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CONTEXT MATTERS: EQUITY, SUCCESS, AND
THE FUTURE OF MATHEMATICS EDUCATION

Rochelle Gutiérrez
University of Illinois at Urbana-Champaign

rgutirrz@uiuc.edu

This article presents a reflection on my research over the past 10 years, both the theoretical
framings that have proven to be useful as well as some specific research findings. After
presenting a definition of equity and its four dimensions (access, achievement, identity, power), I
unpack a number of successful learning contexts in which I have conducted research and what
they have revealed to me about equity. The contexts I explore include: 9 US high schools, 1
successful teacher community, 23 teacher candidates, and the achievement gap. Finally, I
conclude with ways in which teaching and learning contexts, especially successful ones, might
play a more prominent role in future research.

Contexts have always mattered to me. Perhaps it is because I was raised to believe that
communities shape and support individuals into the beings they become. Some contexts bring
out the best in me, while others hide my strengths. Considering my worldview, it makes sense
that my research would pay particular attention to contexts.

In my research, I do not strive for the empirical findings to be generalizable to all students, or
even all US students. My focus has always been to document successful learning environments
for students who have been marginalized by society, highlighting the origins of such learning
environments--be they personal or institutional. I do so for two main reasons: 1)  as an existence
proof to those in doubt that these environments and their associated student outcomes can be
created and 2) as a means for informing how we might build more such contexts for learning. By
marginalization, I mean through processes such as racialization, classism, sexism, and language
bias. However, that is not to say that many of the foundational pieces of these successful
environments are not applicable in settings where the students are white and/or middle/high
income.

Contexts matter for a number of reasons. A focus on context helps remind us that no category
of teachers or students (urban students, African American students, Latina/o students, even
female, bilingual Latinas born in the US) is homogeneous. In fact, our beliefs, our lived
experiences, our knowledge bases, and our agendas all influence how we "perform" in a given
setting. All good teachers focus on context. They recognize the fact that among other things, a
student's mathematical thinking is grounded in the kind of problem presented, how that student is
positioned in the classroom with respect to others (DeAvila, 1988; Forman & Ansell, 2002), the
norms of interaction (Seeger, et al., 1998), and the tools available to express one's ideas (Khisty
& Viego, 1999; Moschkovich; 2007). For me, a focus on the context of learning also serves as a
humanizing tool in mathematics education research. It moves us away from a kind of objectified
way of knowing something (e.g., students or the "one" path to equity). And, contrary to what the
larger public, many alternative certification programs, and some mathematicians think,
mathematics teaching is too complex to be reduced to a list of basic skills or even strategies that
can be followed by any college graduate. So, while it is important for mathematics educators to
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present their research in ways that are accessible to policy makers (Lubienski, in press), giving
voice to the contextual factors that enable or constrain learning in a given situation is equally
important. Richer descriptions of educational settings and their origins also are more likely to
move away from a US-centric perspective and towards a more global reality in reporting
mathematics education research.

My work is deeply grounded in socio-cultural theory, drawing on the notion that learning is
intricately connected to the contexts in which it occurs (Lave, 1991; Lave & Wenger, 1991;
Cobb, 2000; Atweh et al., 2001). We see this most clearly in research that has considered out-of-
school vs. in-school mathematics performance (Nunes, Carraher, & Schliemann, 1993; Civil,
2006). Almost at the flip of a switch, highly competent street vendors are unable to complete
similar mathematical problems when imported into a "school math" context. Like Franke and
Kazemi (2001) who seek to "capture the evolutionary character of teacher learning rather than
the more static characteristics (p. 56)," I aim to document the nature of effective teaching and
learning contexts, not just their distilled "characteristics."

Most members of the mathematics education research community would agree that equity is
a valued goal, maybe even the reason behind their research. However, much less consensus
arises when the question is raised: how do you think we should address equity? Increase teacher
content knowledge, create more multicultural curricula, develop professional learning
communities, exert greater control over school policies, partner universities with local schools
are just a few of the strategies that might start the list. For the most part, highlighting (successful)
contexts is not likely to be an answer. Yet, attending to context is key for equity purposes. In this
paper, I will unpack a few contexts in which I have conducted research and what they have
revealed to me about equity along four dimensions. Then, I conclude with ways in which
teaching and learning contexts, especially successful ones, might play a larger role in our future
research. The contexts I will explore include: 9 US high schools, 1 successful teacher
community, 23 teacher candidates, and the achievement gap.

Framing Equity
I begin with a definition of equity, partly because it is critical to how we might explore

successful contexts and because so many definitions of equity exist. Equity means fairness, not
sameness. So, when we look for evidence that we are achieving equity, we should not expect to
find that everyone ends up in the same place. In 2002, I argued (Gutierrez, 2002) that at a basic
level, equity means "the inability to predict mathematics achievement and participation based
solely on student characteristics such as race, class, ethnicity, sex, beliefs, and proficiency in the
dominant language"  (p. 153). I argued for a focus on the dominant interpretation of this meaning
as well as a critical one (something I will discuss later) and how equity could relate to the
sustainability of our planet. It was important for me at the time to consider not just learning
outcomes as they relate to a schooling context, but also to learning outcomes that relate to life
and our relationships around the globe. I would like to elaborate on that definition to include four
dimensions: access, achievement, identity, and power. Let me explain.

Access relates to the tangible resources that students have available to them to participate in
mathematics. These resources include such things as: quality mathematics teachers, adequate
technology and supplies in the classroom, a rigorous curriculum, a classroom environment that
invites participation, reasonable class sizes, and supports for learning outside of class hours. The



3

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Access dimension reflects the predominant equity mindset of math educators in the 1980s that
students are affected by their "opportunity to learn" and continues today in more nuanced forms
(Nasir & Cobb, 2007). However, a focus on access is a necessary but insufficient approach to
equity, in part because equal access assumes sameness.

Beyond opportunities to learn, we also care about student outcomes, or what I categorize as
Achievement. This dimension is measured by tangible results for students at all levels of
mathematics. Achievement involves participation in a given class, course taking patterns,
standardized test scores, and participation in the math pipeline (e.g., majoring in mathematics in
college, having a math-based career), among other things. Moving from mere access to
achievement is important when considering that there are serious economic and social
consequences for not having enough math credits to graduate from high school, not scoring high
enough on a standardized achievement test to gain acceptance to college, or not being able to
major in a math-based field that can confer a higher salary and prestige in society. The
achievement dimension was most prominent in the late 1980s and early 1990s when a greater
emphasis was placed on standardized test scores and continues today into the more narrowly
defined "achievement gap," something I will discuss later in this article.

However, because there is a danger of students having to down play some of their personal,
cultural, or linguistic capacities in order to participate in the classroom or the math pipeline and
because some groups of students historically have experienced greater discrimination in schools,
issues of Identity have started to play a larger role in equity research in mathematics education
(Abreu & Cline, 2007; Martin, 2000; 2007). From my view, students should be able to become
better persons in their own eyes, not just in the eyes of others. For most mathematics educators,
identity issues might include understanding mathematics as a cultural practice in ways that might
further develop the appreciation of one's "roots."  Examples of this approach are present in the
ethnomathematics program (D'Ambrosio, 2006). But, we cannot stop there, as identity is much
more than just one's past. More centrally, the identity dimension concerns itself with a balance
between self and others. A window/mirror metaphor is useful here (Gutiérrez, 2006). That is,
students need to have opportunities to see themselves in the curriculum (mirror) as well as have a
view onto a broader world (window). For example, using mathematics to analyze social justice
issues might offer a mirror to students who have been marginalized by society while it provides a
window to students who benefit from the status quo. Identity incorporates the question of
whether students find mathematics not just "real world" as defined by textbooks or teachers, but
also meaningful to their lives. It includes whether students have opportunties to draw upon their
cultural and linguistic resources (e.g., other languages and dialects, algorithms from other
countries, different frames of reference) when doing mathematics. As such, we need to pay
attention to the contexts of schooling and to whose perspectives and practices are "socially
valorized" (Abreu & Cline, 2007; Abreu, 1999, Civil, 2006). The goal is not to replace
traditional mathematics with a pre-defined "culturally relevant mathematics," but rather to strike
a balance between the number of windows and mirrors provided to any given student in his/her
math career.

However, even if students have access to quality mathematics, achieve a high standard of
academic outcomes as defined by the status quo, and have opportunities to "be themselves and
better themselves" while doing mathematics, it is not enough to call it equity if mathematics as a
field and/or our relationships on this planet do not change. As such, a final piece of equity
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involves Power. The Power dimension takes up issues of social transformation at many levels.
This dimension could be measured in voice in the classroom (e.g., who gets to talk, who decides
the curriculum) (Morales, 2007; Zevenbergen, 2000; Adler, 1998), opportunities for students to
use math as an analytical tool to critique society (e.g., exploring "risk" in society)
(Mukhophadyay & Greer, 2001; Skovsmose & Valero, 2001; Gutstein, 2006), alternative notions
of knowledge (D'Ambrosio, 2006), and rethinking the field of mathematics as a more humanistic
enterprise (e.g., recognizing that math needs people, not just people need math) (See Gutiérrez,
2002, for a more developed argument).

For the most part, Access and Achievement can be thought of as comprising the dominant
axis. By dominant, I mean:

…mathematics that reflects the status quo in society, that gets valued in high stakes
testing and credentialing, that privileges a static formalism, and that is involved in
making sense of a world that favors the views and perspectives of a relatively elite group.
(Gutiérrez, 2007; p. 39).
These are the components students will need to be able to show mastery in the discipline as it

is currently defined and to participate economically in society. This axis, where access is a
precursor to achievement, measures how well students can play the game called mathematics.

On the other hand, Identity and Power make up the critical axis. By critical, I mean:
…mathematics that squarely acknowledges the position of students as members of a

society rife with issues of power and domination. Critical mathematics takes students'
cultural identities and builds mathematics around them in ways that address social and
political issues in society, especially highlighting the perspectives of marginalized
groups. This is a mathematics that challenges static formalism, as embedded in a tradition
that favors the West. (Gutiérrez, 2007, p. 40).
The critical axis ensures that students' frames of reference and resources are

acknowledged in ways that help build critical citizens (Skovsmose & Valero, 2001). In some
sense, identity can be seen as a precursor to power. This axis builds upon the idea that
mathematics is a human practice that reflects the agendas, priorities, and framings that
participants bring to it. As such, a diverse body of people are needed to practice mathematics,
not just to build a 21st century workforce, but so that they might participate democratically.
Moreover, mathematics needs a diverse body of people so that the field can sustain itself in
the most vibrant way possible.

To be clear, all four dimensions are necessary if we are to have true equity. Learning
dominant mathematics may be necessary for students to be able to critically analyze the
world; while being able to critically analyze the world may provide entrance into dominant
mathematics. It is not enough to learn how to play the game; students must also be able to
change the game. But, changing the game requires being able to play it well enough to be
taken seriously. As researchers concerned with equity, we must keep in mind all four
dimensions, even if that means that at times one or two dimensions temporarily shift to the
background. A natural tension exists between mastering the dominant frame while learning
to vary or challenge that frame. As such, access, achievement, identity, and power are not
going to be equally or fully present in any given situation. For example, teachers cannot be
expected to address power issues everyday in the classroom in ways that are meaningful to
every student. Similarly, when identity or power issues are being brought to the surface, at
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times the connection to mastering dominant mathematics may take a lower priority. The goal
is to attend to and measure all four dimensions over time.

Equity in Teaching and Learning Contexts
Given this broader definition of equity, we might ask ourselves: How do access,

achievement, identity, and power play out in different contexts? Which contexts matter? How do
they matter for promoting equity? In this section, I will unpack a few contexts in which I have
conducted research and argue what they have revealed to me about equity. In each of these
contexts, I ask: what is the nature of this context and how does it contribute to our understanding
of equity?

Nine US High Schools
I have always believed we learn best from understanding "success" cases. In that vein, I first

began my research trajectory with the question: What is the nature of a public school that propels
its students to not only take more mathematics than is required by the district, but also to show
significant gains in standardized achievement? Steeped in "opportunity to learn" theories, my
first cut was to take an institutional/policy analysis, focusing on tracking as it affected students'
access (Gutierrez, 1996). I drew upon the Longitudinal Study of American Youth (Miller,
Suchner, Hoffer, & Brown, 1992), a data set following students from grades 7 - 12. Using
hierarchical linear modeling to capture the effects of students nested within schools, I sorted the
52 schools based upon overall student gains in mathematics, course taking patterns, and
differentiation within student outcomes. From the larger data set, I chose nine US high schools
that were non-selective and serving a large proportion of Latina/o, African American, and/or
working class students. Four of these schools were chosen for their clear student gains and signs
of success; four other schools were chosen for negligible signs of success with little or no gains
(e.g., less than 50 percent of students at the school reached the second year of Algebra by grade
12); one school was chosen to represent middle-of-the-road schools. My goal was to understand
the nature of these schools and their accompanying success (or lack thereof). I supplemented the
quantitative student data with teacher questionaires, teacher interviews, and school documents.

Though much research at that time had focused almost exclusively on the practices and
outcomes of individual teachers or school wide cultures, I changed the contextual frame to
consider teacher community in relation to institutional issues. For me, a single teacher was not
the appropriate context for getting at broader notions of equity. And, a school level analysis was
likely to minimize the role of subject matter in teachers' everyday work commitments (Gutiérrez,
1998; Stodolsky & Grossman, 1995; Talbert, 1995; Siskin & Little, 1995). I was interested in the
four schools where a large proportion of their students were excelling in mathematics and where
that distribution was spread out over the entire student body. For me, that had to involve more
than one maverick teacher or a silver bullet policy. The math department seemed a useful unit of
analysis.

What distinguished the effective math departments from the ineffective ones? Tracking was
not the pivotal policy. In fact, two of the four successful schools had tracking policies in place
with support structures to push adolescents towards higher-level courses and half of the
ineffective schools were de-tracked. The number of formal departmental meetings, years and
degrees of staff members, math/science magnet designation, and overall school culture also were
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not key to distinguishing success. Instead, the effective departments stood out as different from
the ineffective ones in four main aspects of their organization and culture. They had a rigorous
and common curriculum, commitment to a collective enterprise, commitment to students, and
innovative instructional practices.

A rigorous and common curriculum meant there were very few lower level math courses in
which students could get lost or bored. In fact, students were offered little choice in the kinds of
courses they could take, as streamlined paths led to the most advanced courses, and 3-year
minimum requirements for graduation were implemented. Additional courses were created to get
students back on track or help them double-up courses in a given year so they did not lose sight
of the end goal. In their curricular design and their course requirements, these effective math
departments presented to students a culture that taking higher-level math courses was not only
expected, but also just the norm.

The second component to these effective math departments was a commitment to a collective
enterprise. That is, unlike the norms of privacy found in many schools, teachers in these
departments regarded themselves as part of a community of practice (Lave & Wenger, 1991,
Wenger, 1999), learning from and with colleagues. One of the first signs of this collective
priority was the practice of rotating teachers' courses assignments so that no single teacher
owned all of a single category of students (e.g., freshmen, seniors, honors students) or subject
matter (e.g., all geometry classes, all algebra classes). Teachers explained that rotating the
courses meant that they not only had a chance to get a broader sense of the math curriculum
(e.g., reminding themselves of how algebra is the foundation of calculus), but it also allowed for
repeat students--ones who were in a teacher's class for more than one year. The impact of these
repeat students was that teachers often had to think twice about judging a student as either
innately competent or incompetent, as they noticed that some students were just late bloomers,
going through family issues, or better at certain topics than others. This course rotation also led
to more teachers discussing their work, and sharing lesson plans. While many of the ineffective
departments could be described as operating under an "independent contractor" mode, the
effective departments relied upon each other for professional development. At times they
attended workshops and courses together based upon the subject matter taught, while other times
they required individual teachers to report back to the group on things they had attended. These
departments could be described as having collective autonomy in the sense that they did not
conduct all business as a whole group. Rather, they had a common vision of what they were
trying to accomplish and used frequent discussions and activities to address their goals.

The third component was a commitment to all students. More than just a slogan, this
commitment came through in teachers' actions. For example, rather than the deficit frames or
stereotypes held by members of the ineffective departments, teachers held constructive
conceptions of students (e.g., as creative, smart) and held them accountable to high expectations.
Partly related to the "repeat" students that teachers mentioned, they held flexible conceptions of
the learning process (e.g., that not all learning could be easily measured, that maturity
contributed to proficiency). They also shared the responsibility for learning, seeing it as partly
their role to motivate students to want to learn.

The fourth component distinguishing the effective math departments from the ineffective
ones was innovative instructional practices. In terms of instruction, while I found ineffective
and/or traditional teachers in effective departments and successful teachers in ineffective
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departments, they were exceptions rather than the rule. Overall, while teachers in the effective
math departments for the most part continued to lecture, they moved beyond worksheets and
practice of basic skills. Moreover, as a group they attempted to make the mathematics relevant to
students' lives, partly by offering choices of topics for larger projects. Some such projects
included basketball standings, ages of actors/actresses at the time of receiving an Oscar, and
African American voter registration. Technology was also more prominent in these effective
departments than in the ineffective ones. The majority of teachers used graphing calculators to
model concepts and to help students see dynamic patterns or "the bigger picture."  Moreover,
students were expected to work in groups--partly to attend to the personal need for students to be
engaged with peers, but also to encourage reasoning and conjecturing.

Although I have outlined the four components individually here, no single component would
be enough to create the success these departments saw. More likely, the effects were synergistic-
-building off of each other. I termed this departmental culture "Organized for Advancement"
(Gutiérrez, 1995; 1996) suggesting it involved a conscious "stance" (Cochran-Smith & Lytle,
1999) on the part of teachers to organize themselves and structure their work in ways that
advocated for students and their learning above everything else. That is, it is not the mere
presence of these components as resources for teachers that matter, it is also the meanings that
emerge for teachers and students as these resources are put into use in local contexts (Adler,
2001).

From an equity standpoint, three of the four dimensions are highlighted: access, achievement,
and identity. More specifically, when mathematics departments organize their formal and
informal policies, courses, interactions, and supports for students in ways that promote high
standards, students not only gain access to quality mathematics, they tend to achieve in ways that
relate to both broader participation and test scores. When students are offered the opportunity to
choose their own topics for projects, to a certain extent they are invited to express their identities
and/or draw upon their cultural resources. What was clear to me at the end of this study was that
although I could distill the results of the nine schools into a set of four characteristics that
distinguished effective from ineffective, I was only scratching the surface. I needed to explore in
greater depth the nature of a single math department, partly to understand the dynamics involved.
And, while I was convinced that these OFA math departments were addressing access and
achievement, I was skeptical that identity and power issues were sufficiently acknowledged
(Gutiérrez, 1999).

A Successful Teacher Community
The focus shifted in my next study to ask not only what was the nature of a successful

mathematics department, but also how was this teacher community created and sustained?
Again, I continued to search for: what does this community reveal about equity? This math
department was situated within a school that served 67 percent Latina/o students, 15 percent
African American, and with 98 percent qualifying for free lunch. Their success was measured
by: students taking more than the required number of math courses while in high school, large
number of students in calculus (30 in 1996; 42 in 1997; 61 in 1998; 80 in 1999), calculus classes
reflecting the broader student body (e.g., with respect to race/ethnicity, class, language, and
school success), and 80 percent of the calculus students college bound (Gutiérrez, 2003). The
following vignette attempts to capture the school context.



8

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

We enter Union High School through the backside of the building and pass
through a set of metal detectors and two armed Chicago Police officers standing post.
Students (primarily working class and Latina/Latino) no longer enter through the
front because it faces a main road that provided access for a shooting in the 1980's.
Streams of students with large red identification tags swinging from their necks push
past each other to get to their classrooms and to socialize with their friends. Students
are ushered through the halls by security staff in red shirts and teachers (mainly white
and middle class) who also display identitification tags. A look at school test scores
indicates many of the freshmen are several years below grade level in skills,
especially mathematics and English. Union is what the media often portrays as the
degradation of public schools in the inner city.

We might expect this school to offer an array of low level ("business math,"
"consumer math") courses, a watered-down curriculum with perhaps one AP calculus
where those few student who make it through the public school system are still
interested in college and a possible career in math. Instead, we find 3 full calculus
classes.

Each teacher has his own personal style. One has a dry sense of humor, cracking
jokes with his students and then quickly getting down to business. Another has a
soothing voice accompanied by energetic presentations and passion about
mathematics. Still another has a relaxed and youthful air to being with students who
are close to him in age. In all three classrooms, we see Latina/o students (primarily)
with some African Americans and just a few whites all working in groups,
communicating and arguing about mathematical concepts and strategies for
approaching problems. They alternate between Spanish and English language,
between graphing calculators and pencil/paper forms, between time spent at their
desks and at the chalkboard or their small-group white boards, between their textbook
written by Harvard professors and worksheets made by their own teachers, between
understanding mathematics as the "forest" (big picture/concepts) and the "trees"
(details/symbols), and learning from examples that incorporate students' and teachers'
lives--all with the goal of understanding the meaning of derivative and integral.

In each class, teachers are walking around to groups of students posing
provocative questions and/or providing feedback for student work. Mostly, the
teachers project a facilitator role, encouraging the students to help each other.
Students pick up on this fact and are getting up from their tables to confer with other
groups before returning to share the information obtained or to tutor other students
when everyone in their group has reached an answer. These classes could not be
described as quiet. Rather, they have the "hum" of intellectual activity that would
make most teachers proud. And, with forty percent of the school's senior class present
in these three calculus classes, who wouldn't be? These classes reflect both some of
the goals that NCTM has put forth in the Standards and the formats used in countries
where math achievement is high.

Through classroom observations, teacher and student interviews, and an analysis of school
documents, the strong role of teacher community came through. In the words of one teacher:
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I think actually individual really good teachers help some kids that wouldn't make it
otherwise, but I think the task of a department or of a school is to build up a
community, a spirit, a plan that makes it broader than just one individual teacher, you
know. And I think that may be the key lesson of what we've done at Union, that it's
bigger than one teacher. And the power of a bunch of teachers working together is
like greater than, the whole is greater than the sum of its parts.

In fact, only through community were teachers able to support students cognitively and
emotionally in ways that advanced them to calculus.

Like the math departments that were Organized for Advancement, this department rotated its
course assignments so that no single teacher owned a set of students or topics. The lack of
teacher tracking in this successful teacher community was less a result of a school policy and
more reflective of the stance that teachers took to create more democracy and opportunities for
learning among themselves. Teachers could also be found sharing and discussing curricular
materials; communicating and reflecting on students and their teaching; reinforcing to each other
that all students can learn calculus; relying upon each other for professional development and
support for students. Like the OFA departments I had studied, a key feature of this successful
context lay in teachers placing students' needs, not just mathematics, at the center of their work.

While the broader mathematics education community has embraced the idea of "Lesson
Study" (Fernandez & Yoshida, 2004; Crockett, 2002) and "Communities of Practice" (Stein et
al., 1998; Franke & Kazemi, 2001; Sherin & Han, 2004), it is important for equity purposes to
consider whether teacher community should be an end in itself (as a universal model of
professionalism and growth) or a means to something larger. In fact, the vision of student
empowerment, not just professionalism, drove the norms and practices of this teacher
community. In the words of the department chairperson:

More than anything we provide a vision for kids…having them believe in themselves
as a group, having them be able to do math as a group, having them believe they can
go to college as a group, and then at a whole 'nother level, um, it's like a political
level…Organizing, I mean, I, I mean, at some level my way of teaching tries to
organize them to be actors rather than acted upon.

As such, we learn that for equity purposes, the guiding mission of a community of practice may
be as important if not more so than its presence.

Upon further exploration, this successful teacher community could not easily be distilled into
a set of static characteristics without regard to how the community developed or was sustained
through threat. A look into the history of this community of practice showed it was built partly
on the biographies of the most veteran teachers (many of whom held identities that were
marginalized in society), partly on a university partnership that provided professional
development, and partly on strategic recruitment and socialization of new members over a period
of 10 years (Gutiérrez & Morales, 2002). When teachers' practices and beliefs were threatened
by a new principal who sought to focus staff on basic skills, the community's strong commitment
to students and a reform curriculum, coordination of courses, mentoring of new teachers, and
joint lesson planning allowed them to continue many of their practices without administrative
support or sanctioning. Their community of practice had effectively helped them subvert the
system so they could continue to be advocates for students. As such, this study highlighted the
importance of not only chronicling the nature of a successful teaching/learning context, but better
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understanding the origins and trajectory of that context so that we might build others like it
(Gutiérrez, 2002a).

Again an important aspect of this math teacher community moved beyond mere access and
achievement (in terms of how many students made it to calculus) to include issues of identity and
power. Identity issues included language and culture, but in complex ways (Gutierrez, 2003; in
press a). Teachers did not rely upon Mayan mathematics, or some pre-scripted contexts for
Latina/o students such as tortillas instead of bread. Rather, they developed a deep understanding
of their students (e.g., who uses Spanish when and with whom, who prefers graphing calculators
to paper-pencil forms, who is a leader in the school, etc.) and used that knowledge to create
working groups and an atmosphere where students felt comfortable using Spanish or code-
switching (regardless of their English proficiency levels) and negotiating that practice with non-
Spanish speakers. Like the window/mirror analogy, teachers wanted to build upon the resources
that students already possessed (Moschkovich, 2007), but they also saw the importance of
students communicating their arguments in English--a language for which they would be held
accountable on standardized tests. This meant sometimes students helped each other present their
work. Identity issues also came through in the potlucks that teachers hosted. Students celebrated
their mathematical successes with family members and invited speakers, in the midst of home
cooked foods.

While more attention has been brought to the kinds of clear-cut curricular interventions that
can give power to students, (e.g., using mathematics to explore whether there is discrimination in
the ways banks loan money) the issue of power in this teaching context related more to student
voice/ownership in the classroom and to an understanding of the ways mathematics and power
are related in society. At the time of the study, the calculus students showed outward signs of
agency (e.g., developing t-shirts that claimed the calculus space, creating a second "honors"
assembly because their efforts had not been acknowledged in the larger school's gathering,
creating a body of calculus representatives that provided feedback on teaching to their
instructors). However, the true nature of power became more prominent a year later when I had
the opportunity to follow 8 of the graduates into their college years at the University of Illinois,
the flagship university of the state. Having moved from their neighborhood communities where
most of their interactions involved other brown skinned, mainly working class people, the
university setting presented a new space where they were often challenged to prove themselves
in terms of intellect and their right to be present. Whether it was deficit-oriented professors or
white and/or middle class students with negative stereotypes of urban schools, the high school
graduates argued that just bringing out "the calculus card" was enough to change the power
dynamics. That is, they understood and were able to draw upon the social capital conferred to
them by having participated in a calculus program in high school.

23 Teacher Candidates
Having learned the importance of "community" and "stance" in the work of effective

mathematics teachers, I shifted my focus to teacher education. More specifically, I studied 23
teacher candidates who remained as a cohort for 2 years as they moved through our certification
program. I wanted to know how one might develop in individuals the knowledge and disposition
to teach high quality mathematics to urban students. The context of the program in which I work
is primarily white, middle class females, strong in mathematics (mainly procedural knowledge)
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with little exposure to or solidarity with marginalized students. While (re)learning mathematics
in ways they were not taught is important (Ball, 1988), the more formidable struggle is to get
teacher candidates to recognize that not all students are like them. Part of that challenge lies in
getting them to acknowledge and build upon students' frames of mind.

I was frustrated with the limitations of readings and cases studies and was committed to the
idea that "learning is becoming" (Wenger, 1999). As such, I was most interested in engaging my
pre-service teachers in a community of practice like the successful teacher communities I had
studied. I had already spent two years working on a similar project with a local teacher on a
professional development grant. While she was committed to the highest levels of
professionalism and engaged my pre-service teachers in a kind of community of practice, she did
not hold a "stance" on teaching that placed her mainly African American and working class
students and their needs first. She received her national board certification during the final year
in which we worked together, however, in my eyes she was only minimally successful along the
access dimension of equity, and unsuccessful along the other three dimensions. [See Reed &
Oppong (2005) for similar results on national board certified teachers]. At best, the pre-service
teachers in that project were able to identify beliefs and practices they would not replicate. At
worst, our partnership further engrained already held stereotypes of working class students and
students of color.

For the new project, I chose a teacher who had won awards for his teaching of calculus at the
college level, who chose to teach in an alternative high school serving students who had been
unsuccessful in other schools, who put his Latina/o and African American students and their
needs first, and who chose to teach an NSF-supported mathematics curriculum. Although only in
his first year of teaching, he offered greater opportunities for modeling the kind of equity
practice for which I was looking. As such, we engaged in a one-year partnership with him and
his students.

The partnership project had several components that attempted to engage pre-service teachers
in the kinds of practices that effective teachers of marginalized students do on a regular basis
(Gutiérrez, 2004). The university students were asked to: email a high school student on a
weekly basis about things other than just math class, do mathematical problems that the high
school students were doing, view video of the high school students doing the same problems,
think about those math problems from the point of view of the student and the teacher, debrief
with the partner teacher the events of the classroom video, prepare lesson plans for the high
school classes, and host a fieldtrip to the University of Illinois where the high school students
were given a chance to understand college life.

The success of the teaching context with which we partnered lay in a high percentage of
students engaged on a daily basis in Interactive Mathematics Program (IMP) activities, focusing
on conceptual understanding. Although no standardized achievement data was available, most of
the students received solid grades in the two courses with which we partnered: algebra and data
analysis/probability. Because the high school students had left their previous schools for reasons
of childcare, gang involvement, or lack of support, their commitment to the math classroom here
signaled a certain level of achievement. Like many of the math departments I have studied,
effective teaching in this context involved a heavy reliance on cooperative learning, emphasis on
National Council of Teachers of Mathematics (NCTM) process standards, students working in
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Spanish and English, regular use of graphing calculators, student presentations of their work, a
rigorous curriculum, and supplemental activities that were relevant to students' lives.

Because I was interested in developing in pre-service teachers their knowledge and
disposition to teach quality mathematics, the partnership project aimed to get them to experience
mathematics in ways that reflected the goals of the NCTM Principles and Standards (NCTM,
2000). The students had read and discussed the principles and standards, some agreeing more
than others that it represented guidelines for a quality mathematics curriculum. Now, they were
being given an opportunity to do activities from a real text, to see high school students doing
those very activities, to video-conference with their teacher his approach and its consequences,
and to decide for themselves whether this was a quality mathematics curriculum.

In the beginning of the project most of the teacher candidates were impressed with the
manner in which the Interactive Mathematics Program engaged them in concepts not just
procedures and gave them opportunities to connect their mathematical understanding with other
topics or the real world. On first pass, and with themselves as the reference frame, the pre-
service teachers saw the curriculum as quality mathematics. However, when asked to reflect on
the students with which we were partnering and how this curriculum might be appropriate, they
were less sure, pointing out that the IMP curriculum assumed a certain level of proficiency in
basic skills (something they did not feel the students had) and offered few opportunities to
practice the ideas learned. They were also concerned that students could get lost in the heavily
reading-based text. Their perspectives failed to fully engage equity issues, reflecting somewhat
of a deficit framing on the students of color who were our partners.

When the pre-service teachers had the opportunity to view video of the high school students
doing the activity, they were happily surprised to find that the students were engaged in
reasoning and problem solving, making conjectures and defending their arguments. At the end of
this session, many of them changed their minds and saw the power of a curriculum that focused
on concepts and that required students to collect their own data. They saw the manner in which
the teacher framed his questions to draw out his students' thinking and fostered student-student
interactions. In fact, some argued that this kind of curriculum and teaching was at the heart of
addressing equity issues in school because so many inner city kids were usually only asked to
memorize procedures or prepare for standardized tests. From our equity lens, they were now able
to see issues of access (to a quality curriculum and quality teacher) and some achievement
(ability to make conjectures and defend arguments).

As the year progressed, we became more and more familiar with the classrooms with which
we partnered and developed a more natural feel to the debriefings of lessons with the teacher. As
we gained trust and shared common rituals, the pre-service teachers were able to pose more
nuanced questions and our partner teacher was able to be more vulnerable with us. In
community, we sought to better understand the students' needs and to best support them to
develop mathematical proficiency. At one point in the year, the teacher was recounting a
situation that had happened in his class and he wondered outloud if he had done the right thing.
He explained that one day in class he was lamenting how the context of the problems in IMP
failed to address the lived realities of his students. As the conversation between he and his
students pursued, the idea of white textbook writers arose and what might this curriculum look
like if the high school students had written it instead. At the time of the conversation he was
aiming to show solidarity with students, recognizing that their identities and lived realities were
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important. However, upon later reflection, he wondered whether bringing up the subject and
showing his disappointment with the curriculum would now make it hard for students to want to
do the activities in class on Monday. Should he even have said anything to his students?

This question stimulated much discussion among us and raised the issue of whether "high
quality curriculum" could be considered in universalitistic terms. Several of the students saw the
importance of recognizing the bias in curricular materials with one's students. In the end, the
teacher ended up creating a separate project on the probability of "seeing oneself" in a variety of
magazines in his data analysis and probability class.

For the first time, my students were starting to see issues of identity and power. They realized
that they had not considered whose perspective was privileged in designing curriculum and that
teaching involves making these kinds of in-the-moment decisions that can create or break down
solidarity and trust with students. More than just having access to an NSF-supported curriculum
that challenged them to reason, problem solve, communicate, make connections, and represent
mathematics to each other and to their teacher or being able to use Spanish in class, they saw that
students also should be given opportunities to see themselves in the curriculum or analzye the
world around them. At the end of the project, what was less clear for the pre-service teachers was
the extent to which students were being prepared for standardized tests they might encounter in
their lives. Their struggle highlights the tensions between dominant and critical mathematics.

What this study revealed to me was the importance of successful contexts, not just for
students in public schools, but also for developing teachers. That is, a key feature of the context
of learning that differed between the teachers with which we partnered was being able to see real
outcomes for students in ways that began to address their identities and power in society,
especially with a teacher who held a stance of solidarity with his students. That is, my pre-
service teachers were only able to abstract ideas and strategies from things they witnessed or
participated in. This feature of success further highlights how all communities of practice are not
equal (Gutiérrez, 2005).

I would like to end with some research I have been doing on the achievement gap (Gutiérrez,
in press; Lubienski & Gutiérrez, in press) because it helps illuminate how our attention has been
diverted from broader equity.

The "Achievement Gap"
"Gap gazing" along with more general "gaps analyses" is an example of the kind of work that

is currently embraced in the mathematics education research community as a way to address
equity. By gap gazing, I mean research that documents the gap in mathematics achievement
between rich and poor students and between primarily brown/black students and white students,
while offering little in the way of intervention. In its most simplistic form, this approach points
out there is a problem but fails to offer a solution. Even researchers who conduct gaps analyses
with the purpose of closing "the gap" fail to recognize that it is the analytic lens itself that is the
problem, not just the absence of a proposed solution. Though I see many more problems with
using the achievement gap as an analytic lens [See Gutiérrez, in press b], two concerns that are
pertinent here are: a) it abstracts data from contexts and b) it ignores the many successful
contexts serving marginalized students that have been documented in the literature. Let me
explain.
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Most of the research conducted on the achievement gap involves large-scale data sets. In
these data sets, there is little room for attending to local dynamics, as the purpose is to define
generalizable trends. However, by failing to attend to contexts, a "gaps" focus renders policies as
"one size fits all," eventhough we know that teaching and learning are not universalistic (Ladson-
Billings, 1995a, b). That is, such analyses fail to attend to the meanings that students and
teachers ascribe to practices and resources that are at their disposal. In addition, the most
significant variables shown to close the achievement gap do so only minimally and do not
involve schooling contexts (Lee, 2003; Hedges & Nowell, 1999). Rather, they focus on income
or family background, something of which few mathematics educators or researchers have
control. Partly because gaps analyses provide little understanding of successful learning contexts
beyond a few static variables and because they rely on correlations, they are almost useless in
helping us understand either the dynamic relation between these variables or how to develop
more such effective learning environments. Moreover, without the larger socio-political frame,
achievement gap analyses perpetuate the notion that the problem of low achievement in
mathematics is a technical one. That is, if only we knew better how to develop teacher
knowledge or teach students of color, we could close the gap.

The fact is, we know quite a bit about what is successful in terms of teaching marginalized
students mathematics. For example, we know that effective teachers of diverse students
(especially teachers of Latinos and African Americans) come to know their students in
meaningful ways (e.g., do not rely upon stereotypes, are able to relate to their students in ways
that attend to their mathematical and personal needs, build upon their cultural/linguistic
resources), scaffold instruction onto students’ previous learning experiences without watering
down the curriculum, create classroom environments that have the feel of “family” (including a
heavy reliance on group work), believe all students can learn advanced mathematics, and draw
upon a deep and profound understanding of mathematics when choosing tasks (NRC, 2004).
Programs such as QUASAR, MESA, Project SEED, and to some extent the Algebra Project have
had success with students who are not being reached by traditional schooling practices (Hilliard,
2003). What often is lacking is not the knowledge, but the public "will" to support or develop
more successful learning contexts such as these.

Perhaps more importantly, an achievement gap focus fails our definition of equity, as it
attends only to the dominant mathematics that comprises the access and achievement
dimensions. Equity problems among students are complex; no one variable is the lever.
Therefore, although the policy arena may pressure us to keep things simple, the designs of our
studies and ultimately our solutions must mirror that complexity.

Future Research
My point in highlighting some of the research I have conducted on successful learning

environments for marginalized students is not to say that these environments are generalizable to
all students. Rather it is to suggest that only in deeper exploration of these environments can we
begin to understand the meanings that emerge for teachers and students. Moreover, my emphasis
on the potentially dangerous consequences of using an achievement gap focus is not to suggest
that everyone must conduct the same research or even that marginalized students do not benefit
at times from studies that document inequities. However, in an era of randomized trials and
experimental designs, I argue there is a great need to reclaim a space for studies that focus on
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learning in context, especially if we are committed to a definition of equity that moves beyond
mere access and achievement.

