
courses.  Sfard and Prusak (2005) frame the activity of identifying as fundamentally discursive, 
and define identity as “collections of stories about persons… narratives that are reifying, 
endorsable and significant” (p. 16, italics in original). This narrative-defined identity can be 
useful, even as people define their identity differently to different people, because it is "the 
activity of identifying rather than its end product that is of interest to the researcher" (p. 17). 

The two programs in the study attract TCs with different personal and professional 
backgrounds and structure their field experiences differently. The math methods courses in both 
programs have the same instructor, goals, activities and assessments. Data consist of video 
recordings of all course sessions, TCs’ course assignments, observations of TCs’ teaching, and 
interviews with selected TCs. Analysis utilized methods of narrative and story analysis to 
characterize how the TCs see themselves as teachers and learners, grounded theory to develop 
categories for TCs’ participation in the practices of the methods courses, and comparison across 
case studies to reveal key relationships between aspects of identity and participation. 

The poster will highlight how identity as narrative mediates how TCs are able to learn to 
attend to student thinking and how they integrate experiences with student thinking into their 
narrative identities. Our analysis reveals three trends: (1) TCs who see themselves as teachers 
and their work as teaching, rather than someone who is “learning to teach,” situate their analyses 
of mathematical thinking in their broader experience with students; (2) TCs whose vision of 
mathematics teaching is centered around promoting student engagement tend to approach 
attention to student thinking as an assessment of the effectiveness of an activity; (3) For TCs who 
describe their own mathematics learning experiences as personally damaging, engaging in 
mathematics through student work supported the redefining of their relationship to mathematics. 
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Early algebra is a topic that is of great interest in the mathematics education community.  
Pattern finding is an aspect of early algebra that is particularly important in the elementary 
school. Property noticing is the fourth level of the Pirie and Kieren (1994) theory [PK] of growth 
of mathematical understanding following image having. When students notice properties it is 
usually closely associated with the image that they have constructed from the previous levels.  
They are now about to take that image and begin to identify special phenomena or properties that 
might be attributable to it.  An example would be when a student is able to take an image of ½ 
and ¼, noticing that ½ > ¼ and that adding these two quantities requires a sum greater than either 
one. These are properties of fractional addition of unlike denominators that a student may notice. 
The focus of this case study is to determine what properties a pre-service teacher [PT] notices in 
a teaching experiment that focused on algebraic reasoning. In this case, algebraic reasoning 
refers to the ability of the PT to generalize and justify rules that describe patterns. In this analysis 
the sources of data are Edy’s transcripts and written class work from a three-week teaching 
experiment. Elementary pre-service teacher Edy, a pseudonym, was a 21 year-old Caucasian 
female in her first semester and had not student taught. Edy was selected for study because her 
algebraic reasoning was strong even at the beginning of the teaching experiment and she was 
able to quickly and efficiently generalize and justify rules of the patterns involved. The 
transcripts were examined and coded for instances of property noticing, with a second coder 
brought in to assure inter-rater reliability. Then the coded items were examined for common 
themes. To begin with her property noticing took the form of recognizing properties in the model 
that she was constructing.  

Edy:  Because each time one [block] goes together, you lose two sides.  Because here’s a side   
and here’s a side and put them together and you lose two sides. 

Over time the properties that Edy noticed became increasingly mathematical.  
Edy:  Yeah.  So, the pentagon’s going to be 3n plus two.  Because there is a pattern.  1N plus  
two, 2N plus two, 3N plus two. 
Edy noticed properties in a variety of ways that include but are not limited to: recognizing a 

property of the model, recognizing a pattern in the model, simplifying a pattern in the model, 
noticing a similarity between two models, or noticing an error in the model.  
Property noticing as a level within Pirie and Kieren’s growth of mathematical understanding is 
an important element in educational theory that could inform our practice.  If there are certain 
properties of a task that the PT recognizes, then there could be ways for the PT to encourage 
learners to find them. This could have bearing upon the way in which we construct our teacher 
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preparation curriculum. Applications can be made to the way that the content is presented and to 
the way that we question and encourage our pre-service teachers.  
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This study examined preservice teachers’ perspectives on an assignment designed to prepare 
them to teach in culturally diverse mathematics classrooms. Three cohorts (n=76) of elementary 
and middle school preservice teachers were asked to research the available literature for an 
article that specifically addresses the teaching of mathematics to students who are culturally 
different than themselves. Data were collected from the written reports that specifically asked 
students to answer the following questions: why did you choose the article, what are the cultural 
differences between you and the culture(s) discussed in the article, and what is the value of using 
the strategies discussed in their article. Data was analyzed, coded, and categorized using analytic 
induction. 

Why this article? Most preservice teachers chose an article for their professional preparation 
because they felt it would help them become better teachers. Preservice teachers that wanted to 
learn about a different culture were placed in the personal gain category. Lastly, as the title 
suggest, some preservice teachers chose an article for both professional preparation and 
personal gain. An example of this type of response is, “Latinos are [a] different culture than my 
own. I do not know very much about Latino education and home life. With the trends in [this 
state], more Hispanic children will be in schools. This article will give me an idea of how to 
relate to this different culture.” Three students did not answer this question.  

How is the Culture Different? Eight categories were mentioned as cultural differences 
between the preservice teacher and the culture they chose to study. Schooling issues such as 
instructional strategies, curriculum, resources, tracking, class size, and teacher expectations was 
cited the most (19%). Racial differences (17%), geographic location (16%), language (14%) and 
Socio-economic status (13%) were next among the most commonly mentioned cultural 
differences. Differences in family (size, parenting, structure) and customs (birthdays, traditions) 
were both mentioned by thirteen percent of the preservice teachers. Comments related to 
differential societal views about cultures (labeling, racism, prejudices) were mentioned by 3% of 
the preservice teachers. 

What is the Value? Most preservice teachers found the teaching strategies as having student value 
(i.e., making mathematics more enjoyable and increasing student self-confidence). Thirty-eight percent 
discussed the professional value of the strategies, such as a better understanding the students. About 27% 
of preservice teachers assigned conditional value to the teaching strategies, discussing how the strategies 
helped certain groups such as English Language Learners. Finally, 5% of preservice teachers discussed 
the personal value of the teaching strategies. 

The finding from this study are encouraging and suggest that preservice teachers want to learn ways 
to reach all of their students. Although their reasons may vary, preservice teachers want opportunities to 
explore multicultural activities in their mathematics methods courses. 
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We present our emerging model for supporting the development of coherence in teachers’ 
mathematical understandings. Key to this model is the notion that coherence involves coming to 
see a variety of mathematical ideas as conceptually and structurally related and that while 
teachers are aware of particular examples that employ a particular mathematical structure, they 
are unaware of the benefits of connecting the examples. We report on our efforts to support 
teachers in making these connections in an online content course for teachers.  
 

Objectives and Purpose of the Study 
The importance of teachers’ mathematical knowledge has been well documented in the 

literature (Ball, 1993; Bransford, Brown, & Cocking, 2000; Ma, 1999; Shulman, 1986) and 
increasing teachers’ mathematical knowledge continues to be a major focus in both education 
research and policy (Greenberg & Walsh, 2008; National Mathematics Advisory Panel, 2008). 
Despite the fact that there is widespread agreement as to the importance of teachers’ mathematics 
knowledge, there is little consensus as to the particular content and structure of that knowledge. 
In this paper, we will discuss a perspective on the question of the mathematical knowledge that is 
needed for teaching mathematics in which teachers learn mathematics as a coherent and 
interconnected system of ideas. We focus on a segment of teacher professional development that 
was designed to support teachers’ developing deeper and more sophisticated mathematical 
understandings that will position the teachers to make connections between a variety of 
mathematical ideas regularly taught in middle and high school mathematics courses. In 
particular, the focus of this paper will be how an explicit focus on the mathematical structures of 
sets, operations, and equivalence relations can serve as a catalyst for conversations that support 
coherence in teachers’ mathematical understandings. 
 

Theoretical Framework 
Ball and her colleagues (Ball, 1993, 2007; Ball, Hill, & Bass, 2005; Ball & McDiarmid, 

1990) have focused on understanding the special ways one must know mathematical procedures 
and representations to interact productively with students in the context of teaching. Their 
pioneering work has succeeded in identifying a statistical relationship between this mathematical 
knowledge for teaching (MKT) and student achievement (Ball, et al., 2005; Hill, Rowan, & Ball, 
2005). We extend this work by focusing not only on particular mathematical understandings but 
also the conceptual structures within which those particular understandings lie. Our reason for 
this focus is pragmatic:  

If a teacher’s conceptual structures comprise disconnected facts and procedures, their instruction is 
likely to focus on disconnected facts and procedures. In contrast, if a teacher’s conceptual structures 
comprise a web of mathematical ideas and compatible ways of thinking, it will at least be possible 
that she attempts to develop these same conceptual structures in her students (Thompson, Carlson, & 
Silverman, 2007) 
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Rather than focusing on identifying the mathematical reasoning, insight, understanding and skill 
needed in teaching mathematics, we focus on the mathematical understandings “that carry 
through an instructional sequence, that are foundational for learning other ideas, and that play 
into a network of ideas that does significant work in students’ reasoning” (Thompson, 2008). We 
refer to these understandings as coherent understandings: powerful, generative “big ideas” from 
which an understanding of a body of mathematical ideas and its relation to other bodies can 
emerge.  

It is important to note that coherence is not a characteristic of one’s understanding of a 
particular mathematical idea, for coherence in curricula or students’ understandings depends on 
the way in which they fit together (Thompson, 2008). This notion of coherence problematizes 
traditional mathematics teacher education efforts that seek to support teachers in “gain[ing] the 
ability to do the mathematics…and understand[ing] the underlying concepts so they will be able 
to assist their students, in turn, to gain a deep understanding of mathematics” (Musser, Burger, & 
Peterson, 2008). When a focus is on coherence, the emphasis is not just on doing and learning 
“the mathematics,” but rather on developing a scheme of understanding within which a variety of 
mathematical ideas are connected and that can serve as a conceptual anchor for mathematics 
curricula and instruction.  

In this article, we discuss our emerging model for supporting pre- and in-service teachers as 
they deepen and extend their mathematical understandings and develop schemas within which a 
variety of mathematical ideas are conceptually connected. First, we begin by exploring 
mathematical ideas that the teachers teach regularly and ostensibly know well. We then seek to 
problematize their current mathematical understandings by presenting the abstract mathematical 
structure that lies behind the math they teach and orchestrating conversations about examples 
from different mathematical contexts that have similar mathematical structure. We feel the shift 
to a higher level of abstraction is essential for two reasons. First, it is at this level that the 
mathematical ideas fit together—on the surface there is little similar about two numbers being 
equal and two polygons being congruent. It is only when one explicitly focuses on the 
mathematical structure that the similarities between examples or contexts can “do work” for 
teachers. It is our goal that teachers come to see the hundreds of concepts that make up the 
school mathematics curriculum as entailing a small number of big ideas that they can then orient 
their instruction around. Further, as they learn to engage with these big ideas and mathematical 
abstractions, they are developing a mode of discourse that they can use as they engage with 
particular examples of the big idea that can support students coming to see the connections. 
Second, following Blanton (2002) it is often the case that teachers need to legitimately engage 
and grapple with mathematical ideas to actually think mathematically and that is hard to do in 
contexts that the teachers (believe they) know well. 
 

Setting and Participants 
In this article, we will discuss the first two weeks of 10-week course titled Geometry and 

Geometric Reasoning. This online graduate course is a content-based course required for the 
master’s degree program in mathematics education at a university in the Northeastern United 
States. The course was developed and taught by the authors. Tasks and activities were taken 
from the Re-Conceptualizing Mathematics program (Sowder, Sowder, & Nickerson, 2008) and 
the authors’ personal repertoire developed over a combined 25 years of work in mathematics 
teaching and teacher development. The data for this paper comes from one iteration of our 



Vol. 5  1354 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

Online Asynchronous Collaboration model (Clay & Silverman, 2008a, 2008b) and includes 
private solutions, revisions, and commentary as well as discussions focused both on individual 
problems and emergent issues (Clay & Silverman, 2009). 

The first two weeks of the geometric reasoning course focused on polygons and 
transformations. We began with the assumption that the teachers were familiar with, and teach or 
have taught, the ideas of congruence and transformation of polygons. We also assumed that, 
consistent with typical texts, instruction and state standards, teachers’ understandings of 
congruence was grounded in the idea that congruent polygons have “the same size and the same 
shape.” In addition, almost all teachers were familiar with the rigid transformations of reflection, 
translation, and rotation.  

We began the unit by providing opportunities to explore mathematical ideas that the teachers 
currently teach and were ostensibly familiar with. For example, we initially focused on 
“standard” problems of the type: “given a polygon and a transformation find the resulting 
polygon.” We then pushed on teachers’ current understandings through focusing on the other 
half of the bi-relational relationship: “given two congruent polygons, you can find the 
transformation that transforms one to the other.” Our goal was then to support teachers in 
relating their work and developing understandings of transformation to more abstract 
mathematical ideas like operations on transformations, composition of transformations, and 
properties of “the set of transformations” such as the set being closed (A set S is closed under the 
operation  if for all a,b ∈S, a b ∈S . Finally, students were asked to re-examine their 
understanding of congruence by redefining it from “same size, same shape” to “there exists a 
rigid transformation” from one polygon to another and explore the implications of this new 
understanding. 
 

Analysis and Results 
Engaging with the Mathematics 

Teachers were familiar with the notion of transformation and each was able to translate, 
reflect, and rotate figures in the plane. On a task that asked the participants to translate, rotate, 
and reflect a given figure, most provided diagrams consisting of the original image and the 
transformed image and few provided descriptions or explanations of what they did. A 
paradigmatic example of such a solution is provided below (all names are psuedonuyms). 

Quinn:  Working with Mr. Conehead here, I’ve performed the three transformations: 
 He was translated along the green vector. 
 He was reflected about the black center line.  
 And then he was rotated about his nose. 
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When engaging with the mathematics they teach, participants’ posts were mater-of-fact 
descriptions of what they did. When the class discussed the posts, there was little conversation 
about the mathematics – conversations were either affective (“I really liked your diagrams”) or 
focused on the technology used to generate the transformations (grid paper, Geometer’s 
Sketchpad, Adobe Photoshop). Examples included: 

Carla:  I love that you named him! Anywhoo... I was wondering what you used to make your 
pictures. They are very nice. 

Adam:  Yours look like perfect replicas....where you able to copy them or did you draw them? If 
you were able to copy them, how did you do so? The only thing missing for your rotation is 
the point that its rotated about 

Una:  I enjoy looking at your work because it is easy to understand. I never thought of using 
Adobe Photoshop. 

Opall: Did Photoshop do everything? If so, would you allow your students to use it or make them 
follow the directions in the book and produce accurate hand drawn transformations? 

It has proven tremendously difficult to orchestrate generative mathematical conversations 
around mathematical content that teachers’ believe they know well. This result is consistent with 
Blanton (2002), who noted the importance of “legitimate mathematical situations” in supporting 
teachers’ mathematical and pedagogical development. While initial engagement with 
mathematical tasks that teachers are comfortable with has proven not to be a site propitious for 
the development of more coherent understandings, it has proven to be a good jumping-off point 
for discussions that focus explicitly on coherence in mathematical understandings.  
Mathematical Abstraction #1: The Set of Transformations and Operations on that Set 

While participants were familiar with transformations, the idea of transformations as a set 
that we could define an operation on was unfamiliar territory for the majority of the students. 
The following three excerpts demonstrate the ‘newness’ of the idea along with connections the 
teachers are able to make to something that they do ‘know’ and teach.  

Carla:  I also never heard the terminology “composition” of two motions. I remember in 
high school doing multiple transformations to an object, but the word 
“composition” never came up. To me in school it would be doing multiple 
translations, not doing a single translation with multiple steps as this suggests. I 
found that interesting, and created a shift in thought for me.  

Wendy: I have taught reflections, rotations, and translations, but I had never heard of 
compositions either. I had always treated them as separate motions. But when I 
think about it, asking the student to use compositions forces them to see the big 
picture as the sum of the parts. I think both viewpoints are important to get a true 
understanding of what is happening. The student needs to see the whole as well as 
its parts. 

Therin:  Carla, I also don’t remember learning about composition of rigid motions before. I 
am more familiar with composition of functions from teaching Algebra 2. I have a 
hard time thinking about the composition of rigid motions as a single rigid 
motions... 

Carla admits that she’s never heard of “composition” of two motions, although she has 
literally done the steps of composition. Wendy follows by saying she’s taught translations but 
never heard of compositions. Again, she has done and taught the steps of the composition, just 
never heard of or used the mathematical terminology. She uses what we believe to be informal, 
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everyday language to describe composition as the “sum of the parts.” We believe it to be 
informal rather than making the connection here that ‘summing’ is also an operation. Finally 
Therin makes the connection to composition of functions from teaching Algebra II and is trying 
to come to terms with this new idea. 

In the above excerpts, we see teachers engaging in mathematical discourse and thinking 
about mathematical abstractions in the context of transformations that they ostensibly already 
know. We believe that it is significant that these conversations do not take place in the context of 
school mathematics, but require moving beyond school mathematics and problematizing 
teachers’ mathematical understandings (Cobb & Bauersfeld, 1995). Although we are only 
claiming at this point that we have problematized the participants understanding, the teachers 
each claim new understandings of some kind—Carla a shift in thinking, Wendy an impact on her 
teaching, and Therin connections between algebra and geometry. 
Abstraction #2: Equivalence Relations 

Another example in which students had knowledge but not coherence was in the study of 
congruence. Teachers are almost universally familiar with the informal notion of congruence of 
polygons as polygons that have “same size, same shape,” and while this notion works for most of 
school geometry, it is not generative and does not easily generalize beyond the particular case of 
school geometry. It is possible to define congruence more formally using transformations: two 
polygons are congruent if there exists a rigid transformation that maps one onto the other. 
Intuitively this definition of congruence makes sense to the participants, but when asked to 
explore congruence more abstractly through the equivalence properties—reflexive, symmetric, 
and transitive—participants are challenged to reconcile their prior understandings with this new 
notion of congruence. As an example, consider the following posts in response to the task: 
 

 
Use the meaning of congruence from the transformation point of view to decide: 
a) If Shape 1 is congruent to Shape 2, is Shape 2 congruent to Shape 1? 
b) If every shape congruent to itself? 
c) If Shape 1 is congruent to Shape 2 and Shape 2 is congruent to Shape 3, is Shape 1 

congruent to Shape 3? 
 

Figure 1. Congruence Task 
 
Adam:  The definition of congruent: Two shapes are said to be congruent if one can be 

transformed into the other through isometry. Since, the definition clearly states two 
shapes, a single shape cannot be congruent to itself. …Yes, a = a, and 7 =7 and 
pi=pi, but those are values...not shapes. To say that a shape is equal to itself, seems 
silly to me. A shape is inherently discrete...from my perspective. So, to say it is 
equal to itself just seems improper. 

Carla:  Congruence, by definition, is similar but not the same. When explaining to my 
students the difference between “equal” and “congruent” I tell them that two 
congruent objects are so because their properties are the same, same lengths, angles, 
measurements, etc, but they are not equal because the two objects are still two 
different objects. They go by different names and in the real world two objects are 
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different because they both occupy their own space. Comparing an object to itself 
is, what I would think, crossing over from congruence to equivalence. 

Pearl:  Carla – [C]ongruence and equality…are not the same, but they are related. I know 
when I have done them with my classes, we use the two kind of interchangeably. 
Shapes or parts of shapes would be congruent, and the measures are equal. So for 
example, two angles are congruent if they have the same measure and conversely, if 
two angles have the same measure, then they are congruent. For my geometry 
classes, that has been an important part of proving different statements. 

Carla:  I agree with you completely. I am just not convinced that a shape is congruent to itself. 
…[The] history that I found also said that the words “equals” and “congruent” throughout 
the last 4 centuries has been interchangable in translations of Elements. This has basically 
reinforced that they really are the same. In all this searching I didn’t find anything that 
conclusively stated why we have the separate terms, but I would like to believe that there 
was at one time a reason. Why, if we specify different terms for equivalence in Geometry 
verses Algebra, don’t we have different terms for addition? Or other operations? 

In these posts we see evidence of the teachers’ struggling to make sense of the mathematics 
at hand and reconcile it with their current understandings. We see Adam relying on the definition 
of congruence “from a transformation point of view” and concluding that this definition implies 
that a shape cannot be congruent to itself, apparently neglecting the identity transformation 
(which he was familiar with in other contexts such as the real numbers under addition or 
multiplication). Interestingly, his post also makes clear the most problematic issue that 
participants have with this task: “a = a, and 7 =7 and pi=pi, but those are values...not shapes. To 
say that a shape is equal to itself, seems silly to me.”  

Looking beyond Carla’s informal and unfortunately mathematically incorrect use of the term 
similar, Carla expresses a similar sentiment as Adam, noting that the congruence has to do with 
the space the objects occupy. She is falling back on her intuitive knowledge rather than the 
mathematical definition of equivalence. As with many students the intuition comes from her first 
experience with equivalence, equality. Pearl shifts the conversation to how equality and 
congruence are really saying similar things, but apply to different kinds of things: “Shapes or 
parts of shapes would be congruent, and the measures are equal.” We believe that Pearl is using 
the term “measure” to indicate particular values a measureable quantities can take on—in other 
words, real numbers. She is however not demonstrating clarity as she states, “we use the two 
interchangeably.” We then see Carla still struggling with the different “kinds of equivalence” and 
posing a potentially significant question: “Why, if we specify different terms for equivalence in 
Geometry verses Algebra, don’t we have different terms for addition? Or other operations?” We 
do not have data to claim that Carla understands the significance of the question she is asking, 
but she is asking about what else she might know that is only an example of something bigger 
and seeking coherence through that bigger idea. Finally, Nora seems to have come to terms with 
the definition of congruence but is wondering how and when one would decide to use it. 

In these excerpts, we see teachers’ impoverished understandings of equivalence and the 
beginnings of a discussion that holds the potential for supporting teachers in moving towards 
more generative understandings. Their subjective, qualitative notion of equality and congruence 
as “some kind of sameness” works for particular cases/examples. However, understanding 
congruence as an equivalence relation supports teachers in helping their students connect aspects 
of geometry, algebra, functions, etc. 
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Discussion 
Above, we argued the importance of teachers’ coherent mathematical understandings. We 

have seen teachers willing and able to engage with the broad topics (transformations and 
congruence) at a limited level: given a particular transformation, they were able to perform that 
transformation. This activity was not problematic and they were willing and able to relate it to 
mathematics they already ‘know’ and teach. It is also clear that as the participants began to 
engage with transformations and equivalence at a higher, more connected level, they began to 
become less sure of their understandings. It is important to note that their confusion did not lie in 
the particular school mathematics ideas; rather it was in the mathematical connections between 
the school mathematics topics that the confusion became evident: What do you mean you can 
compose transformations? Equality and congruence are the same thing?  

At its most basic level, transformations and congruence are mathematical ideas to be taught, 
but we argue that the significance of these topics for teachers does not lie simply in teaching 
transformations or congruence. Both are examples of larger mathematical ideas—an 
abstraction—that it is evident the teachers were not consciously aware of. Transformations are 
functions that map  2 →  2. Congruence is an equivalence relation. While teachers are likely to 
have experience with transformations and congruence and may have some level of familiarity 
and experience with functions and equivalence relations, they are less likely to be aware of the 
various different ideas and contexts from which they are abstracted, how they are related, or the 
value of seeing the relatedness. It is this aspect of understanding—understandings of the ways in 
which a variety of ideas and contexts fit together—that makes one’s understandings coherent 
(Thompson, 2008).  

It is important to acknowledge that we cannot make claims that these experiences have 
supported our participants increasing their coherence in understandings of transformations, 
functions, congruence and equivalence—we do not have access to data that would allow us to 
make that claim (though we are currently involved in a study designed for that purpose). What 
we can say is that we have created an online system consisting of tasks and an interactional space 
within which mathematical abstractions of school mathematics ideas problematize teachers’ 
mathematical understandings and support legitimate mathematical engagement. Further, 
engagement in conversations about the mathematical abstractions of day-to-day school 
mathematics was able to focus on how the specific examples of the abstractions are related and, 
thus, holds the potential for participants to develop coherence among previously unconnected 
mathematical ideas the teachers are currently teaching. 
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Two independent research projects at a large Midwestern university used paper and pencil 

items to obtain information on different aspects of preservice teachers’ Mathematical Knowledge 
for Teaching. Through happenstance occurrence, several preservice teachers participated in 
both studies. This paper examines the responses of this subgroup to items from both projects and 
shows that a richer picture of students’ Mathematical Knowledge for Teaching is obtained when 
looking at students’ Mathematical Content Knowledge and Pedagogical Content Knowledge in 
tandem. 

This work has been made possible by the support of the Teachers for New Era (TNE) project funded by the 
Carnegie Corporation of New York (Dr. Robert Floden, PI) and the National Science Foundation's PIR-Project 
(award no. 0546164, Dr. Sandra Crespo, PI). 

 
One of the persistent issues in mathematics education is the preparation of qualified 

mathematics educators. A current trend in mathematics education has been one that attempts to 
describe and quantify types of knowledge required for mathematics teachers. Part of one 
framework was first proposed by Shulman (Shulman, 1986, 1987) and his colleagues (Wilson, 
Shulman, & Richert, 1987) which differentiated between content knowledge, pedagogical 
content knowledge, and curriculum. This framework has since been further defined for 
mathematics by Ball and others with their Mathematical Knowledge for Teaching framework 
(Ball, et al., 2005; Hill, Rowan, & Ball, 2005). A recent publication by Ball and others continues 
to refine and describe in greater detail these categories (Ball, Thames, & Phelps, 2008). 

Several research studies have used these frameworks to examine and quantify the 
mathematical knowledge exhibited by preservice teachers. While most of these projects attempt 
to describe one aspect of the complete framework for a certain population of preservice teachers, 
there has yet to be a study that attempts to describe multiple aspects of Mathematical Knowledge 
for Teaching for a set of preservice teachers within a population. Through a happenstance 
occurrence, two independent research projects at Michigan State University did just that by 
collecting responses from preservice teachers who participated in both studies. This paper 
examines what information can be gained about their Mathematical Knowledge for Teaching 
when their responses to these two different assessments are examined in tandem. 

 
  Literature Review/Framework 
In Shulman’s original article (1986), he outlines a shift in state teacher preparation 

requirements from one that was almost entirely content driven (with very little pedagogy) in the 
late 19th century, to one that focused heavily on knowledge of pedagogical issues (with little 
emphasis on knowledge subject matter content). Shulman calls for preparation of teachers that 
emphasize content knowledge, pedagogical content knowledge, and curricular knowledge. 
Content Knowledge is described in this article as more than just the knowledge of facts or 
content of a subject, it is also the knowledge of the underlying structure beneath those facts and 
content. Pedagogical Content Knowledge is described as almost a subset of content knowledge, a 
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specialized part of content knowledge. Here, pedagogical content knowledge is made up of not 
just the content, but knowledge of effective and different ways with which to teach that content. 
The last of Shulman’s categories is Curricular Knowledge. This type of knowledge is described 
as knowledge of the various resources available to teach the content, and knowledge of where the 
current content fits into the scope of the students’ educational program. 

Ball and colleagues have described a framework that refines and expands upon these original 
ideas (and subsequent works) proposed by Shulman and his contemporaries into something more 
descriptive of the subject of mathematics. Described as a framework that identifies the various 
aspects of Mathematical Knowledge for Teaching, this “egg” framework (see Figure 1) is split 
into two main categories of knowledge 
which are then further refined: subject 
matter knowledge, and pedagogical 
content knowledge. The subject matter 
knowledge category is split into Common 
Content Knowledge (CCK), Specialized 
Content Knowledge (SCK), and Horizon 
Content Knowledge. Common Content 
Knowledge (CCK) is described as 
“knowledge that is used in the work of  

 
 
 

teaching in ways in common with how it is used in many other professions or occupations that 
also use mathematics” (Hill, Ball, & Schilling, 2008, p. 377). In describing Specialized Content 
Knowledge (SCK) they refer to an earlier work by Ball which described SCK as “the 
mathematical knowledge that allows teachers to engage in particular teaching tasks, including 
how to accurately represent mathematical ideas, provide mathematical explanations for common 
rules and procedures, and examine and understand solution methods to problems (Ball, et al., 
2005)” (Hill, et al., 2008, pp. 377-378). Horizon Content Knowledge is described as knowledge 
of the mathematics as it relates to future classroom subjects. Here it is by knowing the 
mathematics that is forthcoming on the horizon, teachers can appropriately lay the groundwork 
with the subjects they are teaching now. It is noted that CCK, SCK and Horizon Content 
Knowledge require only the knowledge of mathematics, and no knowledge of students or 
teaching is required to have sufficient knowledge in these categories. The authors elaborate that 
the categories they have under Subject Matter Knowledge are most closely associated with 
Schulman’s original framework of Content Knowledge (though they argue that CCK is more 
directly related to Content Knowledge, than SCK). The pedagogical content knowledge category 
is split into Knowledge of Content and Students, Knowledge of Content and Teaching, and 
Knowledge of Curriculum. Knowledge of Content and Students (KCS) is described as “content 
knowledge intertwined with knowledge of how students think about, know, think about, or learn 
this particular content” (Hill, et al., 2008, p. 375). Knowledge of Content and Teaching (KCT) is 
described as knowledge of mathematics as used in the design of instruction. This can include 
sequencing of tasks for greater effect, or knowledge of what ideas to elaborate on, what to hold 

Figure 16. 
Mathematics 
Knowledge for  
teaching from Ball, 
Hill, and Bass (2005). 



Vol. 5  1362 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

for later, and when to pause for clarification. The descriptions used by Ball and colleagues for 
Knowledge of Content Curriculum and by Shulman for Curricular Knowledge are similar. 

The two research projects described below had different goals with the administration of 
their test items. Although not designed to map directly onto the Shulman, or Ball et al. 
frameworks, these frameworks do provide a lens with which to look at the tasks and the 
preservice teacher responses. As will be shown, it could be argued that the TNE test items 
attempt to capture more information on the subject matter knowledge of preservice teachers, 
whereas the PIR test items attempt to capture more information on the pedagogical content 
knowledge of preservice teachers. By examining the responses obtained in two research projects, 
we attempt to answer what Mathematical Knowledge for Teaching is exhibited by three 
preservice teachers in both studies. 

 
  Methods 
At Michigan State University, two separate research projects are looking at preservice 

elementary school teachers and their mathematics teaching by using paper and pencil item 
administrations. These two projects have items that share some of the same question stems, 
though the focus of the questions is different for the projects. These research projects 
administered their test items over several years and as such, there are some students who 
participated in both research projects. This paper looks at some of these students, and the 
mathematical content that they used in answering these “common” questions.  
Project Overviews 

MSU is one of the universities participating in the multiple-institution project Teachers for a 
New Era (TNE) funded by the Carnegie Corporation of New York. As part of the work going on 
at MSU in this project, the mathematics education faculty is performing a self-study of the 
mathematics in their elementary education program. The purpose of this study is to analyze what 
mathematical content knowledge preservice teachers learn as part of their content classes, and 
what is retained through the duration of the program. For this paper, we will use responses from 
the administration of the TNE items that occurred at the end of the preservice teachers’ math 
content class that focused on number and operation. At this point, the preservice teachers had not 
yet taken their math methods course as they were generally at the beginning of their program 
(freshman and sophomores). This data set was collected in 2005 and 2006. 

The PIR project is a NSF funded project looking at the enacted practice of mathematics 
teaching for preservice and in-service teachers of the MSU elementary education program. The 
larger research question involves the study of the practices of posing, interpreting, and 
responding (P-I-R) of current students and alumni of the MSU elementary education program. 
For this paper, we will use responses from the administration of the PIR items that occurred the 
semester before students enrolled in their mathematics methods classes (but several years after 
their math content courses). Preservice teachers in these administrations were generally near the 
end of their program (juniors and seniors). This data set was collected in 2008. 
Comparing Tasks 

Many items of the TNE tasks and PIR tasks shared the same stem or set-up, but asked 
students different questions from this common starting point. Here we describe the general 
nature of the questions used in this paper. 

All of the TNE tasks listed ask preservice teachers to assess the validity of students’ 
alternative methods (is the solution method correct, is the method generalizable, will it work for 
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other numbers, etc.) or to come up with word problems that accurately described a given 
mathematical situation. Here, the items tend to be asking about the Mathematical Content 
Knowledge part of MKT. These questions attempt to have the preservice teachers understand 
student solutions (described as SCK). This paper uses item W1 from the TNE test administration 
(see Figure 2). An alternate subtraction algorithm is presented to the preservice teacher and two 
questions are asked. The first question asks if this method is generalizable. The second question 
asks the preservice teacher how this hypothetical student would use this method on a new 
problem. Here we can see this question is trying to assess the preservice teachers’ SCK regarding 
subtraction (do they understand the alternative algorithm well enough to use it to solve another 
problem). 

Within the PIR tasks, these questions have a general theme of the posing, interpreting, and 
responding that preservice teachers imagine themselves doing when presented with these 
situations. This paper uses items 2(a) and 2(b) from the PIR administration (see Figure 3). The 
first question asks preservice teachers what they imagine saying and doing with their class when 
receiving puzzling looks after they pose a task. This question allows for a multitude of different 
responses from preservice teachers as they are left to determine exactly why students may be 
puzzled. This confusion could stem from students lack of content knowledge on subtraction, to 
not knowing where to begin with different ways. The responses here could vary from MCK type 
responses (CCK or SCK) to more PCK responses to deal with the student confusion (KCS or 
KCT). The second part of the question states that a student has come up with a new strategy and 
asks the preservice teacher to describe what they imagine saying and doing. Here again the 
responses can take on many different forms, from validating or invalidating the method, offering 
congratulations for unique thinking, or even using the method to connect to the standard 
algorithm. Here again we can see that these responses could map onto the MKT framework in a 
variety of different ways. 

 
 
 
 

Figuee 2. TNE item W1.   Figure 3. PIR items 2(a) &  2(b). 
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The responses of three preservice teachers (Dean, Becky, and Lisa – all pseudonyms) who 

had completed both TNE and PIR items were chosen for analysis. These preservice teachers 
were chosen in particular because they all gave identical responses to the TNE item and very 
different responses to the PIR item. Below is a table of the responses of the preservice teachers 
(see Table 1). 
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Preservice 
Teacher 

Response to 
TNE Item W1 

Response to 
PIR Item 2(a) 

Response to 
PIR Item 2(b) 

Dean 

(a) Yes 
 

(b)                 
423 

-167 
-4 

-40 
300 
256 

1) Ask the students if they can make the 
problem into two problems 

37        27 
-10         -9 
27        18 

 
2) Ask the students, what plus 19 equals 37? 

19 + 18 = 37 
 
3) Use chips to show the two methods 

• I would ask the student to re-write the 
problem and show each step they took to get 
to their answer. 
 

• I would want the students to learn the 
importance of showing their work and how 
they can use it to retrace their steps in a 
problem 

Becky 

(a) Yes 
 

(b)                 
423 

-167 
-4 

-40 
300 
256 

1: Draw a picture (visual is the best way) 

 
2: Cannot take nine from seven –  
3: Take 10  Pull over to ones 

And take 9 from 17. 
 

Or     23  17 
-1   9 
1   8 

• Slip into two different columns 

• I do not like this way – Math for higher on is 
going to be a lot harder if they learn this now. 

Lisa 

(a) Yes 
 

(b)                 
423 

-167 
-4 

-40 
300 
256 

I would ask the students where we start, in the 
ones column. We can't take 9 away from 7 so we 
need to borrow from the tens column. Cross of the 3 
and make it a 2 since we borrowed one for the 7. Put 
a 1 in front of the 7 to make it 17. 17-9=8. Then we 
do the tens column. 2-1=1 so our answer is 18. 

This strategy can work. The student knows 
that we start in the ones column. 7-9= -2. The tens 
column is also correct, as 30-10=20. Now what 
the student did was combine -2 and 20, to get 18. 
We got the same answer. I would want to let the 
class know that there is more than one way to 
solve a problem, and it is important to remember 
that subtraction of multiple digit numbers involves 
multiple subtractions, depending on how many 
places are in the number. 
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Table 1. Student Responses 
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  Results 
TNE Item W1 

When responding to this TNE item Dean, Becky, and Lisa all replied with identical answers. 
Despite the limited amount of response material due to this item not having a written response 
section, several pieces of information about these preservice teachers can be extrapolated. All 
three preservice teachers examined the work shown by the hypothetical student, and were able to 
uncover enough of the student’s method to solve an additional problem with the same method. In 
addition to this, all three preservice teachers circled the response that our hypothetical students’ 
method would work for any two whole numbers. This may have been due to guessing, but based 
on the preservice teachers correctly applying this method to a new problem, there is reason to 
believe that Dean, Becky and Lisa were each able to figure out that this method is indeed 
generalizeable to all whole numbers. Here, there is some evidence that these three preservice 
teachers have some Specialized Content Knowledge (SCK). It seems reasonable to say that based 
on the responses to the TNE items, Dean, Lisa and Becky have in their repertoire an ability to 
analyze this method of subtraction to determine its generalizability, and an ability to take this 
non-standard subtraction method and apply it to a new problem. Given this, it seems reasonable 
to assume that these skills could emerge when the preservice teachers were asked to respond to 
the same subtraction method in a teaching scenario. However, not only do these skills not 
emerge in their responses to the teaching scenario, three very different responses emerge. 
Dean 

Dean’s response to the two PIR items offer some insight into the Pedagogical Content 
Knowledge he brings to these related items. When asked to describe what he imagined saying 
and doing after his students looked puzzled when he told them to explore different ways of 
solving 37-19, Dean suggests three things he might do with his class: breaking the problem into 
smaller steps, making the subtraction problem into an addition problem, and using 
manipulatives. All three of these proposed actions display some Knowledge of Content and 
Students (KCS). Dean appears to be addressing the student confusion by suggesting alternate 
ways to present the problem that would make sense to students, or be similar to how students 
would think about a problem. In the second half of this task, the main theme of Dean’s response 
to this question is to emphasize that students need to show their work. What Dean’s answer does 
not contain here is how he might use this student’s work productively in a classroom. From 
Dean’s response to the TNE item, we know that at one point in time, Dean was able to circle the 
response that this method was generalizable and he showed that he was able to understand the 
method enough to apply it to a new problem. However, in talking about the same solution 
method to students, Dean only reminds students to show their work. This may be an example of 
further KCS as Dean believes that students need to show their work in order to be able to retrace 
their steps, which will lead to more opportunities to learn. 
Becky 

Becky’s response to the first question also contains three items. The three things that Becky 
imagines saying and doing include drawing a visual representation of the tens and ones of the 
subtraction problem, mentioning that you cannot take nine away from seven, splitting the 
subtraction problem into two columns, and performing the traditional subtraction algorithm on 
the problem. What is interesting is that Becky notes that her first item is actually the best as 
“visual is the best way”. This response was given at the end of her math content class and before 
she was enrolled in any math methods classes for her program so it is not apparent where Becky 
has come to know this claim. Regardless of where this claim originated, Becky has incorporated 
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it into her KCS as she believes that visual ways of representing content will be the ways that 
students can best engage with. Additional pedagogical knowledge appears again in Becky’s 
response to the second half of the PIR task. When asked how she would respond to the student 
and her classroom when someone presented the non-standard method, Becky writes, “I do not 
like this way – Math for higher on is going to be a lot harder if they learn this now.” This claim 
appears to fall under Knowledge of Content and Curriculum in saying that future mathematics 
learning will be hampered by learning this method now. Regardless of whether one agrees with 
the assessments Becky has made, it is clear that Becky is displaying some of her thoughts about 
Pedagogical Content Knowledge in her responses to these items. 
Lisa 

In responding to the confused looks of her students as described in the first PIR task, Lisa 
responds by walking the students through the traditional subtraction algorithm. The prompt in the 
question called for the teacher to ask her students to explore different ways of solving 
subtraction. It is not clear if Lisa is reforming the question to be about finding one way of 
solving a subtraction problem, or if her step by step description of this method is supposed to 
serve as a launching point for her students to then explore other methods. Regardless, it appears 
that walking the students through the traditional subtraction algorithm is important for Lisa for it 
will serve either as instruction of the traditional subtraction algorithm or as a review of the 
algorithm that will serve as a launching point into further explorations and understanding of 
subtracting. There appears to be some KCS in that Lisa believes this explanation will end the 
student confusion and they will come to understand subtraction, as no other moves are 
mentioned. In the next part of the PIR items, Lisa states that she would walk the students through 
the method used to solve this problem, remind students that there are many ways to solve a 
problem, and remind students that sometimes a single subtraction problem actually requires 
several subtractions. Here what we notice is that in both PIR responses, Lisa walks students 
through the steps of two different methods for her class. This may be due to thinking this is how 
math instruction is performed, or it may be due to thinking that this is the most effective way that 
students learn mathematics (possibly evidence of KCS). This is a pedagogical choice that Lisa is 
making and is yet another way that the MKT of one preservice teacher can be examined through 
the moves they make in a classroom. 
 

Discussion 
Mathematical Knowledge for Teaching is a way of describing the knowledge that teachers 

should have in order to be effective teachers of mathematics. This framework is divided into two 
parts: one part dealing with Mathematical Content Knowledge, and the other part dealing with 
Pedagogical Content Knowledge. In this study, we looked at a sample of responses from three 
preservice teachers in an elementary education program. These preservice teachers participated 
in two research projects that had items that used the same stems. One research project had items 
that more closely mapped onto the MCK part of MKT while the other research project had items 
that seemed to map onto PCK. It was by looking at these items in tandem that we were able to 
obtain a better understanding of the Mathematical Knowledge for Teaching that each of these 
students possessed. This study looked at only one item that these two research projects shared. 
Even more information could be obtained about these students if additional items were analyzed. 

In going forward, we recognize that this method of using both MCK and PCK items provides 
a much broader and deeper picture about students MKT than either can do alone. Furthermore, 
by trying to differentiate, distinguish and study the individual categories of MKT, we loose 
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important information on how these categories interact with each other. This is where much 
information of MKT is located. While this ad hoc study found itself in a unique position of being 
able to study not only similar test items, but similar students, it provides a unique insight into 
what information can be gained if tests and surveys are intentionally designed to capture multiple 
categories at once. Here we state again, the preservice teacher responses used in this paper were 
obtained after their math content classes, but before their math methods classes. We expect that a 
different, yet just as rich, picture would be obtained if preservice teachers were surveyed after 
their math methods courses. Furthermore, by obtaining this information about preservice 
teachers both before and after their methods courses, a survey such as the one used in this study 
could provide institutions with a rich body of information as to how their methods courses are 
affecting their students’ mathematics knowledge for teaching. 

There has been much research into the different categories of MKT that Ball and others have 
described. And while there continues to be opportunities for further explorations into these 
individual categories, there is also a need to fortify the connections between these categories. 
The method used in this research is one way that we can start putting the pieces of this MKT egg 
back together so that we can construct a clearer picture of the knowledge that teachers of 
mathematics are equipped with and how they can use it in their classroom.  
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Twelve middle grades mathematics teachers were given division problems in a professional 
development program designed to help teachers understand rational numbers. This paper 
analyzes how teachers reorganized their measurement interpretation of fraction division by 
operating on conceptual units. Past studies have documented that many teachers are not able to 
reason about fraction division in terms of quantities. The present study extends these past studies 
by examining teachers’ capacities to reason in a sequence of fraction division situations in which 
the mathematical relationship between the dividend and divisor became increasingly complex.  

 
Background 

The National Council of Teachers of Mathematics’ standards for teaching and learning 
(NCTM, 2000) require teachers to have a richer understanding of mathematics than traditionally 
required. One topic that is particularly difficult for teachers is division of fractions. For instance, 
Ball (1990) asked U.S elementary and secondary prospective teachers to contextualize the 

problem 2
1

4
31 ÷

. Her results revealed that teachers could not generate appropriate word 
problems or situations even though most of them could calculate a solution using the ‘invert and 
multiply’ method. She found that teachers were likely to confound division by a half with 
division by 2 or multiplication by a half when they tried to contextualize the problem. Simon 
(1993) adapted the problem from Ball’s study and asked prospective elementary teachers to write 

a story problem for . Twenty-three out of 33 teachers could not create an appropriate 
problem. Twelve of those 23 teachers used ‘invert and multiply’ and represented the problem as 
multiplication thereby creating a problem situation for multiplication rather than maintaining the 
fraction division. Borko et al. (1992) also examined prospective teachers’ knowledge as 
exhibited during their student teaching and reported the case study of a middle school teacher, 
Ms. Daniels. When asked by a child to explain why the invert-and-multiply algorithm worked, 
Ms. Daniels could not clearly explain fraction division and instead showed fraction 
multiplication, despite having completed a fair number of mathematics courses in her 
undergraduate program and being able to compute accurate answers with the invert and multiply 
method. In her study of 23 U.S. teachers and 72 Chinese teachers, Ma (1999) introduced the term 
knowledge package, which refers to pieces of knowledge consisting of numerous subtopics that 
are related to one another that support more advanced learning. For fraction division, she 
suggested that teachers’ knowledge packages should include whole number multiplication, the 
concept of division, the concept of division as inverse of multiplication, the meaning of 
multiplication with fractions, and the concept of unit. Ma’s study revealed that pieces of the ideal 
teacher knowledge package are relatively weak for U.S teachers.  

Although previous studies (e.g., Ball, 1990; Borko, 1992; Simon, 1993; Ma, 1999) have 
stressed errors and constraints on teachers’ knowledge of fraction division, they have not 
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considered teachers’ capacities to reason in a sequence of fraction division situations. Further, 
even though studies have revealed teachers’ knowledge in detail, they have not examined 
teachers’ reasoning about fractional quantities in terms of conceptual units, although several 
research programs have investigated children’s reasoning with conceptual units in the context of 
fractions. In this paper, we focus on one approach for supporting teachers’ development of 
mathematical knowledge for teaching fraction division by emphasizing the relationship between 
the units and operations associated with the measurement conception of fraction division. 
Conceptual analysis of teachers’ knowledge at this grain size allows us to develop a stronger 
understanding of teachers’ capacities to reason about fraction division in detail.  

 
Theoretical Perspectives 

The theoretical framework used for our analysis of twelve teachers’ reasoning with drawn 
quantities in solving fraction division problems draws from the literature on children’s 
development of conceptual understanding of fractions. We draw from these ideas because we 
noted that the ideas and operations documented with students appeared in our teachers’ 
reasoning. In the literature, the ideas of iterating and partitioning have been determined to be 
fundamental for fraction knowledge development (e.g., Piaget, Inhelder, & Szeminska, 1957; 
Olive, 1999; Olive & Steffe, 2002; Steffe, 2002, 2004; Tzur, 1999, 2000, 2004). This is the 
notion that a unit whole can be divided into any number of pieces (partitioning) and that any one 
of these pieces may be iterated to reconstruct the unit. Another critical operation we considered 
was the unit-segmenting scheme for division in a whole number context (Steffe, 1992). This 
entails the operation of segmenting the dividend by the divisor. In his teaching experiment, 
Steffe (1992) observed that a child needed to reason with at least two composite units in the unit 
segmenting scheme: one composite unit to be segmented and the other composite unit to be used 
in segmenting. For example, consider how many times a child would count if dividing a pile of 
fifteen books by three. That child would use three as a segmenting unit to divide composite unit 
fifteen. It is likely that even in cases where the child was using the unit-segmenting scheme in 
this content, that child may have to reorganize his/her unit-segmenting operations to approach 
more complex problems.  

Olive (2000) defined common partitioning fractional scheme to refer to the child’s ability to 
coordinate and compare his two number sequences for two composite units until a common 
number was found. He also stated that the child who had common partitioning fractional 
schemes could keep track of how many of each composite he had used to get to the common 
multiple of both composite units. In other words, it requires units-coordination at three levels that 
is a coordination of two iterable composite units. To illustrate, when the child was asked to 
partition a bar that would allow him to pull out both one-third and one-fifth of the same bar, his 
procedure was to count by 3s and 5s until he found a common number in the two sequences. The 
common partitioning fractional scheme was a building block for the children’s construction of 
measurement fractional scheme. With fractions as measurement units, division of fractions 
becomes meaningful in that children can now answer questions like “How many thirds are in 
two-ninths?” when children have constructed fractions as measurement units, they could then 
find a co-measurement unit for the two fractions by constructing any fraction from any other.  

A co-measurement unit is defined as a measurement unit for commensurable segments, that 
is segments that can be divided by a common unit without remainder. For example, one child 
could make one-ninth of a unit stick using one-twelfth of the stick by finding one-thirty sixth as a 
co-measurement unit for both one-ninth and one-twelfth. In addition to the common partitioning 
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operation children used to find the common partition for two fractions, cross-partitioning using 
area model also emerged in Olive’s teaching experiment. For instance, the children used the 

cross-partitioning operation to solve 
� 

1
3

×
1
5

 by partitioning a bar vertically into three parts and 

horizontally into five parts and get 15 of one-fifteenth automatically. In his observations of 
Nathan, Olive (2000) found the use of cross-partitioning operations in a fraction multiplication 
context differed from the common partitioning operation in that the former provides for a 
simultaneous repartitioning of each part of an existing partition without having to insert a 
partition into each of the individual parts, and it is a fundamental operation to produce fraction 
composition scheme (Steffe, 2004) which is multiplying scheme for fractions. While the 
Fractions Project’s (Olive, 1999; Olive & Steffe, 2002; Steffe, 2002, 2004; Tzur, 1999, 2000, 
2004) research on the conceptual analysis of children’s construction of fractional schemes made 
important contributions to the field of knowledge of fractions, the studies were limited in that 
they did not follow the students beyond the development of fraction multiplication schemes.  

In the fraction division, reasoning with conceptual units became increasingly complex as 
mathematical relationship between the dividend and divisor changes. In this paper, we begin the 
work of identifying the fraction schemes teachers used to reason about fraction division from a 
measurement (quotative) perspective. We first considered a simple division problem in which the 
dividend was evenly divisible by the divisor. In this situation, teachers simply used a 
measurement unit and segmented the dividend into the groups of divisors. In the second case, the 
dividend did not clearly segment by the divisor, leaving a remainder to be considered. This 
required teachers to bring forth the conception of the referent unit in that it was plausible to 
quantify the remaining part in terms of one by conflating the referent unit. We say that teachers 
can attend to the referent unit when they can keep track of the referent whole. The third case 
involved a divisor larger than the dividend. In this case, teachers reorganized their 
understandings to move toward conceptualizing the multiplicative relationship between the 
divisor and the dividend.  

 
Research Questions 

1. What were the primary operations and units that the teachers used when reasoning about 
the fraction division problems? 

2. How did teachers modify or reorganize their measurement fraction conception when 
faced with increasingly complex problem situations?  

 
Method 

The data reported here were collected as part of the larger NSF-funded Does it Work?: 
Building Methods for Understanding Effects of Professional Development (DiW) project. As part 
of the DiW research effort, a professional development course called InterMath – Rational 
Numbers (IM) was offered to middle grades teachers in a large, urban district. The course 
provided teachers with opportunities to develop their content knowledge of multiplication and 
division of fractions and decimals and to explore direct and inverse proportions by engaging 
them in solving technology-enhanced, open-ended investigations and by exploring a variety of 
drawn representations. To support the course goal of raising fluency in the use of visual 
representations, teachers used a variety of software packages including Fraction Bars (Orrill, 
undated). The course met three-hours per night, once per week for 14 weeks. All meetings were 
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videotaped using two cameras – one to capture the participants’ facial expressions, written work 
and hand gestures, and the other to capture the instructor’s teaching. These two sources were 
then mixed to create a restored view of the event (Hall, 2000).  

A single class meeting focused on measurement fraction division was considered for this 
analysis. The first round of analysis involved taking memos of the trends that emerged from the 
data in the ongoing observation of the lessons as they occurred. Then a retrospective second 
analysis was conducted after all IM data had been collected. The purpose of the retrospective 
analysis was to understand teachers’ ways of operating mathematically. In qualitative research, 
notions of reliability, validity, or viability hinge on the quality of thinking and internal 
consistency of the witness-researcher, since a researcher doing qualitative research is the 
research instrument (cf. Peshkin, 1988; Richardson, 2000; Weis & Fine, 2000). However von 
Glasersfeld (1995) emphasized the role others play in developing one’s own thoughts and 
characteristics. He suggested that intersubjective knowledge is the most reliable knowledge in 
experiential reality. Hence the researchers took advice and shared their thoughts with the teacher-
researcher and another witness-researcher of the IM class. 

 
Results 

We considered the teachers’ measurement fraction division knowledge across three different 
types of division problems. The first involves a dividend that can be clearly measured out by the 
divisor, the second is when there is the remainder as a result of measuring out the dividend by 
the divisor, and finally when divisor is larger than dividend. By providing teachers with tasks 
and drawing representations that motivated them to reason with quantities rather than to rely on 
calculation, we could understand teachers’ thinking in detail.  
When the Dividend Clearly Measures Out by the Divisor 

This is the case when there is no remainder in fraction division like 2 ÷ 
� 

1
4

. The instructor 

provided teachers with the task that was comprised of various fraction division expressions such 

as 2 ÷ 3, 2 ÷ 
� 

1
4

, 2 ÷ 
� 

3
4

, and 
� 

2
3

÷
3
4

.  Teachers were asked to find the quotients for each of the 

expressions without using an algorithm. Moreover the instructor encouraged teachers to use 
various drawn representations such as area or number line model. When teachers were asked to 

solve 2÷ 
� 

1
4

 using drawing representations, most teachers used one-fourth as a measurement unit 

and segmented the composite unit 2 into 8 parts of one-fourth, and successfully stated that the 
answer was 8 because 8 groups of one-fourth fit into 2. Even though most teachers derived the 
answer 8 using measurement division concepts, teachers’ strategies were different in that some 
teachers repeatedly subtracted one-fourth from 2 to get 8 whereas others thought of the problem 
in terms of how many groups of one-fourth formed 2. Note that the latter method does not imply 
multiplicative reasoning because we are not clear that the teachers were aware of the 
multiplicative relationship between the two fractional quantities, a dividend and a divisor, rather 
than finding the numbers of divisors that fit into the dividend.  
When the Dividend Does Not Clearly Measure Out by the Divisor 

In a problem such as 
� 

2 ÷
3
4

 there is a remainder in the result of measuring out the divided by 

the divisor. Although our participants did not attend to the referent unit for the first type of 
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fraction division problem, the referent unit concept played a key role here. For instance, one 
teacher drew two rectangles and divided each rectangle into fourths, then circled three of each of 

the fourths in each rectangle, and said 
� 

2 1
2

 was the answer because there were 
� 

2 1
2

 of the three-

fourths fit into 2 wholes (see Figure 1).  
 
 
 
 
 
 
 

Figure 1. A teacher’s representation of 
� 

2 ÷
3
4

 using area model and her initial answer 
� 

2 1
2

. 

She made this error at first because she was not attending to the referent unit of the remaining 
two-fourths that was left after she measured out three-fourths twice. However when the 
instructor asked her to talk through her reasoning, the teacher reflected upon that reasoning to 
determine that the remaining two fourths was two-thirds of three-fourths not two-fourths of one 

whole. So she changed her answer to 
� 

2 2
3

, which was then correct. In other words, she 

determined the dividend 2 could be divided into 
� 

2 2
3

 groups of three-fourths.  

Similar issues arose in the whole group discussion as the teachers were considering how a 
number line could be used to solve this problem. In the whole class discussion, the teachers 

suggested 
� 

2 1
2

 but did not recognize that their answer was incorrect until one teacher suggested 

using the referent unit concept. Teachers’ attention to the referent unit was not clear until we 
observed teachers solving division problems in which the divisor cannot evenly divide the 
dividend. In the first type of problem, teachers did not have to attend to the referent unit because 
they could easily figure out the number of divisors that fit into the dividend if they just chose the 
divisor as the measurement unit. However when teachers were given a situation in which they 
had to reason with the remainder from fraction division, they needed more than the divisor as 
their measurement unit. They also needed to attend to the referent unit.  
When the Divisor is Larger than the Dividend 

For people who rely on measurement conceptions of division, problems in which the divisor 
is larger than the dividend are often problematic because the fractional quantity being measured 

is smaller than the dividend, leading to an awkward conceptualization. For example, in 
� 

2
3

÷
3
4

, 

the question being asked from a measurement perspective is how many three-fourths are in two-
thirds. In IM, the instructor chose two teachers to explain how they used a number line model 

and an area model to represent 
� 

2
3

÷
3
4

. The teacher who used the number line model drew his 

model on a flipchart as he explained his approach. When he tried to use three-fourths as a 
measurement unit to find the solution, he faced a perturbation because the divisor was larger than 
the dividend. He was stated, “you can’t quite get three-fourths into two-thirds.” He continued, 
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“for fraction division, we ask ourselves question like how many three-fourths we can put into 
two-thirds.” We can infer from his statements that his initial conception about measurement 
division relied on finding the numbers of divisors in the dividend. In order to find how many 
three-fourths go into two-thirds, he first decided to find the least common denominator (his term) 
of three and four. He used one-twelfth as a co-measurement unit for two-thirds and three-fourths, 

and used 
� 

9
12

 as a commensurate fraction for 
� 

3
4

 and 
� 

8
12

 for 
� 

2
3

. He drew a number line and 

divided it into three parts, then subdivided each third into another thirds, using the common 

partitioning operation. Then, he denoted each 
� 

1
12

 segment from 0 to 
� 

9
12

 (See Figure 2). He said 

that 
� 

8
12

, which was a commensurate fraction of 
� 

2
3

, was 
� 

8
9

 of 
� 

9
12

, so
� 

2
3

÷
3
4

 was
� 

8
9

. 

 
 
 
 
 
 
 
 
 

Figure 2. The teacher’s representation of 
� 

2
3

÷
3
4

 using a number line. 

Even though he used the common partitioning operation and came up with two 
commensurate fractions, his perturbation was not resolved because he still could not measure out 

� 

8
12

 by 
� 

9
12

. He needed to use a different approach than the one with which he started. At least in 

this context, his initial conception of measurement division was modified into a more efficient 

one as he attended to the multiplicative relationship between the two quantities 
� 

8
12

 and 
� 

9
12

 

instead of looking for the number of divisors that fit into the dividend. In other words,
� 

8
12

 was 

now for him could be reinterpreted as 
� 

8
9

 of 
� 

9
12

, and generalizing his measurement division 

conception in such a way was powerful in that he was not confined by the quantities of dividend 
and divisor. His attention to the multiplicative relationship between two quantities was novel 
considering his initial conceptions about fraction division and the comment that he made “you 
can’t quite get three-fourths into eight-ninths.” The teacher’s clear attention to the referent unit 
nine-twelfths was another knowledge element that supported his reasoning with this problem.   

In contrast to the teacher above who used common partitioning operation with a number line 
model, other teachers in the class relied on cross partitioning in an area model to reason about 
this problem. This led them to cut the whole into 12 pieces by partitioning it into thirds one way 
and fourths the other. Then, the teachers counted the number of rectangles that represented two-
thirds of the whole and the number of rectangles that represented three-fourths of the whole to 
determine that the three-fourths was 8 blocks and two-thirds was 9 blocks (‘block’ was the 
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teachers’ to describe the smaller rectangles created by partitioning the area model). The teachers 

did not discuss the fact that those blocks were 
� 

2
3

 or 
� 

3
4

 of 
� 

12
12

, not 
� 

2
3

 or 
� 

3
4

 of 12. One teacher 

explicitly stated that they needed to find “how many 9 blocks fit into 8 blocks?” and “it’s eight-
ninths”. The teachers began to use cross partitioning in the new situation to acquire a co-
measurement unit for two-thirds and three-fourths where the denominators of two fractions were 
relatively prime to each other. We assert this was a reorganization of their conception of 
measurement fraction division. However, computing the quotient eight-ninths without attending 
to the referent unit of both the two-thirds and three-fourths is problematic in classroom settings 
because students may reinterpret the problem to be 8 ÷ 9. We worry that the teachers, in our 
case, had moved away from their consideration of the referent whole, which was 1 (12/12) at the 
time. While this was a shortcut for the teachers, such shifting may interfere children’s learning.  

In summary, we found that some teachers modified or reorganized their initial conception of 
measurement fraction division conception, which began as finding the number of pieces of the 
size of the divisor that fit into the dividend. They moved toward using more efficient strategies 
by incorporating more sophisticated operations and conceptual units. While we do not know 
whether such modifications or reorganizations were permanent, they were relatively new ways of 
thinking about measurement fraction division for these teachers as they considered the 
relationship between the divisor and the dividend in increasingly complex situations.  
 

Discussion 
Although past studies have documented that teachers lack sufficient fraction knowledge, our 

results suggest that teachers can reorganize and generalize operations and concepts that they 
have when provided with a professional learning experience in which they can reason in terms of 
drawn quantities. We observed that teachers’ operations and conceptual units necessary for 
reasoning with the situation where no remainder was left for fraction division did not necessarily 
transfer to fraction division with a remainder. Teachers needed to incorporate strong referent unit 
concept in addition to their use of the measurement unit in order to quantify the remainder in 
terms of the correct referent unit. Moreover, teachers relied on more operations and conceptual 
units such as common partitioning, cross-partitioning, co-measurement unit, commensurate 
fraction, and multiplicative reasoning when the divisor was larger than the dividend.  

Most studies have not looked at teachers’ knowledge any closer than simply saying that 
teachers’ reasoning about fraction measurement division is insufficient. Hence, the idea of 
examining measurement division more closely using tasks of gradated difficulty as well as 
understanding where teachers are more and less competent at reasoning about fraction division, 
and why, in terms of close analysis of operating on conceptual units, is a contribution to the field 
of mathematics education. This study is only a beginning step toward that understanding. 

Note that this study considers only twelve teachers and that we make no claims of the 
generalizability of the patterns of reasoning observed. We certainly believe that teachers may 
follow a variety of paths in learning to reason about these concepts. In this study, we considered 
only those ways of reasoning that emerged from the participants. By building on understanding 
of teachers’ mathematical concepts and operations in the ways illustrated here, we propose that a 
rich understanding of teachers’ understandings could be developed which could be used as the 
foundation for developing stronger professional learning opportunities for teachers. 
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This study examined the application of a conceptual framework for learning new conceptions to 
the design and use of tasks/prompts that can lead students to construct multiplicative double 
counting (mDC) – a scheme underlying the development of multiplicative reasoning. Within the 
context of a teaching experiment with fourteen 4th-5th graders, we analyze the teacher-
researcher’s work with one student, Megan, as she progressed from having no such conception 
to the participatory and then anticipatory stage of mDC. Our analysis demonstrates how tasks 
can (a) draw on available conceptions and (b) be designed to engender the intended learning via 
orientation of reflective processes. 
 

Introduction 
How might tasks that promote conceptual understanding of multiplicative operations be 

designed and implemented based on students’ available conceptions? In this study we addressed 
this critical pedagogical problem, which is consistent with the growing interest of mathematics 
educators in the role tasks play in students’ learning of mathematics (Watson & Mason, 1998, 
2007; Watson & Sullivan, 2008; Zaslavsky, 2007). In particular, we examined the application of 
Tzur and Simon’s (2004) stage distinction (see below) to the process of instructional task design. 
This application contributes to the recent focus on task use, because it is rooted in a framework 
that explicitly links learning of new (to the learner) conceptions with interventions that can 
promote such learning. Thus, we applied the stage distinction, reflexively, to both the analysis of 
students’ available conceptions and the tasks used for transforming these conceptions into 
intended, more advanced mathematical ideas.  

We chose the difficult-to-grasp domain of multiplicative reasoning because of the central role 
it plays in empowering students’ mathematics (e.g., algebra preparedness, see Confrey & Harel, 
1994). We believe that inadequate conceptualization in this domain is one key cause for the ever-
growing gaps among students during the upper elementary, middle, and early high school years. 
Consequently, this study focused on the commencement of multiplicative double counting 
(mDC, see details below), a milestone mental operation that constitutes a child’s transition from 
a unitary counting stage to a binary counting stage (Vergnaud, 1994). Our central thesis is that 
the stage distinction, and the reflection on activity-effect relationship (Simon, Tzur, Heinz, & 
Kinzel, 2004) framework in which it is rooted, provide useful tools for creating and adjusting 
tasks/prompts conducive for nurturing mDC at a level necessary for students to independently 
carry out cross-context problem solving processes proper to a situation at hand. 

 
Conceptual Framework 

In this section, we first briefly describe the general and content-specific constructs that 
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guided this study, and then delineate how they were used to design a set of tasks/prompts for 
teaching mDC. The general constructs constitute the reflection on activity-effect relationship 
(Ref*AER) framework (Simon et al., 2004), itself an elaboration of Piaget’s (1985) and von 
Glasersfeld’s (1995) scheme-based theories. Ref*AER is the postulated mechanism by which the 
human mind forms novel conceptions. It commences with the learner’s assimilation of a problem 
situation into her available conceptions, which set her goal and trigger the activities (usually an 
activity sequence) that the mind and body carry out to accomplish the goal. The learner’s goal 
then regulates, from within the mental system, the progress of her activity sequence and her 
noticing of effects that this activity brings forth. Through two types of reflection, in the form of 
brain-based comparisons, the learner first relates the newly noticed effects with the activity and 
later with the situation in which she should anticipate such an activity-effect relationship (AER). 
Type-I reflection consists of comparison between the learner’s goal and the actual effect of her 
activity sequence; Type-II reflection consists of comparison across records of experience in 
which the learner invariantly uses AER compounds for solving what then become similar 
problem situations for the learner. A novel anticipation of AER is formed via two stages (Tzur & 
Simon, 2004). In the first, participatory stage, the learner forms a provisional anticipation of 
AER that she cannot access directly from her available schemes. Rather, this anticipation can 
only be retrieved if the learner is somehow prompted for the activity, which generates the effect 
and hence the AER compound. In the second, anticipatory stage, the learner forms a robust AER 
that she can independently and spontaneously call up, use, and transfer to new situations. The 
anticipation encapsulated in the AER of both stages is the same; they differ in the learner’s access 
to that anticipation. 

The content-specific constructs are rooted in the work of Steffe et al. on children’s 
construction of number schemes, particularly of numerical composite units (CU) through mental 
activities of iterating the unit of one (1’s, see Steffe & Cobb, 1988; Steffe & von Glasersfeld, 
1985). Steffe (1994; Steffe & Cobb, 1998) proposed that a child who has constructed CU can 
operate on such units not only additively (e.g., counting-on to solve a missing-addend problem), 
but also multiplicatively, via simultaneously applying her counting scheme to CU and to the 1’s 
that constitute the CU (e.g., a child may find 3x4 by counting from 1 to 12 in ‘triplets’ as in ‘1-2-
3, 4-5-6, 7-8-9, 10-11-12’, while keeping track of those triplets on the other hand’s fingers, ‘1, 2, 
3, 4’). Most importantly, in using mDC, the child creates a scheme of correspondence, where one 
CU is distributed across the other. In our example, each CU of 3 is distributed into the composite 
unit items that make up ‘4’.  Thus, mDC enables a child to quantify, in the absence of objects 
(i.e., in anticipation), the total number of 1’s that are embedded in a given number of same-size 
CU without having to count each and every singleton. It is important to clarify here that mDC 
refers to the mental quantification of the units—not to the manner in which it is executed (e.g., 
using fingers, or making tally marks to monitor each CU, or mentally counting the CU).  

To complement the Ref*AER with a pedagogical approach, Tzur (2008) elaborated on 
Simon’s (1995) and Simon & Tzur’s (2004) teaching approaches by proposing a 7-step cycle. It 
proceeds from specifying students’ available conceptions and the intended mathematical ideas, 
through identifying an activity sequence they can carry out, designing and implementing tasks 
that may engage them in such a sequence, to monitoring students’ progress and orienting their 
reflection via intentional introduction of follow-up tasks/prompts. In this study, the tasks were 
designed to trigger the learner’s setting of a global goal of finding the total number of 1’s (Unifix 
cubes) embedded within a given number of CU (‘towers’ of cubes). Once such situations are 
recognized, the teacher can hide the cubes to encourage the learner’s creation of a fundamental 
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sub-goal – namely, to keep track of how of the number of CU – and introduce the activity of 
mDC as a means to accomplish that sub-goal. Numbers for tasks were chosen to require more 
than two hands, hence a transformation in the child’s available activity of counting all 1’s as a 
single sequence of numbers (e.g., 1-2-3, 4-5-6, etc.). A child’s inability to keep track could be 
resolved by introducing another set of items on which to keep track of CU accrual, and orient her 
attention to the stopping point of mDC when she accounted for all of the CU. 

 
Methodology 

This study was part of a teaching experiment (Steffe, Thompson, & von Glasersfeld, 2000) 
with three 4th graders and eleven 5th graders, designed to develop multiplicative reasoning in 
elementary school students with (or at risk of) learning disabilities in mathematicsi. Three 
teaching episodes with one student, Megan (a student at risk), were conducted over the course of 
4 weeks by the sixth author. Megan was selected for this study because, prior to the work 
presented in this paper, she had constructed the anticipatory stage of using composite units 
numerically (e.g., for missing addend tasks).   

The teaching episodes consisted of students playing a game called “Please Go Bring Me...” 
(PGBM). It involves one player sending another to a box containing individual Unifix cubes and 
instructing her to create a tower m cubes high. The ‘bringer’ returns the tower to the table and the 
process repeats until she brings N towers of m (henceforth notated NTm). Three principal 
questions are then asked: (a) How many towers did you bring? (b) How many cubes are in each 
tower? And (c) How many cubes do you have in all? These questions prompt the child to 
identify, respectively, the number of composite units (CU), the unit rate (UR), and the total 
number of cubes (1’s). A version of the game that we used frequently utilized “What if?” tasks, 
which require figuring out her answers in the absence of the cubes (e.g., by asking her to pretend 
she brought them, or by covering the towers).  

Data from the episodes consist of field notes, videotapes, transcripts, and notes from ongoing 
analysis sessions. The research team initially analyzed episodes soon after conducting them, 
focusing on significant events and on necessary modifications to the plan for the next teaching 
session(s). A second round of analysis highlighted critical events in the transcripts of the 
sessions, where the team inferred Megan’s thinking processes at the participatory or anticipatory 
stages via attending to her language and actions. Final, retrospective analysis involved a team 
discussion of the highlighted segments, which were integrated into a story line of her growth in 
multiplicative reasoning. The episodes included in the analysis begin after Megan had become 
familiar and comfortable with the basic form of PGBM (with cubes). 

 
Analysis 

In session 1, the teacher asked Megan: “Pretend I send you to get towers of 4… and I asked 
you to bring 7 towers of 4. Can you figure it out, using any other way except bringing those and 
counting the cubes, how many cubes you would have now?” Megan simply could not answer the 
question. Even after the teacher offered paper and pencil, and later said she could use her fingers, 
she threw up her hands and exclaimed, “I can’t do it.” Her inability to attempt this initial task of 
7T4 indicated that at this point she had no access to mDC. Below, we present excerpts of critical 
events from three consecutive teaching sessions and suggest how they promoted Megan’s 
transition to an anticipatory stage of mDC. 
Promoting Construction of the Participatory Stage 

In order to move Megan to the participatory level of mDC, the teacher suggested that Megan 
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use her fingers to keep track of the number of towers while counting the number of cubes:  
Excerpt 1 (Session 1, Introduction to Double Counting) 
T: Let me suggest the following.  I’ll give you my fingers for every tower. Okay? Every time 

we have a tower that’s (holds up one finger) one tower of four– how many do we now 
have? You can use your fingers for [counting] the four [cubes].  

M: So 4. 
T: What if I brought another tower (raises a 2nd finger)? 
M: 8. 
T: What if I brought another tower (raises a 3rd finger)? 
M: 12? (Doesn’t look confident.) No wait.  
T: You can use your fingers to figure it out. 
M: (Counts under her breath.) 16? No! 
T: So we had 4 – now let’s use your fingers (shows counting on from 4 on his other hand)   

5-6-7-8.  And then, 9-10-11-12. 
M: Yeah. 
T: So now we have 3 [towers], what if we added another one (raises a 4th finger)? 
M: 16. 
T: Ok another one. 
M: (Counts on her fingers under the table) 17-18-19-20.  
T: So with 5 we have 20. We still have to go [bring towers] two more times.  
M: (Counts on her own fingers) 21-22-23-24; 28. 

The exchange in Excerpt 1 enabled Megan to start developing an intentional method for keeping 
track of the number of towers and to anticipate when to stop counting cubes. The teacher’s 
continual prompts of, “What if I brought another tower?” oriented Megan’s Type-I reflections 
between the accruing effects of the double counting activity and the global goal of finding the 
total number of cubes. This was possible because she could assimilate indicating a CU by the 
teacher’s finger into her available numerical composite unit scheme. Consequently, Excerpt 1 
provides a window to two important facets of the work: Megan’s early shift to the participatory 
stage of mDC and how the teacher used tasks/prompts to promote this shift. Following the 
prompts, Megan knew to operate on the proper unit (cubes) with her number sequence, including 
anticipating that 4 cubes comprised a single CU (tower). Thus, the task, which required her to 
retrieve only one tower at a time and to count after each new acquisition, seemed to promote 
Megan’s coordination of the two number sequences as evidenced by her finishing of the last two 
towers without needing to actually go get them.  

Megan’s construction of the participatory stage for mDC became evident in the task that 
followed (Excerpt 2). 

Excerpt 2 (Session 1, Participatory Double Counting) 
T: So you have 6 towers of 3 over there, and you use your fingers or your brain or (jokingly) 

your hair, or your blinking, or whatever, figure out how many are there all together… 
Can you put your fingers [above the desk] so I can see what you did? 

M: (attempts to skip-count, first by 3’s , then by 6’s) 3-6-12-19? No, wait. (double counts, 
nodding her head as though counting, e.g., 4, 5, 6, but only speaking the total after each 
tower out loud) 3-6-9-12-15-18? 

T: So 18? That’s very good … I saw you putting 3, almost immediately; then 6 almost 
immediately. Then you started and recounted… So, could it be you said in your head, 7-
8-9, 10-11-12, 13-14-15, 16-17-18 (puts a finger for each triplet)? 
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M: (nods yes) 
Excerpt 2 indicates that the work on the previous task and the availability of counting triplets 

enabled Megan to solve 6T3 while internalizing the differentiation of 1’s (cubes) from CUs 
(towers), distributing her units across each of the re-presented units, and coordinating the 
addition of the cubes and the number sequence of the CUs (tower). Two interventions were key 
to the formation of this coordination. The teacher began the task by imposing a constraint on 
Megan: she was not allowed to use paper and pencil to draw the 6T3. This oriented her to move 
away from simply counting individual (drawn) cubes. The teacher’s prompt, “Can you put your 
fingers so I can see what you did?” provoked a Type-I reflection as Megan revisited the use of 
mDC for finding the total, as evidenced in her immediate self-correction after the first attempt 
(“3, …, 19”) toward using mDC intentionally in distributing the unit rate (3 cubes/tower) over 
the number of CU (towers).  

Megan’s work on those two tasks indicated that she was in the participatory stage of mDC. 
We did not expect she could yet spontaneously call up the activity sequence, but we did expect 
she would use mDC when prompted. To test our hypothesis, we began the next episode by 
testing if Megan was at the anticipatory stage of mDC by engaging her in a prompt-less situation. 

Excerpt 3 (Session 2, Test Anticipatory/Participatory Double Counting)  
T: Pretend you were going (to retrieve a tower of Unifix cubes), and I sent you to get a tower 

of 3; another tower of 3, and another (etc.). And you brought, think of 7T3. Can you 
figure out how many cubes are there?  

M: (Thinks – uses her fingers to count 1-2-3, 4-5-6, (inaudible speech), gets up to the 6th 
finger and gets lost.)  Ok. I just forgot.  

T: Ok. Just take your time. If you need my fingers, you can use them. 
M: 3, 6... (Starts using teacher’s fingers, but then goes back to her own.) 3, 6... 21. I think.  
T: How did you get 21? 
M: I added three 7 times.  
T: Did you do this? (Demonstrates double counting with one hand monitoring) You raised  
     one finger and said 1-2-3. Then you raised another finger and said 4-5-6 [and so on]. Is 

that what you did? 
M: Yeah. 
T:  Ok. Let’s see if your answer is true. 
M: (Builds 7 towers of 3 and counts cubes.) 3, 6, 9, 12; 13-14-15; 16-17-18; 19-20-21.  
Excerpt 3 indicates that Megan was yet to construct the anticipatory stage of mDC, as she 

became lost prior to the teacher’s prompt for using his fingers. Once prompted, however, she 
could immediately regenerate an anticipation of the AER for mDC. She momentarily used the 
teacher’s fingers, but then internalized the activity as evidenced in her shift to her own fingers 
for successfully completing mDC to reach her global goal. It confirmed our hypothesis, and led 
to interventions for promoting transition to the anticipatory stage via tasks with larger numbers. 
Promoting Construction of the Anticipatory Stage 

Excerpt 4 (Session 4, In transition to anticipatory stage of Double Counting) 
T: Pretend you have a tower of 6, another tower of 6, and another [etc.]. Seven towers of  
     6. [How many cubes] would you get?  
M: Um, 6, 12, 24 (gets lost on her fingers) I don’t know. That’s hard.   
T: You can use my fingers.  
M: I can’t. That’s hard.  
T: That’s harder, because I gave you larger numbers. [See if you can use] my fingers for the 
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number of towers and use yours to count how many in each. So you said the first one is 
going to be 6 (puts out one of his fingers), then you said 12. (Puts down another finger) 
Then you started struggling. Use your fingers to add from 12, 6 more. 