More specifically, I encourage the mathematics education community to conduct less
research that documents the achievement gap, identifies causes of the achievement gap, and/or
focuses on single variables to predict student success. Instead, we need more research on
effective/successful teaching and learning environments for black, Latina/o, First Nations,
English language learners, and working class students. More rich descriptions of these contexts,
including their origins of development are necessary if we are to fully engage a diverse society.
Indeed, we need to learn more about and build upon effective models that already exist. From
these studies more intervention work is possible. A cursory read of this article could leave one
wondering if I am calling for erasure of all large-scale quantitative research or research on
populations other than marginalized students. I am not. However, I am challenging us to consider
the ways in which the contexts we study come through in our work and how that may relate to
our stated goals of equity.
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In this writing I draw on complexity thinking to interpret and elaborate the notion of ‘context.’ In
particular, I explore implications of a conception of context that includes but exceeds
learners—that is, context understood as an adaptive, learning phenomenon. In the process, I
consider a range of contexts that are at play in mathematical knowing. The discussion is
illustrated through reference to ongoing research into teachers’ mathematics knowledge.

1. Learning Contexts
The topic of context is not new to the educational research literature. It has been prominent at
least since the middle of the 20th century, thanks in large part to the embrace of behaviorism. The
emergence of a scientifically rigorous framework, that redefined learning as changes in an
individual that are due to events in the individual’s setting, ignited an explosion of interest in the
notion of context and all that it entails.

Of course, behaviorism has long-since been displaced in discussions of learning and
teaching. But one of its enduring legacies is a tendency to interpret the word “context” in a
particular way. Context is most often understood in terms of the learner’s surroundings
(environment), rather than in terms of the webs of relationships that include but exceed the
learner/agent (ecology). The latter sense of context is more faithful to the word’s Latin root,
whose translation is weave together.

These two interpretations of context correspond to contrasting conceptions of learners.
Context-as-environment conjures images of insulated or isolated actors, who occupy but are
separate from their situations. Context-as-ecology suggests entangled, embedded, and nested
agents, whose boundaries are not clearly delineated. Bateson illustrates the point:

Suppose I am a blind man, and I use a stick. I go tap, tap, tap. Where do I start?
Is my mental system bounded at the handle of the stick? Is it bounded by my skin? Does it start halfway up

the stick? Does it start at the tip of the stick?
But these are nonsense questions. The stick is a pathway along which transformations of difference are

being transmitted. The way to delineate the system is to draw the limiting line in such a way that you do not cut
any of these pathways in ways which leave things inexplicable. (1972, p. 459)

Bateson is not just blurring the boundaries of cognitive agents here; he is also implicating the
observer in the phenomenon observed. It is the observer who draws “the limiting line” that
defines the learner/agent, while at the same time specifies the context. One might thus say the
notion of context is multiply vexed, especially when made an explicit object of inquiry. With the
observer implicated and the boundaries of learner/agent understood as contingent, it is clear that
the context is also an adapting and evolving form. That is, contexts are not merely settings for
learners; they are learners themselves.

This expanded the notion of learner has been at the core of complexity thinking for the past
few decades. Complexity thinking can be defined as the study of systems that learn (Davis,
Sumara, & Luce-Kapler, 2008). That is, complex systems (or learners) are self-determining
forms that adapt their structures to maintain coherence in the face of new experiences and
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changing circumstances. Complex systems arise in the co-activities of learning sub-agents. The
hierarchical nesting of sub-agents within agents implies that the delineation of a particular
agent/learner from its context is often a matter of arbitrary convention or heuristic convenience.

In this writing I explore some of the implications that this expanded conception of learners
with/in contexts holds for mathematics education. My intentions are thus: first, to consider a
range of contexts that are at play in mathematical knowing; and second, to discuss the roles that
these contexts play in my current research preoccupation—teachers’ knowledge of mathematics.

2. My Own Context
In my ongoing study of mathematics-for-teaching, I investigate the devices—examples, images,
metaphors, and gestures—that teachers select (often unconsciously) and employ in their efforts
to render the subject matter meaningful to themselves and to their students.

Some of the data for the study is collected in meetings in which groups of teachers come
together to examine their mathematical knowledge. The meetings are typically organized around
familiar topics from the school curriculum. Teachers engage not only in representing existing
mathematical knowledge, but also in uncovering and elaborating the understandings on which
this knowledge is founded. These groups of teachers can thus be seen as knowledge-producing
collectives.

For example, in a recent series of meetings, a cross-grade group (K–12) of teachers engaged
in unpacking the concept of multiplication (Davis & Simmt, 2006). A question posed to the
teachers in the latter part of the series was, “Where does a person’s understanding of
multiplication come from?” The teachers’ response, arrived at collectively after about an hour of
group discussion, is presented in Figure 1.

Some of the roots of a personal understanding of multiplication

• innate capacities
· distinction-making ability
· pattern-noticing ability
· rudimentary quantity sense

• elaborations in pre-school
· experiences of collecting, ordering, sharing, etc.
· refinement of object/quantity permanence
· learning of a counting system
· preliminary development of number sense
· preliminary development binary operations (esp. addition)

• elaborations in the early grades
· physical action-based metaphors for binary operations
· mastery of a symbol system for numbers and operations
· grouping, repeated addition, & skip-counting
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• elaborations in the middle grades
· introduction to range of images and applications
· in particular, shift from discrete to continuous contexts
· conceptual blending of old and new metaphors, including: grouping processes;

sequential folds; many-layers; ratios and rates: making grids and rectangular
arrays; areas, volumes, and other dimension-changes; number-line-stretching or
–compressing; number-line rotating

• elaborations in the senior grades
· broader range of applications
· algebraic and graphical representations
· distinguishing arithmetic, geometric, and exponential growth
· cutting ties to concrete materials and experiences

Figure 1. Teachers’ collective response to “Where does a person’s understanding of
multiplication come from?”

Many of the aspects of multiplication contained in the above response originated in earlier
meetings of the teacher collective. But the organization of these aspects into a chronology, that
depicts mathematical understanding as a series of nested elaborations, was new.

To my reading, this chronology, spanning both physiological constitutions and socio-cultural
positionings, signals that the teachers were enacting some form of tacit transdisciplinarity.
Indeed, the presence of neurological, psychological, sociological, linguistic, and anthropological
perspectives in the teachers’ response suggests entanglement of mathematical knowing in
different complex systems. As discussed earlier, these complex systems are themselves learners-
with/in-contexts.

3. Contexts of Mathematical Knowing
So what are the learners-with/in-contexts implicated in school mathematics? In surveying some
of them, I use the word web to denote the connections between learners and contexts, and to
emphasize that any separation of the two phenomena is necessarily artificial.

3.1 – The Endoweb: bodily systems with/in bodies
A recent discovery in neurological research, one that Damasio (2005) identified the most
significant discovery since 1980, is that human subsystems are dependent on but not determined
by experience. In describing the learning of bodily systems, Damasio noted:

… in the nervous system, as much as the immune system, selection from among diverse elements is more
important than instruction to shaping functional structure. (p. 72, italics added)

This finding challenges the commonsense assumption that the immune system, the nervous
system, and other bodily systems operate mechanically. Far from being passively directed by
outside stimuli, these systems are active and interactive participants in their worlds. In other
words, they are learners that make selections, which in turn contribute to their ongoing self-
modifications. An immediate implication is that bodily systems must have diverse elements from
which to select.



22

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Recent research in developmental psychology suggests that humans emerge from the womb
with a repertoire of many well-defined perceptual preferences and abilities. These include a
rudimentary sense of quantity and an ability to distinguish among simple patterns (cf. Gopnik,
Meltzoff, & Kuhl, 1999). It is clear that biological bodily systems are already making selections
prior to any culturally mediated experiences of mathematical learning.

These findings evoke a conception of knowing in which the mind may be viewed as a
coherence-seeking ecosystem, subject to ongoing elaborations that are conditioned by new
experiences. Learning is the continual expansion of the range of possibilities for selection and
interpretation available to the mind. This conception of mind-as-an-ecosystem is radically
different from the “blank slate” of John Locke, the stimulus-response structures of behaviorism,
or the brain-as-computer models of cognitivists. While constructivists may not find it too
foreign, I suspect that some may be limited by a tendency to treat learner” and “individual” as
synonyms. Even though each child comprises multiple learning agents—that is, active,
discernment-making, co-implicated systems—the lack of attention in education to instruction on
the level of bodily subsystems is conspicuous.

3.2 – The Egoweb: me’s with/in us’s
The self-versus-society dyad has been at the core of some of the most long-standing debates in
education. This dyad is based on the deeply entrenched assumption in western thinking that there
exists an impassable division between the categories of individual and collective. This
assumption, however, seems to be untenable. As Donald explains:

The ultimate irony of human existence is that we are supreme individualists, whose individualism depends
almost entirely on culture for its realization. (2001, p. 12).

Self and society arise codependently. The relationship between individuals and collectives is not
so much a me-versus-us dichotomy as a me-and-us complementarity.

It seems curious that schooling, an enterprise that has always been organized around
collections of people, places so strong an emphasis on individual learning. Whereas some
educators have been concerned with the question of who—individual or collective—should be
privileged, there is mounting evidence that greater rewards await educators who promote the
emergence of a win-win dynamic between the two.

My work with teachers’ research collectives is oriented by this sensibility. I am constantly
concerned with the question of how a collection of individual teachers (me’s) can cohere into a
knowledge-producing collective (us). To be more blunt, I am interested in the ways in which a
teacher or a researcher might facilitate the emergence of a collective that is more intelligent than
its most intelligent member. I am equally interested in the ways in which participation in
knowledge-producing collectives promotes individual possibility. To this end, Elaine Simmt and
I (Davis & Simmt, 2003) have used studies of complex systems to argue that there exist specific
conditions to which teachers can, and indeed must, attend if they wish to promote vibrant
complex interactions in their classrooms.

There is a wealth of current intersecting discourses on collective action. They include:
situated learning, activity theory, actor-network theory, and various social constructionisms. All
of them characterize the group, either metaphorically or literally, as a learner (e.g., Towers &
Martin in these proceedings).
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3.3 – The Eduweb: formal education with/in an institutionalized culture
About 15 years ago, I attended a session in which a member of a local Chamber of Commerce
presented the results of an informal poll of member business owners. He had asked the question,
“What sorts of preparation do you expect of the people you hire?”

Basic mathematical competency was ranked 18th on the list. At the top were qualities such as
superior communication skills, ability to work in teams, and competence in gathering
information. As a whole, the list pointed to the clear expectation that workers be able to
cooperate with others in a collectively intelligent knowledge-producing system. There seems to
be a problem here around the pervasive belief that a major purpose of schooling is to prepare the
child for the adult world.

Commenting on this sort of disconnect between schooling structures and emergent post-
schooling realities, Jenkins et al. note:

Schools are currently still training autonomous problem-solvers, whereas as students enter the workplace, they
are increasingly being asked to work in teams, drawing on different sets of expertise, and collaborating to solve
problems.(2007, p. 21)

Of course, there are some signs that schools in general, and mathematics education in particular,
are beginning to change. Current emphases on problem solving and group work certainly give
reason for hope.

Nevertheless, it is evident that the institution of formal schooling is increasingly falling out
of step with the rest of our changing institutionalized culture. In our times, the monolithic
industrial-age factories of yesteryear, which served as models for early schooling, have given
way to the flexible and adaptable Hewlett Packard, Toyota, and Microsoft. Predicting what
children who enter first grade will need to know just 12 years hence is becoming increasingly
difficult due to the rapid pace of technical, demographic, and economic change. Yet the topics
taught in most schools, especially in mathematics, have remained disturbingly similar for many
decades.

One ray of hope that I found in the teachers’ response has to do with their enacted sense of
the nature of mathematics. Multiplication, as described by the teachers, is contingent and
adaptive, and arises from emergent experience. The evolution of mathematical knowing in
children, as described by the teachers, is not as a linear progression from partial to complete
understanding, but rather a continuous expansion of the space of the possible. These insightful
conceptions of mathematical knowledge and mathematical learning are dramatically different
from those experienced by the teachers when they themselves studied mathematics in grade
school. So even though the topics have remained the same, it is clear that mathematics education
has been evolving.

3.4 – The Ethnoweb: western culture in/and a multi-cultural world
The accelerating trend of the last few decades towards globalization has forced western society
to come to terms with its ethnocentrism. The proliferation of communication technologies and
the expansion of global travel have been accompanied by a growing willingness of western
culture to get acquainted with and attend to other cultural traditions. Increasingly, westerners are
encountering ways of knowing that arose in different places and in different times, as humans
adapted their knowing and technologies to fit with diverse contexts.

The sum total of humanity’s systems of knowing constitutes the ethnoweb—the collected
wisdom of humankind, the multiplicity of ways the world has been imagined, the diversity of
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understandings of the human race’s place in the biosphere. An ethnoweb is defined in large part
by its technologies. In this context, the term technology encompasses not only artifacts and tools,
but also the theories, practices, and methods that enable and constrain possibilities for action.

Language and mathematics are among the most powerful technologies that humans possess,
as they equip us with habits, associations, and information that draw from the entire collective
memory of humanity. They also open up the possibility of abstraction and abstract reasoning.
These technologies underpin the human ability to come together in grander cognitive systems,
ones with capacities that vastly surpass the abilities of individuals.

Mathematics education researchers were among the first in education to attend to the
multiplicity of ways of knowing offered by the ethnoweb. Indeed, ethnomathematics has been a
prominent and vibrant area of inquiry for the past 20 years.

Awareness of the role of culture in mathematical knowing is also apparent in the teachers’
collective response about multiplication. It would take very little effort to reclassify the response
under the heading “Some roots of the western concept of multiplication.” It is obvious that the
teachers made a strong connection between emergence of personal insight and recapitulation of
cultural knowledge. Personal knowings of school mathematics, it seems, are all about cultural
knowledge.

3.5 – The Ecoweb: humans in/and the more-than-human world

Figure 2. The image from the webpage for this year’s conference.

One of the principal triggers for structuring this writing around the multiple contexts implicated
in mathematics education was the main image of this year’s conference (see fig. 2). When I
consider this spectacular scene as context, my thoughts are pulled away from active classrooms,
problem-posing activities, and artifact-rich experiences. Instead, I begin to contemplate the
learner/agent of humanity in the context of the more-than-human world.2 In turn, I find myself
wondering about the mathematics itself and the role that it plays in this context.
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So where is the mathematics? There are two classic poles to the debate. The one sees
mathematics out there—objective and eternal Truths mined from the universe. The other sees
mathematics in here—culturally specific and fallible truths that are collectively constructed.
Both sides are wanting, as both are founded on a radical separation of agent from context (in this
case, humanity from nature), which requires that knowledge be located in either the agent or the
context. Complexity thinking, however, suggests a conception of knowledge as the interface
between the species and the natural world. Knowledge is the site of connection rather than the
site of separation.

This sense of knowledge is present in the teachers’ response. Whether it is seen as a
statement of individual understanding, of school curriculum, or of western mathematics, the
response exhibits a clear conversational character. It is about participation and embeddedness in
the universe. It is about a conversation in its etymological sense of living with.

Mathematical knowledge is about humans living with the more-than-human world. This point
is illustrated elegantly in the conference image. When I, a human being equipped with just a
preliminary knowledge of fractal geometry and chaotic dynamics, look at this image, my
perception is drawn to the self-similarity of structures (trees, mountains, water surface) and to the
co-evolution of phenomena (e.g., the smoothed rocks in the foreground echo the interactions of
water, ice, rocky mountains in the background). Humanity is always implicated in its more-than-
human context, and human mathematical knowing is similarly implicated. It is hardly surprising
that the mathematics of fractal geometry and chaotic dynamics are emerging at a time when
humanity is becoming more eco-centric and more attuned to evolutionary processes. These
mathematics in turn will affect human ways of being in the world, and the world itself. The
dance is ongoing.

3.6 – The Webweb
The conversation between humanity and the more-than-human world takes me all the way back
to the endoweb. Where do our innate abilities to make distinctions, notice patterns, and
discriminate among quantities come from? Clearly, these capacities are inscribed in our physical
beings. They were learned on the species level over millions of years in the ever-unfolding
conversation of humanity in/and the more-than-human world.

This brings up the question of the relationships among the different webs. How are the endo-,
ego-, edu-, ethno-, and eco-webs related?

At first, it may seem reasonable to suggest that they are nested like Russian dolls. However,
this suggestion is not very useful for making sense of how the ecoweb is embodied in the
endoweb. It seems that the relationship is that of webs unfolding from each other and being
enfolded in each other, rather than a simple containment pattern.

Analyzing a living phenomenon within its webs of context expands our understanding of the
phenomenon because doing so:

 highlights the vibrancy of the phenomenon, often by invoking bodily and/or
ecosystemic metaphors (e.g., body of knowledge, student body, the body politic);

 frames dynamics in terms of adaptation and evolution, which are notions rooted in
biology, rather than in terms of cause-and-effect, which are notions drawn from
physics;

 focuses attention on fit (coherence) rather than on match (correspondence) in
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accounts of how agents/learners or contexts arise and persist. The implication is
that the critical criterion for survival is not optimality/efficiency (survival of the
fittest) but adequacy/sufficiency (if something works, it will probably endure).

In light of these benefits, I’m inclined to ask, “How can mathematics education researchers
become more deliberate about the transdisciplinary and transphenomenal character of
mathematics knowing?” In the second half of this writing, I will use some of the contexts
invoked by the teachers in their analysis of multiplication to begin to work through answers to
this question.

4. Mathematics-for-Teaching
The topic of teachers’ knowledge of mathematics and its relationship to student understanding is
one of the most prominent among mathematics education researchers at the moment. Given my
interest in the complexity of knowing, it is not surprising that I too am caught up in this hub of
the current eduweb.

I begin this section with a discussion of how I have grappled with the phenomenon of
mathematics-for-teaching in order to arrive at my current understanding. I continue with a
description of a developing assessment tool for teachers’ mathematical knowledge. I end by
presenting some preliminary results of my research project.

4.1 – Grappling with mathematics-for-teaching
One of the most surprising aspects of my first few years as a middle school mathematics teacher
was the degree to which I needed to learn mathematics. I took on my first teaching position with
the expectation that my undergraduate mathematics program had prepared me well for the
demands of middle school mathematics teaching. But I was wrong. In hindsight, I can report that
the mathematics learning that I experienced in these years was in many ways deeper and more
intense than that in university. It was also qualitatively very different.

Some of the my most vivid memories from this period revolve around what I might describe
as re-membering (i.e., in the original sense of “putting back together”). These were moments in
which I became conscious of details and associations of which I had not been conscious before
or which I had known and forgotten. The topic of multiplication of integers, for example,
occupied me for quite a few evenings, as I kept reworking explanations and examples in
anticipation of students’ questions and difficulties. I remember being dissatisfied with the very
few illustrations and explanations provided in the textbook. I had a strong sense that the pictures
of grouped negatives and the accompanying pattern-based justifications did not really address the
“why’s” of the topic.

I recall the first time that I encountered the image of rotating a number line in an arithmetic
book. I experienced a feeling of triumph, almost an elation, when I realized that this simple
image could be used readily to explain why “a minus times a minus is a plus” (cf. Mazur, 2003).
But I was also frustrated when I recognized that this image was not used to explain
multiplication of negative integers when I was a student—even though it was later encountered
more explicitly in studies of, for example, the complex plane.

Throughout my years as a schoolteacher, I encountered numerous images, analogies, and
metaphors that infuse understandings of mathematical topics. Some were to be found in teacher
resource materials, others arose in conversations with colleagues, a few were even presented by
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students. The continual experience of discovering “new” ways of knowing mathematics shaped
some of the core convictions that I now bring to my formal research into teachers’ knowledge of
mathematics. They include:

 Mathematics-for-teaching should be studied in the moments when teachers struggle
with their understanding of concepts.

 The researcher should pay particular attention to the figurative frames and conceptual
associations made.

 There is much to be gained by studying the origins and history of mathematical ideas.
Even the most inert mathematical concepts can come to life when the historical
reasons that occasioned their emergence and the ways in which they evolved over
time are traced.

 Given that pedagogy is by definition a social phenomenon, the researcher must be
cognizant of the collective nature of teachers’ knowings.

 The researcher must be attentive to the dynamic nature of knowledge, and be acutely
aware that attempts to study mathematics contribute to its transformation.

4.2 – Creating an assessment tool
Let’s return to Damasio’s assertion (§3.1) that selection from diverse elements is more important
than instruction to shaping functional structure. Although Damasio was referring to bodily
systems, I believe that his assertion holds true for educational systems as well. Hence my work is
oriented by the assumption that flexible and intelligent learning is enabled by the presence of
diverse interpretive possibilities.

An early goal of this work has been the excavation and explicit representation of the diverse
images and metaphors associated with specific school mathematics concepts (See Davis &
Simmt, 2006, for a more detailed description of the interactive structures and the data collected.)
For example, when the teachers’ collective was presented with the question, “What is
multiplication?”, the response included:

 adding repeatedly;
 assembling groups from equal-sized subsets;
 hopping along a number-line;
 making sequences of folds;
 layering layers;
 ratios and rates;
 straight-line functions on the xy-plane;
 array-generating;
 area-producing and dimension-changing;
 number-line stretching or compressing;
 number-line rotation.

Very similar lists have been produced when I posed the same question to other groups of pre-
service and practicing teachers. I tend to attribute the consistency of response to the stability of
the ethnowebs and eduwebs in which mathematics teaching occurs.

The current goal of the research is to develop an assessment tool that might enable a
researcher to determine and augment the range of interpretive possibilities that a teacher has
available. I use the images, metaphors, and explanations obtained from the teachers’ collectives
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to create assessment protocols. These protocols are used subsequently to guide individual
teachers’ explorations of their own mathematical understandings. For instance, the current
protocol of multiplication starts with a focus on multiplication of single digit whole numbers,
and then proceeds to multiplication of multi-digit whole numbers, unit fractions, non-unit
fractions, decimals, signed integers, linear functions (slope), monomials, binomials, vectors, and
matrices. At each stage, the interviewees are asked how they understand the topic, and how they
might frame the topic for their students.

I specifically look for moments in which the interviewees admit that they are not comfortable
with their own understandings. At these moments, it is typical for interviewees to appeal to rules.
The following narrated transcript from an interview with Christine, a Grade 6 teacher with more
than 20 years of experience, illustrates this point:

“2 _ 6 = 12,” I write on the paper between us.
“Yep,” Christine nods.
“So how would you explain why that’s true,” I ask, adding, “without reducing it to a rule

or procedure?”
“Lots of ways. Two groups of six is twelve, or six groups of two. If you count up by

twos, after six moves you get to twelve—which is something you can have the kids do on a
number line or by playing a hopscotch-like game. … There’s that idea you showed us about
multiplying as many-folding: Fold a page in two parts, then fold that in six parts. That’ll
make twelve parts.”

“What about +2 _ –6 = –12?”
“Same thing, really, two groups of negative six is negative twelve. Or moving backward

six steps twice sends you back twelve. … I guess the paper thing [i.e., sequences of folds]
wouldn’t work there.”

“Okay, then how would you help someone understand –2 _ –6 = +12?”
“Hmm. Well that one’s getting really abstract, isn’t it? You can’t take negative numbers

of groups. I guess you could talk about losing things, but that would just confuse people. It’s
horrible to say, but I think it’s easiest if you just follow the rule for these ones. They’re not
very meaningful anyway.”

When considering multiplication of two negative integers, Christine has reached what I call an
Hmm?! moment. Hmms are those instances when a teacher realizes that something is amiss. They
typically occur when an interpretation that has always seemed to work suddenly comes up short.
As Christine noted, interpretations of multiplication that are based on grouping, on directed
motion, or on folding cannot readily accommodate two negative multiplicands.3

Unlike Aha! moments that flag sudden clarity, coherence, and ready associations, Hmm?!
Moments flag unexpected turbidity, inconsistency, and jarring breaks. I believe that Hmm?!
moments are the ones in which teachers are most willing to expand their range of interpretive
possibilities with the aid of the assessment tool.

4.3 – Preliminary Results
I consider my research into teacher’s knowledge of mathematics to be still at its preliminary
stages. Much more work must be done to unearth figurative frames, to refine questions, and to
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formalize protocols for interpretation. Even so, some consistent results are emerging. Among
them:

 It seems that a majority of practicing teachers, at all levels, tend to regard formal
mathematical procedures and rules as well considered and necessary.
So far, only 3 of the approximately 50 teachers interviewed did not resort to the “follow
the rule” escape device when working through the multiplication of negative numbers
protocol. When questioned about whichever rule was invoked, interviewees were rarely
able to unpack it. Even many of those who were able to find meaning in the mathematics
often argued that standard procedures must be taught in the same way they have been
handed down for generations. When questioned about this belief, a number of teachers
adopted a “survival of the fittest” logical stance, reasoning that tried-and-true
procedures are necessarily the best. I would classify this manner of response as an
ethnoweb phenomenon; it seems to be part of a grander cultural network of beliefs about
the nature of mathematics.

 The middle years of schooling are distinct in that they give rise to an explosion in the
number of new metaphors, images, and applications. For the most part, these new
figurative frameworks are neither obvious nor made explicit to students.
None of the teachers interviewed so far had any difficulty with illustrating and
interpreting mathematical concepts and processes of the elementary school level. Every
teacher seemed to have at least one, and often only one, non-algorithmic interpretation of
addition, subtraction, multiplication, and division of whole numbers. The difficulties
arose when the interviews progressed to number systems beyond the whole numbers.
Both elementary and secondary school teachers were often stumped in their efforts to
identify appropriate interpretations of concepts and processes involving common
fractions, decimals, signed integers, and algebraic expressions. These topics and
concepts are typically introduced in the middle years. So I am led to hypothesize that the
frequently noted loss of interest in mathematics that students experience in these years is
partly due to the absence of meaningful figurative grounding of the mathematics. I regard
this phenomenon to be an eduweb phenomenon. It is within the power of the institution of
mathematics education to change it.

 Teachers tend to regard metaphors, applications, and images as “window dressing” for
concepts and not as the principal means by which understandings are established.
Many teachers were strangely timid when discussing how they made sense of ideas for
themselves and for their students. Some felt the need to frame their responses with
apologetics, such as “I know this isn’t really mathematical …” or “This might be wrong,
but it helps the kids get it …”. The tendency to apologize was present even when the
teachers were discussing interpretations that are firmly rooted in formal mathematics,
such as the ones included in the multiplication list above.

There are multiple webs at work here. “Teach a rule” resides in the eduweb,
although the ethnoweb likely helps to hold it in place. Conversely, I suspect that paying
greater attention to the ecoweb and the endoweb, which highlight the connections to the
more-than-human world and to embodied knowing, might help address the issue.

 Understandings improve within group settings.
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So far, teachers’ responses were always more varied and nuanced in collective settings.
These setting included both focus group interviews and more open-ended research
sessions. The impact of collectivity was not merely a cumulative one. The diversity and
depth manifest in the collective responses suggested that they were more than just the
sums of individual responses. While prompts such as “What is multiplication?”
occasioned no more than two or three descriptors from individual respondents, they
occasioned remarkably rich and stable responses from collectives. Clearly, this is an
egoweb phenomenon, in which the collective us provides a more complex response than
does a collection of me’s.

 Understandings improve with teaching experience.
With few exceptions, in individual settings experienced teachers offered a broader range
of interpretations of mathematical topics than did novice teachers. As illustrated in the
narrated transcript with Christine, experienced teachers often presented their
understandings in an automatic “rapid fire” manner, with little conscious reflection. In
contrast, novice teachers, especially at the elementary level, were often more hesitant in
their responses and more reluctant to consider multiple interpretations. I am most
inclined to associate this observation with the eduweb. As teachers become more deeply
entwined in it, they benefit from various opportunities to elaborate their understandings,
and to expand the range of their explanations.

5. Closing remarks: Towards participatory mathematics education
I believe that a major contribution of complexity thinking to discussions of teaching and learning
is its capacity to render explicit that which has fallen into transparency. It is a sensibility that
guided my interpretation of phenomena and experiences described in this writing. For example,
being explicit about the boundaries, which observers impose in order to separate knowers from
contexts, reveals the shortcomings of many structures of modern schooling. Being explicit about
figurative devices in mathematics leads to awareness of the centuries of personal struggle and
collective contestation through which new images were proposed, debated, embraced, and
thoroughly embodied in cultural knowledge.

Although the narrated transcript of Christine’s interview recounts one interview with one
teacher, the story it tells extends far beyond the ideas of one person. Christine’s interpretations
come from somewhere. If one were to study the emergence of multiplication in mathematics, one
would find that the webs of association in collective knowledge are as tangled, as muddled, and
as fragile as those in individual knowledge (cf., Lakoff & Núñez, 2000; Mazur, 2003). And so
the entanglements of ethnoweb, eduweb, egoweb, and endoweb come to the fore.

Self-similar dynamics are at play across all these webs, and limiting one context can disrupt
all contexts. Christine’s Hmm does not flag an error; it does not point to an interpretation that
needs to be corrected or replaced. Rather, it announces the need to locate a new image, a novel
metaphor, a broader analogy, and to blend it with what is already there. These images,
metaphors, and analogies are to be found in multiple contexts. Unfortunately, Christine confines
herself to the instrumental approach of appealing to a rule. Prompted by the work or critical and
cultural theorists, I am particularly troubled by this move. To my thinking, it not only derails the
opportunity for the class to operate as a knowledge-producing collective, but also denies the
contexts of the eduweb, ethnoweb, and ecoweb.
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As we have seen, if mathematics is understood to reside in the interfaces of humanity with/in
the more-than-human world, western societies with/in a multicultural world, formal education
with/in an institutionalized culture, and other emergent webs, then the lines between learners and
contexts become blurred and vanish. If mathematical knowledge is understood to operate in the
border regions that humans create to separate learners from contexts, then it is a mathematics
that’s embedded, contingent, evolving, and continually enacted.

This view of mathematics has immediate implications for education, and in particular for our
understanding of the roles that children and their teachers play in shaping mathematics.
Researchers (see Deacon, 1997) have asserted that the most potent shapers of language are not
adults but children, who plane off linguistic inconsistencies and readily embrace new
vocabularies. I suspect that a similar phenomenon is at work in mathematics classrooms.
Children and their teachers play a definitive role in shaping mathematics in their co-selection of
images, metaphors, applications, gestures, examples, and exercises. They are participants in the
production of mathematics, not merely consumers of or inductees into established knowledge.

When seen in this light, teaching cannot be only about replication and perpetuation of
existing possibilities. Rather, teaching is participation in a recursively elaborative process of
opening up new spaces of possibility. Complexivist teaching is not about prompting a
convergence onto pre-existent truths, but about divergence into new interpretive truths. The
emphasis is not only on what is, but also on what might be brought forth.

Mathematics-for-teaching should therefore be regarded as one of the most important domains
of mathematical study. Its legitimation as a mathematical domain of inquiry may be the first step
towards the timely evolution of mathematics education into a more participatory discipline. As
Jenkins et al. explained,

[a] participatory culture is a culture with relatively low barriers to artistic expression and civic engagement,
strong support for creating and sharing one’s creations, and some type of informal mentorship whereby what is
known by the most experienced is passed along to novices. A participatory culture is also one in which
members believe their contributions matter, and feel some degree of social connection with one another (at the
least they care what other people think about what they have created). (2007, p. 3)

Participatory education extends far beyond the confines of classrooms. It implicates students,
teachers, curriculum developers, mathematicians, and mathematics education researchers in a
grand shared social and cultural reality. It is a reality in which the endo-, ego-, edu-, and
ethnowebs are all activated.

In closing, complexity thinking points to a mathematics education that is committed to the
connection of individuals, communities, societies, cultures, and species – all of which are
learners with/in contexts that learn. We are all participants.

Endnotes
1. I am indebted to Moshe Renert for his critical commentary on earlier drafts of this

writing.
2. The phrase “more-than-human world” is borrowed from Abram (1996).
3. I do not mean to present Hmms as a new idea. They are not unlike the “cognitive

obstacles” proposed by Brousseau (1983) or the “discrepant events” described by Strike and
Posner (1985). They are moments in which what is immediately conscious cannot be fitted with
established and embodied associations. They are sequences of experiences that lead to surprising
results, but the reason for that surprise might not be immediately available for interrogation.
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Christine, for example, knows there is a conflict between her rationalization and the rational
process. She knows that she’s correct in her explanation at the same time that she knows that her
explanation is lacking.
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This paper focuses on research that can inform the improvement of mathematics teaching and
learning at scale. We first argue that such research should view mathematics teachers'
instructional practices as situated in the institutional settings of the schools and districts in
which they work. We then discuss a series of hypotheses about school and district structures that
might support teachers' ongoing improvement of their classroom practices. In the latter part of
the paper, we outline an analytic approach for documenting the institutional settings of
mathematics teaching established in particular schools and districts that can feed back to inform
instructional improvement efforts.

The central problem that we address in this paper is how mathematics education research can
generate knowledge that can contribute to the ongoing improvement of mathematics teaching
and learning at scale. Researchers in mathematics education and in the learning sciences have
made considerable progress in recent years in understanding the cognitive processes that underlie
students' constructions of key mathematical ideas in particular mathematical domains and in
developing viable instructional designs for supporting students' development of those ideas. This
large and growing body of research on mathematical learning provides a grounding for reform
proposals advocated by the National Council of Teachers of Mathematics (NCTM) (Kilpatrick,
Martin, & Schifter, 2003). Research has also made significant progress in identifying the forms
of knowing that are central to the ambitious forms of instructional practice envisioned by NCTM
(1989; 2000), and in developing professional development designs that support teachers'
reorganization of their instructional practices (e.g., Hill, Rowan, & Ball, 2005; Kazemi &
Franke, 2004). In summarizing current investigations of teacher professional development in
mathematics and in other fields, Borko (2004) concluded that this research delineates the
characteristics of high quality professional development and "provides evidence that high-quality
professional development programs can help teachers deepen their knowledge and transform
their teaching" (p. 5). The characteristics of high quality professional development she identified
included an explicit focus on knowledge of content and students’ reasoning, extensive use of
records of practice such as student work and classroom video-recordings, and supports for the
development of teacher learning communities. Borko went on to propose a research agenda that
focuses squarely on scaling up high-quality professional development that supports teachers'
development of the types of instructional practices promoted by NCTM. We concur with Borko's
judgment that improving teaching and learning at scale is a pressing research issue. To be sure,
additional studies are needed of student learning in particular mathematical domains as well as of
teachers' learning that can inform the improvement of professional development designs.
However, it seems indisputable that research that addresses issues of how to take mathematics
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reform to scale is underdeveloped in comparison with research on mathematics learning and
teaching.

The daunting nature of "the problem of scale" is indicated by the well-documented finding
that prior large-scale interventions that have attempted to penetrate the instructional core of
classroom teaching and learning have rarely produced lasting changes in either teachers’
instructional practices or the organization of schools (Elmore, 2004; Gamoran et al., 2003).
Schools typically experience continual external pressure to change, a condition that Hesse (1999)
termed policy churn. However, classroom teaching and learning processes have proven to be
remarkably stable amidst the flux, with teachers often taking the attitude that “this too shall
pass.” Cuban (1988) likened the situation to that of an ocean tossed by a storm in which all is
calm on the sea floor even as the tempest whips up waves at the surface. Research in educational
policy and leadership indicates that the limited impact of prior reform efforts is due in part to
reformers’ failure to take into account the institutional settings in which teachers develop and
refine their instructional practices (cf. Stein, 2004). This general situation appears to be little
different in mathematics. As an illustration, early cross-site evaluation of Local Systemic Change
projects (LSCs) assessed projects in terms of the extent to which they were developing
supportive contexts for instructional improvement and for sustainability (Weiss, Rapp, &
Montgomery, 1997, 1998). A synthesis of these early reports concluded that LSCs

encountered problems in balancing immediate project needs— providing professional
development –with long-term goals, for example, engaging principals, parents, partners, and
others important for sustaining reforms. Securing stakeholder support requires … staffing,
resources, and strategic planning. LSCs were often ‘short’ in these areas, recognizing the
need, but ‘dropping the ball,’ of necessity, to focus on support for teachers. (Bond, Boyd, &
Montgomery, 1999, p. 111)

The early evaluations of the LSCs and the broader policy and leadership literature both
emphasize that the improvement of mathematics instruction on a large scale is not merely an
issue of developing research-based curricula and designing high-quality teacher professional
development programs, though both are critical. Instructional improvement at scale also has to
be framed as a problem for schools and districts as educational organizations, where both formal
and informal structures and relationships shape the environment in which teachers develop and
revise their instructional practices (Blumenfeld, Fishman, Krajcik, Marx, & Soloway, in press;
Bryk  & Schneider, 2002; Coburn, 2003; McLaughlin & Mitra, 2004; Stein, 2004; Tyack &
Tobin, 1995).

The "problem of scale" is especially challenging in the case of current mathematics education
reform proposals because they require ongoing learning for most mathematics teachers that
involves scrutinizing deep-rooted suppositions and assumptions about students, learning, and
mathematics. In this regard, Cohen and Ball (1990) observed,

changing one’s teaching is not like changing one’s socks. Teachers construct their practices
gradually, out of their experience as students, their professional education, and their previous
encounters with policies designed to change their practice. Teaching is less a set of garments
that can be changed at will than a way of knowing, of seeing, and of being. (pp. 334-5)

Although a significant proportion of mathematics teachers generally support the standards
advocated by NCTM, many are not prepared to develop instructional practices of this type
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themselves (Cohen, 1990; Elmore, Peterson, & McCarthey, 1996; Grant, Peterson, & Shojgreen-
Downer, 1996; Sizer, 1992). Policy research confirms that many teachers’ current practices
emphasize procedural skills at the expense of conceptual understanding of central mathematical
ideas (Cohen, McLaughlin, & Talbert, 1993; Darling-Hammond & McLaughlin, 1995; Porter &
Brophy, 1988). It is critical that teachers have reason and motivation to develop both the depth of
mathematical knowledge and the detailed understanding of students’ mathematical reasoning
implicated in the kinds of classroom practices recommended by NCTM. This requires that
schools and districts initiate wide-scale professional development and support structures that
move far beyond the one-shot workshops that make up the professional development repertoire
of most districts.

Researchers who work closely with teachers to support and understand their learning will
probably not be surprised by Elmore's (1996) succinct synopsis of the results of educational
policy research on large-scale reform: the closer that an instructional innovation gets to the core
of what takes place between teachers and students in classrooms, the less likely it is that it will
implemented and sustained on a large scale. In accounting for this finding, Elmore noted that
reformers typically see themselves as developers of new approaches for supporting students' and
teachers' learning, not as institution-changing agents. We will capitalize on Elmore's insight in
this paper by emphasizing the importance of coming to view mathematics teachers' instructional
practices as situated within the institutional setting of the school and district. This perspective
implies that supporting the development of teachers' instructional practices will require changing
these settings in fundamental ways.

The institutional setting of mathematics teaching as we conceptualize it encompasses district
and school policies for instruction in mathematics. It therefore includes both the adoption of
curriculum materials and guidelines for the use of those materials (e.g., pacing guides that
specify a timeline for completing instructional units) (Ferrini-Mundy & Floden, 2007; Remillard,
2005; Stein & Kim, 2006). The institutional setting also includes the people to whom teachers
are accountable and what they are held accountable for (e.g., expectations for the structure of
lessons, the nature of students’ engagement, and assessed progress of students’ learning) (Cobb
& McClain, 2006; Elmore, 2004). In addition, the institutional setting includes social supports
that give teachers access to new tools and forms of knowledge (e.g., opportunities to participate
in formal professional development activities and in informal professional networks, assistance
from a school-based mathematics coach or a principal who is an effective instructional leader)
(Bryk  & Schneider, 2002; Coburn, 2001; Cohen & Hill, 2000; Horn, 2005; Nelson & Sassi,
2005), as well as incentives for teachers to take advantage of these social supports. The findings
of a substantial and growing number of studies document that teachers’ instructional practices
are partially constituted by the materials and resources that they use in their classroom practice,
the institutional constraints that they attempt to satisfy, and the formal and informal sources of
assistance on which they draw (Cobb, McClain, Lamberg, & Dean, 2003; Coburn, 2005;
Spillane, 2005; Stein & Spillane, 2005). The findings of these studies orient us to take account of
the institutional settings in which groups of mathematics teachers work when we formulate
designs to support their learning and when we develop explanations of their activity in
professional development sessions and in their classrooms. In doing so, we would be begin to act
as institution-changing agents who understand that supporting teachers' reorganization of their
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instructional practices involves, in part, supporting the development of institutional settings that
enable their learning.

Historically, the "problem of scale" has been viewed as the exclusive preserve of researchers
in educational policy. Our contention is that instructional improvement in mathematics has to be
framed as a problem of school and district organizational learning, requiring both a broadening
of what counts as worthwhile research in mathematics education and a blurring of the boundaries
between policy and leadership researchers on the one hand and mathematics educators on the
other. As the evaluations of LSC projects illustrate, the price for failing to attend to the
institutional settings in which teachers develop and elaborate their instructional practices can be
high. The findings of the LSC project evaluation is not an aberration: current research reveals
that the extent to which instructional innovations are continued when funding finishes is
generally low even when initiatives are successful (McLaughlin, 2006). In our view, this finding
is attributable in part to reformers' untenable assumption that teachers are autonomous agents in
their classrooms, uninfluenced by what takes place outside the classroom door. In making this
assumption, reformers are, in a very real sense, flying blind with little if any knowledge of how
to adjust to the settings in which they are working as they collaborate with teachers to support
their learning. In contrast, the empirical finding that teachers' instructional practices are partially
constituted by the settings in which they work orients us to anticipate and plan for the school and
district support structures that need to be developed to support and sustain teachers' ongoing
learning. In taking this latter perspective, we would respond to McLaughlin's (2006) call to
identify "system supports necessary for individual learning to continue and deepen" (p. 219).

A Personal Perspective on the Institutional Setting of Mathematics Teaching
Our goal up until this point in the paper has been to clarify the importance of situating

teachers' instructional practices in the institutional setting of the school and district when
addressing "the problem of scale." We have developed the argument by drawing on the literature
in mathematics education and in educational policy and leadership. We now approach the same
set of issues from a more personal perspective by describing briefly how the institutional setting
of mathematics teaching came to the fore in our own work with mathematics teachers and how
this focus led us to our current work that seeks to inform the improvement of mathematics
teaching at scale. In doing so, we first outline events that occurred in the course of a teacher
development project in which one of us participated some years ago.

The goal of the project was to support a group of elementary school teachers' development of
instructional practices that involved building on their students' current mathematical reasoning to
achieve a significant mathematical agenda.2  One year after we began working with the teachers,
several members of the newly elected school board challenged the changes that were occurring
in how mathematics was being taught and learned even though student scores on the state-
mandated test were favorable (Cobb et al., 1991). In a localized version of the “math wars,” a
two-year struggle ensued in the district that centered on the issue of who controlled the
mathematics curriculum (see Dillon, 1993, for an account of these events). As a consequence of
their collaboration with us, the teachers had become able to justify their new instructional
practices in terms of the quality of their students’ mathematical learning, and they therefore
believed that they were more qualified than the school board members to make decisions about
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mathematics instruction (Simon, 1993). The teachers, supported by their principals, eventually
prevailed and were given the authority to make curricular and instructional decisions in
mathematics.

The role of the research team in this sequence of events was largely reactive and involved
responding to a series of unanticipated crises that threatened the continuation of the project. We
had been flying blind because we naively assumed that the teachers had complete autonomy to
decide how they would address state and district mathematics objectives. The lesson that we
drew from this experience for future work with teachers was that it would be crucial to
understand how what transpired outside teachers' classrooms influenced what occurred within
them by taking into account what we came to call the institutional setting of teaching (Cobb &
McClain, 2001).

As we prepared for a subsequent teacher development project conducted some years later
with middle school teachers,3 our initial plan was to collaborate with researchers in policy or
leadership. We sought to identify colleagues who would analyze the institutional setting in which
the participating middle-school teachers worked and share their findings with us so that we could
adjust our plans for working with the teachers and with other school and district personnel. We
were unable, however, to identify any policy researchers who were willing to engage in design
research of this type in which the overall goal is to improve the initial design for supporting
learning. Policy researchers typically study the outcomes of specific policies and, more recently,
the process by which particular policies are implemented or enacted (see Honig, 2006b, for an
excellent collection of papers on policy implementation). The focus tends to be on the effects of
established interventions or policies, taking the institutional environment in which those policies
are implemented as given. As one eminent policy researcher put it, we were looking for feedback
on the institutional setting that would allow us to "mess with the intervention" by continually
adjusting our design for supporting the collaborating teachers' learning. In other words, policy
researchers typically seek to test the effectiveness of interventions as designed, while we as
design researchers wanted to adjust and improve our design for supporting teachers' learning as
we identified aspects of the institutional setting that were not conductive to change.

As a consequence of this fundamental difference in methodological commitments, we
eventually decided to conduct the analyses of the institutional setting in which the collaborating
middle-school teachers worked on our own. To do so, we had to develop an analytic approach
that was specific to the teaching and learning of mathematics. We will describe this analytic
approach in a subsequent section of this paper. For the present, it suffices to note that the
resulting analyses enabled us to be proactive rather than merely reactive. We were able to
anticipate potential tensions and conflicts that might have influenced the participating teachers
before they escalated into full-scale crises. The resulting analyses also contributed to our
understanding of the collaborating teachers' activity in both professional development sessions
and their classrooms, thus enabling us to be more effective in supporting their learning. In
addition, we came to realize that the interviews and group conversations that we conducted with
the teachers in order to understand the institutional setting in which they worked also constituted
excellent contexts in which to begin developing a collaborative relationship with them. Although
our immediate purpose in these interviews and conversations was to generate data that would
inform our initial design for supporting the teachers' learning, we necessarily attempted to



38

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

understand some of the deep-rooted problems with which the teachers had to cope on a daily
basis. This interest in teachers’ everyday concerns appeared to be a relatively novel experience
for the teachers and seemed to indicate to them that we took their viewpoints seriously. Based on
this experience and on similar experiences with teachers in other districts, we now routinely
initiate conversations of this type when we first begin working with teachers. Understanding how
teachers view their institutional setting has become a critical first step in developing a
collaborative relationship with teachers.

Investigating Instructional Improvement at Scale
Our current work capitalizes on the analytic approach for assessing the institutional setting of

mathematics teaching that we developed while working with this group of middle-school
teachers. One of the primary goals of our current project, which is still in its early stages, is to
provide districts with the type of support that one of us originally sought when first attempting to
establish cooperative relationships with researchers in educational policy. In other words, we
seek to provide district and school-level leaders with the type of information about the
institutional setting of mathematics teaching that could improve the support structures for the
improvement of teaching. To this end we are collaborating with four large, urban districts that
have partnered with the University of Pittsburgh’s Institute for Learning (IFL) to formulate and
implement comprehensive initiatives for improving the teaching and learning of middle-school
mathematics. We will follow 30 middle-school mathematics teachers and approximately 17
instructional leaders in each of the four districts for four years to understand how the districts'
instructional improvement initiatives are playing out in practice. In doing so, we will conduct
one round of data collection and analysis in each district each year for four years to document: 1)
the institutional setting of teaching, including formal and informal leaders’ instructional
leadership practices, 2) the quality of the professional development activities in which the
teachers participate, 3) the teachers’ instructional practices and mathematical knowledge for
teaching, and 4) student mathematics achievement. The resulting longitudinal data on 120
teachers and approximately 68 school and district leaders in 24 schools in four districts will
enable us to test a series of hypotheses that we have developed about school and district support
structures that might enhance the effectiveness of mathematics professional development. We
will discuss these hypothesized support structures later in the paper.

In addition to formally testing our initial hypotheses, we will "mess with the intervention" by
sharing our analyses of each annual round of data with the districts and collaborating with them
to identify any adjustments that might make the districts' improvement designs for middle-school
mathematics more effective. We will then document the consequences of these adjustments in
subsequent rounds of data collection, using both qualitative (e.g., semi-structured interviews) and
quantitative instruments (surveys, assessment of teachers' mathematical knowledge for teaching,
and coding of the quality of instructional lessons and student work). Clearly, we hope that the
feedback we provide to the districts will contribute to their ongoing improvement efforts. In
addition, we will attempt to augment our hypotheses in the course of the repeated cycles of
analysis and design4 by identifying additional support structures and by specifying the conditions
in which particular support structures are important. In doing so, we seek to address a pressing
issue identified by Stein (2004): the proactive design of school and district institutional settings
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for mathematics teachers' ongoing learning. Work of this type clearly falls at the intersection of
research in mathematics education on the one hand and research in policy and leadership on the
other, and it reflects the differing though complementary backgrounds of the authors of this
paper.

As we engage in this work, we find it essential to be cognizant of the broader federal and
state policy environments within which the practices of teachers and instructional leaders in the
collaborating districts are located. In this regard, it is worth noting that No Child Left Behind
(NCLB) is a relatively radical development in federal education policy. In the great society
period of the 1960s initiated during the Johnson administration, federal policies were designed to
help special needs students reach basic minimum standards. These policies targeted school
personnel and charged them with implementing mandated programs for traditionally underserved
groups of students (Honig, 2006a). In contrast, NCLB was designed to enable all students to
meet high performance standards.5  It aims to do so by impacting who teaches and what they
teach. In practice, the penalties and incentives associated with NCLB influence teachers'
instructional practices, mostly though not universally for the worse (Au, 2007). Whereas great
society policies targeted school personnel almost exclusively, NCLB targets state, district, and
school policy makers by holding them accountable for ensuring that ever-greater proportions of
students surpass a proficiency threshold. States are given incentives to design and enact three
central components of the federal policy: content standards, tests aligned with the standards, and
mechanisms for holding schools accountable for increasing test scores. The resulting state
policies constitute key aspects of the settings within which district and school leaders formulate
local policies for mathematics.6  The resulting local policies as they are actually enacted in
schools in turn constitute key aspects of what we have termed the institutional setting of
mathematics teaching.

The first question that needs to be addressed when locating the institutional setting of
mathematics teaching established in a particular school within the broader policy environment is
the quality of state policies developed first in reaction to the standards-based reform movement
of the 1990s and later under the auspices of NCLB. As Elmore (2004) notes, most state
departments of education lacked the capacity to respond effectively to either the comprehensive
requirements of standards-based reform or the assessment and accountability mandates of
NCLB. As a consequence, tests in states selected to assess students were frequently poorly
aligned with state standards (Porter & Smithson, 2001), and most state tests focused on low-level
skills rather than central mathematical ideas (Shepard, 2002). The second question that needs to
be addressed is how district and school leaders mediate the state policies, especially in cases
where the quality of standards and assessments are open to question. Elmore's (2006) reflections
on his experiences of working with numerous schools is not encouraging in this regard. He
concludes that most district and school leaders have little if any knowledge of how to respond
effectively to state accountability policies. In the schools and districts that he studied, standards-
based reform became assessment-driven reform (cf. Resnick & Zurawsky, in press). Elmore goes
on to report that, in his judgment, only a minority of schools and districts have developed at least
a moderately “worked out” strategy for improvement that has the potential to both motivate and
support teachers' improvement of their instructional practices. The four districts in which we are
currently working fall within this latter group.
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In collaboration with IFL, leaders in the four districts have developed comprehensive designs
for improving the quality of mathematics teaching and learning. In doing so, they have framed
the challenge of improving the quality of classroom learning environments as a problem of
organizational learning in which school and district leaders as well as teachers are supported and
held accountable for improving their practices. They appear to be “walking the talk” when it
comes to reforming middle school mathematics. In this light, Confrey, Bell, and Carrejo (2001)
distinguish between what they term the discourse of high stakes accountability and that of
instructional improvement. In moving from talk to action, leaders in the four districts are
attempting to respond to the discourse of high stakes accountability by engaging in the discourse
of instructional improvement. In doing so, they are drawing on a set of Principles for Learning
that IFL derived from cognitive science research. These principles include cognitive challenge of
student activities; teacher stance toward students (e.g., modeling, coaching); active learning
(e.g., performance-based activities that require students to demonstrate their learning); student
engagement; academic rigor in a thinking curriculum that emphasizes a commitment to a
disciplinary knowledge core, high cognitive demand, and active use of knowledge; and the use of
forms of argumentation that follow established norms of disciplinary reasoning (Institute for
Learning, 2002; Resnick & Hall, 1998).

The initial goal for district leaders and their IFL collaborators is to support school leaders'
development of a relatively deep understanding of the Principles of Learning as a means of
viewing, assessing, and communicating about the quality of classroom instruction. They then
support school leaders as they use the principles to lead the improvement of instruction in their
schools. As part of this process, school and district leaders attempt to guide the establishment of
nested learning communities that are intended to support the learning of both teachers and
instructional leaders. These learning communities include: 1) the classroom; 2) the teacher’s
grade level team or content groups; 3) the school, where the principal and the teachers create a
learning community focused on pedagogy, curriculum, and effective ways to engage the
community; and 4) the district, where the superintendent, key staff, and the principals create a
learning community focused on the effective management of instruction within a school. To
realize the full power of the nested community organization, IFL personnel work with district
leaders to specify district-wide instructional programs in core subjects, including mathematics.

In the remainder of this paper, we focus on two types of conceptual tools that are central to
our current work and, we contend, to the improvement of mathematics teaching and learning at
scale more generally. The first is a theory of action for designing schools and districts as learning
organizations for instructional improvement in mathematics. The second is an analytic approach
for documenting the institutional setting of mathematics teaching that can produce analyses that
inform the ongoing improvement effort.7

Designing for Instructional Improvement in Mathematics
The term theory of action was coined by Argyris and Schon (1974, 1978) and is central to

most current perspectives on organizational learning. As Supovitz and Weathers (2004) clarify, a
theory of action comprises "the logic advanced by advocates of reform to explain how an
initiative is supposed to bring about intended results" (p. 1). In our terms, a theory of action
establishes the rationale for an improvement design and consists of conjectures about both a
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trajectory of organizational improvement and the specific means of supporting the envisioned
improvement process. The IFL has developed a general theory of action for taking ambitious
instructional practices to scale in urban districts by drawing on its experience of partnering with
such districts since 1995 (Glennan & Resnick, 2004; Resnick & Glennan, 2002). This general
theory of action in turn orients the work of IFL staff as they assist district personnel in
developing local theories of action that reflect district priorities, needs, and resources. One of the
key characteristics of IFL's theory of action is that it is grounded in cognitive science research on
students' learning of central disciplinary ideas. In developing its theory of action, IFL first
synthesized the cognitive science research in the form of Principles of Learning, which specify
characteristics of classroom learning environments that research indicates support student
learning processes. IFL then mapped backwards from the Principles of Learning to develop
district design principles. We touched on two of these design principles when we discussed IFL's
emphasis on establishing nested learning communities and on specifying instructional programs
district-wide. Additional design principles include:

• Focus at every level [within the district] on classroom instruction, including core
principles of learning and teaching.

• Use coherent standards, curriculum, assessment, and professional development.
• Two-way accountability in relations between [school and district] staff.
• The view that everyone [in the schools and the district] is a learner.
• Provide continuing professional development, based in the schools and linked to

instructional program.
• Make pervasive use of data in making decisions at all levels.

(Glennan & Resnick, 2004, p. 19)
The backward mapping approach is familiar to most mathematics educators who engage in

classroom instructional design and is central to Wiggins and McTighe's (1998) influential book
on instructional design. Almost thirty years ago, Elmore (1979-80) argued that education policies
should be formulated by mapping backwards from the practices of  the practitioners that they are
intended to influence. As Stein's (2004) and Cohen et al.'s (2007) recent reiterations of Elmore's
argument make clear, backward mapping approaches that take practitioners' practices seriously
continue to be the exception rather than the rule when formulating policies both at the school and
district levels, as is the case with IFL's work, and at the state and federal levels.

In our current work in the four urban districts, we see local initiatives that stem from IFL’s
design principles as important for the district-wide improvement of mathematics instruction.
However, we think that there are additional aspects of the institutional setting of mathematics
teaching that also need to be considered. To this end, we have, formulated a series of hypotheses
about school and district support structures that we conjecture will be associated with
improvement in middle-school mathematics teachers' instructional practices and student
learning. In developing these hypotheses, we assumed that a school or district has adopted a
research-based instructional program for middle-school mathematics and that the program is
aligned with district standards and assessments. In addition, we assume that mathematics
teachers have opportunities to participate in sustained professional development that is organized
around the instructional materials they use with students. Our hypotheses therefore focus on
potential support structures that fall outside mathematics educators' traditional focus on
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designing high-quality curricula and teacher professional development. To the extent that the
hypotheses prove viable, they specify the types of institutional structures that a school or district
organizational design might aim to engender as it attempts to improve the quality of mathematics
teaching across the organization.

Teacher Networks and Communities
Consistent with Elmore's (1979-80) admonition, we developed our hypotheses by taking as

our starting point the forms of research-based instructional practice advocated by organizations
such as NCTM (2000). Teachers who have developed instructional practices of this type attempt
to achieve a significant mathematical agenda by building on students' current mathematical
reasoning. To this end, they engage students in mathematically challenging tasks, maintain the
level of challenge as tasks are enacted in the classroom (Stein & Lane, 1996; Stein, Smith,
Henningsen, & Silver, 2000), and support students' efforts to communicate their mathematical
thinking in classroom discussions (Cobb, Boufi, McClain, & Whitenack, 1997; Hiebert et al.,
1997; Lampert, 2001).8  These forms of instructional practice are complex, demanding,
uncertain, and not reducible to predictable routines (Ball & Cohen, 1999; Lampert, 2001;
McClain, 2002; Schifter, 1995; Smith, 1996). The findings of a number of investigations indicate
that strong within and between school professional networks can be a crucial resource for
teachers as they attempt to develop instructional practices in which they place students’
reasoning at the center of their instructional decision making (Cobb & McClain, 2001; Franke &
Kazemi, 2001b; Gamoran, Secada, & Marrett, 2000; Kazemi & Franke, 2004; Little, 2002; Stein,
Silver, & Smith, 1998). Teachers' participation in professional networks and communities
therefore constitutes our first hypothesized support structure.

There is abundant evidence that the mere presence of collegial support is not by itself
sufficient: both the focus and the depth of teachers' interactions matter. Clearly, it is important
that activities and exchanges in teacher communities and networks focus on issues central to
classroom instructional practice (Marks & Louis, 1997). Interactions of greater depth might, for
example, involve discerning the mathematical intent of instructional tasks or identifying student
reasoning strategies, whereas interactions of less depth might, for example, involve determining
how to use instructional materials or mapping the curriculum to district or state standards
(Coburn & Russell, in press). We anticipate that communities and networks in which interactions
focus to a greater extent on student reasoning and the mathematical potential of instructional
activities will be more supportive social contexts for teachers' development of ambitious
instructional practices than those in which interactions of limited depth predominate (Franke,
Kazemi, Shih, Biagetti, & Battey, in press; Stein et al., 1998).

As a point of clarification, it is worth noting that the term community is frequently used
differently in the mathematics education literature that it is used in the policy and leadership
literature. Most mathematics educators use the term to refer to groups of mathematics teachers
who work together on an ongoing basis to improve their instructional practices.9  In contrast,
policy and leadership researchers frequently use the term to refer to a school-wide community
comprised of all teachers and instructional leaders participate irrespective of subject matter area
(e.g., Bryk  & Schneider, 2002; McLaughlin & Talbert, 2006). In an influential article, Bryk,
Camburn, and Schneider (1999) define school-wide professional community as follows:
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Three core practices characterize adult behavior in a school-based professional community:
(a) reflective dialogue among teachers about instructional practices and student learning; (b)
a deprivatization of practice in which teachers observe each others' practices and joint
problem solving is modal; and (c) peer collaboration in which teachers engage in actual
shared work…  Undergirding these practices are shared norms focused on student learning
and collective responsibility for school operations and improvement. (pp. 753-754)10

As Bryk and Schneider (2002) and Halverson (2005) make explicit, the emergence of school-
wide community involves the development of trust as members of the school staff establish and
fulfill obligations while engaging in joint tasks such as creating a school improvement plan or
formative assessments to inform instruction. Trust in turn moderates the risks inherent both in
undertaking organizational change and in teachers' efforts to reorganize their instructional
practices. As a first corollary to our first hypothesis, we therefore anticipate that, other things
being equal, professional networks and communities will emerge more readily among
mathematics teachers in schools in which the three types of practices listed by Bryk et al. (1999)
have already been established. As a second corollary, we anticipate that resulting networks and
communities among mathematics teachers will support the development of ambitious
instructional practices to a greater extent when school-wide discourse about learning and
instruction draws primarily on the broader discourse of reform rather than the discourse of high-
stakes accountability.

Access of Teacher Networks and Communities to Key Resources
As our discussion of the potentially facilitative role of school-wide community makes clear,

mathematics teacher networks and communities do not emerge in an institutional vacuum.
Gamoran et al.'s (2003) analysis reveals that to remain viable, teacher networks and communities
need access to resources. The second hypothesized support structure focuses on the potential
contribution of two specific types of resources to the emergence and development of teacher
networks and communities.

The first resource is time built into the school schedule for mathematics teachers to
collaborate. As Gamoran et al. (2003) make clear, time for collaboration is a necessary but not
sufficient condition for the emergence of teacher networks and communities. More generally,
social interactions among school and district staff are in part a function of institutional structure;
although institutional arrangements do not directly determine interactions, they can enable and
constrain the social relations that emerge between teacher and instructional leaders (Smylie &
Evans, 2006; Spillane, Reiser, & Gomez, 2006).

The second hypothesized resource is access to colleagues who are already relatively
accomplished in using the adopted instructional program to support students' mathematical
learning. In the absence of this resource, it is difficult to envision how interactions within a
teacher network will be of sufficient depth to support teachers' development of ambitious
instructional practices. In this regard, Penuel, Frank, and Krause (2006) found that improvement
in mathematics teachers' instructional practices was associated with access to mentors, coaches,
and colleagues who were already expert in the reform initiative. They explain that accomplished
coaches and fellow teachers can share exemplars of instructional practice that are tangible to
their less experienced colleagues. In cases where a district has invested in school-based



44

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

mathematics coaches, Penuel et al.'s findings have implications for both the selection of coaches
and for the nature of their professional development. We address these issues when we discuss a
subsequent hypothesized support structure, leadership content knowledge. For the present, it
suffices to note that in addition to providing ongoing support to individual teachers in their
classrooms, coaches can both support the emergence of mathematics teacher networks and serve
as a resource for school leaders in their roles as instructional leaders (York-Barr & Duke, 2004).
In the absence of school-based coaches, school leaders might support exchanges of sufficient
depth in teacher networks by requesting that district-level coaches work with mathematics
teachers around instructional issues, and by encouraging the most accomplished mathematic
teachers in the school to act as teacher leaders (Stein, 2004). In doing so, the school leaders
would facilitate the increasing distribution of instructional leadership in mathematics.

Common Discourse about Mathematics, Learning, and Teaching
A third important support structure emerges from the finding that professional development,

collaboration between teachers, and collegiality between teachers and formal school and district
leaders are rarely effective unless they are connected to a shared vision of effective instruction
that gives them meaning and purpose (Elmore et al., 1996; Newman & Associates, 1996;
Rosenholtz, 1985, 1989; Rowan, 1990). We developed our third hypothesis by recasting this
finding in three ways. First, we narrowed the focus to a vision for mathematics instruction shared
by mathematics teachers and formal or positional instructional leaders. At the school level,
formal instructional leaders might include the principal, an assistant principal with formal
responsibility for curriculum and instruction, a mathematics department head, and a school-based
mathematics coach. Second, we cast the third hypothesis in terms of a common instructional
discourse rather than a shared instructional vision. The notion of a shared vision is difficult to
operationalize and thus difficult to make tractable for empirical analysis. In contrast, relatively
rigorous methods have been developed for analyzing discourse that focus not merely on the
words that people use, but on the ways in which they use words and thus the meaning that the
words have for them (Sfard, in press). We intend to capitalize on these methods to assess the
extent to which mathematics teachers and instructional leaders share a common discourse for
mathematics instruction (cf. Hill, 2006). Finally, to make the analysis feasible, we narrowed the
scope of the hypothesis still further by focusing on discourse about instructional goals and thus
on what it is important for students to know and be able to do mathematically,11 and on how
students' development of these forms of mathematical knowledgeability can be supported. Our
third hypothesis is therefore that mathematics teachers' improvement of their instructional
practice will be greater in schools in which a common instructional discourse has been
established. It is worth reiterating that the notion of a common discourse requires not merely that
teachers and instructional leaders use similar terms when they talk about mathematics
instruction, but that they use those terms in similar ways. The hypothesized support structure is
therefore not only concerned with the terms that teachers and instructional leaders use but with
the meaning that those terms come to have for them.

Brokers
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People in different positional roles in a district, such as mathematics teacher, principal, and
district curriculum specialist, have different charges, engage in different forms of practice, and
have different professional affiliations (Spillane et al., 2006). These distinct occupational groups
are not, however, homogeneous (Honig, 2006a). Instead, each group is structured by informal
networks that emerge as people seek out others with similar viewpoints (Coburn, 2001). The
development of a common discourse about mathematics teaching and learning across the formal
and informal groups whose agendas relate to mathematics instruction is a non-trivial
undertaking. We hypothesize that a common discourse about mathematics will emerge more
readily in schools and districts in which the various groups are interconnected by brokers who
can bridge between differing agendas for mathematics instruction. Brokers participate at least
peripherally in the activities of at least two groups and thus have access to the perspectives and
meanings of each group (Wenger, 1998). For example, a principal who participates in
professional development with mathematics teachers might be able to act as a broker between
principals and mathematics teachers in the district, thereby facilitating the alignment of
perspectives on mathematics teaching and learning across these two groups (cf. Wenger, 1998).
From the point of view of organizational design, this example points to the importance of
developing venues in which members of different formal groups co-participate in activities that
relate directly to teaching and instructional leadership in mathematics. A priori, we anticipate
that the presence of brokers who can bridge between mathematics teachers and formal school
leaders, and between school leaders and key units of the district central office, will be
particularly critical in supporting the development of a common instructional discourse. School-
based mathematics coaches are likely candidates to fulfill this brokering role, although teachers
who assume more informal leadership roles in a school and district might also facilitate this form
of boundary spanning (Weatherley & Lipsky, 1977).

Negotiating the Meaning of Key Boundary Objects
The fifth hypothesized support structure also centers on the process of developing a common

instructional discourse. Mathematics teachers and instructional leaders use a range of tools as an
integral aspect of their practices. Star and Griesemer (1989) call tools that are used by members
of two or more groups boundary objects. For example, mathematics teachers and instructional
leaders in most schools use state mathematics standards and test scores, thereby constituting
them as boundary objects. Tools that are produced within a school or district might also be
constituted as boundary objects. For example, the mathematics leaders in one of the districts in
which we are working are developing detailed curriculum frameworks for middle-school
mathematics teachers to use as well as a simplified version for school leaders. In doing so, the
district mathematics leaders are designing tools for others to use that reify their own vision of
high quality instruction and instructional leadership. However, as Wenger (1998) emphasizes, a
reifying object such as a curriculum framework does not adequately capture the richness of
practice precisely because it is frozen into a concrete form such as a text.

What is important about all these objects is that they are only the tip of an iceberg, which
indicates larger contexts of significance realized in human practices. Their character as
reifications is not only in their form but also in the processes by which they are integrated
into these practices. Properly speaking, the products of reification are not simply concrete,
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material objects. Rather, they are reflections of these practices, tokens of vast expanses of
human meanings. (Wenger, 1998, p. 61)
Consistent with Coburn and Stein's (2006) recent findings, Wenger's analysis implies that

organizational designs for instructional improvement that rely almost exclusively on reifications
such as pacing guides and curriculum frameworks will be unlikely to bring about the intended
changes in practice. The tool itself cannot fully capture the forms of practice envisioned by its
designers. However, organizational designs that attempt to influence people's practices by
relying almost exclusively on participation in joint activities have their own limitations, not the
least of which is the coordination of activity across an organization as complex as a district.
There are therefore good reasons for attending to both reifying objects and co-participation in
joint activities when developing organizational designs. The forms of practice that the reifying
objects are intended to support become an explicit focus of discussion when the use of
reifications is negotiated. It is for this reason that the mathematics leaders in the district in which
we are working intend to organize professional development for teachers and school leaders
around the curriculum frameworks.

In the context of organizational designs of this type, boundary objects can serve as important
focal points for the negotiation of meaning and thus the development of a common instructional
discourse. The value of boundary objects in this regard stems from the fact that they are integral
to the practices of different groups and are therefore directly relevant to the concerns and
interests of the members of the groups. Our fifth hypothesis is therefore that a common discourse
about mathematics instruction will emerge more readily in schools and districts in which
members of various groups explicitly negotiate the meaning and use of key boundary objects. In
speaking of key boundary objects, we are referring to tools that are used when developing an
agenda for mathematics instruction (e.g., curriculum frameworks) and when making
mathematics teaching and learning visible (e.g., district formative assessments), as well as tools
that are used while actually teaching.

Accountability Relations between Teachers, School leaders, and District leaders
The sixth hypothesized support structure concerns accountability relations between teachers,

school leaders, and district leaders. At the classroom level, instruction that supports students'
understanding of central mathematical ideas involves what Kazemi and Stipek (2001) term a
high press for conceptual thinking. Kazemi and Stipek clarify that teachers maintain a high
conceptual press by 1) holding students accountable for developing explanations that consist of a
mathematical argument rather than simply a procedural description, 2) attempting to understand
relations among multiple solution strategies, and 3) using errors as opportunities to
reconceptualize a problem, explore contradictions in solutions, and pursue alternative strategies.
Analogously, we hypothesize that instructional improvement will be greater in schools and
districts where the following accountability relations have been established:

• Formal school instructional leaders (i.e., principals, assistant principals, mathematics
coaches) hold mathematics teachers accountable for maintaining conceptual press for
students and, more generally, for developing ambitious instructional practices.

• In schools that have mathematics coaches, the principal holds the coach accountable for
assisting mathematics teachers in developing ambitious instructional practices, and for
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assisting the principal in understanding the mathematical intent of the adopted
instructional program and the challenges involved in using the program effectively to
support students' learning.

• District leaders hold school leaders accountable for assisting coaches and mathematics
teachers in improving their practices.

We anticipate that the potential of these accountability relations to support instructional
improvement will both depend on and will contribute to the development of a common discourse
about mathematics, learning, and teaching. In the absence of a common discourse, different
school leaders might well hold teachers accountable to different criteria, some of which are at
odds with the intent of the district’s instructional improvement effort.

In addition to considering formal accountability relations, we also hypothesize that the
development of a collective sense of responsibility for instructional improvement among
mathematics teachers will be important. We anticipate that the development of mutual
accountability between mathematics teachers will depend on the prior emergence of teacher
networks and communities. In addition, we speculate that in schools that do not have
mathematics coaches, informal teacher leaders will play a critical role in supporting the
development of mutual teacher accountability.

Assistance in Improving Instructional and Instructional Leadership Practices
Elmore (2000; 2004) argues, correctly in our view, that it is unethical to hold people

accountable for developing particular forms of practice unless their learning of those practices is
adequately supported. We would, for example, question a teacher who holds students
accountable for producing mathematical arguments to explain their thinking but does little to
support the students' development of mathematical argumentation. In Elmore's terms, the teacher
has violated the principle of mutual accountability, wherein leaders are accountable to support
the learning of those who they hold accountable. The seventh hypothesized support structure
therefore focuses on relations of support and assistance, suggesting that instructional
improvement will be greater in school and districts where:

• Formal school instructional leaders (i.e., principals, assistant principals, mathematics
coaches) are accountable to teachers for assisting them in understanding the mathematical
intent of the curriculum, in maintaining conceptual press for students and, more
generally, in developing ambitious instructional practices.

• In schools that have mathematics coaches, principals are accountable to coaches to
procure material resources necessary to facilitate high quality mathematics instruction, to
assist the coach in gaining authority with mathematics teachers,12 and to use the coach as
a resource to support the principal's development as an instructional leader in
mathematics.

• District leaders are accountable to school leaders to provide the material resources needed
to facilitate high quality mathematics instruction, and to support school leaders'
development as instructional leaders.

In schools where relations of mutual accountability for improving instruction have been
established between mathematics teachers, it is important that the teachers are also mutually
accountable to assist each other. In such cases, the participation of teachers who are already
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accomplished in using the adopted instructional program would seem critical (Penuel et al.,
2006).

Leadership Content Knowledge
The eighth hypothesized support structure follows directly from our arguments about the

importance of a common instructional discourse and concerns the leadership content knowledge
of school and district leaders. Leadership content knowledge encompasses leaders' understanding
of the mathematical intent of the adopted instructional materials, the challenges that teachers face
in using these materials effectively, and the challenges in supporting teachers’ reorganization of
their instructional practices (Stein & Nelson, 2003). Ball, Bass, Hill, and colleagues have
demonstrated convincingly that ambitious instructional practices involve the enactment of a
specific type of mathematical knowledge that enables teachers to address effectively the
problems, questions, and decisions that arise in the course of teaching (Ball & Bass, 2000; Hill &
Ball, 2004; Hill et al., 2005). Analogously, Stein and Nelson (2003) argue that effective school
and district instructional leadership in mathematics involves the enactment of a subject-matter-
specific type of mathematical knowledge, leadership content knowledge, that enables
instructional leaders to address questions that arise in the course of leadership. "Standing at the
intersection of subject matter knowledge and the practices that define leadership, this form of
knowledge would be the special province of principals, superintendents, and other administrators
charged with the improvement of teaching and learning" (Stein & Nelson, 2003, p. 424). Stein
and Nelson go on to clarify that adequate leadership content knowledge in mathematics would
enable school and district leaders to recognize high-quality mathematics instruction when they
see it, support its development, and organize the conditions for continuous learning among
school and district staff.

The pioneering work of Nelson and Sassi (2005) not withstanding, the research base on the
mathematical knowledge for instructional leadership is extremely thin. As a consequence, it is
not surprising to find that leadership programs that focus on supporting ambitious mathematics
instruction reflect a range of different assumptions about the importance of leadership content
knowledge. For example, the Principles of Learning that ground IFL's work with school and
district leaders are not subject-matter specific, but instead specify characteristics of high-quality
instruction that hold across core subjects.13  In contrast, Stein and Nelson (2003) argue that
principals should be able to assist mathematics teachers in improving their instructional
practices. In their view, this requires that principals have a relatively deep understanding of
mathematical knowledge for teaching, of what is known about how to teach mathematics
effectively, and of how students learn mathematics, as well as "knowing something about
teachers-as-learners and about effective ways of teaching teachers" (p. 416). Stein and Nelson
extend this line of reasoning by proposing that district leaders who train principals must know
everything that principals need to know both as instructional leaders and as leaders of
organizations in which the entire instructional staff seeks to improve. In addition,

district leaders must also have knowledge of how principals learn (i.e., characteristics of
principals as learners -- what pre-conceptions do principals often bring to the learning
enterprise? How can these be overcome? How much do principals typically know about
facilitating teacher learning? (p. 426)
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In the absence of a solid research base, we are forced to follow Stein and Nelson in relying
on theoretical speculation to develop an initial, tentative hypothesis about leadership content
knowledge. Although we would expect to see greater instructional improvement in schools
where school leaders have stronger leadership content knowledge, we suggest that it might be
sufficient that this type of expertise is distributed across formal and informal leaders rather than
residing exclusively with the principal. In other words, we suggest that the depth of leadership
content knowledge that principals require is situational and depends in large measure on the
expertise of others in the school. In cases where principals can capitalize on the expertise of an
effective school-based mathematics coach, for example, the extent of principals' leadership
content knowledge in mathematics might not need to be particularly extensive. Deep
understanding of general characteristics of high-quality instruction as captured by IFL's
Principles of Learning might suffice, provided principals have an overall understanding of the
mathematical intent of the instructional program together with an appreciation that using the
program effectively is non-trivial accomplishment that requires support for an extended period of
time. We speculate that this limited knowledge might enable principals to collaborate effectively
with their coaches who have developed the forms of expertise outlined by Stein and Nelson. In
such cases, the requisite expertise as instructional leaders in mathematics and as organizational
leaders is distributed across the principal and the coach. If this speculation proves viable, it
would be important for principal professional development to attend explicitly to the issue of
leveraging subject-matter coaches' expertise effectively.