M: (Counts-on with her fingers) 12; 13-14-15-16-17-18.  
T: Ok that’s another tower (puts out another finger). That’s 3 towers.  
M: (Counting-on with her fingers.) 19-20-21-22-23-24 (Pauses for teacher to put a finger); 

25-26-27-28-29-30 (Pauses for teacher); 31-32-33-34-35-36; 37-38-39-40-41-42.  
T: Should we stop now, or go on?  I said 7 towers.  
M: Yeah, that’s it.  
When finding the number of cubes in 7T6, Megan struggled with the size of the numbers 

because each CU was larger than 5 (her fingers). This brought about her Type-2 reflection, 
evidenced in her realization (“I can’t. That’s hard”) that using mDC would be difficult for the 
current situation because, unlike previous situations, she would not be able to simultaneously 
hold the number of towers and count the number of cubes. This Type-2 reflection, however, 
enabled her to easily assimilate the teacher’s suggestion to use his fingers to keep track of CU 
and she immediately completed the task. It was her spontaneous contribution, evidenced in the 
intentional pause until the teacher raised his next finger, which led us to conjecture Megan might 
solve a similar task in the next week’s episode at an anticipatory level.  

To test our conjecture, we introduced a problem situation at the beginning of the following 
week’s episode that required Megan to use mDC in a different context, asking her to create a 
PGBM situation (cubes, towers) that would be equivalent to having 7 baskets with 8 chicks in 
each. Megan immediately built a tower with seven same-color cubes and one different color 
cube, counting under her breath, “1-2-3-4-5-6-7-8.” She then continued building more T8 of the 
same color pattern until she had 7T8, at which point the teacher asked if she could figure out the 
total number of cubes. Megan spontaneously asked, “Can I use your hands?” and proceeded to 
count individual cubes on her fingers while counting towers on his, successfully stopping at 56. 
That is, Megan no longer needed a prompt. Rather, she clearly anticipated and spontaneously 
carried out the entire mDC activity sequence. The way she built her towers to present chicks and 
baskets, and her initiative for using the teacher’s fingers, indicated that she intentionally (a) 
distinguished between the CU (towers) and UR (cubes/tower) and (b) used mDC to determine 
the total. Megan assimilated the chicks and baskets task into her global goal of finding total 
cubes and independently called up the activity sequence needed for multiplicative coordination 
of CU: differentiate 1’s (cubes) from CUs (towers), distribute her units of 8 across each of the re-
presented seven CU, coordinate the addition of the cubes and the number sequence of the CUs 
(tower), and employ two sets of objects (fingers) to keep track of both counts.              

 
Discussion 

This study demonstrated a fundamental transition to multiplicative thinking. At the beginning 
of our analysis, we saw that Megan, a student at risk in mathematics, had not constructed mDC, 
putting her at a disadvantage with her peers (2-3 years behind). Through a Ref*AER designed 
intervention, Megan learned to spontaneously call up mDC for reaching her goal in various 
multiplicative situations. Megan’s intentional translation of and solution to the mDC task in the 
last episode, including her request to use another set of fingers, indicated the commencement of 
her anticipatory stage of a units-coordinating scheme to which Steffe (1994) refers as an implicit 
concept of multiplication. Most importantly, this study demonstrated how Tzur and Simon’s 
(2004) stage distinction for determining a learner’s available conceptions could guide selection 
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of tasks and prompts for transforming these conceptions. Such guidance included the 
introduction of double counting on one’s and another person’s fingers upon shifting to ‘for 
pretend’ tasks as a means to the sub-goal of simultaneously keeping track of clearly 
differentiated CU and 1’s, progressing from small to large numbers, and continually orienting the 
learner’s reflection onto the critical questions of when to stop counting (e.g., when Megan 
paused for the teacher’s next finger). 

 
Endnotes 

i) This research was conducted as part of the activities of the Nurturing Multiplicative Reasoning 
in Students with Learning Disabilities project, which is supported by the National Science 
Foundation under grant DRL 0822296. The opinions expressed do not necessarily reflect the 
views of the Foundation. 
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This study investigated fraction problem reasoning and solving processes of pre-service 
elementary teachers from the United States and Taiwan. Eight open-ended problems were given 
to eighty-three pre-service elementary teachers, forty-one from the U.S. and forty-two from 
Taiwan. The results show that U.S. pre-service teachers were outperformed by their Taiwanese 
counterparts and tended to use more intuitive and visual but less formal and symbolic reasoning 
and solving processes compared to their Taiwanese counterparts. U.S. pre-service teachers had 
greater difficulty in solving non-pictorial problems embedded in a linear measure or set model 
than in an area model.    

 
Introduction 

The purpose of this study is to compare pre-service elementary teachers’ processes in 
reasoning and solving fraction problems across countries. A study attempting a comparison of 
mathematics education between different educational traditions has been believed helpful to 
recognize the perpetual challenge to improve the quality of mathematics education in detail, and 
those based on the West and East Asia appear particularly promising for a cross-national 
comparison (ICMI, 2000). From the most recent Trends in International Mathematics and 
Science Study (TIMSS) report, we can find a substantial gap in student mathematics 
achievement existed between the five East Asian countries including Taiwan, Republic of Korea, 
Singapore, Japan, and China (Hong Kong SAR) and the United States (Mullis, Martin, & Foy, 
2008). Meanwhile, the Programme for International Student Assessment (PISA) conducted in 
2006 indicates that Taiwanese students had the highest level of mathematics achievement among 
participating countries including the U.S. (OECD, 2007). This study chose the U.S. and Taiwan 
to be the two comparative countries to illuminate the current interests on cross-national research 
of mathematics education.  

It has been revealed that the countries with better quality of mathematics knowledge 
produced higher mathematics achievement (Akiba, Letendre, & Scribner, 2007; Kulm, 2008). 
Researchers also indicated that U.S. teachers have a weak grasp of basic mathematics knowledge 
as compared with their East Asian counterparts (Ma, 1999). With the gap of student mathematics 
achievement between the U.S. and the East Asian countries, therefore, it would not be a surprise 
that contrasting performances of mathematics teacher knowledge between the U.S. and East 
Asian countries can be discovered. Yet, in-depth studies on the relative differences of teacher 
knowledge are very limited. Without recognizing the relative insights and patterns of their 
differences in knowledge, the efforts for improving the quality of mathematics teacher 
knowledge cannot gain a focus and may result in a “mile wide and an inch deep” – the 
characteristic of current mathematics curriculum in the U.S. (Mirra, 2008).  
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Theoretical Perspectives  
The theoretical framework for this study derives from Shuman’s (1986) discussion of subject 

matter content knowledge. Mathematics content knowledge refers to knowing a variety of ways 
in which “the basic concepts and principles of the discipline are organized to incorporate its 
facts” and “truth or falsehood, validity or invalidity, are established” (Shulman, 1986, p. 9). 
Mathematics content knowledge is rooted in how the knowledge of mathematics facts is 
coordinated with deeper understanding and application (Kahan, Cooper, & Bethea, 2003). Our 
focused topic is fractions – the seeds of advanced mathematics. Difficulty with fractions is a 
major obstacle for further progression in mathematics, including algebra, as described by the 
National Mathematics Advisory Panel (2008). Research studies on U.S. pre-service 
teachers have shown that many possessed limited concepts and operations of non-whole numbers 
(Azim, 1995; Ball, 1990a, 1990b; Graeber, Tirosh, & Glover, 1989; Tirosh, 2000; Simon, 1993). 
They concentrated on remembering rules and mastering standard procedures, and they often 
lacked comprehensive understanding of mathematical ideas and procedures (Ball, 1990a).  

As was the case with the international student achievement studies, a substantial gap of 
mathematics knowledge was found between the U.S. teachers and their East Asian counterparts 
(Zhou, Peverly, & Xin, 2006). Significant differences were also found on their predication and 
expectation about students’ solutions (Cai, 2004, 2005; Cai & Wang, 2006). With the awareness 
of a cross-national gap in mathematics teacher quality, teacher education programs in the 
U.S. have been encouraged to enhance their mathematics courses offered to their 
pre-service teachers and to provide more professional development opportunities to 
school teachers (Kulm, 2008). In addition, the approach of having elementary 
school teachers as mathematics content specialists has been proposed (Li, 2008). 
Elementary teachers need to know various mathematical topics for teaching, but teacher 
education programs typically include more training in pedagogy methods than in content 
knowledge (Hill, Schilling, & Ball, 2004). By focusing the need for expertise on fewer teachers 
who are specialized in elementary mathematics teaching, there could be a more practical 
alternative than increasing all elementary teachers’ content knowledge (National Mathematics 
Advisory Panel, 2008). Still, more high-quality research must be undertaken in order to create a 
sound basis and provide different approaches for the mathematics preparation within pre-service 
elementary teacher education (National Mathematics Advisory Panel, 2008). Through 
comparing the  problem reasoning and solving processes across countries, this study seeks to 
find the insights needed for developing a deeper understanding of mathematics called for by Ma 
(1999) and the Conference Board of the Mathematical Sciences (CBMS, 2001). 
 

Research Questions 
Two research questions guided this study:  (a) How well are pre-service elementary teachers 

from the U.S. and Taiwan capable of coordinating mathematics facts to reason and solve fraction 
problems, and (b) what are the similarities and differences of problem solving and reasoning 
processes between two groups of pre-service teachers?  

 
Methodology 

Participants  
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Participants include eight-three pre-service elementary teachers, forty-one from the U.S. and 
forty-two from Taiwan. The purposive sampling was adopted to determine the participants 
(Leedy & Ormrod, 2005). On the U.S. side, the participants were selected from a regional 
teaching institution. On the Taiwanese side, the participants were selected from a traditional 
teacher education university. The selection unit is a class instead of an individual, but the number 
of total participants from each country is almost the same. Since most pre-service elementary 
teachers in Taiwan have their own content concentration, this study excluded the mathematics 
and science education majors to avoid their content strength contributing to a potential 
difference.  
Data Collection  

The results were drawn from the participants’ solutions for eight open-ended problems 
designed for supporting another cross-national study.  The collected solutions would allow us to 
know how well pre-service elementary teachers from the U.S. and Taiwan were capable of using 
mathematics facts to solve problems. The results from their solutions would also provide a 
comparison of the similarities and differences of reasoning processes between two groups of pre-
service teachers. Table 1 below provides a summary of the eight open-ended problems 
representing combinations of two basic fraction concepts (part-whole relationship and fair 
sharing) and three common contextual models (area, linear measure, and set). Several problems 
were also developed into pairs to make an appropriate comparison: Problems #2 and #6 were 
embedded in the same mathematical concepts and contextual models, but only problem #2 has a 
pictorial illustration as part of the problem statement. Both problems #1 and #7 involve the 
concept of part-whole relationship, but they are different in terms of contextual models. Both 
problems #3 and #5 involve the concepts of fair sharing, but they are rooted in different 
contextual models. To measure the influence of visual and concrete representations, problems #2 
and #8 include a pictorial illustration.  

Table 1. The Problem Concepts and Models 
Concepts Models Problem Numbers 
Part-Whole 
Relationship 

Area #1 
Linear Measure #8,  #4 
Set #2, #6, #7 

Fair Sharing Area #5 
Linear Measure #3 

 
Data Analysis 

The technique of content analysis was utilized to identify specific characteristics of collected 
data. Coding the collected data into categories relevant to the research objectives is an essential 
procedure of a content analysis (M. Gall et. al, 1996). All the mathematical solutions were 
treated as the data sources and were coded into five success levels: failing (0), poor (.25), weak 
(.50), fair (.75), and good (1).  The success rate for a problem was calculated by averaging the 
sum of scores from all pre-service teachers in the same group. To gain insights of pre-service 
teachers’ reasoning and solving processes, each data source was coded with respect to its 
mathematical representations as well as specific characteristics of the solution procedures.  

 
Results 

To compare the problem reasoning and solving processes between U.S. and Taiwanese pre-
service elementary teachers in reasoning and solving fraction problems, we list the success rates 
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and calculate their differences for each problem. As shown in Table 2, U.S. pre-service teachers’ 
ability of reasoning and solving fraction problems were much poorer than that of their Taiwanese 
counterparts. The contextual models appear to be associated with the success rate of U.S. pre-
service teachers but not with that of their Taiwanese counterparts. Both problems #1 and #5, the 
two problems with smaller differences of success rates between groups, are contextualized in an 
area model. Within the same contextual model and complexity, U.S. pre-service teachers had a 
higher success rate on a pictorial problem than on a non-pictorial one.  

     Table 2. Success Rates and Differences between Groups for Each Problem  
 #1 #2 #3 #4 #5 #6 #7 #8 

U.S. 56.1% 70.8% 29.3% 33.5% 76.4% 47.6% 25.6% 28.7% 
Taiwan 95.0% 97.0% 89.7% 100% 88.2% 97.5% 89.9% 95.2% 

Difference 38.9% 26.2% 60.4% 66.5% 11.8% 49.9% 64.3% 66.5% 
 
Problems #1 and #7 

Both problems #1 and #7 are multiple-step problems, but contextualized in different models 
(see Table 3). It is more challenging for an individual to solve problem #1 than to solve problem 
#7. Only straightforward reasoning processes are needed to solve problem #1, but unnatural 
backward reasoning processes would be required to solve problem #7. The difference in the 
nature of the problem had a greater impact on U.S. pre-service teachers than on their Taiwanese 
counterparts. For the U.S. group, there was a wide difference between success rates for solving 
problems #1 and #7. The success rates of Taiwanese pre-service teachers were maintained at a 
relatively high level compared to their U.S. counterparts. Two groups of pre-service teachers 
used very different reasoning forms. For problem #1, particularly, most U.S. pre-service teachers 
used graphic drawing while the majority of their Taiwanese counterparts used symbolic 
equations to solve this problem. From the Figure 1 and Figure 2, we can see the contrasting 
reasoning processes between two groups. It is worth noticing that twenty-three Taiwanese pre-
service teachers but only one U.S pre-service teacher used the algebraic symbol “x” to represent 
the unknown size of the whole. Figures 3 and Figure 4 are two examples illuminating the 
difference of problem reasoning and solving processes between two groups for problem #7.  
Table 3. Problem statements, Success Rates, and Reasoning Forms for Problems #1 and #7 

Problem Statements U.S. Taiwan 
#1. Mom baked a cake. Dad ate 1/6 of the cake. Brother ate 1/5 of 

what was left. Sister ate 1/4 of what was left after that. The dog ate 
1/3 of what was left after that. Another kid ate 1/2 of what was left 
after that. How much of the original cake was left for Mom to eat?  

Success  56.1% Success     95.0% 
Symbolic    9.8% Symbolic  100.0% 
Pictorial  65.9% Pictorial      7.5% 

#7. At the circus, the clown was busy counting all of the animals that 
performed. The clown figured that one half of the animals were 
horses, 1/4 of the remaining were big cats, and the rest were 9 
monkeys. How many animals did the clown see altogether?   

Success  25.6% Success    89.9% 
Symbolic  26.8% Symbolic    95.2% 
Pictorial 36.6% Pictorial    21.4% 

 

 

 

 

 
Figure 1. A U.S. solution sample for problem #1 

 

 
Figure 2. A Taiwanese solution 

sample for problem #1 
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Problems #3 and #6 

As shown in Table 4, the U.S. group of pre-service teachers had much greater difficulty in 
solving problem #3, a linear measurement model, than in solving problem #5, an area model. 
Compared to U.S. pre-service teachers, Taiwanese pre-service teachers appeared to be much 
more adaptive to problems in different context models, and they were much more successful. 
Only minor difference existed between their success rates in solving both problems. Same as the 
finding for solutions for problem #1 and #7, it was found that the nature of reasoning processes 
demonstrated by the U.S. pre-service teachers is different from those demonstrated by their 
Taiwanese counterparts. U.S. pre-service teachers preferred to use pictorial processes to solve 
problems than using symbolic processes. In contrast, their Taiwanese counterparts had an inverse 
tendency.  

 
Table 4. Problem Statements, Success Rates, and Reasoning Forms for Problems #3 and #5 

Problem Statements U.S. Taiwan 
#3. A 2 meters long strip of paper was folded into 

three equal pieces. How long was each piece? 
Success  29.3% Success  89.7% 
Symbolic 29.3% Symbolic 65.9% 
Pictorial 63.4% Pictorial  34.1% 

#5. Aunt Rachel had 2 cupcakes for the kids to 
share equally. There were three kids. How 
much did each kid get?   

Success  76.4% Success   88.2% 
Symbolic  23.8% Symbolic 61.0% 
Pictorial  73.8% Pictorial  39.0% 

 
Four Taiwanese pre-service teachers used advanced algebraic concepts to reason how to 

solve problem #5. As shown in Figure 3, a pre-service teacher from Taiwan addressed that each 
kid would obtain 2/3 of a cake for the situation of equal cakes and 1/3 (x+y)g cake for the 
situation of unequal cakes.  None of U.S. pre-service teachers tried to apply the concepts of 
unknown algebraic symbols to solve this problem. We also found that seven U.S. pre-service 
teachers used decimals as their answers. A U.S. pre-service teacher used an intuitive reasoning to 
solve this problem by adding decimals repeatedly to make to make the quantity of 2 meters (see 
Figure 6). Similarly, seven Taiwanese pre-service teachers also used decimals as their answers. 
However, instead of using decimals to solve the problem, they directly transferred their fraction 
results from division computation into decimal answers. 

 
 
 
 
 
 
 
 

In addition, it was found that fourteen pre-service teachers, seven from each group, 
conducted a unit conversion. Nine of them tried to convert the given unit “meter” into the 
smaller scale unit “centimetre,” so the size of the number for representing the length of paper 

strip has to be expanded to 100 times. Their responses include
3
2

200 centimetres, 66.67 

centimetres, and so on. The other five pre-service teachers were from the U.S. group. They tried  

Figure 4. A Taiwanese sample for problem #7 

 

Figure 3. A U.S. sample for problem #7 
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to transfer the unit “meter” used in the metric system into “foot” or “inch” used in the English 
system, but did not make a successful unit transformation because of an insufficient knowledge 
of the metric system. 
Problem #2 and #6 

To examine the influence of the pictorial illustration further, we compared pre-service 
elementary teachers’ ability in solving the problems #2 and #6 (see Table 5). Notice that both 
problems involve the application of the same fraction concept and contextual model. From the 
problem-solving results for #2 and #6, we found that U.S. groups of pre-service teachers had 
much greater difficulty in solving the problem #6, which does not include a pictorial illustration 
than in solving the problem #2, which includes a pictorial illustration. It appeared that Taiwanese 
pre-service teachers were free from the influence of pictorial illustration, and their success rate 
maintained at relative high level compared to their U.S. counterparts.    

Table 5. Problem Statements, Success Rates, and Reasoning Forms for Problems #2 and #6 
Problem Statements U.S. Taiwan  
#2. A basket contained 8 red apples,    

2 bananas, and 4 green apples.  
What fraction of the apples is green? 

Success  70.8% Success   97.0% 
Symbolic  14.6% Symbolic 85.7% 
Pictorial 19.5% Pictorial    0.0% 

#6. Brandon has a box which contains 7 red marbles, 3 
purple buttons, and 5 green marbles. What fraction of 
the marbles is green?  

Success  47.6% Success   94.5% 
Symbolic 12.2% Symbolic          81.0% 
Pictorial 53.7% Pictorial     4.8% 

 
Problem #4 and #8 

As shown in Table 6, problem #4 is not a straightforward problem, but all of Taiwanese pre-
service teachers provided correct solutions. Consistent with the findings for the other problems, 
Taiwanese pre-service teachers had a strong preference in adopting symbolic ways to reason and 
solve problems #4. Although U.S. pre-service teachers used more symbolic process than pictorial 
processes to reason and solve problem #4, the insights of their symbolic processes are different 
from those of Taiwanese pre-service teachers’ symbolic processes. U.S. pre-service teachers only 
engaged in the level of numerical symbols while their Taiwanese counterparts would involve the 
usage of algebraic symbols.  

Table 6. Problem Statements, Success Rates, and Reasoning Forms for Problems #4 and #8 
Problem Statements U.S. Taiwan 

#4. Jim jogged 
2
11  miles yesterday. This is 

8
3of his weekly goal? 

How many miles does he plan to run each week? Explain.  

Success  33.5% Success   100.0% 
Symbolic  36.6% Symbolic  97.6% 
Pictorial  22.0% Pictorial    14.3% 

 
#8. What is the value of x? Explain. 

 
Success  

 
28.7% 

 
Success   

   
95.2% 

 

0 
5
6 X 

 

Figure 5. A Taiwanese solution sample  
for problem #5 

 

Figure 6. A U.S. solution sample 
 for problem #3 
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Symbolic  0.0% Symbolic  95.2% 
Pictorial  43.9% Pictorial    54.2% 

 
The reasoning processes of U.S. pre-service elementary teachers were more intuitive, 

informal, and pictorial than those of their Taiwanese counterparts while solving problem #4. 
Figure 7 and Figure 8 illuminate the difference of their reasoning processes. Problem #8 was one 
of most challenging problems for U.S. pre-service teachers, but an easy problem for Taiwanese 
pre-service teachers. Twenty out of forty-one of pre-service teachers from the U.S. omitted this 
problem. Most U.S. pre-service teachers approached this problem used a trial-and-error way to 
find the value for x reason while 95.2% of Taiwanese pre-service teachers incorporated symbolic 
and proportional reasoning processes to solve this problem.  

 
Figure 7. A U.S. solution sample for problem #4 

 

Figure 8. A Taiwanese solution sample 
 for problem #4 
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Discussion and Conclusions 
This study observed similar reasoning processes across groups. As addressed in the results, 

several pre-service elementary teachers from both groups converted the fraction for representing 
the magnitude of length into a decimal and/or converted the measure unit of length for a 2 meter 
strip into a smaller scale unit. Pre-service teachers might try to do the unit conversion to avoid 
the existence of fractions on the number line as described by Kerslake (1986). Additionally, they 
might perceive that the magnitudes of length should not be less than 1. Further investigation such 
as interviews should be conducted to explore their understanding about the magnitude of a 
quantity to provide appropriate treatments. For example, if their conceptual and procedural 
knowledge about fractions with magnitudes less than 1 is not consistent with fractions with 
magnitudes greater than 1, the background knowledge of fractions with magnitudes in each range 
needs to be taught directly (National Mathematics Advisory Panel, 2008).  

Additionally, this study adds to our understanding of issues in the preparation of teachers’ 
mathematical ability. Consistent with previous cross-national studies, this study did not find 
sufficient evidence to draw the conclusion that U.S. pre-service teachers have established a 
satisfactory ability of reasoning and solving fraction problems as their Taiwanese 
counterparts. U.S. pre-service teachers favored using intuitive, informal, and pictorial 
strategies more than their Taiwanese counterparts. We suspect that is what these pre-service 
elementary teachers learned when they were upper elementary or middle school students. 
Without any intervention, it is very likely that these U.S. teachers will adopt intuitive mathematic 
methods in their future classrooms without seeking to enter advanced mathematical reasoning 
and problem solving skills. We conclude then research on what U.S. upper elementary and 
middle school mathematics teachers should know and what they should expect their students to 
learn needs to be undertaken. 
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Ongoing research seeks to discover and describe the knowledge of mathematics-for-teaching 
teachers employ to facilitate students' understandings. Convinced by Davis and Simmt (2006) 
that much of this knowledge is implicit, this study seeks to show that teachers' unarticulated 
mathematics-for-teaching competencies can be studied through ethnopoetics (analysis of the 
form of teachers' talk). The findings broaden the range of competencies that may be called 
mathematics-for-teaching and suggest that mathematics-for-teaching is context-specific. 
Implications for teacher professional development and research are discussed. 
 

Purpose of the Study 
The mathematics needed for teaching is different than classical mathematical knowledge, but 

what counts as necessary mathematics-for-teaching is not yet fully known. Ball, Bass, and Hill 
(2004) have studied what teachers do (job analysis) to theorize mathematics-for-teaching and 
include practices such as interpreting students' mathematical work and unpacking the 
mathematical ideas in a problem. Davis and Simmt (2006) expand on those notions by observing 
what teachers say about teaching in interactions around mathematical content in a teacher study 
group. They argued that much of teachers' knowledge of mathematics-for-teaching is implicit. 
They said, "We believe that a key (and perhaps the key) competence of mathematics teachers is 
the ability to move among underlying images and metaphors—that is, to translate notions from 
one symbolic system to another." (p. 303).  

These studies have reported on the content of teachers' talk about mathematics and 
mathematics teaching. However, if much of teachers' knowledge of mathematics-for-teaching is 
implicit, as Davis and Simmt (2006) claim, then looking beyond the content to the form of 
teachers talk is needed. "How something is said is a part of what is said" (Hymes, 1972, p. 59). 
How teachers' ways with words perform their understandings of mathematics-for-teaching 
requires further study. 

I analyzed two teachers' narratives of a lesson about fractions on a number line to learn about 
their mathematics-for-teaching. To examine their tacit knowledge of mathematics-for-teaching, I 
focused on the form of their discourse. I unveiled tacit mathematics-for-teaching competencies in 
both teachers' stories. Whereas I had begun the analysis with an initial perception that one 
teacher was more mathematically sophisticated, the results challenged my initial perception. 

 
Theoretical Framework 

Mathematics-for-Teaching as Discourse: The Centrality of Metaphor 
Davis and Simmt (2006) argued that the ability to move between metaphors is key to 

mathematics teaching. Metaphor is a discursive tool. In fact, mathematics may be conceptualized 
as a discourse. That is, mathematics may be theorized as communication (with oneself or others) 
about mathematical objects (which are constructed through discourse). Metaphor, or the mapping 
of language from one domain (for example, physical objects) onto another (such as abstract 
ideas), is central to creating and understanding mathematical ideas (Sfard, 2008). In the sections 
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that follow, I report on teachers' talk about a lesson on fractions and number lines. Therefore, I 
will next explain some metaphors that are important to understanding those two concepts. 

Grounding metaphors. Lakoff and Nuñez (2000) theorized four grounding metaphors that 
ground arithmetic to physical objects—the metaphor of object collection, the metaphor of object 
construction, the measuring stick metaphor, and the metaphor of motion along a line. Fractions 
are often understood using the metaphor of object construction, because they are constructed by 
dividing a whole into parts. In that case, a key metaphor is numbers as objects. In the measuring 
stick metaphor, arithmetic is conceptualized as the use of a measuring stick. Numbers are 
physical segments, with the basic physical segment being one. Longer segments are greater and 
shorter ones are less. Arithmetic is putting segments together and taking them apart.  

Linking metaphors. Linking metaphors take us beyond the physicality of grounding 
metaphors to more sophisticated ideas. The metaphor of numbers as points on a line is an 
example. It builds on the measuring stick metaphor and the metaphor of arithmetic as motion 
along a path but maps these ideas onto the concept of a line (instead of a physical object). This 
requires understanding several other metaphors: a number P1 as point P1 on a line, zero as a point 
0 on the line, one as a point 1 to the right of 0, etc. Sophisticated mathematical understandings 
and are built by layering metaphor upon metaphor, a process called conceptual blending. In 
contrast, teaching mathematics involves unpacking the layers of metaphor (in effect, unblending) 
and deftly moving between them to facilitate students' conceptual blending. 

Communicative mathematics-for-teaching competencies. The teachers in this study had 
participated in a professional development course that focused (in part) on broadening notions of 
mathematics and mathematical competence. Teachers discuss competencies of students' that 
have not traditionally been considered mathematical and ways to help students mobilize them to 
solve mathematical problems. The goal is for the teachers to ask how a student is mathematically 
competent instead of whether they are, recognizing that perceptions of competence are 
culturally-laden. Likewise, in this paper I investigate the competencies teachers bring and how 
they mobilize them to teach mathematics. I am assuming that there are competencies required for 
mathematics teaching that have not yet been considered by the literature.  

Viewing mathematics as a discourse, it makes sense to study teachers' mathematics-for-
teaching competencies by analyzing their discourse. Survey-based work has increased 
understanding of mathematics-for-teaching and its importance for student learning (Ball, Bass, & 
Hill 2004). However, how teachers translate this knowledge into discourse is unknown. Such 
translation requires knowledge of mathematical content and pedagogy, but also communicative 
competencies, including effective use of metaphor. Additionally, discursive norms vary between 
contexts, so such work involves understanding culture. I use the phrase mathematics-for-
teaching competencies to encompass all these ways of knowing.  
Ethnopoetics and Mathematical Discourse 

If much of teachers' mathematics-for-teaching is tacit, then researchers need new tools to 
access it. To do so, I employed methods from ethnopoetics, a premise of which is that speakers 
construct arguments through both the content and the form of speech (Hymes, 1972). Because 
mathematics is a discourse, mathematical knowledge and arguments are also constructed through 
both the form and content of the communication. Consider the following example from the 
literature. Staats (2008) highlighted the syntactic parallelism through which a child made a 
mathematical argument about passing out Cuisinaire rods to a group: 
1  Yes 
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2  Cos every fifth one  
3   from William 
4    is going to be 
5     a white, 
6  and every fifth one 
7   from the next person 
8    is going to be 
9     a red, 
10  and every fifth one 
11   from the next person 
12    is going to be 
13     a green 
14  eh? (Staats, 2008, p. 26) 
Staats argued that the parallel structure of this speech is the way this child makes his 
mathematical argument. That is, through a grammatical pattern, he is performing understanding 
of the arithmetic pattern and generalizing. She points out the importance of looking across 
sentences to discern arguments made implicitly by the form of discourse. (Staats, 2008).  

However, the discourse of mathematics teachers has been primarily studied in terms of 
content. Little attention has been paid to the form of teachers' mathematical talk. Therefore, the 
field is missing some important knowledge about how teachers communicate mathematical ideas 
in their teaching practice. The research question that guides this study is: 

• What can be learned about teachers' mathematics-for-teaching through an investigation of 
the form of teachers' discussions of mathematics and mathematics teaching?  

 
Method 

Context, Data Collection, and Participants 
This paper describes part of a larger study on experienced elementary teachers' narratives of 

practice as they implemented new mathematics pedagogies. The teachers had participated in a 
professional development (PD) course on strategies for teaching mathematics with cooperative 
groups. They were implementing strategies from the workshop during the eight months of data 
collection.  

I conducted pre- and post-lesson individual interviews with teachers about lessons in which 
they used cooperative grouping strategies. I asked teachers to tell me the story of the lesson and 
prompted them to fill in details about students' mathematical ideas, their use of teaching 
strategies learned in the PD course, and their thoughts and feelings during the lesson. 

The teachers and I also met together as a group for a total of six hours over several weeks to 
discuss their use of the strategies. They came prepared to share classroom stories. One teacher 
would tell a story about teaching, and the group would discuss it. After the group had finished 
discussing that teacher's story, the second teacher would tell a story of teaching, so on. I video- 
and/or audio-taped every interview. 

The larger study includes four teachers. All had taken the PD course, chosen to be a part of 
the study, were interested in reflecting on and improving their mathematics teaching practice, 
and were attempting to implement the group work strategies learned in the PD. They were 
experienced teachers (with 10-30 years of experience). They varied in school context, grade-
level, race, and gender, and in how they identified as mathematically competent (or not). 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1399 

I report here on two focal teachers who seemed to speak about mathematics-for-teaching 
differently. Jonathan, a fifth-grade teacher who identified as "the math guy" in his school, was 
eager to talk about the mathematical understandings of his students, often spending several 
minutes talking about his students' mathematical ideas with little or no prompting. In contrast, 
Glynnis, who taught fourth grade, directly identified as "not a math person". When asked about 
the mathematics at stake in particular tasks she often responded with only a few words, and when 
asked about her students' understanding of mathematics, she often had less to say than Jonathan. 
A first impression might lead one to believe that Jonathan had more sophisticated knowledge of 
mathematics-for-teaching than Glynnis. However, this paper explores the ways with words 
Glynnis and Jonathan employed to make mathematical metaphors accessible to students. 

Both teachers taught variations of the same mathematics task to their students. Students were 
given some numbers with decimals and asked to plot them on a number line. Both teachers told 
me their stories of the lesson afterward. In this paper, I will compare parts of the two stories. 
Data Analysis 

After repeatedly listening and watching the interviews and writing analytic memos about 
their content, I transcribed analytically salient segments of the data. For this paper, I compare 
two particular stories about the same mathematics task told by two different teachers. I chose to 
present in detail a small excerpt of each in which both teachers are trying to accomplish the same 
thing—helping children to conceptualize the number one and fractions on a number line. I 
examined the transcripts and audio for the teachers' use of theatrics (such as dialogue and asides) 
and poetics (including alliteration, cadence, etc.) After experimenting with several ways of 
arranging the transcripts, I settled on an arrangement that highlights parallel syntax and ideas, in 
order to illustrate teachers' use of parallelism for facilitating students' conceptual blending. 
 

Results 
Connecting Mathematically Important Ideas and Moving Between Metaphors 

Glynnis. In the following excerpt, Glynnis is describing an event in which she is talking to a 
student about placing numbers on a number line. I arranged the following transcript excerpt to 
highlight parallel ideas. In this case, the subject and action of the sentences are on the left, and 
the mathematical objects are aligned further left as well as highlighted with bold text. When 
certain actions were mentioned repetitiously, I tried to align those as well (drew and plotting in 
lines 38-41, for example). I also divided it into stanzas to highlight shifts between metaphors. 
Stanza 1 
1  actually  
2  one of the women that was so upset 
3   Recognizing that from here to here was the 
4   one whole 
5  You know cuz I think 
6  we were doing it yesterday 
7  and they were ordering one and, 
8   one 
9   it was all one and 
10   one and, 
11   and it was still, 
12  hundredths and 
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13   stuff like that 
… 
Stanza 4 
38  So she Drew the number line. 
39  And she began to Do a landmark number. 
40  Ok cuz she was Plotting one and three, 
41   one and three tenths 
42  let's just say 
43  I don't remember what it was 
44  So she Drew half here. 
45  And so she was beginning to figure out. 
46  And then she goes, oh. It 
47  would have to be over here. 
Stanza 5 
48  I says so 
49  you're figuring out that between here and here 
50   represents A whole, 
51   and the whole has to be 
52   divided into what. 

Glynnis brought different metaphors of number into relationship via parallelism as she told 
this story. In Stanzas 1 and 5, notice the alignment of the words "here to here", "one", and 
"whole". Glynnis drew on a metaphor these children understood--the metaphor of number as 
object (Lakoff & Nuñez, 2000)--to define the space between zero and one as the object on which 
children should act (divide) to construct fractions. However, in using the words "here to here", 
she made a line segment an object. Therefore, she drew a connection to Lakoff and Nuñez's 
second grounding metaphor of arithmetic—the measuring stick metaphor—which includes the 
linking metaphors numbers as physical segments and one as the basic physical segment. The 
effect of placing different words for different objects in the same syntactical place is that the 
audience hears them as synonymous. 

In Stanza 4, Glynnis used parallelism to bring "number line", "landmark number", "one-and-
three-tenths", "half", and "here" into relationship. This is a different metaphor of number, 
numbers as points on a line. The way Glynnis mapped the metaphors of numbers as objects, 
physical segments, and points on a line onto each other is in the form of her language. She did 
not explicitly state the different metaphors on which she is drawing. However, she brought the 
ideas into relationship through the form of her speech—by using the language of different 
metaphors but using the cohesion strategy of syntactic parallelism (all of these mathematical 
ideas are used as the objects of her sentences) to help the audience map them onto each other. 

In Stanza 5 in lines 47-50, Glynnis returned to language of numbers as line segments. 
However, in line 50-51, when she said, " the whole has to be divided into what", her language 
was that of the arithmetic as construction of objects metaphor, which Lakoff and Nuñez claim is 
often the metaphor by which children first understand fractions (because fractions are 
constructed by cutting an object into equal pieces). Glynnis built on this metaphor, adding the 
new metaphor of numbers as points on a line, to facilitate a conceptual blend: fractional numbers 
as points on a number line. By moving back and forth between metaphors and substituting one 
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idea for another across lines of speech, she facilitated students' development of sophisticated 
metaphorical blends. 

Jonathan. In the following excerpt, Jonathan is telling the story of the number line lesson: 
1  I Had meter sticks 
2  I held up the meter stick. 
3  I said to them This is a meter stick. 
4    It 's one meter. 
5    So this is the whole. 
… 
As Jonathan continued the story, he began to go through students' work and tell me about various 
groups of students during the lesson. One group had made a diagram like that in Figure 1.  
 

 
Figure 1. 

 
Instead of drawing the kind of number line Jonathan had envisioned before the lesson, the 
students drew a row of one hundred boxes. They had placed the numbers they were supposed to 
put on the number line into boxes in the row. Then Jonathan continued with the story: 
260  I guess 
261  I hadn't done enough with number lines. 
262   About what a number line really means. 
263  It's not numbers in order 
264  it's places on a line. 
… 
279  Right so actually 
280  what they did is not said where the spot is 
281  but they said 
282  this square Represents one (hundredth), 
283  so they thought of it more as a fraction 
284  Right? 
285   One out of a hundred. 

Jonathan also used parallelism to bring ideas together. In lines 1-5 he brought the ideas 
"meter", "one", and "whole" together. Like Glynnis, he drew on two of Lakoff and Nuñez's 
metaphors here: numbers as line segments (lines 1-4) and numbers as objects (line 5). Again, 
these are metaphors that were commonplace in the classroom, and he brought them into 
relationship by substituting one for another using syntactic parallelism.  

In lines 260-264 he added the concepts "number line" and "places on a line" in the same way. 
However, he explicitly described a number line ("it's") as "places on a line" by placing "it's" in 
the subject of the sentence (in bold text above). In effect, he used multiple ways with words to 
build this sophisticated conceptual blend—explicit descriptions of metaphors to clarify concepts, 
and syntactic parallelism to build connections between them. 

In lines 279-286 he used parallelism to bring the terms, "spot", "square", "one hundredth", 
"fraction", and "one out of a hundred" together with previous ideas. The word "square" (an 
object) draws on the metaphor of number as object, the words "one hundredth", "fraction", and 
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"one out of a hundred" draw on the metaphor of arithmetic as object construction, and the word 
"spot" (substituted for point) draws on the metaphor of numbers as points on a line. In lines 279-
281 and 283-286 these ideas are grammatically parallel to one another. However, in line 282 
Jonathan again placed the mathematical idea (square) in the subject of the sentence to explicate 
the metaphor his students had demonstrated. Again, he explicitly described a metaphor (resulting 
in clarity) then used grammatical syntax to facilitate conceptual blending.   

Differences between stories. Glynnis and Jonathan both used similar poetics to bring 
concepts into relationship as they moved across metaphors. Why, then, was I initially under the 
impression that Glynnis's talk was less mathematically sophisticated than Jonathan's? Was it 
simply because Jonathan made metaphors explicit in his story? In Table 1 I place parts of these 
transcripts side by to highlight other differences in the form of their talk. Above, I described how 
Glynnis and Jonathan used parallelism in similar ways to make the moves between metaphors 
more cohesive. This is indicated in Table 1 as a box with a solid line. However, the rest of their 
speech is structured very differently. Jonathan's appears to be neat and tidy, only including 
phrases that line up nicely in parallel (indicated in shaded boxes). In contrast, Glynnis includes 
an aside (lines 5-13) in which she describes the numbers the students were using in the task. 
Before and after this aside Glynnis inserts two 3-line stanzas that are grammatically parallel. 
This brings a sense of cohesion and connection between lines 1-3 and lines 47-49. It seems that a 
major difference may be in the economy of syntax, as opposed to the level of sophistication of 
their conceptual blends. 
 
Table 1. Comparing Glynnis's and Jonathan's Stories 

Glynnis Jonathan 
1  Actually  1  I had    meter sticks. 
2  one of the women 2  I held up  a meter stick. 
3 recognizing that from here to here was the 3  I said to them this is a meter stick. 
4 one whole  4    It    's one meter 
5  You know cuz I think    5   So this is the whole 
6  we were doing it yesterday  
7  and they were ordering one and   
8 one   
9 it was all one and  
10 one and  
11 it was still   
12 hundredths and 
13 Stuff like that. 
… 
47 I says so.  
48 You're figuring out that between here and here  
49 represents a whole.  
50 and the whole  has to 
51 be divided 

into what. 
Discussion and Conclusions 

Discourse and culture are related--language is spoken and interpreted differently in different 
contexts. Perhaps both teachers are performing knowledge of their particular students and 
schools in the form of their talk. Certainly, culture influenced my initial perception their talk. 
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Both teachers moved among important underlying metaphors, performing a key 
mathematics-for-teaching skill (Davis & Simmt, 2006). But does Jonathan's story perform a 
more sophisticated understanding of mathematics-for-teaching than Glynnis's? Maybe. Jonathan 
did sometimes make ideas explicit in a way that Glynnis did not. However, it is also possible that 
my initial perception was due to the comparative elegance of Jonathan's talk, an aesthetic 
evaluation of the storytelling that parallels something valued in the culture of mathematics. 
Einstein said of mathematical proofs, "We are completely satisfied only if we feel of each 
intermediate concept that it has to do with the proposition to be proved." (Luchins & Luchins, 
1990, p. 38). Perhaps values of the mathematics community have been used to judge teachers' 
mathematics-for-teaching talk and marginalize some mathematics-for-teaching competencies 
that facilitate student learning. Is it appropriate to apply the same criteria to mathematical 
pedagogical discourse? An elegant mathematical proof leaves out any indication of the messy 
work that led to it. If teachers and students are engaging in reasoning and proof, it is likely that 
the majority of their classroom talk will be ugly by mathematical standards. Additionally, 
mathematical proofs are written with others in the same discourse community as the intended 
audience. Teachers' audiences vary widely in regards to culture, age, children's backgrounds, and 
the like. Acknowledging that teaching mathematics requires more than classical mathematical 
knowledge means assuming that the discourse of mathematics-for-teaching will be different than 
the discourse of classical mathematics, in part because the context is different.  

My initial perceptions of the teachers were possibly based on how they identified 
themselves—that is, their own perceptions of their mathematical sophistication. Jonathan 
identified as "the math guy" and identified as mathematically competent by including 
mathematics-for-teaching in the content of his talk. Glynnis identified as "not a math person" and 
identified as less competent by avoiding mathematics-for-teaching in the content of her talk. 
Glynnis seems to be performing knowledge she is not even aware she has. What would be the 
influence teachers' practices if they recognized and valued the mathematics-for-teaching 
competencies they bring to the classroom?  

 Looking at the form of teachers' discourse for their mathematics-for-teaching competencies 
revealed competencies that the field has formerly overlooked. This study challenges narrow 
notions of competence. Further attention to the context-specific nature of mathematics for 
teaching is warranted, as is more work aimed toward broadening our notions of what counts as 
mathematics-for-teaching, so we can imagine, value, and build on a wider range of competencies 
teachers bring to the work of mathematics teaching. 
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Theoretical Framework 
This work is grounded in theories about cognition (i.e., knowledge) and teacher beliefs. 

Núñez, Edwards, and Matos’ (1999) theory of cognition is based on a situated approach that 
incorporates linguistic, social, and interactional influences. In essence, this theory claims “there 
is no activity that is not situated” (Lave & Wenger, 1991, p. 33). However, Núñez et al. (1999) 
argue that thinking and learning are also situated within biological and experiential contexts that 
shape our understanding of the world. These researchers contend that “knowledge and cognition 
exist and arise within specific social settings . . . and that the grounding for situatedness comes 
from the nature of shared human bodily experience and action, realized through basic embodied 
cognitive processes and conceptual systems” (p. 46). Thus, cognition is a multifaceted social 
phenomenon that is observed in daily practice and is encompassed by “mind, body, activity and 
culturally organized settings” (Lave, 1988, p. 1), such as methods courses and everyday 
mathematics classrooms. 

Beliefs are defined as existential presumptions, which are the personal truths everyone holds 
and are characterized by making judgments and evaluations about phenomena, subject matter, 
and individuals (Abelson as cited in Parajes, 1992). Individual beliefs endure even when they are 
contradicted by reason, evidence or experience (Parajes, 1992). Lortie (1975) contends that 
beliefs about teaching are developed at early ages and are well-established before students enter 
college. However, changing preservice teachers’ beliefs is possible if they have a gestalt shift 
(Pajares, 1992). Since classroom behavior is the result of beliefs that have been filtered by 
experience, altering preservice teachers’ experiences has the potential to change their beliefs 
(Parajes, 1992). Teachers’ beliefs must be inferred by analyzing their belief statements and 
behaviors (Goodman as cited in Parajes, 1992). Examination of these belief statements and 
behaviors are critical to understanding teachers’ beliefs about teaching and learning mathematics.  

 
Purpose of the Study 

The purpose of the study was to examine the influence of a reform-based mathematics methods 
course on elementary preservice teachers’ content knowledge and educational beliefs. The research 
questions that guided these studies were: 1) How did elementary preservice teachers’ mathematics 
content knowledge compare before and after taking a reform-based mathematics methods course? 
2) How did elementary preservice teachers’ educational beliefs compare before and after taking a 
reform-based mathematics course? 

 
Methodology 

Setting and Participants 
Participants were enrolled in one section of mathematics methods during the fall semester of 

2004 (n = 25): females (23) and males (2). The study was conducted at a large research university 
situated in an urban city in the northeastern U.S. The College of Education had an enrollment of 
approximately 2,100 undergraduate students during the 2004-2005 academic year. The participants 
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constitute a convenience sample since they were arbitrarily enrolled in the reform-based 
mathematics methods course. 
Data Collection, Data Sources, and Data Analyses 

Mixed methods (quantitative and qualitative) were used to collect data in this study. 
Quantitative methods were used to compare preservice teachers’ content knowledge and efficacy 
beliefs before and after taking the reform-based mathematics methods course. To measure the 
development of MCK we used a content knowledge test that measured what elementary teachers 
were required to teach (Ball et al., 2005). The tests consisted of 50 open-ended items that 
primarily addressed conceptual and procedural knowledge of fractions, decimals, and percents.  
We used case studies to collect and analyze qualitative data in this study. Case studies are often 
focused on a select number of participants for in-depth study (Lincoln & Guba, 1985).  
The cases in this study were selected based on the preservice teachers’ content scores to obtain a 
representative sample and to show how beliefs and content knowledge may be related. We used the 
average scaled score on the pretest (M = 63) and half the standard deviation to determine the cut 
scores for each category: high (>70); moderate (56-70); low (<56). We used stratified random 
sampling to select three participants from each category for cross-case analysis to obtain nine 
cases.  

Qualitative data sources included hand-written journals. Preservice teachers’ made 8 - 10 
journal entries. They were asked to reflect on their previous mathematics background knowledge 
for the first entry and on what they believed they learned during the semester for the last entry. 
Using the Constant-Comparison Method (Glaser & Strauss, 1967), we analyzed the preservice 
teachers’ journals to note changes or lack of changes in their belief system. Preservice teachers’ 
belief statements were coded and categorized based on the data that emerged. We used these data 
to support quantitative data collected in this study and to explain how preservice teachers’ belief 
systems are intertwined with content knowledge.  
 

Results 
 Mathematics Content Knowledge 

Bridget taught one section of elementary mathematics methods in the fall semester of 2004. 
Participants included 25 preservice teachers who took the mathematics content pretest in early 
October 2004. However, only 24 preservice teachers took the posttest in December of the same 
year. As shown in table 1, the results of a paired samples t-test (two-tailed) show a statistically 
significant difference between pretest (M = 63.17, SD = 16.418) and posttest scores (M = 80.04, 
SD = 12.067), t(23) = -7.766, p = .000. The effect size of these results found using Cohen’s d 
was 1.17, which is considered to be a large effect size (Cohen, 1992).  
Preservice Teacher Beliefs 

We selected nine cases (Joy, Mandy, Erin, Edith, Jamie, Yvette, Cathy, Joan, & Anita9) for 
qualitative analysis. Preservice teachers’ responded to queries about their mathematics 
background and beliefs at the beginning of the course and reflections on their beliefs and 
practices at the end of the course. These data were read and coded by Bridget and another 
mathematics educator who taught mathematics methods courses in the College for member 
checks. Analysis of the journals reveal eight factors related to educational beliefs emerged in the 
case study participants’ journals at the beginning of the reform-based methods course: (1) beliefs 
(i.e. judgment/evaluation); (2) values; (3) educational history; (4) affective states; (5) verbal 
                                                 
9 Pseudonyms were used for anonymity in Studies 1 & 2. 
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persuasion; (6) vicarious experiences (7) mastery experiences; and (8) content knowledge. Three 
additional factors, for a total of 11 factors, related to educational beliefs emerged from case study 
participants’ journals at the end of the reform-based methods course: (9) new knowledge; (10) 
personal teaching efficacy (i.e. self-efficacy); and (11) teacher efficacy (i.e., outcome 
expectancy). A descriptive analysis of their belief patterns are shown in Table 3. Preservice 
teachers’ educational belief statements will be compared and contrasted before and after taking 
the methods course. 
Comparison and Contrast of Educational Beliefs at Beginning and End of Course 

Belief statements. Belief statements (i.e. judgments/evaluations) were made about 
mathematics as a subject domain and/or mathematics teaching and/or learning in all nine cases at 
the beginning of the methods course. For example: 

I am a strong believer that children will learn better through inquiry and active learning. 
(Mandy) 
Many people dislike mathematics. (Yvette) 

In comparison, preservice teachers made beliefs statements in all nine cases at the end of the 
course just as they did at the beginning of the course. However, the belief statements were more 
robust at the end of the course: 

If math teachers would stop forcing students to memorize facts and lecturing and add 
hands-on activities, such as the ones we presented in class, math would be a more 
enjoyable subject. If the children enjoy it, they will perform better. (Anita)  

Value. Yvette was the only preservice teacher to make a value statement at the beginning of 
the course: I believe that math is very important because it is used in our everyday lives. 
However, Yvette’s statement, in conjunction with the one highlighted above, reveals some 
preservice teachers can dislike mathematics and still value it. Likewise, Cathy’s case was only 
one to refer to values at the end of the course: I still maintain the belief that math is essential and 
is everywhere. However, what is not clear from either of the journal entries is how these two 
preservice teachers might go about helping students to value mathematics.  

Educational history. In eight cases (all but Joy), preservice teachers included statements 
about educational history at the beginning of the course. Statements about educational history 
were prompted by Bridget’s request that preservice teachers’ describe how their educational 
background influenced their learning of mathematics in their initial journal entry. For example, 
Jamie stated: 

Math was one of those subjects that I used to love. My worst experiences were in 3rd 
grade and 10th-grade algebra. 

The data in Jamie’s case as well as several others were consistent with the findings of 
Charalambous et al. (2008) and Swars, Hart, Smith, Smith, and Tolar (2007), which suggest that 
educational histories influence teacher belief systems about mathematics content. 

Joan’s was the only case to refer to educational history at the end of the course: 
I was the student that just needed an example from the teacher in order to learn how to 
use a math concept. I never used interesting materials with math, which may be the 
reason I never enjoyed math class. Some students need to learn math with a hands-on 
approach. (Joan) 

However, what is compelling about Joan’s statement is she did not allow her educational history 
to stand in the way of the students’ needs. She realized that all students do not learn mathematics 
in the same way. Yet, it is unclear whether this was a modified, new, or sustained belief.  
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Affective states. Preservice teachers also made statements about their affective states in all 
nine cases in the beginning of the course. However, the affective statements of preservice 
teachers who were immigrants in the U.S. provided interesting caveats: 

I used to attend school in Bahrain. I had to memorize everything. I remember disliking 
having to memorize the times tables and doing long division. (Joy) 
I really don’t like mathematics. Many people dislike math. I don’t like a subject where 
there can only be one right answer to a solution. I am a foreigner in the U.S. and have 
been in this country for eight years. My country is now called Ukraine, but my native 
tongue is Russian. Coming from a place where mathematics was the key to a successful 
education, I can honestly say that in my former country math was something that you had 
to know how to do or else. (Yvette) 

These two cases illustrate that emphasis on memorization could have a negative impact on 
students’ belief systems (beliefs, attitudes and values) as they relate to learning mathematics 
regardless of their country of origin.  

In contrast, affective statements were made about mathematics and mathematics teaching in 
six cases (Joy, Erin, Edith, Jamie, Yvette, & Joan) at the end of the course. In three of these 
cases, feelings about mathematics changed as a result of the course:  

This class has opened my eyes to see that math can be fun. (Joy) 
I am happy to say that I no longer hate math, but I am intrigued at the endless 
possibilities I have in teaching math. (Erin)  
Since taking this course, my feelings about math have changed. The practicum had a lot 
to do with this because I learned how to make math lessons iterative and engaging for 
students. In this course I saw how important it is to use manipulatives in math lessons. I 
have never really liked math. (Joan) 

While these statements are encouraging, Parajes (1992) reminds us that newly acquired beliefs 
are vulnerable. On one hand she states that her beliefs had changed, and on the other hand she 
admits she “never really liked math.” Yet, it was Joan who realized that her dislike for 
mathematics may have been connected to how it was presented to her and not mathematics itself. 
Joan’s mixed message reveals the importance of field experiences in improving preservice 
teachers’ negative feelings toward mathematics (Hart, 2002). 

Verbal persuasion. Verbal persuasion was inferred from statements made in three cases 
(Cathy, Joan, & Anita) at the beginning of the course. One example of verbal persuasion is:  

My teacher told my parents that I was a “wiz at math.” (Joan)  
Interestingly, all statements related to verbal persuasion were made in cases where the preservice 
teachers had high content knowledge. No statements were made in the journals that could be 
classified as verbal persuasion at the end of the course. 

Vicarious experiences. Mandy was the only case study participant to include statements 
about vicarious experiences at the beginning of the course. She referenced Kay Toliver after 
watching Good Morning Ms. Toliver on the first day of class. 

I never learned math like that and saw [in Kay Toliver video] how much the kids were 
learning while they were having fun and connecting it to the real world.  

In contrast, vicarious experiences were mentioned in four cases at the end of the course (Joy, 
Mandy, Erin, & Edith). In two cases (Mandy & Erin), the influence of Kay Toliver tapes on 
preservice teachers’ belief was evident. These statements support Yoon et al.’s (2006) contention 
that teachers’ beliefs and efficacy can be improved with videos. Interestingly, all four of these 
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preservice teachers also mentioned the positive impact that peer teaching had on their beliefs and 
efficacy. For Edith, peers had a profound impact on her beliefs: 

Another part of this semester that I truly enjoyed was the learning community we 
developed. Everyone who was in my practicum was also in science and math methods 
courses. This was beneficial because we truly got to know and learn from our peers. 

Edith’s comment also provides a rather unique finding that suggests the importance of 
establishing a learning community. One’s peers can provide the support needed to sustain newly 
acquired knowledge and beliefs. Joy’s case pinpoints the importance of peer modeling on her 
beliefs: 

Having my classmates teach lessons also added to my collection of lessons that I could 
teach to my future students. 

This is also a unique finding that is not prevalent in the literature. Microteaching was a part of 
the mathematics methods course because Bridget did not believe she could evaluate preservice 
teachers’ pedagogy without seeing actual practice. The influence of peer teaching was a powerful 
finding that we did not expect, and it reinforced the importance of a positive learning community 
(Lave & Wenger, 1991; Lowery, 2002). 

Mastery experiences. In the beginning of the course, Mandy was the only case study 
participant to refer to mastery experiences: 

Being that math is my favorite subject to teach, I have already experimented with math 
lessons. For example, during a multiplication review, I had different centers with 
different games (Multiplication Bingo, dice, and flash cards). I have also visited many 
math websites and got some good ideas. 

Interestingly, Mandy connects the vicarious experience provided by watching the Toliver tape to 
her educational history and the mastery experience to her affective state. Moreover, the influence 
of the Kay Toliver videotapes enhanced the influence of her educational history. The visual 
images of students learning and having fun in the mathematics classroom was enough to inspire 
Mandy to try some ideas of her own. These statements support Parajes’ (1992) claim that teacher 
beliefs about best practices can be changed and Bandura’s (1997) contention that affective states 
influence efficacy. 

Likewise, mastery experiences were mentioned in one of nine cases at the end of the course: 
I realize from my practicum that my students loved to make music and dance so I came 
up with a way to use graphs to plot their dance moves. I then reflected on how my 
students loved treasure hunts and solving mysteries and put that all together to come up 
with the game: On our way to the treasure spot. Though there was a lot of work that had 
to go into this lesson, I loved it because it fun and involved learning that was meaningful 
for my students. (Jamie) 

Jamie’s willingness to think outside of the box to develop an authentic task to teach coordinate 
graphing provided her students with high-quality mathematics teaching. In order for such 
practices to be sustained, teachers’ beliefs must be reinforced with sufficient practice (i.e, time 
and use) (Parajes, 1992).  

Content knowledge. Finally, belief statements made in these cases provide information about 
these preservice teachers’ content knowledge before taking the reform-based course. Content 
knowledge statements, both implicit and explicit, were evident in five cases (Joy, Erin, Cathy, 
Joan, & Anita). For example:  

Math has always been my poorest subject. (Joy) 
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I was becoming familiar with the multiplication tables. Upon entering school, I found 
myself ahead of the other children. My interest in math did not wane. (Cathy) 

Joy’s statement about content is also a belief statement or judgment about her mathematics 
ability in relation to other subjects. Cathy’s statement suggests a relationship between content 
knowledge and interest in mathematics. Research studies that explore how content knowledge 
and interest are linked are needed to shed more insight on these two constructs.  

At the end of the course, preservice teachers made references to content in four cases (Joy, 
Erin, Joan, & Yvette). Joy’s belief statement was related to the PRAXIS as well as the 
mathematics content test: 

This class has been helpful for me because I have been practicing for the Praxis. If I were 
to take the content test again, I am confident that I would pass. (Joy)  

Additional Preservice Teachers’ Belief Statements at the End of the Methods Course 
Three additional factors related to mathematics teaching and/or learning emerged from the 

cases at the end of the course: acquisition of new knowledge, personal teaching efficacy and 
student outcomes. Each of these factors will be discussed in order. 

Acquisition of new knowledge. Acquisition of new knowledge was evident in five cases (Joy, 
Erin, Yvette, Joan, & Anita). A few examples of these statements are:  

I have learned so much through this course in the way of teaching theories, strategies, 
problem solving variations, teaching materials, and numerous math processes (Erin). 
Honestly, I do not know how I would teach math without this course. Throughout the 
semester, I have seen that it is not the actual content but the way you present it that really 
matters. I have also learned that there are many different ways in which children learn 
best. Some children perform better in a more structured environment, whereas others 
prefer a less structured environment. (Yvette) 
I have learned some important things in this class, such as memorization is not the goal 
of math. As a teacher, I want students to be able to critically think and come up with 
solutions to everyday problems. (Anita)  

These data imply that Bridget’s reform-based mathematics methods course influenced these 
preservice teachers’ learning in a myriad of ways. What is compelling is that Yvette realized that 
different students had different needs. 

Personal teaching efficacy. Preservice teachers also made comments about confidence and 
preparedness to teach mathematics in five cases (Mandy, Erin, Edith, Jamie, & Cathy):  

I feel that the math/science practicum has prepared me to teach, particularly in the areas 
of math. (Jamie) 
Through this course and my math/science practicum, I have much more confidence in my 
teaching abilities. (Erin) 

Outcome expectancy. Anita’s case was the only one of the nine to address student outcomes. 
Moreover, her comment specified what she believed to be the relationship between content and 
student outcomes:  

Knowing how to process information or manipulate facts to come up with sound solutions 
can increase one’s achievement.  

Student outcomes and achievement variables also shape teacher beliefs (Ernest, 1989). Teachers’ 
perceptions of students and their ability to learn mathematics will dictate their classroom 
behaviors (Walker, 2006). In some cases, negative perceptions of students lead to self-fulfilling 
prophecies that continue the cycle of low achievement, especially in large urban public schools 
(Cousins-Cooper, 2000; Walker, 2006).  
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Summary 
Data show the reform-based mathematics methods course had a huge impact on preservice 

teachers in these nine cases. Preservice teachers’ content knowledge improved considerably. We 
were particularly pleased that this was true in the cases were preservice teachers’ content 
knowledge fell into the low category. Furthermore, the three cases with the lowest initial content 
scores (Joy, Mandy, & Erin) had more robust belief statements (M = 5.00) as a group than 
preservice teachers in the moderate (M = 4.00) and high groups (M = 3.67) at the end of the 
reform-based methods course. These two findings show the reform-based course had a positive 
impact on these preservice teachers’ content knowledge and educational beliefs. While these data 
are sparse, they also suggest that content knowledge changed along with educational beliefs. 
Additional research is needed to validate this assumption.  

The study supports previous findings that methods courses and field experiences improve 
preservice teachers’ content knowledge (Ball et al., 2005; Kahan et al., 2003), which is situated 
in biological and experiential contexts (Lave & Wenger, 1991; Núñez et al., 1999). Content 
knowledge is also intertwined with educational beliefs, which are not context free (Parajes, 
1992). Most of the preservice teachers in the cases understood the importance of teaching 
mathematics in ways that students learn best: manipulatives, authentic tasks, games, and problem 
solving. Five cases reveal the importance of personal teaching efficacy (i.e, self-efficacy) on the 
teaching of mathematics. One case (Anita) reveals the importance of teacher beliefs and student 
outcomes. In light of these and other findings related to efficacy beliefs, a follow-up study to 
examine efficacy beliefs and its relationship to MCK is forthcoming. 
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We have developed a research and educational project that has the aim of improving teachers’ 
mathematical knowledge for teaching (MKT) in elementary and secondary schools in Mexico. 
Here we describe a part of this project that has the purpose of exploring the arithmetic 
knowledge for teaching of elementary school teachers. To this end, we designed and applied four 
different methodological instruments: classroom observations, an open questionnaire, a closed 
questionnaire and interviews. This diversity obeys our interest of comparing these instruments to 
determine their advantages and limitations to give a description of the teachers’ MKT. This 
article describes the results of this case study with eight teachers. 

Introduction 
A lot of evidence has been gathered with national and international evaluations, showing no 

substantial advances in students’ achievements, in spite of the curricular changes, new teaching 
materials and new technologies introduced in Mexico during the past few years at the elementary 
level. This, points to a very important factor which probably has been overlooked in all these 
policy changes: teachers’ knowledge. 

To remediate this situation, we have developed an educational project that has the purpose of 
improving teachers’ math knowledge for teaching at the elementary and secondary level. This 
started by piloting workshops at different educational levels, designed to help teachers to reflect 
on their practices and to learn through the interaction with other teachers, guided with an agenda 
and reading materials provided to them. This part of the project is being reported elsewhere. 
Parallel to the workshops, we designed and applied several instruments (classroom observations, 
open and closed questionnaires and interviews) to explore the advantages and weaknesses of 
each one of them in assessing the specialized knowledge teachers required in their practice 
within some topics of arithmetic. Our main objective is to gather information about the actual 
level of teacher’s knowledge, to guide us in better defining an effective teachers’ development 
program. This article will report on the findings of an inquiry about the usefulness of these four 
instruments in revealing and evaluating the specialized mathematical knowledge for teaching 
held by teachers in some particular topics of arithmetic. 
 

Theoretical Framework 
One fundamental aspect, the mathematical education research community has focused its 

attention on, is the different kinds of interrelated knowledge a teacher might need in his own 
practice. The general term Pedagogical Content Knowledge (Shulman, 1987) refers to a complex 
mixture of knowledge related to many components like content, pedagogy, organization of topics 
and problems, student conceptions, models, representations, activities, curriculum, etc. Some 
facets of this teachers’ knowledge are more closely related to the mathematical content, like 
understanding and extending student methods of solution, deconstructing one’s own knowledge 
into its elemental parts to make it more evident (Ball, 2000) or knowing the structure and 
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connections of mathematical concepts and procedures. Ball and Bass (2000) associated this 
special knowledge with the term: Mathematical Knowledge for Teaching. It is described as an 
“unbundled” complementary mathematical knowledge teachers need, to manage routine and 
non-routine problems. These authors identified four core activities related to this knowledge: 
i) Unpacking math ideas and procedures; ii) Choosing representations to effectively convey math 
ideas; iii) Figuring out what students understand; iv) Analyzing methods and solutions different 
from one’s own. Teachers' MKT represents a fundamental factor on students’ achievement. 
Evidences of this can be found in Hill, Rowan & Ball (2005). 

Based on different frameworks and methods of inquiry, there have been a number of research 
studies connected to teachers’ professional development projects in different countries. Amato 
(2006), within a mathematics teaching course to student teachers, conducted a study to improve 
their relational understanding in fractions, playing games (like trading on a decimal board). The 
author reported improvement in their understanding of mathematical and pedagogical 
knowledge, especially in multiple modes of representation. 

In a study investigating the Pedagogical Content Knowledge (PCK) of elementary school 
teachers in the topic of decimals, Chick, Baker, Pham and Cheng (2006) proposed a framework 
with three categories: 1. Clearly PCK. Elements included: teaching strategies (math related), 
student thinking, cognitive demands, representations, resources, curriculum and purposes; 
2. Content Knowledge in a Pedagogical Context. Elements included: profound understanding of 
fundamental mathematics, deconstructing content, mathematical structure and connections, 
procedural knowledge and methods of solution; 3. Pedagogical Knowledge in a Content Context. 
Elements included: goals for learning, student focus and classroom techniques. 

Powell and Hanna (2006) explored how teachers develop their MKT in the discursive 
interaction of practice. They extended the epistemological component of teachers’ knowledge, 
defining it as the teachers’ inferential awareness of the students’ existing and evolving math 
knowledge. This knowledge is essential for the teacher to make sense of students’ productions, 
ideas and arguments. Also, like some other previous authors, Seago and Goldsmith (2006) 
studied the possibility of using classroom artifacts like students’ work and classroom videos to 
assess and promote MKT. 

In addition to the quality of the mathematics content and pedagogy knowledge held by 
teachers, effective learning requires students to construct their own knowledge through 
exploration and interaction. According to Askew, Brown, Denvir, & Rhodes (2000), this process 
is productive if the next four components meet some necessary requirements: (a) Tasks are 
challenging, meaningful and interesting; (b) Talk facilitates learning and includes all sorts of 
teacher and students interactions; (c) Tools cover a range of modes and types of models; and 
(d) Relationships and norms help towards a social construction of knowledge. 

Using a case study approach within a collaborative action research Cooper, Baturo and Grant 
(2006) uncovered some characteristics of instructional interactions that lead to positive results in 
student learning. The main result of this study was that highly successful collaborations 
contained all of the following three levels of pedagogies: i) Technical – Practical “tips” related to 
a particular activity; ii) Domain – Teaching strategies proper to a particular topic; iii) Generic – 
Teaching methods valid across math topics, like Krutetskii’s: “being flexible”, “reversing” and 
“generalizing” or Hershkowitz’s: “use of non-prototypic examples”. 
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Methodology 
The study took place in three public schools in Mexico City, with eight, fifth and sixth grade 

teachers participating (identified here by PE, MT, AD, OL, MA, CA, MI and YO), with an 
experience in teaching of between 8 to 27 years. We applied the instruments in the sequence: 
1. Classroom observation; 2. Open questionnaire; 3. Second classroom observation and 4. Closed 
questionnaire (for PE, MT, AD and OL) or an interview (for MA, CA, MI and YO). 
The day and subject matter of the classes observed were chosen by the teachers themselves and 
were videotaped. Their analysis was based on two separate lines. The mathematical content was 
assessed according to the four core activities of MKT listed before, identified by Ball and Bass 
(2000). The pedagogical techniques were evaluated according to Askew’s four components: 
tasks, talk, tools and norms. 

The open and closed questionnaires were designed taking as a model the questionnaires 
constructed and used by the group: Learning Mathematics for Teaching, of the School of 
Education at the University of Michigan (Hill, et al., 2003; Hill and Ball, 2004). The open 
questionnaire contained twelve items and the closed questionnaire consisted of thirteen multiple 
choice items, both covering different topics (operations with natural numbers; mental calculation 
and estimation; fractions and decimals; proportionality and units conversion) and related to the 
four aspects of Ball and Bass mentioned before. In the results below we reproduce and analyze 
three items of the Open Questionnaire, addressing the following aspects and topics: OQ2 – 
Students’ errors in additive problems; OQ4 – Illustrations and representations in division of 
integers; OQ9 – Methods and solutions in estimation; and two of the Closed Questionnaire: CQ5 
– Students’ thinking in fractions; CQ11 – Evaluating claims or explanations in decimal numbers. 
The teachers’ interviews were based on some of the items of the closed questionnaire, but 
probing further the answers and knowledge of the teachers. The closed questionnaire and the 
teachers’ interviews were left at the end since they contain the type of knowledge we wanted to 
find out from the teachers, so we didn’t want to give them this information before the classroom 
observations took place and the open questionnaire was administered. 
 

Results 
Classroom Observations 

We will describe first some of the classroom observations that took place (the teacher is 
identified with boldface letters). 
MA: Used a coin of 20 pesos as unit to talk about percentages. Other coins were related to it 
through percentages. He directed the lesson through questioning and sometimes requested the 
students to explain their answers. He often didn’t express himself in a precise manner and let the 
students do the same, which generated some confusion (for example, when asking “How much 
do I have here?” he expected a percentage answer but the students, not knowing, answer in 
pesos). In one of the interventions, he wrote on the board: “5 = 1/4 = 25%” trying to clarify 
things. He evaded the wrong answers given by the students, by asking “Are you sure?" or by re-
asking the same question. 
CA: The content of the lesson was the fraction as a ratio, using a drawing and writing a list of 
questions on the blackboard about it. A lot of time is spent on just copying this. Even before the 
students had time to answer them, he wrote another two unrelated ratio questions on the board. It 
was very hard to detect anything. There were no explanations. The drawing was the only 
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representation. Only a very few questions were asked orally and when one of the answers was 
wrong, it was sanctioned with a frown. 
PE: The content of the lesson was the decimal system. He showed 10 bars representing the 
numbers 1 through 10, each of different color and size, and then tried to distinguish between 
their absolute and relative value. He explained for example that the red “has two absolute values: 
the two and the red.” And that “the absolute value is the real value.” Then he wrote on the 
blackboard “M   C   D   U” and puts the red bar in different positions to ask its value now. At the 
end, they represented in this way, four digit numbers. The time was spent mostly on introducing 
the material. Again we observed the teacher put across ideas in a very imprecise manner and 
corrected the wrong answers of his students without any explanation. The “homemade” material 
used was somewhat ineffective. 
MT: Also the content was decimal system. From a textbook, he read aloud some rules for the 
students to write down in their notebooks and then followed them to form numbers with a 
“homemade” material, which the same teacher has trouble using. He dictated the numbers 
wrong: “8 units, 40 tens (instead of 4 tens), 500 hundreds (instead of 5 hundreds)…” He even 
told his students to write the number 503 in “expanded form” as 30500 (instead of 3 + 0×10 + 
5×100). This caused some students to write 126809 when the number 908621 was read by him. 
In general, the inquiries and explanations of the teacher were in great part confusing to the 
students. The teacher could not detect the errors made by the students. 

We observed a second class of this teacher, now on addition of fractions. His explanations 
were, in general, confusing and many times wrong. When adding two fractions, he illustrated it 
by representing other fractions with squares. The students added numerators and denominators, 
guided in part by the teacher. In another exercise on the blackboard, the teacher simplified the 
fraction 3/4 to 1/2, saying that the 4 you can half it but the 3 you cannot but you can take a third 
of it (by the same reasoning, he simplified 14/5 to 7/1). In the verbal problem: “… a wood frame 
of 3/4 thickness is hammered into a wall with 1 and 1/4 nails. How much of the nails got 
introduced into the wall?” the teacher used the wrong operation getting 8/4. Here we observed a 
very deficient common math knowledge of the teacher. 
MI: This class was about units and subunits. He insisted that the students know the table: “Kl 
(kiloliters), Hl, Dl, l (liters), dl, cl, ml (milliliters)” and how it tells you how to move the point a 
certain number of places in a conversion. So the teacher centered the learning on rules and 
memorization. In some problems, he applied the “rule of three” to solve them. After a few 
exercises, he moved to the table of grams, following the same procedures. 
In a second class on fractions, this teacher wrote on the blackboard a “conceptual map of the 
fraction”, connecting it to seven boxes (Reading, Types, Parts, Problems, Equivalence, 
Conversion and Operations), each of which, was connected to some ideas. For example, the box 
of Equivalence was connected with i) multiplication makes it bigger and ii) division makes it 
smaller. Then he illustrated equivalence of fractions with several exercises. 
YO: He worked a few examples of the addition of fractions, following the usual algorithm 
(finding a common denominator) and then solved a few problems. There were no explanations. 
He centered the lesson on how to do the procedures. Errors of the students are not really 
addressed but just dismissed by saying “you are wrong”. 
AD: This teacher worked on decimal numbers. First he wrote on the blackboard a “conceptual 
map about the decimal point” (somehow giving its characteristics), which lacks meaning to the 
students and they only copied it. He then compared a list of decimal numbers, but the exercise 
was unchallenging because it could be solved ignoring the decimal parts. At the middle of the 
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lesson, the teacher changed to the topic of percentages. Again, we observed some imprecisions 
and conceptual errors. For example, for the number 2563.50, the teacher expressed that “the fifty 
are tenths”, and when a student wrote the result of 500 – 391.90 as 109.90, the teacher seemed 
not to notice it. 
OL: The subject was the decimal system. He organized a “cashier” game with dice and bills, and 
the children played on each table. Although he didn’t ignore the students’ errors, he also didn’t 
do anything to find out more about the source of the problem. 

In general we observed many ambiguities on the expositions given by the teachers. These, 
often confused students. Most noticeable was the emphasis on the mechanical aspects of math, 
learning by repetition. In general, the teachers gave very few reasons or explanations related to 
the procedures followed. The orientation was towards “how to do it”. Although, it is hard to 
assess inside the classroom the breadth of the mathematical knowledge for teaching (since 
teachers teach what they feel they know and students don’t challenge this knowledge), it was 
clear that, in some cases, there was a lack even of common math knowledge. 
Only one of the eight teachers guided the lectures through questions and requested the students 
to explain their answers (but only when they were right). The rest of the teachers, asked 
questions that needed a “yes” or “no” answer, or “the result”, which then the teacher proceeded 
to explain. The representation models used were mostly concrete materials or drawings of the 
situations that had only a visual support. The teachers didn’t try to explore the sources of the 
students’ mistakes, avoiding their wrong answers by repeating them in a questioning mode, or by 
saying “Are you sure?”, or by repeating the question. 

This small sample of eight teachers in Mexico City gives a “statistical sample” of what to 
expect in general, but it is not even representative of the whole country where we anticipate less 
prepared teachers. Thus, this shows the need of a comprehensive teachers’ program, putting in 
evidence what areas should be emphasized. 
Open Questionnaire (some of the items) 

Here we will describe the answers given to three of the items (2, 4 and 9) of the open 
questionnaire (OQ). The questions presented to the teachers are given first. 
OQ2. “In a store, the cash register has $254 at the beginning of the sales day and $967 at the end 
of the day. How much was sold that day?” Some students wrote the answer $1221. How would 
you explain to them how to solve the problem? 

Most of the teachers articulated that they would tell the students that “subtraction is the 
correct operation” or that “they have to take the difference”. They also said that they would show 
how to make the subtraction with concrete material. However, there were not explanations of 
why this was the correct operation instead of a sum, except that one teacher (OL) said that he 
would tell them that “the result cannot be more”, and another teacher (MI) would represent this 
problem as: 254 + ? = 967. 
OQ4. For 100÷15, write several problems which are related to different concepts or 
interpretations of this division, and represent their solutions accordingly. 

Five of the eight teachers (MA, CA, MI, YO and OL) gave a partitive type situation like: 
“There are 100 chocolates which have to be distributed between 15 children.” Only two (YO and 
AD) gave a measurement type situation like: “How many pair of socks can I buy with $100 if 
each one cost $15?” Two didn’t give any problems. PE said “I have no idea” and MT even wrote 
an incorrect result: “100/15 = 15”. 