It might also be sufficient for principals' leadership content knowledge to be relatively
limited in the absence of a school-based mathematics coach provided there is a core of
mathematics teachers in their schools who are relatively accomplished in using the instructional
program effectively. In such cases, a key aspect of instructional leadership would be the ability
to capitalize on teacher expertise, particularly supporting the emergence of informal teacher
leaders. In the absence of teacher expertise, the role of the principal (or another school leader) in
supporting mathematics teachers' ongoing learning is critical. We find this conclusion worrying
because the depth of leadership content knowledge that Stein and Nelson suggest that principals
need seems overwhelming. Support from district leaders would appear to be essential in such
cases, perhaps resulting in the transferal of a small group of accomplished mathematics teachers
to the school or the funding of a school-based coach.

The forms of leadership content knowledge that Stein and Nelson suggest that district leaders
need appear to be impractical. However, Stein and Nelson's proposal is more attainable if we
interpret them as specifying the forms of expertise that district leaders should collectively be able
to enact. This interpretation points to the importance of the coordination of activity between
district administrative units, particularly those responsible for curriculum and instruction and for
instructional leadership. We address this issue when we discuss our ninth hypothesis.

It should be apparent that we see considerable merit in Stein and Nelson's analysis of
leadership content knowledge at the school and district levels. Our strategy has been to view
leadership content knowledge as distributed across school and district personnel. Stein and
Nelson acknowledge this approach when they observe that

where individual administrators do not have the requisite knowledge for the task at hand they
can count on the knowledge of others, if teams or task groups are composed with the
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recognition that such knowledge will be requisite and someone, or some combination of
people and supportive materials, will need to have it. (p. 444)

Thus, we expect to see greater instructional improvement in schools where principals and other
school leaders make effective use of school and district personnel's collective leadership content
knowledge.

Coordination within and between District Administrative Units
When we discussed the hypothesis that a common discourse about mathematics, learning,

and teaching is an important support structure, we focused primarily on relations between
mathematics teachers and school instructional leaders. The rationale we developed for the
hypothesis also applies to relations between district administrative units. We have already
indicated that key units include those responsible for curriculum and instruction and for school
leadership. In an era in which data based decision making has become almost a mantra (Ikemoto
& Marsh, 2007), the unit responsible for assessment and evaluation would also appear critical
given the importance of the types of data that are collected to assess school, teacher, and student
learning. In addition, depending on the district, the unit responsible for special education might
also be influential to the extent that it focuses on how mainstream instruction serves groups of
students identified as potentially at-risk. As Spillane et al. (2006) indicate, staff in different
administrative units whose work contributes to the district's initiative to improve the quality of
mathematics teaching and learning might well understand district-wide initiatives differently. We
anticipate that the role of brokers who can bridge the perspectives of the various district
administrative units will therefore be important in facilitating the development of a common
instructional discourse across the district. We speculate that it might be sufficient for brokers
who are not mathematics specialists to enact what might be termed an intermediate level of
leadership content knowledge provided there is a collective commitment to the general
characteristics of high-quality instruction across units. This intermediate level of leadership
content knowledge involves what Spillane (2000) terms a function rather than a form
interpretation of the instructional program in mathematics. District leaders who make a form
interpretation focus on the surface form of mathematics instruction and view features such as
group work, class discussions, use of manipulatives, and real world problems as alternative
strategies for achieving traditional instructional goals in mathematics. In contrast, district leaders
who make a function interpretation understand, for example, that the function of class
discussions is to support students' development of mathematical argumentation, and that the
specific ways in which group work, class discussions, manipulatives, and real world problems
are enacted may or may not contribute to the achievement of this instructional goal. This
intermediate level of leadership content knowledge also encompasses what Spillane (2002) terms
socioconstructivist assumptions about mathematics teachers' learning, wherein district leaders
understand the social supports for learning that teachers' participation in communities and
informal networks can provide. We speculate that with the assistance of brokers, it might be
possible for other district leaders who are not mathematics specialists to participate at least
peripherally in a common discourse about mathematics instruction. We further speculate that the
participation of district leaders from different instructional units in such a discourse will make
possible the collective enactment of leadership content knowledge at the district level.
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As we indicated when introducing the hypothesized support structures, they do not constitute
a theory of action. The hypotheses do not, for the most part, specify actions but instead pull
together our conjectures about school and district structures that a theory of action should aim to
engender in order to support the improvement of mathematics learning and teaching at scale. In
developing the hypotheses by mapping backwards from the classroom, we limited the scope of
our conjectures by focusing primarily on the establishment of institutional settings that support
school and district staff’s ongoing improvement of their practices. This backward mapping
process could be extended to develop conjectures that are directly related to the traditional
concerns of policy researchers. For example, several of the hypothesized support structures
involve conjectures about the role of mathematics coaches and school leaders. These conjectures
have implications for district hiring and retention policies. In addition, the hypotheses imply that
the allocation of frequently scarce material resources should be weighted towards what Elmore
(2006) terms the bottom of the system (see also Gamoran et al., 2003). As the notion of
distributed leadership is currently fashionable,14 it is worth noting that the hypotheses do not treat
the distribution of instructional leadership as a necessary good. In the absence of a common
discourse about mathematics, learning, and teaching, the distribution of leadership can result in a
lack of coordination and alignment (Elmore, 2000). Elmore (2006) observes that effective
schools and districts do not merely distribute leadership. They also support people's development
of leadership capabilities, in part by structuring settings in which they learn and enact leadership.
The hypotheses therefore emphasize that the important outcomes of an initiative to improve the
quality of mathematics learning and teaching include "the system capacity developed to sustain,
extend, and deepen a successful initiative" (p. 219).

Documenting the Institutional Setting of Mathematics Teaching
The data that we will collect in the course of our four-year collaboration with middle-school

teachers and instructional leaders in the four districts will allow us to formally test our
hypotheses. In analyzing the instructional practices of 120 participating teachers and the
institutional settings in which they work, we expect to see greater instructional improvement in
schools and districts where the types of support structures that we have discussed have been
established. The hypotheses are also central to the second component of our research in which
we will share the results of each annual data analysis with the districts and collaborate with them
to identify any adjustments that might make the districts' improvement designs for middle-school
mathematics more effective. To accomplish this effectively, we require an analytic approach for
documenting the institutional setting of mathematics teaching that can produce analyses that feed
back to inform the districts' ongoing improvement efforts.

The analytic approach that we will take makes a fundamental distinction between schools
and districts viewed as designed organizations and as lived organizations. A school or district
viewed as a designed organization consists of formally designated roles and divisions of labor
together with official policies, procedures, routines, management systems, organizational units,
and the like. Wenger (1998) uses the term designed organization to indicate that its various
elements were designed to carry out specific tasks or to perform particular functions. In contrast,
a school or school district viewed as a lived organization comprises the groups within which
work is actually accomplished together with the interconnections between them. Brown and
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Duguid (1991; 2000) clarify that people frequently adjust prescribed organizational routines and
procedures to the exigencies of their circumstances (see also Kawatoko, 2000; Ueno, 2000;
Wenger, 1998). In doing so, they often develop collaborative relationships that do not correspond
to formally appointed groups, committees, and task forces. Instead, as Coburn's (2001) analysis
of teacher groups illustrates, the groups within which work is actually organized are sometimes
non-canonical and not officially recognized. These non-canonical groups are important elements
of the school or districts viewed as a lived organization.

Given the goals of our research, we find it essential to document the districts in which we are
working as both designed organizations and as lived organizations. One of our first steps has
been to document the districts as designed organizations by interviewing district leaders about
the local theories of action for improving middle-school mathematics that they developed in
collaboration with IFL. These local theories of action are designs for the future of the
organization that reflect the suppositions and assumptions of district leaders and IFL. In each of
the four annual rounds of data collection, we will document any changes in the districts' designs
for instructional improvement in mathematics by interviewing district leaders and by collecting
artifacts such as organizational charts, policy manuals, and curriculum frameworks.

In analyzing the initial interviews that we conducted to document district leaders' current
theories of action, we are attempting to explicate their suppositions and assumptions so that we
can frame them as testable conjectures. The process of testing these conjectures requires that we
document how the theories of action are playing out in practice, thereby documenting the schools
and districts in which we are working as lived organizations in each round of data collection.
Methodologically, we will use what Hornby and Symon (1994) and Spillane (2000) refer to as a
snowballing strategy and Talbert and McLaughlin (1999) term a bottom-up strategy to identify
groups within the schools and districts whose agendas are concerned with the teaching and
learning of mathematics. The first step in this process involves conducting audio-recorded semi-
structured interviews with the participating 30 middle-school mathematics teachers in each
district to identify people within the district who influence how the teachers teach mathematics in
some significant way. The issues that we will address in these interviews include the professional
development activities in which the teachers have participated, their understanding of the
district’s policies for mathematics instruction, the people to whom they are accountable, their
informal professional networks, and the official sources of assistance on which they draw. We
will supplement these interviews with a survey of a set of related issues. The second step in this
bottom-up or snowballing process involves interviewing the formal and informal instructional
leaders identified in the teacher interviews as influencing their classroom practice. The purpose
of these interviews is to understand formal and informal leaders’ agendas as they relate to
mathematics instruction and the means by which they attempt to achieve those agendas. We will
supplement this second round of interviews by administering surveys to principals and school-
based mathematics coaches. We will then continue this snowballing process by interviewing
people identified in the second round of interviews as influencing how mathematics is taught in
the district. In terms familiar to policy researchers, this bottom-up methodology focuses squarely
on the activity of what Weatherley and Lipsky (1977) term street-level bureaucrats whose roles
in interpreting and responding to district efforts to improve mathematics instruction are as
important as that of district leaders who designed the improvement initiative. The methodology
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therefore operationalizes the view that what ultimately matters is how district initiatives are
enacted in schools and classrooms (cf. McLaughlin, 2006).

In addition to identifying the groups in which the work of instructional improvement is
accomplished and documenting aspects of each group’s practices, our analysis of the schools and
districts as lived organizations will also involve documenting the interconnections between the
groups. To do so, we will focus on three types of interconnections, two of which we introduced
when presenting our hypotheses about potential support structures. Interconnections of the first
type are constituted by the activities of brokers who are at least peripheral members of two or
more groups. As we noted, brokers can bridge between the perspectives of different groups,
thereby facilitating the alignment of the enterprises of different groups. As our hypotheses
indicate, our analysis of brokers will be relatively comprehensive and will seek to clarify
whether there are brokers between various groups in the school (e.g., mathematics teachers and
school instructional leaders), between school instructional leaders and district leaders, and
between key units of the district central office. Interconnections of the second type are
constituted by boundary objects that members of two or more groups use routinely as integral
aspects of their practices. Wenger (1998) emphasizes that reifying objects are relatively
transparent carriers of meaning for members of the group in which they are created. In contrast,
there is the very real possibility that they will be used differently and come to have different
meanings as they are appropriated and used by members of other groups. Our analysis will
therefore seek to identify boundary objects and to document whether they are used in compatible
ways by members of different groups.

The third type of interconnection is constituted by boundary encounters in which members of
two or more groups engage in activities together as a routine part of their respective practices.
The hypothesized supports structures involve conjectures about the importance of a range of
boundary encounters between members of different groups, including those in which they
explicitly negotiate the meaning of boundary objects. In addition to documenting the frequency
of boundary encounters between members of different groups, our analysis will focus on the
nature of their interactions. A recent finding reported by Coburn and Russell (in press) indicates
the importance of pushing for this level of detail. Coburn and Russell studied the implementation
of elementary mathematics curricula designed to support ambitious instruction in two school
districts. As part of their instructional improvement efforts, both districts hired and provided
professional development for a cadre of school-based mathematics coaches. Coburn and Russell
found that there were significant differences in the depth of the interactions between the coaches
and the professional development facilitators in the two districts. In the first district, interactions
focused primarily on issues such as discerning the mathematical intent of instructional tasks and
on identifying and building on student reasoning strategies. In the second district, interactions
focused primarily on how to use instructional materials and on mapping the curriculum to district
or state standards. Coburn and Russell also documented the nature of interactions between
coaches and teachers in the two districts. They report that teacher-coach interactions increased in
depth to a far greater extent in the first district than in second district. In addition, interactions
between teachers when a coach was not present also increased in depth in the first but not the
second district. Coburn and Russell trace the contrasting depth of interactions in teacher
networks to a corresponding contrast in the depth of the routines of interaction in which the two
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groups of coaches participated during their professional development. In other words, the
contrasting routines of interaction in coach professional development became important features
of interactions in teacher networks in the two districts. As our first hypothesis indicates, we
anticipate that differences in the depth of interactions in a teacher network influence the extent to
which participation in the network supports the teachers' development of ambitious instructional
practices.

In our view, Coburn and Russell's analysis represents a significant advance in research on
instructional improvement at scale. To this point, policy researchers have tended to frame social
networks as conduits for information about instructional and instructional leadership practices.
However, research in mathematics education makes it abundantly clear that information about
ambitious instructional practices is, by itself, insufficient to support teachers' development of this
form of practice. Coburn and Russell's analysis focuses more broadly on interactions across
groups as well as within social networks, and emphasizes that these interactions are not limited
to the sharing of information but can and often do involve co-participation. Furthermore, their
findings demonstrate that the focus and depth of co-participation matters. Their analysis
therefore establishes a valuable point of contact between research on policy implementation and
research on mathematics teachers' learning. This latter body of work documents that teachers' co-
participation in activities of sufficient depth with an accomplished teacher or instructional leader
is a critical source of support for teachers' development of ambitious practices (e.g., Borko,
2004; Fennema et al., 1996; Franke & Kazemi, 2001a; Goldsmith & Shifter, 1997; Kazemi &
Franke, 2004; Wilson & Berne, 1999). Our decision to focus on boundary encounters when
analyzing schools and districts as lived organizations was motivated in large measure by this
general finding. In this regard, we anticipate that Coburn and Russell's notion of routines of
interaction will prove to be a useful analytic tool as we seek to understand whether the nature of
the activities in which school and district staff co-participate in one setting influences how they
subsequently interact with others as was the case with the coaches that Coburn and Russell
studied.

Providing Feedback to Inform Instructional Improvement
In the approach that we have outlined, the analysis of a school or district as a lived

organization involves identifying the groups in which work of instructional improvement is
actually accomplished and documenting interconnections between these groups. An analysis of
the lived organization therefore focuses on what people actually do and the consequences for
teachers' instructional practices and students' mathematical learning. In contrast, an analysis of a
school or district as a designed organization involves documenting the school or district theory of
action for instructional improvement. This design for the future of the organization specifies
organizational units and positional roles as well as organizational procedures and routines, and
involves conjectures about how the enactment of the design will result in the improvement in
teachers' instructional practices and student learning. An analysis of the designed organization
documents both this design and the tools and activities that will be employed to realize the
design by influencing people's practices in particular ways.15  One of the primary goals of our
current work is to provide feedback to the four collaborating districts that will enable them to
identify any adjustments that might make their improvement designs for middle-school
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mathematics more effective. In doing so, we will necessarily draw on our analyses of the districts
as both designed and lived organizations.

In developing feedback for the districts, we will identify gaps between their designs for
instructional improvement and the ways in which their designs are actually playing out in
practice by comparing our analyses of each district as a designed organization and as a lived
organization. This approach will enable us to differentiate cases in which a district's theory of
action is not enacted in practice from cases in which the enactment of the theory of action does
not lead to the anticipated improvements in teachers' instructional practices (Supovitz &
Weathers, 2004). As an illustration, one of the districts with which we are collaborating is
investing scarce resources in mathematics coaches with half-time release from teaching for each
middle school. The district's theory of action specifies that the coaches' primary responsibilities
are to facilitate teacher collaboration and to support individual teachers' learning by co-teaching
with them and by observing their instruction and providing constructive feedback. Suppose that
the district's investment in mathematics coaches does not result in a noticeable improvement in
teachers' instructional practices. It could be the case that the district's theory of action has not
been enacted. For example, the coaches might be tutoring individual students and preparing
instructional materials for the mathematics teachers in their schools rather than working with
teachers in their classrooms. In attempting to understand why this is occurring, we would
initially focus on coaches' and school leaders' understanding of the coaches' role in supporting
teachers' improvement of their instructional practices. Alternatively, it could be the case that the
coaches are working with teachers in their classrooms, but their efforts to support instructional
improvement are not effective. In this case, we would initially seek to understand how,
specifically, the coaches are attempting to support teachers' learning and would take account of
the process by which the coaches were selected and the quality of the professional development
in which they participated.

As this illustration indicates, our goal when giving feedback is not merely to assess whether
the district's theory of action is being implemented with fidelity, although our analysis will
necessarily address this issue. We also seek to understand why the district's theory of action is
playing out in a particular way in practice by taking seriously the perspectives and practices of
street-level bureaucrats such as teachers, coaches, and school leaders. As a matter of principle,
the development of explanations of this type will necessarily draw on analyses of the district
viewed as a designed organization and as a lived organization. This is the case even when a
district's theory of action results in the anticipated improvements in teachers' instructional
practices. A district's theory of action describes intended practices, routines, and procedures in
what Feldman and Pentland (2003) term generalized schematic form. The design cannot fully
determine the practice of coaching because the exigencies of circumstances necessarily remain
open (de Certeau, 1984; Suchman, 1987). Street-level bureaucrats such as teachers, coaches, and
school leaders develop their practices in local contexts created in large measure by the actions of
others. Teachers', coaches', and school leaders' actions and interactions are in turn enabled and
constrained by designed institutional structures (cf. Smylie & Evans, 2006; Spillane et al., 2006).
For example, the design for position of coach can serve as a resource for coaching-as-lived by
both orienting coaching practice and by providing a ready-made means of accounting for aspects
of coaching practice (Feldman & Pentland, 2003). An analysis of a district as a designed
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organization foregrounds the district design as a potential resource for action as well as the
institutional structures that delimit the possibilities for practice. An analysis of a district as a
lived organization foregrounds people's agency as they develop their practices within the context
of others' institutionally situated actions.

Discussion
In this paper, we have focused on the question of how mathematics education research might

contribute to the improvement of mathematics teaching and learning at scale. We addressed this
question by first clarifying the value of viewing mathematics teachers' instructional practices as
situated in the institutional settings of the schools and districts in which they work. Against this
background, we presented a series of hypotheses about school and district structures that might
support teachers' ongoing improvement of their classroom practices. We then went on to outline
an analytic approach for documenting the institutional settings of mathematics teaching
established in particular schools and districts that can feedback to inform the instructional
improvement effort.

The most obvious limitation of the hypotheses and the analytic approach is that they do not
attend explicitly to issues of equity in students' access to significant mathematical ideas. At the
time of writing, we are revising our hypotheses and data collection instruments in an effort to
address this deficiency. In doing so, we are adjusting our hypotheses by mapping backwards
from the classroom and are drawing on research on instructional practices that distribute learning
opportunities equitably (e.g., Boaler, 2002; Civil, 2007; Enyedy & Mukhopadhyay, 2007;
Gutiérrez, 2004; Gutstein, 2007; Lubienski, 2002; Martin, 2000; Milner, 2006; Moschkovich,
2007; Tate, 2005). A priori, we anticipate that we will have to elaborate our hypotheses to take
account of at least two institutional structures that have direct implications for the distribution of
student learning opportunities.

The first support structure concerns whether and to what extent mathematics classes are
tracked (Gamoran, Nystrand, Berends, & LePore, 1997; Oakes, Wells, Jones, & Datnow, 1997).
Horn's (2006) analysis of students’ trajectories through mathematics courses in two high schools
is relevant in this regard. In one school, the mathematics teachers worked collectively for all
students’ academic success in a rigorous de-tracked common sequence of courses, whereas in the
second school the mathematics curriculum was tracked and the mathematics teachers did not
believe that all students could succeed academically. Horn’s analysis revealed that the official,
institutional discourses constituted in the two schools associated particular positions in course
sequences with particular types of students. These institutional discourses included assumptions
about both what were reasonable goals for students in particular positions in course sequences,
and about what counted as mathematical competence for students in these positions. As Horn
observed, students’ location in a course sequence might influence their understandings of
themselves as more or less mathematically competent. In addition to focusing on course
sequences as designed, Horn also investigated courses as lived and as experienced by students. In
doing so, she demonstrated that students’ location in a particular course sequence can have
different meanings in different mathematics classes in the same school. This finding indicates
that any hypothesis about tracking will have to be nuanced to take account of the nature of
teachers' instructional practices in particular classes.
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The second, related institutional structure that has implications for equity in learning
opportunities concerns the categories of mathematics students that are inherent in teachers' and
instructional leaders' practices. Horn's work is again relevant because she analyzed the systems
for classifying students that the mathematics teachers had constructed in the same two high
schools. Horn's (2007) analysis indicates that the teachers' classification systems were related to
their views of mathematics as a school subject. In the high school in which mathematics was
tracked, the teachers differentiated between formal and informal methods, and viewed the latter
as illegitimate. They took a sequential view of school mathematics and assumed that students
had to first master prior topics if they were to make adequate progress. This conception of school
mathematics was implicit in the teachers' classification of students as more or less motivated to
master mathematical formalisms, and as faster and slower in doing so. The teachers'
classification of students in terms of stable levels of motivation and ability grounded the need the
teachers perceived for separate mathematics courses for different types of students. In sharp
contrast, the mathematics teachers at the second school in which mathematics courses had been
de-tracked tended to take a non-sequentialist view of school mathematics and instead viewed it
as a web of ideas rather than an accumulation of formal procedures. These teachers rejected the
categorization of students as fast or slow because it emphasized task completion at the expense
of considering multiple strategies. In addition, the teachers in this school viewed it as their
responsibility to support students' engagement both by selecting appropriate tasks and by
influencing students' learning agendas. Thus, these teachers addressed the challenge of teaching
college preparatory mathematics to all students by focusing primarily on their instructional
practices rather than on perceived mismatches between students and the curriculum.

Horn's (2006; 2007) analyses make an important contribution by illustrating that content and
the nature of teachers' instructional practices matter when addressing issues subsumed under the
heading of tracking. Her work is particularly valuable for our purposes because it ties together
institutional structure and classroom practice. We anticipate that we will need to adjust most of
our hypotheses as we map backwards from a view of high-quality mathematics instruction in
which learning opportunities are distributed equitably.

We conclude this paper by returning to the relation between research in educational policy
and leadership and in mathematics education. To this point, researchers in these fields have
conducted largely independent lines of work on the improvement of teaching and learning (cf.
Engestrom, 1998; Franke et al., 2001). Research in educational policy and leadership tends to
focus on the designed structural features of schools and how changes in these structures can
result in changes in classroom instructional practices. In contrast, research in mathematics
education tends to focus on the role of curriculum and professional development in supporting
teachers’ improvement of their instructional practices and their views of themselves as learners.
In this paper, we have argued that mathematics education research that seeks to contribute to the
improvement of teaching and learning at scale will have to transcend this dichotomy by drawing
on analyses of schools and districts viewed both as designed organizations and as lived
organizations. In the interventionist genre of research that we favor, organizational design is at
the service of large-scale instructional improvement in mathematics education. In this genre of
research, the attempt to contribute to school and district improvement efforts constitutes the
context for the generation of useful knowledge about the relation between the institutional
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settings in which teachers work, the instructional practices they develop in those settings, and
their students’ mathematical learning. Research of this type reflects de Corte, Greer, and
Verschaffel's (1996) adage that if you want to understand something try to change it, and if you
want to change something try to understand it.

Notes
                                                  
1 The analysis reported in this chapter was supported by the National Science Foundation under
grant No. ESI 0554535. The opinions expressed do not necessarily reflect the views of the
Foundation. The hypotheses that we discuss in this paper were developed in collaboration with
Sarah Green, Erin Henrick, Chuck Munter, John Murphy, Jana Visnovska, and Qing Zhao. We
are grateful to Kara Jackson for her constructive comments on a previous draft of this paper.
2 This project was conducted by Paul Cobb, Erna Yackel, and Terry Wood and involved a
collaboration with approximately 20 second-grade teachers who worked in a rural district.
3 This project was conducted by Paul Cobb and Kay McClain and involved a collaboration with
approximately 25 middle-school mathematics teachers who worked in two urban districts.
4 In engaging in these repeated cycles of analysis and design, we will, in effect, attempt to
conduct a design experiment at the level of the school and district.
5 It might be argued that, in practice, NCLB focuses on schools and districts to ensure that all
students achieve minimum competency levels.
6 As Cohen, Moffitt, and Goldin (2007) note, NCLB positions state, district, and school leaders
as both the targets of policy and as makers of policy.
7 These two types of conceptual tools serve to ground the two aspects of the design research
cycle, namely design and analysis (cf. Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003;
Design-Based Research Collaborative, 2003).
8 The research base for these broad recommendations is presented in a research companion
volume to the National Council of Mathematics’ (2000) Principles and Standards for School
Mathematics edited by Kilpatrick et al. (2003).
9 An important issue that we gloss over in this paper is that of specifying criteria for
differentiating between a group of teachers who meet to work on issues of mutual interest and a
professional teaching community. Researchers who have collaborated with practicing teachers to
support their learning make clear that a group of teachers who collaborate with each other in
some way do not necessarily constitute a community (Franke et al., in press; Nickerson &
Moriarty, 2005; Stein et al., 1998). In this regard, Grossman, Wineburg, and Woolworth (2001)
observe that communities are frequently brought into existence by the linguistic fiat of the
researcher's pen or keyboard. This phenomenon is evident in both the policy and leadership
literature and the mathematics education literature. Discussions of the distinction between a
teacher group and a professional teaching community in the true sense of the term can be found
in Cobb, McClain, et al. (2003), Dean (2005), Krainer (2003) and Secada and Adajian (1997).
10 School-wide community as defined by Bryk et al. (1999) is closely related to Elmore's (2000)
notion of internal accountability within a school and to the broader construct of social capital (cf.
Adler & Kwon, 2002; Smylie & Evans, 2006).
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11 A focus on instructional goals takes us onto the slippery terrain of mathematical values
(Hiebert, 1999). It is important to note that values are not a matter of mere subjective whim or
taste but are instead subject to justification and debate (Rorty, 1982).
12 The most robust finding in the general literature on school-based coaches is that the coach's
effectiveness depends crucially on the role of the principal in legitimizing the importance of the
coach's work (York-Barr & Duke, 2004).
13 IFL offers districts two programs that are content specific: Content-Focused Coaching and
Disciplinary Literacies. Content-Focused Coaching provides professional development for
school-based coaches in specific subjects including mathematics. The Disciplinary Literacies
program supports teams of district subject matter specialists in designing district-wide
instructional programs at the secondary level.
14 Spillane and colleagues (Spillane, 2005; Spillane, Halverson, & Diamond, 2001, 2004)
proposed distributed leadership as an analytic perspective that focuses on how the functions of
leadership are accomplished rather than on the characteristics and actions of individual positional
leaders. However, as so often happens in education, the basic tenets of this analytic approach
have been translated into prescriptions for practitioners' actions. In our view, this is a
fundamental category error that, if past experience is any guide, might well lead to pernicious
consequence (cf. Cobb, 1994, 2002).
15 The distinction between schools and districts viewed as a designed and as lived organizations
is analogous to that between the intended mathematics curriculum and the enacted mathematics
curriculum.
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The selection of K-12 mathematics curricula has become a polarizing issue for schools, teachers,
parents, and other educators.  This has raised important questions about the long term influence
of these curricula.  This study examined the impact of participation in either a National Science
Foundation-funded or commercially developed mathematics curriculum in high school on the
difficulty level of the first university mathematics class a student enrolled in, and the grade they
earned in that class.  The findings indicated that student participation in a particular high school
curriculum was related to their mathematics knowledge in eighth grade, their ACT mathematics
score, overall high school GPA, and the number of levels of high school mathematics taken.
High school curricula also affected the difficulty of their first university mathematics class but
not to their grade in that class.  The achievement gaps initially identified in eighth grade
persisted throughout high school.  The results also provide evidence of differential course-taking
in college.

There is widespread agreement among teachers, parents and school administrators,
mathematics educators, mathematicians, and others of the importance of providing K-12 students
with rigorous instruction that promotes mathematical understanding, but less agreement on how
to achieve this goal.  A manifestation of the lack of agreement are the “mathematics wars” that
have pitted defenders of commercially developed mathematics curricula against those advocating
curricula supported by the National Science Foundation.  In general, commercially developed
(CD) mathematics curricula place a greater stress on traditional algorithms and procedures, while
National Science Foundation-funded (NSFF) curricula focus on extended problem solving
activity in contextually laden situations and consideration of algebra, geometry, probability,
statistics, and topics in discrete mathematics each year.  Specifically, NSFF curricula refer to
those curricula which were funded from a solicitation of proposals (RFP NSF 91-100) through
the National Science Foundation in the early the early 1990’s (Senk & Thompson, 2003) that
were designed to be aligned with the National Council of Teachers of Mathematics’ (NCTM)
Curriculum and Evaluation Standards for School Mathematics (1989).

In a very real sense two NCTM Standards documents (1998, 2000), although widely
supported, challenged the hegemony of CD mathematics curricula in U.S. schools.  Advocates of
CD curricula have argued that teaching mathematics using NSFF curricula will lead to poor
mathematics performance and would not adequately prepare students for calculus and other
mathematically-oriented courses as taught at the university level.  Proponents of NSFF curricula
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often point to published reports of ongoing and disappointing mathematics achievement of
students exposed to CD curricula, and argue that large scale changes in the way we think about,
develop, implement and assess school mathematics programs are needed.  For example, results
from the Trends in International Mathematics and Science Study (1996) indicated that U.S.
eighth grade and twelfth grade students performed below international averages. Regional
evidence of problems are reflected in a 1999 report by the Minnesota State College and
University System that found only 38% of students entering a postsecondary institution in the
State College System, almost all of whom would have participated in a CD curriculum, were
considered ready to begin their collegiate mathematics coursework at the level of college
algebra.  College algebra is typically taught as a senior level course in a high school college-
intending mathematics curriculum.  The corresponding figure for two-year colleges was 18%.
Similar findings have been reported in Wisconsin, Iowa, and North and South Dakota.

These findings challenge the assumption that CD curricula, which have dominated K-12
mathematics instruction in Minnesota and elsewhere in the U.S. for many years, have adequately
prepared students for college level mathematics.  However, little is known about the college level
success, or lack thereof, of students who experienced an NSFF mathematics curriculum in high
school.

National Science Foundation-Funded Curricula

Theoretical Models
The 1989 and 2000 NCTM Standards documents incorporated components of various

cognitively oriented theories about the development of mathematics knowledge and the nature of
student learning (Piaget, Dienes, and Lesh and Shulman).  There is reason to believe that the
fundamental principles that underpin the development of the NSFF curricula would promote
achievement for diverse student learners.  NSF required that each curriculum proposal (NSF
RFP 91-100) document how the planned development project would reflect the principles
espoused in the 1989 Standards document. Thus these new curricula reflect, for the most part,
contemporary cognitive approaches to mathematics teaching, learning and assessment.

Development of National Science Foundation-Supported Mathematics Curricula
Fearing for the future levels of technological literacy in the U.S., and for the future of our

ability to lead in this area, NSF funded 13 full mathematics programs (3 elementary, 5 middle
grades and 5 at the high school level) at a cost of approximately $100 million dollars beginning
in the early 1990's. The NSFF curricula were for the most part problem-centered, focusing on
problems embedded in realistic settings that took several class periods to explore and resolve.
Extensive teacher support materials and professional development opportunities, also funded by
NSF, were provided to school districts adopting these programs.

Attributes of National Science Foundation-Funded Mathematics Curricula
Specific attributes of NSFF curricula include (i) Variable methodological and pedagogical

approaches that are designed specifically to sustain student interest, including the use of
cooperative approaches that are considered fundamental, (ii) Mathematical content reflective of
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solutions to real world problems, many relating directly to student interests, (iii) A de-emphasis
on abstract algorithmic manipulation unrelated to current investigations, (iv) A wide variety in
the topics and mathematical domains considered each year, to continually arouse students'
interest and expand their horizons relating the many and myriad ways in which mathematics is
applicable to everyday life, (v) Providing ongoing experiences with concrete to abstract
sequences, suggesting that mathematics is always “about something” and does not exist in its
own cocoon apart from the real world, (vi) Reflecting a belief that the development of meaning
should be considered a prime concern when involving students in mathematical activity, and (vii)
Learning activities that reflect the ideas of those who have most influenced cognitive oriented
theory development and research on human learning, (Piaget, Dienes, Bruner, Shulman etc.).

Evidence of the Performance of Middle School and High School Students in National Science
Foundation-Funded Curricula

Research on the achievement of students learning from NSFF curricula in grades K-12 (Senk
& Thompson, 2003) indicates that these students typically do as well as or better than CD
students on achievement measures that typically consist of classroom problem sets (Cichon &
Ellis, 2003; Huntley, et al., 2000; Lott et al., 2003; Schoen & Hirsch, 2003; Webb, 2003), as well
as standardized tests such as the Stanford Achievement Test (Abeille & Hurley, 2001; Harwell,
et al., 2007; Post, et al., in press), Iowa Test of Educational Development Ability to do
Quantitative Thinking (Abeille & Hurley, 2001), Iowa Test of Basic Skills (Schoen & Hirsch,
2003), Scholastic Assessment Test mathematics subtest (Webb, 2003), Comprehensive Test of
Basic Skills (Webb, 2003), and the Preliminary Scholastic Aptitude Test (Cichon & Ellis, 2003;
Lott et al., 2003).  Data across different geographical areas and various curricula show that
middle school and high school students studying from NSFF curricula perform similarly on non-
standardized measures of mathematics achievement or on the mathematics portions of
standardized tests when factors that can affect mathematics performance are taken into account.

Criticism of National Science Foundation-Funded Mathematics Curricula
Despite evidence of success, NSFF curricula have come under intense criticism from web-

based sources (e.g., Mathematically Correct at http://www.mathematicallycorrect.com/, New
York City HOLD http://www.nychold.com/) and other venues (Hill & Parker, 2006; Klein, 2007;
Wu 1997).  Much of the criticism claims that NSFF students are poorly prepared to succeed in
calculus and other university level mathematics courses.  Unfortunately, these claims are based
on studies that lacked a distinguishable research design and have not made an attempt to
minimize selection and other biases of various kinds (see, e.g., Bachelis, 1998; Hill & Parker,
2006).

In sum, little is known about the impact of participation in an NSFF high school mathematics
curriculum on student’s university mathematics performance. This study examines one aspect of
this impact, that of examining students’ initial college mathematics experience.
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Research Question
The main question addressed by our study was: Do university students who completed at

least three levels of high school mathematics in a National Science Foundation-funded
curriculum differ from those who have had similar exposure to a commercially developed high
school curriculum in the difficulty level of their first university mathematics class, or in the grade
they earned in that class when taking into account background factors such as prior mathematics
achievement, ethnicity, and gender?  A high school level was defined to be the content
equivalent of a year-long course taught one hour per day and has been commonly referred to as a
Carnegie unit.  Four levels of difficulty of college level mathematics courses were identified.

Methodology
The methodology in this study was informed in part by On Evaluating Curricular

Effectiveness: Judging the Quality of K-12 Mathematics Evaluations (Mathematical Sciences
Education Board, 2004).

Research Design
This study employed a quasi-experimental design for cross-sectional (retrospective) data

(Pedhazur & Schmelkin, 1991) in which the high school mathematics curriculum (group) a
student participated in was the independent variable of most interest. Difficulty of students’ first
university-level mathematics class and the grade earned in that class served as dependent
variables.

Sampling
Our samples consisted of postsecondary students enrolled at a single large public university

in a mid-western state in the U.S. during the Fall, 2002 or Fall, 2003 terms.  All students had
graduated from one of 87 high schools in which they had completed at least 3 levels of
mathematics and for which at least 10 students enrolled at the University.  The latter requirement
helped to ensure reasonable high school-based statistical estimates. The maximum number of
students from a single high school in our sample was 77 with a median of 26 students, and these
students were assumed to be representative of a college-bound population.

Data
Archival data were collected from high school transcripts (ACT mathematics score, GPA in

high school mathematics classes and overall GPA, high school percentile rank, number of levels
of high school mathematics completed, gender, ethnicity), the State of Minnesota (Basic Skills
Test in mathematics administered in eighth grade), individual school districts (information about
the kind of mathematics curriculum a student completed in high school), and the University
(mathematics grade and course-taking information). If participation in a particular high school
curriculum better prepares students for college mathematics, those students would be expected to
initially enroll in more difficult (advanced) mathematics classes and to have better grades.
Examining mathematics course descriptions at the University led to the construction of a four-
point Likert scale to capture course difficulty (1 = course typically completed in high school
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level, 2 = difficulty level consistent with courses such as college algebra and pre-calculus, 3 =
difficulty level consistent with calculus I, 4 =  calculus II or beyond).

Data Analyses
The main data analyses centered on answering the question of whether university students

who completed at least three levels of high school mathematics in an NSFF curricula differ from
those who have had similar exposure to a CD high school curricula in the difficulty of their first
University mathematics class, or, the grade they earned in that class when taking into account
background factors. Descriptive analyses were performed to explore patterns in the data,
followed by two-level hierarchical linear modeling (HLM) that treated students as nested within
high schools.  A Type I error rate of α  = .05 was used for all significance tests.

Results
A key descriptive result was the appearance of a difference of about one-third of a standard

deviation favoring CD students on the Eighth Grade Basic Skills Test in mathematics. CD
students also had significantly higher ACT mathematics scores (about one-half a standard
deviation). Gender and ethnicity differences on these variables also appeared.  A sub-analysis
indicated that NSFF students who took calculus at the University (there were several levels of
calculus offered) had significantly higher grades when compared with their CD counterparts who
also took calculus at the University, with GPA means of 3.26 and 3.0, respectively, on a 0-4.0
point scale.  Although the effect was weak, it mirrors the finding by Schoen and Hirsch (2003),
who also found that NSFF students had higher grades in a university calculus course.

Hierarchical linear modeling (HLM) was used to examine the effect of high school
mathematics curriculum on the difficulty of the first University mathematics class a student
enrolled in and the grade they earned in that class.  The difficulty of a student’s first university
mathematics class was analyzed assuming an ordinal scale of measurement and student grades an
interval scale.

For the difficulty data, a generalized hierarchical model for ordinal data was fitted to
difficulty level that included predictors for high school mathematics curriculum, ACT
mathematics score, high school mathematics GPA and overall GPA, percentile rank, high school
location, gender, and ethnicity.  The key result was the significant slope for curriculum group
(.858), meaning that curriculum is related to difficulty.  Exponentiating the estimated curriculum
slope provides information about the size of the effect.  Here, exp(.858) = 2.36 means that, with
other predictors held constant, a CD student who is “average” on all predictors is more than
twice as likely to enroll in more difficult classes as not, compared to an NSFF average student.
Female students who were average on all predictors was 2.69 times more likely to enroll in less
difficult classes as not, compared to a male student.  Students coming from rural high schools
were associated with stronger relationships between ACT mathematics scores and difficulty of a
student’s first University mathematics class. Difficulty was also related to overall high school
GPA and ACT math score in expected ways (i.e., students with higher GPAs or ACT math
scores were more likely to enroll in more difficult classes).

For the grade data the key result was that the slope for curriculum group was not significant
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(-.026, p = .688), meaning that, with the other predictors held constant, the mathematics
curriculum a student, who was “average” on other predictors, participated in while in high school
was not related to the grade they earned in their first University mathematics class.

In sum, the HLM results indicated that there was evidence that a student’s high school
mathematics curriculum was significantly related to the difficulty level of their first University
mathematics class but not to the grade they earned in that class, once various background factors
were taken into account.

Discussion
The main finding, that NSFF students on average tend to enroll initially in a college

mathematics course of lower difficulty than CD students, but tend to earn similar grades in these
courses, raises important possibilities and important questions. Perhaps CD high school
mathematics curricula simply do a better job of preparing students to begin their post-secondary
mathematics than do NSFF curricula. Or perhaps the use of placement tests where the goal is to
help students initially enroll in the most appropriate post-secondary mathematics class played a
role in the findings for difficulty by assigning NSFF students disproportionately to lower level
courses. The placement tests at the University are overwhelmingly oriented to precisely those
skills that have often been de-emphasized in the NSFF curricula. NSF curricula intentionally
reduce the amount of time and attention paid to standard algorithms and repetitive procedures.

NSFF students who took calculus at the University had significantly higher grades when
compared with their CD counterparts who also took calculus, suggests that simple conclusions
about any curriculum are likely to be problematic. CD students who completed five levels of
high school mathematics, which typically included calculus, 48.9% repeated calculus at the
University compared to 36.7% of the NSFF students

An important finding was that significant differences in mathematics achievement favoring
CD students appeared in eighth grade, before students participated in any particular high school
mathematics curriculum.  These differences remained throughout high school, meaning that
initial achievement gaps were not erased by participation in these newer curricula. These results
also provide evidence of a selection bias and reinforce the need to study the factors leading
students to participate in one mathematics curriculum or another.  In an ongoing work we include
predictors in statistical analyses that help to reduce this bias.

We also want to emphasize that, in addition to the usual limitations of research involving
retrospective data linked to research design, sampling, instrumentation, etc., this study did not
have access to students’ high school teachers or administrators and thus we were unable to
ascertain the degree to which teachers of these students were faithful to the author’s intentions
relating to both content and method.  This observation is relevant to both the NSFF and CD
groups. Our experience with this issue relates to the Local System Change (LSC) Project at the
University of Minnesota (1997-2001). This project provided 130 or more hours of targeted
professional development to over 1100 middle grades and secondary mathematics teachers, some
of whom undoubtedly taught students in our sample. However, we were unable to link particular
high school mathematics teachers to particular students.

For those teachers in the LSC Project receiving 20 hours of mentor on-site assistance, we
were satisfied that most of the teachers implemented new NSFF curricula with fidelity to the
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authors’ intent, although variability did of course occur. It is important to emphasize that this
study was conducted at a time when teachers in the state were newly involved with NSFF
curricula. Effective instruction in any curriculum requires that the teacher know what content
students have already been exposed to and ideally where the elaboration of various topics will
appear in the future.  This long term perspective was not possible for the teachers whose students
are represented here.

Implications for Future Curricular Research
These preliminary results should advance the ongoing debate regarding the adequacy of

National Science Foundation-funded curricula in helping students prepare for subsequent
university level mathematics. Teachers, administrators, counselors, researchers, and the public
must engage in ongoing discussions concerning the best option for their students.  Preparation
for University calculus is probably not the only “raison d’être” in high school mathematics.
Curriculum adoption decisions are more complex than that.  Our ongoing efforts consider these
issues in a longitudinal multi-institutional context over a duration of seven semesters.
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 Two teaching experiments were conducted in calculus classes in a large public university.
Prior to the experiments, an initial conceptual framework was developed based on a
mathematical decomposition of the Riemann sum definition of the definite integral in four
layers: product, summation, limit, and function. Several of the layers also include sublayers
that illustrate various ways of thinking about each layer. Analysis of the data from the
teaching experiments guided modification of the framework to also reflect the cognitive
development of students. Data shows that students successfully assimilated the integral
structure into a previously constructed limit structure, via approximations. Their struggles
were concentrated in areas where the Riemann sum structure departed from the limit
structures students had previously encountered.

The purpose of this research was to examine student development of the concepts of
Riemann sums and definite integrals. A deep understanding of the structure of a Riemann
sum is invaluable to students when encountering real-world applications involving
nonintegrable functions, when working with numerical methods for approximating integrals
based on the Riemann sum structure, and even when setting up an appropriate definite
integral to model a particular situation.

Several previous research studies have focused on issues related to the teaching and
learning of the mathematical operations used in defining the Riemann integral: multiplication,
rate of change, sequences and series, limits, and functions. Zandieh (2000) developed a
theoretical framework for the definition of the derivative based on the mathematical
decomposition: difference, quotient, limit, and function. Our decomposition of the definite
integral follows Zandieh’s model of the derivative.

Although multiplication is a concept that is introduced in elementary school, even adults
still have trouble with certain aspects of multiplication (Simon & Blume, 1994; Sowder et al.,
1998). Sowder et al. found that teachers often could not distinguish between word problems
that required an additive solution or a multiplicative solution. Another very common problem
is the principle that “multiplication makes bigger” and “division makes smaller” (Sowder et
al., 1998). Particularly in Riemann sums, this is not the case. In the Riemann sum,

∑
=

Δ
n

i
i xxf

1

)( , as n (the number of intervals) approaches infinity, delta x (the width of the each

interval) approaches zero. Thus, we are multiplying very small quantities, and multiplication
in this case certainly does not “make bigger”.

Simon and Blume (1994) studied pre-service teachers’ understanding of multiplication in
the context of area. Although the teachers knew to solve area of rectangle problems by
multiplying the two quantities, Simon and Blume found that “their choice of multiplication
was often the result of having learned a procedure or formula, rather than of a solid
conceptual link between their understandings of multiplication and their understandings of
area” (p. 476). When asked why they chose to multiply, the students responded, “because it
works” (p. 478), “ ‘cause that’s the way we’ve been taught” (p. 479) and comparable
responses.
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Sequences and series also play a key role in the definite integral. Mamona (1987) found
that many students do not distinguish between sequences and series and often admit to using
the two words interchangeably. This can certainly cause confusion when trying to use
sequences and series within the definite integral.

The research on the third layer of the definite integral, limit, is extensive. A few of the
most relevant studies are discussed here. Cornu (1991) notes that in the teaching of limits, we
usually emphasize the process of approaching a limit, instead of emphasizing the concept of
the limit as a particular value. Since the definite integral is defined to be the limit of Riemann
sums, it seems likely that students will struggle to understand the concept. Students will need
to understand that the definite integral is the value of the limit, and not a process of reaching
a number. Furthermore, many students believe that a sequence “must not reach its limit”
(Davis & Vinner, 1986). In regards to Riemann sums, it was found that students believe that
the limit of Riemann sums will never produce the exact value of the definite integral, but will
only be an approximation.

Oehrtman (2002, 2007) discusses several metaphors that students use to reason about
limits. A few that are likely to appear in student explanations of Riemann sums are discussed
here. First, in the collapse metaphor, students envision a change that leads to a collapse in
dimension. For Riemann sums, we use rectangles (2-dimensions) to approximate the area
under the curve. As the number of rectangles approaches infinity, the width of the rectangle
gets smaller. Students often envision the rectangles of 2-dimensions “collapsing” into one
dimension where the “rectangle” has no width, only a height. This would eliminate the
multiplication layer from the students’ understanding and confound the summation layer.

Based on the above results, Oehrtman (2004, in press) outlined a research-based design
for an introductory calculus sequence in which limit concepts are introduced through ideas
about approximations and error analyses that are intuitively understandable yet reflect the
structures of rigorous limit definitions. This approach is intended to provide a consistent
treatment of limit concepts throughout an entire calculus sequence in which students can
build their understanding of limits of functions, derivatives, sequences and series, Riemann
integrals, etc. on a common conceptual structure. The course in which this study was
conducted was based on these design principles.

Research specifically on Riemann sums and definite integrals is still quite sparse. Some
exceptions are the works of Orton, Thompson, and Silverman. First, Orton (1983) studied
student understanding of the definite integral mainly in terms of calculating the area under the
graph of a function. Thompson (1994) developed and implemented a module to help students
understand Riemann sums in a way that was intended to make the Fundamental Theorem
conceptually obvious to students, and Thompson and Silverman (in press) discuss the
relationship between area under a curve and other views of the definite integral. They argue
that a conceptual understanding of the definite integral requires a stronger understanding of
the Fundamental Theorem of Calculus. Similarly, we found that students who could evaluate
definite integrals using area under a curve often could not solve similar problems unless they
were told which curve to graph (Sealey, 2006). Our research draws on these results and
expands to discover how students set up definite integrals using Riemann sums.

Theoretical Perspective
We use Piaget’s structuralism (1970, 1975) as the theoretical perspective for both the

design of the study and the data analysis. Piaget asserted that conceptual structure is
reflectively abstracted from actions and coordinations of actions within a self-regulating
feedback system. The focus of actions and coordinations of actions as the source of
conceptual structure distinguishes reflective abstraction from ordinary abstraction in which
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concepts are abstracted directly from objects and their properties. In the design and data
analysis of this study we focus on the mental and physical actions that students are expected
to perform and expect that effective instruction must be designed so that these actions reflect
the conceptual structures students are expected to understand. Specifically, students cannot
develop a conceptual understanding of definite integrals simply by being exposed to several
examples of them (ordinary abstraction). Additionally, computation of definite integrals does
not typically require actions that reflect the Riemann integral structure, so we cannot expect
conceptual understanding to emerge from this type of activity either. Instead, reflective
abstraction of the definite integral as a concept requires students do something with Riemann
sum structures, be made to coordinate and reverse these actions when possible, and be forced
to reconcile difficulties through feedback obtained through these interactions.

When developing a new structure, in this case the structure of the Riemann integral, we
focus our analysis on assimilation and accommodation (Piaget, 1970, 1975). Both terms are
used to describe ways of incorporating new information into a previously established
structure. If the new information does not fit into the previously established structure as-is,
the learners must either modify their understanding of the new information (assimilation) or
reorganize their previously existing conceptual structure so that the new information will fit
(accommodation). In regards to our research, students would be incorporating the structure of
the Riemann integral into a previously established approximation framework.

Methods and Subjects
A series of teaching experiments (Simon, 1995) was designed to develop students’

understanding of the structure of the Riemann sum definition of the definite integral. A
teaching experiment consists of an activity, a hypothetical learning trajectory (HLT), and a
revised hypothetical learning trajectory based on results of the activity. In this research, there
were three activities with difficult applications involving definite integrals – distance and
velocity of a falling object; force and pressure of water on a dam; and the energy and force
required to stretch a spring.

Participants in the study were from two calculus classes at a large public university in the
United States. The first participants were students enrolled in a calculus workshop that was
designed to complement their traditional calculus class, and these students formed the pilot
group for data collection and analysis. Approximately half of the students reported that they
enrolled in the workshop because they love math and wanted to take an additional math
course, while the other half of the students reported that math was very difficult for them, and
they enrolled in hopes of getting extra help to pass the calculus class. The rest of the
participants were students in a second semester calculus class that was developed for
engineering students at the same university.

Both classes were videotaped as they worked in groups throughout the semester to solve
novel problems that were designed to develop a conceptual understanding of various
mathematics topics. Data also consisted of copies of student written work, both homework
assignments and notes taken during class. Throughout the course, students had already been
familiarized with an approximation framework for limit structures developed by Oehrtman
(2004, 2007). Across several mathematical topics (derivatives, limits of sequences and series,
limits of functions, etc.), students worked on activities that required them to answer the five
approximation questions listed in table 1. The activities for the Riemann integral used these
approximation questions to promote the development of the limit structure within the
Riemann integral.

Table 1 – Approximation Questions
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1) What is being approximated?
2) What are the approximations?
3) What is the error?
4) What is a bound on the error?
5) How can you find an approximation accurate to within any predetermined bound?

Prior to the experiments, an initial framework was developed based on a mathematical
decomposition of the Riemann sum definition of the definite integral in four layers: product,
summation, limit, and function. Several of the layers also include sublayers that illustrate
various ways of thinking about each layer. Analysis of the data from the teaching
experiments guided modification of the framework to also reflect the cognitive development
of students. Throughout the teaching experiment, it was expected that students would
assimilate Riemann integral ideas into their existing conceptual structure of approximations
which, in turn, must accommodate some aspects of the Riemann sum structure where it
differs from previous applications of approximation ideas.

Results and Discussion
As expected, students in both groups used the approximation language extensively and

correctly while solving all three of the problems. Throughout the course, students were given
several approximation tasks, and by this point in the course, the students seemed very
comfortable with the concepts. Several examples of students’ written work are shown in
Table 2 below.

Table 2 – Students’ Approximation Language

Jake: The error is the difference between the unknown value and the
approximation
Tim: The error of the approximation is the amount that the approximation is
away from the unknown’s true value. Because we don’t know the unknown’s value we
cannot determine the error numerically.
Ben: The numerical bound on the error is the difference between two
approximations where one number is an over estimate and one is an under estimate.
Holly: I know the general area it [the unknown value] will be in because it’s
between the last two approximations as they have created my upper and lower bound
on the error. I can make the bound on the error smaller by making more accurate
approximations. For example the first two approximations are much farther apart than
the 6th and 7th approximations, so the bound on the error is smaller.

What was most interesting is that students’ struggles were concentrated in areas where the
details of considering limits of Riemann sums departed from the limit structures students had
engaged in while learning about limits of functions & sequences and the definition of the
derivative. For example, the students had the most difficulty developing an initial
approximation using the product structure in the Riemann sum xxf i Δ)(  and the appropriate

summation. Table 3 contrasts the structures of the definitions of the derivative and the
Riemann integral.

Table 3 - Contrasting structures in the definition of the derivative and Riemann integral
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Derivative: 
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) smaller as we
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Limit as n approaches infinity – involves
taking one interval and breaking it up
into n subintervals, each of which gets
smaller in width as we apply the limit.

While responding to the five approximation questions in a variety of modeling contexts,
students struggled most with finding an initial approximation (question two). We
hypothesized that this might be due to the structural differences between the definite integral
and previous limit concepts. Such a difference is illustrated in Table 2 where we see that
generation of a Riemann sum approximation requires different operations, different objects,
and an additional layer than in the case of the derivative. More detailed data analysis around
these portions of student activity revealed confusion about the meaning of the rate, its product
with the difference xΔ , and appropriate summation of multiple products on subintervals. For
example, when working on an activity about the force exerted on a dam, the students decided
to break the dam into small intervals and approximate the force on each interval, but had
great difficulty determining the product that gives the appropriate force. Since force is
pressure times area (when the pressure is constant on the entire area), the students decided to
pretend that the pressure was constant on small intervals to obtain an approximation.
However, instead of multiplying this pressure times the area of the small strip, the students
multiplied the pressure on the small strip by the area of the entire dam, resulting in a gross
overestimate.

Eventually, after overcoming the difficulties involved in the product, some students still
had difficulty constructing the appropriate summation. Instead of including each subinterval
once in the summation, these students added the top interval of the dam to the top two
intervals of the dam, then added the top three intervals and so on. When comparing solution
strategies with each other, one of the students explained his mistake, saying “your way’s
gonna be more accurate than mine, cause mine is actually going to be extremely high because
it takes this one, added to that one, added to that one. See how it gets doubly large, triply
large, so ultimately, this is…too big.”

In contrast, after the students found the initial approximation, they had no difficulty
finding both overestimates and underestimates, and all of the students understood that the
“exact” answer was bounded by these estimates. They were easily able to explain how they
knew if an approximation was an overestimate or an underestimate based on the elements of
the particular problem (force, pressure, velocity, distance, etc.). One such example is shown
in Table 4 below. Note that in this problem with the force of water on a dam, the pressure
increases as the depth increases.

Table 4 – Students’ Explanation of Overestimates

Jake: Yours is still an overestimate because you’re saying that—the, the—over the
whole
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Ben: I’m saying this pressure applies to the whole thing, but it’s really only applying to
the very bottom of that line

Jake: Yeah
Tom: Right
Jake: to that exact spot right there [draws an imaginary horizontal line at the bottom of

the strip]

The students also had little subsequent difficulty finding approximations accurate to
within a predetermined accuracy, _, and determining conditions on n (equivalently 

xΔ
) for

specific or arbitrary degrees of accuracy. In the examples used in these activities, the
underestimate on one interval was the same as the overestimate on the previous interval.
Thus, the difference between the overestimate and the underestimate (the bound on the error)
is the same as the difference between the overestimate on the last interval and the
underestimate on the first interval. All of the students needed a little help from the instructor
to make this connection, but were able to explain it in their own words later as well as use
this fact to compute the number of intervals needed to obtain a desired accuracy.

The students were never able to determine the exact value of the definite integral in each
of the context problems, although the students knew that such a value existed. In other words,
the students’ understanding of the limit in the definite integral more of the process of refining
approximations, and not so much in terms of limit as a single object. The students were quite
successful viewing the limit as a process, finding approximations to any degree of accuracy.
This could be due to the structure of the activities presented to the students. The purpose of
the activities was to develop the structure of the Riemann sum, including the product,
summation, and limit layers. The students were only asked to find approximations.

Despite the structural differences in the limit layer between the definition of the
derivative and the Riemann integral, these results suggest that by the time students attended
to the limit layer, they had already assimilated the structure of the Riemann integral into the
previously established limit structure via approximations, while accommodating their
approximation structure to include the differences between the definite integral and
previously encountered mathematical topics. The students had the most difficulty developing
an initial approximation. After they understood the various parts of the approximation, it was
easy for them to refine their approximation to attend to the limit layer. In both the definite
integral and the derivative, a refinement of the approximation is needed to make the
approximation more accurate. In the derivative, we take one interval, but make the size of the
interval smaller. In contrast, with the definite integral, we have multiple intervals and to make
the approximation more accurate, we take more intervals, and the size of each interval
becomes smaller.
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In this study I examine preservice teachers’ conceptions of mathematical proof in the context
of evaluating student work. Although previous studies have examined teacher conceptions of
proof, few have specifically focused on the effect the context has on teachers’ conceptions. In
this study the preservice teachers’ conceptions of proof shifted when they moved from
describing proof in the abstract to evaluating student work. The importance of establishing
the validity of a claim and understanding new mathematics dropped when considering
student work, while the finding of a solution took on greater importance. This indicates that
pre- and in-service teachers’ conceptions of proof in the context of teaching may warrant
additional attention by researchers and teacher educators (1).

Reform documents (e.g. NCTM, 2000) highlight the importance of grade-level
appropriate reasoning, justification, and proof at all grades, both because it is central to
mathematics as a discipline and because it facilitates deeper student understanding of
mathematical concepts. While existing research (Knuth, 2002) indicates that preservice
teachers often possess naïve conceptions of mathematical proof, there has been little research
on how teachers think mathematically about proof in the context of teaching. Additionally,
there is a growing body of research emphasizing the value of teacher reflection on practice
(Cochran-Smith & Lytle, 1999; Mewborn, 2000). This paper reports on the results of a
lesson, ultimately envisioned as part of a larger teacher learning program, designed to provide
preservice teachers with opportunities to reflect on mathematical content as well as the
practice of teaching. Preservice teachers engaged in solving and providing justification for an
open-ended mathematical task, examined hypothetical student work and justifications, and
responded to reflection questions on the adequacy of the student work and the role of proof in
K-12 mathematics. This paper addresses the following question: How were the preservice
teachers’ conceptions of mathematical proof connected to the context of evaluating student
work?

A number of researchers have investigated both students’ and pre- and in-service teachers
conceptions of mathematical proof (Bell, 1976; van Dormolen, 1977; Fischbein, 1982; Harel
& Sowder, 1998), as well as the role of proof in K-12 mathematics classes (Hanna, 1990).
This existing research provides various frameworks and taxonomies for classifying
individuals’ conceptions of proof (for a particularly thorough example see Harel & Sowder,
1998). Although many of the authors explicitly acknowledge the possibility that individual
conceptions of proof may vary with the particular task, there has been relatively little
attention paid to the role the context plays in influencing individuals’ conceptions of proof.
Notable exceptions are Herbst and Brach’s (2006) research in which they examine high
school students’ expectations for situations in which they would be asked to generate proof,
and Hoyles’ (1997) work which examines the connections between curriculum and student
conceptions of proof. Although both of these studies point to the important role context plays
in shaping individual conceptions of proof, neither explicitly focuses on the impact specific
tasks have on an individual’s conception of proof. Additionally, although existing research
has focused on the individual’s conception of proof there has been relatively little attention
paid to how teachers think mathematically about proof in the context of teaching. I use the
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phrase “think mathematically about proof” to differentiate from studies (Knuth, 2002) in
which teachers were asked about the role of proof in learning mathematics. Instead, my intent
is to focus on how teachers’ mathematical understanding of proof may be connected to the
context of teaching.

Theoretical Framework
Harel and Sowder (1998) define “a person’s proof scheme… [as] what constitutes

ascertaining and persuading for that person” (p. 244), which is an intentionally actor-oriented
approach to the definition of proof. In this paper I also consider proof from the actor’s
perspective; the aspects of proof analyzed in this paper emerged from the teachers’
descriptions of proof, not from an a priori definition of proof. To focus on the teachers’
conceptions of proof in the context of teaching, I employed a lesson designed to provide
preservice teachers with an opportunity to engage in mathematics immersion. Mathematics
immersion is a set of problems that are designed to 1) have multiple mathematical
connections and solution paths; 2) promote the development of more formal reasoning; and
3) promote reflection on the nature of mathematics problem solving and its relevance to the
mathematics of teaching. Thus, the goal of mathematics immersion is to provide pre- and in-
service teachers with opportunities to authentically engage in and reflect on the mathematics
of teaching over an extended period of time. Furthermore, mathematics immersion is
intended to reflect Cochran-Smith and Lytle’s (1999) notion of “knowledge-of-practice,”
within which “it is assumed that the knowledge teachers need to teach well is generated when
teachers treat their own classrooms and schools as sites for intentional investigation” (p. 250).
This was accomplished in this lesson by providing preservice teachers with an opportunity to
engage in substantive mathematics prior to engaging in practices we hope they will employ as
a teacher—namely, reflecting on students’ thinking and learning on the same or related tasks.
It is hoped that this structure will serve as a model for mathematics immersion in the future
and that eventually this lesson will be added to in order to develop a mathematics immersion
unit that supports teachers in engaging in and reflecting on the mathematics of teaching over
time.

As this study only reports on one lesson and not an extended experience with math
immersion it has two important limitations. First, this lesson did not explicitly attempt to
connect preservice teachers’ reflection to larger social issues, which is a strong theme in the
knowledge-of-practice. Second, while this lesson did attempt to position preservice teachers
as responsible for developing appropriate conceptions of mathematical proof for themselves
and their students, eventually teachers would need to explore the relationship between their
understanding of proof and the mathematical community’s accepted standards.

Methods
Thirty-seven education students at a large Midwestern university participated in this

study; henceforth the education students will be referred to as teachers. The participants were
enrolled in either an elementary, middle, or secondary mathematics methods course. This
lesson was conducted over a period of one or two class periods of the methods courses. The
teachers completed some work as homework and during class time they worked in small
groups and participated in whole-class discussions. Written work from all participating
teachers was collected.

The lesson consisted of four activities. First, teachers were asked to complete an open-
ended mathematical task: determining the number of blocks required to build the nth stage of
a figure that grew quadratically (see figure 1). Second, teachers were asked to reflect on the
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definition of proof and its role in K-12 mathematics. Third, teachers examined hypothetical
middle school student work on the mathematical task they had completed and were asked to
discuss and respond to questions about the quality of the students’ work and how they would
further support the students’ learning. The student work was broken into three parts and the
teachers responded to questions after each of these parts. Table 1 provides a brief description
of the three pieces of student work. Fourth, teachers reflected on whether the students’
justifications were adequate proofs and again reflected on the role of proof in K-12
mathematics.

Figure 1. The Mathematical Task

I analyzed the written data from the second activity using an iterative coding process to
determine how teachers conceptualized adequate mathematical proof in the abstract—that is
without the context of student work. I then used these codes, and added to them as necessary,
when coding teachers’ comments on the adequacy of students’ mathematical work during the
third and fourth activities. Finally, I made comparisons between the codes teachers used in
describing mathematical proof in the abstract and in the context of student work.

Student Work Description
Group A
Part I (AI)

Group A used a strategy of removing the “wings” of the structure from
the center column to form two rectangles of dimensions n by n-1.
Although they recognized the width of their rectangles as n in this first
part, they did not identify the height as n-1 and thus arrive at a different
rule for each stage, which they recognize as problematic.

Group A
Part II (AII)

The teacher in the scenario asks the students to explain why their
rectangles are as tall and as wide as they are. After some additional
work the students recognize that the height of the rectangles is n-1,
develop a correct equation, and justify this by saying the wing’s height
and width are always one less than the height of the center column and
when you combine two wings you extend the width by one block.

Group B Group B creates a table of values for the number of blocks in the nth

stage. First they attempt to find a pattern by adding something to n and
when this fails they attempt to find a pattern by multiplying n by
something. They realize they are multiplying n by consecutive odd
numbers and use this to develop a correct equation, which they justify
by saying it worked for the ones they tried and it’s a pattern.

Table 1. The Student Work
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Results
Written data were not collected for all participants on each of the four activities in the

lesson as some teachers were absent for part of the lesson or did not hand in written work for
each activity. Therefore, unless otherwise stated, results reported as percentages below are
out of the number of teachers for which data were collected on the corresponding activity.
Recall that much of the data below contrasts how preservice teachers described proof in the
abstract—that is during the second activity in the lesson prior to looking at student
work—with how they described proof while looking at student work, or in context.

Adequacy of Student Proofs
The preservice teachers made distinctions between students’ attempts at proof. Table 2

shows the number of teachers who indicated that the student work qualified as an adequate
proof broken down by the three different groups of student work the teachers were given. The
preservice teachers in the elementary methods course did not get to student group B’s work.

Student Work
AI (n=32) AII (n=32) B (n=20)

Teachers who described student
work as adequate proof

0 (0%) 14 (44%) 3 (15%)

Table 2. Adequacy of Students’ Proofs

Comparing the Strategies of Student Groups A and B
During the final activity, the preservice teachers were asked to consider the advantages

and disadvantages of focusing on the figures, as student group A did, versus focusing on
number patterns, as student group B did. The preservice teachers in the elementary methods
course did not complete this activity. As table 3 shows, a majority of the teachers did not
indicate that either of the strategies was preferable and only a small number of teachers
mentioned proof when evaluating the strengths and weaknesses of the two strategies.

n=20 A preferable B preferable
Neither
stronger

Mentioned
proof

Number of teachers 3 (15%) 0 (0%) 15 (75%) 2 (10%)

Table 3. Comparing Student Groups A and B

Change from Proof in the Abstract to Proof in Context
Table 4 provides a brief description of the codes reported in this paper that were used

when coding teachers’ descriptions of adequate proof. Table 5 shows the percentage of
teachers whose written work received these codes in the abstract and then in the context of
student work. The codes are in descending order of frequency in the abstract.

Code Description
Universal A proof must apply “universally” or to all cases, often

within some limiting parameters.
Explain Why A proof must explain why a solution or method works or is

correct.
Establish Validity A proof must demonstrate the truth or correctness of a

statement without any explicit mention that the proof must
explain why the statement is true or correct.
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explain why the statement is true or correct.
General Argument A proof must employ an argument that is general in nature;

in other words the argument must apply to all cases.
Develop Understanding Proofs help students understand mathematics.
Is an Equation A proof is, or must take the form of, an equation or

formula.
Answer the Question A proof must answer the question asked.

Table 4. Descriptions of Codes for Aspects of Mathematical Proof
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Table 5. Descriptions of Proof as a Percentage of Teachers

Discussion

Establishing Validity and Explaining Why
Establishing the mathematical validity of a statement is an essential aspect of proof (Bell,

1976). However, as Hanna (1990) has pointed out, proofs that explain (why) as opposed to
simply prove may be more effective pedagogically. Therefore, it is encouraging to see that
both in the abstract and in the context of student work the preservice teachers were concerned
with explanations of why with greater frequency than simply establishing validity. While
both aspects of proof were mentioned by fewer teachers in the context of student work,
establishing validity without an explanation for why was almost nonexistent in the context of
student work. Additionally, out of the total number of teachers who mentioned establishing
validity (either with or without an explanation of why), the proportion that required an
explanation of why rose from 55% in the abstract to 78% when evaluating student work. One
reason for this preference for an explanation of why is that the teachers may have viewed the
student work as incomplete, but not incorrect, as there were no overt mathematical errors in
the student work provided, therefore reducing concern about the validity of the students’
work. Another reason for this result may be that the teachers needed to understand the
reasoning behind the students’ explanations in order to make sense of them.
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Developing Understanding
Although mentioned by a relatively low percentage of the preservice teachers, it is

encouraging that in the abstract the teachers considered proof to be a tool for developing
students’ understanding of mathematics, especially in light of Knuth’s (2002) work indicating
teachers’ inattention to this aspect of proof. However, it is troubling that this code all but
disappeared in the context of student work. The dramatic drop in this code may indicate that
while the preservice teachers consider proof to be an important vehicle for developing
understanding, they do not consider it essential to the adequacy of a proof. To the extent that
the teachers do not consider understanding essential to a proof’s adequacy, they would be in
agreement with mathematicians in general; however, it may then be important to provide the
teachers with a more explicit focus on the adequacy of mathematical proof with respect to
students’ learning of mathematics so they can continue to focus on understanding in the
context of student work.

A Focus on Finding the Answer
The presence of the universal and the general argument codes both in the abstract and in

the context of student work is promising in that they indicate a preference for generality in
the student work as opposed to an attention to individual stages. However, from a
mathematical perspective, a claim that applies universally but does not employ a general
argument to back it up is a conjecture, not a proof. Therefore, it is concerning that in both the
abstract and in the context of student work universality received greater attention than the
generality of the argument. Moreover, in the context of this lesson, a universal claim is an
explicit rule or formula for finding the number of blocks in the nth stage—in short it is the
solution to the problem—thus introducing the possibility that the prominence of this code,
especially in the context of student work, may in fact indicate a focus on solving the problem.
This is supported by the increase in and appearance of the codes is an equation and answer
the question in the context of student work, as in the context of this lesson these codes may
be largely about finding the solution to the problem.

The focus on finding the answer may indicate that the preservice teachers see the arrival
at the solution as separate from the process of proving. This is further emphasized by
juxtaposing the distinctions the teachers made between adequate proofs (table 2) with the
comparisons the teachers made between the strategies used by groups A and B (table 3). As
seen in table 2, the teachers made strong distinctions between adequate proofs. A much
higher percentage of teachers considered student work AII (44%) to be an adequate proof
than those who considered student work B to be an adequate proof (15%). However, table 3
indicates that when asked about the advantages and disadvantages of the strategies used by
student groups A and B, a large majority of teachers did not privilege either strategy and only
a small number of the teachers commented on proof in making this determination.

Conclusion
The results of this study indicate that the preservice teachers’ conceptions of proof

differed in a variety of ways when they switched from discussing proof in the abstract to
examining proof in the context of evaluating student work. While we may be inclined to write
these changes off as the teachers not practicing what they preach, I believe that it speaks to
deeper theoretical and practical concerns. As discussed earlier, there is a large body of
research on individuals’ conceptions of proof; however, there has been relatively little
attention paid to the way these conceptions may depend on the particular context in which
proof is being utilized. The results in this study indicate that this is an area worthy of further
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investigation as teachers’ conceptions of proof in the context of teaching may be, and perhaps
should be, different from the way they engage proof in other settings. Moreover, mathematics
immersion may provide a suitable space within which to investigate this issue.

The results discussed above indicate that while there was some emphasis on proofs that
explain why, there was a disconnect between proof and understanding in the context of
student work. Furthermore, there was a general shift towards a focus on finding the answer
when teachers engaged in evaluating student work. The reason for this shift in teachers’
conceptions of proof in the context of a teaching activity may be due to a lack of familiarity
with rich examples of how these aspects of proof, and proof itself, can be intimately related to
problem solving in the K-12 classroom. This indicates that teachers may require further
experiences with mathematics immersion, which provides specific, contextualized examples
of students coming to solve and understand mathematical problems through the process of
proof. This is particularly important as the NCTM argues that “reasoning and proof cannot
simply be taught in a single unit on logic, for example, or by ‘doing proofs’ in geometry…
Reasoning and proof should be a consistent part of students’ mathematical experience”
(2000, p. 56). If this is to occur teachers will require familiarity with how proof looks in a
variety of problems throughout the K-12 curriculum.
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This paper describes analysis of function understanding using investigator constructed
concept maps. The investigator conducted a design experiment to deliver problems that
allowed high school algebra students to expand their understanding of function. The function
problems were drawn from motion, cryptology, and sound contexts and increased in difficulty
throughout the study. Pre- and post-interview data from the students is used to create concept
maps for analysis. The maps help to show trends in learning such as concept acquisition and
misconception reduction.

Understanding the concept of function can help students to see connections among a
variety of mathematical concepts and serve as an underlying foundation for further study.
This can result in an understanding that is an “interconnected web of mathematics” (Hiebert
& Carpenter, 1992). For this reason, it is especially important to study how students view and
think about the concept of function, and how these interrelated concepts can merge.

However, it is extremely difficult to examine students’ conception of function, because of
its abstract nature. In addition, there are precious few measures of function understanding,
partly because of the diverse nature of the topic. For example, one can test for recall of the
definition, but that does little to reveal how a student sees the consistency of function
families, or if they believe that a mapping with a finite domain can even be a functional
relationship.

This paper reports on a research methodology that not only captures a student’s
understanding of function at specific points in time, but also helps illuminate the change in
functional understanding over an instructional treatment. I constructed concept maps that I
used to analyze differences in an individual student’s understanding of function, in an attempt
to measure change in student thinking about the concept of function from the beginning to the
end of an instructional treatment focused on the use of function in motion, cryptology, and
sound contexts. I will briefly explain how the concept maps were created, and how these
concept maps were used to analyze student understanding of the concept of function.

Theoretical Framework
The theoretical framework for the paper draws from both design experiment

methodology, and concept map analysis. In turn, I will address how these areas inform my
work.

Design Experiment
Because I was interested in capturing the complexity of learning about the function

concept, I used a design experiment methodology for the duration of the treatment and based
instruction on articulated design principles (Cobb, Confrey, diSessa, Lehrer, & Schauble,
2003). These design principles included three aspects: emphasizing the parameters of
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function families, employing computer technology for each problem, and situating all
problems given in realistic contexts.

I chose to focus on the parameters of function, for example “

€ 

a” and “

€ 

b” of the linear
function 

€ 

f (x) = ax + b  to promote the more desirable object viewpoint of function (Sfard,
1991). I hypothesized that if students were able to understand these parameters and how they
affected the function, they may be able to have a richer understanding of not only these
function families, but also how these parameters can affect more abstract functions. I wanted
to use computer technology to support students’ problem solving within the problems
because of the immediate feedback that the technology can afford the students. They were
able to use results given to them by their trials to refine their answers and converge on the
correct solution. In addition, the careful use of computer technology in instruction has been
shown to improve students’ notion of function understanding (O'Callaghan, 1998). Lastly, I
placed all problems within one of three contexts: motion, cryptology, and sound. These
contexts were chosen because they supported a progression of function family complexity.
That is, functions of increasing complexity could be chosen for problems as the students
worked through the three contexts.

Concept Maps
To depict students’ understanding before and after the study, I turned to the idea of

creating concept maps based on the students’ responses during the pre- and post-interviews. I
am using analysis of concept maps in a unique way. Most of the literature related to concept
maps has analyzed the maps that students have drawn (cf. Williams, 1998). I am instead
using a concept map as an organizer of experimental data for analysis. I am hoping to create a
two-dimensional visual representation of a student’s concept image of function (Vinner &
Dreyfus, 1989). The process and results of this method will be shared in the rest of this paper.

Methods
The interviews discussed in this report are part of a larger study in which students studied

the concept of function in three different contexts. Six Algebra II high-school students were
given problems on a weekly basis after school. The students worked in pairs on the problems,
and were able to interact with the computer and with each other to solve them. These
problems allowed students to explore the parameters of the functions used to describe the
contexts. The functions within the problems increased in complexity, as did the problem
scenarios. Problem choices were guided by a focus on function parameters within the
function families with progressive increases in difficulty from simple constant slope and y-
intercept in a linear function 

€ 

f (x) = ax + b  to a parameter that was a function in itself (“

€ 

a” in

€ 

f (x)  could be another function, 

€ 

g(u)).
For analysis, pre- and post-interview data was entered into a database for each student.

Then, a concept map was drawn for items that revealed how students thought about function
(Figures 1 and 2). The concept maps in Figures 1 and 2 were created from responses of the
following questions: “What is a function?,” “What is an example of a function?,” “Is a
function the same as its graph?,” “Can a phenomenon have more than one function to
represent it?,” and others. Besides this more abstract questioning, the interviews also included
problems where the student had to identify if a given graphical representation was a function,
as well as problems that required a numerical answer.
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I created a “skeleton” concept map that was used for all students and then I expanded
upon it to capture each individual’s function understanding. This created a visual
representation of the student’s conception of function, with a consistent organization from
student to student allowing for pre/post comparison as well as student/student comparison.
This “skeleton” consists of clusters based on three items: the definitional aspects of function
(definition), the application of function to contextual problems and the worth of the concept
in daily living (application), and aspects related to the graphical representation of function
(graphical representation). These base items (definition, application, and graphical
representation) come from two sources. First, the majority of my own assessment questions
were focused on these three aspects of function understanding. Second, the answers that I
received in both interviews from all students showed that these three elements were the
primary aspects of function that were most salient to the students while working with
functions. For example, although other representations were asked about and mentioned by
the students during these interviews, the graphical representation elicited the most productive
responses from the students. From this cursory analysis, the triad of these items was deemed
most important in the students’ conception of function, and therefore was used as a basis for
analysis.