No representations were given except for the standard algorithm of the division. 
OQ9. a)  Estimate the total of the following bill (explain how you did it): 
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2 Shirts    $ 388.50  each 
6 pairs of socks   $ 24.20  each 
2 pants     $ 173.90  each 
b)  A student wrote: 1000 + 120 + 400 = 1500. Explain and evaluate what he did. 
Four teachers “estimated” the result as: 1400 (MA), 1300 (MI), 1280 (AD) and    1276 (OL). The 
other four, calculated the exact result (CA with an error). 

With respect to part (b), three (CA, MI and AD) said that the student rounded, but AD said 
that “the student exceeded on his rounding.” Two (PE and MT) said that the student made an 
approximation of each multiplication without being exact. The other three teachers (MA, YO, 
OL) stated that the student didn’t take into account the 20 in the sum and MA added that he 
would ask the student to review his result. 

The open questionnaire was very revealing about the specific teachers’ ideas and conceptions 
explored in each of the items. 
Closed Questionnaire (some of the items) 

Here we will describe the answers given to two of the items (5 and 11) of the closed 
questionnaire (CQ). The questions presented to the teachers are given first. 
CQ5. In an activity, several students ordered some fractions, from small to large, in the 
following way: 8

7 , 7
6 , 4

5 , 3
4 , 1.  What criteria are they using to do this? 

The bigger the denominator, the bigger the fraction. The unit is the biggest of all the fractions. 
The bigger the numerator, the smaller the fraction. The unit is bigger than the proper fractions 
but smaller than the improper. 
The bigger the denominator, the smaller the fraction. The unit is the biggest of all the fractions. 
The bigger the numerator, the bigger the fraction. The unit is the biggest of all the fractions. 

In this question, only one teacher could identify the right answer (c). All the others chose (b) 
or (d) as their answers. 
CQ11. Consider the three decimal numbers: 0.245, 0.2 and 0.0069. Mark with a check , from 
the following assertions, those which are correct. 
The number 0.245 is the biggest because contains more digits different from zero. 
The number 0.0069 is the smallest because it gets to the fourth decimal position. 
If I multiply 0.245 by 10 we get 2.45 because thousandths are converted into hundredths, 
hundredths are converted into tenths… 
If I divide 0.0069 by 1000 we get 6.9 because we must move the point three positions. 
A decimal number divided by 0.1 always gets smaller. 

In this item only 40% gave the correct responses. Parts (b), (d) and (e) were the most 
difficult, in which only about 25% of the teachers gave a correct answer! (Random answers 
would yield 50%!) 

One of the difficulties with the close questionnaire is that random answers produce a 
“background noise” that can make them somewhat unreliable. In addition, it is a very delicate 
instrument since in reality, the items might need to be redesigned and recalibrated for different 
groups of teachers being evaluated. 
 
Interviews 

The interviews with four of the eight teachers were based on some items of the closed 
questionnaire, where the interviewer asked the teachers to make explicit their reasoning. Due to 
the space constraints, we will not show specific results of this instrument, but, like the open 
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questionnaire, it also gives very specific and useful information about teachers’ knowledge and 
their ways of thinking. This however depends strongly on the questioning skills and extent of the 
knowledge of the interviewer. 
Comparison of Different Instruments 

In the following table, we compare, in a somewhat coarse manner, the results of the different 
instruments applied. The B represents “one of the best in that instrument” for the group of eight 
teachers, and W, “one of the worst”. 
 

Teacher: Classroom: OQ complete CQ complete Interview 
MA B  –  
CA W  – W 
PE  W W – 
MT W W  – 
MI  B – B 
YO   –  
AD W B B – 
OL B   – 

 
The table shows a strong consistency across the instruments applied. The only teacher that 

has both, W and B, in different instruments is AD. However, analyzing further this case, 
although he showed a good content knowledge in both questionnaires, the classroom itself 
requires more of a mixture of pedagogical and content knowledge, where this teacher showed a 
deficiency in pedagogical techniques and students’ knowledge, which would have helped him 
decide what proper and challenging tasks are for his students. 

The classroom observations give substantial information about the pedagogical knowledge of 
the teacher, but not so much about his content knowledge, because, the teacher decides the 
specific subject-matter he wants to discuss in class. In contrast, the interviews and the open 
questionnaire provide a good look at the math knowledge for teaching, because they can be 
targeted to specific topics and concepts. 

If well designed, a closed questionnaire has the advantage that it can be applied to a large 
number of teachers, either, giving some comparisons between different groups of teachers or, the 
changes that a group of teachers might have “before and after”. However, it is sensitive to 
random answers. Its biggest disadvantage is that you cannot observe and examine the teachers’ 
thinking as in an open questionnaire or an interview. These last two can perform very effectively 
as statistical indicators of the knowledge of the whole population of teachers. 
 

Conclusions 
The classroom observations confirmed our suspicions that teachers, on the pedagogical side, 

have a reduced knowledge in teaching strategies, representations and purposes of math topics. 
The whole instruction is geared towards the operational aspect of math, learning by repetition 
and practice. Also, with respect to their interaction with their students, we observed that it is kept 
to a minimal level of a few questions and very short responses without argumentation. They 
ignore or evade wrong answers and thus, they do not address the errors and confusions of their 
students. We also noticed some shortages and conceptual difficulties on their content knowledge. 
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It is evident from this study that there should be efforts to improve the teachers’ (common 
and specialized) mathematical knowledge and their ideas on pedagogical knowledge. This should 
be done very closely to their actual practice; taking into account their deficiencies and helping 
them make better use of their textbooks and materials. 

Finally, one of the most essential elements of MKT, “Profound” Understanding of 
Fundamental Mathematics, has to be looked at more closely and defined more precisely. 
Comprehending math concepts or ideas could be achieved at very different deepness levels. It 
would be practically impossible for a teacher to “master” all the subject matter with a great deal 
of insight. So it would be important to define in what degree teachers’ knowledge is needed in 
their practice, for each specific concept or idea. 
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This study investigates effective interventions for students with learning disabilities (LD) and 
healthy ways to collaborate between special education and mathematics teachers. Twenty-four 
teachers were interviewed and responded to Likert-scale questions. The results indicate 
teachers’ knowledge, attitudes, and perceptions vary according to their job role. Both groups see 
inclusion as successful if they consistently employ certain strategies and those appear to 
increase the academic progress of the student with LD. These strategies are shared in the paper. 
The two groups have different views about benefits and challenges of inclusion, which suggest 
the needs of further discussion on the communication part of collaboration. 
 

Introduction 
Students with learning disabilities have often struggled with acquiring the needed skills to 

succeed at mathematics at their grade level. There are suggestions and research based practices 
widely available, but there is a gap between teachers’ knowledge and the instruction that 
provides access to the general education curriculum. Collaboration between special and general 
educators, as well as training on current best practices, could benefit all students. 

Principles and Standards for School Mathematics (NCTM, 2000), No Child Left Behind 
(NCLB, 2001) and the Individuals with Disabilities Education Act (IDEA, 2004) mandate that 
all students receive access to age appropriate curriculum, but this is not easily achieved. NCLB 
was amended in 2007 with this issue in mind (http://www.ed.gov/legislation/FedRegister/finrule/2007-
2/040907a.html). The amendment stated that a small number of students may not meet IEP goals, 
even with appropriate instruction. This amendment was meant for students with severe cognitive 
disabilities, so its impact on the instruction of students with learning disabilities will be minimal, 
but this indicates that the government is beginning to recognize the many factors that go in to 
successful teaching for students with disabilities. It does not, however, lessen the burden on 
general and special education teachers to meet the goal of improving results and functional 
outcomes for students with disabilities. 

 
Theoretical Framework 

Students with mathematical disabilities can benefit from many types of interventions. Early 
intervention can provide benefits, but continued remedial intervention is generally necessary for 
students with mathematical deficits (Fuchs & Fuchs, 2001; Fuchs et al., 2008; Maccini & 
Hughes, 1997). It is also imperative to identify the exact nature of the deficit. Interventions for 
computation may be different from interventions for difficulties in understanding word problems. 
Students with mathematical disabilities often struggle with counting and are not able to retrieve 
answers from memory (Fuchs et al., 2008). It is common for students to have deficits in both 
computation and problem solving, but the remediation should still be specific to the area of need 
(Fuchs et al., 2008). 

Direct instruction, which involves teaching problem solving strategies, rules and principles in 
an explicit manner, has been shown to be effective for students with learning disabilities and 
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those at risk for academic difficulties (Baker, Gersten, & Lee, 2002). Explicit instruction focuses 
on a great deal of teacher modeling to help the students learn to ask questions that lead to solving 
problems (Cardelle-Elawar, 1992). 

Effective assistance includes tutors who have been trained in computation remediation. These 
tutors can teach strategies and help reinforce effective techniques (Baker, Gersten, & Lee, 2002; 
Fuchs et al., 2008). Peer assisted learning can encourage a low achiever to continue their 
attempts to master a skill. It also assists the teacher, because it allows more students to be 
engaged, with one-on-one assistance, in the same amount of time as teacher led instruction 
(Kunsch, Jitendra, & Sood, 2007). A meta-analysis of peer mediated intervention research 
indicates more success when the interventions were conducted in general education classrooms 
(Kunsch, Jitendra, & Sood, 2007). Helping general and special educators learn these specific 
instructional strategies may benefit the students who are included for mathematics instruction. 
“For inclusion to be successful, several factors are important: (a) qualified personnel, (b) 
available support services, (c) adequate space and equipment to meet the needs of all children, 
and (d) positive teacher attitude toward inclusion” (Leatherman & Niemeyer, 2005, p.23). 
Collaboration among professionals has to go along with the strategies, training and equipment. 
Research has shown that collaboration between general and special educators is the key to 
successful inclusion (Cole & McLeskey, 1997; DeSimone & Parmar, 2006; Lerner, 2006; 
Proctor & Niemeyer, 2001). When both professionals use their knowledge of specific strategies 
to modify lessons for students with learning disabilities then they can fill in the gaps between 
content knowledge and knowledge of effective strategies (van Garderen, Scheuermann, Jackson, 
& Hampton, 2009). This means helping the general education teacher to do more than offer a 
seat to a student with a disability. The teacher must provide substantial and specific feedback 
throughout the lesson (DeSimone & Parmar, 2006). 

This study was designed to examine inservice teacher knowledge and attitudes toward 
inclusion, interventions, and collaboration between special education teachers and mathematics 
teachers. This study is an effort to investigate perceived effective interventions and healthy ways 
to collaborate between special education teachers and general education teachers. The specific 
research questions for this study are as follows: (a) What are the factors that influence teacher 
attitudes toward inclusion, and (b) What were special education teacher and mathematics teacher 
perceptions about effective ways to collaborate in the inclusive classroom? 
 

Method 
Participants 

The participants of this study were 24 currently employed inservice teachers. They taught in 
Kindergarten- 8th grade. Their areas of certification included K-12 Intervention specialist, 1-8 
Elementary Education, Middle Childhood Mathematics, Language Arts, and Social Studies. 
Seven teachers were currently teaching special education and seventeen teachers were currently 
teaching general education classes. The median number of years in the teaching field was 17 
years. This group expected to teach students with learning disabilities in the mathematics content 
area on a daily basis. 
Data Collection 

Two data sources, questionnaire responses and interview data, were used for this study. 
Twenty-four practicing teachers were surveyed and interviewed about their views concerning 
collaboration, knowledge in mathematics and special education, and what would help them better 
include students with learning disabilities in their mathematics instruction. In the survey, 
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participants were asked to respond to a four point scale with 0 being no knowledge to 3 being 
very knowledgeable about the area. The survey questions also include open ended questions 
regarding their perceptions of the benefits to collaboration between special education teachers 
and mathematics teachers, as well as challenges to collaboration. The survey questions can be 
found in Table 1. 

Structured interviews were used in this study to provide insight into practitioners’ knowledge 
and attitudes toward inclusion and collaboration between mathematics teachers and special 
education teachers. The interview questions were used to identify possible factors related to the 
teachers’ knowledge and attitudes toward inclusion and collaborative instructional procedures 
used in the classroom. Twenty open-ended interview questions allowed the participants to 
discuss the issues encountered implementing interventions and collaboration with other teachers 
in inclusive classrooms. These questions helped the authors to understand the teacher’s attitude 
toward inclusion, collaboration, and the correct way to implement new interventions in the 
classroom. The individual interviews that were conducted lasted from 20 minutes to 1 hour. 

The participants were asked about their knowledge of mathematics and interventions, 
including strategies they routinely use to assist students with mathematical learning disabilities; 
when and how they assist these students; their understanding of the mathematics curriculum; 
mathematics concepts they feel the most comfortable teaching; kinds of professional 
development they obtained to improve their teaching of mathematics; their familiarity with the 
RIT (Response to Intervention Techniques); ways of documenting the intervention techniques 
they use; and the IEP process. Participants’ perceptions about the IEP process, including students 
with learning disabilities for mathematics with same age peers, and inclusion in mathematics 
instruction for all the stakeholders were also investigated. Also, participant teacher attitudes 
toward inclusion and collaboration were investigated in the areas of: collaborating with other 
teachers to adapt the learning environment for mathematics lessons; ways to collaborate together 
to adapt the environment; collaborating with other teachers to modify mathematics lessons; and 
collaboration strategies/techniques they routinely use. 
Data Analysis 

Survey data were analyzed using a spreadsheet to summarize descriptive data including 
frequencies and percentages. The interviews were analyzed for themes as they evolved from the 
written transcription. Similar ideas from survey data and interviews were placed into broad 
categories, and specific categories were defined within each question. After all the information 
from the data sources was categorized by topics, a content analysis was conducted to extract 
similar themes and ideas within each teacher’s case (Patton, 1990). 
 

Results 
Results indicate that the majority of participants perceive themselves as somewhat 

knowledgeable about collaboration, utilization of response to intervention techniques, 
mathematical content, and IEPs (see Table 1). 

Figure 1 depicts the perceived benefits and challenges of inclusion that the teachers 
experienced or viewed. The participants indicated gaining knowledge, sharing ideas, teaching 
better, and collaboration were the perceived benefits. The mindset/skills of other teachers was 
the most often listed challenge, followed by time, assessment and ownership. Two participants 
noted no challenges. The survey results informed the researchers that the participants considered 
themselves to have the knowledge to teach the subject matter. The fact that they felt sharing 
ideas was beneficial indicates that this group was open to learning more about effective teaching 
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practices. The mindset and skills of other teachers was listed as a challenge by 75% of the 
participants. This indicates that perceived equity in knowledge and collaboration skills are very 
important and should be addressed by schools if they want successful inclusion. 

 
Table 1 

Knowledge, Attitudes, and Perceptions 
Questions Mathematics (%) Special education (%) 

No Litt
le 

Som
e 

Ver
y 

No Litt
le 

Som
e 

Ver
y 

Assisting students with learning 
disabilities to access the general 
education mathematics curriculum for 
my grade level. 

0 12 82 6 0 0 75 25 

Collaborating with other teachers to 
modify mathematics lessons. 

0 12 76 12 0 25 25 50 

Collaborating with other teachers to 
adapt the learning environment for 
mathematics lessons. 

0 35 59 6 0 25 25 50 

Understanding the mathematics 
curriculum 75 my grade level. 

0 6 35 59 0 0 75 25 

Utilize response to intervention 
techniques. 

6 47 35 6 0 0 75 25 

Understand the IEP process, in regards to 
mathematics goals, for students with 
learning disabilities assigned to my 
classroom. 

0 29 65 6 0 0 50 50 

 

 
Figure 1: Benefits and challenges. 
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Teacher Knowledge in Mathematics, Interventions, and Inclusion 
Both mathematics and special education teachers felt most comfortable teaching mathematics 

concepts from their own grade level. Areas that mathematics teachers felt needed improvement 
were mainly mathematics content areas, achievement, and technology (Smartboard™); special 
education teachers wanted to learn about assisting students with LD, different strategies, 
collaboration with a special education teacher, and number sense. Both mathematics and special 
education teachers wanted to learn more, student-centered, hands-on activities, and algebra. 

Surprisingly, 22 of 24 participant teachers were not very knowledgeable about Response to 
Intervention Techniques (RIT). Mathematics teachers responded that they decide appropriate 
intervention strategies for the following reason (in the order of frequency): based on student’s 
need, intervention teacher’s suggestion, team decision, trial and error, and/or based on data 
(student achievement). Special education teachers’ reasoning is in the following order: use 
various data, do not use any, trial and error, based on student’s need, and/or Ohio Standards. 

With regard to including students with disabilities, the participant teachers had different 
views. Half of the special education teachers felt that including students with learning disabilities 
for mathematics with same age peers at their school was unsuccessful, and the other half of them 
felt unsure. Mathematics teachers’ responses were divided: not sure, need to include them, and 
no success. 

 
I think [inclusion is] unsuccessful at our school cause it rarely happens. Now that special ed 
kids, IEP kids are to pass the OAT, the Ohio Achievement Test, oh my goodness, the regular 
teachers are getting really interested in seeing that the special ed kids are successful. So 
there’s more openness and more nervousness from them. The only thing is I’m starting to 
feel like there is a lot of finger pointing blaming the special ed teacher, me, for the students’ 
lack of abilities and skills and when I receive a student he/she may be behind or deficit 2-3 
years already. (Special education Teacher W) 
 
I do [think inclusion works]. When I first started teaching mathematics I had a pull out class 
and they didn’t have any examples as to what, they didn’t have any higher level thinkers in 
there. So every time you would come up with a question they wouldn’t understand. You had 
no peer interaction, no discussion, nothing to go from. So having them in a regular classroom 
helps them tremendously because they have that discussion to go off of and basically I don’t 
want to say peer tutoring, but peer examples as to how things are being solved other than just 
the teachers. (Mathematics Teacher I) 
 

Both mathematics and special education teachers stated that team work is the key for the success 
of inclusion. Mathematics teachers addressed students’ group work (interacting) and peer 
examples (watching others) as benefits of inclusion. 
Strategies to Assist Students with Mathematical Learning Disabilities 

The participant teachers believed that mathematics teachers should know that students with 
LD learn differently and teachers should teach them differently. They shared more than ten 
strategies to teach students with LD. Some strategies were used by both special education and 
mathematics teachers; some seem to be used only by either special education or mathematics 
teachers. Common strategies routinely used by mathematics teachers were: modifying lessons 
(slower pace and lower level content), working (helping) with the kid(s) individually, giving 
extra time, group work, and/or getting help from volunteer tutors. 
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I might pair them up with someone who does get it. Allow them manipulatives and might 
spend more time with them if no one else needs my assistance at the time and just use 
different ways to approach the same question. Use visual cues, auditory cues, manipulatives, 
kinesthetic, actually doing it. (Mathematics Teacher M) 

Some strategies were reported only by special education teachers: using textbook, daily facts 
practice, and reading out loud. 
 

For mathematics we used a text book and followed the text routinely through each chapter 
following the standards. We also did a daily facts practice to work on time. When it came 
closer to the OET tests we did practice questions that were similar to the OET test questions. 
That is when we let go of the book to focus more on the OET. (Special education Teacher A) 
 

Some strategies were only reported by mathematics teachers: lecturing, reteaching, assistance 
from volunteer tutors, using different cues, and/or retaking tests. Most special education teachers 
(and 12 % of mathematics teachers) reported that they use manipulatives to assist students with 
LD. Some other strategies reported by both groups were: demonstration, intervention based on a 
specific student need, and physically relocating students (to the front) (closer to the special 
education teacher). 
Collaboration among Mathematics and Special Education Teachers 

According to the participant teachers, physical convenience or common needs/interest 
promoted collaboration: among same grade teachers, same subject (mathematics) teachers, 
and/or special education teachers in the building. More than 50% of participants viewed talking 
to other teachers as the most routinely used collaboration strategy. Mathematics teachers co-plan 
and have grade level meetings more frequently than special education teachers. Collaboration 
occurs quite informally whenever they have time (lunch, before or after school, child's special) 
and/or during a team meeting. 

According to the interview data, mathematics teachers collaborate together to adapt the 
environment in various ways. The majority of them work together by planning together, holding 
team meetings, and creating group work. A small number of teachers responded that they do not 
know, do not change the environment, or do nothing. Also, technology (Smartboard™), hands-
on, pull out (reading the test aloud), seating the children in a quiet place or close to the teacher 
were considered the collaboratively adapted environment by the rest of the mathematics teachers. 

 
A lot of times we do it, we have a large class teaching, but also we have the kids sitting and 
we put their tables together so they have smaller groups of where their desks are. We have 
them work in the hall. We have other areas where we will sit the kids in a quiet place. We 
have different areas where they can get a lot of manipulatives. They can work there or the 
computer area, so I guess we kind of do it around the room like that. (Mathematics Teacher 
M) 

 
Having a wheel chair in the room and using new techniques were unique responses by special 
education teachers. 

The participant teachers suggested the following strategies for enhancing student learning: 
more interactive approaches; understanding the child; planning together-working together; data 
driven instruction; smaller class size; being patient, creative, hands-on; more resources, 
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discovery approach, teacher knowledge, multiple approaches, new methods, and being open 
minded. 

Concerning teaching students with LD, the participant teachers wanted to learn more about: 
ways to include students more, more learning strategies/alternative ways, more hands on, how to 
reach them more, be open to new ideas, more of the resources, other intervention techniques, 
assessment, how to motivate them, and what causes a learning disability. 
 

Discussion/Implication 
According to this study, the factors that influence teacher attitudes toward inclusion are many 

and sometimes depend on which position they have, mathematics teacher or special education 
teacher. The special education teachers may have the perception that the general education 
teachers care more about the students currently because of mandated testing. If the special 
education teachers feel the success or failure of a student still rests only on their shoulders, they 
may feel unsupported by peers and administration, and therefore determine that inclusion is not 
successful. The mathematics teacher may feel that inclusion is successful if the students show 
more skills in the included setting, but if the students are not making acceptable progress, they 
are also apt to determine that inclusion is not successful. Both groups see inclusion as successful 
if they consistently employ certain strategies and those appear to increase the academic progress 
of the student with LD. 

Special education teacher and mathematics teacher perceptions about effective ways to 
collaborate in the inclusive classroom also vary according to their job role. In general, perceived 
benefits include gaining knowledge, sharing ideas, improved teaching skills and collaboration. 
The challenges included: the mindset/skills of other teachers, time to plan, ways to assess 
students with LD, and ownership in terms of the responsibility of teaching the student with LD. 

In order for teachers to have more positive attitudes toward inclusion, professional 
development focusing on children with disabilities and hands-on activities for students with 
special needs, administrative support, and appropriate support personnel in the classroom are 
needed (Leatherman & Niemeyer, 2005). 

Addressing the perceived challenges and bolstering strengths should be a top priority for 
administrators seeking improved collaboration and a better whole school attitude toward 
inclusion. The need for training in the areas mentioned, such as RIT, by the participants is 
important, but more important is the level of communication between both groups. Both groups 
list benefits of inclusion, but they list different benefits. Sharing ideas, gaining knowledge and 
teaching better were perceived benefits for mathematics teachers, while collaboration, helping 
others and meeting student needs were perceived benefits for special education teachers. An 
astute administrator would see that each group values slightly different things. While the 
mathematics teachers hopes to gain knowledge about working with the students with LD the 
special education teacher hopes to find someone to collaborate and share the responsibility of 
meeting the students’ needs. Time needs to be allotted, not just for planning, but for 
communicating each professional’s needs and strengths. A good partnership means that the 
teachers learn from each other and understand what skills they can bring to the classroom. After 
they understand each other they can be more effective at knowing how best to meet students’ 
needs. 
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Introduction 
The New York City Teaching Fellows (NYCTF) Program was started in 2000, in part, “to 

address the most severe teacher shortage in New York’s public school system in decades” 
(NYCTF, 2008) and to replace uncertified teachers who were concentrated in high-needs schools 
(Keller, 2000; Stein, 2002). The NYCTF program currently supplies over 60% of new 
mathematics teachers in New York City Public Schools—more than 300 new mathematics 
teachers in 2007 alone. Fellows come to the program from a variety of backgrounds, with the 
majority being either recent college graduates or career changers. 
 

Objectives and Purposes of the Study 
In this paper, we discuss how Fellows’ Mathematical Knowledge for Teaching (MKT) (Bass, 

2005; Ball and Bass, 2000) interacted with other aspects of the Fellows’ teaching. The paper 
arises from a pattern we saw over the course of some 90 observations. We found that many of 
the Fellows, in collaboration with their coaches and other mentors, are designing lessons and 
fostering classroom cultures that are in line with the “process strands” of the New York State 
Mathematics Core Curriculum (NYSMCC). The NYSMCC promotes having students present 
alternative solution strategies, using different representations of mathematical ideas, and forming 
connections between different areas of mathematics, and so on. This approach to teaching puts 
extra demands on teachers that they are not always equipped for. We found that in the majority 
of cases the opportunities created by the Fellows were not exploited, due to what we perceive as 
limitations in their MKT. 
 

Perspective(s)/Theoretical Framework 
In Shulman’s (1986) seminal paper he develops the concept of pedagogical content 

knowledge which he defines as content knowledge but “the particular form of content knowledge 
that embodies the aspects of content most germane to its teachability [which includes] the most 
useful forms of representation of those ideas, the most powerful analogies, illustrations, 
examples, explanations, and demonstrations - in a word, the ways of representing and 
formulating the subject that make it comprehensible to others.” (p.9) Shulman’s work was 
important in expanded the domain of interest in teacher’s knowledge beyond pure content 
knowledge and pedagogical knowledge to include forms and representations of knowledge that 
are particular to, for example, teachers of mathematics as opposed to mathematicians. 

In the aftermath of Shulman’s work from researchers such as Ball & Bass (2000), Bass 
(2005), Ferrini-Mundy & Senk (2006) has attempted to examine the implications of his work for 
the teaching of mathematics. Ball & Bass (2005) seek to complement the concept of PCK by 
developing the concept of Mathematical Knowledge for Teaching (MKT). In developing this 
concept Ball and Bass seek to reflect “the dynamic interplay of content with pedagogy in 
teachers’ real-time problem solving” (p.88). Ball and Bass are particularly interested in the 
mathematical knowledge that must be brought to bear in order to, in real-time, deal with 
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choosing representations, asking questions, parsing and analyzing student responses etc. They 
argue that this is specialized mathematical knowledge “not known by many other mathematically 
trained professionals, for example, research mathematicians. Thus, contrary to popular belief, the 
purely mathematical part of MKT is not a diminutive subset of what mathematicians know 
(Bass, 2005, p. 429). 

The concept of MKT is treated at length in Ball and Bass (2000) and Bass (2005) and is 
parsed into four categories namely (1) Common mathematical knowledge; (2) Specialized 
mathematical knowledge; (3) Knowledge of mathematics and students; and (4) Knowledge of 
mathematics and teaching. We are particularly interested in the second and fourth categories here 
as we focus on specific pedagogical paths promoted by the NYSMCC (use of inquiry-based 
activities, discussion of multiple solution paths, etc.) and carried out by the Fellows in their 
teaching and how those decisions interplay with the MKT of the teachers. In particular, in 
analyzing our data we noted a few occasions in which the Teaching Fellows were deficient in 
their Common mathematical knowledge, but much more common, and of greater interest to us, 
were instances of deficiency in MKT. Specifically, we found many instances where good faith 
and committed efforts to teach for understanding made by the Fellows were stymied in the full 
potential of their implementation because the Fellows lacked the MKT for full and effective 
implementation of their choices. 
 

Methods and Modes of Inquiry 
The data from this study comes from a large study examining the New York City Teaching 

Fellows both in their teaching practice and in their growth as professionals as they both certify to 
teach and work as full time professionals in schools. The primary data sources for the study are 
regular interviews with eight Fellows and video observations of their teaching (approximately 
ten times per school year). The observation data is supplemented by post-observation reflections 
on the class written by the Fellows and post-observation interviews conducted by a researcher 
with the Fellow. For the larger project this data is further supplemented by student surveys; 
student focus groups; out of class observations; and interviews with administrators, mentors, and 
coaches. 
Observational Data  

We collected observational data in the form of fieldnotes, videotape, and audiotape on 
average ten times throughout one full school year. The coding scheme that we used to analyze 
our fieldnotes was produced collaboratively with a larger group of researchers who were also 
collecting data on mathematics Fellows. Our coding scheme for the fieldnotes included such 
codes as: teacher math questions, opportunity for meaning making, and student mathematical 
behavior. For the purposes of this paper we found the code “opportunity for meaning making” 
particularly useful in identifying occasions when the pedagogical choices of the Fellows proved 
to be inadequately supported by their MKT. Having identified instances where issues with 
Fellows’ MKT, we chose four vignettes which represented a variety of situations where we can 
see this interplay of pedagogical decision-making and MKT. 

 
Results 

In the following, we discuss two classroom vignettes in detail and briefly describe 
conclusions taken from other vignettes. 
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Karen: Exploring Addition and Subtraction 
In this vignette we see a teacher, Karen, engaging with several of the state process standards 

in her work on addition and subtraction of integers with 7th Grade students. 
In the vignette we see Karen working with a chips model with black chips representing 

positive integers and red chips representing negative integers. In interviews, Karen indicated that 
she was having them work with this model because she wanted them “to really understand” how 
to add and subtract when there were negative addends involved, and to understand the 
relationship between addition and subtraction better. 

In using the chips Karen is addressing several state process standards: 7.R.1, (use physical 
objects… as reps) 7.R.2 (explain … using representations) 7.R.4. (explain how different reps 
express same relationship) 7.CN.1 (understand and make connections among multiple reps of the 
same math idea). 

First Karen demonstrates addition using the chips and the problem 6 + (-9). She draws 6 
circles with + signs in each, and 9 circles with  - signs in each. She calls on Zahara who suggests 
“You can remove the zero pairs.” 

Karen presents a word problem that involves subtracting four from nine, and asks the class 
“What does subtraction mean?” Kate says “Taking away one number from another number.” 
Karen: “Good.” She repeats what Kate has said, and then says “In the word problem it has nine 
take away four equals five.” 

At this point, Enrico raises his hand and asks “When you subtract is it the same as when you 
add with positive and negative numbers?” It’s not entirely clear what Enrico means here but, 
although she answers “Yup,” Karen goes on for the rest of this class to insist on interpreting 
subtraction as a literal “taking away” of the appropriate number of appropriately colored chips. 
Most of the students in this class comply with her interpretation. However, several students push 
the idea of subtraction as adding a negative. They do not succeed in persuading Karen to 
consider it despite her stated desire for them to understand the relationship between addition and 
subtraction. 

Karen then poses the question “What if we have negative six minus negative two?” Dayanna 
answers “Don’t you just draw six negatives? And then you take away … since it’s red you take 
away two.” Karen draws a circle around 2 of the red “chips” and then an arrow indicating they 
are being removed. At this point, Chris asks “I’m confused by this because when you … take 
more away from a negative number doesn’t it become a lower number? … Isn’t it supposed to be 
going that way?” He gestures to the left. There is a long pause. Karen asks Chris if he is thinking 
of the number line. He and other students say “yeah.” At which point Karen says “I want us to 
the put the number line totally out of our heads.” She makes a gesture of casting out the idea 
from her head. Then she turns to the number line above the board, which has been up there all 
year. She takes down the number line, to gasps, cries of “no,” and a few cheers. 

When she has finished taking down the number line, she turns back to Chris and says “And 
right now, we are going to picture it this way,” pointing to the problem on the board. “Okay, 
Chris? Cause this is what we’ve been picturing all year and sometimes it gets really confusing 
when you’re thinking about negatives and sometimes positives, okay? I’m going to move on. It 
will all get clearer when we get through the next few problems.” 

While this is certainly the most dramatic example of KW refusing to consider the relationship 
between different representations of a mathematical idea, she showed a similar unwillingness in 
other observations. In this case, despite her avowed goal for introducing the model as a way “to 
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really understand”, she only worked with the model as an alternative computational method, 
rather than as a springboard to understanding addition and subtraction differently. 

In the next part of the lesson Karen presents the problem: “Eric earned $5. He owes Laura 
$7. He pays her $5. Show this subtraction on the chip board.” The students are able to solve this 
immediately, yelling out “two” and “he still owes her two.” Karen ignores several suggestions 
from students as she goes through this problem. She adds two red and two black chips, and then 
“takes away” the seven black, leaving the two red chips. Chris proposes starting with the seven 
red “cuz that’s how in debt he is” and then adding five black to represent what he earned. He is 
essentially proposing that the problem is  -7 + 5 rather than 5 - 7. Karen objects to this, because 
“the number sentence says to start whatever is here on the left,” pointing to the five. 

Again we see an opportunity to explore the meaning of subtraction as something more than 
“taking away” and we see Karen insist on the “take away” approach. 

In this vignette we see Karen, who states that she is interested in her students gaining a 
deeper understanding of addition and subtraction of integers, employ strategies drawing on 
several process standards (multiple representations, use of physical objects etc.). However, her 
implementation is constrained in practice by her insistence on the exclusive use of certain models 
and by privileging of certain approaches. 
Paul: Exploring Multiple Solutions Paths 
(Unless otherwise noted, the quotes are from Paul, Fieldnotes, January 9th). 

There are several learning standards in the NYSMCC that relate to having students present 
multiple solution strategies, and Paul appears to be committed to this pedagogical path. This 
places extra demands on his content knowledge – he not only needs to be able to solve the 
problems he assigns, which he is clearly able to do, but he needs to be able to quickly recognize 
the validity of solutions he had not foreseen, and to be able to relate different strategies to one 
another. This requires a different type of knowledge than that gleaned in a typical math content 
course, where prospective teachers are usually asked to produce a single solution to a problem 
and while, in a methods course, a prospective teacher will explore several rich problems using 
multiple solutions paths, it is, of course, not possible that he or she will have a chance to cover 
the entire curriculum systematically. In this vignette we see Paul taking the pedagogical decision 
to encourage multiple solution paths, but being unable to take advantage of the alternate solution 
strategies proposed by the students. 

The problem: If you got 6 questions from 7 right, what was your percent score on the exam? 
Paul’s approach was to set up the proportion 6/7 = n/100 and to solve for n using cross 
multiplication: “I believe what we were trying to accomplish was, I think I was just trying to get 
a basic, bare bones cross products, how do you do cross products, how do you set up a 
proportion?” (Paul, Reflection, January 9th). He reported after the class: “I think they have 
difficulty understanding … what exactly a proportion is. … They have difficulty seeing the 
relationship between 2 quantities. Repeatedly throughout the week, I try to have them, before 
they start setting up a portion to solve, they set up, they take the 2 quantities that are being 
compared and put them into a ratio. And that always seems be a very hard step for them.” (Paul, 
Reflection, January 9th).  

Although he saw the problem as a proportion problem, he had a student present another 
solution, even though this added significantly to the amount of time spent on what was supposed 
to be a quick introductory problem. We interpreted his willingness to take that extra time as 
evidence of his commitment to respecting alternative solution strategies. 

After the students have been working on the problem for a few minutes Paul circulates the 
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room to check on the students work. Of the 8 students who produced work on the problem 6 of 
them divided 100 by 7 to get the percentage value of one question and then multiplied by 6 to get 
the percentage score. He notices Jennifer’s work and they have the following exchange: 

PH: “Can you explain how you got that?” 
Jennifer: “So I multiplied what I got – and there are six of them.” 
PH: “I liked what you did, but you’re not getting the answer that I got.”  

Paul is showing his willingness to let students do the problems in ways that he did not intend. 
In her initial work at this point Jennifer has divided 7 into 100 using long division but has 

made two errors: firstly she got 13.285 . . . rather than 14.285. . . and secondly she has rounded 
this to 13.2 before multiplying by 6 to get 79.2 rather than 79.71. Paul noticed that this answer 
must be wrong and has Jennifer check by adding 13.2 to 79.2 which gives 92.4. Jennifer agrees 
that the answer should be 100 and continues to work on the problem, redoing her calculations 
and working with another student. 

Here Paul is demonstrating how one might use mathematical knowledge for teaching 
effectively—he is able to recognize quickly that she must be making a mistake and suggest a 
way for her to find her error. 

A few minutes later Jennifer writes her solution on the whiteboard. The long division results 
in 14.28 (she stops at two decimal places) which she multiplies by 6 and gets the result 85.68. 
For some reason she then erases her working of the multiplication and simply writes: 

 14.28 
x 6.00 
--------- 
  85.2 

which is picking up her earlier error again. Paul asks her to explain her work to the class which 
results in the following exchange: 

Jennifer: “What I did, was I divided seven into a hundred. Because it said, there were seven 
questions on the quiz, and I got I multiplied six times fourteen point twenty eight. Because 
Umm. It said you only answered six of them. And then I got eighty -five point.” 
Paul: “Okay.” 
Jennifer: “Then I got eight-five point.” (inaudible) 
Paul: “So, your answer is … What was your final answer?” 
Jennifer: “Eighty five point two.” 
Paul: “Then your answer is eighty-five point two what?” 
Silence. 
Paul: “What is the question asking?” 
A few students: “Percent.”  
Nobody has noticed Jennifer’s mistake. Instead of trying to figure out, as he did before, 

where the problem is, Paul chooses to move on to his own solution. 
Paul: Okay so this is one way to do it. And there are a couple of other ways too. Yesterday 
we saw two ways to solve percent problems. This is nothing more than a percent problem. 
Just like what we were doing yesterday. The words are a little different but we can still do it 
the same way. Let’s try another way.” 
Paul takes the students through a problem they did yesterday and asks them to relate it to the 
new problem. The students don’t make this connection so eventually Paul changes tack and 
writes on the whiteboard: 
Part 
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---------  = 
Whole 
and says: “It’s going to be a ratio of some kind. What about the percent? … Look back on 
your notes from yesterday. Actually turn the page. Percents like what? Percents over one 
hundred. Like What? Percent over one hundred. Do I know the percent? … We got n over a 
hundred. Of 6 and 7, what’s the part what’s the whole?” 
Jennifer: The part is six the whole is seven 
Paul: Why? 
Jennifer: Because... 
Paul: How many questions are on the test? There are seven questions on the test. That’s the 
whole test.” 
Jennifer: “… and he only did six and that’s the part.” 
Part        % 
------ = ------ 
Whole  100 
6        n 
--- = ---- 
7      100 
Paul then guides the students through using cross multiplication to get an answer of 85.7%. 
Paul then asks the class: 
Paul: ‘Why are they different?’ (referring to 85.7% and 85.2% written on the board) 
No one answers. With no one responding, PH responds to the class. 
Marietta: The two and the seven. 
Paul: That’s how they are different, but why are they different? Why are these two numbers 
different? [pause] I would accept either of these answers, depending on how you did it. Why 
are they different?” 
Student: “Because they want to be.” 
Pause. 
Paul: ‘I’ll save that one for later.’ 

Conclusion 
This is a very unhappy resolution to the work on this problem. It seems that Paul is not, in 

this moment, able to reconcile these two results. Indeed, he tells the students that he would 
accept both answers “depending on the method you used.” We argue that this is because he is 
concerned with fidelity to his pedagogical decision to embrace multiple solution paths. 
Unfortunately the value of the multiple approaches is lost because Paul is unable to reconcile the 
differences. We argue that with more developed mathematical knowledge for teaching, he would 
see that these solution paths (as well as the third approach that he attempted at one stage) must 
result in the same arithmetic operations, and therefore the same answer, and so the difference 
must be accounted for by either a rounding error or an arithmetic error. We see here in his initial 
interaction with Jennifer, and we have seen in other observations, that Paul has the mathematical 
ability to find the error were he to look for it. As it happened, we end up with a set of most likely 
confused students who are unlikely to develop an appreciation for the connections between the 
two different approaches, unlikely to value the idea of using multiple approaches to solve 
problems, and perhaps more convinced than ever of the arbitrariness of mathematics as a 
discipline. 
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Other Vignettes 
In other observations of teachers in the study we see other cases of teachers attempting to 

employ standards-based approaches but failing through lack of facility in a particular kind of 
mathematical knowledge. In one case this lack of facility is manifested by a teacher who asks her 
students to work on an activity designed for students to “discover” a formula for the sum of the 
interior angles of a convex polygon. The full potential of the task, however, is not realized 
because she does not seem exhibit the necessary MKT to marshal the various student 
representations and focus on the important mathematical process of generalizing. There is no 
doubt that the teacher could do this task herself nor is there any doubt that she understands the 
relationship between the formula (s – 2) * 180 and the breaking of a convex polygon into 
triangles. However, her lack of MKT seems to be restricted her ability to see how several 
different student representations are equivalent to her understanding and how certain student 
representations are limited in their claims to generality. 

In another vignette, we see a teacher trying to make connections between algebra and 
geometry but he chooses a poor example and runs the risk of leaving his students with the 
impression that a particular result is a general result. 
 

Discussion and Conclusions 
The need for additional mathematical support shown in the vignettes above is not wholly 

addressed by the current training and mentoring the Fellows are receiving: both Fellows and 
coaches tell us that their mentoring is more focused on issues of classroom management and 
student motivation. We have seen how the developing Pedagogical Content Knowledge (PCK) 
of the Fellows, as well as their pedagogical decision making in the classroom is affected and 
complicated by their MKT, and we can begin to determine what kind of mathematical 
understanding is needed to effectively use these opportunities. 
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Here we focus on Finnish pre-service elementary teachers’ (N = 269) and upper secondary 
students’ (N = 1434) understanding of division. In the questionnaire, we used the following non-
standard division problem: “We know, that 498:6 = 83. How could you conclude from this 
relationship (without using long division algorithm) what is 491:6?” The problem mainly 
measures adaptive reasoning. Based on the results we conclude that division seems not to be 
fully understood: only one fifth of the participants produced a completely correct solution. The 
most central reason for mistakes was insufficient reasoning strategies. 
 

Introduction 
Teacher education programmes face a major challenge in trying to affect elementary teacher 

students’ views of mathematics, that is, their beliefs, attitudes and knowledge. This paper draws 
on the work of the research project “Elementary teachers’ mathematics” financed by the 
Academy of Finland (Project No. 8201695), in which data were collected on 269 pre-service 
elementary teachers at three Finnish universities (Helsinki, Turku, Lapland). Two questionnaires 
were administered in autumn 2003 to assess the pre-service teachers’ knowledge, attitudes and 
skills in mathematics at the beginning of their mathematics education course. The aim of the 
questionnaires was to measure their experiences of mathematics, their views of mathematics and 
their mathematical proficiency in certain topics. As part of the project we also collected 
comparison data on 1434 upper secondary students (grade 11, average age 17–18 years) from 34 
Finnish schools selected at random. In the paper we concentrate on pre-service teachers’ and 
upper secondary students’ understanding of division and reasoning strategies used, especially 
their erroneous strategies. 

In the Finnish comprehensive school curriculum (NBE 2004) one of the principal goals 
already in the second grade is that pupils should master and understand basic calculations. But 
earlier studies show that also pre-service teachers and upper secondary students have clear 
weaknesses in understanding of division (e.g. Simon 1993; Campbell, 1996; Merenluoto & 
Pehkonen, 2002). One of the main reasons for these weaknesses seems to be that pre-service 
teachers have primitive models of division (e.g., Graeber et al., 1989; Simon, 1993).  

 
Theoretical Framework 

The division task used in this study measures several of the strands of mathematical 
proficiency mentioned by Kilpatrick (2001), for example, conceptual understanding, procedural 
fluency and adaptive reasoning. Yet, we view our task as measuring adaptive reasoning above 
all: to solve the task participants must reflect on and give justification of mathematical 
arguments, especially the relationships between operations.     
Understanding Division 

Division is an important but complex arithmetical operation to consider in elementary teacher 
education. There are many reasons for its complexity: (a) division is taught as the inverse of 
multiplication, so understanding of division requires good understanding of multiplication; (b) 
division involving big numbers requires good estimation skills; (c) within the models of equal 
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groups and equal measures two aspects of division can be differentiated: quotitive division (how 
many sevens there are in 21) and partitive division (21 divided by 7). (e.g., Anghileri et al., 
2002) 

People can use very different strategies in solving division problems. Some of them are 
useful and some are misleading. Prior research has identified the following useful strategies (e.g., 
Heirdsfield et al., 1999): (a) several different counting strategies: skip counting, repeated 
addition and subtraction, chunks; (b) using a basic fact; (c) holistic strategies. 

In a study by Graeber et al. (1989), 129 female pre-service teachers had high scores on 
solving verbal problems involving the partitive model of division. They were less successful on 
the quotitive division problems, and these primitive models influence pre-service teachers’ 
choice of operations. Primitive models seem to reflect an understanding whereby a student 
separate things into equal size groups. In Simon’s (1993) study of pre-service elementary 
teachers the whole-number part of the quotient, the fractional part of the quotient, the remainder, 
and the products generated in long division did not seem to be connected with a concrete notion 
of what it means to divide a quantity. 

Campbell (1996) studied 21 pre-service elementary teachers’ understanding of division with 
remainder. He conducted clinical interviews with the students, who tried to solve four tasks with 
abstract contexts. The task we use here has some similarities in contrast to the following task 
used by Campbell (1996): “Consider the number 6 ·147+1, which we will refer to as A. If you 
divide A by 6, what is the remainder? What is the quotient?” (p. 179). In Campbell’s study of the 
19 participants who tried to solve this task, 15 calculated the dividend although it entailed 
additional trouble. Of those 15 respondents 9 calculated the dividend and relied upon long 
division in solving the task. Of those 4 who did not calculate the dividend, only 2 correctly 
identified the remainder and the quotient. 

Zazkis and Campbell (1996) investigated 21 pre-service elementary school teachers’ 
understanding of divisibility and the multiplicative structure of natural numbers in an abstract 
context. The following is an example of the tasks used: “Consider the numbers 12 358 and 
12 368. Is there a number between these two numbers that is divisible by 7 or by 12?” Many pre-
service teachers used long division as the procedural activity, but some degree of conceptual 
understanding was evident as well. 

In a study by Silver et al. (1993), a total of 195 sixth, seventh and eighth graders from a large 
middle school solved three quotient division problems involving remainders with a real-world 
context (the number of the buses needed). The symbol forms of the word problems were (a) 
540:40, (b) 532:40, and (c) 554:40. Of the respondents, 91% used appropriate procedures, and 
73% of them applied long division. Only 43% of the participants understood that the result—the 
number of buses—was an integer.  
Focus of the Paper 

In this paper we focus on the following research question: What kind of erroneous reasoning 
strategies do pre-service elementary teachers and upper secondary students use in solving a 
certain non-standard division task? How do these erroneous reasoning strategies used by pre-
service elementary teachers and upper secondary students differ from each other? 
 

Empirical Research 
Research Participants and Data  

The study forms a part of the research project “Elementary Teachers’ Mathematics” being 
carried out in three Finnish universities (Helsinki, Turku, Lapland). Of the 269 pre-service 
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elementary teachers participating in the research, 35% have completed advanced studies in 
school mathematics in upper secondary school. Two questionnaires were designed, the first 
measuring the pre-service teachers’ mathematical proficiency in certain topics, and the second 
their attitudes towards mathematics at the beginning of their university studies. The 
questionnaires were administered at the first lecture in mathematics education studies in all 
universities in autumn 2003. Students had 60-minutes time for the questionnaires and were not 
allowed to use calculators. Additional results of the project are described in Kaasila et al. (2008). 

The initial proficiency test contained a total of 12 mathematical tasks. The focal content areas 
were the rational numbers and related operations (in particular, division), because previous 
research indicates that these are problem areas (e.g. Hannula et al., 2002). All in all, the initial 
proficiency test focused on content knowledge different from that tested in upper secondary 
school and on the mathematics component of the matriculation examination. 

In conjunction with the project we also collected comparison data with the same 
questionnaires from upper secondary school. Altogether 50 schools were selected at random 
from all Finnish upper secondary schools. A letter was sent to the directors of the schools in the 
sample, in which they were asked to select from their school one group of students in the general 
course and one in the advanced course in second-year mathematics. We received responses from 
34 schools representing a total of 65 student groups. Thus, we obtained in total data from 1434 
students.  

The non-standard division task we used is the following: 
 

“We know that 498:6 = 83. How could you conclude from this relationship (without 
using the long division algorithm), what is 491: 6 = ?” 

 
Data Analysis 

We did not find in the research literature a task similar to the one used in this study. As 
mentioned earlier, our task shares certain features with one used by Campbell (1996). However, 
it also differs in a number of respects: First, in the task used by Campbell, the dividend is 
explicitly mentioned as the ‘right hand side’ of the division algorithm, whereby respondents have 
an opportunity to directly identify the quotient and the remainder. In our task, the starting 
equation is given in the form of division and does not involve a remainder. Second, unlike 
Campbell, we do not mention in the context of our task the concepts of remainder and quotient. 
Third, the participants in our study did not have permission to use the long division algorithm or 
a calculator, which were central aids in Campbell’s study. 

In the first phase of this study (see Kaasila et al., 2005) we broke the 269 pre-service 
elementary teachers’ solutions down into main categories and subcategories by applying analytic 
induction. This involves scanning the data for categories of phenomena and for relationships 
among such categories, developing typologies upon an examination of initial cases, and then 
modifying them on the basis of subsequent cases (cf. LeCompte, Preissle, & Tesch, 1993). 

In the second phase of the study (see Hellinen & Pehkonen, 2008), a deductive approach was 
used: the 1434 upper secondary students’ solutions were categorized using essentially the same 
classification as in the first phase when analysing pre-service elementary teachers’ solutions. A 
number of categories were identified in addition to those formed in the first phase.  

In the third phase we harmonised the categories found in phase one and two by reanalysing a 
part of the pre-service elementary teachers’ solutions. At the end we compared the pre-service 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1440 

elementary teachers’ reasoning (or solution) strategies with the upper secondary students’ 
reasoning strategies. For more details see Kaasila et al. (under review). 

 
Results 

The problem was solved totally correctly by one fifth of the pre-service teachers and the 
upper secondary students. The categories of erroneous strategies used by the pre-service teachers 
and the upper secondary students are presented in Table 1. More details on results can be found 
in the paper Kaasila et al. (under review). 

Table 1 
Main Categories of Erroneous Strategies Used by the Pre-Service Teachers 

Successful strategies PST % USS % 
All 54 20 221 19 
Erroneous strategies PST % USS % 
Almost correct strategy 60 22 231 20 
Thinking limited to integers 59 22 165 14 
Clear misconception 12 5 42 4 
Other mistakes / irrelevant strategies 84 31 494 43 
All 215 80 932 81 

Note. (PST, N = 269) and the upper secondary students (USS, N = 1434); the share of 
successful strategies is given in the same table. 

 
Erroneous strategies 

Misleading or otherwise erroneous strategies were used by 80% of the pre-service teachers 
and by 81% of the upper secondary students. We divided these strategies into four main 
categories, each of which was further divided into subcategories. 

Almost correct strategy. 22% of the pre-service teachers and 20% of the upper secondary 
students solved the task almost correctly. The solution of this group indicates a fairly high level 
of conceptual understanding but all the phases of the solution were not accurately reported, or 
students made some slippery mistakes. The almost correct strategies can be divided into three 
subcategories:  

In the cases of inaccurately reported reasoning (7% vs. 11%), respondents obtained the 
correct solution, but some important phases of the solution were not accurately reported or the 
reasoning used was not indicated at all. In the following, the pre-service teacher did not justify in 
detail why the remainder was 5. 

Example 1. 498–6 = 492. So 492:6 = 82; 491:6 = 81 remainder 5. (30931)  
The reasoning is essentially correct, but at the end the fractional part was added in the wrong 

direction (11% vs. 5%): 
Example 2. 498–491 = 7, from this it follows that 491:6 must be one unit less than 492:6 

with one unit remaining (7–6 = 1), i.e. the answer is 82 remainder 1. (2065) 
The most common slippery mistake was an error when calculating the difference between the 

dividends (4% vs. 4%). 
Example 3. Since 6 goes into 498, 83 times and 498–491 = 6, 6 goes into 491 one time fewer 

than into 498, or 82 times (5802). 
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Thinking limited to integers. 22% of the pre-service teachers and 14% of the upper secondary 
students were not able to calculate the quotient. These strategies can be divided into three 
subcategories: 

The respondent knew that the answer was not an integer, but he/she was not able to deal with 
the remainder (12% vs. 9%): 

Example 4. The number 491 is 7 units smaller than 498. Therefore 6 should go one time 
fewer into 491. I can’t think of any explanation for the fact that 6 goes into 491 only 81 times. 
(3016)  

In these cases the respondents did not even seem to think that the answer might be something 
else than an integer (10% vs. 4%).  

Example 5. The number 491 is 7 units smaller than 498. Consequently, the answer is 82, but 
one unit is left over… But perhaps it can be ignored or should the answer be a decimal? (3055)  

Here the respondent was aware that division in question was not even, so they thought that 
there can be no solution to the task (0% vs. 1%).      

Example 6. It could not be an integer, because 498–491 ≠ 6n, n є Z (5077)  
A clear misconception. 5% of the pre-service teachers and 4% of the upper secondary 

students had clear misconceptions in their answers. We divide these answers into two 
subcategories: 

The remainder was considered a decimal (tenths) instead of sixths (3% vs. 1%).  
Example 7. 498–491 = 7; 7–6 = 1. The result is 82.1 (1012)  
In these cases, the respondents seemed to understand division such a way that the dividend 

and the quotient change at the same rate (2% vs. 3%).  
Example 8. 498–491 = 7; 83–7 = 76. (3057) 
Other mistakes/irrelevant strategies. 31% of the pre-service teachers and 43% of the upper 

secondary students obtained no answer at all or presented a solution that was not relevant to the 
research. These cases are grouped into four subcategories:  

The answer was reached by experimenting or in some way without using the connection 
given in the task (1% vs. 2%). This type of reasoning strategy usually produced erroneous 
results, but there were also correct ones.  

Example 9. 6 goes 50 times to 300, this leaves 191  = > where 30 · 6 = 180; this then leaves 
11, which into which 6 goes almost 2 times; thus 491:6  = > 50+30+2 (almost) ≈ 82 times. 
(5687)  

Correct result without reasoning (3% vs. 6%). 
The results were very inaccurate and/or reasoning irrelevant (10% vs. 24%).  
The respondents in this category did not produce any result, or anything that made sense 

(17% vs. 11%).  
Example 10. I can’t do it without a calculator (3079).  
       

Discussion  
The results indicate that the task was very challenging: only about one fifth of the 

participants were able to produce a totally correct solution. More than half of the participants 
either produced no result at all or used misguided strategies. Although division is known to be a 
difficult operation that has many interpretations, the result is still surprisingly poor. We were 
surprised that so many pre-service teachers and upper secondary students failed to provide 
justification with their responses, although it was specifically asked for in the instructions for the 
task. 
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We identified three main reasons for mistakes or incomplete solutions: (a) Staying on the 
integer level: 10% of the pre-service teachers and 4% of the upper secondary student gave their 
answer as an integer, and it seems that in these cases they did not even think that the answer 
might be something else than an integer; (b) Inability to handle the remainder: Some of the 
respondents seemed to understand that the result was not an integer but a fraction, but they could 
not handle the remainder. For example, they expressed the remainder in the answer in tenths not 
in sixths (cf. Campbell 1996). It seems that in school dealing with remainders has been a 
procedural matter, with too little attention focused on the idea that the fractional part of the 
quotient provides different (yet related) information from the remainder (Simon, 1993); (c) 
Insufficient reasoning strategies: A little more than a fifth of the participants solved the task 
almost correctly. In these cases, all the phases of the solution were not accurately reported. The 
reason for insufficient reasoning strategies may be a lack of language skills because the 
respondents had great difficulties in providing written explanations of their reasoning (see also 
Silver et al., 1993). 

On the basis of this study we can suggest some guidelines for the content of mathematics 
courses in teacher education and in school: learners need (a) a concrete, contextualised 
knowledge of division and (b) the ability to examine division as an abstract mathematical object 
(cf. Simon, 1993). Above all learners need (c) tasks and situations through which they can 
develop their adaptive reasoning skills. According to our study, a lack of reasoning skills may be 
the main factor causing students difficulties when solving non-standard division tasks.  

 
Endnote 

1. The four digit number in the bracket after the example refers to the test participant. When 
referring to pre-service teachers, the first number is 1, 2, 3 or 4 and when referring to secondary 
students the first number is 5 or 6. 
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The purpose of this study was to examine the cognitive level of questions produced by teachers 
about a mathematical story entitled The Number Devil. The hypothesis was that the 
mathematical story would inspire higher-level cognitive questions involving exploration of 
important ides of mathematics as well as philosophical musings about the nature of mathematics. 
Ten teachers from grades 6 through 12 were asked to read the book and design questions about 
the important mathematics from each of the 12 chapters. The questions were categorized 
according to cognitive demand as described by Stein, Smith, Henningsen and Silver (2000). Most 
of the 455 questions (61%) were of lower-level cognitive demand, procedural in nature, with 
only 9% of the highest level of cognitive demand, open-ended and conceptual in nature, and only 
3% philosophical in nature.  
 

Background and Purpose 
In a series of articles, Borasi, Siegel, Fonzi, and Smith (1998) and Siegel, Borasi, and Fonzi 

(1998) described the benefits of reading “mathematical stories” (mathematics-related texts, not 
technical in nature) in the mathematics classroom. The authors presented evidence that use of 
such stories can awaken students’ interest, stimulate discussion, promote sense-making, provide 
a variety of opportunities for learning mathematics, and support a constructivist inquiry-based 
culture in the classroom. By various reading strategies, students are encouraged to ask questions 
as they read the text, but questions from the teacher also play a role in how the students engage 
with the text. Indeed, questions that teachers ask are critical in the realization of the vision set 
forth in the Curriculum and Evaluation Standards for School Mathematics (2000). Regardless of 
whether the questions are part of a formal assessment or part of the teacher’s daily routine of 
introducing new topics or focusing student attention on a text, questions communicate implicitly 
what it means to do and know mathematics and establishes expectations (Borasi, 1990; Cooney, 
Badger, Wilson, 1993).  

Teacher-designed questions can vary widely according to the cognitive demands placed on 
students. In a study by Cooney, Badger, and Wilson (1993), 201 teachers were asked to “write or 
draw a typical problem that you gave students that you believe tests a deep and thorough 
understanding of the topic” (p. 241). The problems were categorized according to four levels, 
depending the requirements of the problem:  (1) Simple computation or recognition. (2) Some 
comprehension (e.g. a one-step word problem). (3) More comprehension (e.g. a multi-step 
problem). (4) Non-routine reasoning, open-ended. The researchers found that most of the  
teachers created an item at level 1 or 2. They suggest that reliance on questions that require 
lower-level cognitive demands, simple reproduction of procedures and generation of an answer, 
reflect a traditional view of mathematics and mathematics teaching. Reform-based teaching, on 
the other hand, calls for more non-routine problem solving that places greater cognitive demands 
on students.  

The purpose of this study was to examine the cognitive level of questions produced by 
teachers about a mathematical story entitled The Number Devil. The hypothesis was that the 
mathematical story would inspire the teachers to design higher-level cognitive questions 
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involving exploration of important ides of mathematics, even have some fun with the 
mathematics, as well as philosophical musings about the nature of mathematics.  
 

Theoretical Perspective 
In Implementing Standards Based Mathematics Instruction, Stein, Smith, Henningsen and 

Silver (2000) presented a scheme for analyzing tasks according to cognitive demand. In their 
work, tasks were placed into one of four categories as shown below in Table 1. The first two 
categories are tasks that represent a low-level cognitive demand, while the second two categories 
represent tasks with a high-level of cognitive demand. The authors note that “opportunities for 
student learning are not created simply by putting students into groups, by placing manipulatives 
in front of them, or by handing them a calculator. Rather, it is the level and kind of thinking in 
which students engage that determines what they will learn.” (page 11). The level and kind of 
thinking in which students engage depends upon the questions that teachers ask and how 
cognitively demanding those questions are. 
 

 Table 1 
 Method of Categorizing the Level of Mathematical Tasks as Described by  
 Stein, Smith, Henningsen and Silver (2000) 

 
Category 

 

 
Description 

 
Characteristics 

 
1 

Memorization Iinvolves reproducing previously learned 
facts, is not ambiguous, does not involve 
procedures, has no connection to concepts. 
 

 
2 

Procedures without 
connections to understanding, 
meaning, or concepts 

Is algorithmic, not ambiguous, focused on 
producing correct answer, requires no 
explanations, focuses solely on describing 
the procedure that was used, requires limited 
cognitive effort.  
 

 
3 

Procedures with connections 
to understanding, meaning, or 
concepts 

Requires some conceptual understanding of 
the procedures to complete the task, focuses 
on use of procedures for the purpose of 
developing deeper levels of understanding 
of mathematical concepts, may rely on 
multiple representations, requires some 
cognitive effort. 
 

 
4 

Doing mathematics Requires complex non-algorithmic thinking, 
requires exploration, requires understanding 
of mathematical concepts or processes, 
requires self-monitoring, requires students 
to analyze task and possible solutions and 
access relevant knowledge, requires 
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considerable cognitive effort and may 
involve some discomfort. 

 
 

Methodology 
The teachers who participated in the study were 10 middle-grades and secondary teachers 

enrolled in a Master of Education program with a specialization in mathematics education at 
Kennesaw State University. The students were enrolled in a course entitled “MAED 7720: 
Mathematics in the Humanities.” Over a three-week period the students were asked to read the 
book “The Number Devil” and complete the following task: 
 

For each chapter, design four questions that you would ask your students about 
the most important mathematics in the chapter (to see if they understood the 
chapter and to get them thinking about the mathematics). Describe how you 
would answer the questions.  

 
The Number Devil is a 253 page book consisting of 12 chapters, aimed at ages 9 through 12. 

In each chapter, a middle-grades boy named Robert recounts his night’s dream about “The 
Number Devil” a trickster who teases him into making observations about numbers. For 
example, in Chapter One, “The First Night,” the devil shows Robert how you can do almost 
anything with the number 1, even experience the infinitely large and the infinitely small. On the 
second night, the devil reveals the power of zero and discusses Roman numerals, place value, 
and powers. Prime numbers, rational numbers, irrational numbers and roots are the topics of 
Chapters Three and Four. Triangular numbers are introduced in Chapter Five. Fibonacci numbers 
are explored in Chapter Six. Pascal’s triangle is introduced in Chapter Seven and used in Chapter 
Eight to calculate permutations and combinations. Sequences and series are the topics of Chapter 
Nine. The golden ratio and Euler’s formula are explored in Chapter Ten. Chapters 11 and 12 are 
the most difficult chapters with discussions of proof and the nature of mathematics and its 
history. 

The questions were assigned to levels 1 through 4 according to the scheme described above 
by Stein, Smith, Henningsen and Silver (2000). Two additional levels were used: level 5 was a 
new category for philosophical questions about the nature of mathematics or attitudes towards 
mathematics; level 6 was created for questions regarding the history of mathematics. 
 

Results 
The teachers provided a total of 479 questions but 24 of the questions contained mistakes, 

were incomplete, or were difficult to interpret; therefore 455 were analyzed. Samples of 
questions in each category are shown in Table 2.  
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Table 2. 
      Examples of Questions in Levels 1 through 6 

Level Sample questions 
1 1. What kind of triangle do these ‘triangle numbers’ (triangular 

numbers) make when written as dots? 
2. Prima donnas (the number devil’s word for prime numbers) can 
only be divided by 1 and itself. What types of numbers do these 
represent? 
3. What operation is like multiplying in reverse? 
4. What is meant by rutabaga (the devil’s word for square root)? 
5. Why did the number devil say the Romans had such a difficult 
time with numbers? 
6. Give an example of how we used Pascal’s Triangle in Algebra 2? 

 
2 1. Can you figure the 16th triangle number (triangular number)? 

2. What is the 20th Bonacci number (the devil’s word for Fibonacci 
number)? 
3. Can you write in Roman Numerals the year you were born? 
4. What is 10! 
5. In how many different ways could 4 of Robert’s classmates be 
seated? 

 
3 1. How does the graph of the function f(x) = 1/x for x > 0 represent 

the concepts of “an infinite number of numbers” and “an infinite number 
of infinitely small numbers.” 
2. Can negative numbers be prima donnas? 
3. When do you know if you are going to get a remainder and when 
are you not? 
4. How does the number devil explain infinity? 
5. Explain how you would get 1111111 x 1111111 without using a 
calculator. 

 
4 1. Why wouldn’t 11111111111 x 11111111111 work as the Number 

Devil said the other would? 
2. Why does the sum of two consecutive triangular numbers equal a 
square number? 
3. Write your own rule like Bonacci’s and create your own set of 
numbers. Write out the first 13 of them. Do you notice any patterns? 
4. In your own words, write a definition for infinite. 
5. The number devil says the following comment, “… proving that 
no proof exists is a proof in itself…”. What do you think he meant by 
this? 
6. Why do you think proofs are necessary in mathematics? 
7. Starting with just one dot, create your own pattern like the 
coconut triangles (triangular numbers). What patterns can you find? 
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5 1. Why do you feel that Robert thinks math is a waste of time? 

2. Why do you think that the number devil changed the names of 
mathematical concepts into ordinary terms? 
3. The number devil said that guessing is not allowed in 
mathematics. What do you think? Should guessing ever be acceptable in 
mathematics? Explain. 
4. Can you relate to Robert’s frustration to math? Describe a story 
when you felt like Robert on page twenty-five. 
5. Why did the Number Devil say that mathematics is an endless 
story? What do you think? 
6. The Number Devil talks about another number devil called the 
Man in the Moon. He talks about proving a certain math rule. However, 
the Number Devil said another number devil came along and proved him 
wrong. What does this tell you about math? 

 
6 1. Who developed the triangle mentioned by the Number Devil 

(Pascal’s triangle)? 
2. Who is Fibonacci and what mathematical concept is he known for 
in mathematics history? 
3. Where else does the “blankety blank” number (the golden ratio) 
show up in nature? 

 
 

Level 1 questions often connected the text to previously learned facts or vocabulary, or 
involved simple identification of some fact offered in the text. Questions assigned to level 2 were 
most often questions that asked the student to reproduce the procedures demonstrated in the text 
or connect the text to some previously learned procedures. Questions assigned to level 3 
involved taking procedures described in the text and requiring the students to explain the 
procedures or apply the concepts described in the text in new contexts; they also included 
questions in which students were asked to explain how the number devil or Robert came to 
certain conclusions. Questions assigned to level 4 required something quite beyond what was 
provided in the text, including explanations of why certain observations made by the number 
devil were true or how those observations could be extended to new situations, new sequences or 
series.   

The teachers produced 479 questions but 24 of those questions contained mistakes, were 
incomplete, or were difficult to interpret. As shown in Table 3, of the remaining 455 questions 
most were of lower-level cognitive demand (61%) and surprisingly few were of a philosophical 
nature (3%). Only 33% were of a higher-level cognitive demand and only 9 percent were 
classified as level 4. Certain teachers tended to questions of higher-level cognitive demand 
(teacher 4) while others tended to questions of lower-level cognitive demand (teacher 9). Note 
that most of the philosophical questions and the level 4 questions could be attributed to teacher 
#3. 
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Table 3. 
Cognitive Level of Teacher-designed Questions 

Cognitive  
level 

Teacher #:  
Total  

 1 
 
 2 

 
 3 

 
 4 

 
 5 

 
 6 

 
 7 

 
 8 

 
 9 

 
10 

1 11 8 8 1 9 7 21 24 37 10 136 
(30%) 

2 9 21 9 13 16 24 15 17 5 14 143 
(31%) 

3 18 16 8 23 11 9 2 5 2 14 108 
(24%) 

4 3 3 10 3 5 2 5 1 1 10 43 
(9%) 

5 1 0 6 4 0 0 0 0 1 1 13 
(3%) 

6 5 0 5 2 0 0 0 0 0 0 12 
(3%) 

 
Conclusion and Discussion 

The purpose of this study was to examine the cognitive level of questions produced by 
teachers about a mathematical story entitled The Number Devil. The hypothesis was that the 
mathematical story would inspire higher-level cognitive questions involving exploration of 
important ides of mathematics as well as philosophical musings about the nature of mathematics. 
As shown in Table 3, the hypothesis was not supported. As in a previous study by Cooney, 
Badger, and Wilson (1993), even in the context of a whimsical, imaginative story about a boy 
who is teased with interesting facts about mathematics, teachers largely produced questions of a 
lower-level cognitive demand.  

According to Cooney, Badger, and Wilson (1993), the tendency for teachers to use questions 
that involve lower-level cognitive demands could be attributed to their understanding of 
mathematics as a series of procedures. They state “As long as mathematics is viewed as 
consisting primarily of a series of steps to be applied in isolated contexts, teachers will view 
moves toward alternative methods of assessment as peripheral to the ‘real curriculum.’ As a 
consequence, a promising vision evaporates into a mirage” ( page 247). In this study, procedures 
or recall of vocabulary appeared to be the focus of 90% of the questions, despite the 
opportunities for exploration and more in-depth inquiry. The high occurrence of procedural 
questions may be a reflection of the teachers’ traditional view of mathematics, but it may also be 
due to the teachers’ inexperience with designing questions of higher cognitive demand, 
compounded with their inexperience with using mathematical stories in the classroom.  

Further research is needed to explore ways to raise the cognitive level of teacher-designed 
questions, as well as how such mathematical stories can promote student questions of a high 
cognitive level and support mathematical inquiry. 
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To support student understanding, math teachers need to develop pedagogical content 
knowledge (PCK) that contributes to conceptually rich instruction. This analysis tracks the 
development of PCK in two mathematics teacher workgroups in urban high schools. Using video 
data, this analysis highlights the differences in the teachers’ collaborative discourse as they 
made sense of students’ mathematical difficulties. In the newer group, the teachers elaborated 
students’ mathematical difficulties but their instructional response did not address the scope of 
difficulties identified. In the more mature group, the teachers' analysis of students’ mathematical 
difficulties was more tightly coupled with instructional responses. This analysis illuminates the 
ways in which collegial conversations support the development of PCK and highlights 
professional learning through the discourse of collaborative teacher communities. 
 

Objective and Purpose 
The improvement of secondary mathematics instruction continues to be a pressing issue in 

the United States. Several recent studies indicate that math students routinely engage in 
classroom activity without understanding connections to important mathematics and scientific 
ideas (e.g., Banilower, Smith, Weiss & Pasley, 2006). In an observational study, Banilower et al. 
(2006) found that only 14% of all lessons in a national sample had a climate of intellectual rigor. 
In addition only 16% of lessons incorporated questioning that was likely to move students’ 
thinking forward and two-thirds of all lessons lacked sense-making discourse. Inattention to 
these kinds of classroom discourses is compounded by teachers’ limited understanding of 
students’ conceptions, thus making it difficult to adjust instruction accordingly.  

But how do we move teachers toward this kind of conceptually rich instruction? A number of 
studies point out that this kind of mathematics instruction depends on teachers’ pedagogical 
content knowledge, or PCK (Ball, Thames, & Phelps, 2008; Hill, Rowan, & Ball, 2005; 
Shulman, 1986). By pedagogical content knowledge, researchers refer to mathematical 
understanding that includes the most useful forms of representing and communicating content, as 
well as how students best learn the specific concepts and topics of a subject. 

If conceptually rich instruction depends on teachers’ PCK, how might we support the 
development of PCK? One possibility comes out of another line of educational research on 
equitable teaching. Namely, equitable student outcomes –– meaning that students’ race or class 
is not strongly predictive of mathematical attainment –– are best achieved when teachers work 
together with a focus on student learning (Gutièrrez, 1996; Lee & Smith, 2001; McLaughlin & 
Talbert, 2001). It has been posited by a number of researchers that such teacher collaboration 
can, among other things, foster the kind of PCK that supports teaching for understanding.  

For the past five years, on the Adaptive Professional Development projectv, we have engaged 
in a design experiment aimed at increasing access to and rigor in secondary mathematics through 
intensive, ongoing professional development work in urban high schools. A primary goal of this 
project is to support conceptually rich mathematics instruction for diverse students. We work 
toward this goal by providing professional development that places student learning at the center 
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of teaching practice and supporting teachers’ ongoing collaboration around student thinking. We 
started our work at Septima Clark High School,vi and after our initial success there, we added 
other schools to our network. Before the intervention at Clark, student pass rates in first year 
mathematics hovered just under 50%. After year one, they increased to 70%. Similar 
improvements were seen on standardized mathematical achievement tests, indicating that the 
changes in teachers’ practice had an effect on student learning, particularly for poor students and 
African and African American students, two demographics of particular concern in this setting. 
After two years of deliberate work on improving their teaching practices, the teachers saw pass 
rates on 10th grade state mathematics assessments rise for both low-income students (from 21.2% 
to 40.0% passing) and for African and African American students (from 15.7% to 30.1% 
passing). 

We understand these results to be the outcome of at least two things. First of all, with the 
support of our project, the teachers’ worked together in a more focused way than they had 
previously, giving them opportunities to coordinate expectations for students. This provided a 
clearly articulated curriculum, from the broader level of pacing down to the finer details of 
instructional language. Such consistency seems to have raised the level of expectations across the 
classrooms while providing students with easier transitions between them. Second, the teachers’ 
intensive engagement in professional development coupled with the building-level teacher team 
collaboration provided rich opportunities for professional learning. It is this second aspect of the 
phenomenon that I investigate in this paper. Over the course of the project, our inquiry was 
organized by the question: how do teachers develop more equitable mathematics teaching 
practices through targeted and situated professional development? Unpacking the relationship 
between professional development activities and teacher learning will contribute to other efforts 
toward improvement of secondary mathematics education. In this analysis, I focus on how 
teacher collaboration contributes to PCK that supports teaching mathematics for understanding. 

 
Theoretical Framework 

The study of teachers’ professional learning in the context of their workplace groups requires 
a framework that can account for learners and their settings. Thus I use a situative lens to study 
the teachers’ learning (Greeno, 2006). As Greeno describes, a situative approach to the study of 
learning is different from a purely cognitive approach: “Instead of focusing on individual 
learners, the main focus is on activity systems: complex social organizations containing learners, 
teachers, curriculum materials, software tools, and the physical environment” (p. 79). In this 
case, the social organization of the teachers’ collaborative work provides a social context for the 
teachers as learners.  

The study of learning demands a conceptualization of both mechanism and telos. A situative 
perspective highlights the role social interactions and contexts play in shifting learners’ 
understandings. In Lave and Wenger’s (1991) terms, the mechanism for learning is the shift from 
peripheral to central participation in an activity. In previous work, I have operationalized this 
notion in the context of teacher community by looking at the context of teachers’ collegial 
conversations, investigating the ways that discourse patterns over time provide the means for 
teachers to become more central participants in these interactions (Horn, 2005, 2007, in press). 
The telos, or goal, of learning in this case is teaching mathematics for student understanding. 
Thus we would anticipate a stronger and more specific understanding of student thinking and 
appropriate instruction as teachers learn.  
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This project conceptualizes teachers’ learning about teaching mathematics for understanding 
as something that can be traced, in part, through their interactions with colleagues. By 
investigating the nature of those interactions and what might make them more effective in 
deepening teachers’ understanding, this study contributes to educational research by furthering 
our understanding of teacher learning in workplace contexts. At the same time, there are 
important practical implications for this analysis since professional learning communities are 
becoming a more common way for schools to organize teachers for instructional improvement.  

 
Methods 

Research Context 
For the larger study, we pursued the question: How do teachers develop more equitable 

mathematics teaching practices through targeted and situated professional development? We 
have approached this project as a design experiment (Barab, 2006; Brown, 1992), where we have 
used precepts about student learning and teacher learning to develop interventions with the 
teachers to refine our understanding of how these work. Through active participation for the five 
years of the project, we have collected hundreds of hours of field notes of professional 
development activities, yearly interviews with participating teachers, audio and video recordings 
of teacher collaboration meetings, video tape recordings of teachers’ classrooms, and student 
achievement data.  

As described earlier, our work started in Septima Clark High School in the 2004-2005 
academic year. In Fall 2005, the Clark teachers formed a Freshman Team to focus on improving 
instruction for students in first year math classes. Team members consisted of the subset of the 
mathematics department who taught at that grade level. They were given a common planning 
period in addition to the regular preparation time.  

Because of their initial success, in Fall 2006, teachers at Lotus High School also formed a 
Freshman Team using a similar structure and principles. The Lotus team faltered somewhat the 
following year due to staffing issues and a lack of support, but has re-emerged this academic 
year (2008-2009) under new leadership and with the hiring of committed mathematics teachers.  

Theoretically, we view these collegial groups as providing us with a cross-sectional sample 
of teacher communities in different stages of development. Both groups meet criteria in the 
literature for professional learning communities: the teachers expressed shared norms and values; 
they focused together on student learning; they collaborated; deprivatized their practice; and used 
reflective dialogue in their conversations (Louis, Marks, & Kruse, 1996). While these criteria 
provide an important starting point for identifying teacher professional learning communities, the 
field needs a better understanding of not only how such communities might emerge, but how 
they might evolve over time. We see the differences in the how the Clark and Lotus teachers’ 
collaborate as one way of understanding the evolution of professional learning communities. The 
question that guides the present analysis is: How do high school mathematics teachers’ 
collaborative teams support their understanding of equitable teaching practices?  By looking 
cross-sectionally at professional communities at different points of evolution, this analysis seeks 
to hone in on the types of interaction that support the development of PCK, particularly as it 
relates to teaching mathematics for understanding. 
Participants 

The participants featured in this analysis are the current teacher teams at Lotus and Clark 
high schools. The Lotus team consisted of 3 teachers: Claire (with 9 years experience), Betty (5 
years experience); and Kieran (Claire’s student teacher). The Clark team consisted of Rose (over 
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25 years experience), Darla (10 years), Linda (5 years), Wendy (2 years), Anh (Linda’s student 
teacher) and Trevor (Darla’s student teacher). All of the teachers demonstrated a commitment to 
the project of teaching for understanding and had participated in professional development to 
support the development of these teaching practices. Because the Clark teachers have 
collaborated longer than the Lotus teachers, we conceptualize them as a more developed teacher 
community. 
Data 

Since we seek to understand the development of discourse that supports PCK in mathematics 
teacher workgroups, we have collected data that allows for longitudinal within group analysis as 
well as cross-sectional across group analysis to make sense of changes in discourse over time. 
Our primary data for this analysis are videotapes of the teachers’ collaborative work. Currently, 
we have video taped 2 two-hour collaborative meetings at both Clark and Lotus from the start of 
the school year. In addition, we plan to tape 2 two-hour collaborative meetings at each site in the 
middle and end of the school year. This will provide us with 12 hours of video data for the 
analysis. As secondary data, we have collected weekly fieldnotes of the teachers’ meetings to 
help us situate the video data in terms of the groups’ overall trajectory, to determine the 
typicality of the focal events, and to corroborate and refine our preliminary analysis. In this 
analysis, I focus on a cross-sectional analysis across the two groups. 
Analytic Methods 

To investigate the teachers’ learning in their collaborative groups, we parsed the videotapes 
using a unit of analysis called episodes of pedagogical reasoning (EPRs, [Horn, 2005, 2007, in 
press]). That is, we looked for units of teacher talk where the teachers reveal their reasoning 
about pedagogical issues. Usually these begin with questions or assertions about practice that are 
accompanied by a statement of reason, explanation, or justification. EPRs can be single-turns of 
talk (“I’m not doing that activity because it takes too much time”) or more elaborate, multiparty 
co-constructions. We locate EPRs based on topic shifts in the conversations. Longer EPRs 
frequently consist of sub-EPRs, as teachers explore different facets of the same problem.  

For the present analysis, I focus on two EPRs, a five-minute episode from Lotus and a three-
minute episode from Clark. These EPRs were selected for analytic comparison because the 
teachers are focusing on students’ mathematical confusion about algebraic topics, providing 
insight into the kinds of pedagogical reasoning that might support PCK. In particular, I trace the 
kinds of pedagogical content knowledge that the teachers assert during these episodes and how 
they relate it to their instructional decisions. Investigating how the teachers reason about these 
confusions and then develop pedagogical responses illuminates the role that professional 
communities can play in the development of PCK as well as influencing teaching practice. 

 
Results 

Figuring Out Students’ Confusion with Linear Equations at Lotus Overview of Episode 
This five-minute EPR comes out of an hour-long collaboration meeting. The Lotus teachers 

are working to understand why an activity on linear graphing was not successful in their classes. 
Prior to this meeting, all of the teachers used the activity in their classes, and they have agreed 
that it did not lead to the kinds of student understanding that they had hoped for. The original 
goal of the activity was to help students understand the graphical consequences for changes in 
slope (m) and y-intercept (b) in linear equations in the form y = mx + b. The first part of the 
episode is spent diagnosing what students had trouble with in the activity. At the end of the 
episode, the teachers decide upon an appropriate instructional response.  
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Pedagogical Content Knowledge Discussed 
In diagnosing the trouble students had with the graphing activity, the teachers invoke a 

number of issues that relate and represent their pedagogical content knowledge. First, Betty 
points out that the students’ trouble with the scales on the axes led to graphs that did not 
highlight the contrasts between the different linear equations, as was fundamental for the success 
of the activity. Kieran, Claire’s student teacher, thinks that the students’ trouble came out of their 
difficulty with the task’s instructions. Betty, drawing on a similar activity the group did earlier, 
hypothesizes that the negative numbers students needed to use in this activity led to difficulty, 
since their integer arithmetic is not strong. Betty then further suggests that students may have had 
different scales for graphs they were supposed to compare, which obscured the contrasts in the 
graphs that were critical to the activity. Kieran and Claire did not see the problem with the 
integer arithmetic in their students’ work. When Betty asks them where their students had 
trouble, they point to issues of scale: students did not keep the intervals constant, particularly 
around the graph’s origin. Claire adds that some of their students were having trouble plotting 
points correctly. Betty agrees that some of her students’ points were not plotted correctly, but she 
thinks it was because they used scales that were not appropriate for the numbers they were 
plotting (e.g., using intervals of 20 when the x values were between 1 and 10). Claire also reports 
student graphing troubles arising from interval choices, but she tells of students using intervals 
like 3 and having trouble finding even numbers on the axis, leading to non-linear looking graphs. 

 At the end of this diagnostic talk, the teachers turn to figuring out their instructional 
response for the follow-up activity, which is similar in structure to the one they have been 
analyzing. They invoke an ongoing tension in their decision making, described by Betty as 
“whether or not we want to do give into them and have them started independent of us and how 
much we want to make sure and clarify questions.” They conclude that, because of the extent of 
the difficulties students are having, they need to do more to “scaffold” students. They decide to 
do this by “modeling” the task before having students do it independently in their small groups. 
Betty illustrates this modeling through a teaching rehearsal (Horn, 2005, 2007, In press), an 
imagined or anticipatory narration or enactment of classroom interaction that teachers use when 
making sense of practice with their colleagues. Betty uses a teacher voice and gestures her graph 
on an imaginary white board while she says, “‘So I'm gonna draw my axes…’ ‘Everybody 
check, make sure they're numbered correctly.’ And then like, ‘Here are my lines, I'll label them 
like this.’” Her rationale for the modeling follows the rehearsal, when she explains, “just to kind 
of do a speeded up version of it where you're not giving accurate points, not doing whatever but 
to actually do those instructions.” Her colleagues agree to this strategy for addressing the 
students’ troubles. 
Relationship between Diagnosis of Student Confusion and Instructional Decisions 

The diagnosis of student confusion takes up much of this episode (approximately 4 of 5 
minutes). This diagnosis requires the teachers’ PCK, as they talk through the ways students 
understand and interact with the content of linear equations. A number of sources of trouble in 
students’ understanding are elaborated, ranging from instructional (unclear directions) to 
students’ skills (difficulty with integer arithmetic) and conceptual understanding (choosing 
appropriate intervals for a given set of data). While the teachers reach some consensus about the 
sources of the student confusion, their agreed upon response only addresses the first type of 
problem. By resolving the similar student difficulties by modeling the new activity, the teachers 
planned response helps with the procedural aspects of the tasks without addressing the 
underlying mathematical issues. In particular, Betty’s suggestion to do a “speeded up version” of 
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the activity as a demonstration before the students work independently does not allow a 
discussion of some of the deeper issues of linear graphing that they have identified, such as 
choosing appropriate scales for a given set of data, or keeping scales consistent so that students 
can make comparisons between graphs. 
Understanding Students’ Confusion with Solving Systems of Equations at Clark Overview of 
episode 

This three-minute EPR comes out of a two-hour collaboration meeting. The teachers are 
focusing on the problems students have using the “elimination method” of solving systems of 
linear equations. The elimination method refers to taking n equations in n variables and 
systematically finding values for the variables that satisfy all n equations by eliminating like 
terms across the equations. In this introductory unit, students were looking at systems of two 
equations in two variables, typically x and y. This required that they eliminate one variable (say 
x) across the equations by creating like terms with opposite coefficients and then solving for the 
value of the remaining variable (y), which could then be substituted in one of the original 
equations to find the first variable (x).  

Two of the teachers, Darla and Wendy, have taught the unit on solving systems of equations 
using the team’s shared curriculum, while the other teachers around the table are new to this 
particular unit. Wendy leads the discussion of student difficulties, interweaving her instructional 
responses. Her diagnosis is supported and elaborated by Darla.  
Pedagogical Content Knowledge Discussed 

Wendy starts the discussion of student difficulties by using a discourse structure I have called 
a teaching replay (Horn, 2005, 2007, in press). Teaching replays provide blow-by-blow accounts 
of actual and sometimes ongoing classroom events, often with teachers often narrating or acting 
out their part as teacher. In this instance, Wendy replays a student’s confusion over the 
elimination method, specifically the combining of like terms when the coefficients are not 
opposite values ("’Okay, I know that goes away, right? […] So I know the 3y and the -3y go 
away, but what's 4x + -2x?’”). She offers an instructional suggestion to lessen student confusion 
by sticking “strictly to addition.”  

Darla agrees with Wendy’s diagnosis and adds that, in the past, her students did not have 
trouble using the strategy of multiplying through one of the equations by a negative one to create 
opposite like terms that “make zeroes.” This, Darla explains, means that students do not need the 
support of the lab gear, a time-intensive algebra tile-like manipulative that the teachers use in 
some of their instruction. However, she cautions that while students could carry out the 
procedure successfully, they still did not recognize why they needed to use it. She illustrates the 
student confusion through another replay, one that expands on Wendy’s: “'Cause you know how 
Wendy did the – ‘this goes away?’ Right? […] ‘Okay, why does it go away?’ No idea.” This 
replay inserts a teacher response to the student confusion portrayed by Wendy. 

Wendy supports Darla’s elaboration and adds another example of student confusion, the 
“common mistake” that like terms “go away.” She replays a student-teacher interaction to 
illustrate prototypical instructional dialogue around this confusion, which Darla follows up with 
a replay of her own: “‘What do you mean it goes away?’ They're like, ‘It eliminates.’ I'm like, 
‘Why?!’ They just have no...” Despite the teachers’ consensus that students do not understand 
the mathematics behind the elimination method, Darla adds that the team is making headway in 
building the conceptual foundation for future years (“in future years, when kids have the 
language of making zeroes much more strong […] we should have a much easier time”). 
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Nonetheless, they are currently working against student beliefs that “math is just tricks” and does 
not require deeper understanding. 
Relationship between Diagnosis of Student Confusion and Instructional Decisions 

In this episode, the teachers’ diagnosis of student confusion is tightly coupled with 
instructional responses. From the beginning, when Wendy signals students’ troubles with 
combining like terms, she suggests an instructional response (“stick strictly to addition”). Darla 
further diagnoses the extent of students’ understanding, noting that they can carry out the 
procedure of multiplying through by negative one, which she also ties to appropriate instruction 
(“I don’t think they’ll need lab gear for that”). However, she is careful to distinguish between 
procedural success and conceptual understanding, pointing to the idea that underlies the students’ 
confusion ––terms eliminate when they are of opposite value and “make zero.”  

 
Discussion 

In both of these conversations, there is a clear focus on student learning. Both groups of 
teachers work together to make sense of students’ mathematical performance and elaborate on 
the kinds of understanding that students bring to their work. In both groups, an important facet of 
PCK is highlighted: namely, the kinds of difficulties students have in learning important topics in 
algebra. According to many scholars of teacher communities, this focus on student learning is a 
hallmark characteristic of professional learning communities (Louis, Kruse, & Marks, 199x; 
McLaughlin & Talbert, 2001). 

However, the difference between the two conversations seems significant and consequential 
for teaching mathematics for understanding. While the teachers in the first conversation (Lotus) 
diagnose many of students’ troubles with linear graphing, the planned instructional response 
does not fully account for the range of difficulties they identify. In particular, by focusing on 
students’ procedural rather than conceptual troubles, the teachers miss an opportunity to help 
students develop a stronger understanding of some of the critical issues in linear graphing. The 
teachers in the second conversation (Clark) also diagnose students’ conceptual difficulties with 
an important algebraic topic, solving systems of equations. However, in contrast to the first 
conversation, the teachers consistently link an assessment of student understanding to 
instructional responses.  

It is interesting to compare the representation of instructional dialogue in both groups. In 
earlier work in which I studied the conceptual resources for teachers’ pedagogical reasoning, I 
found that highly collaborative teacher groups tended to use more rehearsals and replays in their 
talk, and that these tended to represent both student and teacher sides of classroom interactions 
(Horn, 2005). Similarly, the Lotus teachers do not make much use of teaching rehearsals or 
replays in their pedagogical problem solving. When it does occur, it is a one-sided representation 
of teacher talk. In contrast, teaching replays permeate the Clark conversation from the very 
beginning. Many of the instructional responses, in fact, are represented through a replay of 
student-teacher dialogue. Further analysis will have to confirm that the Clark teachers 
consistently use these kinds of interactive representations in their conversations to represent the 
interactivity of the classroom. If this proves to be the case, this would contribute to the finding 
that the interactivity represented in these classroom snippets may signal a more tightly bound 
understanding of student confusion and instructional responses.  

This paper makes several contributions. First, I have illustrated the kinds of pedagogical 
content knowledge that may emerge in teacher collaborative talk. Second, this analysis 
elaborates the ways in which a focus on student learning can be more tightly linked to instruction 
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in a professional learning community. Finally, the findings here may signal developmental 
differences in teacher workplace groups. This last implication supports practitioners, be they 
teacher leaders or school coaches, seeking to develop professional communities in their own 
schools.  
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Given the complex nature of the classroom and the instructional flexibility that teachers are 
expected to demonstrate, understanding how teachers are paying attention to and making sense 
of what happens during instruction is an important area of research. This study investigates the 
in-the-moment noticing of one secondary mathematics teacher using a wearable camera with 
after-the-fact recording capability. When using the camera in his classroom to capture 
“interesting moments”, the teacher focused almost exclusively on his students’ mathematical 
thinking. We discuss the range of student thinking captured and the function that such noticing 
might play in this teacher’s practice.    
 

Recent research in mathematics education has drawn attention to the importance of 
understanding how teachers are attending to and making sense of what is happening in their 
classrooms (Mason, 2002; Jacobs et al., 2007; Sherin, 2007). A focus on this component of 
teacher thinking is particularly timely given recent calls for mathematics teachers to be flexible 
and adaptive to student thinking in their instruction (NCTM, 2000). Furthermore, having 
teachers focus on student thinking and adjust what they are doing based on formative assessment 
places high demands on teacher’s subject matter and pedagogical content knowledge (Ball & 
Bass, 2003). Yet, understanding the knowledge needed for teachers to be able to make these 
types of instructional decisions involves not only being able to systematically articulate the kinds 
of knowledge that they must have, it requires also developing models of how that knowledge is 
activated and applied in actual teaching situations (Sherin, Sherin, & Madanes, 2000; 
Schoenfeld, 1998). Understanding this in-the-moment noticing and sensemaking is therefore an 
important goal for teacher thinking research. 

To suggest that mathematics teachers are adaptive in their instruction is not to deny that they 
walk into the class having some idea of what they would like to accomplish that day. Numerous 
researchers have documented the kinds of lesson images and agendas that teachers develop in 
planning for instruction (e.g., Leinhardt & Greeno, 1986; Morine-Dershimer, 1978). However, 
once in the classroom, teachers must be alert to how the lesson is progressing and make 
modifications as necessary. In previous work that we have done to study teacher noticing, we 
have relied heavily on the use of having teacher’s view episodes of instruction on video and 
discuss what they noticed (Sherin & van Es, 2009). Other research has also tried to make use of 
video to study teacher noticing (Borko et al., 2008; Santagata, Zannoni, & Stigler, 2007.)  This 
work has led to some interesting findings about noticing and how it can be influenced. For 
example, Sherin and van Es (2009) demonstrate that teacher noticing can be influenced based on 
participation in video clubs and Star and Strickland (2007) show that a pre-service course 
resulted in teachers being able to recall more detailed and varied information from a teaching 
episode they viewed on video. While this work has provided some insight into how teachers’ 
noticing occurs while watching video, the processes of noticing and making sense might differ 
substantially while they are in the act of teaching. In more recent work and in this study we have 
begun to try to investigate teacher noticing in-the-moment of instruction. 
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Research Design and Methodology 
In this work we use a new digital video technology, first used by Sherin and colleagues 

(2009), which helps provide online access to what teachers pay attention to during instruction. 
The Deja View CamWear Model 100 (Reich, Goldberg, and Hudek, 2004) is a compact 
wearable camera that records from the perspective of the teacher, capturing what is in their field 
of vision rather than from the perspective of the researcher as is often the case in classroom 
videography. In addition, the camera exhibits an after-the-fact capability that enables users to 
decide to save a record of their experience after an event has occurred. The camera maintains a 
continuous buffer of 30-second activity and when an event occurs that the user wants to record, 
pressing the capture button saves the previous 30 seconds into digital clip that can later be 
downloaded onto a computer.  

This after-the-fact feature of the technology allows a teacher to wear the camera during class 
and decide while in the midst of teaching when a noteworthy event occurs that they would like to 
save for further reflection. We are using the technology as part of a larger ongoing research 
project to study math and science teachers’ noticing during instruction (see Sherin et al., 2009 for 
a more detailed discussion of the value of this technology for this purpose). For that project we 
recruited ten secondary math and science teachers of varying experience from a large urban area 
in the Midwest to use the technology in their classrooms. Here we focus on one mathematics 
teacher, Mr. Leavenworth (all names are pseudonyms), who received a BS in Mechanical 
Engineering and became a teacher through an alternative certification program. He was in his 
fourth year of teaching, his third at this particular school, and taught courses that included 
Advanced Algebra/Trigonometry, Advanced Mathematics, and an International Baccalaureate 
AP Calculus class. He had previous experience using video to reflect on issues of teaching and 
learning with colleagues. For this study he used the camera for four days in his AP Calculus class 
during the fall of the 2008-09 school. 

Before class on the day of taping, Mr. Leavenworth was fitted with the camera and 
informally discussed with the researcher his plan for the lesson. Mr. Leavenworth was instructed 
to “press the record button on the camera when something interesting happens in class, when 
something seems interesting to you.” The prompt was intentionally open-ended to allow the 
teachers to define “interesting” in their own way while teaching. No limit was given on the 
number of moments the teacher could capture. During class the researcher also video recorded 
the entire lesson using a camera positioned in the back of the room. 

Following each lesson the researcher interviewed the teacher for 30-40 minutes. They first 
discussed what it was like to use the camera that day and whether it affected the teacher or 
students’ behavior. The researcher and teacher then watched each of the captured moments until 
the teacher remembered why he had captured that moment. If he could remember, the teacher 
then explained what was interesting about that particular moment. After viewing all of the clips 
the researcher also asked the teacher a few questions about whether he had captured what he had 
intended and whether he was aware of using any specific criteria to select interesting moments. 
While there was a standard protocol, the interviews were relatively unstructured and 
conversational in style. 
  

Results 
In the following we briefly discuss the nature of the clips Mr. Leavenworth collected and 

highlight three aspects of his noticing that emerged from the data analysis. We describe how: 
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1) A majority of the moments that Mr. Leavenworth captured related to students’ ideas 
about mathematics. 

2) Mr. Leavenworth’s noticing is structured so that he is on the look out for specific 
mathematical ideas that are important for students’ understanding during instruction.  

3) At certain junctures during instruction when a particular conceptual idea or solution 
strategy is needed, Mr. Leavenworth notices the absence of those ideas needed at that 
point in the lesson. In response to this situation he has two different kinds of instructional 
methods that allow him to introduce the necessary ideas into the classroom.  

Collected Clips 
Mr. Leavenworth’s instruction can be described as a switching back and forth between public 

whole group discussions in which new material is being introduced or a problem set is being 
discussed and private small group or individual seat work on problems as he circulates the room. 
During the three days that Mr. Leavenworth used the camera he collected a total of 55 clips of 
“interesting” activity during both of these classroom activities. However, Mr. Leavenworth 
seemed to demonstrate a slight preference for capturing moments that occurred during the large 
group discussion component of his classes. Although only 58% of class time was devoted to this 
public work, 72% of the moments that he captured occurred during this type of activity. Next we 
examine his reflections on these moments in the post-interview to understand more about what 
he found interesting. 
A Focus on Student Thinking 

In the post-interview, Mr. Leavenworth discussed each of the clips he captured and explained 
what he had found interesting about what was happening at that moment. As a first step in 
characterizing his explanations we applied the set of codes developed by Sherin et al (2009) to 
describe teacher’s reasons for capturing each moment. Table 1 provides a description of each of 
the codes and indicates the percent of Mr. Leavenworth’s clips coded in that category.  
We coded his reflection as Student Thinking when the focus of his comments was on the 
substance of student’s mathematical ideas. A Discourse code was applied when his reflection 
related to process of how ideas were being communicated in the classroom. We coded his reason 
for capturing the clip as Teacher Moves when he the focus of his comments is on some 
instructional decision or action that he made. And Student Engagement referred to those 
reflections in which he was focused on the quality or quantity of student participation in the class 
activities. 

In his reflections Mr. Leavenworth describes an overwhelming percentage (94%) of his 
captured moments as “interesting” because of the substance of students’ mathematical thinking. 
Whereas he found only a relatively small percentage “interesting” because of Discourse (8%), 
Teacher Moves (17%) or Student Engagement (2%). Note that the total percentages add up to 
greater than 100% because double coding was permitted if he cited multiple reasons for finding a 
moment “interesting”. The strong focus on Student Thinking while capturing moments 
distinguishes Mr. Leavenworth from the other teachers using this camera who have typically 
only focused on student thinking about one third of the time (Luna, Russ, Colestock, in press; 
Sherin et al., 2009).  

In examining the kinds of Student Thinking moments that he captured, it becomes evident 
that he was interested in a range of different kinds of student thinking. In Table 1 we briefly 
describes a few of the specific moments that he captured in order to anecdotally communicate 
the range of student thinking phenomenon which drew his attention. 
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Table 1. Examples of Student Thinking Moments Captured by Mr. Leavenworth 

Student justification of solution : When stating her answer to an activity that involved trying 
to match up a differential equation with its corresponding slope field a student refers to the order 
of the function as a useful factor to consider. Mr. Leavenworth captures the moment and 
explains, “So it was nice that she mentioned [the order of the function] and something that we 
can build on tomorrow.” 

Student thinking through a problem: Moments after Ethan’s question Daniel is explaining his 
idea about how they might adopt the methods they are using for solids of revolution to find the 
volume of a pyramid, Mr. Leavenworth captures the moment and later reflects, “I thought it was 
interesting to kind of see him working through what he thought we should do.” 

Student difficulty solving a problem: The teacher walks over to help a who student was trying 
to use his graphing calculator in a way that resembled what they had been doing several weeks 
earlier but that would not work within the context of the problem that they were working on and 
Mr. Leavenworth captures this interaction “because I thought it was interesting that he tried to 
do that.” 

Insightful mathematical question: On another occasion a student asks if they would always 
use pi to calculate the volume of other 3-dimensional solids and in reflecting on this captured 
moment Mr. Leavenworth remarks, “I thought it was an interesting insight and it was a good 
question about how [pi] can keep showing up [when calculating the volume of solids of 
revolution] but is it always that way.” 

Noticing for the Purpose of Monitoring Instructional Progress 
We learn more about Mr. Leavenworth’s almost exclusive focus on students’ mathematical 

ideas by examining his discussion about criteria he used in the moment to decide if an event was 
interesting. During the post-interviews Mr. Leavenworth cited his goals for the lesson as one of 
the primary criteria for identifying interesting moments. For example, on day three he says:  

 
Researcher:  How would you characterize the criteria that you were using to decide 

which moments to capture? 
Teacher:  … My goals for the lesson are to understand the two parts [of the 

Fundamental Theorem of Calculus]. . . students need to understand that 
the antiderivative and the derivative are the inverse of each other and just 
the idea of limits, how you can manipulate definite integrals, the limits of 
definite integrals. So when I heard those things [in class] then I would 
press the button. 

 
Mr. Leavenworth’s claim that his goals for the lesson influenced what he found worth capturing 
on this day is supported by an examination of the moments that he collected during this lesson. 
Nine of the fourteen clips captured on that day involve student comments or questions that relate 
to the mathematical goals that he explicitly identified for that day. 
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A later interview with Mr. Leavenworth indicates one role these goal-fulfilling moments of 
student mathematical thinking may serve for him instructionally. He describes how, “It was 
almost like I had a checklist of things that I wanted to come out.” It seems that Mr. Leavenworth 
notices moments of student mathematical thinking that indicate to him how the lesson is 
proceeding – whether it is “working” and going well. That he captures moments of student 
misconceptions suggests that he also notices when the lesson is progressing differently than he 
had expected. In other words, one aspect of his noticing seems to involve detecting alignment or 
misalignment with the lesson image (Schoenfeld, 1998) that he had developed in planning for the 
day. Attention to student mathematical thinking allows Mr. Leavenworth to monitor the progress 
of his instruction as it relates to student understanding of the content. 

It is possible that Mr. Leavenworth did not actually use the lesson’s mathematical goals as a 
criterion in the moment of collection but instead created an ad hoc theory that accounts for the 
clips after observing them all together. However, the fact that he mentions mathematical lesson 
goals as a primary criterion on several different days suggests that it might be a more stable 
component of his noticing rather than something that is created by engaging with this camera 
technology. 
Noticing and Improvised Teaching Episodes 

Mr. Leavenworth comes to class with some idea of what he needs to accomplish and his 
noticing is at least partly directed towards monitoring whether those mathematical 
understandings emerge at the appropriate time. However, rather than merely telling students an 
important mathematical insight Mr. Leavenworth will often, and perhaps even prefers, to use 
student voices to articulate conceptual understanding or generate approaches to a novel kind of 
problem. For example, when reflecting on one of his captured moments Mr. Leavenworth 
describes his plan to use student ideas generated in small groups in order to address an 
interesting but problematic idea that a student posed earlier during public discussion. “Between 
Eric, Daniel, and there was a few others, [I think we had]… an alternative to what we had started 
with.”  In the class discussion following this episode, Mr. Leavenworth calls on one of the 
students to introduce his alternative to a student’s earlier solution. In this case, the students 
produced the ideas that Mr. Leavenworth needed in order for the lesson to proceed. However, 
what can a teacher do if he gets to a point in instruction when he notices the absence of some 
mathematical idea or solution strategy that is supposed to “come out” but has not?  

Below we describe two episodes from the class that demonstrate how Mr. Leavenworth will 
react during his teaching if he notices the absence of a particular mathematical idea that he thinks 
is necessary at some point during the lesson. From his discussion of the noticed moments we 
identify two possibilities for how he generally proceeds when faced with this dilemma: either he 
provides the key conceptual insight on his own or he extends a lesson segment with an 
improvised teaching episode to help the students voice the required insight.  

The first episode takes place after Mr. Leavenworth uses relatively straightforward examples 
to introduce part of the Fundamental Theorem of Calculus that exploits the inverse nature of 
derivatives and antiderivatives (integrals). He then presents the students with an extension 
problem to work on individually or in small groups, which involves limits of integration that are 
functions instead of constants. He writes the following question on the overhead: 

� 

Find dy
dx

 for the function y = cos t dt
1

x 2

∫
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Mr. Leavenworth captures a moment in which one student asks “Do you have to take into 
account the x2 or can you just ignore it?” Mr. Leavenworth considers this a very good question 
and asks the other students for their opinions as to the answer. When no students are able to 
provide a reason for ignoring the function or a suggestion as to how to proceed, Mr. 
Leavenworth says “It is a really great question, here’s what we are going to do…” and instructs 
them to use the Chain Rule that they learned previously to solve the problem.  

In the first episode Mr. Leavenworth poses the new problem to the students and gives them 
some opportunity to grapple with how to deal with the apparent mathematical difference between 
it and the previous examples. He indicates in his reflection on the moment that he is pleased with 
the student’s thinking that directs the class’s attention to the relevant feature of the problem. 
However, when the students do not offer up any productive suggestions of how to deal with this 
difference, he is forced to supply the needed insight himself. 

Later in the same class Mr. Leavenworth gives the students another problem in which both 
the lower and upper limits of the antiderivative are functions: 

� 

Find dy
dx

 for the function y =
1

2 + et  dt
2x

x 2

∫

 

 During their private work Mr. Leavenworth captures one student’s idea for dealing with this 
new type of problem and later during the large group discussion he captures a series of moments 
in which different students offer suggestions. However, we can infer that he did not find any of 
these ideas instructionally tractable as he does not build upon or develop them further. Instead, 
after several minutes of trying to elicit student suggestions, Mr. Leavenworth walks to the front 
board and sketches up a representation in which each of the functions in the limit is represented 
by runners in a race with the 2x slower runner behind the x2  faster runner. He highlights how 
“the distance [between the functions] is changing all of the time, so as x gets bigger, x squared is 
getting way out in front... Is there any reference point that we could use to figure out where these 
guys or girls are in relation to each other?” When a student suggests they use the starting point 
Mr. Leavenworth relates the idea of the start as a reference to having a lower limit of integration 
of 0. He asks if they can make the antiderivative they are working on have a lower bound of 0, 
and another student suggests that they rewrite their integral as two separate integrals by 
manipulating the upper and lower limits.  

In the second episode Mr. Leavenworth did not simply provide the needed insight, but 
improvised and actively worked towards having students develop an approach that would work 
for this problem. His improvisation involved using the metaphor of a race to demonstrate how 
the functions are increasing at different rates but the starting point can be used to measure the 
distance to each of the runners. This appears to have activated students’ prior knowledge of 
working with definite integrals sufficiently to have a student suggest the appropriate technique. 

In both of these episodes Mr. Leavenworth notices students’ mathematical thinking and from 
that thinking assesses the lesson’s progress. These episodes provide evidence that Mr. 
Leavenworth has multiple practices in his teaching repertoire that he can draw on when his 
lesson image does not proceed as he has expected. It is not clear whether Mr. Leavenworth is 
aware of these alternative approaches to handling the teaching situation in which students do not 
provide the ideas that he seeks. However, by examining the moments he captures with the 
camera, his post-class reflections, and his instructional moves we are able to distinguish these 
two improvisational instructional strategies. 
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Discussion 
Through the use of a wearable camera implementing a selective archiving architecture we 

have examined one high school mathematics teacher’s instruction and noticing in-the-moment 
during four days of his teaching. By asking the teacher to try to capture moments that occurred 
during class that he found interesting, we were hoping to gain more immediate access to the 
teacher’s thinking and noticing during instruction than other methodologies used to date have 
been able to provide. Though we cannot say with certainty that the reflections about each clip 
provided during the post-interview actually represent exactly what he was noticing and thinking 
during the moment of instruction, we suspect that trying to characterize the moments that he 
captures and his reasons for capturing them and triangulating that with other elements of his 
instruction is a productive route towards better understanding Mr. Leavenworth’s noticing. 

Based on the data on his own teaching that Mr. Leavenworth collected, he seems to have a 
strong focus on attending to the mathematical substance of the students’ ideas. He came into 
each lesson with some sort of agenda that can loosely be represented by a series of goals and 
actions that he wanted to have happen in developing the mathematical content for the day.  We 
also observed a general instructional tendency to have students voice important conceptual ideas 
that might stem from a desire to actively involve students in the class or beliefs about how 
students learn. This observation was supported in the way that Mr. Leavenworth characterized 
his noticing during the post-interviews. The desire to have students involved in voicing important 
conceptual ideas creates a teaching dilemma generated from the unpredictability of student 
thinking. We highlight two episodes that illustrate how Mr. Leavenworth might react to a 
situation in which an idea does not arise at the expected moment by providing the idea himself or 
by doing some more work to try to get students to see the idea for themselves. We suspect that 
understanding how and when each of these two kinds of events occur represent a rich sight for 
research into teacher thinking and noticing and in the future plan to continue to use a similar 
methodology to further investigate these phenomena.  
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This study intended to measure mathematical content knowledge both before and after the first 
year of teaching in the classroom and taking graduate teacher education courses in the Teach 
for America (TFA) program, as well as what attitudes toward mathematics TFA teachers held 
over the first year. To determine TFA teacher mathematical content knowledge and attitudes 
toward mathematics and teaching, participants were given a mathematical content test and two 
attitudinal questionnaires at the beginning and at the end of their first year teaching and taking 
graduate education courses.  
 

There has been a recent interest in studying the effects of TFA teachers in America’s 
classrooms (Darling-Hammond, Holtzman, Gatlin, & Heilig, 2005; Xu, Hannaway, & Taylor, 
2008). Darling-Hammond et al. studied the effects of TFA teachers in elementary school 
classrooms. Xu et al. claim to have produced the first study examining the effects of TFA 
teachers at the secondary level. However, there have not been any known studies that specifically 
focus on the mathematics content knowledge and attitudes toward mathematics and teaching for 
TFA teachers. This study addresses a much needed focus on secondary TFA teachers’ 
mathematical content and attitudes, two areas much neglected in the literature. 

 
Research Questions 

1. What differences exist between Teach for America (TFA) teachers’ mathematical content 
knowledge and attitudes toward mathematics and teaching in the beginning and at the end 
of their first year teaching and taking teacher education courses in a graduate program? 

2. Is there a relationship between TFA teachers’ mathematical content knowledge and their 
attitudes toward mathematics and teaching before and after their first year teaching and 
taking teacher education courses in a graduate program? 

3. How positive are TFA teachers’ attitudes toward mathematics and teaching at the end of 
their first year teaching and taking teacher education courses in a graduate program? 

 
There was a significant increase in both mathematical content knowledge and attitudes 

toward mathematics over the TFA teachers’ first year teaching. Additionally, several significant 
correlations were found between attitudes toward mathematics and content proficiency. Finally, 
it was found that TFA teachers, after a year of teaching, had significantly better attitudes toward 
mathematics and teaching than neutral.  
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This study describes an intervention to compare the effectiveness of web-based and traditional 
instruction on pre-service teachers' knowledge of fractions. A sample of 48 pre-service teachers 
was assigned to an experimental and a control group. The experimental group received web-
based instruction on fractions whereas the control group received traditional instruction on the 
same topic. Pre-post-tests comparisons showed that the experimental group achieved 
significantly better results in the post-test than the control group. 
 

Introduction 
Research has shown that the effective use of multimedia or interactive web-based modules 

can increase student learning (Aberson, Berger, Healy, Kyle, & Romero, 2003; Bliwise, 2005). 
This study determines whether web-based instruction (WBI) represents an improved method for 
helping pre-service teachers learn fraction operations in procedural and conceptual knowledge 
(Hiebert and Lefevre, 1986). The purpose was to compare the effectiveness of web-based 
instruction (WBI) with the traditional lecture in mathematics Content and Methods for the 
Elementary School course. 

 
Method 

A sample of 48 pre-service teachers was assigned to an experimental and a control group. 
The experimental group received web-based instruction on fractions whereas the control group 
received traditional instruction on the same topic. 
 

Results and Conclusion 
The results of this study suggest that the use of web-based instruction (WBI) in learning 

fraction operations is more effective. In this study, we found that the computer program for the 
web-based instruction helps to capture the pre-service teachers’ attention because the programs 
are interactive and learner-centered. Second, we found that the interactive websites used for web-
based instruction provide a dynamic and animated tool for improving students’ visual and 
conceptual abilities in learning mathematics concepts. 
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Teacher knowledge is one of the most important components of teacher quality because the 

content knowledge of a teacher strongly impacts the enactment of pedagogical tools of the 
teacher. Brown and Borko (1992) asserted that pre-service teachers’ limited mathematical 
content knowledge is an obstacle for their training on pedagogical knowledge. Ball and a group 
of researchers developed  mathematical knowledge for teaching (MKT) which addresses how a 
teacher uses mathematics for teaching while emphasizing the importance of mathematics 
knowledge in the teaching settings (Ball, 2000). Research studies show that using student work 
to facilitate teacher learning results in teachers’ deeper subject matter knowledge (Kazemi & 
Franke, 2004). Furthermore, content knowledge of teachers is important for every subject 
including geometry, often a neglected topic in the curriculum. The limited number of research 
projects focusing on knowledge of geometry for teaching showed that beginning teachers are not 
equipped with necessary content and pedagogical knowledge for teaching geometry (Jones, 
2000, Swafford, Jones & Thornton, 1997). Therefore, the purposes of this study are (i) to 
investigate the effective geometry learning experiences for pre-service elementary school 
teachers during elementary methods course and (ii) to design set of geometry activities to use in 
methods course  

This study took place at an elementary methods course in a large southeastern public 
university in the US. The individual interviews of three participants, classroom observations and 
classroom artifacts were analyzed by narrative analysis (Labov, 1972) and thematic analysis 
(Coffey & Atkinson, 1996). As a result of narrative analysis two main kinds of stories emerged: 
as a learner and as a beginning teacher. The thematic analysis results yield to three themes: (a) 
history of learning geometry, (b) what is geometry? (c) experiences in methods course. These 
results were combined with literature on using student work, and they emerged into a two-phase 
protocol to address pre-service teachers’ needs and perceptions during the methods course in 
order to enhance their geometry learning. The first phase of the protocol consists of geometry 
activities for pre-service teachers and the second phase consists of studying elementary school 
students’ geometry work.  
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This poster highlights two teachers’ curriculum development process as they created and 
enacted project-based curriculum for math instruction. Different from typical studies focused on 
the use of Standards-based mathematics curriculum materials, this study presents findings from 
a curriculum enactment perspective. Pictures, project files, and sample student work will be 
presented. 
 

Pinar et al. (1995) stated that “teaching is commonly characterized as the means by which 
curriculum is implemented” (p. 745). The term “implementation,” however, has come to mean 
many different things. Snyder, Bolin, and Zumwalt (1992) categorized three differing 
perspectives on curriculum implementation: (a) the fidelity perspective, (b) the mutual adaptation 
perspective, and (c) the enactment perspective. Researchers who perceive curriculum with a 
fidelity lens are interested in studying the degree to which a planned curriculum is implemented 
by teachers in ways intended by curriculum writers. The role of the teacher is one of a consumer 
who should “implement the curriculum as those possessing curriculum knowledge have designed 
it” (p. 429). Further along the continuum is mutual adaptation. Researchers falling within this 
perspective view curriculum knowledge as either residing in the outside experts who developed 
the curriculum or as a combination of external curriculum knowledge coupled with practitioners’ 
curriculum knowledge. Most research focused on teachers’ uses of Standards-based mathematics 
curriculum materials tend to fall within this perspective (see e.g., Cohen, 1990; Remillard & 
Bryans, 2004). Finally, researchers viewing curriculum implementation from an enactment 
perspective view the actual or enacted curriculum as their focus. They are interested in how the 
curriculum is shaped and how it is experienced by teachers and students. Curriculum knowledge 
is viewed as an ongoing process and is not necessarily dependent on an externally created piece 
of curriculum as the center of the study. Researchers from this viewpoint view the role of the 
teacher and students as critical as there would be no curriculum without them.  

This poster highlights the experiences of one mathematics teacher, one science teacher, and 
88 middle school students from a curriculum enactment perspective. Although Standards-based 
mathematics curriculum materials were utilized by teachers throughout the study, the focus 
remained on the daily process of curriculum enactment. Drawing on Jurow’s (2005) description 
of figured worlds and project-based curriculum, this poster highlights an alternate research 
perspective on the use of Standards-based mathematics curriculum materials for mathematics 
teaching and learning. Planning notes and reflections from teachers, as well as final projects and 
reflections from students are included. Finally, this poster offers overall suggestions and 
reflections on project-based learning in middle school mathematics and science.  
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This study examined ways in which students make use of a graphing calculator and how use 
relates to comfort and understanding with mathematical symbols. Analysis involved examining 
students’ words and actions in problem solving to identify evidence of algebraic insight. 
Findings suggest that lack of symbol sense can lead students to turn to a graphing calculator as 
a tool for prompting a way to start a problem, or for providing a guess or confirmation.  Certain 
symbols also lead some students to believe that they cannot use a calculator at all. Implications 
for teaching with a graphing calculator are included.  
 

Introduction 
Students often have access to graphing calculators and use them to help solve many types of 

problems. However, teachers and researchers are often unaware of how and why students use 
graphing calculators and how their use relates to their mathematical thinking, particularly about 
mathematical symbols. In this study, I address the research question: How are students’ uses and 
understandings of graphing calculators related to students’ uses and understandings of symbols? 

Symbols are components of mathematical language that allow a person to communicate, 
manipulate, and reflect upon abstract mathematical concepts. However, symbolic language is 
often a cause of great confusion for students (Rubenstein & Thompson, 2001). Expert 
mathematicians or teachers are able to manipulate and to interpret mathematics through its 
symbolic representations, whereas students may struggle in this endeavor; they often need to be 
told what to see and how to reason with mathematical symbols (Bakker, Doorman, & Drijvers, 
2003; Kinzel, 1999; Stacey & MacGregor, 1999). Arcavi (1994) explains that working fluently 
with symbols in mathematics requires developing strong symbol sense which includes, for 
example, understanding when to call on or abandon symbols in problem solving, understanding 
the need to compare symbols meaning with one’s own expectations and intuitions, and knowing 
how to choose possible symbolic representations. Arcavi sees development of symbol sense as a 
necessary component of general sense making in mathematics. It is a tool that allows students to 
read into the meaning of a problem and to check the reasonableness of symbolic expressions.  

Difficulties with symbol manipulation in mathematics may be one reason that students turn 
to graphing calculators for assistance in problem solving. Unlike calculators with computer 
algebra system (CAS) capabilities, most graphing calculators (e.g., TI-83, TI-84, TI-85, Casio 
FX-9750) cannot algebraically manipulate symbolic equations to produce useful results. Some 
work with symbols can be done with a non-CAS calculator; for example, symbolic expressions 
can be entered and viewed in the Y= menu, and values can be stored as a variable and substituted 
into an expression. However, a large benefit of these tools is that users can explore other 
representational forms of symbolic expressions, such as graphs, tables, or matrices.   

 
Framework 

Pierce and Stacey (2001) used Arcavi’s (1994) notion of symbol sense to develop a 
conceptual framework for looking at what is needed to take a mathematical problem, work with 
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it using the tools and language of the calculator, and interpret and use the results using regular 
mathematical notation and forms. Pierce and Stacey define algebraic insight as a subset of 
symbol sense that enables a learner to interact effectively with a computer algebra system (CAS) 
when solving problems. They suggest that the nature of algebraic insight is the same whether 
work is done by-hand or with a CAS. Thus, I contend that the framework for assessing algebraic 
insight can also be appropriate for examining students’ problem solving with graphing 
calculators that do not have symbolic manipulation capabilities. The two components that make 
up algebraic insight, algebraic expectation and the ability to link representations, elaborate 
instances and examples of algebraic insight that may be identifiable when analyzing students’ 
work with graphing calculators. Table 1 shows the elements of the algebraic insight framework. 

 
Table 1 
Algebraic Insight Framework (Pierce & Stacey, 2001) 

Aspects Elements Common Instances 
 Algebraic   
 Expectation 

1.1 Recognition of conventions and 
basic properties 

1.1.1 Know meaning of symbols                       
1.1.2 Know order of operations 

  1.1.3 Know properties of operations 
 1.2 Identification of  

structure 
1.2.1 Identify objects                                          

1.2.2 Identify strategic groups of 

         components 
  1.2.3 Recognize simple factors 
 1.3 Identification of      

key features 
1.3.1 Identify form                                             
1.3.2 Identify dominant term 

  1.3.3 Link form to solution type 
Ability to Link 
re-presentations 

2.1 Linking symbolic and    
      graphic reps  

2.1.1 Link form to shape                                         
2.1.2 Link key features to likely position         
2.1.3 Link key features to intercepts 
         and asymptotes 

 2.2 Linking symbolic and     
      numeric reps  

2.2.1 Link number patterns or type to 
         form 

  2.2.2 Link key features to suitable 
         increment for table                                    
2.2.3 Link key features to critical 
         intervals of table 

 
This framework specifically addresses ways to plan, assess, and reflect on students’ 

understanding when working with technology to solve mathematical problems (Pierce & Stacey, 
2001). Using this framework assists in the task of identifying ways in which students’ uses and 
understandings of mathematical symbols relate to how and why they use a graphing calculator.  

 
Methods 

The method of inquiry for this research is a multi-case study, where a case represents an 
individual college pre-calculus student. Students were selected for this study using a survey that 
assessed familiarity with and use of graphing calculators. All invited participants indicated 
having at least average familiarity with graphing calculators and using graphing calculators at 
least one-half of the time on homework, but reported varying levels of success in previous 
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mathematics course. Six students agreed to participate in the study and have the pseudonyms: 
Jill, Nina, Molly, Beth, Elyse, and Shawn.  

The data sources in this study include a collection of work on tasks, video recordings of 
interviews, and computer recordings of calculator keystrokes for work completed on a graphing 
calculator. For the latter, I connected TI-84+ graphing calculators to a computer via a TI-
Presenter device, and Windows Movie-Maker software captured and recorded videos of 
students’ calculator keystrokes (c.f. McCulloch, 2007).    

The findings reported in this paper are one piece of a larger doctoral thesis study. Students 
participated in three different interview settings during the course of the larger study. The results 
in this paper come from individual task-based interviews that took place near the beginning of 
the semester. In these sessions, students worked on secondary school-level algebra problems 
(i.e., problems to which students should have had prior exposure, but which had not recently 
been covered in class). As they worked on four different tasks (given in Table 2), students talked 
aloud about their thoughts and actions. They shared reasons for making use of a graphing 
calculator and discussed the specific activities that they were employing. If a student did not use 
the graphing calculator at all, I asked them to discuss why it was not useful on the problem and 
to consider ways in which they could have used it.    

 
    Table 2 

     Interview Tasks 

Task 1 – Solve a rational equation: 
� 

x −16
x 2 − 3x −12

= 0

 

Task 2 – Solve a polynomial equation: � 

x 3 + 2x − 4 = 8

 

Task 3 – Setup and solve a linear word problem: A theater manager 
sold 5200 tickets and the receipts totaled $32,200. The adult 
admission is $8.50, and the children’s admission is $6.00. How many 
adult patrons were there?  
Task 4 – Solve a linear inequality: 

� 

3x − 2
7 +1.2 > 5

 

 
Transcriptions of videos of work on graphing calculators made it easier to follow students’ 

work with this tool. I began by assigning basic codes indicating the manner of calculator use to 
the lines of the transcripts to help identify students’ uses of the tool (e.g., graphed, used a table, 
computed, etc). I then looked in-depth at students’ words and actions when using a graphing 
calculator and identified elements of symbol sense that were both evident and lacking in 
students’ work by using the algebraic insight framework. 
 

Findings 
Findings are organized around the four interview tasks. Each of the following subsections 

explains specific ways in which students engaged with the graphing calculator in activities. 
Instances of algebraic insight indicate details about students’ symbol sense in their work. 
Task Type: Solve a Rational Equation 

Given the rational equation, 
� 

x −16
x 2 − 3x −12

= 0

: 

− Jill and Molly graphed the numerator and denominator separately;  
− Molly looked at a table to find the y-value when x=0; 
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− Elyse used the graphing calculator for computation only; 
− Jill tried to see if linear or quadratic regression could work; 
− Molly typed the left side of the equation into the main calculator screen to see if the 

calculator would “breakdown” the problem or solve for x; 
− Beth, Nina, and Shawn did not use the graphing calculator at all. 

These activities suggest that some students had the symbol sense to know that it was possible 
to abandon symbolic manipulation. However, the specific ways in which they used the graphing 
calculator indicate a lack of understanding of what the calculator could do. For example, Molly 
started by typing a function into the main screen, hoping that the calculator could “give a break 
down” of the problem. She explained, “The calculator is not simplifying for x here. It’s not 
solving for x. There’s a way to solve for x, isn’t there?” It seems that she remembered using a 
graphing calculator in the past to solve for x, but could not remember what to do. 

Molly and Jill chose to graph the numerator and denominator as separate graphs. This 
suggests a lack of algebraic insight for linking the rational form to the shape of the graph, which 
might not be surprising if they did not have experience with graphing rational functions. The 
linear form of the numerator and quadratic form of the denominator may have been more 
familiar and may be forms that they could easily link to shape and know what to expect in the 
graph. However, after graphing the two functions, neither student knew how to use the graphs to 
solve the given question. Molly looked at a table and found values when x equaled zero, saying, 
“I’m hoping that the calculator will be able to tell which one of the equations I’m supposed to 
use.” Jill abandoned the graphs and attempted to see if linear regression would be useful instead.  

Other students gave reasons for not using the calculator here. Beth explained that it could not 
tell her what steps to follow, saying, “It doesn't tell the mechanics of the problem that you have 
to do. It just gives you a number.” Elyse expressed similar frustration, saying, “I don’t know of a 
way where you can put an x in. The only thing I can think of is if you substituted something for 
the x maybe.” Both Elyse and Beth were comfortable using the calculator for numeric 
calculations, but struggled to understand how to use the tool with algebraic symbols.  
Task Type: Solve a Polynomial Equation 

Given the polynomial equation, � 

x 3 + 2x − 4 = 8

, students used a graphing calculator in the 
following ways: 

− Beth graphed only the left side of the equation  
− Molly graphed the function on the left side and evaluated at x=8; 
− Nina and Beth set the equation equal to zero and graphed to evaluate at x=0; 
− Beth, Molly, and Shawn used the calculator for computations; 
− Nina and Shawn used a table to determine the x-value when y equaled zero; 
− Shawn set the equation equal to zero and looked at the graph to see how many x-

intercepts existed; 
− Jill and Elyse did not use the graphing calculator at all. 

Nina and Shawn exhibited evidence of algebraic insight for linking key features to intercepts 
and to critical intervals for a table. However, both students only chose to use the graphing 
calculator after prompting from the researcher. Nina admitted that she would never have chosen 
to use a table to solve the problem on her own, and Shawn had already found an answer on paper 
and only used the calculator because he was not completely satisfied with his answer.   

Shawn and Nina did not entirely trust the answers they found using the calculator. Shawn 
noticed that the graph only crossed the x-axis one time, and found one answer of x=2 from the 
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table, but he had found three different answers on paper. Nina also anticipated finding three 
answers to the problem and expected that there were more answers than the calculator was 
telling her. This anticipation for a certain number of answers connects to students’ algebraic 
insight for linking the problem form to the solution type and linking symbol meaning to prior 
experiences. Shawn also exhibited symbol sense for linking key features to critical intervals of a 
table when he noticed that two of his answers on paper had been decimal values and the table he 
was using only counted by integers. Neither student, however, made a clear link between the 
symbolic and graphical representations, which provided strong evidence that there was only one 
zero for the function � 

x 3 + 2x −12

.  
Other students struggled with the meaning of symbols and with identifying the dominant 

term needed for finding the solution (e.g., looking at x=0 instead of y=0). Molly misinterpreted 
the meaning of the equation and felt that she was supposed to substitute the value 8 in for x.  Her 
trust in this interpretation allowed her to ignore the fact that the calculator produced a result of 
y=524, even though she had anticipated finding a value for x. Nina performed a similar action by 
evaluating the function at x=0 to find the zero. However, the calculator’s result of y=-12 caused 
her to realize her mistake and change her activity to find x instead of y.  
Task Type: Setup and Solve a Linear Word Problem 

Students used a graphing calculator sparingly on Task 3 in the following ways: 
− Jill tried to graph an equation with two variables, but stopped when she could not 

determine how to enter both variables; 
− Molly graphed two equations with the same variable; 
− Beth, Nina, and Elyse used computations to make sense of the information; 
− Molly, Jill, and Shawn computed values to find an answer; 
− Nina used computation to see if her equation made sense.  

Molly and Jill used the calculator as a numeric tool that could help them abandon symbolic 
manipulation for a guess and check strategy. Jill had created two useful symbolic equations with 
two variables and was using the calculator to guess and check instead of solving the equations 
simultaneously, while Molly was unable to create an equation. With symbolic forms for 
reference, Jill was able to continually link her results to the meaning of the symbols in the 
problem, while Molly lost sight of key information and was not able to reach a solution.   

 Beth, Nina, and Elyse struggled with the symbol sense to select or create possible symbolic 
representations, and used the calculator in the hopes of discovering a useful relationship in the 
given information. For example, Elyse tested to see if all of the tickets could be adult tickets by 
dividing 32200 by 8.50, but was disappointed to get a decimal answer. She explained, “Maybe if 
it divided evenly, I may believe it was only adults.” Nina and Beth both used a similar 
calculation, but also divided 32200 by 6.00 to see if this value divided evenly. Beth continued 
dividing all given values by each other in the hopes of finding a number that might work as an 
answer to the problem. These students tried to manipulate numbers on the calculator to answer 
the problem and avoid the need for creating symbolic equations. 
Task Type: Solve a Polynomial Inequality 

Due to time constraints in the study, only four of the participants worked on the following 
inequality problem: Solve for x given 

� 

3x − 2
7 +1.2 > 5

. Students used the graphing calculator as 
follows: 

− Jill, Beth, Nina, and Elyse used the calculator for computations; 
− Beth used the calculator to convert decimals and integers into fractions; 
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− Elyse used the calculator to check a hypothesis. 
Beth answered this problem by plugging one number in and using her calculator to compute 

a value on the left and seeing that the result was greater than five. She made comments such as, 
“Seeing that that (on paper) and this (on screen) looks the same, then you think, well I must be 
doing something right,” suggesting that she did not realize that copying the direct computations 
from the calculator was not the same as doing the problem by hand. In this case, she did not 
recognize her dependence on the calculator for helping her manipulate the values on paper. The 
other three students manipulated the problem as though it was a linear equation, sometimes 
paying attention to the sign inside the absolute value symbol or the direction of the inequality. 
None of the students demonstrated algebraic insight for linking the form of this problem to a 
proper solution type, and their actions were restricted to numeric manipulations suggested by the 
operation signs in the problem. They used the calculator for calculating with fractions and 
decimals only.   

When asked if a graphing calculator could be useful for this problem in other ways than as a 
computational tool, students responded in a variety of ways. Beth said that she did not know of a 
way to use it. Nina said she could not use it because she did not know how to handle the 
inequality sign, while Jill said she did not recall how to input absolute value. Elyse answered, 
“It’s algebra so you can’t just plug the whole thing in and get your answer.” Thus, three of these 
students identified particular symbols in the problem (absolute value, inequality sign, and the x-
variable) as the reason for not using the graphing or table features of the calculator. At the same 
time, numeric symbolic structures such as fractions and decimals were identified by all four 
students as important reasons for needing the calculator for computations. 

 
Discussion 

A detailed examination of students’ use of graphing calculators and what they said while 
using them can provide insight into the relationship between students’ understanding of symbols 
and understanding of graphing calculators. By looking closely at specific details surrounding 
students’ graphing calculator use, I identified two themes that address the research question: 
1. Lack of Symbol Sense Caused Students To Use a Graphing Calculator For Help.  

Students had some dependence on the graphing calculator as a tool for abandoning symbolic 
manipulation and finding an answer or a procedure to follow. At times, students treated the tool 
as a partner (Goos, Galbraith, Renshaw, & Geiger, 2003) that could help in the following ways:  
(a) by providing directions or a prompt, (b) by providing an accessible answer, and (c) by 
providing confirmation. The following paragraphs illustrate these categories of use. 

Students often had difficulty trying to decide how to start a problem. In these instances, they 
sometimes turned to the graphing calculator to prompt an activity. For example, Molly wanted 
the calculator to tell her how to break down the rational equation in the initial interview. She 
entered the function into the main screen in the hopes that it would tell her something about the 
manipulations needed for the problem. She also graphed the numerator and denominator of the 
rational equation, saying that she was hoping for the calculator to tell her which function to use. 
She turned to the calculator for directions on how to solve the problems.   

In some situations, students tried to avoid working with the symbols on paper and worked on 
the graphing calculator to try to find an answer. For example, Beth, Nina, and Elyse sought 
answers from the calculator on the linear word problem when they divided different given 
numbers in the hopes some value would divide evenly into another. They struggled to create 
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symbolic equations for the problem, and tried to avoid a need for symbols by seeking an easy, 
familiar looking numeric solution from the calculator.   

Some students recognized that a calculator was useful for confirming an idea or checking the 
reasonableness of an answer. For example, while working on a polynomial equation, Molly, 
Nina, and Shawn all used graphs and tables to find an answer to the problem and compared the 
calculator’s answers with work they had done on paper. This caused problems when calculator 
answers did not match their expectations, and caused some students to mistrust the calculator.   
2. Lack of Understanding of a Graphing Calculator’s Abilities to Handle Symbolic Forms Kept 
Students From Using Them or Using Them Correctly.  

Many of the students had difficulty knowing when and how to interact with a graphing 
calculator when solving symbolic problems. Difficulties were due to both misunderstanding of 
the technology and misconceptions about the mathematics involved in the problem. One fact that 
was evident from students’ work is that they often did not know many of the features that the 
technology offered. For example, Beth and Elyse insisted that they could not use the graphing 
calculator when there was a variable in the equation. Similarly, Jill did not think she could enter 
an absolute value sign on a calculator, and Nina did not think there was a way to work with 
inequalities on the calculator. None of the students seemed to be familiar with menu options such 
as MAXIMUM or ZERO or INTERCEPT when working with graphs. Most of the students 
chose to use TRACE to find points on a graph instead, which does not provide exact values for 
answering a question. The students often struggled to see a use for the graphing calculator in 
problem solving because they were not aware of the powerful options it provided.  

 
Implications and Conclusions 

Students were uncomfortable with and not proficient with using graphing calculators, despite 
their claims for being so on the initial survey. However, these students still had a certain amount 
of dependence on the graphing calculator for helping them postpone or abandon symbolic 
manipulation when it was causing them trouble. The fact that graphing calculators provide 
students with a way to do mathematics without using algebraic manipulation techniques has been 
identified in the research as a reason that some teachers give for opposing calculator use, 
especially at the college level (Hennessy, Fung, & Scanlon, 2001). However, other researchers 
have found that students’ use of a calculator in this way is critical for helping them explore a 
problem to consider expectations before attempting an analytical solution (Quesada & Maxwell, 
1994). Data from this study suggests that graphing calculators could be especially useful with 
weaker students (such as those taking or retaking college pre-calculus) as a tool for helping 
students gain more experience with important mathematical symbols and concepts. The teachers 
in this study did not teach or assess with graphing calculators and, consequently, restricted 
classroom examples and test questions to easy functions (e.g. no fractional coefficients, quadratic 
functions that could be factored, etc.). This practice may increase students discomfort with less 
used symbols such as inequality signs, absolute values, fractions, square roots and high powers 
of x. Many mathematical problems cannot or should not be solved by hand, but the students in 
this study did not seem aware of this possibility (e.g. the polynomial inequality in Task 2 was 
best solved using a calculator, but all students expected there to be an accessible pen and paper 
solution method). Awareness and understanding of how a graphing calculator can serve a 
student’s needs when encountering mathematics inside and outside of the mathematics classroom 
is an important part of teaching mathematics, especially at the college level. 
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When students have access to a graphing calculator, and do not know how to use it or do not 
understand or remember what it is capable of doing, they can use it in creative and inefficient 
ways. Gray and Tall (1994) suggest that students who did not have a strong understanding of the 
different uses of symbols may develop different, incorrect techniques for problem solving due to 
their personal interpretations of the symbols. The same idea may apply to students who do not 
have a strong understanding of how and when to use a graphing calculator. Teachers need to be 
aware of some of the non-standard uses that students can create to seek assistance from a 
graphing calculator as they try to avoid or abandon symbolic manipulation.   

For the students in this study, understanding how to work with mathematical symbols on 
paper had a connection to their choices of how and when to use a graphing calculator. However, 
students demonstrated limited algebraic insight for linking representations and connecting what 
they were doing on the calculator to their work with symbols on paper. When teaching with a 
graphing calculator, teachers must be careful not to treat the tool as a different way of 
approaching a problem, but instead integrate it into a problem and help students reflect on how 
the work displayed on the screen relates to the symbols on paper.   
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Students have difficulty constructing coherent understandings of trigonometry and trigonometric 
functions (Brown, 2005; Weber, 2005). This study conjectured that their weak understandings of 
angle measure and compartmentalized knowledge of right triangle and unit circle trigonometry 
are sources of the problem. The response was to devise an instructional sequence to promote 
these foundational understandings and connections. A critical part of this instruction was the use 
of dynamic applets. These applets were intended as didactic objects to facilitate meaningful 
conversations supporting student learning. This report discusses the design and implementation 
of these applets and their role in promoting discourse that facilitated knowledge construction. 
 

Background 
Trigonometric functions are a common topic of undergraduate mathematics. It is also the 

case that various topics of physics, engineering, and other sciences rely on trigonometric 
understandings (e.g., projectile velocities and wave behavior). However, it is frequently the case 
that students have difficulty when asked to reason about topics reliant on trigonometric function 
understandings (Brown, 2005; Thompson, 2008; Weber, 2005). 

Two different settings are often used to introduce trigonometric functions in the US 
mathematics curriculum: right triangle trigonometry and unit circle trigonometry. Student 
difficulties relative to trigonometric functions may be the result of mathematics curriculum 
frequently treating these two trigonometries as unrelated (or only slightly related), resulting in 
students not constructing coherent understandings of trigonometric functions. One potential 
solution to this lack of coherence is to fully develop student conceptions of angle measure and 
use this foundation as a base to both trigonometries. 

This study reports on both the design and implementation of a lesson intended to develop 
student conceptions of angle measure such that these conceptions enabled coherence between the 
two trigonometries. In order to enable coherence between the two trigonometries using angle 
measure, the focus of the lesson was to support students in conceptualizing angle measurement 
as the openness of an angle and to develop a method for quantifying this measurement. 
Furthermore, the classroom exploration was conducted such that it attempted to promote student 
images of angle measure that included variation of an angle’s openness. This was especially 
important relative to future explorations of periodic motion (e.g., a situation where the argument 
of a trigonometric function varies). 

Central to the lesson design and implementation was the use of technology to aid in the 
development of student understandings. The lesson included the use of The Geometer’s 
Sketchpad (GS) applets (Key Curriculum Press, 2002). These teaching aids were intended to 
promote discussions that reflected the structure of the mathematical understandings that formed 
the instructional goals of the lesson. The results presented in this report discuss the design and 
implementation of the various GS applets and the student discussions these applets generated in 
the context of student learning. 

 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1481 

Theoretical Perspective 
The theoretical foundation for this study rests on the idea that all learning begins and ends 

with the learner, a main stance of radical constructivism (Glasersfeld, 1995). Building from the 
stance of radical constructivism, a researcher or teacher must consider each individual’s knowing 
his or her own. That is, each student’s knowledge is self-constructed and considered 
fundamentally unknowable to any other individual. 

A useful tool in promoting student construction of knowledge is a didactic object 
(Thompson, 2002). A didactic object is designed as an object to talk about in a way that enables 
and supports reflective mathematical discourse. As Thompson notes, an object is not considered 
didactic in and of itself. An object is only didactic when it is conceptualized in a manner that 
enables reflective mathematical discourse. Reflective mathematical discourse refers to discourse 
focused on mathematical topics, where the discourse becomes an explicit object of student 
reflection. Students participating in reflective discourse have the opportunity to construct deeper 
understandings and cognitive connections. 

The use of dynamic applets developed using Geometer’s Sketchpad was intended to serve as 
didactic objects on which the teacher and student could engage in meaningful conversations 
about foundational trigonometric ideas. The desired student conceptions drove the design and 
implementation of the applets. The role of the dynamic applets during instruction was to generate 
discussions and reflections not possible without their use.  

The use of dynamic applets as didactic objects was intended to generate discussions that 
resulted in students engaging in covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 
2002) and quantitative reasoning (Smith III & Thompson, 2008). Covariational reasoning (e.g., 
the coordinating of two varying quantities while attending to the ways in which they change in 
relation to each other) has been shown to be critical for concepts of calculus (Carlson, et al., 
2002). In response, the designed applets were intended to engage students in coordinating and 
discussing varying angle measures in order to prepare students for trigonometric functions, 
which formalize the relationship between the covariation of angle measure and a ratio of lengths. 

In the description of covariational reasoning by Carlson et al. (2002), an individual is 
described to be reasoning about quantities and relationships between these quantities. These 
quantities to be reasoned about are thus implied to be conceptual objects derived from experience 
that have qualities that we can call mathematical, or can be “mathematized.” Quantitative 
reasoning refers to the type of reasoning that is situation sensitive and places an emphasis on the 
development of conceptual objects (quantities) that individuals are to reason about. Quantitative 
reasoning is the mental actions of an individual making sense of a situation, constructing an 
image of measurable quantities composing the situation (quantification), and reasoning about 
relationships between these quantities (e.g., covariational reasoning). 

The design of the applets intended to promote quantitative reasoning by aiding the students in 
visualizing situations and supporting discussions that focused on the quantities they were to 
reason about. As an example, the applet presented in Figure 1 offered a visualization of a 
subtended arc-length as a measurable attribute of an angle’s openness. The applet was created 
with the goal of supporting the understanding of angle measure as a subtended arc-length’s 
fraction of a circle’s circumference. The applet was also designed to allow an investigation that 
included discussing a varying angle measure and a varying radius of the circle used to measure 
the angle. Thus, the applet was intended to enable and support discussions that centered on a 
dynamic, opposed to static or discrete, exploration of the relationships between values of arc-
length and circumference (e.g., regardless of the unit of measurement, the ratios are equivalent). 
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Figure 17. Angle measure applet. 

 
Research Questions 

This report is set within a broader investigation that focused on investigating student 
conceptions of trigonometric functions and topics foundational to trigonometry, where the two 
main questions driving the research were: 
• What understandings of trigonometric functions do students construct during an instructional 

sequence that is designed on foundations of quantitative and covariational reasoning? 
• How do the foundational understandings of angle measure, the radian, and the unit circle 

influence student understandings of trigonometric functions in the context of the unit circle 
and right triangles?  

An element of this focus was on the role of curriculum relative to student development. This 
report specifically focuses on the use of computer software in the context of student learning. 

 
Methodology 

This study was conducted with three students from an undergraduate precalculus course at a 
large public university in the southwest United States in which the researcher (myself) was the 
instructor. The subjects were chosen on a volunteer basis and monetarily compensated. The 
precalculus classroom from which the subjects were drawn was part of a design research study 
where the initial classroom intervention was informed by theory on the processes of 
covariational reasoning and select literature about mathematical discourse and problem-solving 
(Carlson & Bloom, 2005; Carlson, et al., 2002; Clark, Moore, & Carlson, accepted). All three 
subjects were males (Brad, Charles, and Travis). The classroom instruction consisted of direct 
instruction, whole class discussion, and collaborative activity.  

I conducted a three session teaching experiment (Steffe & Thompson, 2000) with the three 
subjects of the study. The teaching experiment focused on i) developing angle measure in terms 
of arc-length and circumference, ii) developing the use of a radian as a unit of measurement, iii) 
and investigating circular motion and the unit circle (e.g., any circle is the unit circle if the unit 
of measurement is the length of a radii). A witness attended each session and debriefed with the 
instructor after each instructional session. Each class session was videotaped and digitized. In 
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addition, all student products (white board, activity sheets, homework assignments, etc.) from the 
teaching sessions were captured digitally for analysis. 

The classroom sessions were analyzed following an open coding approach (Strauss & 
Corbin, 1998). Discrete instances believed to reveal insight into student conceptions were 
identified and then analyzed in an attempt to determine the mental actions that contributed to the 
emerging behaviors. The mathematical constructions and interactions that occurred between the 
subjects and the instructor were examined in an attempt to model and understand the thinking of 
the subjects. Specifically, this report focuses on the discussions generated through the use of the 
GS applets in the context of student learning. 

 
A Brief Conceptual Analysis Of Trigonometry 

Before presenting the results of the study, a brief description of the understandings driving 
the instructional goals is provided. Angle measure is a measure of an angle’s openness, which is 
measured by determining the fraction of circle’s circumference that is subtended by the angle. 
For instance, an angle of measure one degree subtends 1/360th of the circumference of any circle 
centered at the vertex of the angle. Note that the focus of angle measure is on the arc-length 
subtended by the angle as an attribute that can be measured. 

Next, just as the degree is a unit of angle measurement that refers to 1/360th of a circle’s 
circumference, the radian is a unit of angle measurement that refers to 1/(2π)th of a circle’s 
circumference; just as 360 degrees revolve any circle, 2π lengths of a radius revolve any circle, 
allowing the length of a radius to be a unit of angle measure. The radian measure of an angle can 
also be defined as the ratio of an arc-length to the corresponding length of a radius, which gives 
the fraction of one radius.  

With an input quantity of angle measure (arc-length), sine and cosine have an output that is a 
ratio of two lengths, regardless of the setting. With regards to the unit circle, the output of sine is 
the ordinate of the terminus of the arc subtended by the angle and cosine is the abscissa of the 
terminus of the arc subtended by the angle, with both outputs measured as a fraction of one 
radius. With regards to right triangle trigonometry, sine and cosine are approached in the same 
manner. Although sine and cosine are often used only to find the lengths of the sides of right 
triangles, this is simply using one pair of input-output values. Because angle measure 
corresponds to measuring an arc-length, one can use the hypotenuse of the right triangle as the 
length of a radius and construct a circle centered at the vertex of the measured angle. Hence, sine 
and cosine remain the abscissa and ordinate of the terminus of the arc subtended by the angle, 
with both outputs measured as a fraction of one radius (or hypotenuse).   

 
Results 

What follows is a brief discussion of the results of implementing various GS applets during 
instruction. As an example of the use of the applet presented in Figure 1, the students were first 
asked to discuss each measurement of the applet in order to support a discussion focused on the 
quantification of the situation. When asked about the second value (e.g., the proportion of arc-
length to the radius), Brad used the projection of the applet to explain, “How many lengths of 
AD it takes to get your total arc-length of AB.” Charles also added, “How many radians there is 
in the arc-length.” These responses by Charles and Brad imply that they had constructed images 
of the ratios as representing a proportion of a circle’s circumference, images that appear to be 
aided by referencing the applet. 
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At this time the dynamic applet was used to focus the students on considering a varying 
radius and varying angle measure: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Instructor: So, what’s going to happen…if I increase my radius? 
Charles: The angle will remain the same, so the amount of radii it will take to 

make the arc-length will still remain the same. 
Instructor: Ok, so the three values (referring to the far right column), which are 

going to change and which aren’t? Travis, what do you think? Which 
ones are going to change? 

Travis: The radius is going to change. (pause) 
Instructor: The radius is going to change, it will increase. 
Travis: The rest will stay the same. 
Instructor: The rest will stay the same, right? (Increasing the radius on the 

applet) Do we get what we expect? 
Students: Yes. (Nodding in agreement) 
Instructor: Right, because our angle measure’s not changing. Now what if I 

change the angle? 
Travis: The… 
Charles: The, go ahead. (Pointing to Travis) 
Travis: The bottom two will change (referring to the far right column). 
Instructor: Lets say I decrease my angle. What’s going to happen to the bottom 

two? 
Brad: They’ll decrease. 
Instructor: They’ll decrease right. Now how ‘bout the three proportions along 

the bottom there? 
Brad: They’ll all stay equal. (Instructor decreases angle measure) 

During this discussion, the students were first asked to describe how the values would vary 
before the applet was used to increase the radius. Both Charles and Travis were able to correctly 
describe the direction of change of each value (lines 2-3, 7, 9), implying that both of the students 
had developed images of the quantities of the protractor and angle applet that included their 
directional covariation relative to an increasing radius. With the conjectures made, the applet was 
then used to increase the radius in order to verify the students’ conjectures (lines 10-11). The 
instructor then used the applet in a similar manner to investigate a decreasing angle measure. The 
students were first asked to use the image of the applet to conjecture the result of varying the 
angle measure (lines 13-14) and then the result of decreasing the angle measure (lines 18-19). 
This resulted in the students (correctly) referencing the values on the applet and how they would 
change in relation to a varying angle measure (lines 17, 20, 23). With these conjectures given, 
the instructor used the applet to verify the responses of the students (line 23). Thus, this applet 
appears to have supported a visualization of the situation such that the students could conceive of 
and discuss the values and quantities of interest. Also, the applet supported conjecture-verify 
sequences of the students imagining and then describing the dynamic situation in relation to the 
varying quantities. From these sequences, the instructor was able to infer that the students were 
constructing understandings consistent with the instructional goals. 

Drawing on the foundations of angle measure that informed the design of the first applet 
(Figure 1), a second applet was designed to investigate and discuss circular motion (Figure 2). 
When “Animate Point” is chosen on the applet, a point moves around the circle counter-
clockwise at a constant rate. This was used to promote discussions and connections between the 
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numerical, contextual, and graphical representations of the covarying quantities of arc-length and 
vertical height above the center of the circle. Also, the applet enabled a discussion of these 
representations relative to the motion of the point. These dynamic connections were conjectured 
to be critical in developing an understanding of the sine function, as the sine of an angle measure 
cannot readily be algebraically computed. The use of this applet also occurred before formally 
introducing the sine function. Thus, the applet was used to generate and reflect on a graph 
between the covarying quantities before formalizing the relationship as the sine function. 

 

 
Figure 2. Motion on a circle applet. 

One result of the use of the applet in Figure 2 was investigating corresponding amounts of 
change of vertical distance and arc-length. The instructor chose this use of the applet after the 
students had constructed a non-linear graph but remained unable to correctly describe why the 
graph should not be composed of linear segments: 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Instructor: Ok, so we move along from 0.15 (radians) and our height becomes 
what (moving an arc-length of 0.15)? 

Brad: 0.15 radians. 
Instructor: 0.15. Now, should it be exactly 0.15? Does that make sense? 
Brad: No, because you have a curve. 
Instructor: So why does us having a curve matter? (long silence) So why does 

us having a curve matter Brad? 
Brad: Well because you don’t have a, uh, the curve for your arc-length is 

going to be different because of the curve. Because, uh, you’ll have a 
longer distance over the curve than I think height, over a straight line 
(making a reference to the image of the applet). 

Instructor: Ok, so we know it should be less that 0.15 then, right? Because if we 
move 0.15 along the arc-length, we didn’t move completely that on 
the vertical. What do we expect if I move another 0.15?  
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15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Brad: Should be less.  
Instructor: If I move a distance of 0.15 radians, what should we have? Well let’s 

see (moving and arc-length of 0.15 radians). What was my change in 
height now? 

Brad: 0.14. 
Instructor: Was it less? Was that what we expect? 
Students: (nodding heads yes) 
Instructor: What if I move another 0.15? What do we expect? 
Brad: It would be less again. 
Instructor: It would be less again (moving an arc-length of 0.15 radians). What 

if I move another 0.15? 
Brad: Less again. 
Instructor: So what’s less again? (moving an arc-length of 0.15 radians) 
Brad: The height, the change in height. 

During this interaction, the applet enabled a discussion that focused on the students 
coordinating arc-length and vertical distance, a coordination the students were having difficulty 
with previous to the applets use. The instructor first chose to use the applet to represent a change 
in arc-length of 0.15 radians and question the students on the change of vertical distance. This 
questioning resulted in Brad describing that the change in height would be less than the change 
in arc-length. Brad also used the image of the applet to explain that the curve was longer than the 
linear vertical height (lines 8-11). This explanation by Brad thus appears to have been supported 
by the applet aiding in his visualization of the situation. After Brad described the result of 
another change of arc-length, implying he was coordinating changes of arc-length and vertical 
distance, the instructor made the move to have the students conjecture the result of another 
sequence of increases in arc-length (lines 22 and 24-25). Brad then correctly identified that the 
change in height would be less than previous (lines 23, 26, and 28), which was verified by using 
the applet. 

Although Brad was the only student to verbally respond in this interaction, both Charles and 
Travis explained (explanations that were verified using the applet) other sections of the motion in 
terms of amounts of change of arc-length and amounts of change of vertical distance and how 
this was reflected in the graph. Thus, the use of this applet supported an investigation and 
discussion of how a changing arc-length, opposed to static positions, related to changes of 
vertical distance and how this relationship was represented using the graph. The implementation 
of the applet was first in a manner that had the students observe and identify changes of vertical 
distance in relation to changes of arc-length. Then, after the instructor observed the students 
correctly coordinating the covarying values, the students were asked to conjecture the result of 
changes of arc-length and these conjectures were verified using the applet. 

 
Discussion 

The two applets described above offered objects the students could conceptualize in a way 
that supported student discourse and the construction of knowledge. For instance, the second 
applet (Figure 2) led to a graph, including concavity, emerging out of the students covarying the 
value of two quantities (e.g., arc-length and vertical distance). Also, the applet allowed the 
creation of the graph to be related to the dynamic contextual situation. The sine function cannot 
be computationally evaluated with ease; hence it is necessary for students to construct a 
contextual image of the relationship the sine function defines. Furthermore, the contextual 
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images students construct must include measurable quantities that they can reflect on and reason 
about. The applets were designed an implemented with this in mind, which included the intention 
of promoting students constructing and reasoning about varying quantities. 