The result of this analysis allowed me to create a concept map of understanding that has
two noteworthy consequences. First, comparison between and among students is more easily
done because of the consistency of the “skeleton” or base map. It is much easier to determine
who communicated more unique ideas about a particular aspect of function, such as
definitional elements of function. Second, because each secondary idea connects to one of the
three core thematic items, the links do not need identifying connecting terms such as “is an
example of” or “is defined by”. The need to put these linking thoughts is unnecessary simply
by a more explicit concept map structure and design.

I expanded the skeleton map by adding extension ideas where appropriate. These
expansions were all done using the student’s responses from certain questions asked during
the pre-interview and post-interview. I restricted these extension ideas to only the questions
that I asked in both the pre- and post-interviews, even though I asked more questions during
the post-interview. In addition, I only included those questions that were asked of every
student. These student ideas are coded on each concept map by shape. Items in cloud shapes
are those ideas that were communicated to me in the pre-interview only, while those items in
squares were communicated during the post-interview only. Items in circles were those ideas
that were more persistent. The student mentioned these items in both pre- and post-
interviews.

Once I had created the function understanding concept maps for every student, I was able
to compare the students’ maps to determine who changed the most during the course of the
treatment. I was able to enumerate the change based on the concept maps I created from their
responses. I was most interested in change in the definition and graphical representation areas
of their concept maps, so I decided to create three ratios: change over all three core ideas,
change in definition, and change in graphical representation (see Table 1). I chose to omit a
change in application ratio because I was more interested in students that had changed their
theoretical conception of function. These ratios were calculated by counting the ideas that
changed from pre- to post-interview, and dividing by the total items within that category. For
example, student #4 had the highest overall change at 92%, which was the number of total
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cloud and square shapes in their concept map divided by the total number of extension
shapes. So, 92% of the student’s map extensions are different from the pre- to the post-
interview.

Results and Discussion
From the results shown in Table 1, students 3 and 4 show the most definitional change

according to my measure. Analysis of their concept maps in more detail can help to
determine the cause of their greater differences.

Measures of Change Student #
1 2 3 4 5 6

Ratio All 0.8 0.4 0.8 0.92 0.72 0.61
Ratio Definition 0.2 0.2 0.33 0.3 0.18 0.08
Ratio Graphical 0.4 0 0.27 0.46 0.36 0.31

Table 1. Ratios of concept map changes

Figure 1. Function concept map of student #3

Student #3 Concept Map Discussion
A number of important conclusions can be gleaned from analysis of these concept maps.

There is of course the welcome change in perception of how function is apparent in their
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daily lives. Student #3 in the pre-interview claimed that he did not use functions to solve
problems (see Figure 1). However, in the post-interview this student not only claimed that
functions are used occasionally, but that they are probably used, maybe without overtly
knowing about it. The nice aspect of this change is that the student used the contexts of the
study to explain where functions might be used. This type of application change was
consistent among all six students, establishing that the contexts were meaningful for the
students.

There are many definition and graphical representation ideas to analyze by looking at the
concept map for student #3. First, looking at the definition strand in the lower left corner, the
student thought that function was an equation in both interviews. However, the “expansion”
or elaboration of that equality was different. In the pre-interview, the student said that the
equation represents points on a curve. “I guess it’s an equation that represents a line, or an
amount of points, a certain amount of points on a certain line.”Later, the student said, “It’s an
equation, but it doesn’t have one set answer, it’s determined by its input to get a single
output.”Although the student is still relying on function equaling an equation, the response
shows that the student is thinking of the process view of function – or at least starting to. This
is supported by the fact that the student thinks that function’s equation can be controlled by
parameters, thereby giving different answers as the output.

Ideas that were dropped in the post-interview include parts of the student’s graphical
representation section. Both the fact that a function’s graph could have an inverse and the fact
that the graph was a representation of a numerical equation was left out of the post-interview.
It is true that a graph can help recognize whether a function can have an inverse, but the
student did not elaborate this fact. This “inverse” utterance does not appear in the post-
interview and could suggest that it was not necessarily a persistent concept for the student.
The idea that functions have “similar curvature” shows the student might have dropped a
reliance on prototypical functions for identification.

The three items that remained constant in the map are very important to note. As
previously mentioned, the student thought that function is an equation, although this was
elaborated on in different ways in the two interviews. The other two constants are the
misconceptions that the graph of a function is connected, and that function has an infinite
domain. Both of these items are understandable, given the content in both standard curricula
and the study. However, this might be a limiting factor in both broadening and completing
the student’s conception of function.

Student #4 Concept Map Discussion
The second map shows a different kind of change over the course of the study (see Figure

2). Although this is one of the two students with the most “change” as defined above, the
student did not add many ideas during the semester, but rather dropped a number of items
that may be considered either misconceptions or overgeneralizations. Four ideas under the
definition category were abandoned. For example, the student dropped the “not random”
idea, as well as the idea that functions had specific structures. Also at the end is the idea that
there is a steady pattern to a function’s graphical representation. This might have resulted
from a lack of explicit verbal evidence, as the student still had reservations when presented
with graphs of functions with little to no pattern. Further inquiry is needed to confirm that
indeed the student has a deeper understanding of these ideas.
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For student #4, there was a great moment of documented cognitive dissonance that
happened in the post-interview that helped inform the content of the student’s concept map of
understanding. The student was answering the question of whether or not the graph shown (a
scatterplot with three points) was a function. Initially, the student said that it was not a
function, because each input was not represented; only three total points were shown on the
graph. However, the student then thought about one of the graphs of the encoding function in
the cryptography unit, which had 26 discrete points. Here is a transcript of what ensued:

Student: Because it doesn’t have multiple inputs. It can only have one of these three.
Wait, but then those codes wouldn’t be a function. So then, maybe it is.

Interviewer: What are you thinking about when you say the codes wouldn’t be a
function?

Student: Because you could only put for the inputs 1 through 26.
Interviewer: Okay, right, and that [contextual relation] was a function.
Student: Yeah. So, that [interview question] might be.

Through reflection on the activities and problems the student worked with, the student’s
conception of function was expanded and generalized. The scatterplot shown in the post-
interview reminded the student of the encoding functions used in the cryptology lessons. The
student is questioning the domain space in a function, and is beginning to realize that discrete
domains are acceptable. On the concept map, this is shown as the “might not span x-axis”
square.

Figure 2. Function concept map of student #4
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Conclusion
The concept maps have proven useful for analysis of students’ thinking about functional

concepts for several reasons. The first is that the non-linear description of their thinking can
be displayed graphically. Rather than having a single listing of student understanding, each
displayed concept can be linked to multiple items. This can show multiple connections more
easily. Concept maps from multiple students can also be compared easily to see trends in
understanding. These trends can be shown in students’ prior knowledge, gained knowledge,
and consistency of knowledge. That is, the concept maps can show not only what the students
understood before the treatment, but also if there were any trends among the students after the
treatment and if this was consistent among the students in the study. The more consistent that
a particular item was among the participants, the more evidence one would have to claim that
the treatment contributed toward the development of that knowledge. There are limitations
for their use, but they show promise as a research tool.

I will not claim that these maps accurately reflect all of students’ ideas about the concept,
and I also do not claim that they are accurate isomorphic images of a student’s conception of
function. (This representational space would not even begin to accurately reflect or represent
the complexity of a person’s conception.) However, it is helpful for analysis of understanding
changes over time. For example, this became evident in looking at the transcribed data from
student #4. This student’s thinking about a function’s domain is in flux, as evidenced by his
uncertainty of his answer in the above exchange. The map allows a way to identify this
change and record it for further investigation with other data sources.
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This study uses APOS theory to investigate how students build their understanding of the
geometric representation of functions of two variables. A genetic decomposition is proposed.
The results of a group of semi-structured student interviews are discussed and the analysis of
the interviews leads to a revised genetic decomposition.

Introduction and Research Questions
The notion of a multivariable function is of fundamental importance in advanced

mathematics and its applications. Most of the problems in applied mathematics involve this
type of functions. Many curricula include a mandatory course on their study, but little is
known about students’ ideas and difficulties about them. While there are many studies that
deal with the general idea of a function, it is necessary to focus on the particularities of
multivariable functions to study how students build their understanding about them.

Although there are many published articles that focus on the implementation of new
classroom material for teaching multivariable calculus, we could not find research probing
student understanding of this notion. This lack of research findings in turn limits our
understanding of how students learn the main ideas of the multivariable calculus. This study
is part of a project intended to study students understanding of multivariate functions. We
focus here on the following research questions: Can students represent and recognize two
variable functions in a three dimensional space? Can they visualize surfaces, intersections of
surfaces with fundamental planes and projections in a two dimensional plane? Can students
relate different representations of these functions?

Theoretical Framework
It is well known that graphs, diagrams, pictures and geometrical shapes or models are a

tool for visualization of the abstract concepts in mathematics. By means of these students can
build relations between the physical world and the abstract concepts (Several references
appear at Hitt, 2002 and Presmeg 2006). The term visualization is used in different meaning
between mathematics educators. In this paper the definition used is the one given by Zazkis,
Dubinsky and Dautermann (1996), that is, as an act in which an individual establishes a
strong connection between an internal construct and something to which access is gained
through the senses. For them such a connection can be made in two directions. An act of
visualization may consist of any mental construction of objects or processes that an
individual associates with objects or events perceived by an external source, or it may consist
of the construction, on some external medium such as paper, of objects or events.
Consequently, visualization involves a translation from external perceptions or constructions
to mental constructions.
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This definition of visualization is used in this report together with APOS theory (Asiala,
et al.,1996) to develop a preliminary genetic decomposition to analyze students’ ideas and
representations of objects and functions in a three dimensional space.
A preliminary genetic decomposition for functions of two variables was developed by the
researchers and was reviewed by two independent multivariate calculus teachers.  This is a
conjecture of how students develop their knowledge of two-variable functions, and their
geometric representation:
The objects or schemas that we consider a student may have developed previously to be able
to understand the concept of a two variable function are:

- Actions related to the notion of three dimensional space,
- A schema of Cartesian plane which includes the concept of point as an object and

representations of relations and other subsets of the plane as processes.
- A schema for real numbers which includes the concept of number as an object, and

arithmetic and algebraic transformations as processes.
- The object set, and basic set notation
- A schema for functions of one real variable  (

:f→RR
) which includes the concept

of function as process, operations with functions, and coordination of the analytic and
geometric representation of functions.

The Cartesian plane, real numbers, and the intuitive notion of space schemas must be
coordinated in order to construct the Cartesian space of dimension three, R3, through the
action of assigning a real number to a point in R2, and the actions of representing the resulting
object both as a 3-tuple and as a point in space.
These actions are interiorized into a process that considers all the possible 3-tuples and their
representation in space, to construct a process of what can be considered as a three
dimensional space R3.

The space R3 in turn is coordinated with the schemas for functions of one variable and
sets through the process of considering sets of points in R3 as graphs of functions of one
variable and their representations as curves, and also considering other planes or regions in
space to construct a schema of subsets of R3. This schema includes: fundamental planes
(meaning vertical and horizontal planes of the form: 

xc=
, 
yc=

, and 
zc=

 where c is a
constant), other subsets, relations and possible domains, and possible sections and contours.
The coordination of the schema of subsets of R3 with the schema for functions of one variable
through the actions of taking a point in the xy plane and assigning a number to it can be
generalized to consider all the possible assignations in order to construct the notion of a
function of two variables as a process. (The emphasis is on the actions of evaluation and
finding domain and range of a given function using different representations: table, formula,
graphical and verbal). This process is encapsulated so that it is possible that 

()(),,xyz
 is

identified with 
(),,xyz

.

The notion of function of two variables as a process is coordinated to the schema for
subsets of R3 through the action of representing the different points of the function in R3 to
construct graphs of functions of two variables; this action of evaluating the function over a
grid on the domain is interiorized so that students are able to work with the process of
drawing contours and transversal sections.
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Method
An instrument was designed to conduct semi-structured interviews with students and test

their understanding of the different components of the genetic decomposition. An initial
group of three students was chosen to participate in the first stage of the study. The students
were chosen from a group of undergraduate students at a private university who had taken the
equivalent of an introductory multivariable calculus course the previous semester.  The
instructor of the mathematics course they were currently taking chose what he judged to be a
good, an average, and a weak student to be interviewed. The interviews lasted for 45-60
minutes, were audio-recorded, and all the students’ work on paper was kept as part of the
data. The results obtained were independently analyzed by two researchers, and conclusions
were negotiated between them. On the basis of the results obtained from these interviews, the
researchers concluded that the information on students’ constructions about functions of two
variables was not enough to fully compare it to the constructions predicted by the genetic
decomposition. The instrument was then revised, and complemented with new questions.
This new instrument was used in semi-structured interviews 45-60 minutes long with another
group of seven students; one of them had also been interviewed with the previous instrument.
These students were also selected by the teacher from the same course as the first three, and
again chosen so that they represented good, average, and weak students. The interviews were
also audio- taped and students’ work was kept to be analyzed independently by two
researchers, and again, results were then negotiated between them. The purpose of these
interviews was to study students’ constructions about functions of two variables in analytical
and geometrical contexts. In this study we only report results related to the questions of the
interview that concern the graphic representation of two variable functions.

Results
Students showed different levels in the construction of the schema for functions of two

variables. These different levels are related as well with the development of their
visualization capability. We show here some examples of students who have constructed
different schemas for this concept as shown by their responses to the interview and the
characterization made by the researches of the coordinations predicted by the genetic
decomposition that they seem to have constructed.

Some students showed a lack of coordination between their intuitive knowledge of three-
dimensional space and the mathematical schemas they use in a multivariable setting. They
seem to work at an action level, memorizing some facts and trying to use them to solve the
problems, but they don’t show evidence of having interiorized these mathematical objects or
having constructed relations between them and their intuitive knowledge of space. Rodrigo is
such a student. For example, in one of the questions that asked: If you start at point 

()3,2,4−−

and move freely in the directions east-west (defined in the problem to be the x direction) and
up-down (the z direction), give an equation that describes the set of all points that may be
reached. Rodrigo takes a lot of time thinking and responds:
R-- I’m thinking that we are fixed at y do we? It does have point 3, say here, and I have to

describe an equation so that I may move freely on x and on z, so that if we are in three
dimensions, it would take … here … we form a plane or not, there it is … negative …ok

I- ok, so you wrote y = x + z + 3
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R- 3, what happens is that, according to me, if I write y = x + z + 3, then it works here that,
that it is x at 3 …

I- let’s see, if I give you this green model for a plane, how would you represent the plane you
are talking about on the 3D Kit? [The 3D Kit is a physical model of three dimensional
space that allows the representation of points, lines, planes, vectors and some surfaces.]

R- what do you mean by how would I represent it?
I- let’s see, the set, how will it look? Will it look like a plane? Like a surface?
R- according to me, it looks like a plane… ah ok … let’s say that y is fixed at 3, according to

me, but now…
Rodrigo wasn’t able to model the plane y = -2 by correctly positioning a flat rectangular piece
of plastic in the 3D Kit. He knew the equation of a plane at an action level, but had not
coordinate this action to the geometric representation of the plane. When working with other
questions in the interview that involved equations of the form x = c, y = c, and z = c, he
recognized them as equations for planes in a 3D space. However he seemed to have
memorized this fact, and did not show an understanding of it; he repeated several times things
like … in z, there is a plane …since it is 

1z=
 …, but when asked to describe such situations

he was confused.
The analysis of the data shows that the construction of some of the coordinations or

interiorizations predicted by the genetic decomposition was not achieved by many of the
students. Maria is an example of this group of students. Maria was able to respond quickly
and without hesitation to the questions related to the coordination of Cartesian plane, real
numbers, and the intuitive notion of space schemas thus demonstrating she had constructed a
schema for R3. She also demonstrated to be able to visualize fundamental planes and to relate
them with their analytical representation.
However, she showed difficulties in those questions that asked about the interpretation of the
intersection of a given surface in R3 and a fundamental plane showing that she was not able
to visualize the intersection to be able to draw it on a two-dimensional plane. When asked to
draw in a two dimensional plane the set of points that satisfy z = 1 in the given surface, she
started by drawing the graph of plane 

1z=
:

M- in a two dimensional plane? z = 1 … so in z it has a restriction but in, I don’t know, the
thing is … , well if it were in three … may I draw it first in three?

I- if you want
M- so in x y, … so in x and y it could be any point, isn’ it? … as long as it is restricted to1z=

 … what I have is a plane, would it?
In another problem, she was asked to draw 

(){}22,,:,3xyzzxyy=+=
 and again, she

recognized y = 3 as a plane, but she struggled with the intersection curve:
M- we have that 

22zxy=+
 with y = 3 … 

22zxy=+
 is like, like a cup, and y = 3 … here is y

= 3, then it is all 3 [tuples] of x 3 z …
I- how would that look?
M- … something like this, that is the … that is, y can only take 3 as a value?
I- yes
M- only?
I- yes
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M- then it would be … a paraboloid … over this, over 3 and then here they are 3 [She draws
a solid disc inside the plane y = 3.]

I- What is the relationship between this set and the cup you mentioned earlier?
M- well, it is like the tip, no? that is the … the … but no because … yes because x can be

positive or negative, but in … that is, it can have any x or any y, any x but in y it can only
be 3, like a piece … a slice of the piece

I- here you drew a circle, does it include the points inside the circle?
M- … well in x it has .. it has no point because there is no such … y and z, well neither.
Her inconclusive answer to the last question together with the solid disk she drew confirms
that she does not have a clear idea of transversal sections. This same difficulty reappeared in
other questions of the interview.
María also showed a lack of coordination of different representations. This lack of
coordination can be related with difficulties in visualizing the result of the actions or
processes applied on curves that are described by their analytic representation. When Maria
was asked to draw or describe the set of points that results when the points on R2 that satisfy
the equation 

221xy+=
 are assigned a height of 3 she responded

M- it is a circle … of radius 1
I- very well
M- then, draw in R3 or represent on the Kit the set of points that result if the points in R2 that

satisfy the equation 
221xy+=

 are assigned a height z = 3, ah then … we’d be left with …
something like this … in the interior [She first drew the cup-like surface and then quickly
fixed her drawing to have the cylinder.]

I- then, that is like a surface?
M- yes, this is a surface because we are in R3

So her drawing showed that she is able to lift the circle to a height of 3 but she included all
the points traced by the movement thus ending up with a cylinder.
These results show that this student has a schema of an intuitive notion of three dimensional
space. She can imagine it and imagine points, planes and surfaces in it. She has coordinated
schemas of Cartesian plane, real numbers, and the intuitive notion of space to construct the
Cartesian space of dimension three (R3). She has also coordinated her notion of Cartesian
space of dimension three with the schemas  for certain specific sets, fundamental planes, so
she is able to relate these planes with their different representations, geometric, verbal or
analytic. However she showed difficulties in the coordination of the schema for fundamental
planes and other subsets of R3, particularly, surfaces and contours. These difficulties were
further related to her difficulties to understand the meaning of a two variable function and the
possibility to draw graphs for these functions.

There were two students who responded most of the questions related to the graphical
representation of two variable functions correctly, but they too showed some difficulties
visualizing and representing the intersection of a surface and a fundamental plane. One of
them, Rafael struggled with this kind of problem:
Ra- let’s see, draw on a plane of two dimensions the points on the surface that satisfy x = 1, x

= 1 would be … here we have x = 1 … x = 1 would simply be this side [correctly pointing
to one side of the boxed surface shown in the given picture] … x = 1 would simply be all



105

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

this line … all this line that is on the xy plane … xy … in x = 1 … now  … the convenient
plane is  … the plane would be x, xz  and it would have a line that goes from  here …

Rafael drew the line correctly but on an xz plane. Again on part c which asked for the section
corresponding to y = 1:
Ra- Now on part c we have the plane y = 1, which would be this one, now y = 1 would be a

plane … if I consider yz what will be left are these points … it is a curve …
Here Rafael draws the intersection curve correctly but on a plane mislabelled as yz.
Another source of difficulty he had was the impossibility to visualize the intersection
between the plane and the surface. When he was trying to draw the contour corresponding to1z=

, he said
Ra- … I first locate the axes, the x axis, the y axis, this is y zero, ahh now now now now, this y

zero, this x zero … these, the axes and z … z, ok, consider in a plane of two dimensions
points on that satisfy z = 1 … let’s see, in a plane of two dimensions, the points on the
surface that satisfy z = 1, z = 1, …z = 1 …. I am at z minus one, plus one, let’s see, here I
would try to draw a plane parallel to xy, but finding the points of intersection would be
somewhat complicated, If I didn’t have, if I didn’t have the equation of this, of this
surface …

It seems clear that Rafael knows what he needs to do, he refers to a plane “parallel to the xy
plane” and also of “finding the points of intersection”. However he is unable to visualize and
draw the intersection curve.
The same thing happened to Pablo.  He responded to all other questions quickly, correctly,
and without hesitation. When faced with the need to draw the section of the surface that
satisfied y = 1 and the contour z = 1 he showed some difficulties.
P- … it would have a minimum when x …. is equal to _, z is equal to -1 …. Then a peak

would occur when x  is equal to … z is equal to … -3 …. Then another peak would occur
when x is equal to -1/2 and z is equal to -3 … the last one would be -1 … in x equal to -1,
z equal to -1 … a curve … two minimums and a maximum

Pablo needed to revert to a point by point evaluation strategy and, while he manages to
reasonably approximate the general form of the curve, the coordinates he gives are incorrect
as he actually describes the section 

2y=−
. Then, working with z = 1, the point by point

strategy did not enable him to obtain the contour z = 1 and he gave up.
P- part b says, draw on a two-dimensional plane the points on the surface that satisfy 

1x=
,1x=

 occurs on a line, here, this is a line and the minimum is the point …  The point -1 in
z and y would be -2 and the maximum point for the line would be z equal to 3 and y equal
to 2, since it is a line it can be drawn with two points

Pablo had no difficulty with the section corresponding to x = 1. He recognized the section
was a line before attempting to compute two points on the line.
We can conclude, from the work of these two students that they have coordinated their
schema of Cartesian space of dimension three with those for functions of one variable and
sets, to construct a schema of subsets of R3. They seem to be able to solve confidently most
of the problems proposed during the interview. The only difficulty they showed is related to
the coordination of the representation of a surface in three dimensional space with the
representation of its intersection with a specific plane when the surface has a somehow
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complicated shape. Even when these students knew what they had to do, and could tell that
the result would be a curve, they showed difficulties drawing it, probably because they were
not able to visualize it.

Discussion and Revised Genetic Decomposition
Results show that most of the interviewed students show evidence of coordinating their

intuitive notion of space with those of the Cartesian plane and real numbers, to construct the
object R3; they can locate points in it, and draw a plane parallel to a coordinate plane when a
description in terms of natural language is given.

A source of difficulty found was a lack of coordination between some students’ intuitive
knowledge of 3D space and the mathematical schemas they use in a multivariable setting.
Some students seemed to work at an action level, using memorized facts when solving the
problems, for example, they knew that equations of the form x = c, y = c, and z = c are
equations of planes, yet they did not show evidence of interiorization of these actions into
processes or objects, so they could not relate them to their intuitive knowledge of space.

Few students could coordinate the different representations of fundamental planes and
surfaces, in some cases because of problems with visualization. They show difficulties with
actions that involve intersections between these objects or projections of those intersections
in a two dimensional plane.

It seems that when some students are asked to draw on a two-dimensional plane, they
interpret this instruction as drawing on the xy plane. It is difficult for them to draw a
projection on a plane in R3, or even think about it. When asked to draw on a two dimensional
plane the projection of the intersection between a fundamental plane and a surface, several
students insisted on drawing it in the three dimensional space. This was a difficulty that we
did not predict in the original genetic decomposition. The fact that it seems to be a common
difficulty for most of the students, points out that it needs further study.

It seems that, in some cases, the difficulty that some students have relating their
mathematical schemas with common sense understanding of the space that surrounds us has
its origin in a language or communication lapse. For example, one difficulty found involved
the use of the word “cut” while forming transversal sections of surfaces. For some students
the word cut was related to the use of a plane to cut the surface into two parts, not a
transversal section. For those students who associated the equation of a surface in R3 with a
solid, the cut resulted in two disconnected solids.

Students were asked to draw a curve on a plane in space, and then to describe it when that
set of points was assigned a given height, z. Some students lift the curve to the given position,
but include in their description all the points traced by the movement, that is a surface instead
of a curve. Again, it seems that this difficulty arises because the students assign a different
meaning to the action invoked by the word “lift” from that intended. It also can arise from a
lack of coordination between their common sense knowledge of three-dimensional space and
their mathematical schemas.

It is clear that some of the difficulties that students had when given the graph of a surface
and asked to produce graphs of transversal sections and contours, are related to their ability to
visualize. It also seems that this ability is independent of the student’s understanding of the
material, as it could be seen in both the students that did the best and those that did the worst
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in the interviews. It is important to note that this type of difficulty didn’t seem to inhibit the
subsequent understanding of basic mathematical constructs, among them that of a function of
two variables, even though it may occasionally interfere with the understanding of
representations that use level curves or transversal sections.

In the revised genetic decomposition the objects or schemas that we consider a student
may have developed previously to understanding the concept are the same as before. The
intuitive notion of space now plays a more prominent role since it is now expected that
students will be able to coordinate mathematical constructions dealing with subsets of R3 to
their world intuition, through actions of representation and description of those sets
physically by means of a model such as the 3D Kit and mathematically. Building the
necessary connections between the schema of subsets of R3 and the intuitive notion of space
includes paying more attention to the use of language making the meaning of words explicit
by means of performing the actions and reflecting and discussing the results. The revised
genetic decomposition also requires that explicit attention be given to fundamental planes,
projections and the coordination of these with other subsets of R3.

Endnote
1. This project was partially supported by Asociación Mexicana de Cultura AC.
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This study examines students' approaches to infinity, before and after instruction, via their
engagement with a well-known paradox: the ping-pong ball conundrum. Students' work
reveals they perceive infinity as an ongoing process, rather than a completed one, and fail to
notice conflicting ideas. We further focus on specific challenging features of this paradox
versus other counterintuitive infinity problems.

Imagine you have an infinite set of numbered ping-pong balls and a very large barrel; you
are about to embark on an experiment. The experiment will last for exactly 1 minute, no
more, no less. Your task is to place the first 10 balls into the barrel and then remove number 1
in 30 seconds.  In half of the remaining time, you place balls 11 – 20 into the barrel and
remove number 2. Next, in half of the remaining time (and working more and more quickly),
place balls 21 – 30 into the barrel and remove number 3. Continue this task ad infinitum.
After 60 seconds, at the end of the experiment, how many ping-pong balls are in the barrel?

This ping-pong ball conundrum (Burger and Starbird, 2000) is one of many well-known
paradoxes that illustrate the counter-intuitive nature of infinity, which has puzzled
mathematicians and philosophers for centuries. From Zeno’s paradox to Hilbert’s Infinite
Hotel, the question of what happens to an infinite iteration once the process is complete has
delighted and frustrated minds alike. This study explored university students’ responses to the
ping-pong ball conundrum, as well as their arguments after instruction.

Theoretical Background
The counterintuitive nature of infinity, as manifested in students’ reasoning, is described

in prior research (Dreyfus and Tsamir 2004; Fischbein 2001; Fischbein, Tirosh, and Hess,
1979). Tsamir and Tirosh (1996), for instance, explored students’ intuitive decisions when
comparing cardinalities of two sets. Their conclusions supported Fischbein, Tirosh, and
Melamed’s (1981) claim that intuitive leaps are necessary to establish meaning about infinity.

Fischbein (2001) observed, when students attempt to form an understanding of abstract
concepts, their tacit mental representations in the reasoning process replace the original
concepts by more accessible and familiar ones. In Hazzan’s (1999) perspective, the use of
familiar procedures to make sense of unfamiliar problems is an attempt to reduce the level of
abstraction of certain concepts. She suggested that the tendency to apply familiar procedures
– such as those of finite set comparison – is indicative of a process conception. Further,
Dubinsky, Weller, McDonald, and Brown (2005a,b) – relying on the APOS theory (Dubinsky
& McDonald, 2001) – proposed that process and object conceptions of infinity correspond,
respectively, to an understanding of potential and actual infinity. In the ping-pong ball
conundrum, the process of adding balls ad infinitum corresponds to potential infinity,
whereas actual infinity entails a completed infinite process and describes the set of balls as a
whole entity. Dubinsky et al. suggested encapsulation of infinity requires “a radical shift in
the nature of one’s conceptualisation” (2005a, p. 347) and might be quite difficult to achieve.

Extending these ideas, our study uses APOS theory to interpret students’ naïve responses,
and their attempts to reduce the level of abstraction of properties of infinity as they addressed
the ping-pong ball conundrum. Specifically, we address the following questions: (1) What are
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students’ ideas of infinity before instruction? (2) Do students’ ideas of infinity change
following instruction? (3) What specific features of the problem are challenging for students?

Setting and Methodology
Participants in this study were 29 university students; 14 were in the masters’ program in

mathematics education, and the rest undergraduates with little tertiary-level mathematical
training. The study began by presenting participants with the ping-pong ball conundrum as a
thought experiment and asking them to record their ideas individually. Group and class
discussions ensued, as did instruction on cardinality and infinite sets. The instructional tasks
included comparing infinite countable sets using one-to-one correspondence and discussion
of the Infinite Hotel Problem. Students then were asked to readdress the original question: At
the end of the experiment, how many ping-pong balls are left in the barrel?

Results and Analysis
The mathematical resolution to this paradox lies in the distinction between potential and

actual infinity. The process of putting in and taking out ping-pong balls goes on infinitely.
However, after the 60 seconds end, so does the process. As such, there are no balls left in
barrel at the end of the experiment, since every ball has been taken out at some point.

There was no major difference in the responses from the two groups. Students’ initial
ideas, in both groups, can be clustered around two main claims:

“The process is impossible since the time interval is halved infinitely many times”
“There are infinitely many balls left in the barrel”
The argument that the rate of in-going balls was greater than that of out-going balls was

the popular justification for infinitely many balls at the end of the experiment. This argument
was most persuasive both before and after instruction.
While the argument of different rates persisted, students’ responses following instruction
were more specific with respect to infinity, distinguishing between the infinity of balls taken
out and the infinity of balls remaining in the barrel. The following excerpt exemplifies this:

“You remove a ball infinite number of times so as you go to infinity, you remove all the
balls… You could also say you are putting in more (9) balls in than you remove so you
eventually add an infinite number of balls.  Is one infinity larger than the other?”

In other arguments there was an apparent influence of instruction combined with
overwhelming intuitive resistance to the new ideas. For example:

“There is an infinite number of balls in the barrel, however it is impossible to name a
specific ball.  As soon as a number is chosen, it is possible to determine the exact time…
that ball was removed.”

Furthermore, following instruction some students acknowledged a 1-1 correspondence
between in-going and out-going balls.  Judy wrote:

 “There are still infinitely many balls left in the barrel, because even though there is a one
to one correspondence between the sets {1, 2, 3, 4, …} [and] {9, 18, 27, 36, …}, the rate
at which you are putting in is more than you are taking out. So even if there are just as
many numbers in each set, they will never even out, because the process continues
infinitely and you continue to put more in than you take out.”

The inherent contradiction in Judy’s response, as well as of the 11 other students who
presented similar arguments went unnoticed.

Only 3 graduate students suggested that the number of balls in the barrel was 0, but added
a comment that pointed to the distinction between what they “learned” and what they
“believed”. For example, Joe conceded that he could “now entertain the idea that there are no
balls in the basket (but [he didn’t] like it).”
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Students’ description of infinity as continuing forever corresponds to potential infinity,
and a process conception. The argument for different infinities because of different rates
seems to extrapolate common (finite) experiences with rates of change.  This is consistent
with the observation that students’ conceptions of infinity tend to arise by reflecting on their
knowledge of finite concepts and extending these familiar properties to the infinite case
(Dubinsky et al. 2005a; Dreyfus and Tsamir 2004; Fischbein 2001) and serves an example of
“reducing the level of abstraction” (Hazzan, 1999).

Students’ resistance to the ideas introduced in instruction appeared surprising in light of
prior seemingly successful resolution of other counterintuitive problems, such as the
correspondence between natural and even numbers and the resolution of Hilbert’s Hotel
Infinity paradox. As such, our further analysis attended to the differences in students’
response to the ping-pong ball conundrum and their work with other problems involving
infinity. Our analysis revealed that while the resolution of ping-pong ball conundrum requires
understanding of actually infinity, success with other problems exemplified above does not.

Conclusion
It has been well established that when formal notions are counterintuitive, primary,

inaccurate intuitions tend to persist (see among others Fischbein et al., 1979). Moreover,
individuals may adapt their formal knowledge in order to maintain consistent intuitions. In
the case of infinity, resilient intuitions of potential infinity were prevalent among the
participants and persisted following instruction. In the cases discussed here, participants
seemed to “construct the state at infinity by mimicking what happens for related finite
processes” (Dubinsky et al., 2005b, p. 259). Attending to differences in students’ responses to
the ping-pong ball conundrum versus other problems, we suggest that not all tasks that
involve consideration of cardinal infinity require understanding of actual infinity and that
understanding of  “infinity small” is more challenging than ”infinitely large”. This latter
observation is of our attention in further research.
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This study is a contribution to the ongoing research in undergraduate mathematics
education, focusing on linear algebra. It explores the students’ understanding of the key
concepts of linear algebra through the lens of learner-generated examples, identifies some of
the difficulties experienced by students, and also isolates some possible obstacles to learning
the concepts.

Background and Theoretical Perspective
Linear Algebra has become one of the required undergraduate courses for many

disciplines such as computer science, engineering, and economics. As research showed many
students leave the course with limited understanding of the subject (Dorier, 2000; Carlson et
al, 1997). Part of the difficulty is due to the abstract nature of the subject. Dubinsky (1997)
points out that there is a lack of pedagogical strategies that give students a chance to construct
their own ideas about concepts in the subject. The pedagogical weakness of linear algebra is
that students can pass the course by following a set of procedures. Being faced with non-
routine tasks such as those requiring construction of examples can reveal students’
weaknesses and misconceptions.

Examples play an important role in mathematics education. Students are usually provided
with examples by teachers, but are very rarely faced with example-generation tasks,
especially as undergraduates. As research shows (Hazzan & Zazkis, 1999; Watson & Mason,
2004), the construction of examples by students contributes to the development of
understanding of the mathematical concepts. Simultaneously, learner-generated examples
may highlight difficulties that students experience. This study examines how and in what way
example-generation tasks can inform about and influence students’ understanding of linear
algebra. The APOS theoretical framework was adopted in this study to interpret and analyse
students’ responses (Asiala et al, 1996).

Method
Participants in this study were 113 students enrolled in Elementary Linear Algebra

course. Vector spaces associated with matrices are one of the central concepts of linear
algebra and are related to other concepts such as linear transformations. It was observed
previously that students commonly confused the span of the columns of a matrix A (namely
Col A) with the solution set of the homogeneous equation Ax = 0 (namely Nul A). Having
been exposed to systems of linear equations, when students see the words ‘matrix’ and ‘span’
in the same problem, many of the students may rush into solving the homogeneous system Ax
= 0 without comprehending what the question asks. The following task was developed to
further probe students understanding of these subspaces. It was assigned to be completed in
writing after the topics of systems of linear equations, vector and matrix equations, linear
dependence and independence in Rn, linear transformations and Invertible Matrix Theorem
were covered in the course.

Task: Column space / Null space
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Find an example of a matrix A with real entries for which Nul A and Col A have at least
one nonzero vector in common. For this matrix A, find all vectors common to Nul A and
Col A. If T is the linear transformation whose standard matrix is A, determine the kernel
and range of T.
Every matrix has associated with it two intrinsic and complementary subspaces: the

column space and null space. The column space of a matrix A is the set of all linear
combinations of the column vectors of A, or the span of the columns of A. The null space of
the matrix A is the set of solutions to a homogeneous linear system Ax = 0. Both types of
subspaces are related to the linear transformation x_Ax in that the column space of A is the
range of the linear transformation and the null space of A is the kernel of the linear
transformation. In the case where A is a square nxn matrix, the column space and null space
of A are both subspaces of Rn, and have the zero vector in common. However, there are cases
when these subspaces share nonzero vectors, and so we can ask how large their intersection
might be.

The purpose of Task: Column space / Null space was to explore how students treat these
special cases, or non-examples. Non-examples are examples which demonstrate the
boundaries or necessary conditions of a concept (Watson and Mason, 2004). They can
simultaneously be counter-examples to an implicit conjecture. In this task, a matrix A is a
non-example of a square matrix with Col A _ Nul A = {0}. At the same time, it is a counter-
example to the conjecture that for any square matrix A, Col A and Nul A have only the zero
vector in common.

Results and Discussions
I first present the summary of students’ responses, and then outline how the APOS

theoretical framework was used to analyze students’ understanding of the fundamental
subspaces associated with a matrix. Several types of responses were identified for Null space
/ Column space task. They are summarized in the Table 1 below.

Table 1: Constructing matrix A with v in Nul A_Col A, v ≠ 0

Type of Response Example Frequency
Invertible matrix

(necessarily
incorrect)

A = 








−

−

12

21
 or 









10

01 12%

Singular matrix with
Nul A _Col A = {0} A = 
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51
 or 









01

01 23%

Any other specific
singular matrix

(necessarily correct)

A = 








−

−

11

11
 or 









−

−

39

13 48%

Semi-general
construction

Nul A: Ax = 0; Col A: can be any column in A. Pick
one column and determine the other column. Let x

equal to first column. 
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−
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General construction
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Students that constructed an invertible matrix as an example may be operating with an
action conception of the vector spaces associated with a matrix A. They need to work with
specific numbers and perform calculations explicitly to find the solution set of a
homogeneous equation Ax = 0, and to compute the column space of A. As a result,
computational mistakes lead them to incorrect conclusions.