What appears to be an important implementation of the applets as didactic objects was 
encouraging that students predict how the values of quantities would vary before enacting the 
dynamic features of the applets. This had the possible influence of the students constructing an 
image of each of the quantities and then imagining motion and corresponding variations of each 
quantity. Then, when the applet was used in a dynamic manner, the students had an opportunity 
to reflect on their conjectures relative to the values and motion of the applets. This reflection 
could then result in the students modifying their image of covarying quantities, and hence their 
conception of trigonometric functions or angle measure. 

In conclusion, the use of GS applets allowed a dynamic investigation of trigonometric topics 
not as readily available without the applets. The design of the applets was focused on creating 
objects that enabled and sustained discussions that supported the students constructing 
understandings consistent with the instructional goals. This design included taking advantage of 
the dynamic abilities of the applets in order to promote discussions that focused on the 
quantification and covariation of quantities. 
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Students have many opportunities for learning mathematics content outside of school. These 
informal interactions can be rich resources for students and teachers as they weave connections 
between the mathematics they study in school and the mathematics they experience outside of 
school. In this study we explored possible connections between formal and informal mathematics 
by investigating the mathematical reasoning used by students as they played online games. We 
report on students’ interactions with the embedded mathematical content of the online games 
used in this study. Noting, in particular, the ways in which students engaged in increasingly 
more sophisticated mathematical reasoning as they progressed through the various levels in the 
games. These shifts in gameplay were detectable, not only through in-person observations, but 
also via data mining of online tracking data.  Implications for the use and study of children’s use 
of educational games as contexts for informal and formal learning of mathematics are discussed. 
 
This research was funded as part of a grant from the National Science Foundation (DRL-0723829). We also thank 
the Cyberchase production team (especially Sandra Sheppard, Frances Nankin, and Michael Templeton). 
 

Mathematics educators have long recognized the importance of helping students make 
connections between the mathematics that is offered in school and their everyday experiences 
and interests (see NCTM, 2000). Realizing those connections, however, has been elusive, as 
researchers have found stark differences in how students use mathematics outside of school and 
how they perform school tasks (e.g., Nunes, Schliemann, & Carraher, 1993). Yet, contexts in 
which mathematics is studied play an important role in helping students understand how, when 
and why particular concepts, procedures, and skills are used, but also see what makes them worth 
knowing. Grounding mathematics in experiences that are meaningful to students continues to be 
an important though challenging goal for mathematics education. 

Children’s natural love for playing games and the growing availability of electronic media, 
make online games an obvious choice for exploring connections between informal and formal 
encounters with mathematics. It is no secret that children spend a great deal of time interacting 
with electronic media. Even before they start school, children interact with all sorts of electronic 
media. Research reports that children 6 months through 6 years of age spend an average of 2 
hours daily with screen media, and that 50 percent of 4-6 year olds play regularly with computer 
games (Rideout et al., 2003). Although it is widely recognized that children spend a great deal of 
time interacting with electronic media outside of school, and increasingly with online computer 
games, the educational value of such experiences are often called into question. Educators in 
particular often raise concerns as to whether online games can successfully elicit sophisticated 
mathematical thinking from children (as opposed to for example simple drill and practice).  

Although there are many concerns about the educational content of electronic media, the 
reality is that electronic games, as Gee (2000) suggests, accomplish many educational goals that 
are too often not met in school classrooms. Minimally, electronic games teach (and entice) 
players to learn how to play and get better at playing in spite of many persisting difficulties. Gee 
and others have posed theoretical arguments in favor of the educational potential of electronic 
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games, but there is little empirical evidence to support those claims, and hence a motivation in 
our project to explore more specifically the question about how children reason when playing 
with online mathematical games. In addition, we were curious about children’s informal 
interactions with mathematics in an online game environment (we used Cyberchase online 
games as the context for this investigation) and how and whether these interactions were similar 
to the sorts of strategies and understandings students use when working with regular school 
mathematics tasks. 

 
Theoretical Background 

Research on how students use mathematics in and out of school often highlights the vast 
differences between these two contexts (i.e., Lave, 1998). In addition, researchers have also 
highlighted the tensions that arise when real life mathematics is brought to school (Civil, 2002; 
Sierpinska, 1995). We join this conversation by taking a different approach. Here we focus on 
the connections between students’ engagement with informal mathematics and the mathematics 
they study in school. We chose an online game environment as the setting for this investigation 
because of its prevalence as an out of school activity for many children, but also because of its 
potential to make visible the sorts of connections we were interested in exploring.  

Researchers who study human-computer interaction have sometimes drawn on established 
theories of human cognition to explain users’ thinking while playing games (e.g., Mayer & 
Moreno, 2003; Moreno, 2006), and have noted similarities that exist between online and offline 
thinking and behavior (e.g., Gee, 2003).  Indeed, research has shown that users’ interactions with 
machines are influenced by the same sorts of social schemas that govern their interactions with 
other people -- regardless of whether the device in question is an animatronic, talking doll 
(Strommen, 2003) or a desktop computer (Reeves & Nass, 1996). By the same token, when 
children play online computer games, we might expect their reasoning to follow the same sorts 
of paths that they use while figuring out similar educational content in real (offline) life.  

The field of computer-assisted instruction (CAI) represents a long history of teaching and 
assessing knowledge via interactive games (e.g., Price, 1989; Rudestam & Schoenholtz-Read, 
2002; Suppes & Macken, 1978).  However, unlike the kinds of software traditionally used in 
CAI, the online Cyberchase games that served as the context for this study were not originally 
designed for assessment.  In addition, whereas assessment in CAI frequently focuses on 
measuring the state of users’ knowledge or skills (to determine the types of exercises that the 
software will provide next; e.g., Corbett & Anderson, 1995; Gunzelmann & Gluck, 2004), we 
were more interested in observing the evolution of children’s problem-solving strategies and 
mathematical thinking over the course of playing a game. We wondered whether gameplay in the 
Cyberchase games we focused on for this project would reflect children’s understanding of 
educational content and strategies for problem solving that they would have encountered in their 
mathematics classroom; and if so, what sort of data might we collect to explore this learning?   
 

Methods 
This study is part of a larger research project exploring children’s interactions with multiple 

types of electronic media and their learning of mathematics. The context for this larger project 
and for the smaller study we report on here is the animated Cyberchase television series that airs 
daily on PBS. Cyberchase features three diverse youngsters who are summoned into cyberspace 
to foil the dastardly Hacker. Each half-hour episode sends the team on a mystery based on a 
mathematics concept. Through their adventures, the series models mathematical reasoning, 
problem-solving, and positive attitudes toward mathematics. Its underlying themes are that 
mathematics is everywhere and is infinitely useful. Nearly five million viewers – 40% of them 
African- American or Hispanic – tune in each week. A web site Cyberchase Online 
(http://www.pbskids.org/cyberchase) complements the series with interactive games and puzzles, 
based on the same mathematical content as the series. The site is one of the three most-visited 
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sites on PBS Kids Online, with over 1.3 billion page views to date, and average use of more than 
1 hour per visit (a marked contrast to the average of 19 minutes for the rest of the PBS Kids site). 

Our research team observed 74 third and fourth graders (27 girls and 47 boys) in person as 
they played three Cyberchase online games, regarding decimals, quantity/volume, and 
proportional reasoning.  For example, in the “Railroad Repair” game 
(http://pbskids.org/cyberchase/games/decimals/), players fill gaps in a train track by using pieces 
labeled with decimals between .1 and 1.0 (Fig. 1).   
 

 
Figure 1.  Sample screen from Cyberchase Railroad Repair game. 

 
In this game multiple correct solutions are possible.  However, each length of track can be 

used only once per screen, thus requiring children to find multiple ways to make sums and plan 
ahead to make sure that all of the necessary pieces will be available when needed. Children in 
our study played the games in pairs, to facilitate conversation that could reveal ideas and 
strategies as they played. Simultaneously, their gameplay was recorded with a custom built 
tracking software that recorded their mouse clicks and keyboard input automatically. This 
tracking software was arranged initially for two of the games: Railroad Repair and Sleuths on the 
Loose. This latter is a game about measurement and proportional reasoning 
(http://pbskids.org/cyberchase/games/bodymath/). Afterward, children were interviewed 
explicitly about their strategies for playing each game and solving its mathematical problems.  

 
Results 

Our observations of children’s gameplay in Cyberchase online games environments are that 
children use a range of sophisticated mathematical strategies when solving complex tasks—
regardless of whether those tasks are school tasks or out of school ones. Furthermore, the 
children in our study who used more sophisticated strategies, just as it is reported about children 
solving rich school mathematics tasks (e.g., Lesh et al., 2000), often did not apply them 
immediately.  Rather, they engaged in cycles of problem solving that began with less 
sophisticated strategies and then became more sophisticated when necessary.  

Consider the following excerpt of conversation from two children in our study while playing 
the Railroad Repair online game. As they tried to fill gaps in the game’s railroad track, they had 
the following exchange: 
 “I think we’re supposed to use the 1 and then the 10.” 
 “Uh-oh.  Can we subtract?” 
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 “This is too confusing.” 
 [They clear the pieces from the screen, then start again with a different strategy] 
 “This time, we’ll start with the mini-pieces…” 

What is noteworthy here is that when the children had tried something that did not work, and 
were pretty stuck (above statement: “this is too confusing,”), they changed their approach and 
tried again. They did not seek outside help, and on their own decided to change and try another 
strategy. Here we can see several of Gee’s (2000) learning principles at work. Most notably what 
he calls the “psychosocial moratorium” principle, that is, that these learners are able to take risks 
in a space where there are no serious consequences. After all, they can try and try again without 
being judged about not solving this problem quickly or having made a mistake (and no real 
world consequence of having a train potentially derail should they fail to fix the problem). 

Another of Gee’s principle that is noteworthy here is what he calls the “ongoing learning 
principle,” meaning that as the game progresses the learner must undo their routinized strategy to 
adapt to the new or changed conditions. This moves the learner through cycles of new learning, 
automatization, undoing automatization, and new reorganized automatization. In the sample 
conversation, a strategy that had worked well earlier in the game failed and the players had to 
adapt and tweak a solidly mastered strategy to the new condition. This is not a small fit, as we 
know too well from seeing students get stuck using their well learned strategy (say adding) even 
when that strategy fails or becomes too inefficient in new problem situations (say multiplication 
situations).    

In Railroad Repair, many children began by using a matching strategy in which they matched 
the decimals shown (e.g., a .8 piece of track to fill a .8 gap).  When this strategy later proved 
insufficient (e.g., they ran out of .8 pieces or needed to fill a larger gap), some switched to an 
additive strategy (e.g., combining .6 and .2 to fill a .8 gap).  When this strategy, too, proved 
insufficient (e.g., the .2 piece was needed later), some adopted an advanced strategy in which 
they planned ahead, considered alternate ways to make sums, and reserved pieces they would 
need later. 

Comparisons of observation, interview, and online tracking data revealed that these strategies 
could be detected via data mining too. Tracking data showed consistent patterns of online 
responses reflecting each strategy (matching, additive, or advanced), and clusters of errors when 
children’s strategies broke down and they shifted to new ones.  Consider, for example, some 
partial output of the tracking software for one player while playing Railroad Repair.  On the first 
screen, the tracking software shows evidence of the player adopting a matching strategy, picking 
up a .4 piece (piecepress) and placing it (piecedrop) to fill a .4 gap.  After accidentally putting 
the piece in the wrong location (row 2 in the example below), the player then places it correctly 
(row 4): 

 
Ro

w # Event Pi
ece 

Ro
und 

Success
ful 

placement? 
Elaps

ed time 

1 piecep
ress 

tr
ack4 1 n/a 7.161 

2 pieced
rop 

tr
ack4 1 wrong 7.272 

3 piecep
ress 

tr
ack4 1 n/a 8.172 

4 pieced
rop 

tr
ack4 1 success 10.2 

 
On the next screen, the player continues the matching strategy, using a .8 piece to fill a .8 gap 

(rows 5 – 6 in the example below).  However, there is more than one .8 gap on this screen and 
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only one .8 piece.  Thus, after using the .8 piece, the player switches to an additive strategy, 
using two pieces (.7 and .1) to fill the second gap.  After  accidentally misplacing the .1 piece 
(rows 9 – 10), the player places it successfully (rows 11 – 12): 

 
R

ow 
# 

Event Pi
ece 

Ro
und 

Success
ful 

placement? 

Ela
psed 
time 

5 piecep
ress 

tr
ack8 2 n/a 22.0

9 
6 pieced

rop 
tr

ack8 2 success 24.1
01 

7 piecep
ress 

tr
ack7 2 n/a 25.3

29 
8 pieced

rop 
tr

ack7 2 success 26.9
42 

9 piecep
ress 

tr
ack1 2 n/a 28.5

03 
1

0 
pieced
rop 

tr
ack1 2 wrong 28.7

11 
1

1 
piecep
ress 

tr
ack1 2 n/a 29.0

99 
1

2 
pieced
rop 

tr
ack1 2 success 30.9

1 
 
For the next several screens, the player continues to use the additive strategy, until arriving at 

a screen where this strategy is no longer sufficient.  After filling several large gaps, the player 
combines a .5 piece and a .4 piece to fill a .9 gap (rows 13 – 15), only to find that all of the 
smaller pieces have been used up, which makes it impossible to fill the remaining small gaps on 
the screen.  Recognizing this, the player hits the “clear” button to clear the screen and start over 
(row 16).  Then, the player starts over by using an advanced strategy, in which the smaller gaps 
on the screen are filled first (rows 17 – 20), to ensure that the smaller pieces are available when 
needed. Afterward, the player uses the remaining pieces to fill the larger gaps, which have more 
flexibility in the variety of ways they can be filled: 
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As the above examples illustrate, we found that children’s shifts in strategies were detectable, 

not only via in-person observations or interviews, but through online tracking data as well.  
Changes in strategies were often associated with either clusters of errors (indicating the player 
trying unsuccessfully to use different pieces to fill a gap), use of the “clear” button (indicating 
the player’s recognition that a strategy was not working), and/or simply not having the necessary 
pieces available to fill gaps that remained on the screen.  Thus, we could identify – and 
differentiate among – instances when children either failed to progress beyond basic strategies, 
proceeded through more difficult problems via trial and error (without necessarily employing a 
fundamental change in their thinking), or shifted to more sophisticated strategies over the course 
of a game. 

 
Discussion 

Taken together, the observation, interview, and tracking data of the Cyberchase games we 
explored in this study hold implications for researchers and practitioners interested in exploring 
and bridging connections between computer games and mathematics education. From the 
standpoint of those interested in children’s use of educational games, the parallels between 
online and offline reasoning highlight the degree to which gameplay is influenced, not only by 
players’ experience and skill level in playing games, but also by their knowledge and skills 
regarding educational content embedded in such games. This point is not limited to interactive 
media.  For a similar point regarding children’s comprehension of educational television 
programs, see Fisch, 2000, 2004. As in school mathematics, children often do not display the 
same level of sophistication throughout a game (even if they are capable of relatively 
sophisticated reasoning).  Rather, their mathematical reasoning may begin at a fairly basic level 
but become more sophisticated over the course of a game, when necessary to respond to the 
demands of the game.  

From the standpoint of math educators, this study offers that online games can provide a 
good setting for helping students use and make connections between the strategies and reasoning 
they use when playing online games and those they might use to solve school mathematics tasks. 
The similarity between online and offline reasoning we discussed suggest that this might be a 
productive setting to pursue such in and out of school connections.  

Additionally, we also found that even in the absence of in-person observations, data mining 
of online tracking data can provide a window into rich processes of reasoning and problem 
solving.  When recorded and coded appropriately, such data can reflect, not only the outcomes of 
problem solving, but the process as well.  (As a result, we have chosen to include tracking 
software among the assessments in our current research on children’s learning from Cyberchase 
media.) 

Yet, our experiences also point toward several challenges that must be overcome if tracking 
data are to be used effectively as a measure of reasoning.  First, as anyone who has analyzed any 
sort of Web-based tracking data knows, users’ clicks produce massive amounts of data.  The 
sample data presented above is taken from a single session – and even that one game produced a 
spreadsheet containing more than 120 rows of data.  When multiplied by the literally thousands 
of users who might play an online game in a single day, the volume of data can become 
staggering, posing challenges for both storage and analysis (even if the analysis can be partially 
automated). 

Second, online tracking data must be limited to information that can be collected legally.  
The Children’s Online Privacy Protection Act (COPPA) places strict limitations on the kinds of 
information that can be collected from children online.  To help interpret data on gameplay, 
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reasoning, or problem solving, researchers naturally look to characteristics of the players (e.g., 
age, gender, level of experience or prior knowledge), but COPPA can make it difficult to gather 
such information online.  Since our project was part of a larger research study, and we had 
parents’ signed consent for their children’s participation, we designed the tracking software to 
record data only for players whose user names matched those in our study.  Outside the context 
of such studies, however, researchers must either find alternate ways to gather demographic data, 
or do without it. 

Third, tracking data are effective only for behavior that players perform clearly and 
unambiguously on the screen. Whereas the use of tracking data was highly successful for 
Railroad Repair, it was only partially successful for “Sleuths on the Loose,” a game about 
measurement and proportional reasoning (http://pbskids.org/cyberchase/games/bodymath/).  In 
Sleuths on the Loose, we could accurately record and code the answers that children provided, 
but it was harder to gauge their use of measurement for two reasons.  Instead of using the on-
screen “ruler” that served as a measuring tool, some children measured via alternate means such 
as holding their fingers up to the screen; the software could not detect these sorts of offline 
behavior.  In addition, even when children did use the on-screen ruler, tracking data alone was 
not always a reliable indicator of whether a player was attempting to measure, because some 
children simply moved the ruler idly around the screen while thinking.  Thus, we could tell 
whether players’ answers were correct or incorrect, and identify some instances when players 
used the on-screen ruler for measurement (by establishing parameters for valid placement of the 
ruler).  However, other cases of measurement could be identified only via in-person observation. 

Understanding children’s facility with educational content (outside of the confines of school 
classrooms) is important. As our experience in this study makes clear, educational games can 
provide a rich environment for studying children’s mathematical reasoning in an informal 
context. However, games and tracking software must be designed carefully in order to not only 
accomplish educational goals but also produce useful, reliable data.  But if they are designed 
properly, data mining can provide us with deep insight into children’s thinking and reasoning --  
without our having to peek over children’s shoulders at all times. 
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Forty-five teachers and 54 middle school students shared their views about the TI-Nspire 
calculator after their first experience with it. The analysis of teachers’ views about both benefits 
and weaknesses of this technology helped us reflect on why and how teachers come to adopt 
technologies in their teaching or not. The analysis of the student data empowered us with a 
student perspective that might have differed from that of the teachers. However, the analysis of 
our data revealed more similarities than differences. 

 
Objectives 

The main objective of this study is to analyze mathematics teachers’ and students’ initial 
opinions of a novel technology, TI-Nspire. With the advances of this new generation of handheld 
calculators, many new technological capabilities make novel classroom activities possible. But 
the main question is whether teachers are willing or ready to use these powerful new calculators 
in their classrooms. The analysis of teachers’ views about both benefits and weaknesses of this 
technology helped us reflect on why and how teachers come to adopt technologies in their 
teaching or not. The analysis of the student data empowered us with a student perspective that 
might have differed from that of the teachers. A comparison of these views enabled us to see the 
similarities and differences between the views of these students and teachers.  

 
Perspectives 

A large research base confirms the influence teachers’ beliefs about teaching and learning 
mathematics have on their students' learning (Ball, Lubienski, & Mewborn, 2001; Stipek, 
Givvin, Salmon, & MacGyvers, 2001; Thompson, 1992). Specifically, teachers’ beliefs about the 
roles of graphing calculators have been associated with the use and roles of calculators in 
mathematics classrooms. Therefore, it is imperative to study teachers’ beliefs about the use of 
calculators in mathematics instruction, particularly with the advent of a new generation of 
graphing calculators. With this aim in mind, the current study investigated the views of a sample 
of pre-service and in-service mathematics teachers on the TI-Nspire.  

With the advances of this new generation of handheld calculators, many new technological 
capabilities make novel classroom activities possible.  For instance, TI-Nspire brings the 
dynamic, interactive, and linkage properties of these technologies to new levels. Now some of 
the linkages among representations become two-way. When using the old generation calculators, 
the linkage between a graph and its equation was one-way. We needed to enter different values 
for the coefficients of a function to be able to observe the effects of changes in the symbolic form 
on the graphical representation. However, manipulating the graph directly to see the effects of 
that manipulation on the symbolic form as well makes this approach even more powerful. TI-
Nspire allows students to dynamically manipulate the graph and observe the immediate effects of 
that manipulation on the symbolic form.  
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Conceptual Framework 
Following Shulman’s (1986) analysis of teachers’ knowledge as a complex structure 

including content knowledge, pedagogical knowledge, and his introduction of the concept of 
pedagogical content knowledge, research in this area has become effectively grounded on his 
framework. With Mishra and Koehler’s (2006, Koehler & Mishra, 2005) and Niess’ (2005, 2006, 
2007) introduction of the concept of the teachers’ Technological Pedagogical and Content 
Knowledge (TPACK), technology-related research in the teachers’ professional development and 
education field has gained a rich new conceptual framework or “analytic lens for studying the 
development of teacher knowledge about educational technology” (Mishra & Koehler, 2006, p. 
1041).  

TPACK involves content knowledge, 
pedagogical knowledge and technological 
knowledge and their combinations, as 
depicted in Figure 1. In this study, the content 
knowledge is 6-12 school mathematics. The 
pedagogical knowledge includes teaching 
methods and learning theories. The 
technological knowledge includes knowing 
how to operate technological tools (such as 
graphing calculators) and being able to adapt 
to ever-changing, novel technologies. 

 
 

Figure 1. Re-creation of Mishra and Koehler’s TPACK model. 
 
Looking at the combinations, Pedagogical Content Knowledge (PCK) (Shulman, 1986) 

focuses on the mutual relationships between content and pedagogy. For example, depending on 
the specific mathematics content, a certain method could be chosen, or teachers can reflect on 
how particular pedagogical methods might help (or hinder) students’ learning of specific 
mathematics content. Another combination is Technological Content Knowledge (TCK). In 
discussing TCK, Mishra and Koehler (2006) note that “teachers need to know not just the subject 
matter they teach but also the manner in which the subject matter can be changed by the 
application of technology.” (p.1028). On the other hand, Mishra and Koehler believe that 
“technological pedagogical knowledge (TPK) is knowledge of the existence, components, and 
capabilities of various technologies as they are used in teaching and learning settings, and 
conversely, knowing how teaching might change as the result of using particular technologies” 
(2006, p. 1028). TPACK is at the heart of all of this knowledge and takes all of these factors into 
consideration (see Figure 1) as “an integrated whole ‘Total PACKage’” (Thompson &Mishra, 
2007, p. 38).  

 
Data Collection Methods 

Since the new generation calculators bring many new capabilities, it might be difficult to 
focus on all of them at once. Creating instructional materials focusing on one capability at a time 
could be easier for students and teachers to make their transition from the old to the new 
generation. Therefore we created an activity using TI-Nspire, in which users explore the effects 
of manipulating the graph of a quadratic function on its symbolic representation (Özgün-Koca & 
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Edwards, 2008). We used this activity with teachers and students to introduce them to TI-Nspire. 
We asked 19 pre-service teachers, 26 in-service teachers, and 54 middle school students to 

reflect on the novel capabilities of this new technology. Our main data collection method for the 
teacher data was a survey that included open-ended questions that followed an activity using TI-
Nspire. 

Middle school students experienced the same activity over a three-day period. Our main data 
collection methods for the student data were surveys that included Likert type and open-ended 
questions. In addition to that, we videotaped students working with the TI-Nspire in the 
classroom. Portions of the videos will be shared during the presentation. The data gathered with 
the Likert type questions were analyzed with descriptive statistics. For the analysis of the 
qualitative data obtained through the survey, data were coded and analyzed qualitatively to 
reveal patterns and themes. Data triangulation and peer debriefing were used to ensure the 
trustworthiness of the data. Results revealed differences and similarities among the middle 
school students, pre-service teachers, and in-service teachers’ views on the use of TI-Nspire in 
mathematics instruction.  

 
Results 

We observed that students were eager to learn about this novel technology and they were 
very motivated. As a response to mid-survey, students stated that they liked both the technical 
(more features or applications) and physical (larger screen or alpha keys) novelties of the TI-
Nspire.  

I liked that the new TI-Nspire calculators have different things that we cannot do on the 
normal TI-84 plus calculators. 

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

I like doing mathematics with NSpire calculator. 

NSpire helped me to better understand the math lessons.

NSpire helped me to be more confident during the math 
lessons.  

It was difficult to follow the NSpire math lessons.

I liked being able to move a graph around to see what 
happened to the equation.

I liked being able to represent a parabola in several 
different ways 

Strongly Disagree Disagree Agree Strongly Agree
 

Figure 2. Student exit survey. 
 
An overwhelming majority (89%) of the students liked doing mathematics with Nspire. 

Seventy-two percent of the students agreed that Nspire helped them to better understand the math 
lesson. While 56% of the students disagreed that Nspire helped them to be more confident during 
the math class, 44% of them agreed. However 68% of the students agreed that it was difficult to 
follow the Nspire lesson. Another overwhelming majority (96%) liked being able to move the 
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graph and observe the equation. Similarly an overwhelming majority (89%) liked multiple 
representations.  

In the following sub section, the TPACK model is used to frame our analysis of teachers’ 
knowledge, but at the same time students’ views are discussed at appropriate places. The main 
objective here is to focus on the technological, pedagogical or content related comments 
separately.  
Technology in TPACK 

First, we focused on the technological part of TPACK. Seventy-four percent of the pre-
service teachers and 42% of the in-service teachers thought that TI-Nspire was more difficult to 
use than other calculators they had worked with. Some simply said that it was more difficult to 
use, but many also mentioned that it might become easier with time and more experience. Some 
of the reasons for the difficulties they cited included:  

There is so much to learn about the calculator-it can be overwhelming. 
[TI-Nspire is more difficult] only because I am used to the TI-83 technology. 
In contrast, twenty-one percent of the pre-service teachers and 42% of the in-service teachers 

thought TI-Nspire was easier to use: “I thought the technology was easy to use. I like how the 
menus were easy to use.” 

Sixty-nine percent of the students agreed that it was difficult to follow Nspire math lessons. 
One stated that “it was very difficult for me to follow these math lessons because I didn’t know 
where any of the buttons were and how to get to places on the calculator.” As with the teachers, 
some students stated that it was only their first experience: “It went kind of fast and was very 
complicated. With some lessons, I could probably understand it better.” 

Participants found TI-Nspire different from other calculators that they have used before. 
They were comparing this novel technology to other technologies using their previous 
technological knowledge:  

It makes a TI-84+ look like a small scientific calculator (Teacher)  
I liked that the new TI-Nspire calculators have different things that we cannot do on the 
normal TI-84 plus calculators. (Student) 

At the same time, some students also mentioned that they would prefer working with TI-84s, 
because they were more familiar with them: “[TI-Nspires] were really confusing. They are very 
difficult to graph when you are so used to the TI-84 Silver Edition.” 

Forty-two percent of the pre-service teachers, 50% of the in-service teachers, and some 
students mentioned that TI-Nspire had more capabilities and features when compared to other 
technologies and calculators:  

This is ‘better’ technology than what I have used. It seems that this calculator has many more 
functions and abilities than others I have used. There are many features and applications that 
are great (Teacher) 
A few teachers and students compared TI-Nspire to a home computer:  
They are more comparable to a computer with the drop down menu screens (Teacher). 
[Nspire has] potential features computer like accurateness and format. Because it acts as 
accurately as a computer but as portable as a calculator (Student).  
Twenty-one percent of the pre-service teachers and 46% of the in-service teachers also 

mentioned that being able to directly manipulate graphs was a key technological difference:  
“This calculator allows greater manipulation of equations and graphs. It allows students to see 
immediately the relationship between vertex forms of the graph as well the graph and other 
equations.” Similarly 96% of the students stated that they liked moving the graph around to see 
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what happened to the equation: “That helped me see how the equation changed with the 
parabola.” 

The novel technological capabilities that students liked were separate buttons for the letters, a 
bigger screen, and many applications. However, at the same time, they did not like that the 
buttons were scrunched together.  
Pedagogy in TPACK 

One teacher stated that “this calculator is different because you can move the line and see 
what it does to slope…Before you had to change the equation to see the line change.” While 
talking about the technological capabilities of this machine, this teacher made a connection to his 
or her TPK. In doing so, s/he considered how the new capability of the Nspire might help 
students who are learning the connection between the symbolic and graphical representations of 
linear equations. We believe that this teacher was also visualizing the use of Nspire in his or her 
own classroom. The construction of such a vision has been posited as a necessary condition for 
the implementation of an innovation (Shaw & Jakubowski, 1991; Simon & Schifter, 1991). A 
couple of the teachers also used the word “hands-on” when discussing novel features of Nspire 
and how these new capabilities might help improve the teaching and learning environment.  

Interestingly, two pre-service teachers mentioned similarities to a paper and pencil 
environment: “Anything you want to do can be done by typing exactly what I see on paper into 
the calculator.” At this point, these teachers saw a resemblance between this new environment 
that Nspire provided and a very traditional and old teaching and learning environment. This new 
feature might have attracted their attention, because it was different from the old generation of 
calculators. 

Seventy-two percent of the students agreed that Nspire helped them to better understand the 
math lesson. Most of the pre-service and in-service teachers were in agreement with the middle 
school students and believe that TI-Nspire would positively influence student learning. While 
explaining their reasons for this comment they were using TPK while focusing on their 
“knowledge of students’ understandings, thinking, and learning with technology” , which was 
mentioned as a part of TPACK by Niess (p. 197, 2006). The main reasons for this belief 
appeared to be the ability to create an exploratory learning environment, being able to provide an 
interactive environment with dynamic linked multiple representations, and being able to increase 
student motivation. 

Creating an exploratory learning environment. Thirty-two percent of the pre-service and 
23% of the in-service teachers shared that TI-Nspire could be beneficial in creating an 
environment for discovery. One teacher stated that:  

It allows them to more easily test conjectures. It also allows them to better make connections 
and see representations. This technology will be as difficult for students as for teachers, but I 
think a lot of guided activities would have students breezing through its use by the end of the 
year. I think it allows teachers to develop more discovery/inquiry-based approaches to 
teaching and learning. 

Indeed, we observed this in the classroom, and so did one of the students: “These calculators are 
very helpful in my learning because they introduce hands on learning and promote good 
experimenting.” 

Providing an interactive environment with dynamic linked multiple representations. Twenty-
six percent of the pre-service and 46% of the in-service teachers stated that TI-Nspire could 
bring unique opportunities for students to experience new forms of representations: 

It could help them see how you can bend the parabola and how the coefficients change as it 
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gets smaller or larger. This technology is very interesting. I would love to learn to use it so 
that I could use it in my classroom. 

Ninety-one percent of the students agreed that they liked being able to represent a parabola in 
several different ways (graph, equation, or spreadsheet table): “It was interesting to see how 
function and graph related to each other so much.” 

Student motivation. Eleven percent of the pre-service and 27% of the in-service teachers 
mentioned things that have been associated with increased student motivation (Middleton & 
Spanius, 1999): “I think students would be excited about using these calculators, thus increasing 
their learning.” We observed that students were very eager to use Nspire and 89% of the students 
stated that they liked doing mathematics with Nspire: “I liked using the new calculators because 
they were very high-tech and really fun to use. Also it made graphing easy and fun!” 

Sixteen percent of the pre-service teachers were not sure or do not think that this technology 
will help students’ learning: “I just worry that this technology may detract students from learning 
math content, because they get caught up with how to use the calculator and not how the math 
corresponds to the calculator and display.” Some pre-service teachers (21%), but only one in-
service teacher agreed that TI-Nspire could be helpful in students’ learning, but they fear 
calculator dependency:  

I believe that this technology will encourage students to ask and find out “why” more often 
since the work needed will not only be less tedious, but also more fun to do. I think the 
“why’s” of math will be easier for students to learn and therefore their understanding of 
concepts and connections will increase. I fear that the more advanced technology becomes, 
the more dependent students will become on it. 

Content Knowledge in TPACK 
The main categories that pre-service teachers discussed were the technological and 

pedagogical parts of TPACK. It is understandable that when we come across a novel technology, 
the first thing that we reflect on would be the technology itself. And then the second thing would 
be how learning and teaching might change with this new technology. Content or curriculum 
related issues should also be considered, but perhaps not as soon as technological or pedagogical 
issues. Perhaps as teachers become more knowledgeable with technology, content/curriculum 
related issues will come more into play. 

The activity that we used in this study focused on the effects of the coefficients in the 
quadratic function (f(x)=ax^2+bx+c) on its graph . In a traditional curriculum, the effects of a 
and c are studied more commonly than the effects of b. With the availability of the new 
capabilities of TI-Nspire, the way to study the effects of a and c is enhanced and the effects of b 
may also be studied much more easily.  

 
Discussion and Educational Importance of the Work  

In this section, we first compare pre-service and in-service teachers’ views of Nspire. Next we 
compare teachers’ views of with those of students, as well as our observations of the students while they 
were using Nspire. Finally, we discuss implications for teacher education. 
Comparison of Pre-service and In-service Teachers’ Views 

As a result of this analysis, we observed that more in-service teachers found Nspire easier to use as 
compared to pre-service teachers and the students. Moreover, more in-service teachers than pre-service 
teachers emphasized the novel capability of Nspire-being able to manipulate the graphical representation 
physically in the virtual environment. Perhaps having more experience with graphing calculators 
in classroom instruction and having more knowledge about the graphing calculators’ capabilities 
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and limitations might have influenced these differences.  Moreover, the larger experience base of 
the in-service teachers may have helped them to create a more fully developed vision of what 
using Nspire during instruction might look like in their classrooms.  If this analysis is correct, it 
helps to explain most of the differences between pre-service and in-service teachers that we 
observed.  Finally, when reflecting on the potential effects of the use of Nspire on students’ 
learning, both pre-and in-service teachers articulated similar positive influences of the use of this 
technology on the teaching and learning environment. Moreover, teachers views about the 
potential pedagogical issues when teaching with Nspire were very close to the reality we 
observed in the classroom with students, such as being able to create exploratory environments 
and an increase in students’ motivation. 
Comparison of Teachers’ and Students’ Views 

Based on our analysis of these data and our observations of students working with Nspire, we 
saw more similarities than differences in the views of teachers and students. About the only 
difference we noted was that students were far more likely than teachers to mention the separate 
buttons for letters of the alphabet as an advantage of the new calculators. We speculate that this 
might be due to students’ past experiences in text messaging.  

In most cases the views of students paralleled those of teachers.  What was particularly 
noteworthy is the degree to which the students’ views of their work with Nspire tended to 
confirm the teachers’ views of the potential pedagogical benefits of using Nspire. Moreover, our 
observations of the students’ working with the new calculators further confirmed these potential 
benefits. 
Implications for Teacher Education 

NCTM’s vision of school mathematics includes students in grades 9-12 “using 
technological tools to represent and study the behavior of polynomial, … functions” 
(NCTM, 2000, p. 297). Moreover, we believe that when students use dynamic geometry 
tools to manipulate graphs linked to their symbolic algebraic representations, they will be 
empowered “to convert flexibly among these representations” (NCTM, 2000, p. 360). In 
doing so, they will experience firsthand “the power of mathematics [that] comes from 
being able to view and operate on objects from different perspectives” (NCTM, 2000, p. 
360). In order for that vision to become a reality, teachers of mathematics, including pre-
service teachers, must be able to envision the use of technology in their own classrooms in 
appropriate ways.  We believe that modeling for teachers activities such as we did in this 
case can help them form new visions of what their classroom might be like.  However, 
while doing so may be a necessary condition, it is clearly not sufficient, as our data vividly 
show. They would need more experience with the technology in their education and 
profession.  

In methods courses, students could focus on the potential effects of the use of an 
instructional technology in their teaching. In content courses, they could focus on how the 
use of this technology might have helped or hindered their learning. Teacher education 
programs offer pre-service teachers the knowledge and experience that they will need in 
their profession. However, it is crucial to remember that their belief system and views 
about their pedagogical implications are also developed during their teacher education 
program. Therefore, it is essential to identify these beliefs and views in order to inform the 
teacher education program itself and present opportunities to pre-service teachers to reflect 
on their beliefs and views on important educational issues. 
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This study investigates how mathematics educators make use of the digital capabilities of online 
resources both in and out of the classroom. The digitally adept 17 pre- and in-service teachers in 
a graduate technology in mathematics education course failed to capitalize on the unique 
abilities afforded by the Internet using resources primarily for lesson planning.  
 

Theoretical Background 
Today’s incoming teachers represent the first generation with personal access to technology 

in our ever-evolving digital world. Pre-service and novice teachers are in their early to middle 
twenties, with post-1980 birth years that are suggested for “digital natives” (Palfrey & Gasser, 
2008). According to the U.S. Department of Education (2000), as new teachers who have grown 
up in a technology-rich environment enter the profession, their comfort and skill with technology 
will lead to increased use of computers for instruction. Most pre-service mathematics teachers 
enter their mathematics education courses as competent users of the Internet and general-purpose 
computer software (e.g., word processing and spreadsheets), having gained some experience 
with these technologies during previous university or K-12 classes (Goos, 2005). Teachers who 
have been in the profession for 1-6 years have been found to be more comfortable with 
technology than those who have taught longer (Russell, Bebell, O’Dwyer, & O’Connor, 2003).  

A study of over 2000 teachers of grades 4-12 found that mathematics teachers tended to use 
internet resources very differently and less frequently than other teachers (Becker, 1999). This 
finding is supported by a similar study from over 4000 grade 4-12 teachers (Becker, 2001). 
When internet usage was ranked by teachers’ subject matter, the 538 mathematics teachers 
placed second to last with 11% of respondants using the Internet. In the later half of the 1990’s, 
less than one-half of eighth grade mathematics teachers claimed to use computers at all 
(Technology Counts, 1997).  

Policy makers claim that high access to computers in classrooms leads to major 
improvements in teaching and learning; however, such access has not ensured high use by 
classroom teachers (Cuban, Kirkpatrick, & Peck, 2001). 82% of teachers surveyed reported using 
computers for home use at least once per week, yet claimed to utilize computers very seldom for 
classroom instruction. Describing the incremental changes that occur in pedagogical practices as 
access to technology increases, the Cuban et al. study showed that while technology can promote 
student-centered instruction, teacher-centered instruction often remains dominant. Teachers have 
reported that they used computers primarily for classroom preparation (Technology Counts, 
1999).  In 2001, Cuban et al. hypothesized that in the absence of major changes to the obstacles 
facing technology in the classroom such as allocation of time, teacher preparation, reliability and 
functionality of technology, and increased internet speed, only modest alterations would be made 
in teaching and learning.  
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Research Questions 
   The data reported here is part of a larger grounded theory study, which used both 

quantitative and qualitative data, to explore how and how frequently pre-service and novice 
mathematics teachers make use of digital resources. The study purposely targets a small group of 
pre-service and novice teachers, teachers in the first wave of digital natives or exceptionally 
proficient digital immigrants, to determine their use of online resources. This paper will 
primarily focus on teachers’ use of digital resources by addressing the following series of 
questions: 

1. What types of digital resources do mathematics teachers use?  
2. For what educational purposes and how frequently do teachers use digital resources?  
3. Do teachers capitalize on the unique capabilities afforded by online technology? 
4. Who do teachers see as the end users of mathematics education websites? 

 
Methodology 

   The participants of the study included graduate students enrolled in an elective course on 
technology in mathematics education in a department of learning and instruction at a large 
research university in New York State. As a part of a technology-infused teacher education 
program, the course was able to incorporate more than four of the strategies suggested by Kay 
(2006) for pervasive computer use by teachers. The study participants included 9 pre-service, 7 
novice in-service teachers, and 1 veteran teacher (henceforth referred to collectively as teachers), 
with mathematics emphasis educational backgrounds all living in a 50-mile radius of each other. 
All grew up in what could be described as middle class homes with reasonable access to 
technology. The veteran teacher was certified to teach grades K-12. Five of the participants were 
childhood teachers with a mathematics emphasis, certified (or working toward certification) to 
teach up to grade 6 or grade 8. Ten were secondary teachers certified (or working toward 
certification) to teach from grade 5 (or grade 7) up to grade 12. All but three of the teachers were 
in their early to middle twenties, hence, digital natives. The other three teachers had extensive 
technology experience and could easily be identified as proficient digital immigrants.  

The initial research team consisted of the instructor of the course and a doctoral student in 
mathematics education, who acted as a participant-observer during the course. As a validating 
step, the team then recruited another doctoral student in mathematics education who had taken 
the course two years prior to help review the related literature, the data, and initial research 
team’s conclusions.  

Data was collected during the fall semester ranging from August 2008 through mid-January 
2009. Employing an inductive process of generative data collection, constant comparisons of 
data from varying instruments were made. The data reported in this study were collected via 
researcher-generated surveys, participant-generated surveys, and informal interviews.  

At the end of the technology class, the participants were asked to submit 5 to 10 websites 
they felt were the best mathematics education sites. The list of submissions was compiled into a 
cumulative list of top websites for the class. Using this cumulative list, the teachers were next 
asked to complete a website-use survey composed of 19 Likert-scale items to evaluate. For those 
sites with which they were familiar, they indicated their use of each website as well as who they 
saw as the end-users of those sites. Following the website use survey, participants created two-
question surveys in groups using web-based software as a course assignment. The data compiled 
in the participant-generated surveys were used to further develop digital consumer profiles, and 
to ensure reliability of the data found with researcher-generated instruments. 
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Results 
   In addition to enrolling in an elective course entitled Technology in Mathematics 

Education, the data in the following relative frequency tables speak to the general digital 
consumption and digital facility of the teachers in addition to their use of technology for teaching 
mathematics. 
 
        Digital Consumer Profile: General                          Digital Consumer Profile: Teaching 
Do you use/visit the following weekly? Percent  In my teaching I use (type of 

technology) weekly Percent 

Cellular Telephone 100  Word Processing Software 100 

Internet 100  Internet 94.1 

E-mail 94.1  Equation Editor 82.4 

Text Messaging 58.8  Graphing Calculator 70.6 

Wikis and Online 
Dictionaries/Encyclopedias 56.3  Spreadsheet Software 47.1 

Online Social Networking 
(e.g., MySpace, Facebook) 52.9  Internet-Based Applets 46.7 

Blogs 17.6  Exam Generator Software 41.2 

Social Bookmarking sites 
(e.g. Del.icio.us) 5.9  Presentation Software 23.5 

Online Survey/Calendar sites  
(e.g., Survey Monkey, Google Calendar) 0.0  Dynamic Geometry Software 5.9 

Video Sharing sites  
(e.g., YouTube) 0.0  Downloaded Videos 5.9 

 
The data in both profile tables was collected from items generated by the research team. To 

ensure the credibility of the data results from the researcher-generated surveys, data are reported 
that were generated by teacher groups as a part of a class assignment learning to use online 
survey websites. This information can be found in the Teacher-Generated Items Related to 
Teachers’ Digital Consumption table on the next page. 

When polled on the best mathematics education sites, the teachers submitted a total of 49 
sites. However, when asked to assess the 49 best sites, the teachers only felt familiar enough with 
37 of the initial 49 sites submitted to actually evaluate them. Of the 37 sites that were evaluated, 
only 12 sites were evaluated by at least 25 percent of the participants. The data on the 12 “most 
used” sites is reported below and includes the relative frequency of teachers who are familiar 
with the site, the frequency of use for each site, the teachers’ ideas about who would be the sites’ 
end users, and the Google pagerank for each site. Note that teachers were able to mark more than 
one end user, so the relative frequencies reported for end user data represent the percentage of 
teachers making the recommendation. Google uses a combination of key words and pagerank to 
return websites on a given search. Using a scale of one to ten, those sites with higher pageranks 
are more likely to be returned on a search with a given set of key words, than those sites with a 
lower pagerank given the same key words (Craven, 2009). 
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Teacher-Generated Items Related to Teachers’ Digital Consumption 
Question Mean SD 
How often do you use computers for school related activities?  
(1 = rarely, 5 = very often) 4.87 0.35 
How often do you use websites to help create math lessons for your classroom?  
(1 = rarely, 5 = very often) 3.56 0.89 
How likely are you to search websites for existing worksheets rather than create 
your own? (1 = highly unlikely, 5 = highly likely) 3.13 0.50 
Would you use a website if there was a fee for use/membership?  
(1 = no, 2 = only if paid by district, 3 = maybe, 4 = yes) 2.75 0.58 
What do you feel is the most important when choosing technology that  
will be used in the classroom? (1 = not important, 5 = very important) 
  relevant to topic 4.67 1.05 
  student interaction 3.60 1.24 
  Fun and interesting 3.40 1.24 
  state standards 3.07 1.22 
  national standards 2.00 1.20 
 

Most Used Websites for Mathematics Education 

Website 

Percentage 
of sample 

familiar with 
site 

Frequency of use  
(1 = less than 

once a year, 6 = 
daily) 

Percentages of Intended Site 
End User(s)  

Google 
Pagerank 
(1 = low,  

10 = high) Mean SD 
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1. Illuminations 66.7 5.00 0.82 100 16.7 42.7 0.0 6 
2. NCTM 61.1 4.45 0.94 90.9 0.9 0.0 0.0 7 
3. The Math 

Forum 55.6 4.00 1.00 90.0 10.0 80.0 50.0 8 

4. NLVM* 50.0 4.22 1.09 100 55.6 66.7 44.4 6 
5. Purple Math 38.9 4.14 0.90 100 0.0 71.4 28.6 6 
6. Regents Prep 38.9 4.67 1.03 85.7 28.6 85.7 71.4 5 
7. Cool math 33.3 3.83 0.75 66.7 33.3 100 50.0 4 
8. edHelper 33.3 3.67 1.21 100 0.0 33.3 33.3 6 
9. Mathbits 33.3 4.17 0.98 83.3 33.3 66.7 50.0 6 
10. BrainPop 33.3 3.71 1.11 83.3 50.0 66.7 16.7 8 
11. AAA Math 27.8 4.00 1.10 100 40.0 100 40.0 6 
12. School Island 27.8 4.80 0.84 80.0 100 40.0 40.0 * 

* NLVM represents the National Library of Virtual Manipulatives. 
  ** Note. Schoolisland.com is unrankable, (has no pagerank) as is common with commercial, educational tool sites. 
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To ensure that the data represented mathematics teaching interests across the K-12 landscape, 
the research team considered the ratio of primary and secondary teachers’ responses. For 11 of 
the 12 most used sites, the ratio of primary and secondary responses was proportional to the ratio 
of primary and secondary teachers in the study. Purple Math, a site dedicated to algebra, is the 
only datum on the list that was selected solely by secondary teachers. 

The list of the 12 most used websites is comprised of sites that provide a variety of 
educational resources for mathematics teachers. Several of the sites listed deal with the national 
and state standards. Illuminations and the NCTM site provide numerous resources that are based 
on the principles and standards for K-12 mathematics proposed the National Council of Teachers 
of Mathematics (2000) including activities, applets, lessons, and access to professional 
development materials. NLVM provides an array of standards-based interactive manipulatives 
organized by NCTM’s content standards and grade bands. Regents Prep provides practice for 
and addresses issues pertinent to mathematics testing in New York State. 

The Math Forum is a comprehensive site that offers a variety of users a wide range of 
materials related to lesson creation, course material development, homework help, and review of 
mathematics concepts. Purple Math is a text-dominant algebra review site that includes 
occasional static images to accompany the text. Cool math is a conglomeration of mathematics 
lessons, games, and puzzles.  

Several sites selected by the participants emphasize the availability of printable materials on 
their site. With a focus on mathematics and programming, mathbits.com provides printable and 
multimedia materials including movie clips and instructional guides. EdHelper is a source of 
worksheets with a limited number of puzzles. AAA Math is a collection of worksheets with built 
in self-assessment that allow for feedback based on user input. Similarly, schoolisland.com 
allows for automatic feedback on self-administered worksheets in addition to addressing certain 
administrative aspects of teaching. 

Two sites on the list are accessible by fee. BrainPop, is a multidisciplinary site with a 
collection of animated educational videos in mathematics as well as other school subjects. 
School Island is a commercial website that provides teachers with content authoring and course 
management functions that allow them to create and assess assignments as well as track student 
progress.  

The teachers were asked to report on exactly how they utilized the initially submitted 49 
“best” sites. As previously stated, teachers only evaluated those sites with which they were 
familiar. The information is reported in the Website Use Survey. 

The four most frequently cited reasons for using a website, Tier 1, primarily addressed 
teachers’ instructional planning. These responses were teacher-centric and focused on the 
teachers’ lesson preparation. The next four responses cited, Tier 2, were more oriented towards 
the generation of products to be used by the students in class, or were of a more interactive 
nature. These items included accessing puzzles, games, interactive materials, etc. This tier also 
included the procurement of worksheets for students.  

Three of the following four items, Tier 3, focused on state math assessment, related to state 
mathematics standards, or national mathematics standards. The final seven items on the list, Tier 
4, dealt with components that some view as peripheral to teaching. These sites included 
information on topics such as student contests, professional development, funding opportunities 
and historical information related to mathematicians or mathematics, recent developments in 
mathematics education, and real world data to be used in mathematics lessons. 
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After considering the data in the Most Used Websites in Mathematics Education and Website 
Use Survey tables individually, the data was compared. Of the 12 most used sites, both NCTM 
(site 2) and The Math Forum (site 3) were identified as meta-resource websites that cut across 

Website Use Survey* 
I will or have used the sites to: (1 = never, 5 = very often) Mean SD 

Ti
er

 1
 

get ideas for lessons 2.97 1.20 

get examples 2.95 1.23 

help develop course materials 2.91 1.27 

help refresh my knowledge/learn more about a topic before I teach it 2.37 1.23 

Ti
er

 2
 

get mathematical games, like puzzles or riddles for students 2.29 1.19 

get applets, virtual manipulatives, videos, etc. that I will use for interactive demonstrations 2.27 1.40 

get applets, virtual manipulatives, videos, etc. for interactive explorations 2.26 1.39 

get worksheets 2.23 1.25 

Ti
er

 3
 

provide examples, practice for students on state math assessment instruments 2.20 1.33 
help me learn how what I teach ties in with other subjects/math topics 2.10 1.15 
get information on state math assessment instruments/expectations 1.94 1.24 
learn more about how the standards apply to a lesson/topic 1.85 1.17 

Ti
er

 4
 

get mathematical support materials like graph paper, coordinate axes, bar graph templates, 
etc. 1.65 0.94 

get information on important, developing issues in mathematics education. 1.52 1.01 
gather real world data for the students/myself to use in a lesson 1.50 0.83 
get information on conferences/other professional development opportunities 1.49 0.99 
get information on competitions for students 1.45 0.89 
get information on funding opportunities for teachers 1.43 0.88 
gather historical information related to a lesson/person in mathematics 1.42 0.73 

* Note.  Responses have been grouped into tiers for ease of reference. 
 

Teacher-Identified End-Users  
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Tier 1 instructional preparation 92.3 9.8 50.2 23.1 

Tier 2 student materials, interactivity 89.1 29.8 67.2 37.5 

Tier 3 state assessment, natl. standards 97.4 36.2 46.5 28.2 

Tier 4 “peripheral” components 95.2 5.2 38.1 23.8 

Most Used Websites (cumulative) - 91.1 26.8 59.0 32.2 
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the properties from all four tiers. Sites 1, 2, 3, 5, 7, and 8 from the Most Used Websites for 
Mathematics Education list provide materials that are aligned with the website uses found in Tier 
1 of the Website Use Survey. Sites 2, 3, 4, 7, 8, 9, 10, 11, and 12 from the list provide materials 
that align with Tier 2. Sites 1, 2, 4, and 6 from the list provide materials that align with Tier 3. 
Finally, sites 2 and 3 from the list provide materials that align with Tier 4.  

Teachers were asked who would be using the resources found on the list of Most Used 
Websites for Mathematics Education. A weighted average was used to compile the percentage of 
teachers identifying the four given categories as potential end-users for the 12 sites. Using data 
analyzed further in the discussion section, the calculated percentages combine information from 
the Most Used Websites in Mathematics Education and the Website Use Survey tables. The 
Teacher-Identified End-users table reveals these percentages. Note that the top line of the end-
user table represents the cumulative results from all tiers. 
 

Discussion  
Teachers: Primary End-users of Mathematics Education Sites 

 Teachers overwhelmingly see themselves as the primary end-users for the variety of 
mathematics websites found in their Most Used Websites. They perceive students as using the 
websites for in-class activities mostly in relation to high stakes testing and standards related 
material. Students were perceived to use the sites as references far more frequently than as a part 
of in class activities. Parents were viewed as end-users less frequently than students; however, 
both peaked in the same tier (2) with those sites that dealt with student materials and 
interactivity. 
Digital Capabilities Not Fully Exploited 

 The Website Use Survey shows teachers use the websites more for instructional planning 
than accessing any of the unique capabilities these digital resources provide. This confirms the 
Russell et al. (2003) findings that K-12 educators use technology for the preparation of teaching. 
A large percentage of the teachers were facile with social networking technology, which includes 
the features typical of and unique to digital resources like networking, hyperlinks, photo and 
video sharing, etc. However, these teachers do not make use of websites that offer these types of 
features in their professional lives. Many of the mathematics education websites provide text 
with static embedded figures. Notable exceptions include the applets available through 
Illuminations and NLVM, and the input/feedback worksheets on AAA Math. None of the 
websites seemed to tap into the power of hyperlinking that is seen on popular websites such as 
Facebook and Wikipedia. 
Inconsistencies Related to State Assessment/National Standards 

Teachers saw their students using Tier 3 sites, sites related to standards and state assessment, 
more than other types of sites for their in-class activities. In addition, the third most frequently 
used site of the Most Used Websites was the New York State Regents Prep site with a mean of 
4.67 (SD = 1.03). However, when asked on the Website Use Survey about providing examples 
and practice problems for students on the state mathematics assessment exam or about getting 
information on state mathematics assessment instruments/expectations, these items received 
relatively low means of 2.20 (SD = 1.33) and 1.94 (SD = 1.24), respectively. 

Further, in the Teacher-Generated Items table, the teachers indicated that state standards 
played a higher role than national standards in their decision to use technology in the classroom. 
With a mean of 3.07 (SD = 1.22) versus 2.00 (SD = 1.20), the state standards were ranked a full 
point higher than the national standards. Despite this, there was a marked absence of the New 
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York State Department of Education site on the initial list of the 49 best websites, even though 
this site was made available to the teachers via presentation and as a part of the course’s 
homepage as one of the key external links. Moreover the 12 Most Used Websites included three 
national standards-based sites (1, 2, and 4) but only one state site (Regents Prep), a site that deals 
directly with high stakes testing. 
Limitations of Study/Future Work 

 The research team acknowledges the limited scope of the homogeneous population involved. 
Transferability of the study is high and as such future work should focus on the size of, and 
heterogeneity of, the sample. This study serves as a first look, a catalyst, for others to investigate 
how the first wave of digital native mathematics teachers make use of and disseminate digital 
resources. Despite the fact that many of the obstacles for technology implementation presented 
by Cuban et al. (2001) have been overcome, we are still seeing the ad hoc applications of 
technology that have further sustained traditional teaching practices. The importance of this 
study is to caution teacher educators against making assumptions that future and novice 
mathematics teachers’ digital facility implies they will fully exploit the digital capabilities of 
online resources.  
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Teaching students to reason and use high-order thinking skills has been problematic for many 
years. With innovative thinking and problem solving skills becoming the main stay for success in 
today’s society this study looks at whether critical thinking, reasoning skills, and academic 
achievement are affected by the use of a hybrid on-line problem-based mathematics course.  

 
Objective or Purposes of the Study 

In current national and international educational research there is a widespread acceptance 
that critical thinking development is an important dimension of education (Meadows, 1996; Paul 
et al., 1995; Perkins, 1993; Gadzella et al., 2006). David H. Jonassen, Chad Carr, and Hsiu-Ping 
Yueh (1998) believe that rather than using the power of computer technologies to disseminate 
information, they should be used in all subject domains as tools for engaging learners in 
reflective, critical thinking about the ideas they are studying. 

This study examines students who participate in a hybrid (teacher supervised) on-line 
technology-based mathematics course with an emphasis on real-world problem solving (TBC). 
The purpose of this research is to determine if a relationship exists between critical thinking, 
reasoning skills and student achievement as indicated by the Test of Everyday Reasoning (TER) 
and Texas Assessment of Knowledge and Skills (TAKS) Test in TBCs. Specifically, we looked 
at changes in critical thinking skills and reasoning skills, (analysis, evaluation, inference, 
inductive and deductive reasoning) after using a TBC with a pre-post test model. We also looked 
at differences in scores according to gender and ethnicity to examine their roles as factors 
impacting critical thinking and reasoning. 

 
Theoretical Framework 

The National Council of Mathematical Teachers (NCTM) emphasizes the importance of 
reasoning and sense making in the Process Standards: Problem Solving, Reasoning and Proof, 
Communication and Representation. All are interlinked and essential in the teaching and learning 
of mathematics (NCTM, 2000). Yet the report of the Programme for International Student 
Assessment (2007) suggests that United States students are lagging in their ability to apply 
mathematics “to analyze and reason as they pose, solve and interpret problems in a variety of 
situations” (p. 7).We know that globalization and the rise of technology are presenting new 
economic and  workforce challenges (Friedman, 2006). The traditional mathematics curriculum 
is not sufficient for students entering many fields (Ganter & Barker, 2004). According to the 
Task Force on the Future of American Innovations 2005, the Committee on Science, Engineering 
and Public Policy 2006, and Tapping America’s Potential 2008, the United States is in danger of 
losing its leadership position in science, technology, engineering, and mathematics.  

In light of what we know about learning, the computer and other technology when used as 
tools for meaningful problems is a reasonable method for engaging students in problem solving 
and critical thinking (Muir, 1994; Peck & Dorrricot, 1994). Studies suggest that research 
interests need to focus on designing computer environments that foster a disposition for critical 
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thinking (Facione, Facione, & Sanchex, 1994; Taube, 1995; Wiburg, 1996). This restructuring of 
the classroom includes the use of computer to provide active learning, authentic tasks, 
challenging work, complex problem solving, and higher-order thinking skills (Dalton & 
Goodrum, 1991; David, 1993).  

This study examined students who participated in a technology-based mathematics course 
with an emphasis on real-world problem solving (TBC). The real-world problems were based on 
the following problem-based learning (PBL) criteria:  

• Problems engage students; they provide a meaningful, authentic context for problem 
solving (Blumenfeld, et.al.,1991; Van Haneghan et al., 1992), and students have 
meaningful input into a process or solution (Torp & Sage, 1998).  

• Problems allow knowledge to be a tool; students learn what it is for and when and how to 
use it relative to the context in which it is acquired; this facilitates recall and utility in 
new problem situations. 

• Problems include multiple assessments that will help students build learning on prior 
knowledge and challenge misconceptions (National Research Council, 2000).  

• Problems require students to apply understanding versus apply step-by-step algorithms or 
unrelated calculations (Wiggins & McTigue, 2005; National Research Council, 2000); 
the focus is “doing with understanding” (Barron et al., 2000).  

• Students learn from others' insights, articulating arguments will help students clarify their 
own thinking (Wiggins & McTigue, 2005). Support structures help focus students' 
attention, students learn to research the information they need to know (Torp & Sage, 
1998). 

The first research question is to determine if students’ reasoning skills, using TER, predicts 
academic achievement, as shown by TAKS Mathematics Test, when using TBC. Based on the 
studies of Yeh and Wu (1992) and Frisby (1992), there is a high correlation between critical 
thinking and academic performance. Yet the findings of the Third International Mathematics and 
Science (TIMS) study indicate the correlations between critical thinking and school achievement 
were not considered significant. Therefore, we believed these contradicting results require 
additional investigations in this area.  

The second research question is: How does TBC affect academic achievement as shown by 
the TAKS Mathematics Test? Due to the above stated research, we believe academic 
achievement improves significantly with the use of TBC.  

The third research question: How does the TBC environment affect students’ abilities to 
analyze, evaluate, make inferences, and reason inductively and deductively, as indicated by 
TER? We believe there is evidence to believe that the ability to analyze, evaluate, make 
inferences and reason inductively and deductively improves significantly with the use of TBC. 
We looked at overall results as well as test specific results; and when significant, we looked at 
the effect of gender and ethnicity. 

 
Method 

Design 
 We examined the relationship between critical thinking and reasoning skills as determined 

by the TER and mathematical achievement as determined by TAKS Test for Mathematics to 
determine predictability. A regression was used to determine this relationship.  
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 A quasi-experimental pretest-posttest control-group research design was used to test the 
hypothesis of the study that the use of TBC would affect critical thinking, reasoning skills and 
academic achievement.  
Participants  

186 students from a large urban/suburban school district in the Greater Dallas area enrolled 
in algebra or geometry were included in the study. The study involved four schools, a middle 
school and three high schools. Students ranged from 8th graders to 10th graders, and students 
from a gifted and talented program, to on-level students. Student’s ethnicity varied as well as 
socio-economic standing. The study groups represented a cross section of students from a 
suburban/urban school district. Students were divided into two groups, a control and treatment 
group.  
Instrumentation  

The TER from California Critical Thinking Skills Test series was used to measure the 
dependent variable, ability to analyze, evaluate, make inference, and use inductive and deductive 
reasoning. Subsequent studies have been conducted to validate the test’s usage (Facione, 1990a; 
Giancarlo, 1996; Ricketts, 2003). The theoretical framework for the critical thinking part of this 
study is supported by the Delphi study of Peter Facione (1990a). The TER is designed for test 
takers in secondary school or the first two years of post secondary education, and for adults of all 
ages in the general population. The TER is a 35 item multiple choice test that is administered in 
50 minutes. The Flesch-Kincaid Readability Level is 6th Grade. No specialized content 
knowledge is required. Test questions engage the test-takers’ reasoning skills using familiar 
topics and contexts. Different questions progressively invite test-takers to analyze or to interpret 
information presented in text, charts, or images; to draw accurate and warranted inferences; to 
evaluate inferences and explain why they represent strong reasoning or weak reasoning; or to 
explain why a given evaluation of an inference is strong or weak  

The content validity refers in general to how the specific items comply with two standards: 
(a) if the items represent the entire set of possible test items within a specified domain and (b) if 
'sensible" methods of test construction are employed. TER complies with (a) standard of 
representation of all possible test items since every item of TER was carefully selected for its 
theoretical relationship to the Delphi Critical Thinking conceptualization. In regard to standard 
(b) the appropriateness of a multiple-choice test format to measure critical thinking must be 
established. Authors of measurements texts agree that higher order cognitive skills can validly 
and reliably be measured by well-crafted multiple-choice items (Haldyna, 1994: 28). Most of the 
critical thinking assessment experts who participated on the Delphi panel (Facione, 1990a) agree 
to this point. Furthermore, the construct validity of TER is grounded on the results of relative 
research indicating that it is strongly correlated (0,766) with "California Critical Thinking Skills 
Test" (CCTST) (Facione et al., 2002; 1990b; 1990c; 2001). 

In the test manual (Facione, 2001, p. 16) four separate Kuder-Richardson 20 coefficients are 
presented as a statistical evaluation of the internal consistency of TER derived from four 
different samples which range from 0,72 to 0,89 (N=145, KR-20=0,78; N=201, KR-20=0,76; 
N=582, KR-20=0,72; N=113, KR-20=0,89). 

The TAKS Mathematics Tests were used to determine mathematical achievement, another 
dependent variable. Content validity for this instruments is reviewed each year and includes an 
annual educator review, revision of all proposed test items before field-testing, and a second 
annual educator review of data and items after field-testing. In addition, each year panels of 
recognized experts in the fields of mathematics meet in Austin to critically review the content 
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validity of each of the high school level TAKS assessments to be administered that year. This 
critical review is referred to as a content validation review and is one of the final activities in a 
series of quality-control steps designed to ensure that each high school test is of the highest 
quality possible. For internal consistency, the Kuder-Richardson Formula 20 was used with 
reliabilities in the.80s and.90s (Texas Education Agency, 2008). The standard error of 
measurement was calculated “using both the standard deviation and reliability of test scores and 
represents the amount of variance in a score resulting from factors other than achievement” 
(Texas Education Agency, 2008).  
Treatment  

The Experiment Group received instruction in a self-enclosed classroom where each student 
had access to a portable laptop. The students followed the curriculum as provided by the on-line 
program which was problem-based, modeled problem-solving strategies and heuristic thinking, 
and used concepts as tools. The curriculum followed the state mandated Texas Essential 
Knowledge and Skills objectives. Students were tested using TER during the first six week 
session and tested again using TER during the sixth six week session.  

The Control Group also received instruction in a self-enclosed classroom according to the 
district curriculum that followed the state mandated Texas Essential Knowledge and Skills 
objectives. Teacher directed lessons were followed by guided practice that was then taken home 
to be completed as homework. 

The TAKS test was given to both groups of students according to their grade. The ninth 
graders took the TAKS mathematics test for ninth graders and the tenth graders took the TAKS 
mathematics test for tenth graders in April of 2007. 
Data Analysis Procedure 

When evaluating the TER and the TAKS Test scores for predictability, a regression was 
used. The data collecting procedures described in the previous section were analyzed using 
Analysis of Covariance procedures in which the dependent variable was critical thinking and 
reasoning skills: analysis, evaluation, inference, deductive, and inductive reasoning; and 
academic achievement. The Control Group served as the covariant. The ninety-five percent 
confidence level (p <.05) is the criterion for determining statistical significance. The criterion 
level for educational significance is one-third a standard deviation (d = 0.33) (Cohen, 1988). 

 
Results 

The first research question in study asks: Do students’ abilities to analyze, evaluate, make 
inferences, and use inductive and deductive reasoning as indicated by the TER predict student 
achievement as shown by the TAKS 9th Grade Mathematics Test when using a TBC. The study 
tested the following directional research hypothesis: Students’ abilities to analyze, evaluate, 
make inferences and use inductive and deductive reasoning as indicated by the Test of Everyday 
Reasoning can predict student achievement as shown by the TAKS test when using a TBC. The 
results obtained when the data relevant to this hypothesis were analyzed using a regression are 
shown below. 
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Table 1.  
Regression Analysis Summary for Test of Everyday Reasoning Predicting Texas Assessment of 
Knowledge and Skills Test   
                    Variable                                                         B                  SEB                                   

Ninth Grade Mathematic Texas 
Assessment of Knowledge and Skills Test                      .58                  .08                  .54 
Note: R2 = .29 (N = 144, p < .001) 

 
Students’ ability to analyze, evaluate, make inferences, use inductive and deductive 

reasoning as shown by the TER significantly (p <  .01) predicted academic achievement as 
shown by the TAKS  9th Grade Mathematics Test,  = -.54, N(144) = 7.56. The change in TER 
scores also explained a significant proportion of variance, R2 = .29, F(1, 143) = 57.20, p < .01. 

The second research question posed by the study: How does TBC affect academic 
achievement as shown by the TAKS Mathematics Test? The study tested the directional research 
hypothesis: Student’s academic achievement as shown by the TAKS Mathematics Test showed 
statistically significant improvement after using TBC. The third research question in study asks: 
How does the TBC environment affect students’ abilities to analyze, evaluate, make inferences, 
and reason inductively and deductively, as indicated by TER? The study tested the following 
directional research hypothesis: Students’ abilities to analyze, evaluate, and make inferences, use 
inductive and deductive reasoning, shown by the Tests of Everyday Reasoning indicate 
statistically significant improvement after using TBC. The results obtained when the data 
relevant to this hypothesis were analyzed are shown below in Table 2 and Table 3.  

 
Table 2. 
Mean Scores, Standard Deviations, and Analysis of Covariance (ANCOVA) for Measures of 
Mathematical Achievement and Test of Everyday Reasoning 
                                     
           Control                                Experimental 
          
                            Pretest              Posttest                Pretest            Posttest         ANCOVA 
                                                                                              
                           M       SD        M        SD         M        SD         M       SD      F(1, 183)   d   
           
TAKS                                                                                              
Mathematics     38.21   6.31    40.78   5.51       39.92    7.84    43.12   6.33      90.42**  .37  
    
TER                  14.85   8.10    16.79   7.72       20.02    5.86    21.65   6.23      21.14**  .16 
 
Note: TAKS = Texas Assessment of Knowledge and Skills Mathematics Test.  
TER = Tests of Everyday Reasoning. **p < .001 

 
As shown in Table 2, the Analysis of Covariance yields an F- ratio of 90.43 for Texas 

Assessment of Knowledge Skills that was statistically significant (p < .001) and had an effect 
size (d = +0.37) that is considered educational significant. The analysis of covariance also yields 
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an F score of 12.14 for the TER that was statistically significant  (p < .001) and has an effect size 
(d = +0.16) that is considered small (Cohen, 1988). Both ethnicity and gender were analyzed for 
statistical significant and none were found. 

 
Table 3. 
Mean Scores, Standard Deviations, and Analysis of Covariance (ANCOVA) for Groups  
Tested for Measures of Critical Thinking and Reasoning Skills                                     
           Control                                Experimental 
          
                            Pretest              Posttest                Pretest            Posttest         ANCOVA 
                                                                                              
                          M       SD        M        SD         M        SD         M       SD      F(1, 174)      
     
Analysis          4.32     1.74     4.94     2.19        5.43    1.74       5.80    1.66     12.42*    .09 
 
Inference         6.53     3.39     8.59    3.17        8.53    2.94       9.43    2.86     28.90**   .37 
 
Evaluation       4.05    2.96     4.16     3.05        6.04    2.18       6.39    2.39      1.87        .02 
 
Deduction       8.21    4.59     9.27      4.07      10.45   3.69      11.47    3.54    19.25**   .37 
 
Induction        6.81    3.83     7.46      3.84        9.53   2.69      10.22    3.16     10.56*    .15  
 
* p < .01 **p < .001 

 
A descriptive analysis as part of the Multivariate Analysis of Covariance was conducted to 

evaluate the hypothesis that scores improved for the TER’s subtests, after using TBC. The 
dependent variable was the change in TER subtest scores before and after the use of TBC. The 
ANOVA was significant for subtests:  Analysis F(1,174) = 12.42, p < .01, Inference F(1,174) = 
28.90 p < .001, Deduction F(1,174) = 19.25, p < .01, and Induction F(1,174) = 10.56, p < .01. 
The subtest Evaluation did not show significance. The strength of relationship between the 
treatment subtests and the change in scores, assessed by  

was strong for Inference accounting 
for 37% of the variance of the dependent variable and Deduction accounting also for 37% of the 
variance of the dependent variable. The strength of relationship was moderately strong for 
Analysis accounting for 9% of the variance variable and Induction also accounting for 15% of 
the variance of the dependent variable. The strength of relationship was low for Evaluation 
accounting for 2% of the variance variable. 

 
Conclusions and Discussions 

The findings of this study suggest that a TBC environment can stimulate critical thinking and 
reasoning skills and improve academic achievement. Of the specific skills studied, evaluation, 
perhaps the most difficult to achieve and measure, needs additional support in a TBC. It is 
believed by the researchers that more rationalizing through discourse within the context of the 
problems would affect student’s ability to evaluate and function at a high-order thinking level. 
Nevertheless, this study suggests academic achievement improvement can occur in a TBC 
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environment that is educationally significant, and the authors believe this learning environment 
deserves further study and emphasis in a growing technological world. 
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This study investigates secondary students’ technology use while solving mathematics problems 
in computer environments. The students explored their math problems in an online dynamic 
mathematics environment and performed all solution steps in the computer environment. Their 
work were recorded by using a screen capturing software and analyzed in terms of using 
technology as a cognitive tool, more specifically using technology as a partner and as an 
extension of self. It is documented that the students participated in this study used technology in 
both ways and that these two types of use are inversely related. 
  

Introduction 
Recent innovations in technology challenge researchers, math educators, and policy makers 

with new ways of thinking about mathematics teaching and learning by using technology. In a 
report prepared for the Ontario Ministry of Education, the role of technology in mathematics 
classrooms is described as “enabling easier communication, providing opportunities to 
investigate and explore mathematical concepts, and engaging learners with different 
representational systems which help them see mathematical ideas in different ways” (Suurtamm 
& Graves, 2007, p. 50) Their report proposes to connect practice and research in Ontario context 
and projects onto the global. The focus of their description lies on the use of technology in 
investigation and exploration of mathematics which is rather challenging in traditional 
environments. In other words, they describe technology as a tool to extend the current learning 
opportunities. They also point out to improve students’ understanding of mathematical ideas by 
“different representational systems” such as symbolic and visual representations and the 
connection between them. The connection between various representations is known as linked 
representation since early 90s (Kaput, 1992). 

Similarly, the Ontario Ministry of Education (2007) delineates the use of technology by 
suggesting: “students can use calculators and computers to extend their capacity to investigate 
and analyse mathematical concepts and to reduce the time they might need otherwise spend on 
purely mechanical activities” (Ontario Ministry of Education, 2007, p. 19). It appears that 
technology in their description is conceived as a tool to extend students’ abilities on the tasks 
which are challenging or impossible in paper-and-pencil environments. These tasks could be to 
perform complicated arithmetic operations or to draw complex graphs.  

Moreover, the importance of various representations and the connection among these 
representations are addressed as a goal:  

Representing mathematical ideas and modeling situations generally involve concrete, 
numeric, graphical, and algebraic representations. Pictorial, geometric representations as 
well as representations using dynamic software can also be very helpful. Students should be 
able to recognize the connections between representations, translate one representation into 
another, and use the different representations appropriately and as needed to solve problems. 
… When students are able to represent concepts in various ways, they develop flexibility in 
their thinking about those concepts” (Ontario Ministry of Education, 2007, p. 21). 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1522 

 
However, the practice of these recommendations is rather challenging. Some of these 

challenges are: “limited access to technology, lack of teacher understanding or confidence in 
using technology, and a lack of technology leadership in some school boards” (Suurtamm & 
Graves, 2007, p. 55). As seen in the report, the main focus is still on the technology use because 
limited access to technology could be solved in time. However, teachers’ concern about the use 
of technology seems to remain a challenge for awhile. Teachers in school experience difficulty in 
understanding the proper way of using technology and in connecting the technology to the 
current topics of mathematics.  

These recommendations and teacher concerns lie on one side of the coin. What about the 
other side of the coin? How do students cope with technology and more importantly, how do 
they use technology in mathematics? Despite the theoretical and practical concerns in integrating 
technology into mathematics education, students widely use technology in their daily life with an 
increasing rate. Because these students were born in the information age, they are confident 
enough in using technology; and even they have no idea about a life without technology, say 
internet and computer. There is no doubt that they can use technology effectively, and many 
studies document that they use technology as anticipated (Artigue, 2002; Izydorczak, 2003; 
Karadag & McDougall, 2008; Kieran, 2007; Kieran & Drijvers, 2006; Lagrange, 1999; Moreno-
Armella & Santos-Trigo, 2004; Moyer, Niexgoda, & Stanley, 2005). However, the question is 
whether or not they use technology in mathematics when they are alone. A further question could 
be if they use technology as recommended in the literature.  

Therefore, we designed this study to track students’ technology use while they are solving 
mathematics problems. The research question of this study was to explore how secondary school 
students use technology while solving mathematics problems. The following sections provide a 
theoretical framework on the use of technology, a detailed description of the study, a detailed 
presentation of the data and the results, and a discussion of the results and the research.  
 

Theoretical Framework 
Research and theoretical discussions about the use of technology in mathematics education 

have been mainly focused on the cognitive tools (Galbraith, 2006; Pea, 1985; 1993; Perkins, 
1993; Salomon, 1985; 1993; Sweller, 1999; 2003). Salomon (1993) describes the effective use of 
technology as “a characterization of computer tools (as contrasted with more independently 
functioning programs and intelligent tutors) as not being autonomous in their operation, thus 
requiring the active operation by and mental involvement of students” (p. 193). Many scholars 
believe that computers change “how effectively we do traditional tasks, amplifying or extending 
our capabilities, with the assumption that these tasks stay fundamentally the same” and some 
others assert that “a primary role for computers is changing the tasks we do by reorganizing our 
mental functioning, not only by amplifying it” (Pea, 1985, p. 168). In another paper, Pea (1993) 
states that “whereas amplification suggests primarily quantitative changes in accomplishments, 
what humans actually do in their activities changes when the functional organization of that 
activity is transformed by technologies” (p. 57). 

Salomon (1993) identifies two types of computer use in education: performance-oriented 
tools and pedagogic tools. The performance-oriented tools are used as intelligent partners, and 
“cognitions become 'distributed' in the sense that the tool and its human partner think jointly” 
(Salomon, 1993, p. 182). He seems to assume that computers have thinking mechanisms such as 
artificial intelligence and criticizes this type of cognition share. He argues that this way of 
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cognition share will increase students' performance during the partnership and that no cognitive 
residue and improvement in students' abilities will be obtained when the technology is removed. 
That is why he calls the outcomes obtained from this type of technology use as the "effects with 
technology" (Salomon, 1993; 1985). 

Furthermore, he describes the pedagogic tool as an "intellectual partnership of the division of 
labor" (p. 182) so that computer does "tedious, labor and memory intensive lower level processes 
that often block higher order thinking" (p. 181) and leaves higher order thinking such as drawing 
conclusion, making conjectures, reasoning, thinking causal relationships, and testing conjectures 
to the learner. Any labor can be shared but thinking should not be shared with any type of tools. 
He also argues that performance-oriented use can be regarded if a cognitive residue in the human 
partner is left. Additionally, he suggests that the performance-oriented tools must allow their 
human partners to function at a higher level and to enter increasingly higher levels of new 
partnership with themselves at later stages.  

The use of virtual manipulatives falls into the pedagogic tools whereas the use of Computer 
Algebra Systems (CAS) as a black box could be an example of the performance-oriented tool. 
However, the use of CAS to create patterns and to make numeric and symbolic relationships 
explicit has to be considered as an example of the pedagogic tool.  

Pea (1993) criticizes the contemporary practice of technology use by arguing “many schools, 
technology developers, and researchers now use technologies to ‘enhance’ education by making 
the achievement of traditional objective more efficient” (p. 71). He also states that “objectives 
for education are not reconceptualized; the computer is conceived as a means for ‘delivering’ key 
components of instructional activity not for redistributing intelligence and new uses of students’ 
potentials for activity and participation” (Pea, 1993, p. 71). He seems to suggest more advanced 
use of computer than performing only complicated numeric and symbolic calculation or drawing 
graphics. Rather than using computers in labor and time intense purposes only, he suggests 
incorporating computers into our thinking processes. Dynamic learning tools allowing multiple 
representations and a linkage among these representations fall into this category because they 
visualize mathematization and make mathematics explicitly visible for students. 

Galbraith (2006) provides a more general framework for the use of technology and identifies 
four types of technology use in mathematics education: technology as a master, technology as a 
servant, technology as a partner, and technology as an extension of self. The first category, 
technology as a master, points out the use of technology as a black box, meaning that students do 
not know why a certain outcome appears and use what is provided by technology as it is. The 
second type, technology as a servant, describes the use of technology as a tool to save time and 
make the things happen easier. The third type of use, technology as a partner, includes the use of 
technology to support the user’s cognitive activities such as keeping some information in 
databases and serving it when it is needed and correcting typing or calculation mistakes. The use 
of technology as extension of self is the fourth type and describes to use technology to extend 
students’ cognitive abilities and to improve their understanding.  

In this study, we followed the framework provided by Galbraith (2006) and focused on the 
last two types of technology use. These two types of technology use, such as a partner and as an 
extension of self, fit into the definitions provided by Salomon (1993) and Pea (1993). 
 

Methodology 
In this qualitative research, five Grade 12 students were recruited, and pseudonyms are used 

instead of their original names. We trained the students on how to use software, Geogebra and 
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Wink, via email conferencing. The Geogebra is a free, online, and user-friendly software, and the 
students used Geogebra to explore their mathematics problems. The Wink is also a free and user-
friendly software, and the students used this software to record their problem solving processes 
performed in computer environments.   

The students were given four assignments each containing four open-ended problems to be 
explored in the Geogebra. They recorded their problem solving processes by using Wink. Once 
they recorded their solutions, they put them on CDs and delivered to the researchers. We used 
the frame analysis method to analyze the data gathered in the study. The frame analysis method 
is a microgenetic approach aiming to focus on the development of a task performed in a very 
short period of time. Since we asked students to set up the software recording rate as two frames 
per second (24 frames per second in regular video recording), we were able to focus on each half 
second of their problem solving. 

The study summarized in this paper is part of a larger study. The data was analyzed both 
qualitatively and quantitatively in the main study. However, since the focus of this paper is 
related to the technology use, we present mostly quantitative results and refer qualitative results 
in the main study as needed. 
  

Results 
As a first step in the frame analysis method, we described and interpreted students actions 

performed on the computer screen. We performed two types of analyses on these descriptions. 
First, we documented the number of their technology use as a partner in each assignment, and 
then we calculated the period of their technology use as an extension of self. These analyses and 
the results obtained from analyses are explained in detail in the following sections. 
Use of Technology as a Partner 

The use of technology as a partner means that technology is used to provide some specific 
information when needed, to correct writing and calculation errors, or to extend the student’s 
memory. We use this term to describe the use of technology to record information such as using 
a notepad, to keep information in a particular format such as using Geogebra as a picture, and to 
benefit from specific features of computer and software such as spell check and auto-correction.  

We developed a specific index to describe the level of technology use as a partner. We 
counted the number of times the students were using these features in an assignment and divided 
this number by the number of the frames of the assignment to create the index. Since the 
numbers were very small, we multiplied them by 1000 to round them off to the nearest integer. 
Thus, the index of technology use as a partner is defined as: 

1000
assignmentin that  frames ofnumber  Total

assignmentan in partner  a as usey  technolog theofnumber  The xI =  

After analyzing the data according to the formula, we tabulated the results to see the full picture 
of the data (table 1).   
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Table 1. The Index of Technology Use as a Partner 
  Teresa Ursula Ru Andrea Nancy Average 
Assignment 1 5.18 7.76 0.8 6.54 6.65 5.39 
Assignment 2 4.46 6.24 5.68 5.39 8.26 6.01 
Assignment 3 2.06 1.84 2.48 6.92 2.16 3.09 
Assignment 4 4.62 2.73 3.07 6.51 6.53 4.69 

  
The lower values of index denote less use of technology as a partner whereas higher values 

mean more frequent use. The less use of technology as a partner could be caused by various 
reasons including using in a more advanced way and being unfamiliar to use technology in 
mathematical purposes. For example, the averages of the assignments illustrated in the last 
column reveal that the index values vary from 3.09 (third assignment) to 6.01 (second 
assignment). It appears that these students used technology as a partner more in the second 
assignment than the third one. This difference could be explained by the difficulty level of 
assignments. The third assignment contained more challenging problems and demanded more 
exploration. This result may suggest that the index of technology use as a partner could be task-
dependant. 

Teresa’s and Andrea’s patterns seem to be steadier whereas Nancy’s pattern has more 
fluctuations. It can be interpreted that Teresa’s and Andrea’s number of use of technology as a 
partner remains similar whereas Nancy’s use varies with assignments. There is a fall in the 
Ursula’s index values in the third and fourth assignments. This fall could be explained by her 
familiarity with the medium and becoming less dependant to this type technology use as she gets 
experienced.  

The data in the first assignment illustrates that Ru’s index is considerably lower than others’ 
indices. Interestingly, Andrea’s index in the third assignment is the second unusual case and 
considerably higher than others’. In the next section, we will provide a possible explanation for 
these unusual sharp changes in the patterns. 
Use of Technology as an Extension of Self 

 Galbraith (2006) describes the use of “technology as an extension of self” as “the partnership 
between technology and student merging to a single identity” (p. 286) which is highest 
intellectual way to use technology. This type of technology use extends the user’s mental 
thinking and cognitive abilities because technology acts as a part of user’s mind. For example, 
linked representation (Kaput, 1992) between symbolic and visual representation could be a 
relevant example for this type of use because manipulations done in one of the representations 
affect the others.  

In our study, the features of Geogebra serve this type of use and extend students’ cognitive 
abilities to beyond what they usually do in symbolic and paper-and-pencil environments. This 
type of use is a continuous action, occurs in a period of time, compared to the use as a partner, 
and it is quite easy to state accurately when the action starts and ends. That is why we measured 
the time spent and took the percentage of this period of time with respect to the total time spent 
in that assignment by a particular student to create a new index. 

100
assignmentcertain in that spent  time

self ofextension an  asy  technologusing espent whil time xP =  

As a result, we created a table to see the full picture of the data gathered (table 2).  
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Table 2. The Percentage of Technology Use as Extension of Self 
 Teresa Ursula Ru Andrea Nancy Average 

Assignment 1 7.7 10.7 16.9 12.9 17.5 13.14 
Assignment 2 11.5 12.7 14 16.4 12 13.32 
Assignment 3 27.4 22 23.1 15.9 34.8 24.64 
Assignment 4 25.8 34.1 31.8 24.2 33.3 29.84 

 
The table provides an overview and a general idea about results and reveal that the percentage 
derived from the data is both person- and assignment-dependant. For example, a particular 
student having a lower index in a row may have a higher index in the other rows comparing to 
her friends.  

The student who has a high index value in a certain assignment uses technology as an 
extension of self for a longer period in that particular assignment. The reasons affecting this 
longer use could be students’ familiarity with using technology and confidence in technology use 
and task’s demand for exploration. Students’ familiarity in technology use seems to have a 
significant effect because the average of the index values increases with the number of 
assignment. In other words, the students used technology longer in later assignments.  

It appears that the students all used the technology in a similar way in the second assignment 
because the pattern remains steady. The reason could be the nature of the problems because the 
problems in this assignment do not require advanced use of technology. The indices in the first 
and second assignments are smaller than the others. This result is reasonable because the 
students were becoming more experienced, and they may have become more advanced users of 
technology in the third and fourth assignments. The percentages of Teresa and Nancy in the third 
assignment are higher than others. This means that they started to use the technology earlier than 
others and at a higher level. Ursula’s use seemed low at the beginning but she made a sharp 
increase in the last assignment. Andrea demonstrates an increase only in the fourth assignment. It 
appears that assignment four appears is the one in which technology is used as an extension of 
self, due to students experience and they moved to a stage where they could use technology for 
more advanced purposes.  

When these two tables are compared to each other, it appears that the index of technology 
use as a partner could be inversely related to the percentage of the technology use as extension of 
self. This inverse relation seems unsurprising because the more students use technology for 
advanced purposes, the less they may use technology for novice purposes. That is, as they 
become confident with technology and familiar with its features, they may prefer using 
technology for more advanced purposes. This may explain Ru’s and Andrea’s unusual index 
values in technology use as a partner which is discussed in the previous section. 
 

Discussion 
Despite the four ways of using technology in education by Galbraith (2006), the use of 

technology as a cognitive tool has been limited with two ways. These ways of using technology 
have been described as technology use to support cognitive activities and technology use to 
extend cognitive abilities (Galbraith, 2006; Pea, 1985; 1993; Salomon, 1985;1993).   

In the study, I documented three ways of technology use, two of them being cognitive tools. 
The first type, which is not related to cognitive activities, is to use technology for writing, 
deleting, and drawing. This type of use is identified as using technology as a servant (Galbraith, 
2006) and was not considered related to the study. 
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The second type, technology as a partner (Galbraith, 2006), was documented while students 
were using technology for elementary purposes. These elementary purposes include taking notes, 
storing notes and images, and spell check feature of the software and served to support the 
working memory of the students. Sweller (1999; 2003) explains this type of memory support by 
cognitive load theory. He analyzes the cognitive capacity of working memory and the reasons 
increasing the cognitive load of the memory and suggests techniques to increase the capacity or 
to decrease the cognitive load. For example, he suggests that using long-term memory or 
cognitive tools instead of storing all information in the working memory. The students’ use of 
computer features to store information falls into this category. 

The third type of technology use documented in the study was to use technology as an 
extension of self (Galbraith, 2006). The students used Geogebra to extend their cognitive 
capacity of imagination, to create mathematical objects, and to manipulate these objects. This 
type of using technology affected their “nature of understanding mathematics” (Heid, 2005, p. 
357) because students perceived graphs and points as living bodies. Instead of describing their 
properties as a static image or concept, they were describing them as if these objects were 
moving bodies. Moreno-Armella, Hegedus, & Kaput (2008) identify this effect as an evolution in 
students’ mathematical thinking. 

In conclusion, students use technology in various ways. However, we can categorize the ones 
related to cognitive activities in two main groups based on their roles. These roles include use of 
technology to support cognitive activities (technology as a partner) and to extend cognitive 
abilities (technology as an extension of self) and were found inversely related with the other.  
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This report is from a study that investigated the similarities and differences of student 
mathematical discourse in online and face-to-face course delivery systems. Here we focus on 
similarities and differences between patterns of student mathematical discourse while 
investigating conjectures. Students proposed their mathematical conjectures and solutions 
similarly in both environments. However, the rigor of their investigations after such proposals 
contrasted greatly, with the face-to-face students deliberating and further developing their 
mathematical ideas more often and in more meaningful ways than the online students. We 
discuss the implications of these findings for online mathematics education. 
 

In education today, there are generally two ways students take courses: distance education or 
face-to-face education. Until recently, the portion of students using distance education has been 
small. This portion has grown tremendously, however, with the advent of the Internet. 
Vasarhelyi and Graham (1997) found that in 1993 there were only 93 schools devoted to online 
learning, but in 1997 the number had jumped to 762. Engelbrecht and Harding (2005) estimated 
that the e-learning market went from $10.3 billion in 2002 to $83.1 billion in 2006, and projected 
that it will eventually swell to over $212 billion by 2011. 

The growth of online education is due in large measure to its advantages over face-to-face 
education, as it provides “unique alternatives for reaching larger audiences than ever before 
possible… traditional or non-traditional, full-time or part-time, and international—who perhaps 
have had limited access to advanced educational opportunities” (Bartley & Golek, 2004, p. 167). 
Bartley & Golek further reported that online classes, degrees, and certificates are especially 
valuable to those with demanding work, family, and social schedules. In addition, online 
education allows students to spend less time in class, less money on travel, and more time 
learning at home (Beard, Harper & Riley, 2004). 

Although there are many advantages to online courses, there are disadvantages as well. 
According to Coates, Humphreys, Kane, and Vachris (2004), younger undergraduate students 
who were found to lack the technological skills and discipline necessary to survive and 
participate in online courses felt inundated with course demands and soon dropped out. They 
found that the overall student dropout rate was higher for online courses. Piotrowski and 
Vodanovich (2000) pointed out that piracy issues are a disadvantage to the online environment 
because when students submit their work online, there is no way to verify if they are the ones 
who actually did the work. They also found that there were times when technological problems 
prevented access to the course materials, pointing out that these issues of piracy and course 
access often became more of a focus for students and teachers than course content.  

 
Purpose 

Researchers have studied the effectiveness of distance education primarily through 
measuring student success (i.e., midterm test scores, final test scores, final grades). Such studies 
tend to report that there is no significant difference with regard to student success between online 
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or face-to-face modes of delivering instruction (e.g., Akkoyunlu & Yilmaz Soylu, 2004; Aragon, 
Johnson, & Shaik, 2002; Brown, Stein, & Forman, 1996; Cooper, 2001; Ellis, Goodyear, 
Prosserz, & O’Hara, 2006; Russell, 1999; Smith, 2004). Such studies, however, look almost 
exclusively at courses that are taught quite traditionally. Traditional face-to-face courses 
typically feature a teacher lecturing to their students. Afterward, the students go home, do the 
homework, and learn the mathematics with their notes and book. This format is similar to that of 
traditional online courses which begin with instruction for the student through a video recorded 
lecture or other media. Then, after they receive the instruction, the students do the homework, 
and learn the math with their notes and book. Thus, the role of the student remains the same, 
regardless of the environment. There is little wonder, therefore, that when researchers compared 
course grades, the differences between online and face-to-face learning were insignificant—
students in both environment were learning the material in essentially the same way. 

Consistent with postmodern epistemologies such as social constructivism, reform educators 
seek to organize their classrooms and lessons in ways that facilitate and make explicit students’ 
construction of mathematical knowledge (Ball, 1993; Lampert, 1990). In such classrooms, 
students are given opportunities to solve meaningful mathematics problems and to discuss with 
their peers their solutions and interpretations. This discourse is seen as an intrinsic part of the 
learning process. Social constructivism has had a huge impact on the way educators envision 
effective face-to-face classrooms, but its impact on the vision of online education is still largely 
unknown. Although live chat, email, and discussion boards are avenues that some have used to 
discuss mathematical ideas and resolve conflicts, there is still relatively little known about the 
extent to which such avenues have the potential to moderate meaningful mathematical discourse. 
The purpose of this study was to characterize and to compare the discourse of students as they 
discussed mathematical tasks online and face-to-face. We used these findings as one way to 
evaluate the online medium as an alternative to the face-to-face environment. This paper focuses 
on one particular aspect of student discourse—the investigation of conjectures. 

 
Theoretical Framework 

The NCTM Professional Teaching Standards (1991) outlined a vision of the role that 
students are to fulfill as they discuss mathematics in a reform classroom environment: 

The teacher of mathematics should promote classroom discourse in which students—[1] 
listen to, respond to, and question the teacher and one another; [2] use a variety of tools to 
reason, make connections, solve problems, and communicate; [3] initiate problems and 
questions; [4] make conjectures and present solutions; [5] explore examples and 
counterexamples to investigate a conjecture; [6] try to convince themselves and one another 
of the validity of particular representations, solutions, conjectures, and answers; [7] rely on 
mathematical evidence and argument to determine validity. (NCTM, 1991, p. 45). 

In this paper, we focus on how and how often students explored conjectures and solutions in 
online and face-to-face environments. For us, student mathematical discourse consists of the 
dialog and mannerisms students use as they converse about and solve mathematical tasks. 
Additionally, student mathematical conjectures consist of any comment from a student submitted 
to the group for consideration as a proposal for a part of or the entire solution. In order to 
understand how students investigated conjectures, we first needed a way to recognize how their 
conjectures were initiated. As students discussed mathematics, whether online or face-to-face, 
they began by initiating the problems in the task. This initiating was done in a couple of ways. 
Sometimes students asked for initial thoughts on how to approach the problem. At other times 
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students first worked on the problem individually then came together to discuss their initial 
work. After this initiation, students had debates over or gave explanations of how the task could 
be solved. We revered to this initiation as the making of conjectures and to the debating or 
explaining as investigating conjectures. Eventually the students agreed on a solution, often 
through yet more investigation. We referred to this latter stage as making and investigating 
solutions. 

Face-to-face students have the opportunity to initiate problems by negotiating the direction 
they would take in a mathematical task quickly because they are together in the same room at the 
same time. They can converse about their initial ideas for the solution of the problem by showing 
their work and working out their differences in real time. They can make, explain, and negotiate 
conjectures so all can understand and agree. Eventually, a common idea would surface, which 
the group takes as their solution. Face-to-face students usually carry out this process one problem 
at a time, in one sitting, until the task is complete. 

In the online environment, all the above things can be done, but it all takes more time to 
develop. Students are not all together at the same time. Therefore, they intermittently attend to 
the same process the face-to-face group does in order to complete the task; each phase of the 
process thus necessarily takes longer to complete. In addition, students usually make and 
independent decision as to how much of the task they want to complete in the first post to the 
group. They must achieve a balance of covering enough information, but not too much, in order 
to have a cohesive discussion. If the right amount of material is proposed as a conjecture for 
discussion, then the next stage of making and investigating conjectures can go well. In addition, 
students can formulate explanations and arguments to prove their conjectures as they type out 
their post before they are entered into the conversation. This formulation thus has the potential to 
be more coherent and less spontaneous than face-to-face discourse. 

Our guiding question for this paper is as follows: What are the characteristics of how 
students make and investigate conjectures and solutions in the online and face-to-face 
environment and how do these characteristics compare? 

 
Methodology 

This study compared the mathematical discussions of two lab sections of an Introduction to 
Calculus class at a large university in the Western United States. One lab section was conducted 
online and the other face-to-face. Each lab section was composed of about 25 students. The 
students were divided up into groups of five and given tasks to complete. We collected data from 
the students’ work on three tasks that dealt with derivatives. The online students discussed the 
task questions using a discussion board. The conversations from the discussion board were saved 
for analysis. The face-to-face students discussed the task questions in a classroom. Their 
discussions were video recorded and transcribed for analysis. 

We first analyzed the online data for evidence of when students initiating and investigating 
conjectures and solutions. We noticed and recorded a number of patterns during this initial pass 
through the data. We built a set of codes from these patterns and then returned to the data and 
coded them according to those patterns. For example, one such pattern was that when a 
conjecture or solution was presented, the subsequent comments, or investigations, tended to 
either state agreement or state disagreement, often in the form of a new conjecture based off the 
old one. The most apparent characteristic of the investigations that agreed with the initial 
conjectures was that usually there was no mathematical evidence given to back these claims. We 
therefore, looked at all cases of initiating and investigating conjectures and analyzed them 
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according to the degree to which mathematical evidence was used to back them up. We used a 
similar approach to analyze the face-to-face data, using the codes derived from the online data 
and adding to them as needed. 
 

Results 
Characterization Of Online Students Investigating Conjectures And Solutions 

Approximately 70% of students’ mathematics discussions were coded as either initiating or 
investigating conjectures or solutions, about evenly distributed between initiating and 
conjecturing. In only 29% of those investigations did students use mathematical evidence to 
support or refute the preliminary conjecture or solution. There were three primary approaches 
that students took when they investigated a conjecture or solution: (1) students posted that they 
agreed with the mathematical idea, (2) students posted that they disagreed with the mathematical 
idea, or (3) students posted their own conjecture (whether it be the same or different) without 
agreement or disagreement with the current conjecture. In each approach students either backed 
up their response with mathematical evidence or they did not. We now describe each of the three 
primary approaches according to whether students used mathematical evidence. 

Without mathematical evidence. Forty percent of the investigations students did online stated 
that they agreed with the initial conjecture/solution without showing mathematical evidence. 
They would post single comments like, “I got the same answer!” or “Everything is correct for 
Parts A and B.” In essence students agreed but gave no evidence of why they agreed. 

The next largest category of how students investigated conjectures without mathematical 
evidence was when students replied to a conjecture with a new conjecture without stating 
whether they agreed or disagreed. This was done 20% of the time. For example, a response like, 
“I think the answer is 48,” was common in this category. Although the “I think” provides some 
evidence that this student was aware that their answer of 48 was different from the previous post, 
the response gave no indication of why or how the student came to the solution. Other responses 
in this category merely gave a different solution or conjecture, with no mathematical evidence to 
back it up, but also with no evidence that the student was even aware of the previous post. 

About 11% of the time students’ posts were explicit about the fact that they disagreed with a 
previous post, yet did not provide mathematical evidence for the correctness of their response or 
the incorrectness of the prior post. For example, one post stated, “Hey! I got almost the same 
answers as you but I got a 6 instead of an 18 in 1b, but I could be wrong.” The post ended here, 
with no discussion of how the student arrived at “6” or how they thought the other student may 
have arrived at “18”.  

With mathematical evidence. The most frequent investigation approach that included 
mathematical evidence was when students offered a new conjecture for the group to consider in 
place of the old one, without stating explicitly whether they agreed or disagreed with the initial 
conjecture. They did this 18% of the time. For example, students occasionally borrowed new 
conjectures from other groups, prefacing their posts with statements like, “Here is how someone 
else went about doing these problems.” Such posts often included some mathematical evidence 
to back them up, but did not indicate whether the borrowed response agreed or not with the 
groups’ current strand (nor, by the way, did such posts indicate to what extent the borrower 
agreed with the borrowed conjecture). 

Ten percent of the time when students investigated conjectures, they used mathematical 
evidence to demonstrate why they agreed with the initial conjecture. For example, a student 
might respond to the initial conjectures from the group by stating, “That is the right way to do 
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it,” then go on to elaborate on the procedure and reiterate the perceived correct answers. Finally, 
there was only one instance in the online discourse where a student explicitly disagreed with an 
initial conjecture and then used mathematical evidence to back up their argument.  
Characterization Of Face-To-Face Students Investigating Conjectures And Solutions 

Approximately 60% of students’ face-to-face discourse was coded as initiating or exploring 
conjectures and solutions, with exploring making up about 60% of these instances. In 53% of 
these group explorations, the students used mathematical evidence to support or refute the 
preliminary conjecture or solution. When students investigated a conjecture or solution, they: (1) 
agreed with the conjecture or solution without discussing the mathematical evidence, (2) gave 
clarifications to a conjecture or solution, (3) gave additional explanations to further illustrate 
conjectures and solutions, (4) agreed with a conjecture or solutions and showing mathematical 
evidence to support, (5) disagreed with showing mathematical evidence, and (6) disagreed 
without showing mathematical evidence. 

Without mathematical evidence. Face-to-face students agreed with proposed conjectures and 
solutions about 44% of the time without using mathematical evidence. It was usually a brief 
assessment of the conjecture/solution. The students would usually listen to a conjecture and then 
think about its correctness. The conjectures made were usually mathematically correct. Usually, 
all that a student wanted to do was to understand the process, agree with it, and move on. 
Comments made by students that portrayed this type of investigation were: “Okay,” “It sounded 
good to me,” “I agree,” “Right,” or “Yeah.”  

The students in this environment disagreed with other’s conjectures and solutions with out 
using mathematical evidence only a few times. For example, a group was working on a task that 
asked them to find the average rate people arrived on a beach from 3:45 to 4:00 p.m. The group 
was using an average rate formula given them. Kim began by simply stating her answer of 7.75. 
She did not say how she got it. Josh stated his as well, 14. He also did not say how he got it. 
Kevin stated another number considerably higher, 3258. Gary asked Kevin how he got that 
number and Kevin went into a procedural description of how he got it using operations without 
explanations. In the end, Gary seemed to have been successful in copying down the procedures 
Kevin used, but was still left with questions like why Kevin used certain values in the 
denominator of the formula and what they represented in the problem. 

With mathematical evidence. The most frequent way (22% of the time) students in the face-
to-face environment investigated conjectures using mathematical evidence was to make 
clarifications on proposed conjectures or solutions. There were times when certain students in the 
group did not understand where another student came up with their conjecture or solution. The 
students then investigated the conjecture further by making clarification statements or asking 
clarification questions. An example of this type of investigation began with Jayden making a 
conjecture about the proper procedure in a specific calculation pertaining to the problem: 

Jayden: And then you would have to put 60 over point 5. 
Gary: Did you put 60 times 2.5 or did you say point 25? 
Jayden: Sixty over point 5. Oh, 16 times point 25. 

After Jayden made his conjecture, Gary asked a clarification question. This caused Jayden to 
reexamine his conjecture and investigate it further. After he did, he realized that he had made an 
incorrect operation.  

The next most frequent way (17%) students investigated conjectures face-to-face using 
mathematical evidence was to provide an additional explanation of the conjecture either for the 
benefit of themselves or another member of the group. An example that illustrates this came 
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from when the group had been struggling to determine the average rate. They approached their 
average rate calculation by finding the average distance traveled divided by the time that elapsed 
over the distance change. They discussed several intervals to use for the time. Kim made a 
conjecture that they needed to focus on the meaning of the variables in their formula for average 
rate and reexamine their computations they used from it. Jayden gave the following additional 
explanation to show what they were not getting right and what the average rate time interval 
should be. “So, it’s going to be between 1.5 and 2. We were doing it between zero and 1.5. We 
need to be doing it between 1.5 and 2 cause that’s the last half-second [of the time interval].” The 
students were previously working with the incorrect interval and thus obtaining results that did 
not make sense (i.e., values that were obviously too fast or too slow). Jayden’s additional 
explanation, which investigated the conjecture to reexamine their computations, called the 
group’s attention to the error and its resolution. 

Students in the face-to-face environment simply agreed with the group’s conjectures and 
solutions and followed their agreement with mathematical evidence 8% of the time. Students 
would make comments saying, “Yes, it is correct because…” and then explain why in response 
to a numerical answer.  

With a frequency of 6%, students investigated conjectures by using mathematical evidence to 
back up a disagreement with the group’s or student’s conjecture or solution. Here is an example 
where Kim, Jayden, and Ashley were discussing a question regarding the path of a rocket. Kim 
was asking about the moment when the rocket reaches its highest point during the flight: 

Kim: Ok, so is that 2 seconds?  
Jayden and Ashley: Eight point five. 
Ashley: Wait, that’s for [Question] 2, right? 
Jayden: Yeah. 
Kim: Why would you say it’s 8.5? 
Jayden: Because the velocity is positive until that point. Because this is the graph of the 

derivative, not, it’s not a normal function. If it were a graph of distance over time, it 
would be one thing but it’s not showing the distance of the rocket, it’s showing the 
velocity. 

Jayden and Ashley disagreed with Kim’s conjecture. Then Ashley made sure that Kim was on 
the same question that they were on. Kim asked why they thought the answer was 8.5 (rather 
than 2) and Jayden used mathematical evidence to back up his assertion. 
 

Discussion 
With respect to mathematical discussion in the online and face-to-face environments, 

students in both environments investigated mathematical conjectures about the same amount of 
time. However, the subsequent discussion differed greatly. Table 1 outlines the similarities and 
differences in how the students investigated conjectures in each environment. Investigating 
conjectures is a vital component of effective mathematical discourse. Although the frequency of 
such investigations was similar for each environment, the nature of these investigations were 
significantly different. The 69% for the online environment and the 60% for the face-to-face 
environment only reflected the first investigation made by a student about a conjecture given 
previously. In the face-to-face environment 62% of the time conjectures were investigated they 
did so with more than one look, which means the idea was picked up by the group and 
deliberated. This uptake happened only half of the time in the online environment. The amount 
of mathematical evidence used in these investigations greatly favored the face-to-face 
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environment: 53% to 29%. This means that even though students in both environments 
investigated their conjectures about the same amount of time, the investigations face-to-face 
were deeper and more mathematically rich, and more consistent with reform visions of 
mathematics classrooms (Ball, 1993; Lampert, 1990; NCTM, 1991; Yackel & Cobb, 1996). 

 
Table 1 
Comparison of Online and Face-to-Face Mathematical Discourse—Investigating Conjectures 
Discourse Aspect Online Environment 

Frequency 
Face-to-Face Environment 

Frequency 
Investigating Conjectures 69% 60% 
Further Investigations 51% 62% 
Mathematical Evidence Used 29% 53% 
 

The nature of the environment seemed to significantly influence the degree to which students 
used mathematical evidence in their investigation of conjectures. The face-to-face students were 
able to have dynamic conversations and to show each other their mathematics as they made and 
investigated conjectures and solutions by pointing to their work and verbally discussing it. When 
students made and investigated conjectures online, they would have to type out all their work and 
all their discussions. It is not as easy to type out everything as it is to show it and discuss it 
verbally (see Ellis, 2001; Meyer, 2003; Tiene, 2000 for nuances). 

Although the online environment certainly has the potential for productive mathematical 
discussion, there are some key differences in the ways students used (or did not use) this 
environment from the face-to-face environment. If students do not receive more guidance from 
the teacher in the online environment, their mathematical conjectures and solutions will not tend 
to be rooted well in mathematical evidence. Even with such intervention, the instantaneous and 
dynamic nature of face-to-face discourse will be difficult to replicate in the online environment. 
When the nature of mathematical discourse is considered, there are indeed significant differences 
in the opportunity to learn mathematics in the face-to-face and the online environments. 

 
Endnote 

1Names used in this research report are pseudonyms. 
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In order to document the emergence of a community of practice and the collective learning of the 
teachers in an online context, we consider the transferability of an existing interpretive 
framework for analyzing the emergence and concurrent learning of professional teaching 
communities intended for use with face to face interaction to an online context. 
  

Introduction 
The findings of a number of investigations indicate that teachers’ participation in 

communities of practice (CoPs) or, more specifically, professional teaching communities (PTCs) 
can be a crucial resource as they attempt to develop instructional practices that place student 
reasoning a the center of instructional decision making (Cobb & McClain, 2001; Franke & 
Kazemi, 2001; Gamoran, Secada, & Marrett, 2003; Kazemi & Franke, 2004; Little, 2002; Stein, 
Silver, & Smith, 1998). As a consequence, designs for supporting teachers’ learning that involve 
guiding the initial emergence and subsequent development of professional teaching communities 
have become increasingly common. 

We are in the beginning phases of a project that seeks to extend the current research on PTCs 
to the online environment. We do so for two primary reasons. First, we have found that the 
online environment offers significant affordances that are not present in face-to-face settings. In 
addition to providing “anytime, anywhere” learning that can easily fit into learners’ busy lives, 
the online environment (1) provides teachers with opportunities to devote significant amounts of 
time to thinking about the mathematics at hand, ideally in multiple sessions of thinking and 
reflecting, recording, analyzing, and revisiting the initial thoughts, comments and reflections of 
their colleagues and (2) automatically records a permanent record of each participant’s thinking, 
solutions, or questions that provides an opportunity for others to comment on, question, and 
discuss each individual’s work. Secondly, and just as important, we feel that the online 
environment holds great potential for scaling and can “serve” teachers in traditionally 
marginalized areas: rural and urban schools and districts without access or resources to ongoing, 
mathematics specific professional development activities. 
 

Theoretical Perspective 
At the core of Wenger’s (1998) definition of a CoP is the practice that is the source of 

coherence in the community. Against the background of that practice, Wenger then discusses 
three interrelated dimensions that clarify what distinguishes a community of practice from a 
group: a joint enterprise, mutual engagement, and a shared repertoire. Joint enterprise is a shared 
purpose that is more than a goal; it “creates among participants relations of mutual accountability 
that become an integral part of the practice” (Wenger, 1998, p. 78). Mutual engagement includes 
the social complexities and relationships that are developed in pursuit of a joint enterprise, as 
well as the norms of participation that are specific to the community. A shared repertoire 
includes historical events, tools, styles, discourses, actions, stories, artifacts, and concepts that 
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have been produced or appropriated by the community in the course of its existence and have 
become a part of its practice.  

Our overarching goal is to support the emergence of an online professional teaching 
community that focuses on the practice of “doing mathematics” with an eye to instruction. More 
specifically, it would be normative for the members of the group to engage in: 

(1) Making mathematical thinking, and not just solutions, public 
(2) Focusing on understanding each others’ mathematical thinking 
(3) Making public reflections about aspects of others’ understandings that are consistent or 

inconsistent with one’s own 
(4) Collaborating on ways to improve mathematical understanding (with a focus on 

hypothesizing, generalizing, connecting, etc.) and generating mathematics 
(5) Connecting mathematical activity with classroom instructional practice 
These five normative ways of acting are based on our work with Online Asynchronous 

Collaborations in Mathematics Education (OAC) (Clay & Silverman, 2008, 2009; Silverman & 
Clay, submitted). Briefly, OAC involves cycles of individual, small group, and whole class 
interaction and collaboration. We begin with providing a private workspace for students to draft 
a solution, initial approach, or questions on a set of purposefully selected, open-ended 
mathematics tasks. At this point, we do not expect that everyone in the class will be able to 
complete each of these activities, but we do expect each student to attempt the assigned task and 
either pose a solution method and solution or ask relevant questions or wonderings that would 
assist in the completion of the activity. Students have approximately four days to post and revise 
their postings. After the individual work phase, each student’s initial postings are made public 
and students add comments, respond to questions, or ask for clarifications. Finally, we tie up 
loose ends in an asynchronous discussion.  

 
Prior Research Results 

We have reported elsewhere that OAC has been effective at supporting mathematical 
interaction (Clay & Silverman, 2008, 2009). Consider the following excerpts from teachers’ 
work on Pig Pens, a Math Forum Problem of the Week that we have successfully used in OAC. 
The problem is as follows: Farmer Mead has 36 guinea pigs on her farm. She wants to build one 
rectangular pen they can all run around in. She must allow one square meter of area (1 m2) for 
each guinea pig in the pen. The fencing costs one dollar per meter. Find three different 
rectangular pens that have exactly the area needed for 36 guinea pigs. 

 
Marcy2: The first thing I noticed about the problem is that it asks for 3 different types of pens, and 
my first thought is why 3 different pens a rectangle is a rectangle, just make a simple rectangular pen 
and be done with it. Things I’m still wondering about: Why three pens? While I haven’t attempted to 
solve the problem yet, I wouldn’t have thought that the shape of the rectangle will make a difference 
in price, but evidently it does considering the question. 
 

First, note that Marcy’s post was unpolished and provided insight into her conceptions about 
some of the big mathematical ideas involved in the problem. We contend that such unrefined 
insight, especially for each student, is virtually impossible in a synchronous learning 
environment. The class, and Noelle in particular, took up Marcy’s post as a focus for discussion: 
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Noelle: A rectangle isn't a rectangle. There are short and fat rectangles, there are rectangles 
with even or nearly even sides. Look around your house, your door is one style of a 
rectangle, but your phonebook is a different type of rectangle. If you will have noticed from 
the other responses that there is quite a bit of difference between the cheapest pen 6x6= $24 
and the most expensive pen 1x36 = $74. That is more than double the price. Then you started 
to figure it out, you were on the right track. I think you need to revisit perimeter vs area and 
then it might make a little more sense to you. I agree that you were over thinking the 
problem. After looking at the others, does it make more sense now?  
 

It is important to note that Noelle answers Marcy’s original question about rectangles by careful 
questioning and not through recapitulating her solution method. By engaging Marcy’s current 
understanding and not imposing her own on the conversation, we believe that Noelle was able to 
help Marcy with crucial idea behind her troubles. Moreover, the entire class was able to observe 
and discuss this crucial pedagogical step. 

Our second excerpt provides an example of the ability of OAC to position students to learn 
from the public discourse. Marcy, continuing her initial post from above, noted: 

Marcy: If the total area is 36 square meters for the pen then no matter what the length and 
width are it is still going to be 36 square meters which should not change the price. The 
dimensions can be w= 4m X L = 9m or they can be w=3m x L=12m or they can be 6m x 6m. 
Nope this is wrong. I need 4 sides because I know the perimeter of a rectangle = 2L+2w. Ok 
I will come back to this. Then there is the price. I don't think this is correct but to get the 
price, ok there are 36 square meters 36(36) which equals 1,296. 1 meter costs $1.00. So how 
many meters are in 36 square meters?  

Derek M. and Betsy S. followed up on Marcy’s post: 

Derek: Don’t feel silly, your conversation sounds very much like one I have heard from my 
wife. … [Remember:] “a number that is squared” is not the same as “squaring a number.” … 
The question says that you have 36 pigs, and that each one needs “1” Sq. Meter each to run 
around in. 

Betsy: A number that is squared and squaring a number are the same thing. Meters squared is 
the unit of measurement for area because Length in meters multiplied by the width in meters 
is meters times meters which becomes meters squared. 

Derek: Betsy, You are right, let me rephrase that, when we see a number such as 36 Sq 
Meters, it has already been squared. The fact that the question mentioned that it needed to be 
36 Sq Meters does not mean that you had to square 36 meters. What I was trying to say was 
that it is easy to confuse the note of Sq Meters or Feet as having to automatically squaring a 
number. It is important to determine what the number represents. Thank you for pointing this 
out, it is easy to forget that what runs through my mind and what I write are not always the 
same. 

Derek attempts to address issues that seem to trouble Marcy, though he does so with less clarity 
than Noelle did. This begins an exchange that diverges from Marcy’s learning to Derek’s 
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learning and the learning is about mathematical communication rather than content, which will 
be crucial to teaching. Finally, Derek is able to learn from Betsy and displays his learning to 
which Betsy answers kindly.  

Through all of the communication about her problem, much of which likely resulted in her 
classmates’ learning, Marcy also shows evidence of learning. She is able to learn from Derek and 
Betsy, not only from their discussion of her work but also from their original posted solutions. 
We have noticed that on many occasions, students refer to learning from the other posts, even 
though the posts were not available as they generated their initial solutions. It is also important to 
notice that Marcy believes that her learning will affect her practice. While these are self-reported, 
they are evidence that these teachers have begun to reconsider their pedagogical practices; 
comments such as these are much more common than we expected and plan to further analyze 
the effects of them.  

Marcy: Dave & Betsy, THANK YOU!! so much for your posts. The square meters is what 
screwed me up. I kept thinking 36 square meters is 36 square meters no matter what the 
dimensions are. But I now see that it is the perimeter I was pricing out. I actually feel kind of 
foolish because it seems so simple to me now. This is what happens to me all the time. Dave 
what you posted helped so much to clarify my confusion and then when I saw Betsy’s 
drawings it really made sense. Thank you Betsy. I will draw everything out from now on. 

Marcy: Ok, now that I understand the problem, I would definitely use manipulatives to 
explain this problem to my students. I think I would like to make a fence with cardboard and 
put a bunch of little plastic pigs or something small that would represent the pigs inside the 
different dimensions. Then I would label each side, having at least 4 possible dimensions, I 
would discuss the multiples of 36 so everyone understood that and I would demonstrate how 
to find the perimeter having the students put together their fences and add up the 4 sides. 

Finally, it is also important to note that Marcy ended up revising her solution: 

Marcy: I realized that I did not use the multiples of 36 to figure out the perimeter. I know 
that Perimeter of a rectangle 2L + 2W Therefore the using the multiples of 36: 1*36 = 
1+1+36+36= 74 @ $1.00 per meter = $74.00 12*3=12+12+3+3= $30.00 4*9= 
4+4+9+9=$26.00 6*6 = 6+6+6+6=$24.00 6X6 = is the cheapest pen. 

During OAC, we consistently get a copious amount of interaction. This allows for making 
mathematical thinking public, understanding each others’ mathematical thinking, reflecting on 
aspects of others’ understandings that are consistent or inconsistent with one’s own, 
collaboratively working to improve mathematical understanding, and connecting mathematical 
activity with classroom practice. We can say with confidence that individuals have or continue to 
engage with these practices, as evidenced by the above excerpts and many others. The evidence 
provided to this point, although promising, has been rather anecdotal and focuses on the 
individual learning of one participating teacher. In order to document the emergence of a 
community of practice and the collective learning of the teachers in this online context, we 
consider the transferability of an existing interpretive framework for analyzing the emergence 
and concurrent learning of professional teaching communities (Dean, 2005) intended for use 
with face to face interaction to an online context.  
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Purpose of Investigation 
The purpose of this study is to examine the feasibility of using the evolution of norms in a 

social grouping to document the evolution of an online CoP. This is based on an existing 
framework for investigating the emergence and concurrent learning of professional teaching 
communities (Dean, 2005). Dean’s framework was developed in order to analyze the collective 
learning of the teachers as they participated in face-to-face professional development work 
sessions. Pragmatically, the need for an interpretive framework of this type derives from the 
increasing attention that researchers on teaching are giving to teachers' participation in 
pedagogical communities. Theoretically, an interpretive framework of this type documents the 
evolution of communal norms that constitute the immediate social setting of the participating 
teachers' learning  

Methodologically, it is important to clarify that norms are identified by discerning patterns or 
regularities in the ongoing interactions of the members of the professional teaching community. 
A norm is therefore not an individualistic notion but is instead a joint or collective 
accomplishment of the members of a community (Voigt, 1995). A primary consideration when 
conducting analyses of this type is to be explicit about the types of evidence used when 
determining that a norm has been established so that other researchers can monitor the analysis. 
A first, relatively robust type of evidence occurs when a particular way of reasoning or acting 
that initially has to be justified is itself later used to justify other ways of reasoning or acting 
(Stephan & Rasmussen, 2002). In such cases, the shift in the role of the way of reasoning or 
acting within an argument structure from a claim that requires a warrant, to a warrant for a 
subsequent claim provides direct evidence that it has become normative and beyond justification. 
A second, robust type of evidence is indicated by Sfard’s (2000) observation that normative 
ways of acting are not mere arbitrary conventions for members of a community that can be 
modified at will. Instead, these ways of acting are value-laden in that they are constituted within 
the community as legitimate or acceptable ways of acting. This observation indicates the 
importance of searching for instances where a teacher appears to violate a proposed communal 
norm in order to check whether his or her activity is constituted as legitimate or illegitimate. In 
the former case, it would be necessary to revise the conjecture that a particular activity was 
normative whereas, in the latter case, the observation that the teachers’ activity was constituted 
as a breach of a norm provides evidence in support of the conjecture (cf. Cobb, Stephan, 
McClain, & Gravemeijer, 2001). Finally, a third and even more direct type of evidence occurs 
when the members of a professional teaching community talk explicitly about their respective 
obligations and expectations. Such exchanges typically occur when one or more of the members 
perceive that a norm has been violated. 

 
Discussion 

The types of evidence we have outlined were developed to document the emergence of 
norms within a group interacting in a face-to-face setting. Our question is whether they are 
appropriate for analyzing interaction and the emergence of normative practices in an online 
setting. Using the examples of the online interactions above as the context, we are exploring 
potential issues when using the face-to-face interpretive framework discussed above to analyze 
the emergence of norms in an online community. Following are three of the issues we are 
currently investigating. 
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How Are Online “Whole Group” Discussions Different from Whole Class Face-to-Face 
Discussions?   

Initially, our concern was claiming something was normative when there was no “whole 
group” discussion in an online context. For example, when a group of people are in a room and 
someone makes an utterance, everyone hears it. In contrast, when a group of people are “in” an 
online discussion and someone makes a posting who knows if they read it? Upon further 
investigation, we concluded that the technology provides us with information about how many 
times a participant accessed a particular online discussion. Of course that does not mean the 
participants have legitimately engaged with the content, but what guarantee do we have of that in 
a face-to-face discussion? Just because someone is present in the room, does not mean they are 
engaged in the conversation. This is a particularly important issue when addressing social norms 
of the community. It is important to note, in the online environment, spending time in a 
discussion board is a first level of engagement with a particular post. Replying to that task is a 
second level of engaging with a post. We are currently seeking to understand how these two 
levels of engagement are correlated with “being present in a room”. 
Talking at the Same Time 

We were concerned about the fact that there are often multiple conversations going on at the 
same time in the online context. That being the case, it further problematizes the notion of a 
whole group discussion. While participants can be posting to the Discussion Board, there is no 
guarantee that everyone engages with a particular utterance in a particular thread. In response to 
this, McConnell (2000) notes that  

the various activities of [a] group are not discrete in the way they often are in a face-to-face 
group. Members work on multiple issues at the same time. And because the issues are 
introduced by the participants themselves and are about important concerns and interests they 
have in relation to the work of the group, there is a different quality to the group members 
relationship with the issues. (p. 78)  

In other words, while there are multiple conversations going on at once, the conversations are, by 
and large, organic and arise based on the perceived needs and goals of the group. Again, in this 
case, the significant factor seems to be the social norms, namely that participants are obliged to 
engage and to do so in a particular way.  
Is There Time? 

We also note that engaging in the multiple conversations legitimately takes time and, as such, 
this is another challenge to online communities: Is there time to engage with each utterance. This 
is methodologically important as claims about normative practices are based on posts but also the 
form and function of the replies to posts. McConnell (2000) notes that “The permanent nature of 
the group and its work … and the way in which members are able to “rejoin” at any time, means 
that participants seem to carry the work of the group with them in their everyday lives” (p. 78). 
Topics that are addressed in an online thread are chosen by the participants and therefore 
demonstrate the legitimacy of the topic. Thus, time to engage with each utterance is not 
necessary. Given the permanency of online conversations (i.e., there is a permanent record of all 
conversations) threads that were previously ignored can gain legitimacy. Therefore, practices 
consistent with productive social norms are often present in part of the group at the constitution 
of the group and, as such, there is a need to add weight to patterns in change in the violators, not 
just the responses to the violators. 
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Conclusion 
Given the growing number of universities and professional developers that utilize online 

settings, it is imperative that we have a feasible framework for analyzing participants’ learning. 
This paper is an initial attempt to investigate this issue. Using the background of an investigation 
of Online Asynchronous Collaborations in Mathematics Education, we have highlighted the 
issues we are currently exploring while investigating the transferability of an existing framework 
for analyzing the normative practices of a professional teaching community. Given the outlined 
issues, we conjecture that Dean’s framework is a viable starting point for exploring the 
emergence and concurrent learning of an online community of practice.  

 
Endnotes 

1. Both authors contributed equally to this collaborative research; order of authorship follows 
alphabetical convention. 

2. All participants’ names are pseudonyms. 
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Introduction 
This paper reports on a study of a group of 20 pre-service teachers enrolled in a first-semester 

mathematics teaching methods course. Course activities included participation in two separate 
field experiences in neighboring school districts. The methods class placed considerable 
emphasis on the use of advanced digital technologies in the teaching and learning of 
mathematics, with particularly extensive use of the TI-Nspire. The field experiences varied in the 
extent to which technology was used from virtually nil in some classrooms to full 
implementation in others. 

The methods course in which the pre-service teachers in this study participated was designed 
to introduce candidates to inquiry-based learning with open-ended questioning. The course 
proceeded from the premise that the use of advanced digital technologies can be a useful method 
for teaching in such a manner. In our experience, pre-service teachers generally fall into three 
categories with regard to their beliefs regarding the utilization of technology in mathematics 
classrooms: (a) “naysayers” who would like to minimize use of technology; (b) “Yes, buts” who 
believe that students should learn concepts first and only then have access to technology; and (c) 
“Yes, ands” who believe that technology should be used as an integral part of learning concepts. 
As pre-service teachers are developing a teaching identity it is interesting to observe the 
influences that push them in one direction or another. It seems to remain the case that most pre-
service teachers have achieved their own mathematical success by being proficient in traditional 
environments (especially at the college level where use of technology is often outrightly 
discouraged) and, therefore, tend, in our experience, to be either “naysayers” or “yes, buts.” 
Educators generally do not fall naturally into the third position without some coaxing, and the 
methods course was taught in a manner which might persuade the pre-service teachers to, at 
least, consider this position. 

The data of our study shows that the methods class and the field placements served to 
challenge the pre-service teachers to clarify where they stand in this categorization and what they 
imagine the place of technology to be in their future careers as mathematics teachers. 

The study was on a small scale with a limited number of participants and a limited number of 
cooperating schools, but the principal conclusion of the study is that there seems to be a crucial, 
perhaps, decisive effect that modeling of exemplary practice in the field placement has on 
candidate attitudes regarding the use of advanced digital technologies in their teaching, that is to 
say, in creating the possibility that they may become “Yes, ands.” Many of the preservice 
teachers in this study were resistant to the extent of the emphasis on technology in the methods 
class but, with one exception, students whose field placement was in a school where technology 
was used extensively developed a positive attitude to technology. Not surprisingly, candidates 
with positive technology-oriented experiences in the field express stronger desires to incorporate 
technology into their own teaching. There is evidence that the pre-service teachers’ experiences 
in the classroom primed them for the possibilities of technology but it takes the experiencing of 
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exemplary practice to convince them of the benefits of working to incorporate technology in 
their own teaching. 

A secondary conclusion is that while there was a general improvement in the quality of the 
lesson plans written by the pre-service teachers as the semester progressed, the lesson plans 
written by those students with field placements in technology-rich environments showed more 
sophistication, not just in the use of technology, but in terms of implementing inquiry-based and 
open-ended instructional approaches. 

 
Theoretical Context 

There is a growing body of research which indicates that digital technologies, including 
graphing calculators and CAS-enabled calculators, can enhance young students' conceptual and 
procedural knowledge of mathematics (Dunham, 2000; Thompson & Senk, 2001). Research has 
also shown the benefits to students of dynamically linked representations (Kaput, 1994; Rich, 
1996) whereby upon altering a given representation, every other representation is automatically 
updated to reflect the same change.  

As technology has become more sophisticated and functionalities of hand-held calculators 
have increased dramatically, there is a need for research that explores the extent to which 
teachers are able to employ technology effectively (Koehler & Mishra, 2005; Niess, 2005) and 
the extent to which students are able to work effectively in such technology-rich environments 
(Edwards, 2004; Meagher & Brown, 2007). 

After Shulman’s (1986) analysis of teachers’ knowledge as a complex structure including 
content knowledge, pedagogical knowledge, and his introduction of the concept of pedagogical 
content knowledge, the research in this topic has become effectively grounded on his framework. 
With Mishra and Koehler’s (2006, Koehler & Mishra, 2005) and Niess’ (2005, 2006, 2007) 
introduction of the concept of the teachers’ Technological Pedagogical Content Knowledge 
(TPCK), technology-related research in the teachers’ professional development and education 
field has gained a new rich conceptual framework or “an analytic lens for studying the 
development of teacher knowledge about educational technology” (Mishra & Koehler, 2006, p. 
1041). The TPCK model involves the content knowledge, the pedagogical knowledge, and the 
technology knowledge required to teach in technologically-rich environments (see Figure 1). 
Furthermore, the TPCK model discusses the combination of that basis knowledge such as 
technological content knowledge (TCK) versus technological pedagogical knowledge (TPK). For 
TPK, Mishra and Koehler (2006) discuss TCK as follows “teachers need to know not just the 
subject matter they teach but also the manner in which the subject matter can be changed by the 
application of technology” (p.1028). On the other hand, “technological pedagogical knowledge 
(TPK) is knowledge of the existence, components, and capabilities of various technologies as 
they are used in teaching and learning settings, and conversely, knowing how teaching might 
change as the result of using particular technologies” (Mishra & Koehler, 2006, p. 1028). Finally 
technological pedagogical content knowledge, according to Mishra and Koehler (2006) is:  

the basis of good teaching with technology and requires an understanding of the 
representation of concepts using technologies; pedagogical techniques that use technologies 
in constructive ways to teach content; knowledge of what makes concepts difficult or easy to 
learn and how technology can help redress some of the problems that students face; 
knowledge of students’ prior knowledge and theories of epistemology; and knowledge of 
how technologies can be used to build on existing knowledge and to develop new 
epistemologies or strengthen old ones (p.1029).  
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Figure 1. Re-creation of Mishra & Koehler’s TPCK model. 

 
Clearly, there is much to consider when studying pre- and in-service teachers’ knowledge, 

views, beliefs, attitudes, and decisions about the use of technology in their classroom. Niess 
(2006, 2007) discussed how teachers’ beliefs about teaching mathematics with technology play a 
crucial role in the development of TPCK. Moreover, Niess (2005) explained that there are four 
basic components of TPCK:  

1. An overarching conception of what it means to teach a particular subject such as 
mathematics integrating technology in the learning. 

2. Knowledge of instructional strategies and representations for teaching particular 
mathematical topics with technology. 

3. Knowledge of students’ understandings, thinking, and learning with technology in a 
subject such as mathematics. 

4. Knowledge of curriculum and curriculum materials that integrates technology with 
learning mathematics(p.197). 

Increasingly pre-service teachers are asked to incorporate technology into their teaching 
(NCTM, 2000). The extent to which they are willing or able to do so is influenced by a number 
of factors including their own experience with technology, constraints imposed by their teaching 
placements, and the quality of their training in the technology (Bullock, 2004; Moursund & 
Bielefeldt, 1999). 

 
Data Collection 

The pre-service teachers (n=20) were engaged in routine activities that comprise a 
mathematics teaching methods course at a small Midwestern university and were using the TI-
Nspire handheld regularly. The course was designed specifically for pre-service secondary 
school mathematics teachers, with the subjects engaging in activities focused primarily on 
pedagogical issues (e.g. constructing lesson plans and grading rubrics, creating technology-
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oriented math activities) and content issues (solving mathematics problems, assessing student 
work). 

Specific activities included: 
• Field Experience Reports: On two separate occasions, candidates researched, developed, 

and implemented mathematics lessons as part of the field teaching component of the 
class. The first critique focused on student behavior, teacher/candidate interactions, and 
instructional effectiveness. The second critique focuses on problem-posing and analysis 
of student mathematical thinking. 

• Activity Writeups: The teachers submitted five secondary grades math activities that they 
constructed (either wholly original or modified from pre-existing materials). The teachers 
were encouraged to use these materials in their field teaching (if possible). 

• Graphing Calculator Teaching Project: Candidates conducted original research dealing 
with the teaching of a secondary mathematics problem (or set of related problems) using 
the TI-Nspire graphing calculator. The problem(s) selected for study were subject to 
instructor approval to be well-suited for study with graphing calculators. The research 
was to meaningfully include the TI-Nspire in the investigation of the problem(s). 

In addition to the routine activities of the methods class, the preservice teachers completed a 
Mathematics Technology Attitudes Survey and three short surveys, each of which consists of a 
mixture of multiple choice and open-ended items (administered electronically in weeks 4, 8, and 
13 of the study). Finally they completed an open-ended exit survey with more general questions 
than those asked in the Week 4, 8, and 13 surveys.) 

 
Data Analysis and Discussion 

Our analysis of the data focuses on two principal dimensions: (a) the interplay between the 
effects of the methods class and of the field placement on the pre-service teachers’ experiences 
of and attitudes to technology, and (b) the evolution of the pre-service teachers’ lesson plans over 
the course of the semester. 
The Interplay between the Methods Class and the Field Placement and the Influence of the Field 
Placement 

Looking at the open-ended exit survey we see a correlation between the pre-service teachers’ 
field placement and their disposition to the use of technology in the future. Despite the emphasis 
placed on technology in the methods class, half of the students whose field placements had 
minimal or no technology did not develop a positive attitude to the use of technology in the 
teaching and learning of mathematics. One teacher who commented that “I found that my field 
teachers did not use technology in their classroom. I found their teaching methods to be more 
practical, and I will probably lean more towards their style,” had said about the technology that 
“I found the TI-Nspire to be too complicated and not worth the hassle figuring it all out. I spent 
more time trying to figure out how to use it than I did learning about math.” On the other hand, 
almost all of the teachers (there was one exception) who had been exposed to exemplary practice 
in technology-rich environments were eager to incorporate technology in their future practice. 
One student commented “My two field experiences were on different ends of the technology 
spectrum. One school barely had any technology and the other school had a lot.” These two 
experiences resulted in this student declaring that “I am now more likely to use technology in my 
teaching. Technology offers so many advances for students and can relate to many different 
learning styles.” Another student commented that “I will definitely want to use technology” 
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having been in a school where “there was a grant for TI-89s in one class, for laptops in another 
and … their teacher was proficient in all of these technologies.” 

It can be difficult for the students to make the connection between the practices developed 
and encouraged in their methods classes without exemplary experiences in classroom of how 
these ideas can be put into practice. The students who made comments such as “I am less likely 
because of un-user friendly the TI-Nspire was,” were not students who saw the TI-Nspire being 
used in a classroom. This correlation between the development of a positive disposition toward 
teaching with technology and exemplary experiences in a technology-rich environment calls for 
the development of a closer school-university partnership to allow students to make meaningful 
connections between their methods classes and he reality of classrooms. We see this as further 
evidence that students are primed with a certain level of TPCK in their Methods class but their 
ability to consolidate and implement these ideas is sensitive to the field placements both in terms 
of their willingness to implement good practice in using technology and their ability to 
implement good practice. 
Lesson Plans 

Lesson plans were written by the students at four different stages in the semester: two before 
their field placements, one between the first and second field placements and one in conjunction 
with the second field placement The lesson plans were scored along three dimensions: 
Implementation of Technology [Active (1); Neutral (0); Passive (-1)]; Implementation of Inquiry 
Based Methods (Adapted from Northwest Regional Educational Library (NWREL - 
http://www.nwrel.org/msec/science_inq/answers.html) 

[Student initiated (1); Guided inquiry (0); Structured Inquiry (-1)]; and Quality of Problem 
Solving [Active (1); Neutral (0); Passive (-1)]. See Appendix 1 for the full rubric. 

Analysis of the scores showed that the students struggled along all three dimensions but 
improved in all three areas as the semester progressed.  

 
 Technology Inquiry Problem solving 

Lesson 1 -0.25 -0.5 0.25 
Lesson 2 -0.5 -0.375 0.125 
Lesson 3 -0.25 -0.125 0.5 
Lesson 4 -0.125 -0.375 -0.125 
Lesson 5 0 -0.25 0.375 

 
The first two sets of lesson plans were generally poor and reflected the fact that novice pre-

service teachers constructed the materials. The second set shows some improvement over the 
first but are still very teacher-centered. Several of the lesson plans explicitly use language such 
as "the teacher will lead students …” In most of these lessons, technology still seems like an 
afterthought for most teacher candidates, an "add on" rather than a tool to drive instruction. The 
third set of lesson plans, while far from high in quality, show marked improvement over the first 
two sets. This highlights the growing experience of the students and is reflective of the fact that 
these lessons were written after the first field placement. 

The students’ use of technology was very slow to develop and, before the second field 
placement, the use of technology in the lesson plans is not very sophisticated. For example, the 
use of Dynamic Geometry Systems (DGS) in the set of lessons focused on the Pythagorean 
Theorem, most of the pre-service teachers only require students to draw a particular instance of a 
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problem rather than using DGS to generalize and/or form conjectures. It is further noteworthy 
that in the set of lesson plans where the use of technology was optional, several students chose 
not to use technology at all while other suggest the use of technology for "High Level kids only." 
Those that did employ technology in their lesson plans tend to focus on "what buttons to press" 
rather than rich opportunities for student discovery. 

There is a rather sharp improvement in the student scores on Lesson 5. At one level this is 
unsurprising as one might expect the students to reach a maturity point late in the semester. We 
argue however for a more significant factor: the second field placement during which Lesson 5 
was written. Support for this thesis is borne out when the scores for the lesson plans are 
disaggregated into two groups: those that had a minimal technology second field placement 
(MT) and those that had a technology-rich second field placement (TR):  

 
 
 

Technology Inquiry Problem Solving 
MT TR MT TR MT TR 

Lesson 1 -0.25 -0.25 0 -0.5 0 0.5 
Lesson 2 0 -0.75 -0.25 -0.5 0.25 0 
Lesson 3 -0.25 -0.25 0 -0.25 0.5 0.5 
Lesson 4 0 -0.25 -0.25 -0.5 0.25 -0.5 
Lesson 5 -0.25 0.5 -0.5 0 -0.125 1 

 
The lesson plan scores for both sets of teachers are similar for the first four lessons. There is, 

however, a quite dramatic difference in Lesson 5. The teachers in technology-rich field 
placements score much higher in the use of technology, which is to be expected but, 
significantly, they score higher in Implementation of Inquiry Based Methods and much higher in 
Quality of Problem Solving. In the presence of technology, they developed more pedagogically 
sound activities and their TPK and TPCK skills were clearly developing.  

A significant feature of the lesson plans written in the technology-rich environment is that the 
tasks were formulated so that the use of technology was a necessary component of the lesson i.e. 
the tasks were designed assuming access to and ability to use technology. For example, one pre-
service teacher designed a lesson centered around the classic birthday problem which involved 
the use of repeated simulations on the graphing calculator. This would be virtually impossible to 
replicate in a single classroom without technology. Another candidate posed a problem to 
students involving systems of inequalities. In the lesson, students attempted to construct a closed 
region satisfying the following constraints using TI-Nspire: 

1. The system includes at least four linear inequalities 
2. The graph of the system generates closed region 
3. At least one pair of lines in the system is perpendicular 
4. Every line has to have slope (i.e. not zero or undefined slope) 

This lesson was markedly richer than this students’ previous lesson plans, not just in the use of 
technology but in terms of inquiry-based teaching and problem solving. 

We argue that an important element in the pre-service teachers developing calculator active 
tasks, perhaps becoming “Yes, ands” is their placement in a technology-rich environment. The 
modeling of exemplary practice and the mentorship available to them was, we believe, 
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significant in this move. As one pre-service teacher commented on his placement in his Field 
Report: 

Overall, this class [i.e. the field placement class] had many students eager to work with the 
new technology. It was exciting to enter the classroom at a point when new and innovative 
techniques are being introduced and see the results the calculators had not only on the 
willingness of students to engage in the material, but also on their abilities to construct good 
solutions to challenging problems. I hope that more students will have access to this new 
technology in the future to fuel new mathematic interest, just as the Nspires did for the 
students in Mr. C’s class. 
It is interesting to compare the analysis of the Lesson Plans with the pre-service teachers 

responses when they were asked in the surveys to discuss the extent to which they were thinking 
and working with technology as they design activities. Several pre-service teachers mentioned 
and complained that the use of TI-Nspire was required at Week 4. However, others stated that 
they liked working with TI-Nspire and it capabilities: “I have been able to incorporate things 
such as the TI Nspire and GSP into my activity write-ups, and I think that incorporating these 
types of technology into lessons helps to make them more multifaceted and thus easier for a 
larger percentage of the students in a classroom to understand.” Again here this student was 
considering students’ learning with the help of technology. S/he was reflecting on her TPK.  

The pre-service teachers had, of course, seen many activities in the methods class by this 
stage which showed the possibilities for advanced digital technologies in the class but without a 
model of exemplary practice the teacher quoted here was struggling with how they themselves 
could actualize this practice. 

 
Conclusions and Future Directions 

The overall conclusions of this study are that (a) if pre-service teachers’ are to develop a 
positive attitude to the use of advanced digital technologies in their instructional practice they 
require more than a methods class to develop TPCK and that modeling of exemplary practice in 
the field placement has a crucial, perhaps, decisive effect on the student’s attitude, and (b) that 
the most significant improvement in the quality of the pre-service teachers’ lesson plans, in terms 
of being inquiry-based and open-ended, came when students had field placements in technology-
rich environments. 

This significant influence of the field placement suggests further direction for research. 
Specifically it calls for the development of school university partnerships so that students can 
engage in the following learning cycle: (i) A class of preservice high school teachers will work 
with the TI-Nspire to develop lessons/short units designed for technology-rich environments; (ii) 
experienced inservice will review the lessons/short units and present an initial redesign; (iii) the 
inservice teachers will teach the lessons, observed by the preservice teachers; (iv) the preservice 
teachers and inservice teachers will meet together to reflect on and redesign the lesson based on 
their experiences in the classroom. Engagement in such a cycle allows students to gain the 
benefit of exemplary practice in task design and use of advanced digital technologies and allows 
them to focus on this aspect of practice without having to also deal with the early pedagogical 
aspects which arise from teaching the class themselves i.e. classroom management, questioning 
etc. 

We believe that the implementation of such a cycle in conjunction with a methods class 
would allow students to develop a more inquiry-based approach to their teaching and to see how 
the use of advanced digital technologies can facilitate that approach. 
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This study investigated secondary mathematics teachers’ professed beliefs about graphing 
calculators, the teachers’ use of graphing calculators when teaching the concept of function, and 
the extent to which the professed beliefs explain the teachers’ use of graphing calculators. 
Survey and interview data indicated that the teachers believed that they usually balanced among 
the various representations of functions. However, classroom observations showed that 
equations and graphs seemed to dominate more than tables. 
 

Purpose of the Study 
Research has shown that when teachers use graphing calculators, their roles tend, in general, 

to shift to those of fellow investigators, facilitators, or consultants, while their teaching strategies 
tend to involve higher level questioning and more in-depth problem solving, and the classroom 
discourse grows richer (Simonsen & Dick, 1997). It cannot be overemphasized that some 
teaching styles are more compatible with the use of graphing calculators than others. Teaching 
styles that use more open-ended questioning and involve engaging students in discovery 
activities seem to be more compatible with the use of graphing calculators than those styles that 
are more teacher-centered. Research also shows that when teachers use graphing calculators 
there is an increase in cooperative learning where students not only take more responsibility for 
their own learning but also work together with their peers and learn from each other as well 
(Harskamp, Suhre, & Van-Streun, 2000). 

However, some studies have also shown that teachers who have always taught in teacher-
centered classrooms are sometimes uncomfortable with the unpredictability that may arise as a 
result of introducing graphing calculators, while other teachers are often reluctant to use 
graphing calculators in creative ways because of their beliefs about what mathematics is and 
what their role as teachers should be (Milou, 1999; Simmt, 1997). Such teachers tend to confine 
the graphing calculator to performing computational roles and hence deny their students 
opportunities to exploit the powerful capabilities of graphing calculators. Yet other studies have 
shown that there are disagreements in terms of teachers’ attitudes and beliefs towards graphing 
calculators. Some studies have pointed out that there is a link between teachers’ philosophical 
orientation and attitudes and beliefs about graphing calculator use and called for continued 
investigation of this issue (Aguirre & Speer, 2000). 

Even though a substantial amount of research has been done involving graphing calculators, 
there is still need for more studies to be done in this area. For example, we need to know 
teachers’ perspectives regarding the effects of graphing calculators in exploring various 
representations of functions as well as their views regarding the extent to which they would let 
their students explore with the graphing calculators. Since it is true that in general what one 
reports about himself or herself may not always be consistent with his or her practice, a good 
study on these issues is one that is designed to investigate the consistency or variance between 
what teachers report and what they do in their classrooms. This study attempts to address this by 
(a) investigating secondary mathematics teachers’ professed beliefs about graphing calculators, 
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(b) investigating how these teachers use graphing calculators to teach linear and quadratic 
functions, and (c) investigating the extent to which the professed beliefs explain the teachers’ use 
of graphing calculators. 

 
Theoretical Perspectives 

This study draws on Vygotsky’s (1978) sociocultural theory of learning. According to 
Vygotsky, education is both a theory of development and a process of enculturation whereby 
mediated activity helps shape higher human mental functions. The mediator may be a sign 
system (e.g., language, tabular or graphical representation of a pattern) or a technological tool 
(e.g., computer, graphic calculator). Vygotsky contends, “if one changes the tools of thinking 
available to a child, his mind will have a radically different structure” (p. 126). In this study, I 
take the position that the graphing calculator is an instrument of access to the knowledge, 
activities and practices of a social group that is the mathematics classroom (Meira, 1998). In this 
case, using the calculator can be seen as an external activity (using graphs, tables, and numbers 
to manipulate mathematical concepts), which is then transformed into an internal activity 
(gaining an understanding of the mathematical concepts). 

In addition to Vygotsky’s sociocultural theory, I also draw on a theoretical framework 
developed by Salomon, Perkins, and Globerson (1991) for studying the interaction between 
technology and user. Salomon and his colleagues define intelligent technologies as those that can 
be used in partnership in a manner that they can “assume part of the intellectual burden of 
information processing (such as mental or pen and paper calculations)” on behalf of the user (p. 
3). Graphing calculators qualify as intelligent technologies under this definition. In this 
framework, Salomon, Perkins, and Globerson distinguish between two sets of principal effects 
that arise from this kind of partnership, namely (1) principal effects with the technology and (2) 
principal effects of the technology. For purposes of clarity, I will refer to the first set as planned 
principal effects, and the second set as emergent principal effects. The work of Goos, Galbraith, 
Renshaw, and Geiger (2003), which provides metaphors for studying the interaction between 
calculator and user, is closely related to this partnership framework and so I seek to draw 
parallels to the metaphors when discussing the principal effects. 

Characteristics of planned principal effects include elaborate planning (laying out the 
specifics concerning how the calculator will be used), executing the plan (using the calculator in 
the desired ways), and interpreting the results. The teacher here predetermines exactly when it 
will be appropriate to turn to the calculator during problem solving and in what ways this should 
be done. For example, the teacher may plan when it will be necessary for a particular graph to be 
displayed, or when he or she will need to enter a certain equation or table of values in the 
calculator. When there will be need to transform the function in certain ways, the teacher will 
plan to modify the equation or table in particular ways. Jones (1993) notes that this interaction 
allows the user to operate at a higher level than otherwise possible, provided he/she constantly 
monitors the information given by the calculator to ensure that it is consistent with his/her 
understanding of the problem at hand. Jones (1993) cautions, however, that passing over the 
entire cognitive responsibility to the calculator, what Goos et al. (2003) refer to as “technology 
as servant” (p. 78), can be counterproductive and may lead to misconceptions. According to 
Goos and her colleagues, it is not worthwhile to use technology as “a supplementary tool that 
amplifies cognitive processes without using it in creative ways to change the nature of activities” 
(p. 78). They cite using the overhead projection panel as an electronic chalkboard to provide a 
medium for demonstrating calculator operations to the class as an example of inappropriate use 
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of technology. Goos et al. contend that using technology in this manner only helps reinforce the 
teacher’s preferred teaching methods and this may not be beneficial to students. They suggest 
that teachers should use the graphing calculator in conjunction with other material resources in 
ways that further enhance the calculator’s capacity for linking multiple representations of 
concepts. Jones (1993) advises that teachers must develop instructional strategies that promote 
the formation of intelligent partnerships between their students and the calculator. The 
relationships between users and calculators in such partnerships should be complementary rather 
than dependent. 

Emergent principal effects are characterized by spontaneity, that is, effects that the teacher 
does not intentionally plan for. These effects then “carry over to other related but not calculator 
dependent mathematical activities” (Jones, 1993, p. 214). Using the metaphor of technology as 
partner, Goos et al. (2003) refer to this level of using a graphing calculator as the “cognitive re-
organization effects” (p. 79). According to Goos and colleagues, these effects are characterized 
by using technology to explore new tasks or new approaches to existing tasks and to mediate 
mathematical discussion in the classroom between students and teacher or between small groups 
of students. They suggest, “instead of functioning as a transmitter of teacher input, the overhead 
projection panel can become a medium for students to present and examine alternative 
mathematical conjectures” (p. 79). Goos’ metaphor of “technology as extension of self” is also 
consistent with emergent principal effects. According to this metaphor, a teacher who attains this 
level would write unit plans that support integrating technology into the teaching program. That 
is, the teacher would incorporate technological expertise as a natural part of his or her 
mathematical and/or pedagogical repertoire. For meaningful emergent principal effects to arise in 
a classroom, the teacher must be willing to allow his or her students to explore new areas with 
the calculators and guide the students into discussions that will help them make sense of their 
findings. 

 
Research Questions 

1) What are secondary mathematics teachers’ professed beliefs about using graphing calculators 
in the teaching and learning of linear and quadratic functions? 

2) How do secondary school mathematics teachers use graphing calculators when teaching 
linear and quadratic functions? 

3) What are the relationships between the teachers’ professed beliefs about graphing calculators 
and observed practice? 
 

Methodology 
I conducted the study using a two-phase design. In the first phase, I sent out a survey about 

graphing calculator use to secondary mathematics teachers (9th - 12th grade) in a mid-sized city 
school district and the neighboring school districts in a northeastern state in the United States. I 
developed survey instrument using items adapted from Fleener (1995). In addition to 
demographic information, this instrument consisted of 24 items with Likert-type responses on a 
five point scale with SA=Strongly Agree, A=Agree, N=Neither agree nor disagree, D=Disagree, 
and SD=Strongly Disagree. One of the questions on the demographic part asked participants to 
state how often they used graphing calculators in their classes. I used the responses to this 
question to categorize the teachers into three groups of frequent users (nearly every lesson), 
moderate users (once every 2 or 3 lessons), and infrequent users (once every 4 or 5 lessons). I 
then selected, on a voluntary basis, three teachers from each of the frequent users and moderate 
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users groups to participate in the second phase of the study. I intentionally excluded teachers 
from the infrequent users group.  

The second phase of the study comprised of semi-structured interviews and classroom 
observations. Data sources included one task-based interview (Goldin, 1999) with each teacher 
prior to classroom observations, three classroom observations for each teacher with pre-
observation (planning) interviews and post observation (debriefing) interviews, copies of 
teachers’ lesson plans, teacher notes, instructional activities and/or tasks. In order to collect 
focused information during the observations I used the electronic classroom observation 
(ECOVE) software. 

 
Results 

Analysis of the survey data indicated that on the most part teachers believe that graphing 
calculators are valuable for students in the study of linear and quadratic functions. The teachers 
also in general feel confident about their knowledge of graphing calculators and they believe that 
they make use of graphing calculators whenever opportunities for doing so are available. 
Additionally, the results from the interviews showed that the teachers believed that they balanced 
between the various representations of functions. 

On the other hand, classroom observations revealed that teachers preferred graphical 
approaches and algebraic approaches over tabular approaches. For example, in their instructional 
tasks, the teachers specified algebraic approaches the most (in 36% of all tasks analyzed), 
followed closely by graphical approaches (in 31% of all tasks analyzed), then tabular 
representation approach in 17% of the tasks, and another 16% of the tasks not being specific on 
any of the three representations. This is contrary to what they stated in the interviews about 
balancing between representations. It should be noted however, that specifying a representation 
in a task did not restrict the teachers to sticking within that representation alone. The teachers 
shifted from the specified representation to other representations once instruction began. This 
shifts mainly resulted from the teachers guiding students through the tasks and so leading the 
way towards using other representations but on other occasions they came as a result of students 
being involved in negotiating the problem solving process. 

Also revealed from the classroom observation data was the fact that when graphical approach 
was specified in the tasks the shift to algebraic approach (and vice versa) dominated the shift to 
tabular approach – about 70% to 30% overall. This goes further to show how much graphical and 
algebraic representations dominated over tabular representations. A near balance in 
representations appeared to be achieved when the specified representation was tabular as the 
percentages of shifts to graphical or algebraic representations differed only slightly – 54% and 
46% respectively. However, this apparent balancing between representations was overshadowed 
by the fact that there were very few tasks in which tabular representation approaches were 
specified. Moreover, when only verbal representation was specified the teachers switched to 
algebraic representation more than four times as they did with tabular representation. 