The process conception of column space and null space may entail realizing that one has
to work with a singular matrix since its null space contains a nonzero vector. The action of
solving a matrix equation is performed mentally to satisfy one of the requirements of the task.
However, an individual has to compute the null space to show that null space and column
space share at least one nonzero vector, which doesn’t follow from the construction of an
example. Students that incorporated the requirement that the null space and column space of
a matrix have at least one nonzero vector and limited their potential example space to the set
of singular matrices may be working with the concepts of Nul A and Col A as a process. They
internalized the procedures for finding these two vector spaces but were still unable to
connect them.

An indication that students have encapsulated Nul A and Col A as objects is demonstrated
when the students are able to analyze a new situation and recognize how and why to apply
the properties of Nul A and Col A. In this task, an individual might recognize that Nul A
having at least one nonzero vector implies A is singular. Further, the analysis of Col A having
an element in common with Nul A should lead to construction of a matrix such that one of its
columns, ai, also satisfies the matrix equation Ax = 0, so that, Aai = 0. Students that used the
general construction methods of Table 1 included all the conditions of Task: Column space /
Null space in their example-generation. There is strong evidence that they understand the
concepts of Nul A and Col A as object.

Conclusion
Overall, students’ examples revealed the connections students make between the different

concepts, and students’ level of understanding according to the APOS theoretical framework.
This study identified that some students’ schema of null space doesn’t have the connection
between the existence of a nontrivial solution to the homogeneous equation Ax = 0 and the
singularity of A. Other students internalized the procedures for finding the two vector spaces:
Col A and Null A, but were still unable to connect them.

In addition, this study enhances the teaching of linear algebra by developing a set of
example-generation tasks that serve not only as an assessment tool but also as an instructional
tool. It is hoped that by examining students’ learning, the data collected can lead to teaching
strategies, which will help students expand their example spaces of mathematical concepts
and broaden their concept images/schemas.
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231 undergraduates’ written and interview responses to the Tennis Ball Problem (Weller, et al.,
2004) suggest that many students appeal to nonstandard models of arithmetic to make sense of
infinite iterative processes. This challenges an APOS analysis of this problem, by describing
students with fully encapsulated, but alternate, conceptions about infinity that are
mathematically (and cognitively) coherent and consistent.

One reason that recent researchers have investigated student conceptions of infinity is
because these conceptions have been shown to support and constrain student understandings of
important undergraduate mathematical ideas, such as limits, sequences, series, and the real
number line (e.g. Sierpinska, 1987). The following study marks another step in establishing a
meaningful theory-based account of student reasoning with infinite processes.

Theoretical Background
Two theories of student thinking in mathematics education have been widely used to analyze

and interpret student answers to questions involving infinite processes—encapsulation (e.g.
Weller, et al., 2004) and the basic metaphor of infinity (Lakoff & Nunez, 2000).

Encapsulation is part of the larger APOS framework (Dubinsky & McDonald, 2001), which
treats student thinking about mathematics as a set of progressive abstractions through actions,
processes, objects, and schemas. Encapsulation, or similarly, reification (Sfard, 1991), is the type
of abstraction by which students are able to reconceptualize a mathematical process as an object,
which could itself be a part of other processes. Through this framework, student difficulties with
infinite processes are due to an incomplete encapsulation of the iterative processes into
completed totalities.

The Basic Metaphor for Infinity (BMI) is also part of a larger framework, which describes all
of mathematical thinking as a sequence of metaphors ultimately grounded in physical embodied
experience (Lakoff & Nunez, 2000). The BMI is the metaphor that allows us to project onto an
infinite process a final end result.

While encapsulation effectively interprets some student responses about infinite processes,
the BMI provides a more plausible account for the different common student answers, especially
to the Tennis Ball Problem. However, even the BMI gives an incomplete account of the
mathematical structures students create in order to make sense of these “end results” of infinite
processes.

Methods
The results reported are part of a larger study about student conceptions of concepts

foundational to calculus. 235 university calculus students were given a questionnaire which
included an adapted version of the Tennis Ball Problem (Weller, et al., 2004). 225 of these
students responded to this item.
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Six additional students were later interviewed informally and briefly in a classroom setting to
illuminate some of the response patterns identified. Their responses were written down by the
interviewer. The primary purpose of these interviews was to illuminate some of the student
questionnaire responses in order to refine a set of interview protocols for a more formal future
study. This informal part of the study is included here because some interview remarks provide
insight about a reasonable interpretation of the questionnaire responses.

Results and Discussion
The modified Tennis Ball Problem is reproduced in Figure 1. The student written response
patterns were categorized into the five categories found in Table 1.

Figure 1—Modified Tennis Ball Problem
   “Suppose you put two tennis balls numbered 1 and 2 in Bin A and then move

ball 1 to Bin B. Then you put balls 3 and 4 into Bin A and move ball 2 to Bin B.
Then you put balls 5 and 6 into Bin A and move ball 3 to Bin B. And so on
infinitely. How many balls are in Bin A after you are done? Why?”

Table 1—Written response patterns to the Modified Tennis Ball Problem for 225 undergraduates
    Response categories       Number of students

n %
   a. 0 balls remaining in Bin A 3 1%
   b. Infinitely many balls or half of the balls (or both) 131 56%
   c. Objected to “after you are done” 39 17%
   d. A positive finite number (such as “3”) 36 15%
   e. No answer or didn’t know 16 7%

Almost no one answered the Tennis Ball problem correctly, that 0 balls remain in Bin A. The
theory of encapsulation accounts for why 17% of students explicitly objected to visualizing the
infinite process as being completed, and why 15% of students thought that there was some small
positive number of balls remaining. These students have failed to encapsulate the infinite process
into a completed totality. However, many students explicitly replied that there are infinitely
many balls left in the bin. It appears that these students have actually succeeded in encapsulating
the infinite process into a totality, but the totality they have encapsulated is incorrect.

The BMI provides a more nuanced explanation: it is not that these students have failed to
encapsulate the infinite process, but rather that they are metaphorically extending the wrong
property of the infinite process to achieve their final end result. When asked why there are
infinitely many balls in Bin A, these students usually explain that after each step of the process
there is another ball in Bin A, so this number increases to infinity. But when they are asked to
name a ball in the bin, they are unable to answer.

These students are creating a metaphorical result of an infinite process by extending the “how
many balls” property from the finite case to the infinite case. The correct answer, however, relies
on the extension of the “which balls” property from the finite case to the infinite case. This is a
profoundly different thing to attend to, and it requires using numbers not to count, but to index
(or name) the balls in the bin. The difficulty in getting students to use numbers to index rather
than count is precisely the difficulty in getting students to understand Georg Cantor’s theory of
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sets. That this is a difficult transition is mirrored by the difficulty Cantor had in convincing his
peers that there really are different sizes of infinity, but that these sizes are revealed not by trying
to count the elements in an infinite set, but by trying to index or name the elements.

There is still one more idea that the APOS account cannot explain, and that is why students
are unperturbed by the belief that Bin A contains infinitely many balls, none of which can
actually be named. In the interviews, the students were presented with the following argument:
there cannot be any balls remaining, because if there were then we should be able to name such a
ball k, but we know that ball k was moved out on the kth step of the process. Only one of the
interviewed students recanted because of this explanation; several actually countered by saying
that there exist numbers so big that they cannot be named, and that the “last half” of infinity is in
the bin, where the balls don’t have names.

This belief suggests a tacit belief in a nonstandard model of arithmetic. A nonstandard model
of arithmetic is, essentially, an alternate number system in which all of the same first-order
arithmetic statements hold true that are true in our standard number system, but which is not
isomorphic to the standard system. Logicians have created such models (Skolem, 1934/1955),
and although these models have the same degree of mathematical power and consistency as our
standard models, they look significantly different. For instance, in one such nonstandard model
of arithmetic, there exist all of the counting numbers, but there are also a bunch of larger infinite
numbers which do not have names and cannot be referred to explicitly in mathematical formulas.

This is not the only instance in which students appear to maintain alternate nonstandard
models in mathematics (e.g. nonstandard analysis in Ely, 2006). Understanding student thinking
in terms of nonstandard models of our numerical reality explains some student responses
currently unaccounted for. Certainly many students are unable to encapsulate infinite processes,
or fail to appropriately apply the BMI to such processes. But sometimes students are able to do
these things, and yet end up with an alternate conception of our number system, one that may
actually be as powerful and coherent as the conception we are trying to get them to adopt.
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The view that imagery can hinder mathematical thinking might surprise some mathematics
educators who contend that understanding is enriched whenever visual imagery is used. In two
contrasting cases, we present the view that dynamic visual images, without support from analytic
thinking, can be a hindrance in constructing mathematical meaning – contrary to the “panacea”
view of imagery which is sometimes expressed.

Visualization and visual thinking have been fundamental during the past two decades of studies
to reform the way calculus is taught, and their roles have been recognized and given further
emphasis by reform calculus textbooks.  Having stated that students should have adequate
understanding of visual representations and the ability to make connections between analytic and
graphical representations, Hughes-Hallett (1991) advocates a balance between the graphical, the
numerical, and the analytical: “A balance is required because it’s seeing the links between
various approaches that constitutes understanding” (p.125).

Theoretical Framework
In this paper, our work is framed by Krutetskii (1976) who distinguished among main types

of mathematical processing by individuals: analytic, visual (or geometric), and harmonic. A
student who has a predominance toward the analytic relies strongly on verbal-logical processing
and relies little on visual-pictorial processing. Conversely, a student who has a predominance
toward the visual relies strongly on visual-pictorial processing and relies less on verbal-logical
processing. Harmonic students rely equally on verbal-logical and visual-pictorial processes.
Krutetskii also identifies two subgroups of the harmonic type: pictorial-harmonic and abstract-
harmonic. Representatives of these subtypes can depict mathematical relations equally well by
visual means. Abstract-harmonic types do not feel the need for using visual schemes while
solving problems, whereas pictorial-harmonic types have a tendency to rely on visual means.
Our work also is framed by Presmeg’s (1986, 2000) study in which five kinds of mathematical
imagery, associated with visual thinking, are identified: concrete imagery, memory images of
formulae, pattern imagery, kinesthetic imagery, and dynamic imagery.  In the literature (e.g.,
Aspinwall, Shaw, & Presmeg, 1997), several difficulties verifying the limitations of imagery
have been documented. Presmeg (1986) observed that visual dynamic imagery was effective and
visual students who were able to combine visual imagery and analytic means avoided the
drawbacks associated with the use of imagery. Wheatley (1997) confirmed Presmeg’s findings
that dynamic visual imagery produces high levels of mathematical functioning.

Methods
As a component of a larger line of research aimed at better understanding how students learn

elementary calculus viewed through their personal and idiosyncratic representations, we
developed cases describing two participants, Jack and Bob. Our work is supported by the view
that posing and analyzing rich tasks for students provides windows into their thinking with
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ramifications for curriculum and instruction. As a result of observations of what students say and
write, and how they represent mathematical situations, researchers make decisions about
appropriate ongoing investigations. Generally, subsequent tasks are designed to clarify or
validate early assertions. Here, we illustrate the contrasting thinking processes of Bob, whose
representational scheme is predominately pictorial-harmonic, and Jack, whose representational
scheme is predominately visual. We conducted weekly clinical interviews with the participants,
during which they were presented with derivative graphs of functions and asked to draw possible
antiderivative graphs as we sought to gain understanding of their mental processes and
representations. First, procedural tasks, presented with equations, were administered to
demonstrate the participants’ understanding of algorithms, techniques, and formulas for
computing integrals. Then we prepared an initial set of graphical tasks to start the interviews, and
the remaining tasks were developed based on analyses of these weekly interviews.  Each clinical
interview lasted about 20 minutes and was video-and audio-taped. The participants were asked to
think aloud while they were solving the tasks so that we could analyze their responses and
strategies as well as describe and make inferences about their representations.

Results
The procedural tasks were easy for them and in a few minutes,
they correctly computed the integrals without any difficulty,
demonstrating that they were proficient at computing various
integrals.  In this study, sixteen graphical tasks were designed
to examine the participants’ mental images, representations,
and strategies to create meaning for the derivative graphs.  One
graphical task will be discussed in this paper; the others tasks
as well as the participants’ work can be found in
Haciomeroglu’s (2007) study.  The graphical task in Figure 1
with the following instructions was presented to the
participants: The graph of 

()fx′
 is shown.  Let f(0) = 0 and

sketch a possible graph of f(x).  Bob examined the y values at x
= 0, 1, and, 2 and immediately transformed the derivative
graph into the graph in Figure 2 by visualizing tangent lines to
the graph.  At the same time, relying on analytic means, he
calculated the area under the derivative graph to find the y
values of the antiderivative graph at x = 1 and x = 2.  Bob’s
response suggests that he is demonstrating the characteristics
of the pictorial-harmonic type, one of Krutetskii’s (1976)
subtypes of harmonic students, who starts from visual-pictorial
means and relies on graphical representations during a
solution.  Jack drew the graph in Figure 3 on the basis of his
estimates for the slopes of tangent lines.  That is, he used the y
values at x = 0, 1, 2 to visualize the tangent lines and transformed the derivative graph into the
graph in Figure 3.  Jack’s thinking was predominantly visual.  He relied on graphic
representation and did not translate the derivative graph into another representation.  When we
asked Jack to find the y coordinate of the inflection point, he thought that the graph could be
stretched as long as it has the same slopes at x = 0, 1, and 2 and that it was not possible to find

Figure 1.

Figure 2.
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the inflection point.  He said the inflection point was not a fixed point due to vertical stretching.
In Figure 4, we considered what he described and stretched his sketch in Figure 3. This graph
meets his conditions and illustrates how his visual thinking could be misleading him as his
dynamic images of the antiderivative graph hindered his understanding that vertical stretching
would change the derivative graph.  In the literature (e.g., Presmeg, 1986, 2006), dynamic
imagery had been considered to produce high levels of mathematical functioning, but, without
the support of analytic thinking, misleading and false dynamic images interfered with Jack’s
thinking and caused him to think that there were infinitely many inflection points due to vertical
stretching.

Discussion
Jack demonstrated the characteristics of visual types who

tend to employ only visual modes of thought while solving
problems. Bob also demonstrated a strong preference for visual
modes of thinking but, when he experienced the need for verbal-
logical modes of thinking, he used this component by calculating
the area under the derivative graph or estimating the equation of
the derivative graph. In clinical interviews, we observed how
visual dynamic images, without the support of analytic thinking,
controlled Jack’s thinking and hindered his understanding. With
the help of analytic means, Bob drew precise sketches and
avoided some of Jack’s difficulties associated with the use of
visual dynamic imagery. These difficulties indicate the
importance of analytic thinking to support visual thinking while
dealing with graphical in the complete understanding of
differentiation and integration. The literature suggests that
students understand the derivative and test their ideas
graphically and analytically (e.g., Hughes-Hallett, 1991).  We
also believe that understanding of calculus is strongly related
to the ability to synthesize visual and analytic thinking, and
students’ understanding of analytic methods and developing
graphic representations of derivative and antiderivative graphs
go together as students construct mathematical meaning for the
concept of derivative and antiderivative in calculus.
Derivatives and antiderivatives of different graphs should be
discussed to encourage students to use formal definitions of
left- and right-hand derivatives, differentiability, and
continuity as well as help them construct appropriate mental
images and representations that will facilitate their learning
and understanding of calculus.
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This study examines how high school geometry students’ multimodal interactions with diagrams
(using gestures as well as speech) reveal their reasoning. The study suggests that when
information given in a diagram is limited, students complement it with gestural and verbal
expressions that involve them in conjecturing. The study suggests graphic representations that
can be used to codify gestural interactions in instructional practice.

Research has discussed the gap between the physical properties of geometric diagrams and
the conceptual nature of geometric figure (Duval, 1995; Fischbein, 1993; Laborde, 2005;
Mariotti, 1995). Herbst (2004) claims that building geometric knowledge requires deductive
reasoning with representations of mathematical objects, such as diagrams. From the perspective
of learning as participating in a community of practice (Lave & Wenger, 1991), it is expected
that learning geometry involves students interactions with diagrams. Studies on gestures in
science and mathematics learning suggest that gestures embody students’ thinking and spatial
reasoning (Cook & Goldin-Meadow, 2006; Nemirovsky & Noble, 1997; Roth & Welzel, 2001).
This study identifies how students interact with diagrams in gestural and verbal forms, and how
such multimodal interactions may advance their deductive reasoning.

The data in this study is from a corpus of classroom videos in a large project that studies
mathematical work in high school geometry. An experimental lesson was developed to provide
context for students making conjectures about parallel lines, a topic that had not yet been taught
in the class. With a given diagram consisting of sets of intersecting lines (see Figure 1), students
were asked to determine the measurements of all angles formed by given intersecting lines, but
to actually measure as few of them as possible. We compare the use of gesture and language
obtained from video records of that lesson with those of an intact lesson which represented
customary teaching practice in that classroom. Video records of intact lessons had been collected
on a weekly basis.

Video segments from five experimental classes and an intact lesson are identified where
students interact with diagrams in public.  We analyzed the transcripts with the video images. We
examined the modality in students’ discourse. Modality is defined as the uncertain intermediate
degrees that lie between polarities (Halliday & Matthiessen, 2004). Modality is used to shows
degree in the spectrum between positive and negative statements (of frequency, necessity,
obligation, etc.). We take modality in discourse as an indicator of students’ judgments about the
truth of statements about diagrams. The use of “should,” prescribing that diagrams should be in
certain way indicates a belief on the necessity of geometrical properties of the diagrams (Herbst,
2004) and suggest students’ theoretical reasoning that goes beyond the capture of “spatial-
graphical” properties (Laborde, 2005) of the diagrams. Along with analyzing discourse, we
“mind read” (McNeill, 1992) gestures, an imagistic form of speakers’ utterance, to study
students’ reasoning and thinking.
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Figure 1: The
diagram given on the

worksheet

Figure 2: The open
palm indicates the
parallelism of the

two lines

Figure 3: A
hypothetical

intersecting point

Figure 4: Anthony:
“There can’t be

another point down
here”

Results
Our analysis revealed that students’ verbal and gestural interactions are different in

experimental and intact lessons. In the intact lesson, the diagram, a homework problem in the
textbook, provides sufficient information (labels of angles and segments) that suggest students
what elements to pay attention to when doing proofs. Thus no additional actions (e.g. labeling) or
conjecturing need to be made. Hence, deictic gestures were dominantly used to point to an object
on the diagram and to draw the audiences’ attention (McNeill, 1992). The student’s use of
present tense (i.e. is, are) indicates that they are stating the “facts” about the diagram.

However, in the experimental lessons, diagrams only contained representations of the objects
mentioned in the problem without any labels or symbols attesting to their assumed relationships.
Students had to use gestures to create hypothetical assumptions of diagrams (e.g. if they would
not be parallel), and justify their conjectures with high degree of certainty (e.g. the two angles
have to be equal). Gestures were used to represent imaginary diagrams and externalize students’
imagistic thoughts of diagrams.

For example, two students, Collin and Anthony conjectured that two given lines should be
parallel through proof by contradiction: Collin first stated that the two lines should be parallel by
tracing the two lines with his open palm outside the frame (see Figure 2). Then, he assumed that
the lines would intersect at a certain point if the statement were false. A hypothetical intersecting
point was positioned outside the frame (“ if they would not be parallel, you get a triangle”, see
Figure 3). Unlike gesturing with an open palm, Collin narrowed the space between his thumb
and index finger, indicating an intersecting point of the two lines. This variation of gestures
indicates his differentiating notions between parallelism and intersection.

    After making the assumption regarding two lines being intersected, he attempted to get the
measurement of the third angle in the virtual triangle formed by the two lines. However, with the
angle sum theorem and the known measurements of two other angles with 180 degrees in the
virtual triangle, it is impossible to have a third angle. Anthony thus pointed at a spot farther than
the one Collin did, (see Figure 4), claiming the impossibility of an intersecting point by two
parallel lines (“ there can’t be another point down here”).
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Conclusions
This study shows the constraints of diagrams can be seen as resource to bring forth students’

gestures and verbal expressions in making hypothetical claims about diagrams. Thus gestural and
modality expressions are mediation tools to compensate for the limitations of diagrams.

The analysis of gestures highlights the importance of multimodal representations in
understanding students’ thinking. We identify the contextualized uses of gestures representing
geometrical ideas, especially representing those that are not visually available. Further research
on gestural uses in contextualized settings will contribute to understanding students’ thinking and
learning.

In addition, the graphic representations adopted in this study can be utilized as a tool to
codify the gestural communication in mathematics classroom. Further developments of graphic
gestural expressions that represent the authentic interactions in classrooms can help in capturing
the essences of students’ interactions, and consequently, in understanding how students make
sense of mathematical ideas.
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The purpose of the study is an attempt to develop a preliminary use of limit toward the ε-δ
definition to fill in a gap between students’ naïve conceptions and the formal definition. Fifty-
five undergraduates were recruited as participants. Among them, four representative students
in different levels (in terms of different responses to a problem set) were interviewed.

Most students have extreme difficulties in understanding the limit concept because of its
abstract formal definition and the precision of the ε-δ definition. However, ε-δ ideas in the
concept of limit are not only essential to calculus but also a conceptual basis in mathematical
analysis. Therefore, an approach to limit that is accessible to students and become the
foundation for later mathematical development needs to be developed for students to better
understand it. This study is an attempt to fill in a gap between students’ naïve conceptions
about limit and the ε-δ definition.

Theoretical Background

Previous Research on Student Learning on Limit
Various aspects of the learning about limit have been investigated over the last few

decades. Most previous researchers have attempted to understand student difficulties with
limit by examining three different aspects: the analysis of the mathematical structure of limit
(Mamona-Downs, 2001; Tall, 1992), misconceptions and cognitive obstacles related to limit
(Cornu, 1992; Davis & Vinner, 1986; Monaghan, 1991 Przenioslo, 2004; Williams, 2001),
and the use of cognitive theory (Cottrill et al., 1996; Gray et al., 1999)

The Need for an Additional Approach to Student Thinking about Limit
The different cognitive approaches to student thinking about limit have brought important

insights into mathematical learning and teaching (e.g., cognitive structures of limit, students’
misconceptions, and how individual students construct the mathematical concept of limit).
However, mathematics learning is both symbol- and language-mediated activities. Previous
researchers, who explored learning on limit within the cognitive framework, underestimate
not only the inherently social nature of thinking, but also the role of discourse and
communication in learning. To reveal situated learning difficulties, the need for discourse
analysis as a research method is warranted for the methodological necessity of dealing with
contextual sensitivity in mathematical learning, such as the use of language, active process of
“enculturation into a community of practice” (Cobb, 1994), and continuous changes of
learning context.

Design of Study

Research Questions
To investigate student thinking about limit, the research questions for this study include:

What are salient characteristics in students’ conceptions of limit? Which particular
preliminary use of limit do students employ for the ε-δ definition?
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Method
Fifty-five undergraduates recruited from the three different courses in a university of the

north-central United States participated in the study: Applied Calculus, Calculus I, and
Mathematical Investigation. The Mathematical Investigation course is about mathematics for
prospective elementary teachers such as numbers and operations. The task for this study
consisted of a 5-task problem set and a follow-up interview questionnaire. The geometric
interpretation in the concept of limit causes an obstacle to arriving at the notion of a
numerical limit (Davis & Vinner; Monaghan, 1991, Szydlik, 2000). Thus, both arithmetic and
geometric contexts were used to investigate students’ uses of limit in the problem set. After
reviewing the answers to the problem set, four representative students from different levels
(in terms of their different responses) were selected for interview to find a preliminary use of
limit towards its formal definition.

Some Results from Interviews
There were two noticeable findings from the four interviews. One salient characteristic is

that students’ uses of limit are context-dependent. Informal negation is employed for a
preliminary use toward the formal ε-δ definition of limit. The episodes below were extracted
from scripts of the four interviews.
Episode 1: Mike

Mike was a student in applied calculus. He responded that infinity means both the biggest
number and the act of going on and on in his questionnaire. The exchange was as follows:

I: Can you give me an example of the biggest number in your mind?

Mike:
There is no number of infinity as a top. I guess I don’t think of it as a value. It’s
more a concept, I guess.

I: Instead of value just a concept?
Mike: Yes.
I: When you think the biggest number, it means just a concept.
Mike: Yes.
I: What is this (the act of going on and on) just like?
Mike: Then I am relating it to the plot of graphs.
I: OK, this one is related to graphs. This is a concept
Mike: Yes.
Mike used both notions of limit, but he employed them in different contexts. The biggest

number means just an abstract concept rather than an actual number. The act of going on and
on is related to the plot of graphs. His use of limit is context-dependent.
Episode 2: John

John was taking calculus I. John responded ∞×(1/∞) = 1 for a problem in the problem set
which was intended to elicit understandings of discrete limit processes of geometric shapes.
The widths of those geometric shapes are decreasing, whereas their heights are increasing at
the same rate. Below is part of the dialogue between John and the interviewer.

I: Did you mean ∞×(1/∞) = 1?
John: Yes.

I:
You also answered n approaches ∞ as quickly as 1/n approaches 0.
Is that your thinking about ∞×(1/∞).

John:

Yes, in the classroom I learned about the rate of growth like…n in the series
goes to infinity faster than natural log of n. They both go to infinity but one goes
more quickly. So that’s what I was thinking here. Since this n right here goes to
infinity just as quickly as n right there. So they are cancelled each other…

I: Can you explain infinite small more?
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John:
Infinite small is so small that like it doesn’t registered any more…
After some big number, you can’t get it close enough to see the difference.

In this episode, John tried to justify his reasoning by looking at the difference between
limiting processes and the limit (“you can’t get it close enough to see the difference”).

As to the question of “Is 0.999… equal to 1 or just less than 1?” in the problem-set, Paul
answered 0.999… = 1 because there is no positive number that you can add to 0.999… which
will make it less than or equal to one. Based on the two responses from John and Paul, the
meaning of informal negation is that there is no number that makes a difference between
limiting processes and the limit. Informal negation seems to be much easier than the formal
definition to introduce infinitesimal. Mathematically, the formal definition of the limit of a
sequence is that for ∀ ε > 0, ∃ m such that an + ε > a, for every n > m. Instead of using the
formal statement, John and Paul employed its informal negation: for ∀ ε > 0, there is no m
such that an + ε < a, for every n > m.

Discussion
In the previous example, I have described context-dependence as well as informal

negation in uses of limit by examining students’ discourse. The first thing to note is that
learning transfer is not automatic because students seem to employ different uses of limit in
different contexts. Informal negation seems to be used as a tool to fill in the gap between
students’ naïve uses of limit and the ε-δ definition. What works better for mathematical
learning in practice is dependent on whether investigation tools for our research aid us to not
only deepen our fundamental understanding, but also provide pragmatic processes of
resolving student learning difficulties situated in context. Discourse analysis as a multi-lateral
approach is a promising method to reveal the mechanisms of mathematical learning in
complex contexts.
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The concept of function is fundamental in the learning of mathematics where good
understanding equips students with more ways of problem solving. In addition, the function
concept is a unifying concept in modern mathematics (Leinhardt, Zaslavsky & Stein, 1990),
central to different branches of mathematics (Kleiner, 1989), and essential to related areas of
the sciences (Selden & Selden, 1992). A deep understanding of functions and the ability to
identify and to switch from one form of a function representation—graphical representation,
tabular representation, verbal representation or equation representation—to another are
critical and allow students to see relationships, develop a better understanding, broaden and
deepen one’s understanding, and strengthen one’s ability to solve problems (Even, 1998).
Further, a strong understanding of the concept of a function is essential for understanding
calculus, a critical course for the development of future scientists, engineers and
mathematicians (Breidenbach, Dubinsky, Hawks & Nichol, 1992; Carlson, Oehrtman &
Thomson, in press). Researchers investigating students’ understanding of functions have
found that many students, including pre-service teachers, have a limited understanding of
functions.

Function ideas are covered heavily in precalculus to prepare students for calculus. Among
the function ideas covered in precalculus, are function transformation, function composition
and function inversion. These three related concepts are normally taught separately in
precalculus and the relationship among them is seldom discussed. Despite this, when students
get to calculus, they are expected to not only know and be able to use these concepts but to
also be able to apply them in calculus problems and exhibit flexibility in their view of the
three concepts. I argue that flexibility among the three concepts and the ability to visualize
one of them when working with the other (e.g., a transformation when working with a
composition or an inverse) can enable a student to develop rich relationships and the ability
to solve problems. While much research has been conducted on students’ understanding of
functions, little attention has been paid to students’ understanding of these three concepts and
students’ view of how the concepts are related. This study addresses the question: What are
calculus students’ understandings of the concepts of function transformation, function
composition, function inverse and the relationships among the three concepts?

This study employs both qualitative and quantitative methods, and is influenced by a
constructivist theory of learning and a framework of flexibility (Moschkovich, Schoenfeld, &
Arcavi, 1993). There are two sets of participants: college calculus 1 students and high school
AP calculus students from institutions in the northeastern United States.

This poster draws on data collected from the participants in a two-step process. In the first
phase, a 20-question questionnaire was given to 100 students in the first course in the
calculus sequence (including high school students enrolled in AP calculus) gathering data
about students’ mathematical background, demographic information, as well as their
understanding of the concept of function. Based on analysis of these questionnaires for
summary statistics, 16 of the 100 respondents were interviewed then in an individual task-
based setting (Goldin, 2000). The participants’ work (including transcripts of the interview)
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will be analyzed inductively using a combination of grounded theory and a framework of
flexibility. Data will be represented and discussed in the poster.
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Historic Hotel problem (a model-eliciting activity) was implemented at college level. Math major
students' and pre-service science and math students' thoughts about an optimization problem
revealed through Historic Hotel MEA. The use of calculus and other mathematical concepts
appeared in students’ ways of thinking is presented in the study. Historic Hotel MEA provided
multiple opportunities for formative assessment and made students’ thinking of optimization
visible.

Model-eliciting activities (MEAs) are based on real-life situations where students, working in
small groups, present a mathematical model as a solution to a client’s need (Zawojewski and
Carmona, 2001). The problem of Historic Hotels is an MEA in which students are asked to
develop a mathematical model to maximize profit that can be calculated with a quadratic
equation. In the problem, there is a client who inherited a historic hotel and does not have
management skills. He wants to determine the rate per room where he was told by the previous
owner that all of 80 rooms are occupied when the daily rate is $60 per room; the rate per room
increases by $1 for every vacant room; and each occupied room has a $4 cost for service and
maintenance. The problem can be solved by using quadratic formulas, 1st and 2nd derivative
method, or simply looking at the profit for each value. In this study, college level students are
asked to solve this optimization problem to see possible their ways of solution to the problem.
Two groups of students were given this non-traditional problem. The first group was a calculus
class where the majority of students were engineering major and the second one was an
education course required for teaching certification where students were either science or math
major. There were 23 groups of 3 in calculus class and 11 groups of 3 in the other.

After the problem was solved in groups, students were asked to present their models to their
class-mates. Discussions about different solutions were done after each presentation. Authors
and their colleagues observed students and took field notes while students were working on the
problem and discussing their results afterwards. This particular type of MEA made students’
thinking about optimization as a mathematical concept visible to both their peers and teachers.
Formative assessment (Black & William, 1998) cycles that students went through appeared in
the problem solving process. Students’ final works are analyzed in terms of the function they
used, variables and their definitions, graphical representations, and generalizations.

Analysis of solutions of both groups to the problem and observations by authors and their
colleagues will be reported in the poster. In addition, math major students’ and pre-service
teachers’ ways of thinking will be discussed. Following questions will also be touched upon in
the poster:

- How much calculus knowledge do college level students associate with solving an
optimization problem?
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- In what ways, did college level students model the maximization of profit in the given
context?

- What symbols and tool did students use in solving the problem?
- Were there any differences in the method used between calculus students and students in

teacher certification program?
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Most students have problems to define what continuous or discrete phenomena are. For some
students they are the same, for some others continuity can be supposed at any time. We
present some activities developed to teach how different those situations are.

Mathematics in context presents an abstract theory in a close-to-the-student way, students
then are able to try and experiment with new lines of approach.

The use of Mathematics in Context as a framework allows seamless use of technology
such as graphing calculators and computer packages to investigate, verify results, and
consolidate the key concepts. This approach is useful as well with regular use of higher
technology, or with occasional use. Students with internet access at school, after school, or at
home, can freely surf to find out additional information.

Counting Seats
We designed three activities under the Mathematics in Context point of view. Each

activity was intended as a continuation of the previous one.
The activity was named “A rock star at the stadium.” We supposed that a rock star would

present a concert at an Olympic Stadium, that kind of stadium is a rectangle with rounded
corners (the “head”). The rows of seats at the head have different number of seats, and this
number increases as we go up, for example the first row has 50 seats, the second has 52 seats,
the third has 54, etc.

In the first activity the students have to calculate the number of seats at a given row and
the total number of seats of the head given the total of rows at the head.

Some answers were just as we expected (using calculus) but there were some solutions
that used:

 Geometry, a rectangle and a triangle.
 Geometry, a parallelogram.
 Algebra.

The second activity was intended to explore the use of calculus and to show the errors
produced by this approach. Students had to represent the rows of seats as a sum of rectangles
and to find a liner function that represents those rectangles. Finally the had to integrate that
function and to compare the results of using geometry or algebra and the use of calculus.
As a result of these activities the students realized that integrals are for continuous function
and do not “count” discrete objects.

References
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We report on a study with adult algebra learners that employed an activity to explore patterns
and relationships between expressions that might suggest the sum/difference of cubes identity.
Our report describes the activity and discusses aspects of expressions to which students
attended. Our results to point to a need for refinements to this activity that might better support
re-invention of the identity.

Although it has been shown that technology can be used to support student understanding of
calculus (Heid, 1988), there continues to be debate about the role that technology can and should
play in algebra learning (NCTM, 1999). We report on a study with adult learners that employed
an activity involving a computer algebra system (CAS) to explore patterns and relationships
between expressions that might suggest the sum/difference of cubes identity
 (a + b)(a2 – ab + b2) = a3 + b3. This activity was inspired by the work of Goldenberg (2003),
who outlined a similar activity designed to support students in re-inventing the difference of
squares identity (a – b)(a + b) = a2 – b2.

In an effort to understand the sources of their difficulties in deriving the sum/difference of
cubes identity, our report explores aspects of expressions to which students attended. We detail
the instructional activity and its outcomes, and we suggest refinements to the activity that might
better support this population of students in achieving the intended learning goals.

Setting and Participants
Our study was conducted in the context of an intact intermediate-level algebra course offered

at a large urban university in the Pacific northwestern United States. The course is designed for
students who have not had Algebra II or who require a review of elementary algebra concepts
and techniques. The students in this class have a wide variety of dispositions and experiences
related to mathematics, a variety of educational backgrounds and interests, and a wide spectrum
of ages. The 15 students who participated in our study reflect this diversity.

We initiated our study during the third week of classes, after students had developed some
experience in multiplying polynomial expressions and factoring perfect square trinomials and
differences of squares. The data we report on are drawn from students’ individual written work
on the first two parts of the activity. We examined their work for evidence of patterns they might
have construed from the sum/difference of cubes expressions generated by the CAS and for
connections they drew between those expressions and their factored forms.

Summary Description of the Task
The Cubes activity was designed to support students in deriving the identities for factoring

sums and differences of cubes. The activity began by having students explore patterns arising
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from the multiplication of a given sequence of a binomial and a trinomial whose product results
in a sum/difference of cubes. This was followed by having students use those patterns to generate
the sum/difference of cubes identity. Specifically, students were presented with factored forms of
five sums and differences of cubes, each of which they were asked to multiply out using the
EXPAND command on their TI-92 calculator. Students recorded the results of these expansions
in the appropriate cells of a table (Figure 1), and they were directed to investigate whether the
“indicated multiplication of factors produces interesting results”.

Factored form Expanded form displayed by the calculator
1. (x + 2)(x2 – 2x + 4)

Figure 1. A portion of a table that students completed in the first part of the activity.

The intent in having students use the CAS to expand the products in this part of the activity,
rather than requiring them to do so by hand, was to focus their attention on the form of each final
expression, and to reduce the potential of diverting their attention to the mechanics of algebraic
manipulations. The next part of the activity aimed to orient students’ attention towards patterns
in the expanded expressions recorded in their table. To that end, the students were directed to
take note of the form of each expanded result produced by the CAS and to “describe how this
form relates to that of the corresponding factors”.

Analyses and Results
Our analysis of the data unfolded in a sequence of interrelated phases. Following Saldanha

and Kieran (2005), we began by listing relationships of form and structure among expressions to
which the students might be expected to attend. We then examined students’ responses for
evidence of explicit or implicit attention to these aspects. On the basis of this first examination
we then revised and refined our initial list of aspects to arrive at a comprehensive list of them.
The authors then each re-examined the data independently, coding it according to the dimensions
in this list and documenting the frequency of their occurrence in the students’ responses across
task questions. In a final phase, the authors compared their code assignments and resolved their
few differences through a process of negotiation that involved re-examining relevant parts of the
data whenever necessary. This process converged to a 100% agreement in the coding of the data.

The table below displays a sampling of our results; it describes some of the aspects of the
expressions to which we hoped the students would attend and it gives the frequency with which
students actually attended to each of them. The aspects are listed in descending order, from the
most to the least salient for students, as indicated by our analysis.    

Students who
attended to aspectAspect of expressions

# %

Expanded version of each expression is shorter than the factored version 12 80%

The first term of the expanded version is the product of the first term in the
binomial and the first term in the trinomial

(a + b)(a2 – ab +  b2) = a3 + b3
10 67%
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The first term of the expanded version is a cube
(a + b)(a2 – ab +  b2) = a3 + b3 8 53%

The second term in the expanded version of the expression is a cube
(a + b)(a2 – ab +  b2) = a3 + b3 2 13%

The last term of the trinomial is the square of the last term in the binomial
(a + b)(a2 – ab +  b2) = a3 + b3 2 13%

The middle term of the trinomial is the product of the two terms in the binomial
(sign withstanding)

(a + b)(a2 – ab +  b2) = a3 + b3
1 7%

The first term of the trinomial is the square of the first term in the binomial
(a + b)(a2 – ab +  b2) = a3 + b3 0 0%

Discussion and Conclusion
The results suggest that, in general, the students did not attend to most of the aspects of the

expressions that we deemed important. Due to space constraints, we only discuss a few of the
aspects and results in this paper. For instance, of the twelve aspects we targeted, only four were
noted by more than 50% of the students. Only one aspect—that the expanded forms of the
expressions are shorter than their factored forms—was noted by more than 75% of the students.
It is important to note that this modal aspect is arguably the least useful one in terms of helping
students generate the intended identity. Moreover, the characteristics apparently noted by the
fewest students centered on relationships between the terms in the factored form of the
expressions, which are arguably the most useful for generating the identity.