 
Discussion 

The teachers in this study generally believed that they usually balance among the various 
representations of functions. However, classroom observations seemed to reveal a different story. 
Analysis of the classroom observation data showed that equations and graphs seemed to 
dominate more than tables. Most instructional tasks made specific reference to either an equation 
for which a graph would be drawn and various explorations done on it, or a graph on which 
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various explorations would be done. Only a handful of tasks directly specified use of tables. In 
cases involving word problems, it was common to see equations being generated then graphs 
drawn. 
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In this report we analyze how students integrate information from a wiki to expand, verify, 
improve, and complete their solution to an open-ended mathematics problem as they work in an 
online synchronous environment. Significant research has analyzed collaborative problem 
solving, but virtually no research exists that investigates online collaborative problem solving of 
open-ended problems. This report uses an established research model to analyze a new type of 
discursive interaction. 

 
Purpose 

Policymakers and educators in organizations such as the Consortium for School Networking 
and the International Society for Technology in Education believe that online learning has both 
educational and social value. In states like Alabama and Michigan, high school students must 
complete at least one online course to graduate (Hu, 2009). However, advances in digital 
technologies and their introduction into society seem to outpace the typical timeframe needed for 
researchers to investigate meaningfully the potential of new digital technologies for education. 
For instance, Web 2.0 has ushered in possibilities for collaboration across physical boundaries 
with such technologies as blogs, file sharing, social networking, and wikis. In mathematics 
education, research is needed to understand the possibilities and problems of digital technologies 
to enhance student engagement with and development of mathematical thinking. 

This research will investigate how students construct knowledge using a wiki, a Web 2.0 
tool. Through a model focused on student discourse, we analyze student integration of material 
in a wiki to become part of a collaborative solution by a group. We expand the use of the model 
to include inscriptions. Though we monitor student discourse, teacher intervention in this 
research is limited largely to task construction. The problems in this research are combinatorics 
tasks that are not covered in traditional high school mathematics curricula and therefore the 
students spend significant time in each session constructing problem-solving techniques. 
 

Theoretical Framework 
Our research focuses on the interactions of students in an online environment. We use the 

interaction analysis model (IAM) introduced by Gunawardena, Lowe, and Anderson (1997) to 
analyze students’ online communications. Several studies (Hou, Chang, & Sung, 2008; Jeong, 
2003; Marra, Moore, & Klimczak, 2004; Sing & Khine, 2006) have used this coding scheme to 
analyze online discussions. Table 1 illustrates the coding scheme we used to analyze how 
information from a wiki, an interactive webpage that allows for collaborative editing, is 
integrated into another online environment. 
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Gunawardena, Lowe, and Anderson (1997) developed the interaction analysis model to study 
the construction of knowledge in an online debate. They used grounded theory to develop the 
model through content analysis with a focus on knowledge construction by a group and on 
change in individual understanding through the group interaction. The five phases in Table 1 
occur when there is discrepancy or inconsistency that needs to be resolved by a group. 
Gunawardena, Lowe, and Anderson concluded that the debate format influenced the participants 
in such a way that they offered mostly P1 comments (191 of 206 postings) and very few of the 
meta-cognitive skills needed for P4 and P5. They cited that the debate format was a possible 
limitation to the construction of knowledge and therefore to the collaboration that occurred.  
 
Table 1. Gunawardena, Lowe, and Anderson (1997) Interaction Analysis Model (IAM) 

Code Phase Operation 

P1 Sharing or comparing information about 
discussion topics 

Statement of observation or opinion; 
statement of agreement among participants 

P2 Discovery and exploration of dissonance 
or inconsistency among participants 

Identifying areas of disagreement, asking, or 
answering questions to clarify disagreement 

P3 Negotiations of meaning or co-
construction of knowledge 

Negotiating the meaning of terms and 
negotiation of the relative weight to be used 
for various agreement 

P4 Testing and modification of proposed 
synthesis or co-construction 

Testing the proposed new knowledge against 
existing cognitive schema, personal 
experience, or other sources 

P5 Agreement statement(s) or application 
of newly constructed meaning 

Summarizing agreement and meta-cognitive 
statements that show new knowledge 
construction 

 
The process began by asking two questions: 1) Was knowledge constructed within the group by 
a process of social negotiation? and 2) Did individual participants change their understanding or 
create new personal constructions of knowledge as a result of interactions within the group? 

The use of wikis in education will expand as teachers, students, and administrators become 
familiar with Web 2.0 tools and as online education becomes more prevalent. Tonkin (2005) 
offers four different categories for educational wikis: Single-user Wikis, Lab Book, 
Collaborative Writing, and Knowledge-Based. The wiki used in this research is concentrated in 
the Knowledge-Based wikis, which are defined by Tonkin as a place where teams can retain their 
experiences and have quick access to the data.  
 

Method 
The participants in this research are students in the eMath project, which connects two 

different schools in New Jersey: Rutgers Preparatory School (RPS), a suburban independent 
school, and Long Branch High School (LBHS), an urban public school. The RPS students are in 
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an Advanced Algebra and Trigonometry class and the LBHS students are in a Contemporary 
Mathematics class. The students have completed Algebra 2 and decided to take a full-year math 
course at the next level, which is not required. One student at RPS is a junior and all other 
students in the project are seniors. The teams in the online environment have three or four 
students with no more than two students from any one school. In this project all of the tasks are 
open-ended mathematics problems that are not seen in traditional mathematics classes. In the fall 
semester of 2008, the eMath project conducted seven online sessions. This report focuses on the 
fourth and fifth sessions, October 23rd and 29th, respectively. During the October 23rd session, the 
students worked on the Pizza Problem with Halves with questions one through three (Figure 1). 
For the October 29th session, we augmented the task with a fourth question, indicated in Figure 1 
below the horizontal line. 

 
Figure 1. The pizza problem with halves. 

 
The students communicate through an online synchronous environment, the Virtual Math 

Teams Chat (VMT Chat), developed under a grant from the National Science Foundation by 
researchers at Drexel University (Stahl, 2006). The VMT Chat (Figure 2) is Java-based and 
facilitates Internet communication through several interrelated spaces: a whiteboard, chat, Wiki, 
Summary, Browser and Help pages. The whiteboard and the chat spaces are where a majority of 
the students’ interactions occur. The whiteboard is a shared, dynamic workspace where students 
can enter textboxes, draw lines and ellipses, and use other tools similar to those in popular word 
processing software. The other main communicative space is the chat on the right side of the 
screen where each member of a chat team has a distinct color for their typed entries. In all spaces 
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of the environment, students’ contributions become visible to other members in the room once 
they click outside the entry or press the return key. On the upper left side of Figure 2, the second 
tab is the Summary where members of a chat team write a collective summary of their process 
and solution. The Topic tab allows the students to read and review the statement of a task. The 
Wiki tab contains the webpage that has links to screenshots of each team’s summary from the 
previous session (Figure 3). The Browser and Help tabs are available, but they remain unused as 
we direct the students to use VMT as their only means of communication and ask them to 
consult the members of their team for technical questions regarding the environment. A 
referencing tool, seen in Figure 3, is also available for students to direct teammates’ attention to a 
particular part of the whiteboard, summary, topic, or chat. While the students are working on 
laptops in their classroom they are arranged around the perimeter of the room in such a pattern as 
not to be in close proximity to the other member of their team. All interactions between a 
student's computer and the server are recorded for later review by the researchers. 

 

 
Figure 2. A screenshot of VMT Chat dual interactive spaces: dynamic whiteboard and text chat. 

 
Students in each of the four VMT Chat rooms had access to the wiki. Upon clicking on the 

wiki tab the participants are able to see four links to wiki pages. Each link contains .jpg images 
of screenshots of the summaries students posted during the October 23rd session. The students 
were informed that content in the summary tab is a public space to which other teams would 
have access. The whiteboard remained the team’s private workspace. 

We observed participants during each research session but did not intervene during the 
session. We read scripts prior to each session to convey pertinent information to the students in 
each school. The task design also was an interventional method as we constructed each session’s 
task to further probe students’ ideas evidenced in the prior session. 
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Figure 3. Wiki page viewable by participants after clicking on the wiki tab in VMT Chat. 

 
After analyzing the session on October 23rd, we decided that it would be appropriate to 

implement the wikis during the session on the 29th. Prior sessions' scripts included an emphasis 
on using the Summary as a space that would be shared with other groups. A portion of the 
October 13th script stated that "sometimes you will be asked to contribute some work to the 
Summary tab, which is a more public space. The audience for the work you place in the 
Summary tab will be the other teams."  In both schools, the teacher in the room read the 
following script at the start of the October 29th session. 

 
Figure 4. Script read to students in the classroom before they entered VMT Chat. 

 
For each session and each team, there are four formats in which we can analyze the data: 1) 

The Concert Chat Player (Figure 5), 2) HTML line-by-line code with an author column to denote 
to which participant performed the action or chat entry, 3) HTML line-by-line, but each 
participant has a separate column instead of the one column for all authors, and 4) Excel 
spreadsheets or Word documents with tables of HTML files (Table 1). The spreadsheets and 
tables allowed for the addition of columns for coding purposes. The player files can be reviewed 
at variable speeds of real-time. There are sliding bars to move to a specific time or position on 
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the page as needed. An automated transcriber transforms every recorded interaction with the 
environment into a table in HTML. The HTML tables can then be copied into Word and Excel 
tables and spreadsheets so that coding can be added. 

 

 
Figure 5. Concert Chat player with participant discussion of comparison of summaries in wiki. 

 
Results 

Sgtspade, one of the students, engaged the linking tool as he reviewed each step of the wiki 
page. His actions as viewed in the HTML table, allowed us to track the pages as they were 
viewed. It is assumed that it was unintentional referencing because sgtspade never mentions, nor 
directs, teammates to look at the pages he references. In prior and subsequent sessions, sgtspade 
and others used the referencing tool and commented in the chat space directed at the point of 
interest. Nevertheless, he does discuss the specific material viewed on the wiki pages in his chat 
messages. 

A limitation that was found during this research was categorizing. Once in the P4 code and 
once in the P5 code entries we recorded entries that were images and not typed chat. The VMT 
environment allows participants to communicate through their inscriptions in the chat and on the 
whiteboard. The creation of an object, or series of objects, on the whiteboard is a form of 
communication with the other team members in the chat room. In the case of the P4 stage, 
Absolut DJ creates a series of ellipses to represent the pizza with two toppings on one half. This 
action is interpreted as an integration of ideas from observing the wiki as well as dialogue with  
his team. Absolut DJ is testing this new knowledge and proposing a new idea that was previously 
not considered to be in the solution set. Later, Absolut DJ writes, "When selecting from plain, 
pepperoni, and broccoli pizza toppings, there are 8 possible combinations that can make up any 
one pie. As can be seen from the diagram above, once all possible half and full pie combinations 
of toppings are accounted for, there are exactly 8 different pizzas that can be ordered."  While he 
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summarizes this possible solution with his team, he enters this in the whiteboard as a textbox, 
which we code as P5. Entering textboxes is a common practice amongst the participants because 
we request that the students write a team summary. Since the placement of the text on the screen 
makes it an image as well as text, we alter IAM to include image and text as separate codes in 
each stage as students might respond differently to images and to text. 

Table 2 is an example of the Excel spreadsheet used in the analysis, and shows a discussion 
that occurred during the October 23rd session. In this data, lbhssoftballgrl introduces one pizza 
not included in the original answer the team offered at the end of the October 23rd session. After 
a review of the wiki in the subsequent session the group decided that they had overlooked this 
pizza. In this chat lbhssoftballgrl asked "can u put two toppings on one half of the pizza?"  
Sgtspade did not think that it was possible, but he asks what the group thinks. The discussion 
closes when Absolut DJ says, "na lets keep it out."  The students in this discussion consider the 
original statement and discuss an area of dissonance. It seems plausible that this interaction on 
October 23rd establishes the idea in the group and makes it easier to adopt as part of the solution 
on October 29th when it is seen that other groups include this as part of their solution. 
 
Table 2. Chat of Students During October 23rd Session with IAM Coding in Right Column 

Chat 
Index 

Time Start 
Typing 

Time of 
Posting 

Author Content IAM 
code 

69 13:41:26 13:41:36 lbhssoftballgrl can u put two toppings on one half of 
the pizza? 

P1 

70 13:41:44 13:41:47 Sgtspade No i dont think so P1 

71 13:42:43 13:42:46 Sgtspade That is a good question though P2 

72 13:42:46 13:42:52 Sgtspade it doesn't really say if we can or not  

73 13:43:28 13:43:40 Sgtspade What do you guys think we should 
do? 

P2 

74 13:43:40 13:43:55 lbhssoftballgrl well it doesnt say we cant, so i think it 
would be safe to do so 

P2 

 13:44:29 13:44:43 Sgtspade [sgtspade has fully erased the chat 
message] 

 

75 13:44:54 13:45:00 Absolut DJ na lets keep it out P2 

 
After initial introductions, during the October 29th session, Lbhssoftball enters, "[OK] so I 

think there are 8 pies when we really looked at it again right?" The students recognize that an 
eighth pizza is necessary. While reviewing the wikis of the other three teams, this team realized 
that they had not considered a pizza that was half plain and half peppers and pepperoni. Viewing 
the wiki allowed the group to reconsider this pizza and include it in their solution. 
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During a review of the data eight references to the wiki were found. An example of the 
referencing is available in Figure 3. Five of the eight references to the wiki were directed at wiki 
images of the other eMath teams. This referencing tool can be used to reinforce integration of 
ideas into team solutions. 
 

Discussion 
In our data, we found 40 entries that relate to the use of the wiki in the VMT environment 

and coded them using the IAM framework. We coded ten entries as P1 and ten as P2, six as P3, 
eight as P4, and six as P5. Our data shows 35% of the codes in the P4 and P5 areas of meta-
cognitive skills which differs greatly from the findings of Gunawardena, Lowe, and Anderson 
(1997) where over 92% of the codes were recorded as P1, sharing and comparing information, 
but not processing the information and drawing conclusion. It is possible that the technology and 
construction of the task created a setting for comments that were in a wider range of stages. The 
nature of a debate through an asynchronous forum is different from a question that asks students 
to work as a team and compare their solution with that of other groups. The effect of task design 
could explain the increased percentage of higher-level thinking. Further research in this field is 
necessary to study the ways technological advancements can be used by teachers to increase 
student use of meta-cognitive skills in problem solving and analysis of information. 
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In this paper we propose a geometry technology-based activity appropriate for the middle school 
level that can be used to improve reasoning and proof writing skills. The activity uses the free, 
open source software GeoGebra and gives the student practice in conjecture building, an activity 
found to help students understand and improve proof writing skills. By building and testing 
conjectures, students can engage in advanced mathematical skills at their own level of expertise. 

 
The goal of the mathematics teacher is for her/his students to engage in advanced 

mathematical thinking at any grade level (Tall, 1991; Dreyfus, 1991). Building conjectures in 
geometry that lead to formal and informal proof is one example of advanced mathematical 
thinking (Boero, Garuti, Lemut, & Mariotti 1996; Hanna, 2000). NCTM (2000) recommends 
reasoning and proof be a fundamental part of the mathematics curricula at all levels, from pre-
kindergarten through grade 12. Researchers identify proof writing as one of the most challenging 
aspects of the mathematics curricula in the U.S. and internationally (Senk, 1985; Healy & 
Hoyles, 2000; Galbraith, 1981). While introducing proof in the early grades might seem difficult, 
researchers find that even upper elementary students can deal with proof ideas and can be 
successful in mathematical activities related to proof (Lester, 1975). Educators tend to see proof 
as something obtainable only for a small minority of students and, therefore, attention to proof 
writing in the classroom although desired is often neglected (Knuth, 2002). One way to booster 
proof writing skills may lie in the ability to make conjectures or hypotheses based on empirical 
results. There is a direct connection between reasoning skills associated with conjecturing and 
reasoning skills used in proof writing (Boero, Garuti, Lemut, & Mariotti, 1996). Researchers 
argue that during the process of making a conjecture, the student must work through internal 
arguments and sort through which are plausible, similar to the activity a mathematician goes 
through when building a proof (Boero, Garuti, Lemut, & Mariotti, 1996). These researchers 
propose that the process of building conjectures should be emphasized more in mathematics 
instruction. The process of making and testing a conjecture is made easier by the increased use 
and popularity of dynamic geometry software (Clements & Battista, 1992; Hanna, 2000; 
Edwards & Jones, 2006). 

In this paper, we explore the use of a free, open source, interactive geometry software, 
GeoGebra, to introduce a conjecturing activity at the middle school level. By building the 
students’ reasoning and conjecturing skills, we are laying the groundwork for their future success 
in formal proof and logic. 

 
The Role of Technology in Building Conjectures and Constructing Proofs 

Researchers have explored the possible benefits and drawbacks of the increased use of 
technology in the classroom (Harel & Sowder, 2006; Mariotti, 2000; Hadas, Hershkowitz, & 
Schwartz, 2000; Hanna, 2000). Educators express a concern that technology might give students 
a disincentive to seek a more formal proof (Harel & Sowder, 2006). However, there is strong 
evidence that using dynamic geometry software can help students realize a need for formal 
proofs (Marrades & Gutierrez, 2000; Hadas, Hershkowitz, & Schwartz, 2000). Although the 
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transition from empirical to abstract ways of conjecture and justification can be a slow process, 
dynamic geometry software, such as Cabri, Geometer Sketchpad, and GeoGebra, have been 
shown to improve proof writing skills (Marrades & Gutierrez, 2000).  

In this paper we use the GeoGebra software package to present a geometry activity that 
allows students to make and test assertions and prepare for more formal proof writing. We chose 
this particular software because it is freely available on-line, it is supplemented with a variety of 
dynamic worksheets, and it is user friendly (www.GeoGebra.org). The unique feature of 
GeoGebra is the integration of dynamic geometry software and a computer algebra system into a 
single tool for mathematics education (Hohenwarter & Preiner, 2007; Edwards & Jones, 2006).  
Students can build a geometric construction and simultaneously observe how changes in a 
formula in the algebra window are affected by manipulation of the construction and vice versa. 
Teachers can use GeoGebra to create interactive web pages or dynamic worksheets to develop 
student activities as we have done here. By participating in the technology based activity below, 
the student will engage in advanced mathematical thinking that leads to building conjectures. 

 
A Proof Enriching Activity for the Middle School Classroom 

In the first challenge of this activity, students are asked to divide a rectangular garden into 
two equivalent regions. Students are asked to find as many possible solutions as they can. The 
dynamic software allows them to easily manipulate the fence line as well as observe changes in 
the area of each region (see figure 1).  

 The dynamic geometry software also allows the student to construct a conjecture about a 
common feature of all presented solutions. In this problem, the generalization is as follows:  
Every line segment that goes through the center of the rectangle, the point of intersection of the 
diagonals, will divide the rectangular region into two equivalent areas.  
Based on our classroom experience, students first typically present four solutions (see figure 2) 
and, after further experimentation, may find other possible segments (see figure 3).   

The second challenge in this activity describes a rectangular garden that must be built around 
a fixed rectangular structure. The objective is still to divide the garden with a straight fence into 
two equivalent regions (see figure 4). The conjecture students’ developed in the first challenge 
assists them in finding a solution to this more advanced problem. The generalization for the 
second challenge is as follows:  Regardless of the position or the size of the enclosed rectangular 
structure, the line segment that goes through both rectangle centers will divide the region into 
two equivalent parts. Depending on the level of the students’ geometry development, the teacher 
may chose to extend the activity further by replacing the interior rectangular structure with 
another geometric figure (e.g. a circle, triangle, or pentagon) and asking similar questions. A 
further extension could be a 3-dimensional model of this problem, replacing the rectangle with a 
prism and the line segment with a 2-dimensional plane.  

This activity presents an equal challenge regardless of the students’ content background and 
can be easily adapted for students at various levels of geometric development. Activities such as 
the one presented, show students how mathematicians think through a problem, using reasoning 
to construct and test conjectures. By building and testing conjectures with technology as a tool, 
students make further progress toward advanced mathematical thinking.  
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Figure 1. A dynamic worksheet created for this activity. 
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Figure 2.  Student sample work 1.  
 

 
Figure 3.  Student sample work 2.  
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Figure 4.  Student sample work 4. 
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INCORPORATING WEB TECHNOLOGY INTO THE DEVELOPMENT OF 
MATHEMATICS TEACHING MATERIALS 

 
Fenqjen Luo  
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This study reports thirteen school teachers’ efforts to develop standards-based mathematics 
teaching materials on an interactive Website. The merits of Web technology demonstrated by 
participating teachers in their development of mathematics teaching materials were addressed. 
Participating teachers’ limitations on incorporating Web technology into the development of 
mathematics teaching materials were also discussed.  

 
Introduction 

Considering the enormous growth of the Web and the educational attention to it, school 
teachers should use the Web in an effective manner. Most Web education literature focuses on 
Web-based instruction and learning rather than promoting the development of Web itself. In 
order to develop and optimize school teachers’ adaptability in using the Web, all participating 
teachers in this study would be expected to develop standards-based mathematics teaching 
materials on their own Websites.  

 
Theoretical Framework and Research Questions 

The theoretical framework of the Learning Cycle Approach recommended by Gabel (2003) 
was adopted for use in the development of mathematics teaching materials. The Learning Cycle 
Approach involves three phases: exploration, invention, and application. Two research questions 
guided this study: (a) what merits of Web technology are demonstrated from the participating 
teachers’ development of mathematics teaching materials; and (b) what limitations are 
demonstrated from the participating teachers’ use of Web technology on their development of 
mathematics teaching materials? 

 
Methodology 

At the exploration phase, participating teachers were asked to explore a challenging 
mathematics topic that they intended to work on but lacked sufficient supporting materials from 
the Web society of mathematics education. At the invention phase, teachers would need to 
support their chosen topic by inventing standards-based mathematics teaching materials across 
three or more grade levels. At the application phase, teachers were required to incorporate the 
merits of Web technology into their newly developed mathematics teaching materials.  

 
Findings 

This study found that participating teachers acquired valuable information to support their 
invention of teaching materials via Web exploration. They enriched their mathematics teaching 
materials by linking to various supporting Websites, and shared their own mathematics teaching 
materials via their own Websites. Several teachers invented unique mathematics teaching 
materials on their Websites. However, participating teachers did not incorporate the benefit of 
interactive Web capabilities by soliciting ideas to enrich their teaching materials. Several 
determined topics did not reflect a high level of difficulty and did not meet with the needs for the 
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Web society of mathematics education. Dynamic Web communications and collaboration did not 
occur among participating teachers. Several teachers had difficulty coping with technical issues 
such as condensing file sizes and editing video clips, and showed limitations in incorporating 
various technology tools and resources into their development of teaching materials. 
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INCORPORATING ICT IN MATH AND SCIENCE HIGH SCHOOL CLASSROOMS 
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AA4, National Pedagogical University (UPN), Mexico 
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This contribution presents five different teacher ways of incorporating ICT in mathematics high 
school classrooms. They were instrumented by 15 teachers after they had participated in an on 
line training course of six months (see “Specialization on Mathematics and Technology”, at:  
http://upn.sems.gob.mx).  Observational data were issued from the videos participant teachers 
did at the end of the course, showing the meaning they had assigned to their math and 
technological experience acquired along the six mentioned months by accomplishing series of 
pedagogical activities and tasks using mathematics technology (Zbiek & Hollebrands, 2008).  

Theoretical Underpinnings, Methodology and Results 
Ruthven (2007) proposes examining teacher response to new technologies, based on Kerr’s 

(1991: 121) assertion that “If the technology must find a place in classroom practice, it must be 
examined in the context of class life, [just] as the teachers life it.” (Cited by Ruthven, ibidem: 3). 

There were some pedagogical tasks included in the on line course that resulted specially 
productive in according with Kerr´s point of view: to (a) choose one math topic from the high 
school curriculum, along with digital materials you would like to use in your class; b) organize 
the instrumentation of the activity into the classroom; c) video-record that work session; d) 
upload a seven minute version of that recording to YouTube; and e) finally upload to the training 
platform (http://upn.sems.gob.mx) a descriptive report of the video’s content together with its 
URL. From teachers’ accomplishment of this task series we obtained the data that allowed us to 
construct the case study we are reporting here, on the incorporation of technology into high 
school classes. In addition, the on line teacher training course included pedagogical sequences of 
activities on the use of dynamic software (eg. Logo, Geogebra, Aplusix, Excel, RecCon, 
FunDer), along with the exploration of a wide range of possibilities set up on the Internet, as the 
library of virtual materials of Utah University (see: http://nlvm.usu.edu/en/nav/vlibrary.html). 

From the obtained data, we found five different ways that teachers used to incorporate 
mathematics technology in the classroom: a pattern of incorporation that flowed from the classic 
approach to teaching; a modified version of this pattern that added teacher interaction with the 
students, basically by means of teacher questioning; instrumentalization of the activity directed 
by a script; orchestration (Trouche, 2000) of the activity using different instruments or artifacts, 
plus group negotiation of meaning; and finally, organization of cooperative work centered on 
student appropriation of technology. 
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The idea of “mathematical habits of mind” has been introduced to emphasize the need to help 
students think about mathematics “the way mathematicians do.” There seems to be considerable 
interest among mathematics educators and mathematicians in helping students develop 
mathematical habits of mind. The objectives of this working group are: (a) to discuss various 
views and aspects of mathematical habits of mind, (b) to explore avenues for research, (c) to 
encourage research collaborations, and (d) to interest doctoral students in this topic. To 
facilitate the discussion during the working group meetings, we provide an overview of 
mathematical habits of mind, including concepts that are closely related to habits of mind—ways 
of thinking, mathematical practices, knowing-to act in the moment, cognitive disposition, and 
behavioral schemas. We invite mathematics educators who are interested in habits of mind, and 
especially those who have conducted research related to habits of mind, to share their work 
during the first working group meeting. If you would like to give a 10-minute presentation, 
please contact Kien Lim or Annie Selden in advance.  

 
An Overview of Mathematical Habits of Mind 

There are several terms and points of view in mathematics education that are somewhat 
similar or support each other, and might be brought together under the single phrase 
“mathematical habits of mind.” We discuss several of these views that we see as related. 

Habits of mind were introduced by Cuoco, Goldenberg, and Mark (1996) as an organizing 
principle for mathematics curricula in which high-school students and college students think 
about mathematics the way mathematicians do. They asserted: 

The goal is … to help high school students learn and adopt some of the ways that 
mathematicians think about problems. … A curriculum organized around habits of mind 
tries to close the gap between what the users and makers of mathematics do and what they 
say. … It is a curriculum that encourages false starts, calculations, experiments, and special 
cases. (p. 376) 

They identified two broad classes of habits of mind: (a) general habits of mind that cuts across 
every discipline, and (b) content-specific habits of mind for the discipline of mathematics. 
General habits of mind include “pattern-sniffing,” experimenting, formulating, “tinkering,” 
inventing, visualizing, and conjecturing. Mathematical habits of mind, or mathematical 
approaches to things, include talking big thinking small (e.g., instantiating with examples), 
talking small thinking big (e.g., generalizing, abstracting), thinking in terms of functions, using 
multiple points of view, mixing deduction and experiment, and pushing the language (e.g., at 
first assuming the existence of things we want to exist, such as 20).  

Habits of mind have two important characteristics: the “thinking” characteristic and the 
“habituated” characteristic. In addition, habits of mind are reflexively related to classroom 
practices. Below we discuss various related views of habits of mind. 
The Thinking Characteristic 

Harel’s (2007, 2008) notion of ways of thinking underscores the thinking aspect of habits of 
mind. Harel (personal communication) regards habits of mind as internalized ways of thinking. In 
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Harel’s view, mathematics consists of two complementary subsets: (a) the first consists of 
institutionalized ways of understanding, which is a collection of established definitions, axioms, 
theorems, proofs, problems, and solutions that have been accepted by the mathematical 
community; and (b) the second is a collection of ways of thinking, which are conceptual tools 
that are useful for the generation of the first subset (Harel, 2008). The distinction between ways 
of thinking and ways of understanding underscores the importance of mathematical habits of 
mind, which tend to be neglected in traditional mathematics curricula. 

According to Harel’s duality principle (2007), “Students develop ways of thinking only 
through the construction of ways of understanding, and the ways of understanding they produce 
are determined by the ways of thinking they possess” (p. 272). This principle asserts that ways of 
thinking cannot be improved independently of ways of understanding, and vice versa. Hence, 
Harel advocates that both ways of understanding and ways of thinking should be incorporated as 
learning objectives for students.  

In their introductory article to a special issue on advanced mathematical thinking that 
considered symbolizing, mathematizing, algorithmatizing, defining, and reasoning, Selden and 
Selden (2005) stated: 

Sometimes referred to as “mathematical habits of mind” or “mathematical practices,” these 
[aforementioned specific] ways of thinking about and doing mathematics may be fairly 
widely regarded as productive, but are often left to the implicit curriculum. (p. 1)  

Also, according to Bass (2005), mathematical habits of mind are critical to many aspects of the 
educational process. He argued that:  

the knowledge, practices, and habits of mind of research mathematicians are not only 
relevant to school mathematics education, but that this mathematical sensibility and 
perspective is essential for maintaining the mathematical balance and integrity of the 
educational process—in curriculum development, teacher education, assessment, etc. 
(p. 418) 

Bass (2008, January) has considered habits of mind as practices—things that mathematicians 
do. Such practices include asking ‘natural’ questions, seeking patterns or structure, consulting 
the literature and experts, making connections, using mathematical language with care and 
precision, seeking and analyzing proofs, generalizing, and exercising aesthetic sensibility and 
taste. Bass claims that children can, and should, cultivate these practices from their early school 
years on. By capitalizing on children’s curiosity their inquisitive minds can be harnessed. 
Goldenberg (2009, January) offered some strategies that capitalize on children’s phenomenal 
language-learning ability and abstracting-from-experience ability to develop certain algebraic 
ideas such as breaking [apart] numbers and rearranging parts (commutative property, 
associative property), and breaking arrays and describing constituent parts (distributive 
property). Goldenberg provided evidence to show that children can indeed use “algebra” as a 
language to describe a process or a pattern and to express what they already know.  

For Leikin (2007), “employing habits of mind means inclination and ability to choose 
effective patterns of intellectual behavior” (p. 2333). With respect to the mental habit of solving 
problems in different ways, Leikin considers a problem-solving strategy as a habit of mind when 
it is within one’s “personal solution spaces of many problems from different parts of [the] 
mathematical curriculum” (p. 2336). One goal of mathematical instruction is then to move 
solutions from students’ potential solution spaces (containing solutions that are produced with 
the help of others; i.e., solutions that are within one’s zone of proximal development) into their 
personal solution spaces.  
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The Habituated Characteristic 
The habituated character of habits of mind is underscored in Goldenberg’s description of 

habits of mind, which “one acquires so well, makes so natural, and incorporates so fully into 
one's repertoire, that they become mental habits—one not only can draw upon them easily, but 
one is likely to do so” (p. 13). Mason and Spence’s (1999) notion of knowing-to act in the 
moment accentuates this habituated character. They have differentiated between two types of 
knowledge. The first type, referred to as knowing-about, consists of Ryle’s (1949, cited in Mason 
& Spence) three classes of knowledge: knowing-that (factual knowledge), knowing-how 
(procedural skills), and knowing-why (personal stories to account for phenomena). The second 
type, referred to as knowing-to, is tacit knowledge that is context/situation dependent and 
becomes present in the moment when it is required. This distinction is important because 
“knowing to act when the moment comes requires more than having accumulated knowledge-
about . . .” (Mason & Spence, 1999, p. 135).  

Knowing-about … forms the heart of institutionalized education: students can learn and be 
tested on it. But success in examinations gives little indication of whether that knowledge 
can be used or called upon when required, which is the essence of knowing-to. (p. 138) 

Mason and Spence advocate the practice of reflection as a means to help students improve their 
knowing-to act in the moment. Students should be encouraged to reflect on (a) what they have 
done after an action, and (b) what they are doing while enacting it, which were termed by Schön 
(1983) reflection-on-action and reflection-in-action respectively. With respect to reflection-in-
action, students should routinely ask themselves “What do I know?” and “What do I want?” 
(Mason & Spence, p. 154). 

The habituated character of habits of mind is also reflected in Lim’s (2008) notion of 
spontaneous anticipation by a student—when he or she immediately anticipates and carries out 
an action for a situation based on the first idea that comes to mind. Whereas Cuoco, Goldenberg, 
and Mark’s (1996) notion of habits of mind has a positive connotation, Lim’s spontaneous 
anticipation can be either desirable or undesirable. Interiorized anticipation is desirable in that 
“one spontaneously proceeds with an idea without having to analyze the problem situation 
because one has interiorized the relevance of the anticipated action to the situation at hand” 
(p. 45). Interiorized anticipation is similar to Mason and Spence’s notion of knowing-to. 
Impulsive anticipation, on the other hand, is undesirable in that “one spontaneously proceeds 
with an idea that comes to mind, without analyzing the problem situation and without 
considering the relevance of the anticipated action to the problem situation” (p. 44).  

Lim notes that a habit of mind can also be regarded as a cognitive disposition—a tendency to 
act, mentally, in a certain way in response to certain situations. When a person has a particular 
habit of mind, he or she has a disposition to act according to that habit of mind. Lim (2009, 
January) uses the term impulsive disposition to refer to the proclivity of “doing whatever first 
comes to mind … or diving into the first approach that comes to mind” (Watson & Mason, 2007, 
p. 207). Lim (2009, January) offered the following strategies to address impulsive disposition: 
(a) do not teach algorithms and formulas prematurely; (b) pose problems that necessitate a 
particular algorithm or concept, that intrigue students, that require students to attend to the 
meaning of numbers and symbols, and that require students to explain and justify; (c) include 
contra-problems to promote skepticism; and (d) include superficially-similar-but-structurally-
different problems on tests and examinations.  

Selden and Selden (2009, January) have conceptualized (small) habits of mind as habitual 
situation-action pairs or behavioral schemas—“a form of (often tacit) procedural knowledge that 
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yields immediate (mental or physical) actions.” They are developing this perspective in the 
context of proving in a design experiment with advanced undergraduate and beginning graduate 
students (Selden, McKee, & Selden, 2009), and in a teaching experiment with mid-level 
undergraduate real analysis students. Indeed, the entire proving process might be seen as a 
sequence of mental or physical actions (that cannot be fully reconstructed from the written 
proof). The individual actions often appear to be due to the enactment of behavioral schemas 
(that is, small, simple habits of mind). Here is an example of a common beneficial behavioral 
schema. The situation is having to prove a universally quantified statement such as, “For all real 
numbers x,” and the linked action is writing into the proof something like, “Let x be a real 
number,” meaning x is arbitrary but fixed. While some students are at first reluctant to write this, 
doing so can become habitual and automated, that is, become a behavioral schema and 
eventually just seems to be “the right thing to do.” In contrast, a detrimental behavioral schema 
in proving is focusing on the hypotheses of a theorem too soon, and simply “forging ahead,” 
without first examining the conclusion to see what is to be proved. Selden and Selden think it is 
likely that some larger, more complex, habits of mind can be decomposed into behavioral 
schemas. Also, they think this perspective would probably be useful in other kinds of reasoning, 
such as problem solving, and with K-12 students. 

Selden and Selden think that focusing specifically on small habits of mind has two 
advantages. First, the uses, interactions, and origins of behavioral schemas are relatively easy to 
examine. For example, behavioral schemas tend to reduce the burden on working memory. Also, 
the process of enactment of a behavioral schema occurs outside of consciousness, but apparently 
the triggering situation must be conscious. Thus, such schemas cannot be “chained together” 
outside of consciousness with only the final action being conscious (Selden & Selden, 2008). For 
example, one cannot produce the solution to a linear equation without being conscious of the 
intervening steps. Second, this perspective is not only descriptive but also suggests concrete 
teaching actions, such as encouraging the writing of the formal-rhetorical parts of a proof at the 
beginning of the proving process (Selden & Selden, in press). In this way, it is fairly easy for a 
teacher to devise ways of helping a student strengthen a beneficial, or weaken a detrimental, 
behavioral schema.  
Relating Habits of Mind and Classroom Practices 

In Fostering Algebraic Thinking: A Guide for Teachers Grades 6-10, Driscoll (1999) views 
habits of mind as ways of thinking, that when used habitually, can lead to successful learning of 
algebra.  He stresses the development of three algebraic habits of mind: (a) doing/undoing which 
involves reversing mathematical processes; (b) building rules to represent functions which 
involves pattern-recognition and generalization; and (c) abstracting from computation which 
involves thinking about computations structurally without being tied to specific numbers, such as 
recognizing the equivalence of 5% of 7000 and 7% of 5000. He and his colleagues later 
developed a four-module toolkit for educators to work with teachers to learn how to foster these 
algebraic habits of mind in their classrooms (see Driscoll et al., 2001). Subsequently in Fostering 
Geometric Thinking: A guide for teachers grades 5-10, Driscoll, DiMatteo, Nikula, and Egan 
(2007) promote four geometric habits of mind: (a) reasoning with relationships, (b) generalizing 
geometric ideas, (c) investigating invariants, and (d) sustaining reasoned exploration by trying 
different approaches and stepping back to reflect while solving a problem. The Fostering 
Geometric Thinking Toolkit was published a year later (see Driscoll et al., 2008). 

Cuoco (2008, January) has advocated making mathematical habits of mind a key component 
of the syllabus because “without explicit attention to mathematical ways of thinking, the goals of 
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‘intellectual sophistication’ and ‘higher order thinking skills’ will remain elusive.” He offered 
some suggestions for helping students cultivate desirable habits of mind: (a) working on 
problems with students, (b) being explicit about one’s own thinking, and (c) making thought 
experiments an integral part of the learning experience. Rasmussen (2009, January) emphasized 
the need for teachers to be deliberate about initiating and sustaining particular classroom norms 
so as to promote certain desirable habits of mind and effect students’ beliefs and values. 

The RAND Mathematics Study Panel (2003) referred to “mathematical know-how—what 
successful mathematicians and mathematics users do” (p. 29) as mathematical practices. They 
also identified mathematical practices as one of the three foci for a proposed research and 
development program aimed at improving mathematical proficiency among U.S. school students. 
The Panel stated: 

• “A focus on understanding these practices and how they are learned could greatly 
enhance our capacity to create significant gains in student achievement, especially among 
currently low-achieving students who may have had fewer opportunities to develop these 
practices” (p. 29) 

• “These practices are not, for the most part, explicitly addressed in schools. Hence, 
whether people somehow acquire these practices is part of what differentiates those who 
are successful with mathematics from those who are not” (p. 32-33) 

The Panel recommended the following lines of research: (a) developing an understanding of 
specific mathematical practices, and their interactions, along the domains of representation, 
justification, and generalization; (b) examining the use of these mathematical practices in 
different settings (e.g., in school, at home, at work); and (c) investigating ways for developing 
these practices in classrooms. Further, the Panel stated that “such [mathematical] practices must 
be deliberately cultivated and developed, and therefore research and development should be 
devoted to addressing this challenge.” (p. 40) 

Many theoretical ideas and pedagogical suggestions related to habits of mind have been 
raised. However, the research on this topic is still relatively thin. Using Cobb and Yackel’s 
(1996) emergent perspective in which “learning is a constructive process that occurs while 
participating in and contributing to the practices of the local community” (p. 185), we regard 
mathematical habits of mind as individual dispositions that are reflexively related to 
mathematical practices of a classroom community. Cobb and Yackel suggested that “analysis 
whose primary purpose is psychological should be conducted against the background of an 
interactionist analysis of the social situation in which the student is acting” (p. 188). Hence, we 
encourage research on understanding the interaction between individual mathematical habits of 
mind and classroom mathematical practices, in addition to research on how students develop 
mathematical habits of mind.  

 
Purpose of this Working Group 

This working group is a follow-up to two panel-discussion sessions on “Helping Students 
Develop Mathematical Habits of Mind” at two consecutive Joint Mathematics Meetings (JMM) 
of the American Mathematical Society and the Mathematical Association of America held in 
2008 and 2009. The presenters-cum-panelists at the JMM 2008 session in San Diego included 
Hyman Bass, Al Cuoco, Guershon Harel, and Annie Selden. The presenters-cum-panelists at the 
JMM 2009 session in Washington DC included Hyman Bass, Paul Goldenberg, Kien Lim, Chris 
Rasmussen, Annie Selden, and John Selden. Both sessions were well attended and well received 
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by the audience. The second session was in fact an encore of the first session. Based on 
attendance reactions to these two sessions, there seems to be considerable interest among 
mathematics educators and mathematicians in this topic. This PME-NA working group can offer 
a platform for mathematics educators who are interested in this topic to explore research 
opportunities. 

The primary purpose of this working group is to generate interest among mathematics 
educators for conducting research related to mathematical habits of mind. The second purpose is 
to encourage research collaborations. The objectives of this working group are: 

• To discuss various views and aspects of mathematical habits of mind.  
• To explore avenues for future research.  
• To facilitate mathematics educators with similar research interests to form research 

groups.  
• To motivate doctoral students who may plan to work on this topic for their dissertations. 
 

Proposed Activities for this Working Group 
Meeting 1 

• An overview on mathematical habits of mind.  
• Individual presentations, if any, on research related to habits of mind. 
• An open forum to discuss theoretical and pedagogical issues related to mathematical 

habits of mind. 
• A brainstorming session to identify worthwhile avenues of research.  

Meeting 2 
• Small-group breakout sessions to identify research opportunities, formulate research 

questions, and discuss research designs.  
Meeting 3 

• Small-group presentations of plans for research. 
• Discussion of next steps.  
 

Anticipated Follow-up 
We anticipate that promising avenues for research related to mathematical habits of mind 

will be identified. The working group may broaden the scope of research for some mathematics 
educators by integrating their existing research with research on mathematical habits of mind. 
This working group is likely to continue if there are groups of researchers who plan to conduct 
collaborative research on this topic. There may be a possibility of eventually having a special 
issue of a journal dedicated to mathematical habits of mind.  

 
References 

Bass, H. (2005). Mathematics, mathematicians, and mathematics education. Bulletin of the 
American Mathematical Society, 42 (4), 417-430.  

Bass, H. (2008, January). Mathematical practices. Paper presented at a Project NExT Session on 
Helping Students Develop Mathematical Habits of Mind, Joint Mathematics Meetings, San 
Diego, CA. Powerpoint available at http://www2.edc.org/CME/showcase.html. 

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the 
context of developmental research. Educational Psychologist, 31 (3/4), 175-190.  



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1582 

Cuoco, A. (2008, January). Mathematical habits of mind: An organizing principle for curriculum 
design. Paper presented at a Project NExT Session on Helping Students Develop 
Mathematical Habits on Mind, Joint Mathematics Meetings, San Diego, CA. Powerpoint 
available at http://www2.edc.org/CME/showcase.html. 

Cuoco, A. , Goldenberg, E. P., and Mark, J. (1996). Habits of mind: An organizing principle for 
a mathematics curriculum. Journal of Mathematical Behavior, 15 (4), 375-402.  

Driscoll, M. (1999). Fostering algebraic thinking: A guide for teachers grades 6-10. Portsmouth, 
NH: Heinemann. 

Driscoll, M., DiMatteo, R. W., Nikula, J. E., & Egan, M. (2007). Fostering geometric thinking: 
A guide for teachers grades 5-10. Portsmouth, NH: Heinemann. 

Driscoll, M., DiMatteo, R. W., Nikula, J., Egan, M., June, M., & Kelemanik, G. (2008). The 
fostering algebraic thinking toolkit: A guide for staff development. Portsmouth, NH: 
Heinemann.  

Driscoll, M., Zawojewski, J., Humez, A., Nikula, J. E., Goldsmith, L. T., & Hammerman, J. 
(2001). The fostering algebraic thinking toolkit: A guide for staff development. Portsmouth, 
NH: Heinemann. 

Goldenberg, P. (1996). Habits of mind as an organizer for the curriculum. Journal of Education, 
178(1), 13-34. 

Goldenberg, P. (2009, January). Mathematical habits of mind and the language-learning brain: 
Algebra as a second language. Paper presented at an AMS-MAA-MER Special Session on 
Mathematics and Education Reform, Joint Mathematics Meetings, Washington, DC. 
Powerpoint available at http://www.math.utep.edu/Faculty/kienlim/hom.html. 

Harel, G. (2007). The DNR system as a conceptual framework for curriculum development and 
instruction. In R. Lesh, J. Kaput, E. Hamilton (Eds.), Foundations for the future in 
mathematics education (pp. 263-280). Mahwah, NJ: Lawrence Erlbaum Associates. 

Harel, G. (2008). What is mathematics? A pedagogical answer to a philosophical question. In B. 
Gold & R. Simons (Eds.), Current issues in the philosophy of mathematics from the 
perspective of mathematicians. Washington, DC: Mathematical American Association. 

Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution 
spaces of mathematical tasks. In the Proceedings of the Fifth Conference of the European 
Society for Research in Mathematics Education (pp. 2330-2339). Larnaca, Cyprus. 

Lim, K. H. (2008). Students' mental acts of anticipating: Foreseeing and predicting while 
solving problems involving algebraic inequalities and equations. Saarbrücken, Germany: 
VDM Verlag Dr. Müller. 

Lim, K. H. (2009, January). Undesirable habits of mind of pre-service teachers: Strategies for 
addressing them. Paper presented at an AMS-MAA-MER Special Session on Mathematics 
and Education Reform, Joint Mathematics Meetings, Washington, DC. Powerpoint available 
at http://www.math.utep.edu/Faculty/kienlim/hom.html. 

Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of 
knowing-to act in the moment. Educational Studies in Mathematics, 38, 135-161. 

RAND Mathematics Study Panel. (2003). Mathematical proficiency for all students: Toward a 
strategic research and development program in mathematics education. Santa Monica, CA: 
RAND Corporation MR-1643.0-OERI. 

Rasmussen, C. (2009, January). Mathematical proficiency: An example from the inquiry oriented 
differential equations project. Paper presented at an AMS-MAA-MER Special Session on 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1583 

Mathematics and Education Reform, Joint Mathematics Meetings, Washington, DC. 
Powerpoint available at http://www.math.utep.edu/Faculty/kienlim/hom.html. 

Ryle, G. (1949). The concept of mind. London: Hutchison. 
Schön, D. (1983). The reflective practitioner: How professionals think in action. London: 

Temple Smith.  
Selden, A., McKee, K., & Selden, J. (2009). Affect, behavioral schemas, and the proving 

process. Manuscript submitted for publication.  
Selden, A., & Selden, J. (2005). Perspectives on advanced mathematical thinking. Mathematical 

Thinking and Learning, 7, 1-13. 
Selden, A., & Selden, J. (2009, January). Habits of mind for proving. Paper presented at an 

AMS-MAA-MER Special Session on Mathematics and Education Reform, Joint 
Mathematics Meetings, Washington, DC. Powerpoint available at 
http://www.math.utep.edu/Faculty/kienlim/hom.html. 

Selden, J., & Selden, A. (2008). Consciousness in enacting procedural knowledge. Proceedings 
of the Conference on Research in Undergraduate Mathematics Education (2008). Retrieved 
February 15, 2008, from http://cresmet.asu.edu/crume2008/Proceedings/Proceedings.htmlH. 

Selden, J., & Selden, A, (in press). Teaching proving by coordinating aspects of proofs with 
students’ abilities. In M. Blanton, D. Stylianou, & E. Knuth (Eds.), The Learning and 
Teaching of Proof Across the Grades, Lawrence Erlbaum Associates/Taylor & Francis, 
London. An earlier version is available as Technical Report No. 2007-2 at 
Hhttp://www.tntech.edu/techreports/techreports.htmlH. 

Watson, A. & Mason, J. (2007). Taken-as-shared: A review of common assumptions about 
mathematical tasks in teacher education. Journal of Mathematics Teacher Education, 10, 
205-215.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1584 

LESSON STUDY WORKING GROUP 
 

Lynn Hart 
Georgia State University 

lhart@gsu.edu 
 

Alice Alston 
Rutgers University 

alston@rci.rutgers.edu 

Aki Murata 
Stanford University 

akimura@stanford.edu 

The Lesson Study Working Group met at three previous PME/NA conferences: Merida, Mexico 
(2006), Lake Tahoe (2007) and Morelia, Mexico, (2008). Over 20 researchers attended each 
meeting. At the sessions participants shared current research around lesson study and discussed 
future plans and goals. Several projects shared artifacts from their work. The group discussed at 
length current trends, issues, and problems facing research and implementation of lesson study. 
Following is a summary of our discussions. 

 
Lesson Study: Structures, History, and Variation 

Lesson study incorporates characteristics of effective professional development programs 
identified in prior research: it is site-based, practice-oriented, focused on student learning, 
collaboration-based, and research-oriented (Bell & Gilbert, 2004; Borko, 2004; Cochran-Smith & 
Lytle, 1999, 2001; Darling-Hammond, 1994; Wang & O’Dell, 2002; Little, 2001; Hawley & Valli, 
1999; Wilson & Berne, 1999). What separates lesson study from other instructional improvement 
approaches is that it places teachers at the center of the professional activity, with their interests and 
desire to better understand student learning based on their own teaching experiences. The idea is 
simple: teachers organically come together with a shared question regarding their students’ learning, 
plan a lesson to make student learning visible, and examine and discuss what they observe. Through 
multiple iterations of the process, teachers have many opportunities to discuss student learning and 
how their teaching affects it.  

After identifying a lesson goal, teachers plan a lesson. The goals can be general at first (e.g., how 
students understand equivalent fractions), and are increasingly refined and focused throughout the 
lesson study process to become specific research questions at the end (e.g., strategies students use to 
compare 2/4 and 3/6). Teachers choose and/or design a teaching approach to make student learning 
visible, keeping their lesson goal in mind. The main purpose of this step is not to plan a perfect 
lesson but to test a teaching approach (or investigate a question about teaching) in a live context to 
study how students learn. As they plan, they anticipate students’ possible responses and craft the 
details of the lesson. Teachers come to know the key aspects of the lesson, to anticipate how students 
may respond to these aspects, and to explore different thinking and reasoning that may lie behind the 
possible responses. During planning, teachers also have an opportunity to study curricular materials, 
which can help teachers’ content knowledge development. During the lesson, teachers attend to 
student thinking and take notes on different student approaches. During the debriefing after the 
lesson, teachers discuss the data they have collected during the observation.  

There are other professional development programs that incorporate many of the characteristics 
of lesson study (e.g., action research, teacher research). However, what sets lesson study apart is the 
live research lesson. The live research lesson creates a unique learning opportunity for teachers. 
Shared classroom experiences expose teachers’ professional knowledge that may otherwise not be 
shared: teachers notice certain aspects of teaching and learning, and this implicit and organic 
noticing does not happen in artificially replicated professional development settings. 

In Japan, lesson study has been widely used for over a century. Many Japanese educators 
attribute success in changing their teaching practice to participation in lesson study (Lewis, Perry, & 
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Murata, 2006; Murata & Takahashi, 2002: Shimizu, et. al., 2005). As a foundational mechanism to 
support the improvement of teaching, lesson study is used to examine and better understand new 
educational approaches, curricular content, and instructional sequences introduced in Japan. In many 
cases, teachers play the central role in making new approaches adoptable and content accessible. 
Lesson study makes teaching approaches more practical and understandable to teachers through 
developing deeper understanding of content and student thinking. In this manner, lesson study works 
effectively to connect theory and practice.  

While lesson study is known in the United States (and other parts of the world) as a small, 
school-based collaboration, typically in the subject area of mathematics, lesson study comes in many 
different shapes and sizes in Japan. There is small and school-based lesson study as well as large-
scale, national-level lesson study (Murata & Takahashi, 2002; Lewis & Tsuchida, 1998; Shimizu, et. 
al., 2005). Different formats for lesson study meet different needs and interests of the teachers. A 
typical Japanese teacher has multiple opportunities to participate in lesson study throughout his/her 
professional career. 
 

Introducing Lesson Study to the World 
Lesson study came to attract the attention of an international audience in the past decade, and in 

2002 it was one of the foci for the Ninth Conference of the International Congress on Mathematics 
Education (ICME). It subsequently spread to many other countries and more than a dozen 
international conferences and workshops were held around the world in which people shared their 
experiences and progress with lesson study as they adopted this new form of professional 
development in their unique cultural contexts (e.g., Conference on Learning Study, 2006; Fujita, et. 
al., 2004; Lo, 2003; National College for Educational Leadership, 2004; Shimizu, et. al., 2005).  
 

Issues of Fidelity of Implementation 
There are several issues and concerns around implementing lesson study in diverse settings. For 

example, there are unique issues of implementation with preservice or inservice teachers. Other 
issues include: content knowledge competency, variations in curricula, time and availability to meet, 
administrative support and cultural differences. As a result of these difficulties in maintaining 
fidelity of implementation with the Japanese model, lesson study is being adapted to meet unique 
needs in a variety of settings. 

The limited depth of mathematical knowledge of some teacher groups attempting to implement 
lesson study, particularly at the elementary-level, has raised the question of whether lesson study 
work can be completely teacher-driven. Related to this issue is the role the outside coach or expert 
should or could play in such a lesson study community. A second issue is implementation within 
existing, traditional and/or rigidly structured curricula. Unlike the Japanese mathematics curriculum 
which provides a loosely defined framework for teachers to build off of, many curricula used in 
other countries are quite structured or scripted and not conducive to the planning cycles used in 
Lesson Study. A third issue is a lack of administrative support necessary to alter existing curricula, 
provide financial support, and schedule opportunities to meet and plan. The daily schedule of most 
elementary teachers prevents regular meetings and opportunities to collaborate. A related issue is the 
limited extrinsic reward available. Lesson Study presupposes blocks of time for teachers to work 
together. This frequently must be outside school hours and districts are often constrained by 
contracts that demand stipends and/or release time. Finally there may be fundamental differences in 
the cultures of teachers from different communities and countries. It was suggested that the fiercely 
independent nature of some cultures may limit success in building collaborative groups.  
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Research on Lesson Study 
The body of knowledge about lesson study is growing, but remains somewhat elusive and 

composed of discrete research endeavors. While the literature suggests that lesson study can 
facilitate greater reflection and more focused conversations about teaching and learning than are 
often realized with other types of professional development (Lewis, 2002), as well as specific and 
authentic conversations about management, student learning, and impact of significant and subtle 
changes in lesson design (Marble, 2006), there is still much to be learned.   

The Lesson Study Working Group is attempting to explore the existing research on lesson study 
and synthesize the work into a resource for other researchers and educators. Following are abstracts 
from current contributions. 
Lesson Study: A Partnership Model for Studying Students' Thinking 
Alice Alston, Lou Pedrick, Kim Morris, and Roya Bassu, (Rutgers University, US) 

Faculty and staff of the Robert B. Davis Institute for Learning in the Graduate School of 
Education at Rutgers are engaged with teachers and administrators of partnering districts in 
implementing school-based professional development using a modified form of Lesson Study. 
During a semester a group of ten teachers resourced by two university researchers worked together 
to develop a series of mathematical tasks intended to embody concepts that are basic to their 
district’s curriculum and address specific mathematical goals that they had identified as important 
for their students. The series of tasks were implemented in six classes including grades 5 through 8 
that were taught by members of the group during several weeks at the end of the term. The teacher-
researchers, studying the videotapes, observer notes and student work from their session, select, 
transcribe and analyze critical events from each class that provide evocative examples of the 
mathematical strategies and representations of their students, These analyses are shared in follow-up 
discussions and compiled to produce an overall analysis of the development of the mathematical 
ideas as evidenced in the mathematical activity of the students across the four grades involved in the 
Lesson Study project. The research of the university educators is based on data that includes notes 
from the earlier sessions when goals were set and the tasks developed as well as the videotapes of 
the implementations,, debriefing discussions, and the subsequent analyses and group discussions of 
the teachers. This analysis focuses on the teachers’ reflections and actions for evidence of a shift 
from surface characteristics of the classroom activity toward a closer attention to students’ thinking 
and subsequent implications for instruction. 
What’s Going on Backstage? Revealing the Work of Lesson Study  
Catherine D. Bruce & Mary Ladky, (Trent University, Canada) 

This study describes some of the key findings related to teacher activity during a grade 4-10 
lesson study project and provides an enhanced model of the lesson study stages, highlighting the 
backstage work within the cycle and thereby contributing to a more nuanced understanding of the 
process of lesson study. We explore some of the less documented teacher activity - what we are 
calling the “backstage work” - identified by the teachers in our lesson study research as they moved 
between and from stage to stage. During focus group interviews, researchers asked teachers to 
describe the activity that took place between the formal stages of the cycle. Further, in whole group 
discussions, 12 teachers built a new model illustrating their activities beyond the explicit four stages 
of lesson study that formed the backbone of their work. For example, teachers identified five main 
backstage activities between stage 1 (goal setting) and stage 2 (planning) of the lesson study cycle. 
These are: 1) searching for research on the Internet, in data bases, and in teacher resources about the 
topic in focus; 2) Conceptualizing: brainstorming, self talk and informal conversations, going off on 
valuable tangents; 3) Investigating the use of manipulatives and technological tools with students to 
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expand the teacher and students’ repertoire; 4) Keeping up with details such as on-going student 
assessment which provides insights into student learning and assists in the planning of the lesson; 
and 5) Team building and developing trust amongst lesson study team members. Other specific 
activities between stages 2 & 3, 3 & 4, and 4& 1 were also identified by teacher participants and are 
described in the paper. As researchers, we recognise this backstage work as essential to a successful 
lesson study cycle, representing the ongoing work and commitment of the teacher teams as they 
support one another through the process.  
Learning from Lesson study: Power Distribution in a Community of Practice 
Dolores Corcoran (St Patrick’s College, Dublin City University, IRE) 

Lesson study is a collaborative practice that has been a culturally embedded part of school life in 
Japan for more than one hundred years (Isoda, 2007). Its value as a means of teacher professional 
development is recognized outside Japan (Stigler and Hiebert, 1999) and the past ten years saw a 
burgeoning interest in lesson study in other educational systems, particularly in the US (Murata, 
Chapter One). Recently, lesson study was adopted in diverse school systems such as Chile and 
Thailand as a means of developing innovative classroom teaching and learning of mathematics 
(APEC, 2008). Japanese lesson study protocols are most often associated with professional 
development of practising teachers, but the study on which this research is based set out to trial 
lesson study in an Irish pre-service teacher education context. Results from the study shed light on 
aspects of lesson study that emerged during its use as part of a primary teacher education programme 
in Dublin, Ireland. 
What Japanese Lesson Study Can Teach Us About Formative Assessment Practice 
Michele D. Crockett (University of Illinois at Urbana-Champaign, US) 

In U.S. mathematics classrooms, teaching and learning are often viewed as disparate activities, a 
significant problem of practice. The purpose of this paper is to frame Japanese lesson study as 
formative assessment and to consider what it can teach us about the formative assessment practices 
that promote students’ understanding of mathematics. I use excerpts from Fernandez and Yoshida’s 
(2004) account of lesson study as illustrations of what formative assessment looks like in actual 
practice and what such practice entails – specifying clear lesson goals, making substantive 
observations, and anticipating student thinking. Japanese teachers are always acting formatively 
when engaged in the lesson study process. Student thinking is central to their pedagogical decision-
making. Lesson study as a model for practical action offers an opportunity to take seriously the role 
of assessment in teaching and learning in teachers’ professional development experiences. 
Critical Considerations for Educational Reform through Lesson Study 
Brian Doig & Susie Groves (Deakin University, AU); Toshiakira Fujii (Tokyo Gakugei University, 
Japan) 

This paper presents an argument for focussing, Lesson Study approaches to teacher professional 
development, firmly on the type and rôle of the mathematical task (hatsumon) used in the 
mathematics classroom. Drawing on research conducted in Australia and Japan, the authors argue 
that not all elements of Lesson Study, or particularly the research lesson, are equal in the impact that 
they have on children’s learning. Further, it is demonstrated how Japanese educators place a strong 
emphasis on task selection, and that this effort is largely ignored by non-Japanese adapters of Lesson 
Study. Finally, the authors suggest that in order to use Lesson Study effectively in non-Japanese 
mathematics classrooms, it is necessary to build on the current practices of teachers that are 
commensurate with the elements of Lesson Study. Examples, from Japanese and Australian 
classrooms, are presented as illustrations of how the selection of the task is critical to the outcomes 
of the lesson.  
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Approaches to Lesson Study in Prospective Teacher Education 
Maria Lorelei Fernandez (Florida International University, US) & Joseph Zilliox (University of 
Hawai’I, US) 

The work of two mathematics educators each using a lesson study approach with prospective 
teachers of mathematics is reported. One educator worked with prospective secondary teachers in a 
Microteaching Lesson Study context and the other worked with prospective elementary teachers 
during initial field experiences in K-6 schools. The lesson study experiences in both contexts 
incorporated important features of Japanese lesson study including operationalizing an overarching 
learning goal driving recursive cycles of collaborative planning, lesson observation by colleagues 
and other knowledgeable advisors, analytic reflection, and ongoing revision. The prospective 
teachers exposed their knowledge, beliefs and practices to the scrutiny of peers and other experts, 
developing and reconsidering their thinking and practices through collaboration on shared teaching 
experiences. Similarities and differences in the secondary and elementary prospective teachers’ 
experiences and learning in relation to elements comprising the lesson study approaches are 
discussed. Similarities included trajectories of their lesson plans toward more student-centered 
teaching, importance of negotiation for their learning, and value of the cooperative nature of the 
experiences for sharing varying ideas and perspectives. Differences included development of 
mathematics knowledge, extent of focus on classroom processes and management, use of videotaped 
lessons, conduct of oral reports of their group lesson study, and participation of knowledgeable 
advisors. 
Development of the Habits of Mind of a Lesson Study Community 
Lynn C. Hart (Georgia State University, US) & Jane Carriere (City Schools of Decatur, US) 

This paper describes implementation of a Lesson Study project with third grade teachers in a 
small school district to study the development of the critical lenses (habits of mind) necessary for 
meaningful Lesson Study work. Adapting the Lesson Study process to meet school system needs, 
two outside facilitators stimulated development of the critical lenses through mathematics 
explorations and probing/what if questioning. Using a qualitative methodology and the group as the 
unit of analysis, data were coded for evidence of and change in the lenses. After one year, the 8 
participating teachers showed a qualitative difference in two of the three lenses: the student lens and 
the curriculum developer lens. No change was seen in the researcher lens. 
Lesson Study: A Case of the Investigations Mathematics Curriculum with Practicing Teachers at 
Fifth Grade 
Penina Kamina (SUNY College at Oneonta, US) & Patricia Tinto ( Syracuse University New York, 
US) 

Practicing teachers are often at the heart of reform initiatives and often with little professional 
development or support. Teachers wrestle with shedding their old pedagogical beliefs, understanding 
mathematical content, and learning how to use curricular materials such as Investigations (Putnam, 
2003). The discrepancy between the implementers’ prior experiences, National Council of Teachers 
of Mathematics (NCTM) principles, and Investigations’ objectives presented an important problem 
for study. A qualitative case study research design was used to explore teachers’ implementation of 
Investigations’ mathematics in fifth-grade classrooms. Data were collected in the form of lesson 
plans and audiotape and videotape of lesson study meetings. Results of this study showed that 
teachers that collaborated with each other in lesson-study meetings were quickly able to establish 
new classroom instructional approaches and implement new curriculum. Their enhanced content 
knowledge, pedagogical knowledge, and reformed pedagogical beliefs that emerged from 
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participating in lesson study enabled these teachers to be versatile in implementing the Investigations 
curriculum.  
Lesson Study as a Learning Environment for Coaches of Mathematics Teachers 
Andrea Knapp (University of Georgia, US), Megan Bomer (Illinois Central College, US), Cynthia 
Moore (Illinois State University, US) 

This qualitative study focused on the professional development of two Coaches of mathematics 
teachers and one classroom Teacher as they engaged in the lesson study process. The Coaches 
progressively designed, taught, and refined standards-based lessons which they co-taught with the 
classroom Teacher. Participants developed three aspects of mathematical knowledge for teaching 
(MKT): knowledge of content and teaching (KCT), knowledge of content and students (KCS), and 
specialized content knowledge (SCK) (Hill, Rowan & Ball, 2005). KCT developed as the Coaches 
and Teacher collaborated during lesson study to place a stronger emphasis on inquiry in lessons. In 
particular, Coaches investigated reform curricula and research which enhanced the Teacher’s KCT. 
In addition, the group developed KCS as they listened to students and observed them on videotape. 
Furthermore, Coaches developed KCS from the Teacher as the Teacher shared with Coaches his 
knowledge of student difficulties. Finally, the Coaches and Teacher developed SCK by considering 
mathematical perturbations from the lesson with the Teacher. Thus, lesson study mutually enhanced 
the teaching abilities of both Coaches and the Teacher whom they supported. 
Lesson Study: The Impact on Teachers’ Content Knowledge 
Rachelle D. Meyer & Trena Wilkerson (Baylor University, US) 

This multiple case study examined the effects lesson study had on middle school mathematics 
teachers’ content knowledge. Participants for this study consisted of 26 middle school mathematics 
teachers, from a large urban school district, who formed eight lesson study groups. The researchers 
sought to examine the experiences and impact lesson study had on the participating teachers’ content 
knowledge in mathematics from the eight case studies. More specifically, the researchers focused on 
(1) the need for teachers’ content understanding while planning the research lesson and (2) the 
participating teachers’ growth in content knowledge. 

This qualitative research used seven measures to gather data which consisted of the following: 
two baseline surveys; transcripts from planning and reflection sessions; observation notes; lesson 
plans; and a reflective questionnaire. Analysis of the data consisted of both a within and across case 
comparison. For the with-in case analysis, each case was first treated as a comprehensive case in and 
of itself. Once the analysis of each case was completed, a cross-case analysis began in order to 
develop more sophisticated descriptions and more powerful explanations. Data revealed lesson study 
did improve teachers’ content knowledge for three of eight case studies as a result of teacher 
collaboration.  
Lesson Study in Preservice Elementary Mathematics Methods Courses:Connecting Emerging 
Practice and Understanding 
Aki Murata & Bindu Pothen (Stanford University, US) 

The paper outlines how lesson study is used in preservice elementary mathematics methods 
courses to support preservice teachers’ connections between their emerging practice and 
understanding. The course structure is described, and week-by-week course activities and 
assignments are summarized. Lesson study in preservice teacher education program has a potential 
to support on-going teacher learning by connecting the course experiences with field-based 
assignments. By continuously focusing on student learning of mathematics, research lesson teaching 
ties together the various experiences in the course to help preservice teachers develop new 
understanding of their practice, therefore a professional vision. Pedagogical content knowledge is 
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meaningfully developed in the collaborative learning settings. Short summary of research findings 
on teacher learning is presented based on quantitative and qualitative data. 
Lesson Study:  A Tale of Two Journeys 
Jo Clay Olson (Washington State University, US), Paul White (Australian Catholic University), Len 
Sparrow (Curtin University, Australia) 

Lesson study is accepted in Japan as an effective model for teacher professional development 
and growth. There is less evidence that such a model is viable in international settings. This paper 
adds to the pool of evidence as it reports on the experiences of five elementary teachers with a lesson 
study approach to professional development over a year. Two groups were formed, but the results of 
their experiences were different. One group accepted the challenges highlighted by the lesson study 
process. They reflected on and changed their classroom practice in fundamental ways. The other 
team rejected the challenges and maintained their traditional pedagogy. System-wide requirements, 
for example state testing, constrained the development of one team while the ability to personalize 
insights from the lesson study process and critical reflection became a catalyst to personal 
professional growth for the other. 
The Intersection of Lesson Study and Design Research: A 3-D Visualization Curriculum 
Development Project 
Jacqueline Sack (Rice University) and Irma Vazquez (University of St. Thomas ) 

In this paper, we share how two teacher-researchers and a teacher apply the principles of lesson 
study in our research process for developing a 3-dimensional visualization program for elementary 
children. We share a common belief that children learn best through social constructivist approaches 
(Cobb et al., 2001) with explicit opportunities for differentiated instruction (Tomlinson, C. A. & 
McTighe, J., 2006). While many lesson-study experiences offer teachers opportunities for personal 
professional development for deepening their pedagogical content knowledge, our focus is to 
develop and investigate new curricular materials that enable students to move among various visual 
and verbal representations (van Niekerk, 1997). We utilize a dynamic computer interface, 
Geocadabra (Lecluse, 2005) that simultaneously integrates several of these representations. Our goal 
is to extend the body of knowledge on how children think and learn about geometric space, 
ultimately to publish instructional materials to support children’s development of 3-dimensional and 
2-dimensional spatial reasoning skills. Our study takes place in a linguistically- and academically-
diverse inner-city school, during its after-school program, with third- and fourth-grade students, for 
one hour each week for each grade level. We illustrate our adaptation of lesson study as our process 
for lesson design, enactment, reflection, and iterative re-enactment. 
Preparing for Lesson Study: Tools for Success 
Mary Pat Sjostrom (Chaminade University of Honolulu, US) & Melfried Olson 
(University of Hawai‘i at Mānoa, US) 

This paper describes the experiences of one group of elementary school teachers as they engaged 
in a three-year professional development experience culminating in a one-year lesson study program. 
The partners in this project, university professors, school administrators and teachers, worked 
together to modify the professional development plan to serve the needs of the teachers and students. 
Although lesson study was not part of the original plan, it became the focus of year three. This case 
study illustrates the difficulties encountered in introducing lesson study, and examines the way in 
which the components of the first two years, notably the Reflective Teaching Model, collaborative 
problem solving and analysis of student work, helped pave the way for success in lesson study in 
year three.  
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Towards Improving Pedagogical and Content Knowledge Through Lesson Study: Insights gained 
from working with schools in the U.S. 
Makoto Yoshida (Center for Lesson Study, William Paterson University, US) &  
William C. Jackson (Scarsdale Public Schools, US)  

An important issue that has surfaced in conducting lesson study in the U.S. is how lesson study 
can help improve teachers’ pedagogical and content knowledge, particularly in elementary and 
middle schools. Even though more and more teachers and schools are conducting lesson study in the 
U.S., we have not found the most effective ways to cope with this issue. 
Based on their experiences working with elementary and middle schools in the U.S., the authors 
share ideas and provide examples on how to address this issue. Important insights, such as 
improving the research lesson planning process through kyozaikenkyu (instructional material 
investigation), learning to build students’ conceptual understanding by studying coherent and 
focused curricula, understanding the importance of process standards, and using knowledgeable 
others to support the lesson study process are discussed. 
Lesson Study as a Framework for Pre-service Teachers’ Early Field-Based Experiences 
Paul W. Yu (Grand Valley State University, US) 

The theoretical framework for this study is based on a review of the literature across two 
different, yet mutually relevant, areas of research in mathematics education, pre-service teachers’ 
field based experiences (Zeichner, 1981) and Japanese lesson study (Stigler & Hiebert, 1999; 
Takahashi and Yoshida, 2004). Zeichner (1981) discusses two contrasting issues related to pre-
service teachers’ field based experiences. First, these field-based experiences are perceived to be a 
necessary component for teacher preparation. In contrast, some scholars question the significance of 
the experience other than an enculturation into the existing socio-cultural norms of the teaching 
profession. An emerging framework for in-service teacher improvement is lesson study.  

This paper reflects on the use of lesson study as a framework for pre-service teachers' field-based 
experiences that takes place early in their collegiate coursework. The goal was to use lesson study to 
give students a different model for professional development, that is (1) collaborative, (2) focused on 
children’s understanding of mathematics, and (3) exposes the pre-service teachers to the nature of 
mathematics instruction. The paper describes how lesson study was modified to accommodate the 
difference between pre-service and in-service teachers’ experiences, and reflects on the enactment of 
these modifications in the collegiate course. 
 

Future Goals for the Working Group 
It is clear that the body of knowledge around lesson study is in its infancy and assembling work 

that is currently being done would be productive. Plans were initiated for putting together an edited 
book where individuals conducting research in Lesson Study could share their findings, questions, 
and other issues. The group agreed that this would be useful to others with interest in implementing a 
Lesson Study program or with questions about the state of research on Lesson Study. Discussion on 
the format and conceptual organization of the proposed book is on-going and a primary goal of this 
working group. 
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The Working Group will focus attention both to issues of mathematics teaching and learning and 
to issues of equity and diversity. This will include topics such as analyzing what counts as 
mathematics learning, in whose eyes, and how these culturally bound distinctions afford and 
constrain opportunities for students of color to have access to mathematical trajectories in 
school and beyond. Further, asking questions about systematic inequities leads to methodologies 
that allow the researcher to look at multiple levels simultaneously. This work begins to take a 
multifaceted approach, aimed at multiple levels from the classroom to broader social structures, 
within a variety of contexts both in and out of school, and at a broad span of relationships 
including researcher to study participants, teachers to schools, schools to districts, and districts 
to national policy.  
 

Brief History 
This Working Group will build on and extend the work of the Diversity in Mathematics 

Education (DiME) Group, one of the Centers for Learning and Teaching (CLT) funded by the 
National Science Foundation (NSF). DiME is a group of emerging scholars (new faculty and 
graduate students) who graduated from, or are still studying at, three major universities 
(University of Wisconsin-Madison, University of California-Berkley, and UCLA). The Center is 
dedicated to creating a community of scholars poised to address some critical problems facing 
mathematics education, specifically with respect to issues of equity (or, more accurately, issues 
of inequity). 

 The DiME Group (as well as subsets of that group) has already engaged in important 
scholarly activities. After two years of a cross-campus collaboration dedicated to studying issues 
framed by the question of why particular groups of students (ie. poor students, students of color, 
English learners) fail in school mathematics in comparison to their white (and sometimes Asian) 
peers, we presented a symposium at AERA 2005 (DiME, 2005). This was followed by the 
writing of a chapter in the recently published Handbook of Research on Mathematics Teaching 
and Learning which examined issues of culture, race, and power in mathematics education 
(DiME, 2007). In 2006, a group of four DiME graduates, currently new faculty at universities 
across the United States, applied to the NSF for a grant to support work on synthesizing research 
in the area of Professional Development that addresses both issues of mathematics and issues of 
equity and diversity. The proposal received good reviews, but was not funded. In an effort to 
expand the community of scholars interested in this work, DiME, at AERA in 2008, sponsored a 
one day Professional Development session examining equity and diversity issues in Mathematics 
Education. 

The Center has historically held DiME conferences each summer. These conferences provide 
a place for fellows and faculty to discuss their current work as well as to hear from leaders in the 
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emerging field of equity and diversity issues in mathematics education. This past summer of 
2008, the DiME Conference was opened to non-DiME graduate students with similar research 
interests from other CLTs such as the Center for the Mathematics Education of Latinos/as 
(CEMELA), as well as graduate students not affiliated with an NSF CLT. This was an initial 
attempt to bring together a larger group of emerging scholars whose research focuses on issues 
of equity and diversity in mathematics education. In addition, DiME graduates, as they have 
moved to other universities have begun to work with scholars and graduate students with 
connections to other NSF CLTs such as MetroMath and the Urban Case Studies Project in MAC-
MTL whose projects also incorporate issues of equity and diversity in mathematics education.  

It is important to acknowledge some of the people whose work in the field of diversity and 
equity in mathematics education has been important to our work. Theoretically we have been 
building on the work of such scholars as Marta Civil (Civil & Bernier, 2006; González, Andrade, 
Civil, & Moll, 2001), Megan Franke (Franke, Kazemi, & Battey, 2007),Eric Gutstein (Gutstein, 
2006), Danny Martin (Martin, 2000), Judit Moschkovitch (Moschkovich, 2002), and Na'ilah 
Nasir (Nasir, 2002). We have as well been building on the work of our advisors, Tom Carpenter 
(Carpenter, Fennema, & Franke, 1996), Geoff Saxe (Saxe, 2002), Alan Schoenfeld (Schoenfeld, 
2002), and again Megan Franke (Kazemi & Franke, 2004), as well as many others outside of the 
field of mathematics education.  

A significant strand of the work of the DiME Center for Learning and Teaching included 
implementing professional development programs grounded in teachers’ practice and focusing 
on equity at each site. The research and professional development efforts of DiME scholars are 
deeply intertwined, and much of the research thus far produced by members of the DiME Group 
addresses issues of equity within Professional Development. Additionally, since the majority of 
the DiME graduates, as new professors, along with a number of current Fellows, are engaged in 
teaching Mathematics Methods courses, the integration of issues of equity with issues of 
mathematics teaching and learning in Math Methods has become a site of interest for research. 
As suggested, these two areas will be the focus for much of our research plans in the near future. 
These scholars have learned through their work with DiME that collaboration is a critical 
component to our work and are eager for an opportunity to continue working together as well as 
to expand the group to include other interested scholars with similar research interests. 

 
Focal Issues 

Under the umbrella of attending to equity and diversity issues in mathematics education, 
researchers are currently focusing on such issues as teaching and classroom interactions, 
Professional Development, pre-service teacher education (primarily in Math Methods classes), 
student learning (including the learning of particular sub-groups of students such as African-
American students or English learners), and parent perspectives. Much of the work attempts to 
contextualize the teaching and learning of mathematics within the local contexts in which it 
happens, as well as to examine the structures within which this teaching and learning occurs (e.g. 
large urban, suburban, or rural districts; under-resourced or well-resourced schools; and high-
stakes testing environments). How the greater contexts and policies at the national, state, and 
district level impact the teaching and learning of mathematics at specific local sites is an 
important issue, as is how issues of culture, race, and power intersect with issues of student 
achievement and learning in mathematics. 

Existing research tends either to focus on professional development in mathematics (e.g., 
Barnett, 1998; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Kazemi & Franke, 2004; 
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Lewis, 2000; Saxe, Gearhart, & Nasir, 2001; Schifter, 1998; Schifter & Fosnot, 1993; Sherin & 
vanEs, 2003), or professional development for equity (e.g., Sleeter, 1992, 1997; Lawrence & 
Tatum, 1997a). Little research exists, however, which examines professional development or 
mathematics methods courses that integrate both. The effects of these separate bodies of work, 
one based on mathematics and one based on equity, limits the impact that teachers can have in 
actual classrooms. The former can help us uncover the complexities of children’s mathematical 
thinking as well as the ways in which curriculum can support mathematical understanding in a 
number of domains. The latter has produced a body of literature that has helped to reveal 
educational inequities as well as demonstrated ways in which inequities in the educational 
enterprise could be over come.  

To bridge these separate bodies of work,  the Working Group will focus on analyzing what 
counts as mathematics learning, in whose eyes, and how these culturally bound distinctions 
afford and constrain opportunities for students of color to have access to mathematical 
trajectories in school and beyond. Further, asking questions about systematic inequities leads to 
methodologies that allow the researcher to look at multiple levels simultaneously. This research 
begins to take a multifaceted approach, aimed at multiple levels from the classroom to broader 
social structures, within a variety of contexts both in and out of school, and at a broad span of 
relationships including researcher to study participants, teachers to schools, schools to districts, 
and districts to national policy.  

Some of the research questions that the Working Group will consider are: 
Teachers and Teaching 

• What are the characteristics, dispositions, etc. of successful mathematics teachers for all  
students across a variety of local contexts and schools? How do they convey a sense of 
purpose for learning mathematical content through their instruction? 

• How do beginning mathematics teachers perceive and negotiate the multiple challenges 
of the school context?  How do they talk about the challenges and supports for their work 
in achieving and equitable mathematics pedagogy. 

• What impediments do teachers face in teaching mathematics for understanding? 
• How can mathematics teachers learn to teach mathematics with a culturally relevant 

approach? 
• What does teaching mathematics for social justice look like in a variety of local contexts? 
• What are the complexities inherent in teacher learning about equity pedagogy when 

students come from a variety of cultural and/or linguistic backgrounds all of which may 
differ from the teacher’s background? 

• What are dominant discourses of mathematics teachers? 
 Students and learning 

• What is the role of student academic and mathematics identity in achievement? 
• How do students out-of-school experiences influence their learning of school 

mathematics? 
• What is the role of perceived/historical opportunity on student participation in 

mathematics?  
Policy  

• How does an environment of high stakes standardized testing affect whether and how 
teachers teach mathematics for understanding? How does this play out across a variety of 
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local contexts? How can we support teachers to teach mathematics for understanding in 
that environment? 

• How do we address issues of tracking/ability grouping and in particular the grouping of 
students by test designation? 

 
Plan for Working Group 

The overarching goal of the group is to facilitate collaboration within the growing 
community of scholars and practitioners concerned with understanding and addressing the 
challenges of attending to issues of equity and diversity in mathematics education. The PME 
Working Group will provide a forum for these scholars to come together with other interested 
researchers who identify their work as attending to equity and diversity issues within 
mathematics education in order to develop plans for future research. Our main goal for this year, 
then is to begin a sustained collaboration around key issues (theoretical and methodological) 
related to research design and analysis in studies attending to issues of equity and diversity in 
mathematics education. 

In order to support this collaborative research, smaller research groups will be formed from 
participants in the large Working Group. These groups will be dependent on the research 
interests of the Working Group participants. For example, a smaller group may discuss research 
on in-service teachers engaged in Professional Development, or research done within the context 
of a Mathematics Methods course.  

Much of our work is qualitative in nature and we recognize that one way to increase the 
number of participants is to conduct research across several sites. In order to do this, we need to 
use the same protocols for data gathering. Our intention is to use some of the PME meeting time 
to share and/or develop, and revise interview, observation and other research protocols which 
may be used across a variety of research projects. It is anticipated that one aspect of the sub-
group meetings will be to discuss potential funding opportunities. Here we may identify and 
begin to draft grants proposals to fund research across contexts.  

More specifically, we will work across these various areas in the following way.  
SESSION 1:  

• Presentation and discussion of goals of Working Group. 
• Introduction of participants 
• Work on such tasks as examining research protocols or sharing existing data. (Sample 

protocols for classroom observation, video analysis, and interviewing will be 
available. Plans are in place to invite collaborators to examine existing data sets.) 

SESSION 2: 
• Sub-group meetings to discuss plans to address research questions such as those set 

forth in the Focal Issues. 
• Further work on examination and refining of protocols and/or data sharing from 

Session 1. 
SESSION 3: 

• Sharing and discussion of work from Sessions 1 and 2. 
• Planning for further collaboration, including designation of a person who will 

facilitate each sub-group. 
• Developing a tentative agenda for future Working Group meetings 
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Anticipated Follow-up Activities 
It is anticipated that interested Working Group participants will align themselves with other 

participants who have similar research programs (as described more fully above). It is also 
anticipated that Interest Groups will also form along the lines of research protocols. That is, there 
may be researchers who use video, or classroom observations in their research who are interested 
in exploring further some video analysis or classroom observation protocols to use in their work. 
And so it is anticipated that Working Group participants will leave the conference ready to work 
on developing particular aspects of their research (such as particular data gathering methods) 
and/or ready to develop a new project in collaboration with other Working Group participants. It 
is our hope that the work of this group will begin at this Conference in Atlanta in 2009, and we 
anticipate it will continue for many years.  

 
Previous Work of the Group 

Not applicable. 
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This working group continues its focus on the study of preservice elementary teachers’ content 
knowledge in mathematics for teaching. Participants continue the considerations of (a) the types 
of knowledge needed for teachers of mathematics, (b) principles that guide the design of courses 
to facilitate the development of such knowledge, (c) research studies that have been conducted in 
these areas, (d) implications of existing research studies, and (e) identification of further 
research needs. Dialogues (on- and off line), resource sharing, as well as collaboration among 
members of the study group will be encouraged and facilitated both during the conference and 
afterwards. 
 

Focuses and Aims of the Working Group 
Defining the Types of Knowledge Needed for Teaching Elementary School Mathematics 

One of the goals of this working group is to further discuss and conceptualize the concept 
and aspects of mathematical content knowledge for teaching. The definition of the knowledge 
needed to teach mathematics has been the focus of recent discussions in the mathematics 
education community. Groups are meeting at various conferences (for example: PME-NA 2007, 
AMTE 2008, AMTE 2009) to gain a better understanding of what preservice elementary school 
teachers should know in order to become effective teachers  and to explore how mathematics 
educators can assist preservice and in-service elementary school teachers in developing  such 
knowledge.   

Hill, Ball, & Shilling (2008) introduced a framework for distinguishing the different types of 
knowledge included in the construct of mathematical knowledge for teaching (see Figure 1).  
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Figure 1. Domain map of mathematical knowledge for teaching (Hill, Ball, & Schilling,         
2008, p. 377). 
 
This framework distinguishes between subject matter knowledge and pedagogical content 

knowledge. Subject matter knowledge is subdivided into common content knowledge, 
specialized content knowledge, and knowledge on the mathematical horizon. Pedagogical 
content knowledge is subdivided into knowledge of content and students, knowledge of content 
and teaching and knowledge of curricula. Hill, Rowan & Ball (2005) provide empirical support 
linking teachers’ “mathematical knowledge for teaching” to student achievement gains.  In their 
study, they define mathematical knowledge for teaching as “mathematical knowledge used to 
carry out the work of teaching mathematics” (p. 373).  Examples of such knowledge include 
“explaining terms and concepts to students, interpreting students’ statements and solutions, 
judging and correcting textbook treatments of particular topics, using representations accurately 
in the classroom, and providing students with examples of mathematical concepts, algorithms, or 
proofs” (p. 373). 

This framework was discussed among participants of a symposium at AMTE.10 All 
participants found the framework to be useful when discussing different types of knowledge they 
want their preservice teachers (PSTs) to develop. However, the distinctions among the different 
types of knowledge seemed blurry at times11. For example, Hill et al (2008) described common 
content knowledge (CCK) as “knowledge that is used in the work of teaching in ways in common 
with how it is used in any other professions or occupations that also use mathematics” (p. 377) 
and specialized content knowledge (SCK) as “the mathematical knowledge that allows teachers 
to engage in particular teaching tasks, including how to accurately represent mathematical ideas, 
provide mathematical explanations for common rules and procedures and examine and 
understand unusual solution methods or problems” (p. 377). Considering that we want children 
to not simply be able apply the correct procedures but be able to go beyond that and understand 
why the procedures work, the distinction between the two types of knowledge is not clear. In 
recent years, several influential organizations have called for a focus on conceptual 
understanding (Kilpatrick, Swafford, & Findell, 2001; Lundin & Burton, 1998; National Council 
of Teachers of Mathematics, 2000) to help students become successful mathematics learners 
(Thompson, Philipp, Thompson, & Boyd, 1994). Thus, if a goal of instruction is that children 

                                                 
10Christine Browning, Meg Moss, Randy Phillip, Eva Thanheiser, Tad Watanabe 
11 Ball, Thames & Phelps (2008) acknowledge the problem of the fuzzy boundary among their 
six sub-domains. 
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understand the underlying concepts (i.e. being able to explain why three digit subtraction works) 
) it appears that teachers must be able to support children to develop SCK, or at least part of it? 
Similar issues were raised when comparing other types of knowledge. For example, in the 
domain map of mathematical knowledge for teaching, knowledge of content and students resides 
in the PCK area, however, in recent work (Philipp, et. al. 2007), knowledge of content and 
students was used as a means to develop specialized content knowledge. Thus a connection to 
children’s mathematical thinking may cross the boundaries between SCK and PCK. 
Developing a Framework for Design Principles for Preservice Elementary School Teacher 
Courses 

Related to the question of how best to prepare elementary school teachers, the working group 
will discuss the design principles that guide the development of the mathematics content courses 
for PSTs and their impact on the development of PSTs’ knowledge. The participants of a 
symposium at AMTE found they share the following principles. The working group will 
continue to explore components of the structure. 

1. Mathematical ideas are built on the PSTs’ currently held conceptions. 
2. “Model” teaching. 
3. Connect to other kinds of knowledge 

– Knowledge of content and teaching 
– Knowledge of content and children 
– Knowledge of curriculum 

Participants found their attempts to build mathematical ideas from PSTs’ currently held 
conceptions take two different approaches. For some teacher educators this means identifying 
what conceptions PSTs hold when they enter our classrooms and building on those conceptions. 
This approach grows out of a rich cognitive-science paradigm focused upon children’s prior 
knowledge in learning situations, a consideration that is equally important in work with adults 
(Bransford, Brown, & Cocking, 1999). Once mathematics teacher educators (MTEs) know PSTs 
initial conceptions we need to understand how those conceptions develop (this is discussed in 
more detail below). Other teacher educators support the development of PSTs’ conceptions by 
limiting the mathematical ideas that can be used in explorations. Only those ideas developed by 
the classroom community are allowed. Both of these approaches could be employed 
simultaneously. For example, rules related to area formulas for polygons would have to be 
developed as a class, but they could be built on the conceptions of area the PSTs bring with 
them. 

For all of us, modeling instruction means that we teach the way we would like our PSTs to 
conduct their classrooms. This includes engaging PSTs in creating their own knowledge, 
facilitating small group and classroom discussions, and conducting formative assessment of 
PSTs’ knowledge and development to inform the instruction. In short, teacher educators model 
practices consistent with those described in the Principles and Standards for School Mathematics 
(2000). What is less clear is how modeling impacts PCK knowledge and later practice. This open 
question is a critical component of the larger research agenda developed by the working group. 

Many MTEs believe that content knowledge is connected to and supported by other types of 
knowledge. A goal of MTEs’ practice is the development of connections between knowledge.  
Pedagogy employed by MTEs’ in our attempts to achieve this goal include explicating our own 
teacher moves (connecting to knowledge of content and teaching), using artifacts of children’s 
mathematical thinking (connecting to knowledge of content and children), and explaining our 
own curriculum decisions (connecting to knowledge of content and curriculum). For the case of 
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modeling, little is known about the impact of MTEs’ pedagogy on PSTs’ knowledge and 
connections within that knowledge. Notable exceptions include Philips et al. (2007) and 
Harkness, D’Ambrosio, and Morrone (2007) .  Both sets of authors demonstrate the impact of 
particular activities on the development of PSTs beliefs and conceptions. 
Discussing “The Big Ideas” of Preservice Elementary Content Courses 

A recurring theme in discussions of MTEs is focused on curriculum.  What “big ideas” 
should be addressed in the preservice elementary courses? Which mathematics content topics 
should be included? Structures for preservice education vary across universities. Some have as 
little as a one semester course devoted to content and methods; others have up to 4 semesters for 
content and an additional methods course. The rest rank somewhere in the middle. No matter 
how many courses are included in a program, MTEs agree that we cannot teach PSTs all they 
need to know. This commonly held view brings us back to the question of focus. What is the 
essential content for the courses we have devoted to mathematics content and pedagogy? Or is 
the process of teaching mathematics content more important t than the particular content itself?? 
Given that MTEs focus on helping the preservice elementary teachers identify what they do not 
know and then assist them in building knowledge, we are working to help PSTs make sense of 
what it means to understand mathematics (as well as helping their beliefs and attitudes about 
learning mathematics). Could our main goal be in teaching this process? Thus far it is not clear 
yet what effects our preservice teacher education classes have on the PSTs’ teaching. There 
seems to be common agreement among MTEs that we want to prepare our PSTs to be life-long 
learners. How can this be done? In our working group we will focus on further exploring this 
question. 
Synthesizing the Research on Preservice Elementary Teachers’ Content Knowledge and 
Identifying Areas of Further Study  

This working group seeks to synthesize the research on PSTs’ content knowledge and 
identify areas of further study. This is essential so we understand our PSTs better when they 
enter our own classrooms. Some research has been conducted on the subject matter knowledge 
of preservice and in service teachers. Much of this research has focused on the teachers’ lack of 
mathematical content knowledge needed to teach in key areas such as numbers and operations, 
(Ball, 1988/1989; Graeber, Tirosh, & Glover, 1989; Kastberg, 2007; Lo, Grant, & Flowers, 
2008; Ma, 1999; McClain, 2003; Simon & Blume, 1996; Thanheiser, 2005), probability and 
statistics (Canada, 2007; Gfeller, Nieses, & Lederman, 1999; Jacobbe, 2007, Leavy & 
O'loughlin, 2006), geometry and rational numbers (Browning, et al, 2007; Jones & Mooney, 
2002; Menon, 1998; Quinn, 1997). For example, Thanheiser (2005) found that only 3 of 15 
preservice teachers held a conception of place value that allowed them to explain how and why 
the subtraction algorithms with three-digit numbers work. MTEs need more empirical evidence 
of what learning opportunities most contribute to more knowledgeable and confident teachers in 
order to make more informed changes to their programs (Mewborn, 2000). Large scale studies 
that help MTEs better understand how, when and where preservice elementary teachers might 
gain more specialized content knowledge are a critical need in the field (Adler, Ball, Krainer, 
Lin, Novotna, 2004; Mewborn, 2000)  

To help teachers develop the content knowledge needed to teach mathematics educators need 
to understand the PSTs’ currently held conceptions. As the authors of The Mathematical 
Education of Teachers suggest, “The key to turning even poorly prepared prospective 
elementary teachers into mathematical thinkers is to work from what they do know” (CMBS, 
2001, p. 17). While some research has been conducted on identifying PSTs’ conceptions, for 
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example Thanheiser (2005) introduced a framework for PSTs’ conceptions of multidigit whole 
numbers, there is still much to be learned about preservice teachers’ conceptions. A potentially 
fruitful orientation toward such work includes the examination and testing of learning trajectories 
developed from work with children. While the trajectories may not have the necessary 
longitudinal dimension to help explain adult development, they certainly contain elements of use 
to MTEs as illustrated by the work of McClain (2003). Further research on conceptions and their 
development is essential for the further development of teacher education courses. 
Developing/Continuing Individual or Collaborative Projects to Move the Field  
Forward, Support Each Other’s Research Efforts, and Keeping Each Other Updated of New 
Studies, Findings, and Progress in Our Own Work 

A central goal of this working group is to support existing collaborations and develop new 
ones. Subgroups of the organizers of the proposed working group have met previously at 
professional conferences including PME-NA at Toronto and Mérida and Lake Tahoe to discuss 
shared research interests. A discussion group was held at PME-NA in Lake Tahoe. These 
meetings and discussions have led to a joint symposium for NCTM research pre-session at 
Atlanta in March 2007 and most recently a joint symposium at AMTE in Orlando, 2009. Our 
research is similar in its focus pertaining to preservice elementary teachers’ content knowledge 
but varies in specific content, use of prior work (conceptual analysis of content, prior work with 
children, prior work with adults), and theoretical framework.  

At PME-NA 2007 we agreed on the need for the construction of a research base for the study 
of preservice teacher content knowledge. This includes a need to synthesize and summarize 
existing (completed and current) research and findings and develop a research agenda. This work 
can then support the development of research questions focused on areas where findings might 
inform our understanding of the impact of course work on knowledge development and practice. 
Additional needs were identified as follows:  

o Share results with each other and the wider research community. 
o Share resources (tasks, videos, materials, etc.) with each other and the wider 

research community. 
o Explicate theoretical frameworks used by MTEs in research and teaching. 

Questions were also raised about the implications of research on PSTs’ content knowledge. In 
particular, participants wondered how the research influences the work of mathematics educators 
in the classroom. How does this research influence the work of mathematics educators in the 
classroom? Towards the goal of establishing ongoing collaborations a subgroup of the 
participants of this working group has started to meet regularly (once a month) via the internet 
(live chat) to discuss various topics relating to preservice elementary teacher education. The 
organizers seek to expand this group, sustain conversations, and work toward the production of 
research syntheses, a research agenda, and elaboration of theoretical frameworks. 
Developing Common Resources for Teaching PSTs 

One of the goals of this working group will be to discuss/share/develop common resources 
for teaching PSTs. For example, many of us use artifacts of children’s mathematical thinking in 
our courses. In addition to discussing our motivation for doing so and how we use these artifacts 
to improve content knowledge, there is a need to make such resources (and the rationale for 
them) accessible to a broader audience. One solution for this might be a website but further 
discussion is needed on how such a website could be established, maintained and what 
information should be presented on this website. 
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Outline of Working Group Sessions 
In our first session, we will start with an introduction and overview of the working group.  

This will be followed by a brief summary of the last working group (PME-NA 2007) and other 
activities since (working groups at AMTE 2008 & 2009; symposium at NCTM 2007). 

Brief introduction/presentations will be given by some the participants during which they 
will discuss: 

 research s/he is conducting at his/her institution,  
 theoretical framework and prior studies, 
 current findings,  
 plans to conduct further research, and 
 challenges s/he sees in conducting this line of research. 
 design principles for teaching preservice teachers. 

Eva Thanheiser will serve as the moderator to facilitate the discussion. Before the end of the 
session Christine Browning and Eva Thanheiser will briefly introduce the monthly internet chat 
meetings and invite everyone to participate. These meetings will be hosted by various 
participants.  
 

In our second session, we will start by forming small groups to work on the following tasks:  
 React to/discuss definitions of the type of knowledge needed for teaching elementary 

school mathematics. 
 React to/discuss design principles for preservice teacher courses. 
 React to/discuss “the big ideas” of preservice elementary content courses. 
 React to/discuss synthesis of the research on preservice elementary teachers’ content 

knowledge and identifying areas of further study. 
o Generate research questions from the identified areas and brainstorm research 

methods for investigating this question.   
o Identify the resources needed to support such study. 

 React to/discuss individual or collaborative projects that can move the field forward, 
support each other’s research effort, and keep each other updated of new studies and 
findings in this area. 

 React to/discuss ideas for developing common resources for teaching PSTs: 
Then each group will take turns sharing their work.  We hope to stimulate interest for 

collaboration through these focused discussions.  

In our third session we will synthesize the current status of the working group and discuss 
modes of communication to sustain collaboration throughout the year. A calendar of discussion 
chats will be established and published through an online forum.  

Follow-Up Activities 
Participants will publish an on-line forum for open discussion of topics of interest. In 

addition monthly online chat meetings will be established. Possible collaborations may include 
joint research projects, mini-conferences, and a book proposal to the Mathematics Teacher 
Education series at Springer.   
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Recent foci in the Working Group have been to understand: (1) students’ and teachers’ 
reasoning when simulating probability experiments with hands-on materials and computer tools, 
and (2) connections between probability and statistical concepts such as inference and 
variability. At PME-NA 31 the group will build on the research agenda that it has been pursuing 
over the past several years. Group members will discuss recent literature reviews on learning 
and teaching probability as it relates to statistical reasoning, revisit previous research and 
discuss designs for cross-national, collaborative research to be conducted in 2010. Emerging 
research from Working Group members will lead to a set of papers that could comprise a 
monograph, journal special issue, and/or joint presentations at future conferences. 

 
Nature and Topic of the Working Group 

This Working Group was formed at PME-NA 20 (Maher, Speiser, Friel, & Konold, 1998) 
and has convened annually at PME-NA since, except for the joint PME and PME-NA meeting 
held in 2008 in Mexico. Through shared research, rich and engaging conversations, and analysis 
of instructional tasks, we continually seek to understand how students learn to reason 
probabilistically, with particular focus this year on how probabilistic reasoning with simulations 
can support statistical reasoning.  
 

Aims of the Working Session 
There are several critical aims that guide our work together. In particular, we are examining: 

(1) mathematical and psychological underpinnings that foster or hinder students' probabilistic 
reasoning, (2) the influence of experiments and simulations in the building of ideas by learners, 
particularly with emerging technology tools, (3) learners’ interactions with and reasoning about 
data-based tasks, representations, models, socially situated arguments and generalizations, (4) the 
development of reasoning across grades, with learners of different cultures, ages, and social 
backgrounds, and (5) the interplay of statistical and probabilistic reasoning and the complex role 
of key concepts such as sample spaces and data distributions. Through our work, we have 
stimulated collaborations across universities and plan to engage in and support additional 
research related to the complexity of learning to reason probabilistically, particularly when 
modeling probability situations with tools that enable experiments and simulations.  
 

Literature Background  
The ways in which students reason about the likelihood of an event can be considered in 

terms of an objective or subjective view of probability (e.g., see Batanero, Henry, & Parzysz, 
2005; Borovcnik, Bentz, & Kapadia, 1991). In an objectivist perspective, probability is viewed as 
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an inherent property of the event and can be well estimated either through a classical or 
frequentist approach. A repeated finite set of trials would most likely yield a different 
experimental estimate of the actual probability and may in fact allow one to change the estimate 
of the probability based on new data. In a subjectivist perspective, probability is viewed as a 
condition of the information known to the individual assigning the probability and not an 
objective property of the given event. It is worth remembering that these are perspectives on 
probability in the real world, and not on the mathematical theory of probability.  

The law of large numbers is a mathematical theorem used to interpret empirical results in 
relation to probabilities. This theorem states that for an experiment with fixed probabilities, the 
likelihood of a large difference between the relative frequency of an event and the events’ 
probability limits to zero as more trials are collected. In various ways it supports the viability of 
all the above mentioned approaches to probability. From a frequentist approach, an estimated 
probability should be reasonably close to a probability computed from a classical approach. With 
a subjectivist perspective, two people may assign different probabilities to the same event based 
on different a priori information, even after they observe the same empirical data. However, after 
observing large amounts of empirical data, it seems reasonable that two people operating within a 
subjectivist perspective would assign similar probabilities. As more data is collected, each of 
their knowledge about the event would include an increasing proportion of shared information.  

A frequentist approach to probability, grounded in the law of large numbers, has only 
recently made its way into curricular aims in schools, which is typically dominated by a classical 
approach (Jones, 2005). Notably absent is any significant attention to a subjective approach to 
probability (Jones, Langrall, & Mooney, 2007). Recent curricula recommendations (e.g., NCTM, 
2000) encourage teachers to use an empirical introduction to probability by allowing students to 
experience repeated trials of the same event, either with concrete materials or through computer 
simulations (e.g., Batanero, Henry, & Parzysz, 2005; Jones, Langrall, & Mooney, 2007; Parzysz, 
2003). In these types of curricula, a theoretical model of probability based on a classical 
approach is not the starting point. Rather, a theoretical model is constructed based on observing 
that the relative frequencies of an event from a repeated random experiment stabilize as the 
number of trials or sets of trials (different samples) increases. However, there is general 
agreement that research on students’ probabilistic reasoning has been lacking sufficient study of 
students’ and teachers’ understanding of the connection between observations from empirical 
data and a theoretical model of probability (e.g., Jones, 2005; Jones, Langrall, & Mooney, 2007; 
Parzysz, 2003).  

Mathematical probability concepts are central to understanding theoretical statistics, but the 
role of probability in developing statistical reasoning is much less clear. Developing sample 
spaces and computing probabilities via combinatorial arguments is a traditional introduction to 
probability in the classroom, while the availability of handheld technology has brought a strong 
frequentist vein of investigations involving simulated trials. And though not a part of most 
classroom introductions, a view of probability as a measure of information would not go 
unwelcomed in many statistical applications. Regardless of the nature of a student’s 
understanding of probability, there is still the question of how this understanding impacts a 
student’s statistical reasoning. When a student seeks to infer qualities of an object or a set of 
objects by gathering data, if the data is gathered via a random experiment, the student is 
conducting a statistical investigation (Franklin et al, 2005). The level of understanding a student 
has of the inferences that can be made very much depends upon the student’s understanding of 
the ties between data and model in a probabilistic phenomenon. 
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The working group is aiming to contribute a better understanding to some of these issues, 
particularly using experiments and simulations to generate empirical data from which students’ 
can reason statistically. Also of importance in this research is how students reason about the 
process of conducting a probability experiment or constructing a simulation and their 
understanding of how the experiment or simulation is an appropriate model of the original 
probability context.  

 
Summary of Activities from Past Two Meetings of Group 

In 2007, twelve researchers (faculty and graduate students) from the United States, Canada, 
and Mexico met During PME-NA 29 in Lake Tahoe, NV. In 2006, eight researchers (faculty and 
graduate students) from the United States, Canada, and Mexico met During PME-NA 28 in 
Mexico. In 2007, members read and discussed the recent literature review on probability learning 
by Jones, Langrall, and Mooney (2007). In particular we discussed the call for research on 
understanding more about how students make connections between empirical and theoretical 
probability. Members shared several simulation environments (ProbLab, Fathom, and Probability 
Explorer) and discussed a few probability tasks that engaged students in reasoning about 
theoretical and empirical distributions. We further discussed how these tasks can be interpreted 
differently by students and teachers. Moreover, discussions focused on issues students face in 
trying to generate and analyze empirical data to make inferences about an unknown probability 
distribution. Participants shared tasks that could be used with students and teachers to engage 
them in conducting probability experiments or simulations. A rich discussion was held 
concerning the nature of tasks that can be used in further research to help expand the knowledge 
base on what students understand about probability in contexts where repeated trials are 
generated and data needs to be analyzed to make a decision or inference. The group expressed 
interest in pursuing the following questions: 

• What are students' intuitions regarding whether real-world phenomena can or cannot be 
simulated? Are there differences between simulations and modeling tools? 

• How do students (and teachers) relate technology simulation models to real-world 
phenomena?  

• How do learners move between empirical data and theoretical models of probability? To 
what extent do students attend to issues of sample size, variation, sampling distributions, 
and data collection? 

• What metaphors emerge as students engage in probability tasks, and how do these 
support or hinder the development of probabilistic reasoning? 

• What are the key issues in the design of probability tasks in order to promote reasoning 
about probabilistic events which occur repeatedly in an experiment or simulation? What 
issues do teachers face in implementing such tasks? 

• How can argumentation and justification be used as a tool to increase conceptual 
understanding of chance and randomness? 

Stemming from the work in 2007, several members participated in a research symposium at 
the NCTM research presession in 2008 focused on different software environments that are 
designed to promote connections among empirical data and theoretical probability distributions. 
The papers from that symposium were all submitted to journals. Several group members also 
attended and participated in the Joint ICMI/IASE Study Conference 
(http://www.ugr.es/~icmi/iase_study/) held at the Instituto Tecnológico y de Estudios Superiores, 
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in Monterrey, Mexico in July 2008. This study conference was focused on the challenges for 
teaching and teacher education in statistics education, with several papers specifically addressing 
issues related to the use of simulation environments in the teaching of statistics.  
 

Planned Activities for the 2009 Meeting 
At PME-NA 31, the group will build on the research agenda listed above. We plan to do the 

following during the time allotted: 
1) Discuss important aspects of conducting a probability experiment or simulation that can 

provide a venue for students’ reasoning about empirical data and its connection to a 
theoretical model of probability and one’s ability to reason statistically; 

2) Provide time for members to share recent research endeavors on students’ and teachers’ 
engagement in probability experiments or simulation tasks. This will likely include some 
engagement with simulation tasks and group video analysis; 

3) Discuss results of recent research by group members and others in light of summaries and 
calls for research by Jones, Langrall and Mooney (2007) and the topics of importance 
raised at the ICMI/IASE 2008 joint conference; and 

4) Generate suggestions for further refinement of individual’s research and suggestions for 
additional research by group members that will form the basis of a collection of papers.  

We intend for the cumulative research efforts from Working Group members to be compiled as a 
set of papers for either a monograph or journal special issue. Clearly our proposed activities are 
closely aligned with Goals of PME-NA, namely “to promote international contacts and the 
exchange of scientific information in the psychology of mathematics education,” “to promote 
and stimulate interdisciplinary research...,” and “to further a deeper and better understanding of 
the psychological aspects of teaching and learning mathematics and the implications thereof.” 
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Several national reports have identified the need to increase the pool of highly qualified 
mathematics teachers as a way to improve mathematics education. However, providing high 
quality mathematics education for all students goes beyond the recruitment of knowledgeable 
teachers. This working group is designed to offer an opportunity to examine the role that 
professional development and support play in the work and retention of mathematics teachers. 
Retention will focus on new teachers especially those in urban area and mathematics teachers in 
hard-to-hire settings. Discussions will concentrate on the study of interventions through 
professional development and support models. Efforts to deepen our understanding of the 
complex and multifaceted picture of why teachers leave and why they stay, and how efforts to 
retain teachers impact their work in the classroom and their decisions to stay or leave will be 
developed through the sharing of research designs, data collection, and on-going results. This 
working group will be appropriate for anyone who has work to share or who is thinking about a 
support for retention project. Throughout, we will address this very complex task both in terms 
of the opportunities and challenges for the mathematics education researchers to provide 
quantitative and qualitative input on a major political issue. It is hoped that this working group 
will enrich the dialogue about a national crisis in mathematics education. 

 
Brief History of Working Group 

Although teacher retention is a topic being included in many conferences and position 
papers, this is an initial request for a Working Group to investigate the relationship between 
Professional Development/Support and the retention of mathematics teachers, thus is not the 
continuation of any prior Working Group. One of the goals will be to identify the absences in the 
research so that we may move forward in tackling the complex national issue of mathematics 
teacher retention. 

 
Issues of Psychology of Mathematics Education to be Focused On 

The study of the relationship between Professional Development and Support Models on the 
Work and Retention of Mathematics Teachers in grades 7 – 12 merits careful examination. 
Several national reports have pointed to the need to increase the pool of highly qualified 
mathematics teachers as a way to improve mathematics education and maintain the United 
States’ economic competitiveness (National Academy of Sciences, 2007; Glenn Commission, 
2000). However, providing high quality mathematics education for all students goes beyond the 
recruitment of mathematically knowledgeable teachers to encompass issues of teacher support, 
professional development, and retention. Over the past two decades, analyses of teacher 
employment patterns reveal that new recruits leave their school and teaching a short time after 
they enter. Ingersoll, using data from the School and Staffing Survey concluded that in 1999-
2000, 27% of first year teachers left their schools. Of those, 11 percent left teaching and 16 
percent transferred to new schools (Smith & Ingersoll, 2003). Earlier research revealed that 
teachers who leave first are likely to be those with the highest qualifications (Murnane & other, 
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1991; Schlecty & Vance, 1981). This “revolving door” is even higher in large urban districts; for 
example, 25% of the teachers new to Philadelphia in 1999-2000 left after their first year and 
more than half left within four years (Neild & other, 2003). In Chicago, an analysis of turnover 
rates in 64 high-poverty, high-minority schools revealed that 23.3 percent of new teachers left in 
2001-2002.  

Reasons for the lack of retention of new teachers and teacher in high-poverty schools are 
often related to “working conditions” and lack of support (Ingersoll, 2001; Smith & Ingersoll, 
2004; Johnson et al., 2004), though pay also plays a role (Hanushek, Kain, & Rivkin, 2001). This 
support includes professional and collegial support such as working collaboratively with 
colleagues, coherent, job-embedded assistance, professional development, having input on key 
issues and progressively expanding influence and increasing opportunities (Johnson, 2006). 
Preparation, support, and working conditions are important, because they are essential to 
teachers’ effectiveness on the job and their ability to realize the intrinsic rewards that attract 
many to teaching and keep them in the profession despite the profession’s relatively low pay 
(Johnson & Birkeland, 2003; Liu, Johnson, & Peske, 2004; Lortie, 1975).  

Recently, a status report on teacher development focusing on professional development and 
support of teachers (Darling-Hammond et al., 2009) summarized findings and put forth 
recommendations for effective professional development. The basis for the paper included 
national surveys with self reported data, a meta-analysis of 1,300 research studies and specific 
studies. The conclusion is that “well designed” professional development can influence teacher 
practice and student performance. The paper focuses on what is or could be considered as well 
defined. One strand of the paper is that of effective support for new teachers. Although half of 
the states require support for new teachers (Education Week, 2008) it was found that rates of 
participation in teacher induction programs varied by school types with highest rates in schools 
with least poverty and lowest in schools with high levels of poverty. Beyond the rates of 
participation and availability of support, there is the question of what is effective support. An on-
going large-scale research project was sited which is currently underway that aims to measure 
impacts in terms of classroom practices, student achievement and teacher mobility. Initial results 
seem to reflect the difficulty in identifying the impact of support. 

Another study is presently in its second year and is studying the support of mathematics 
across the State of California. This five year study is looking through the lens of 10 support 
models to trace the knowledge, classroom practices, professional communities of support, 
leadership and needed support. Initial results are complex but are showing relationships between 
sustained professional development and support and teacher retention. In one year the attrition is 
half what it was over the prior five-year period.  

But, what is the relationship between the support and the retention? One of the 10 sites from 
this study observed that success of a retention initiative takes root in a variety of needs: the need 
to know your District and its teachers – a necessity that often relies on established, long-term 
relationships between the university and district leaders; the need to offer sustained support as 
opposed to punctual interventions in order to break the isolation of beginning teachers and create 
a sustainable community; the need to establish relevance in the professional development 
activities proposed by engaging participants in deep introspection of their own knowledge gaps; 
the need to involve all actors of the community to prevent miscommunication from annihilating 
attempts made towards change; the need to nurture the community created by moving its 
members forward into roles and responsibilities they are ready to take on; and last but not least, 
the need to refine even successful models to keep the momentum (Felter & Faughn, 2009).  



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1614 

As is indicated in the comments above, support comes from multiple sources. Another recent 
study from Peabody College, Vanderbilt University, finds that principals play a critical role in 
the support of new mathematics teachers (McGraner, 2009).  

This working group is designed to offer a comprehensive, multifaceted examination of the 
on-going preparation, support and retention of grade 7-12 mathematics teachers based on the 
results of research studies and ideas of the participants. It is hoped that this working group will 
enrich the dialogue relating the “support gap” and the work and retention of teachers of 
mathematics. It is also expected that this working group will propose areas ripe for further 
research.  

 
Plan for Active Engagement of Participants in Productive Reflection on the Issues 

At this point, people from multiple projects presently involved in related research have been 
contacted and have indicated an interest in actively participating in this working group. Papers 
from various groups have been given at MAA, The Eleventh National New Teacher Center 
Symposium, Curtis Center for Mathematics Teachers Conference, AERA, and NCSM. Models 
of professional development as well as systematic and sustained support vary. For example, 
“support” models may include intensive professional development, coaching and mentoring, 
lesson study groups, school site networking and meetings, data driven reflection, access to 
resources, online networking support, conference attendance, district and/or school 
administrative support among others. The impact also varies from teacher knowledge, to student 
learning, to classroom practices, to building of productive professional collaborative 
communities, to extended learning opportunities, to teachers’ reported value of the support.  

Can “support” impact teacher retention? If so, what are key dimensions relating “support” 
and retention? 

If the working group is approved, contacts will be made with interested parties. A possible 
outline will be developed which will rely heavily on group discussions to bring to bear 
challenges and opportunities for this area of research. The coordinators submitting this proposal 
represent one project that involves 10 different sites investigating teacher retention across 
California. In their initial two years of work, they have identified a decrease in attrition through 
professional development and support. But, understanding the relationship between retention and  
“support”, the work of the classroom, the network of support and the rewards that help retain 
teachers is complex and requires an open discussion across multiple projects and perspectives. 
To bring together researchers across related existing and potential projects offers the type of 
investment that this topic needs to progress and provide bases for ongoing efforts. Dimensions to 
be shared and discussed include designs for research, data collection, results and interpretations. 

The anticipated structure for the working group will emphasize sharing across questions such 
as: 1) What is effective professional development and support? For instance, does networking or 
learning communities increase retention? Why? – 2) What are the challenges for teachers? What 
models or programs address those challenges? – 3) What are important outcomes? What are 
some unintended outcomes in these efforts? What issues emerge? – 4) How do we establish 
studies of the relationship between support and outcomes? What are some promising practices? 
What evidence indicates this? Do these practices support retention? 

In each of these questions we will explore opportunities for and challenges to research efforts 
on retention. Hopefully we will be able to work through questions, models of inquiry, data, 
research results in light of participant reflections and knowledge. The overall structure will 
include introductions, the establishment of key questions, brainstorming relative to the key 
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questions, small breakout group discussions, sharing and whole group grappling with reflections 
and recommendations. Subgroups may be needed as the initial discussion develops. If so, some 
potential dimension guiding the formation of subgroups include retention and research issues 
such as self reported data, guidelines for support including use of technology, school and state 
policies driving support, job-embedded professional development, or necessary time, content and 
opportunities for support. Or the determination of the groups could focus on retention and the 
model of professional development, retention and knowledge, retention and technology, 
retention and on-site support, retention and equity, and/or retention and leadership. No attempt 
will be made to identify areas of interest in advance. Small group discussions topics will be 
determined by the participants and draw from the initial group conversations.  

 This working group will strive to build a network to collaboratively identify potential 
research, existing results and establish a guide for further paradigms of teacher professional 
learning that encourages transformations in teaching practices and rewards resulting in improved 
retention. An end-of-conference result is outlining a plan for future collaboration among the 
participants, and also refining and deepening our research efforts.  

A more detailed layout of the three working sessions could be as follows: In Session 1, 
current research projects will be shared as a foundation for discussions. From these discussions 
we will refine our questions, identify absences in the current research, as well as important 
themes emerging from the participants’ brainstorming. In Session 2, we may ask the participants 
to choose a subgroup based on the themes previously identified, and explore these dimensions 
more in-depth among their groups before reporting to the whole group. In Session 3, we will 
strive to develop a working plan for further collaboration and dissemination, as described in the 
anticipated follow-up activities below. 

 
Anticipated Follow-up Activities 

Follow-up activities will include ongoing networking and hopefully collaboration on further 
efforts. One example would be the sharing of developing papers and research. Another would be 
the development of a weblink. It would be hoped that results of 2009 research could form the 
basis for the Working Group on Retention for the 2010 PME-NA conference and possibly the 
development of a series of thematic collaborative papers and/or monograph synthesizing our 
work on mathematics teacher retention and support. The network will also be included in the 
development of a conference on Supporting Teachers to Increase Retention scheduled to take 
place in three years. 
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This paper presents initial points of interest outlined by a working group focused on teacher 
preparation at the US-Sino conference in June 2008. It was at this conference that a group of 
mathematics and science educators formed a collaborative to begin identifying critical factors 
related to content knowledge and understanding in teacher preparation programs. Critical 
points that emerged related to looking more intimately at university methods and content courses 
and the experiences provided in them and how these experiences foster the growth of prospective 
teachers to know and understand the content they are to teach. Some members of this working 
group would like to continue the efforts in this area and create and/or identify a framework that 
will guide the development of valuable tasks and experiences prospective teachers encounter in 
teacher preparation programs in the United States and China. 
 

History of Working Group 
This Working Group, focused on mathematics and science teacher preparation, was recently 

created at the US-Sino Workshop on Mathematics and Science Education – Common Priorities 
that Promote Collaborative Research. The conference was held at Middle Tennessee State 
University (MTSU) in Murfreesboro, TN from June 22-27, 2008 and was co-hosted by MTSU 
and Northwest Normal University (NWNU in Lanzhou, P.R. China). The conference had 
approximately 125 people participating – where approximately 50 scholars were from China and 
75 from the United States. The purpose of the workshop was to facilitate the formation of 
research working groups whose membership would consist of scholars from both the United 
States and P.R. China. Working groups were formed around six central themes – curriculum, 
assessment, teacher preparation, professional development, integrating technology into teaching 
and learning, and reaching underserved populations – which are common to mathematics and 
science education. 

This specific US-Sino Teacher Preparation working group is in its early infancy stage. 
Members met for the first time at the workshop (with no initial interactions) and had to formulate 
items of interest to mathematics and science education at that particular time. The group 
generated two key areas of focus for future study and collaboration prior to the closing of the 
workshop. They included (1) critically looking at university methods and content courses and 
what they address from a content perspective and (2) the experiences provided in coursework 
and how they foster the growth of prospective teachers to know and understand the content they 
will teach in their future classrooms. This was very much in agreement with what Liping Ma, 
one of the workshop Plenary Speakers, challenged the mathematics and science education 
communities to do. She indicated the need for teacher preparation programs to look carefully at 
what prospective teachers know, what they need to know, and how programs prepare them to 
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teach what they know and do not know. Several points were reiterated (from her book) that 
teacher education is a strategically vital period during which changes can be made and the 
educational community needs to assume this responsibility (1999). 

Working group members met two to three times at the US-Sino workshop, but since that 
time, there has been minimal group interaction. Thus, there is a need to find an opportunity for 
the group to convene and exert efforts on collecting sources of information, making progress 
towards generating tasks, framing the tasks, and organizing and implementing any short-term or 
long-term research goals that come out of this collaboration. PME and PME-NA were options 
for the group to assemble where both United States members and Chinese members could meet 
and interact face-to-face. In addition, the working group believes this collaborative effort 
supports this year’s conference theme of Embracing Diverse Perspectives. We are interested in 
identifying perspectives of Chinese teacher preparation programs as well as variations in US 
preparation programs. 

 
Teaching Mathematics: What Should It Look Like and How Do We Get There? 

In Lampert’s When the Problem Is Not the Question and the Solution is Not the Answer: 
Mathematical Knowing and Teaching (1990), the manner in which knowing mathematics is 
viewed in most classrooms is presented. It is said that “… doing mathematic means following the 
rules laid down by the teacher; knowing mathematics means remembering and applying the 
correct rule when the teacher asks a question; and mathematical truth is determined when the 
answer is ratified by the teacher.” Although this research study was carried out almost 20 years 
ago, it is unfortunate that it paints a familiar image of today’s classrooms and the role of the 
teacher. This image is one that teacher preparation programs must confront and take steps to 
change. 

One “big step” towards making a transformation was in the publication of The Mathematical 
Education of Teachers (Conference Board of the Mathematical Sciences – CBMS 2001). In this 
report, eleven general recommendations were identified and elaborated upon for all levels of 
teaching mathematics. The following five recommendations are of varying importance to the 
progress of this working group: (a) Prospective teachers need mathematics courses that develop a 
deep understanding of the mathematics they will teach (p. 7); (b) Courses on fundamental ideas 
of school mathematics should focus on a thorough development of basic mathematical ideas. All 
courses designed for prospective teachers should develop careful reasoning and mathematical 
“common sense” in analyzing conceptual relationships and in solving problems (p. 8); (c) Along 
with building mathematical knowledge, mathematics courses for prospective teachers should 
develop the habits of mind of a mathematical thinker and demonstrate flexible, interactive styles 
of teaching (p. 8); (d) The mathematical education of teachers should be seen as a partnership 
between mathematics faculty and mathematics education faculty (p. 9); and (e) There needs to be 
more collaboration between mathematics faculty and school mathematics teachers (p. 10). While 
these five recommendations were identified in some manner at the US-Sino conference, common 
themes or problems (to China and the United States) narrowed the group to focus on content 
knowledge and preparing teachers to know and understand the content (both mathematics and 
science). 

NCTM recently updated the Professional standards for teaching mathematics (1991) in its 
2007 publication of Mathematics teaching today. This document articulates that teachers of 
mathematics should have a deep knowledge of 

• sound and significant mathematics, 
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• theories of student intellectual development across the spectrum of diverse learners, 
• modes of instruction and assessment, and  
• effective communication and motivational strategies (p. 19). 

More specifically teachers must possess the skills to problem solve, reason, communicate, 
connect, and make use of multiple representations. How to help new teachers develop this 
repertoire of strategies is the challenge presented to preparation programs of today. Mathematics 
teaching today indicates that teacher preparation programs should ensure that teachers of 
mathematics are fluent in the language of mathematics and have a deep knowledge of 
mathematical content including: 

• mathematical concepts and procedures and the connections among them; 
• multiple representations of mathematical concepts and procedures; 
• ways to reason mathematically, solve problems, and communicate mathematics 

effectively at different levels of formality: 
• the cultural contexts for mathematics, including the contributions of different cultures 

toward the development of mathematics and the role of mathematics in culture and 
society; 

• the evolving nature of mathematical practice and instruction resulting from the 
availability of technology; and 

• the relationship of school mathematics to the discipline of mathematics, to other fields of 
study, and to mathematical applications (p. 119). 

This document, along with other reform-oriented documents and reports (e.g. Knowing and 
learning mathematics for teaching, 2001), echo the importance of teacher knowledge and 
understanding of content to support students in becoming problem solvers and educated 
consumers of the future. 

In order to attempt to achieve these ambitious challenges, prospective teachers need to be 
provided with opportunities to reflect upon their experiences in coursework and come to 
recognize the impact it has on their teaching. Artzt and Armour-Thomas (2002) describe this 
process as developing into a reflective mathematics teacher who is capable of facilitating 
student-centered teaching. The growth of the reflective practitioner is also of interest to this 
teacher preparation group. 

 
Plans for Engagement and Post-conference Activities 

This working group would like to focus on problems, situations, and tasks that compel 
prospective teachers to reflect upon their own level of understanding of content. As was 
identified in our working group at the US-Sino conference, we would like to construct/organize 
some sort of framework to guide in the study of such situations. There is the interest to identify 
specific tasks and implement them in teacher preparation courses, collect data at our various 
institutions, and then see what components are congruent or incongruent –in the US and in 
China. A piece of our working session will be to design some plan of implementation to 
accomplish this undertaking.  

Post-conference activities will involve working group members to return to their respective 
institutions and carry out the developed situations discussed and/or developed at the conference 
(or some format similar to what we decide upon). When implementation of the organized 
materials has been accomplished, we plan to re-convene and continue progress in this area. We 
anticipate executing a critical analysis of successful problems, tasks, and experiences that 
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promote reflection on knowing and learning mathematics that teachers must teach in their 
classrooms. Some of this may be done “long-distance,” but other elements will require face-to-
face interactions at a future working group venue. 
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RESEARCH ADVANCES IN THEORIES OF MATHEMATICS EDUCATION 
 

Organizers 
Bharath Sriraman, The University of Montana 

Gabriele Kaiser, The University of Hamburg (Germany) 
 

Participants (in alphabetical order) 
Miriam Amit, Ben Gurion University of the Negev, Israel 

Jinfa Cai, University of Delaware 
Ubiratan D’Ambrosio , Brazil 

Lyn English, Queensland University of Technology, Australia 
Helen Forgasz, Monash University, Australia 

Gerald Goldin, Rutgers University, New Jersey 
Stephen Hegedus, University of Massachusetts- Dartmouth 

Gabriele Kaiser, University of Hamburg, Germany 
Jeremy Kilpatrick, University of Georgia, Athens 

Richard Lesh, Indiana University 
Bharath Sriraman, The University of Montana 

Guenter Toerner, University of Duisburg-Essen, Germany 
 

Purpose of Working Group 
This working group revolves around the launch of a new book series entitled Advances in 

Mathematics Education by Springer Science, Heidelberg, and in particular on the first book in 
the series which focuses on Theories of Mathematics Education. This edited book in turn is 
based on a research forum on Theories of Mathematics Education at PME 29 in Melbourne, 
2005, which resulted in two ZDM special issues on theories of mathematics education(issue 
6/2005 and issue 1/2006). Since the research forum in Melbourne, numerous advances have 
taken place in the area of theory development in mathematics education in Europe and in North 
America. The purpose of this working group on research advances in theories of mathematics 
education is to integrate, synthesize and present a coherent picture on the state of the art. The 
working group will attempt to be both summative as well as forward looking by highlighting 
theories from psychology, philosophy and social sciences that continue to influence theory 
building, as well as provide participants insights into new developments in feminist, critical and 
political theories of mathematics education. 
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Theories are like toothbrushes…everyone has their own and no one wants to use anyone 
else’s.”(Campbell,2006) 
 
Abstract: The increased recognition of the theory in mathematics education is evident in 
numerous handbooks, journal articles, and other publications. For example, Silver and Herbst 
(2007) examined “Theory in Mathematics Education Scholarship” in the Second Handbook of 
Research on Mathematics Teaching and Learning (Lester, 2007) while Cobb (2007) addressed 
“Putting Philosophy to Work: Coping with Multiple Theoretical Perspectives” in the same 
handbook. And a central component of both the first and second editions of the Handbook of 
International Research in Mathematics Education (English, 2002; 2008) was “advances in 
theory development.” Needless to say, the comprehensive second edition of the Handbook of 
Educational Psychology (Alexander & Winne, 2006) abounds with analyses of theoretical 
developments across a variety of disciplines and contexts. Numerous definitions of “theory” 
appear in the literature (e.g., see Silver & Herbst, in Lester, 2007). It is not our intention to 
provide a “one-size-fits-all” definition of theory per se as applied to our discipline; rather we 
consider multiple perspectives on theory and its many roles in improving the teaching and 
learning of mathematics in varied contexts.   

At the 2008 International Congress on Mathematical Education, Assude, Boero, Herbst, 
Lerman, and Radford (2008) referred to theory in mathematics education research as dealing 
with the teaching and learning of mathematics from two perspectives: a structural and a 
functional perspective. From a structural point of view, theory is “an organized and coherent 
system of concepts and notions in the mathematics education field.” The “functional” 
perspective considers theory as “a system of tools that permit a ‘speculation’ about some 
reality.” When theory is used as a tool, it can serve to: (a) conceive of ways to improve the 
teaching/learning environment including the curriculum, (b) develop methodology, (c) describe, 
interpret, explain, and justify classroom observations of student and teacher activity, (d) 
transform practical problems into research problems, (e) define different steps in the study of a 
research problem, and (f) generate knowledge. When theory functions as an object, one of its 
goals can be the advancement of theory itself. This can include testing a theory or some ideas or 
relations in the theory (e.g., in another context or) as a means to produce new theoretical 
developments.  

Silver and Herbst (2007) identified similar roles but proposed the notion of theory as a 
mediator between problems, practices, and research. For example, as a mediator between 
research and problems, theory is involved in, among others, generating a researchable problem, 
interpreting the results, analysing the data, and producing and explaining the research findings. 
As a mediator between research and practice, theory can provide a norm against which to 
evaluate classroom practices as well as serve as a tool for research to understand (describe and 
explain) these practices. Theory that mediates connections between practice and problems can 
enable the identification of practices that pose problems, facilitate the development of 
researchable problems, help propose a solution to these problems, and provide critique on 
solutions proposed by others. Such theory can also play an important role in the development of 
new practices, such as technology enhanced learning environments.  

What we need to do now is explore more ways to effectively harmonize theory, research, and 
practice (Silver & Herbst, 2007) in a coherent manner so as to push the field forward. This leads 
to an examination of the extant theoretical paradigms and changes that have occurred over the 
last two decades. This was briefly discussed at the outset of this chapter.  
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Changes in Theoretical Paradigms 
As several scholars have noted over the years, we have a history of shifting frequently our 

dominant paradigms (Berliner, Calfee, in Alexander & Winne, 2006). Like the broad field of 
psychology, our discipline “can be perceived through a veil of ‘isms’” (Alexander & Winne, 
2006, p.982). We have witnessed, among others, shifts from behaviourism, through to stage and 
level theories, to various forms of constructivism, to situated and distributed cognitions, and 
more recently, to complexity theories and neuroscience. For the first couple of decades of its life, 
mathematics education as a discipline drew heavily on theories and methodologies from 
psychology. According to Lerman (2000), the switch to research on the social dimensions of 
mathematical learning towards the end of the 1980s resulted in theories that emphasized a view 
of mathematics as a social product. Social constructivism, which draws on the seminal work of 
Vygotsky and Wittgenstein (Ernest, 1994) has been a dominant research paradigm for many 
years. Evidence of the social turn can be found in Lerman’s analysis of articles published from 
1990 to 2001 in Educational Studies in Mathematics (ESM), Journal for Research in 
Mathematics Education (JRME), and the Proceedings of the International Group for the 
Psychology of Mathematics Education (PME), revealed that, while the predominant theories 
used during this period were traditional psychological and mathematics theories, an expanding 
range from other fields was evident especially in PME and ESM. Psycho-social theories, 
including re-emerging ones, increased in ESM and JRME. Likewise, papers drawing on 
sociological and socio-cultural theories also increased in all three publications together with 
more papers utilizing linguistics, social linguistics, and semiotics. Lerman’s analysis revealed 
very few papers capitalizing on broader fields of educational theory and research and on 
neighboring disciplines such as science education and general curriculum studies. This situation 
appears to be changing in recent years, with interdisciplinary studies emerging in the literature 
(e.g., see English, 2008); and papers that address the nascent field of neuroscience in 
mathematics education   

Numerous scholars have questioned the reasons behind these paradigm shifts. Is it just the 
power of fads? Does it only occur in the United States? Is it primarily academic competitiveness 
(new ideas as more publishable)? One plausible explanation is the diverging, epistemological 
perspectives about what constitutes mathematical knowledge. Another possible explanation is 
that mathematics education, unlike “pure” disciplines in the sciences, is heavily influenced by 
unpredictable cultural, social, and political forces (e.g., Sriraman, 2007). A critical question, 
however, that has been posed by scholars now and in previous decades is whether our paradigm 
shifts are genuine. That is, are we replacing one particular theoretical perspective with another 
that is more valid or more sophisticated for addressing the hard core issues we confront (Kuhn, 
1966; Alexander & Winne, 2006)? Or, as Alexander and Winne ask, is it more the case that 
theoretical perspectives move in and out of favour as they go through various transformations 
and updates? If so, is it the voice that speaks the loudest that gets heard? Who gets suppressed? 
The rise of constructivism in its various forms is an example of a paradigm that appeared to 
drown out many other theoretical voices during the 1990s (Goldin, 2003). In essence, the 
question we need to consider is whether we are advancing professionally in our theory 
development. 
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Appreciating Scientificity in Qualitative Research 

 
Stephen J. Hegedus 

University of Massachusetts Dartmouth, Kaput Center 

Abstract: This paper is situated within an educational paradigm that is concerned with the 
education of itself, its peers and its students. From here, we acknowledge the necessity for 
knowledge and that in learning we discover knowledge either through ourselves, through our 
peers or through synthesizing a dialectic between the governing bodies of knowledge and an 
educational system. We might understand that we discover knowledge in an educational setting 
by processes that are akin to scientific discovery. I propose that we establish knowledge in this 
very way and in reflecting on our constructing-knowledge enterprise, we endeavor to adhere to a 
meta-constructionist phenomenology, which draws upon the learning theory of constructionism 
(Papert & Harel, 1991) whereby we establish a construction built on a faithful establishment of 
education and assess the mechanics of the constructed phenomenon through reflexivity and 
interactivity with the field.  
 

 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1625 

Reference 
Papert, S., & Harel, I. (1991). Constructionism. Norwood, NJ: Ablex Publishing. 

 
Mathematics Education as a Design Science 

 
Richard Lesh 
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Baath Sriraman 
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Abstract: We propose re-conceptualizing the field of mathematics education research as that of a 
design science akin to engineering and other emerging interdisciplinary fields which involve the 
interaction of “subjects”, conceptual systems and technology influenced by social constraints and 
affordances. Numerous examples from the history and philosophy of science and mathematics 
and ongoing findings of M&M research are drawn to illustrate our notion of mathematics 
education research as a design science. Our ideas are intended as a framework and do not 
constitute a, “grand” theory (see Lester. 2005, this issue). That is, we provide a framework (a 
system of thinking together with accompanying concepts, language, methodologies, tools, and so 
on) that provides structure to help mathematics education researchers develop both models and 
theories, which encourage diversity and emphasize Darwinian processes such as: (a) selection 
(rigorous testing), (b) communication (so that productive ways of thinking spread throughout 
relevant communities), and (c) accumulation (so that productive ways of thinking are not lost 
and get integrated into future developments) 
 

Teaching Mathematics through Problem Solving: What We Know and Where We Are 
Going 

 
Jinfa Cai 

University of Delaware 
 
Abstract: Problem solving has a long history in school mathematics. In the past several decades, 
there have been significant advances in the understanding of the complex processes involved in 
problem solving. There also has been considerable discussion about teaching mathematics with a 
focus on problem solving. However, teaching mathematics through problem solving is a 
relatively new idea in the history of problem solving in the mathematics curriculum. In fact, 
because teaching mathematics through problem solving is a rather new conception, it has not 
been the subject of much research.  

Contemporary discussions of goals for mathematics education emphasize the importance of 
thinking, understanding, reasoning, and problem solving, with an emphasis on connections, 
applications, and communication. This view stands in contrast to a more conventional view of 
mathematics, involving the memorization and recitation of facts, rules, and procedures, with an 
emphasis on the application of well-rehearsed procedures to solve routine problems. Because 
teaching mathematics through problem solving has been considered an instructional approach 
better aligned with the contemporary views of school mathematics, it is receiving increasingly 
strong support from researchers, educators, and teachers. Although less is known about the actual 
mechanisms students use to learn and make sense of mathematics through problem solving, there 
is widespread agreement that teaching through problem solving holds the promise of fostering 
student learning.  
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While there is no universal agreement about what teaching mathematics through problem 
solving should really look like, there are some commonly accepted features of teaching 
mathematics through problem solving. Teaching through problem solving starts with a problem. 
Students learn and understand important aspects of a mathematical concept or idea by exploring 
the problem situation. The problems tend to be open-ended and allow for multiple correct 
answers and multiple solution approaches. Students play a very active role in their learning—
exploring problem situations with teacher guidance and “inventing” their own solution strategies. 
In fact, the students’ own exploration of the problem is an essential component in teaching with 
this method. In students’ problem solving, they can use any approach they can think of, draw on 
any piece of knowledge they have learned, and justify any of their ideas that they feel are 
convincing. While students work on the problem individually, teachers talk to individual students 
in order to understand their progress and provide individual guidance. After students have used 
at least one strategy to solve the problem or have attempted to use a strategy to solve the 
problem, students are given opportunities to share their various strategies with each other. Thus, 
students’ learning and understanding of mathematics can be enhanced by considering one 
another’s ideas and debating the validity of alternative approaches. During the process of 
discussing and comparing alternative solutions, the students’ original solutions are supported, 
challenged, and discussed. Students listen to the ideas of other students and compare other 
students’ thoughts with their own. Such interactions help students clarify their ideas and acquire 
different perspectives of the concept or idea they are learning. In other words, students have 
ownership of the knowledge because they devise their own strategies to construct the solutions. 
At the end, teachers make concise summaries and lead students to understand key aspects of the 
concept based on the problem and its multiple solutions. 

Theoretically, this approach makes sense. Empirically, there is lacking of data confirming the 
promise of teaching through problem solving. In particular, we need to seek answers to a number 
of important research questions, such as, (1) Does classroom instruction using a problem-solving 
approach have any positive impact on students’ learning of mathematics?  If so, what is the 
magnitude of the impact?  (2) How does classroom instruction using this approach impact 
students’ learning of mathematics? (3) What actually happens inside the classroom when a 
problem-solving approach is used effectively or ineffectively? (4) What do the findings from 
research suggest about the feasibility of teaching mathematics through problem solving in 
classroom? 

In this paper, I will explore these research questions through reviewing two lines of research. 
The FIRST line of research includes those recently conducted studies on NSF-funded curricular 
programs that teach mathematics through problem solving and that have been implemented by 
teachers in classroom. The NSF-funded curricula are problem-based curricula, and the intent is to 
teach mathematics and to build students’ understanding of important mathematical ideas through 
explorations of real-world situations and problems.  

The SECOND line of research includes studies based on innovative materials developed by 
researchers in specific content areas. Unlike the first line of research, in this second line, researchers 
usually focus on teaching grade-specific mathematical topics using a problem-solving approach. 
These studies are important because they provide insights into the ways teachers teach specific 
content topics through problem solving in classroom. 
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Networking Strategies for Connecting Theoretical Approaches 
 

Gabriele Kaiser 
University of Hamburg (Germany) 

 
Abstract: One of the characteristics of the research community in mathematics education seems 
to be the large diversity of different theories, research paradigms and theoretical frameworks. 
This diversity has become an important issue to discuss at many conferences and in many 
publications. Is diversity a problem or a resource or a barrier for further research? How shall the 
scientific community deal with this diversity? Internationally different approaches have been 
developed to cope with this diversity (see Sriraman / English in monograph 1). Under a 
European perspective the approach of networking strategies, which aim to connect different 
theoretical approaches using several strategies, has been developed. This perspective bases its 
work on the assumption that the variety of different theoretical approaches and perspectives in 
mathematics education research is a rich resource upon which the scientific community should 
build more consequently. This perspectives calls for the connections of different theories and 
rejects isolationistic tendencies of separating different theoretical approaches. This approach 
does not intend to develop one grand unified theory, but intends to network local theories, which 
deal with background theories but use diverging conceptual systems for describing the same 
phenomena.  

Different networking strategies are presented in a landscape, linearly ordered according to 
their degree of integration. These networking strategies such as comparing or contrasting, 
combining or coordinating can contribute to the development of theories and their connectivity 
and offer hence an interesting research strategy for the didactics of mathematics as scientific 
discipline. 
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Feminist Perspectives and Mathematics Education 
Helen Forgasz 

Monash University, Australia 
 
Abstract: Feminism has many faces. There is, however, a unifying dimension to all the 
theoretical shades of feminism. Feminism is considered a movement for attaining the right of 
women to be equal to men in all aspects of life – social, political, legal, and educational. The 
impact of feminist thinking on mathematics education research is the focus of this presentation. 
In her article entitled Feminist pedagogy and mathematics, which is to be reproduced in the first 
monograph in the Springer series, Advances in mathematics education, Judith Jacobs (1994) 
concluded that: 

... previous research and intervention programs designed to promote females … have 
been based on the assumption of male as the norm, the model of the successful 
mathematics student or mathematician who is to be emulated if the non-successful are to 
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succeed. Little research and work has begun from the assumption that females have 
strengths, experiences and learning styles that can succeed in mathematics.  

 
Jacobs (1994) provided a theoretical framework for a feminist pedagogy for which the 
assumption was “that being a woman is the norm for females” (p. 16), and the teacher had the 
responsibility “to capitalize on females’ strengths and interests in order to facilitate their success 
in mathematics” (p. 16). Jacobs believed that all students would benefit from this approach 
which, she claimed, “in no way denies the power or beauty of mathematics” (p. 16). 
Leder (in press) has provided a commentary on Jacobs’ (1994) chapter which is also to be 
included in the Springer monograph). Leder summarised the main points raised by Jacobs (1994) 
including the caution not to essentialise women as a group in response to research generalisations 
about differences between women and men.  

Drawing on a number of earlier as well as more contemporary sources, Leder also discussed 
a range of feminist perspectives and their influence on research into gender issues in 
mathematics education. The feminist links evident in chapters found in the influential edited 
collection by Rogers and Kaiser (1995) are highlighted and include:  

• Kaiser and Rogers’ (1995) five stages of the mathematics curriculum beginning with  
“womanless” mathematics” and ending with “mathematics reconstructed”; and 

• Becker’s (1995) chapter in which Belenky et al.’s (1986) ‘women’s ways of knowing’ are 
extended to the knowing of mathematics. 

Whilst liberal feminism receives much criticism from many feminist theorists, it would appear to 
underpin and dominate many research endeavours, particularly those which do not specifically 
identify with any feminism. Many researchers continue to call for the monitoring of all large 
scale studies involving achievement and/or participation data for gender differences, and caution 
not to ignore gender as a factor in smaller, more focussed studies. As is evident in Australia 
today, educational disadvantages once considered to have been addressed can resurface. Recent 
data revealing the re-opening of gender gaps favouring males will be presented. 
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Abstract: It has been suggested that activities in discrete mathematics allow a kind of new 
beginning for students and teachers. Students who have been “turned off” by traditional school 
mathematics, and teachers who have long ago routinized their instruction, can find in the domain 
of discrete mathematics opportunities for mathematical discovery and interesting, non-routine 
problem solving. Sometimes formerly low-achieving students demonstrate mathematical abilities 
their teachers did not know they had. To take maximum advantage of these possibilities, it is 
important to know what kinds of thinking during problem solving can be naturally evoked by 
discrete mathematical situations—so that in developing a curriculum, the objectives can include 
pathways to desired mathematical reasoning processes. This article discusses some of these ways 
of thinking, with special attention to the idea of “modeling the general on the particular.” Some 
comments are also offered on the global ideas of Moreno-Armella & Sriraman (2005) pertaining 
to the development of representational systems. The discussion focuses on the co-evolution of 
symbols and their referents, and the shared interpretation of mathematical symbols in a 
community of practice. Some future directions are suggested. 
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VISUAL EXPLORATIVE APPROACHES TO LEARNING MATHEMATICS 
 
 
 
 

This discussion group focuses on visual explorative approaches to learning mathematics. We 
address several issues in the discussion such as technology use in mathematics education and its 
evolution from static to dynamic in conjunction with the visual characteristics of new learning 
form of mathematics. Among various representations used in mathematics and mathematics 
education, visual representations of mathematical concepts, the effects of the implementation of 
visual techniques, and more importantly the importance of visual exploration of mathematics 
and its effects to mathematics education will be discussed.  

 
Background 

The focus of this discussion group will be situated at the intersection of the technology use in 
mathematics education, representation systems in mathematics education, and developing a 
conceptual understanding in mathematics. An enormous corpus of literature has been 
accumulated on these topics, and many researchers discussed the topics in the various national 
and international meetings such as PME, PMENA, and ICMI (Arcavi, 1999; Duval, 1999; Hitt, 
1999; Hoyles, 2008; Kaput, 1999; Kaput & Hegedus, 2000; Leatham, & McGehee, 2004; 
McDougall, 1999; Moreno-Armella, 1999; Presmeg, 1999; Radford, 1999; Santos-Trigo, 1999; 
Thompson, 1999). Yet, our main focus will be on the visual exploration of mathematics and on 
the visual versus algebraic understanding of mathematics, particularly in the technology 
supported learning environments. We will also explore the distinctions between visualization of 
mathematics, visual exploration of mathematics, and visual understanding of mathematics. We 
believe that the result of this conceptual exploration will lead us to improve our understanding of 
the theories on representational systems (Kaput, 1992) and distributed cognition between human 
and technology (Pea, 1993). 

Interestingly, the importance of exploration and visualization was emphasized in the past 
PMENA conferences. For example, in a paper presented in 1999 PMENA, the author points out 
the relationship between technology and representation: 

Technology, in all its forms, modifies, substantially, the process of knowledge production. 
Learning involves the construction of representations. It is through the construction of 
representations of an observed phenomena, (or of a mathematical concept) that we make 
sense of the (mathematical) world. Representations become mediational tools for 
understanding (Moreno-Armella, 1999, p. 99) 

Similarly, in another PMENA meeting, the authors explore what we know about technology use 
and its effects in teaching and learning mathematics: 

Much of what we know about the use of technology in the teaching and learning of 
mathematics is anectodal and might be referred to as “possibility” research…. What do we 
really know regarding teaching and learning mathematics with technology? What 
frameworks, methodologies and collaborations will support the research that will produce this 
knowledge?(Leatham & Peterson, 2005, p. 1) 

Some authors propose new perspectives for the use of technology rather than digital 
interpretations of traditional paper-and-pencil techniques. They suggest using dynamic, 
interactive, and collaborative features of technology: 
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The advance of dynamic technological environments allows us to combine multiple 
individual cognitive acts of reference. This is possible since individuals can project their 
intentions and expressivity through the notations they create and share. They can also realize 
and generalize the structure of the mathematics through co-active collaboration with these 
environments. This can be made possible through the advances in representation 
infrastructures (dynamic mathematics software) and communication infrastructures (social 
and digital networks). (Moreno-Armella, Hegedus, & Kaput, 2008, p. 110) 

Various Types of Visualizations 
The literature documents at least three distinct meaning for the term visual mathematics such 

as (1) for studying advanced visual objects, (2) for visualizing algebraic rules, and (3) for 
exploring mathematics visually. The first one, studying advanced visual objects such as fractals 
and 3D functions, is a focus where mathematicians use technology to extend their imaginations 
and to make their ideas visible whereas the other two are related to mathematics education.  

Virtual manipulatives (NLVM, 1999; SAMAP, 2006), learning objects (Reis & Karadag, 
2004; Sorkin, Tupper, and Harmeyer, 2004), and animations (Tchoshanov, n.d.) are the examples 
to visualize mathematical concepts, rules, and relationships. The idea behind creating this group 
of mathematical objects can be described as to make mathematical rules visible in order to 
improve students’ understanding. For example, the example from Tchoshanov’s (n.d.) collection 
visualizes a very well-known algebraic identity (figure 1). He visualizes the identity of 

( ) 222 2 bababa ++=+  by using animations. 
 

 
                                           Figure 18. Screenshots from Tchoshanov's animations. 

 
Similarly, virtual manipulatives developed by Utah State University team serve for the same 

purpose. For example, they use virtual algebra tiles to illustrate distributive law of algebra (figure 
2). The figure illustrates a geometric representation to explain the rule for the example x (y + z) 
= xy + 2x. 
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Figure 19. Algebra tiles as virtual manipulatives. 

However, these virtual manipulatives could also be used to explore mathematics visually. For 
example, student may develop an insight for patterning while using Towers of Hanoi example 
(figure 3). This example provides a scenario to encourage students explore the problems 
illustrated. Students, with or without guidance, are expected to realize the pattern while 
performing the task.  

 

 
Figure 20. The Towers of Hanoi as virtual manipulatives. 

 
Another exploratory environment to encourage students to improve their patterning skills is 

the Math Towers. The Math Towers provides scenarios such as billiard boards to engage 
students to develop some patterning relationships (figure 4). The scenarios illustrated in the Math 
Towers and the Towers of Hanoi aim to engage students to be part of a virtual environment and 
to explore mathematics visually. 

 

 
Figure 21. The Math Towers.  
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Moreover, we have dynamic learning environments to create dynamic worksheets. For 
example, Geogebra, a free online dynamic software, allows us to create mathematical objects and 
to explore these objects visually and dynamically. In a study, we created a dynamic worksheet 
illustrating the relationship between unit circle and trigonometric functions (figure 5). We asked 
students to manipulate these mathematical objects and explore the relationship between them 
(they were not told that the functions were trigonometric). 

 

 
Figure 22. Visual exploration in Geogebra. 

 
As seen in the examples described here, there are different types of visualizations. The 

cognitive collaboration between human and tools seem to be quite distinct in these examples 
although we call them all as visualization. Thus, it is important to identify this distinction and to 
develop theories explaining various visualization types. 

More importantly, some scholars argue that mathematics education evolves through 
integration of technology and needs a groundbreaking change to complete its evolution 
(Galbraith, 2006; Moreno-Armella, Hegedus, & Kaput, 2008). Moreno-Armella, Hegedus, and 
Kaput (2008) describe symbolic structures as “an environment that enable us to think deeper” (p. 
100) and argue that “the nature of mathematical symbols have evolved in recent years from 
static, inert inscriptions to dynamic objects or diagrams that are constructible, manipulable and 
interactive” (p. 103). According to their perspective, students may think, reflect on their 
thoughts, and construct new mathematical knowledge in the dynamic learning environments. The 
dynamic learning mathematical environments enable students act mathematically, such as 
seeking visual patterns, define these patterns, and explore the properties of these patterns as they 
usually do symbolically in paper-and-pencil environments. 

 
The Rationale and Goals of Discussion Group 

The goals of this discussion group are to explore and discuss the dynamic and visual features 
of technology in mathematics education, to develop awareness on the potential effects of visual 
exploration in conceptual understanding of mathematics, and to set up a research agenda on the 
study of visual exploration in mathematics education.  

The discussion group will review the past and current use of technology as visual and 
dynamic cognitive tools and extend the theory of distributed cognition over the participatory 
mathematical activities. This discussion will deepen our understanding of the effects of visual 
explorative activities in learning mathematics and seek possible strategies to integrate web 2.0 
technologies with dynamic learning tools. 

Objectives 
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• To perform a comprehensive review of various representational systems used in 
mathematics in junction with a linkage among them 

• To explore various perspectives of visual learning in mathematics 
• To explore the features of dynamic learning systems in conceptual understanding of 

mathematics 
• To identify possible effects of visual and dynamic learning environments in mathematics 

education 
• To explore the possible scenarios for the future of the mathematics education supported 

with contemporary technologies such as Web 2.0, dynamic learning environments, and 
visual representation 

Questions to frame our discussion 
• Which representation types are used in mathematics education? 
• What types of visualizations do we use and how could they be identified? 
• Which representation is more compatible with the nature of human learning? 
• Could algebra be a barrier to learn mathematics? 
• How can we observe or track the effects of visual versus symbolic representations in 

learning mathematics and their effects on concept development? 
• How could the Web 2.0 technologies and dynamic learning environments be integrated to 

engage students for visual exploration of mathematical concepts? 
 

Format for the Discussion Group Meeting 
Day 1: Identifying the Current Situation and Contemporary Perspectives 

The organizers of the group will begin the discussion with a brief introduction of the topic 
and some quotes from literature. Then, we will ask the participants to reflect on these quotes in 
small groups and share their reflections with whole group. The second hour of the discussion will 
focus on the technology, representation, and visualization. We will engage the participants to 
brainstorm on the expectations of technology in math education, on the various forms of 
representations used in mathematics, and on the meanings of visualization in small groups and 
share their reflections with whole group. 

• Introducing group members 
• Introducing discussion group topics and goals 
• Reviewing selected quotes form previous work and engaging participants to reflect on these 

quotes 
• Brainstorming on the expectation of technology in mathematics education 
• Brainstorming on the various forms of representations used in mathematics 
• Brainstorming on the meanings of visualization 
The quotes will be the evolution of the mathematics education (Moreno-Armella, Hegedus, 

& Kaput, 2008) and the metaphor of the technology use (Galbraith, 2006). 
Day 2: Projecting on the Future 

We will start the meeting by briefing previous day’s discussion and by outlining themes 
emerged from the discussion. Then, we will demonstrate a couple of dynamic worksheets created 
by Geogebra and ask participants to develop scenarios in their small groups on how to use these 
dynamic worksheets in classrooms and to share their scenarios with the whole group. During the 
last half hour, we will encourage the participants to discuss the opportunities of integrating Web 
2.0 technologies (i.e. wikis) with these dynamic worksheets. 



Vol. 5 

Swars, S. L., Stinson, D. W., & Lemons-Smith, S. (Eds.).  (2009).  Proceedings of the 31st annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education.  Atlanta, GA:  
Georgia State University.   
  

1635 

Day 3: Summarizing the Discussions and Setting Goals for the Future Collaboration 
Opportunities 

• Summarizing previous discussions 
• Reminding the metaphor by Galbraith (2006) and engaging to brainstorm on the 

mathematics education for the next fifty years 
• Forming an international working group on the topic 
• Setting an agenda for the future 

 
Possible Future Agenda Items 

• Set up a working group for dynamic and visual learning 
• Create possible research questions 
• Seek possible strategies to disseminate the themes emerged through discussion 
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