These findings suggest that the expanded versions of the expressions were much more salient
for students than were the factors themselves or relationships among the factors. This state of
affairs is consistent with, and might therefore be attributed to, students’ being inattentive to how
the expanded forms of the expressions arose from the factored forms. This hypothesis, in turn,
raises questions about whether our activity prompts adequately provoked students to reflect on
why the expanded forms of the expressions are shorter than their corresponding factored forms.
Indeed, since the students did not attend to aspects that could form the basis of a derivation of the
sum/difference of cubes identity, our activity sequence stands to benefit from prompts that orient
students to reflect on why only certain terms appear in the expanded form of the product of
expressions. Changes such as these might better support this population of students in attending
to crucial aspects of these expressions and structural relationships among them.

Endnote
1. The research reported in this paper was funded by the College of Arts and Sciences of

Portland State University.
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This paper describes elementary preservice teachers’ models of connecting algebraic
generalizations with a related contextual problem. After a pretest, subjects engaged in model-
eliciting activities by finding objects to represent a generalization of the form y=ax+b, and an
accompanying survey sheet regarding the intervention (Doerr & Lesh, 2003). Results indicated
refinement and expansion of models despite initial difficulty with authentic applications.

There is a pressing need to inform and improve algebraic instruction (Rand Mathematics
Study Panel [RAND], 2003). Although research on the teaching of algebra has recently increased
(Kieran, 2004, in press), the research base on teachers’ knowledge regarding algebraic
instruction is still quite limited (Doerr, 2004; Menzel, 2001; RAND, 2003). Calls for reform
discuss a variety of expanded views of algebra including a focus on algebra as part of the
elementary curriculum and generalizing patterns set in a meaningful context (Kaput, 2000;
NCTM, 2000). Research shows that elementary level students are capable of algebraic reasoning
(Kaput & Blanton, 2001a), yet many elementary level preservice teachers (Zizkas and Liljedahl,
2002) and classroom teachers (Kaput & Blanton, 2001a, 2001b) may not understand the role of
algebraic generalizations nor ways to connect generalizations to an authentic context. We need to
study how preservice teachers can develop a robust understanding of algebraic generalizations.

To address this goal, we examined preservice teachers’ responses to writing a contextualized
word problem to accompany a given algebraic generalization of the form, y = ax + b. This paper
focuses on the preservice teachers’ models of algebraic generalizations, and specifically, their
ability to connect a given generalization to an authentic context. Using an iterative process
supported by our theoretical framework, we conducted a detailed study that addressed the
questions: (1) How do preservice elementary teachers develop and refine their interpretations of
a given algebraic generalization? (2) How do preservice teachers’ attitudes about writing
algebraic generalizations change in response to instruction set within a context?

Theoretical Framework
Subject matter knowledge is critical to successful teaching (Ma, 1999; Hill, Schilling, & Ball,

2004). Recent reforms call for increased emphasis on algebraic reasoning at the elementary level,
yet most current preservice teachers’ preparation in algebra occurred at the secondary level. We
know that students can extend a pattern more readily than they can generalize it (Orton & Orton,
1999; Zaskis & Liljedahl, 2002). Classroom teachers participating in staff development projects
do successfully enhance algebraic instruction and may successfully “algebrify” the elementary
curriculum (Kaput & Blanton, 2001a, 2001b). However, because preservice elementary teachers
likely have not had the benefit of such dynamic experiences, it is critical to examine their
existing models of algebraic generalizations and explore activities that might perturb and expand
their understanding. Hence, we adopted a models and modeling perspective of teacher
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development (Lesh & Doerr, 2003) that provided a framework for constructing tasks and
analyzing teachers’ understanding as they test, revise, refine, and extend their algebraic thinking
during a mathematics methods course. This research focused upon preservice teachers’ models
of interpretation for connecting algebraic generalizations with an authentic context.

Methodology
This study followed a pretest/intervention/posttest design accompanied by a culminating

reflective survey of preservice elementary teachers (N = 58). First, the preservice teachers
completed a pretest where they were asked to write an authentic contextual problem for the
equation y=2x + 3. A few weeks later, students worked with “algebra rules object boxes” (Rule
& Hallagan, 2007), instructional materials consisting of sets of related items that illustrated cases
of an algebraic generalization accompanied by two cards for each object-set. Four object-sets and
8 cards were provided in a plastic shoebox to each group of four preservice teachers. The fronts
and backs of two cards with algebraic generalizations of the type y=ax + b that accompanied an
example object-set (with the object-set shown on the reverse side of one card) are shown in
Figure 1.

Figure 1. Cards for the star trim problem. Fronts are to the left; reverse sides to the right.

Stars on trim
Each trim piece has 2n stars plus the middle star to

produce 2n + 1.

z = 2 n + 1
n = 1

n = 2

n = 3

Star Trim Story Problem
A company makes trims for fancy
costumes. They want to create a product
line of symmetrical star trims in several
sizes. If there is always a center large star
surrounded by a symmetrical arrangement
of stars in a line, determine the rule for the
total number of stars.

Let z be the total number of stars in the
trim design.

Let n be the number of stars on one side of
the central star.
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Preservice teachers first matched the front of a card that presented a story problem to the
corresponding object and attempted to define the variables, using “z” and “n”. They checked
their work by looking at the reverse of the card (shown on the right side of Figure 1). Then they
created an algebraic generalization using the two variables and searched for the card with the
same equation. Again, they checked their work by reading the back side of the card. After
spending time exploring the instructor-made object boxes, subjects were assigned to work in a
group to find or make a set of related objects (showing the first three or four iterations of the
pattern determined by the equation) that followed an algebraic rule of the form y = ax + b.
Students also wrote a contextualized problem that supported the object and equation. Then, each
group of four preservice teachers shared their algebra rules object box with another group of
preservice teachers. This repetitive cycle allowed preservice teachers multiple opportunities to
test, revise, and refine their thinking about the generalizations in the object boxes.

After the subjects created their materials, they engaged in a reflective activity. Subjects were
asked to: (1) State what you learned about writing algebraic generalizations this semester; (2)
Describe your current feelings toward writing generalizations and teaching algebra to elementary
students as compared to the first day of the semester; and (3) List pros and cons of making the
algebra rules object boxes. Finally, the preservice teachers were given an identical posttest about
six weeks later. Consistent with a models and modeling approach, this methodology left a trail of
artifacts documenting the development of the preservice teachers’ models for generating
authentic contexts and generating algebraic generalizations that matched their context.

Results
Table 1 shows the rubric used to score student solutions, example student responses and

pretest-posttest scores. Half of the preservice elementary teachers performed poorly on this
pretest exercise, indicating their lack of understanding of algebraic generalizations, although we
were encouraged that almost 40% showed proficient or basic knowledge. Posttest results
indicated marked improvement of almost one score point (posttest mean of 1.82 compared to the
pretest mean of 1.05; a calculated t-test statistic indicated the mean score on the pretest was
significantly smaller than the posttest mean (P-value < 0.001). On the posttest, the percentage of
preservice teachers evidencing proficient or basic performance increased to over 57%, while the
percent of those with poor performance decreased to 12.5%.

Preservice teachers generated many interesting authentic examples for y = ax+b. Four
representative examples are shown in Figure 2. Additional examples are available in Rule and
Hallagan (2007). Most of the materials generated by preservice teachers were mathematically
correct, although a few errors were found. One group produced the following problem for z =
4n+3 that illustrates the two most common errors. It was accompanied with a board showing just
three foam shirts, each with four buttons and one extra button attached to the side of each shirt.
“A Shirt Story Problem: A mother is buying her son three new button-up shirts. Each shirt has
four buttons. The shirts also each come with an extra button. Determine a rule for the number of
buttons there are altogether.” The first error was that only one case (the case in which three shirts
were purchased) was shown. Several other preservice teachers also failed to show multiple cases
of their story problems. The second error concerned the correct equation for this situation, which
was z = 5n because each shirt had 5 buttons (4+1 extra). If the problem were re-written to say
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that one extra button was given to the customer when one or more shirts were purchased, the
generalization z = 4n+1 would have applied, but only one extra button representing the constant
term should have been illustrated.

Determining whether an item in a story is a constant or a multiplied variable is difficult for
preservice teachers. On the pretest, many preservice teachers produced story problems for
z=2n+3 that indicated similar conceptual problems. “You have two parents. They had a number
of biological kids plus three adopted children. How many were there altogether?” This story fits
z = 2+n+3. Here is another example with the same mistake: “Two boys were playing basketball
and then n more boys decided to play and then three more boys joined them. How many boys
were playing altogether?” These types of errors decreased markedly on the posttest, indicating
that preservice teachers were learning to differentiate constants from variables as they worked
through the activities.

Table 1. Rubric for scoring pretest and posttest problem with example student responses and
scores

Score 3 2 1 0
Performance
Level

Proficient
Performance

Basic Performance Emerging Knowledge Poor Performance

Criteria for
Judgment

Correct contextual
problem using a variable
to fit the generalization;
Contextual problem is
presented by giving
several solutions and
asking for the
generalization or
presented as a situation
involving a variable.

Correct contextual
problem using a variable
to fit the generalization,
but with poorly stated
question;
or
Contextual problem
gives values for all
variables; it is not a
generalization.

Numbers in contextual
problem match numbers
in given equation, but
operations are wrong;
or
Context almost fits, but
would make more
complex or different
equation.

Context" is merely a
translation of the
numerical expression
into English words with
or without added
objects; no real
"context";
or
Student merely solved
for "n";
or
Incomplete, no attempt.

Example
Contextual
Problems that
were placed in
the category

Bicycles have 2 wheels
and tricycles have 3
wheels. How many
wheels are there in total
if there are n bikes and
1 tricycle?

The factory packaged 2
toothbrushes in each
box. They had already
filled 5 boxes and there
were 3 toothbrushes
left. How many
toothbrushes were there
altogether?

2 boys were playing
basketball and then n
more boys decided to
play and then 3 more
boys decided to play.
How many were there
altogether?

Two more than 2 added
to 3 is n.

Two pennies times n
pennies plus three
pennies equals what
number?

Percent of
Pretest
Responses

16.0% 23.2% 10.7% 50.0%

Percent of
Posttest
Responses

37.5% 19.6% 30.4% 12.5%

An analysis of the results of the reflective survey revealed that the algebra rules object box
activities had many positive effects, as shown in Table 2. Students learned new techniques to
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determine algebraic generalizations, better understood the importance of writing algebraic
generalizations, and improved in their abilities to generate algebraic generalizations. Preservice
teacher comments included, “I learned that algebra isn't really that bad,” and “You should let
students discover them not lecture.” In response to question 2, describe your current feelings
toward writing generalizations and teaching algebra to elementary students as compared to the
first day of the semester, students wrote 139 different comments. Half of these comments
indicated a somewhat more favorable feeling towards algebra, and forty-nine percent of these
comments indicated a clearly more favorable feeling towards writing generalizations and
teaching algebra to elementary students. Students’ responses included such comments as, “they
take time and patience to teach and learn. Practicing helps and I'm not so afraid of them
anymore,” and

I'm a lot more comfortable with working and teaching algebraic problems primarily due to
the exhaustive practice in and out of class with them. Even at first figuring out how to write
an algebraic problem was very difficult but through various methods of practice the concept
became clear.

Students’ attitudes were favorable towards teaching generalizations at the conclusion of the
project.

Figure 2. Example materials and story problems created by preservice teachers.

z=2n+1 Action Figures Problem
Jimmy starts out with one firefighter in a collection. Each week, he
adds two more when he gets his allowance. If he does this for many
weeks, what rule could you use to figure out how many he has total?
(Sean O’Hara)

z=3n+2 Free Fruit Problem
The grocer at a store is having a special this week: buy fruit in any
multiple of three and receive a one-time gift of two pieces of fruit
free! Tell a rule to find the total pieces of fruit received for the
purchase of different sets of fruit (Megan Green).
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z=2n+2 Surface area of Blocks
A company makes building blocks that have 4 flat sides, a hollow
bottom, and rounded tops. Find a rule for the total area of the flat
sides in square units if one small side is one square unit (Joe
Wasiluk).

z=3n+2 Flower Garden Problem
Maria has a flower garden in her front yard. One day, 2 flowers
came up. Every day after that, 3 more flowers came up. How could
Maria figure out how many flowers there would be on a certain day
in the future? (Sara Faughnan)

Finally, in response to question 3, list pros and cons of making the algebra boxes, students
provided many insights. In particular, they recognized the value of these hands-on, concrete
materials in developing their confidence and skills with algebra and their importance for the
students they will be teaching. Example comments include: “Gave us great practice,” “Helped
clarify the concepts,” “Lets students solve problems and assess if they know the material,” “I
became more confident in solving algebra problems,” and “Great visual for kids to understand
algebra problems.” Many also commented on their enjoyment of the activities and the chance to
produce creative materials with such comments as: “Creative and interesting,” and “Fun way for
students to learn the material.” They also remarked on the efficacy of group work: “There was
not as much stress doing it as a group,” and “Working as a group allowed us to share ideas and
strategies.”

Limitations of the algebra rules object box projects mentioned by students included the
difficulty of these concepts (“Very complex,” and “Hard to come up with a story problem”), the
amount of effort needed to produce the teaching materials (“Spent a lot of time,” and “Takes
patience to complete”), and problems with coordinating group members (“Group work not
shared equally”). Students also mentioned that some aspects of the project were confusing,
making materials cost money, and sometimes the object-sets were hard to construct.

Table 2. Survey results

Question Preservice Teacher Responses
Percent of All
Responses to
this Question

Techniques to help write a generalization 55%
Understanding of the importance of writing generalizations 24%

1. State what you learned about writing
algebraic generalizations this semester.

Improved in ability to write generalizations 21%
Now have a somewhat more favorable view of algebra 50%

Now have a markedly more favorable view of algebra 49%

2. Describe your current feelings toward
writing generalizations and teaching algebra
to elementary students as compared to the
first day of the semester. Continue to have a negative view of algebra. 1%

Helped develop confidence and skills 28%
Teaches important skills children need 17%
Able to use creative skills; creative activity 14%
Liked using manipulatives; activity was concrete 9%
Enjoyed doing group work 9%
Fun 9%
Hands-on activity 8%

Pros

Useful in future classroom 5%
Difficult concepts 25%
Took too much work, too much time 20%

3. List pros and cons
of making the
algebra rules object
boxes.

Cons

Problems with group members and a group project 20%
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Confusing 17%
Expensive 12%
Hard to make; construction issues 6%

Concluding Remarks
Consistent with prior research of preservice elementary teachers’ ability to generalize

patterns, these subjects had difficulty in making authentic connections for a simple algebraic
expression. This may indicate that this group of subjects does not necessarily have the
knowledge to “algebrify” the elementary curriculum. Although our results pose a concern about
the ability and readiness of preservice teachers to implement many of the current calls for reform
of elementary algebraic instruction, we are hopeful that the nature of the activities will help
preservice teachers refine and extend their models of algebraic generalization.

We consider the favorable comments made by students in response to the reflective survey to
be one of the successes of the project. One of the perceived drawbacks to implementing the
algebra boxes was the amount of class time it took to demonstrate the materials, and then have
the students try out each others’ materials. However, the study was intentionally designed to give
the preservice students opportunities to engage in testing, revising and refining their
understanding of writing algebraic generalizations. In addition, because attitudes may contribute
in part to preservice teachers’ willingness to teach algebraic material, we feel it was well worth
the effort. As well, many students made favorable remarks about actually creating the algebra
boxes. Although some students found the effort confusing, time consuming, and difficult, the
pros seem to outweigh the cons, particularly in light of the results of the posttest.

Preservice teachers need extensive experiences in developing their own understanding of the
role of algebraic generalization at the elementary level as well as models of generalization that
will help them enhance children’s understanding in the classroom. This protocol needs to be
tested further and a cohort of preservice teachers needs to be identified and followed into the
early years of their practice to examine their development in teaching algebraic concepts.
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Twenty-one Grade 6 students were assessed eight months after participating in an experimental
lesson sequence in which growing patterns acted as a mediating representation linking symbolic
notation to graphic representations of linear functions (y=mx+b).  Results indicated students
retained an understanding of the link between the coefficient and slope and the constant and y-
intercept. In addition, students were able to utilize this understanding to predict how
symbolically represented functions would behave when graphed, and to reason about functions
that have a negative coefficient/slope.

In this study, I examined the affordances of using geometric growing patterns as a mediating
representation to link symbolic notation to graphic representations in order to develop young
students’ conceptions of linear functions. This study is part of a larger 3-year study in which we
have investigated young students’ abilities to work constructively with growing patterns as a
means of developing an understanding of mathematical structure. The present study reports on
the results of a retention test given to Grade 6 students, eight months after they participated in an
innovative lessons sequence designed to merge symbolic, geometric, and graphic representations
of linear functions.

When considering the domain of linear functions, mathematics educators recommend that
students be introduced to various representational forms in order to effectively use these
representations as a means of developing conceptions of quantitative relationships (e.g., Janvier,
1987; Moschkovich et al., 1993). It is the interaction among different representations that is
necessary for developing an understanding of the connections between symbolic and graphical
representations, and an ability to predict changes in the graph of a function that results from
transformations of the expression that defines it (e.g. Bloch, 2003). Studies have documented the
difficulties that older students encounter when exploring these connections (e.g., Bloch, 2003).
For example, when graphing y=mx+b, researchers have noted that the connections between m
and the slope of the line, and b and the y-intercept are not clear (Bardini & Stacey, 2006).
Students have difficulty predicting how changes in one parameter will affect the graphic
representation, and often conflate m and b, not realizing these properties of lines are independent
(Moschkovich, 1996). In addition, studies with older students have shown that there is a
propensity to adopt a point-wise approach when considering graphically represented functions,
that is, students can plot and read points on a graph but have difficulty thinking of a function in a
global way. A point-wise approach can preclude an ability to understand the meaning of slope as
representing the rate of change, and results in a relatively simple focus on specific points
(Schoenfeld et al. 1993, p. 87). Difficulties outlined in the literature may be due in part to the fact
that students are introduced to graphic representation only after they have been taught to think of
functions as interpretations of algebraic expressions (Arcavi, 2003) and so the graph is
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considered neither as representing a function, nor as a representation of rate of change, but rather
an illustration of the relationship between two algebraic expressions.

In this paper I examine the retained understanding demonstrated by students who participated
in a unique instructional sequence that prioritizes visual representations in the forms of growing
patterns and graphs, and integrates these with symbolic representations in the form of equations.

Theoretical Framework
The theoretical framework for the three year research project is based on the work of Case

and colleagues (e.g., Case & Okamoto, 1996) which has shown that merging numerical and
visual representations provides a new set of powerful insights to underpin the early learning of a
new mathematics domain. In addition, I looked to the work of researchers who propose that
prealgebra learning should centre on the introduction of functions through visual objects (e.g.,
Noss, Hoyles & Healy, 1997; Yerushalmy & Shternberg, 2001). Our previous studies have
shown that growing patterns offer a powerful vehicle for understanding the covariational
relations among quantities that underlie mathematical functions (e.g., Moss & Beatty 2006).

Methodology

Setting and Participants
The data from this study come from a follow-up to the Year 2 of study of Grade 5 students,

which was conducted over a 3 month period in 2005/2006 and involved 58 Grade 5 students
from 3 classrooms; 1 in an inner-city public school, 1 in a suburban school, and 1 in a university
lab school. The follow-up to this study was conducted in 2007 when participants were in Grade
6, and involved 21 students from the laboratory school. All 21 participants had taken part in Year
2 of the study.

Lesson Sequence
During the Year 2 study, students participated in 14 lessons, 5 of which focused specifically

on graphic representations of functions. Students initially learned how to build geometric
growing patterns based on linear functions of the form y=mx+b, with m represented by blocks
that increased by a specific number in each successive position of the pattern, and b represented
by repeating a constant number of blocks in each position. For example, the pattern below is a
representation of the equation y=2x+3, where 2x is represented by grey blocks equal to 2 times
the position number, and +3 is represented by 3 white blocks at every position. The students call
this a “times 2 plus 3 rule” because the number of blocks at each position is equal to the position
number x2+3 (number of blocks=position number x2+3).  The position number of each iteration
was explicitly linked to the pattern with the corresponding number of blocks in order to clearly
differentiate both variables in the pattern (position number, the independent variable; and
number of blocks, the dependent variable).  Both components of a composite linear function
were delineated by using two different colours of blocks so that students would develop an
understanding of the coefficient (the part of the pattern that
grows) and the constant (the part of the pattern that stays the
same).

0 1 2 3
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Students then learned to construct linear graphs based on growing patterns.  The position
numbers of the growing patterns were mapped onto values along the x-axis. The number of
blocks was represented by values along the y-axis. The y-axis also represented the “0th position”
of a growing pattern - the value of the constant -which was graphed as the y-intercept. When
graphing a pattern, students were given functions such as “number of blocks=position number
x2+3” and asked to build a growing pattern based on the rule.  They were then asked to draw a
dot on the graph in order to represent how many blocks were at each position of the pattern they
had built.  Students were, therefore, graphing “ordered pairs” – position number, number of
blocks – without being explicitly asked to do so.

The graphing activities involved students building and
graphing the 0th, 1st, 2nd, and 3rd position for three patterns
that had different coefficients and the same constant
(y=x+1, y=3x+1, y=5x+1). Students were then asked to
build three patterns for functions that had similar coefficients and different constants, and predict
what the graph would look like (y=3x+1, y=3x+3, y=3x+5). In each case students were asked to
compare similarities and differences between the functions, the patterns, and the graphs both
within and between the three sets of functions. Thus, students were given the opportunity to
explicitly consider how changes in one representation affected the other two representations.

Data Sources
The Grade 6 students were given a pencil and paper Graphing Survey. Items were designed

to assess the kinds of misconceptions and difficulties reported in the literature with respect to
students’ understanding of the links between symbolic and graphic representations of functions.
The survey assessed four areas of ability: 1) graph a linear function or discern the function of a
given graph; 2) understand the link between m and slope and between b and y-intercept, and
determine the graphic outcome of changing m or b in a function; 3) predict functions that would
intersect; 4) offer a function for a negative slope (not part of the initial teaching sequence).
Students completed the survey during one of their mathematics classes. In addition, six students
representing different levels of mathematical achievement (based on teacher rating, report cards,
and scores on the standardized Canadian Test of Basic Skills) participated in videotaped
individual clinical interviews. All videos were transcribed and coded to assess students’ retained
levels of understanding.

Results
Results of the Graphing Survey indicated that eight months after instruction, students

maintained an understanding of graphic representations of linear function. The table below
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illustrates the mean scores for each section of the survey for students of high, medium and low
achievement levels. Most students were able to identify functions from graphic representations
and construct graphs from functions. In addition, most students were able to predict functions
that would yield parallel slopes, and slopes that differed in steepness, and could predict changes
in slope or y-intercept from changing m or b. Students were also able to predict the intersecting
point of two functions. Finally, students were able to reason about functions that would produce
negative slopes.

Achievement
Level

Discern/Graph
a rule (/3)

Slope and
y-intercept (/13)

Intersecting
Lines (/5)

Negative
Slope (/2)

Total Mean
Score (/23)

High (n=4) 3 12.5 4.5 1.75 21.75

Middle (n=10) 2.9 10.5 4.3 0.9 18.8

Low (n=7) 2.7 7.4 3.2 1.3 14.7

Clinical Interviews
To understand more about students’ reasoning I analyzed videotapes of the clinical

interviews. In this paper I will report on the reasoning of two students, Ellie, a low-achieving
student, and Cassandra, a higher achieving student, both of whom exemplified the kind of
thinking found during all six interviews (and in the Graphing Surveys). Ellie’s interview was
selected to illustrate both the retention of concepts such as the link between the coefficient and
the steepness of slope, as well as the ability to make predictions about how different functions
behave when graphed.  Cassandra’s interview illustrates how some students were able to utilize
concepts developed during the teaching sequence and extend these to be able to reason about
negative slopes, which were unfamiliar to them.

Ellie’s Interview – Retention and Prediction
During her interview, Ellie used the term “position number” to refer to values along the x-

axis, and “0” or the “0th position” to indicate the y-axis. She used “times table number” to
indicate coefficient, and “addition number” to indicate the constant.

For her first task, Ellie was asked for the function of a given graph (y=5x+3). She looked first
at the y-intercept, then at the next x value (position 1) to determine the coefficient. “OK this rule
is something plus 3 [pointing to the y-intercept] because at 0 it starts at 3, and then so 1,2,3,4,5
[counting up from 3 to the next dot on the “position 1 line” (1,8)] so it’s 5 – times 5 plus 3
because I counted how many more it would be. If it was without this [pointing to y-intercept] it
would just be up to here [pointing to (1,5)] then 1,2,3 [counting up to the dot at (1,8)]. And so
it’s times 5 plus 3.”  Ellie was able to determine the constant by knowing that, just as in pattern
building, at the 0 position, or y-axis, only the constant is represented.  She then checked the
difference between the y-intercept and the next value (1,8) in order to ascertain how much it was
“going up by” – this gave her the coefficient. Ellie demonstrated an understanding that the values
of the graphed function would be lower if there was no constant in the rule – the constant
“raises” the graphed line up by 3 so that both the coefficient and the constant are responsible for
the position of the function on the graph.

Ellie was asked to predict a function that would give a line parallel to y=5x+3. “A parallel
rule for times 5 plus 3 would be times 5 plus 6, or more than 3…any other number other than 3.
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Because times 5 plus 6 [pointing to the y-intercept of 6] would just be there [sketching a parallel
line]. You can’t change the times table number because if you do it will be steeper and it won’t
be parallel.”  Ellie began with a partial generalization that in order to get parallel lines for a
function, the value of the constant would have to be higher, but then amended this to include any
other constant than the one in the given function. Ellie used a point-wise approach when
considering the graph, for example, the link between changing the constant in the rule and the
resulting change in y-intercept on the graph. However, she also seemed to be able to consider the
graph in a more global manner, particularly when she sketched the line that would result from
graphing the function y=5x+6.

When asked for a function that would give a steeper line, Ellie again responded with a
generalized conjecture, this time not supported by any specific examples.  Her answer
demonstrates an integrated understanding of the how both parameters of a composite function
are represented graphically. “A steeper number than this would be any higher number than 5
would be the times table – the times part. If you have a different times table number then you
would get a steeper number – a steeper graph and if you use the same times table number and a
different addition number then you would get a parallel graph.”

To predict a function that would intersect y=5x+3, Ellie used two different strategies.  The
first was based on her initial theory that a lower constant and a higher coefficient would result in
a line that intersects the given function (this is a viable conjecture given that Ellie only had
experience graphing in the first quadrant). “If you do, let’s say times 9 plus 0. So it would start at
0 [pointing to the origin] then there [pointing to (1,9)] then 18 [pointing to (2,18)].  It crosses
there [sketching in the line for the function y=9x].” Once Ellie graphed the two functions she
noticed they intersected somewhere between 0 and 1 on the x-axis, and so estimated that they
might be intersecting at 0.6 or 0.7. “It’s not exactly in the middle, like 5 in the middle of 10, but
it’s just over the middle a little bit. It’s not exactly 1 or 0 so you have to go in decimals.” The fact
that Ellie estimated the intersecting point as a rational number indicates that, rather than viewing
the graph as a series of discrete points, Ellie saw the graphed function as continuous.

Ellie was then able to integrating her theory of increasing the coefficient and decreasing the
value of the constant with an ability to think of specific values in order to predict a function that
would intersect at the “second position”, (2,13). “If you do times 6 plus 1 then you’ll go from 1
[drawing a line from y-intercept to (1,7)] to 6 but then you have to go up 1, because it’s plus 1
(1,7), and then over to here [extends the line to (2,13)] that’s 12 but add 1 [points to the
intersection at (2,13)].”   

For the last question, Ellie was able to reason about what it means to have two intersecting
lines, based on her experience of building geometric patterns. “If you built x5+3 and x6 +1 as
patterns they would have the same number of blocks at position 2 because it intersects, so, it has
the same number of blocks and… it’s just like a graph and blocks are two different ways to lay it
out.” Ellie recognized that a linear function underpins both a growing pattern and a graph.

Cassandra – Extending to Negative Integers
During her interview, Cassandra built on her existing knowledge of graphic representations

of the form y=mx+b and was able to integrate negative integers into her understanding. The
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students had only ever worked with positive integers in their functions because it is difficult to
represent a negative number when building growing patterns.

In the first instance, when Cassandra was shown the y=5x+3 graph and asked for rules that
would give parallel lines, she correctly identified that the coefficient would have to be the same,
but that you could add or subtract anything to the coefficient and the lines would be parallel.
“Well, there’s a couple of different answers, but they would still have to be multiplied by 5. But
then it could be, you could add anything with the multiplied by 5. Or subtract anything, and then
they will be parallel. Like you could do times 5 minus 4, for example. So that’s the subtract.”
This was a more general understanding of parallel lines than had been taught in the lesson
sequence, during which only constants with positive values had been considered. When asked to
show where a negative constant would go on the graph, Cassandra correctly added negative
values to the y-axis.  This was a very clear indication that Cassandra’s ability to consider graphic
representations was no longer anchored in concrete pattern building, but had shifted to a more
abstract representation so that negative “block” values could be incorporated. When asked about
adding negative numbers to the y-axis, Cassandra stated “it can’t stop at 0 because there’s more
than that – so you go below zero so you get into negative.” This is the first stage of exploring
more than one quadrant on the graph.

Cassandra was then shown a graph of y=-3x+16. “It’s a rule that gets smaller. I thought
maybe it has something to do with what position number it is [pointing to values along the x-
axis], so I was looking at the 0 [y-axis] and I was thinking 16 minus 0 is 16, and then 16 minus 3
gives you the first position (1,13), and 1x3 is 3 and that’s what we took away.  So then for the
second one [pointing to (2,10)] I thought 16 take away 6 is what it is  (2,10), and 2x3 is 6.  So
the rule I came up with was [writing] blocks = 16 minus position number x 3.” Based on her
knowledge that a positive coefficient represents the successive number of blocks added to each
position of a pattern, Cassandra reasons that a negative slope shows successive subtraction.
However, instead of simply stating her rule recursively as ‘minus 3 each time’ she is able to link
it to the position number, or value of the x-axis, and express it as an explicit rule.

Discussion
The results of the follow-up indicate that students maintained a robust understanding of the

links between symbolic and graphic representations of linear functions, in particular, how the
parameters of m and b are represented coupled with an ability to manipulate these parameters.
This understanding was grounded in students’ previous experience building and graphing
growing geometric patterns. In the instructional sequence, the coefficient was linked to the
increasing number of blocks at each position in a growing pattern, and students were able to
ascertain that the higher the value of the coefficient, the greater the increase in blocks at each
position – an initial understanding of rate of growth. This translated to an understanding of the
coefficient and steepness of slope, since students could link the increase in coefficient with an
increase in blocks at each position, which led to a steeper slope on the graph. Students also
developed an understanding of the constant through pattern building by representing the constant
at each position number (the part of the pattern that stays the same) and by building the “zeroth”
position of a pattern, for which only the blocks representing the constant are shown.
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Growing patterns were a mediating representation, linking students’ understanding of
symbolic to graphic representations.  Although students initially worked with patterns, it became
evident that they moved from this initial anchoring representation and progressed to using the
graphs as the site for problem solving. This was evident in students’ abilities not only to interpret
and make predictions about how different functions would behave when graphed, but also in
some students’ ability to extend their understanding to start to include negative integers in
composite functions. Nesher (1989) informs us that any systematic learning of a new concept
should be done within an environment that is intentionally designed to support a series of
transitions, from working with familiar objects (growing patterns) to carrying out mathematical
processes using representations of these objects (observing changes in graphic representations of
patterns based on changes in the coefficient or constant) to constructing a mathematical object
that then can be manipulated (predicting parallel or intersecting functions, integrating an
understanding of negative coefficient or constant). Mathematical objects are mental entities
abstracted from experience that can be manipulated separately from the experiences that gave
rise to them (Kaput, 1989). In our study, the fact that students maintained a strong understanding
of graphs over an 8-month period, and could work with these representations without needing to
return to concrete pattern building, suggests that they considered graphed functions as
mathematical objects.

In addition, it seems that the use of three representations developed students’ emergent
understanding of the concept of linear functions. Understanding a concept presupposes the
ability to recognize that concept in a variety of representations and the ability to handle the
concept flexibly within different representational systems (Yerushalmy & Shternberg, 2001). By
utilizing the students’ understanding of patterns, the connections between symbolic and graphic
representations were made as transparent as possible. For these students, the concept of linear
function was recognized as the common underpinning of their rules, their patterns and their
graphs.
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This paper reports the results of a study of the beliefs of College Algebra students. Subjects
(N=195) came from College Algebra classes at two universities in the southern United
States. Data sources included a mathematical beliefs survey instrument and on-going
individual interviews conducted with 30 of the students. We address two types of
mathematical beliefs, formal mathematical and self-efficacy beliefs, and focus on the inter-
connections of these as students solve mathematics problems. Of particular interest is how
the students' knowledge of formal mathematical concepts co-exists with their efficacy beliefs
in the course of on-going mathematical activity. Drawing from episodes of interviews with
one student, the analysis explains the complexity of the students’ mathematical beliefs and
how these impact the solvers’ on-going problem solving actions.

There is growing consensus that the traditional College Algebra (CA) course is not
helping students become quantitatively literate citizens (Hastings, 2006). Based on long-term
demographic studies, high D/F/W course rates and the failure of CA to provide students with
applicable skills, the Conference to Improve College Algebra has called for revamping the
CA course (Small, 2002). Other research conducted on CA students surveyed their
mathematical beliefs (Frank, 1986), documented their often fragmented conceptual
understandings (Carlson, 1997), and examined the effectiveness of instructional strategies
(Underwood-Gregg and Yackel, 2000). However, few studies examined how mathematical
beliefs influence the ways students interpret and solve mathematics problems. More needs to
be known about how beliefs influence students’ initiative and efficacy in problem solving.

Purpose and Theory
Our goal is to improve our understanding of the interactions between a student’s

mathematical beliefs and his/her problem solving actions so that we can develop effective
intervention strategies. Drawing from the work of Cooney, Shealy, and Arvold (1998), we
view the learner’s mathematical beliefs as complex mental structures that aid his/her
interpretations in mathematical situations. Muis (2004) noted that previous research
employed either a qualitative approach, observing students’ problem solving, or a
quantitative approach, using students’ self-reported survey responses. Studies employing
either methodology found significant relationships between students’ mathematical beliefs,
their engagement with mathematical tasks, and achievement. Muis recommended that further
studies employ both qualitative and quantitative analyses in order to develop a more robust
understanding of interactions among beliefs, learning, and achievement. Our study included
surveys and repeated observations of students solving problems. This is compatible with
Vergnaud’s (1984) notion that solvers demonstrate their conceptions as “mathematical
beliefs-in-action” as they solve problems, and that beliefs serve as conceptual models where
solution activity may develop (Vergnaud, 1984, p.7). Often, CA students are viewed as
lacking both formal conceptual knowledge and self-efficacy in their actions. We believe this



157

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

is not the case; the mathematical work they do often does make sense to them. The sources of
students’ conceptual difficulties seem complex and need to be understood.

Subjects and Methods
Subjects (N=195) came from College Algebra classes at two universities in the southern

U.S. Subjects completed Yackel’s (1984) mathematical beliefs and attitudes survey. We also
conducted individual teaching experiments with 30 of the students. Interviews occurred bi-
weekly, semester-long and lasted about 40 minutes each. The researchers conducted these
interviews by following Cobb and Steffe’s (1983) principles of clinical teaching experiments.

Data Collection and Analysis
Data consisted of videotaped interviews, written transcriptions, the researchers’ field

notes and subjects’ written work. Each student’s activity was partitioned into episodes that
evidenced three critical aspects of the student’s solution activity: 1) development of goals,
2) on-going self-monitoring and progress assessment, and 3) problem-solving results. Using
Yackel’s inventory, we noted episodes where the student’s activity appeared to demonstrate
mathematical beliefs-in-action. We characterized mathematical beliefs by observing the
student’s problem solving actions and then drawing inferences about the beliefs on which the
actions were based.

Results
The study identified two types of mathematical beliefs that appeared to play important

roles in the solutions of the solvers—formal mathematical and self-efficacy beliefs, and
documented the roles of these beliefs in the students’ problem solving actions. Formal
mathematical beliefs draw from the solver’s knowledge of formal concepts such as symbols,
functions, and formal algorithms. For example, the ways a student sees fit to manipulate
algebraic quantities that involve radical expressions illustrates a formal mathematical belief-
in-action; the student has experiences with radicals and has built-up a system of actions that
he/she may call upon when problems are faced. This idea is consistent with Schoenfeld’s
(1985) contention that the mathematical beliefs of students help constitute their mathematical
view and play a crucial role in the ways they ‘see’ the mathematical problems they face. One
popular finding about CA students is that they develop idiosyncratic rules from their actions,
often based on fragmented understandings (Carlson, 1997). Table 1 summarizes the rules we
observed and their connections to formal concepts.

In contrast to formal mathematical beliefs, self-efficacy beliefs involve the solver’s more
general sense of their own ability to be successful when problematic situations arise
(Bandura, 1997). Students face many choices to proceed as new mathematical situations are
met and interpreted. For example, the student may interpret a particular situation and proceed
accordingly to invoke a strategy and begin to carry out their solution activity. In making a
deliberate decision of how to proceed, the solver usually has some sense of where the
proposed action may lead and also a sense of confidence as to the action’s potential success.
Encountering difficulty, he/she may be able to re-think their original ideas and pursue another
course of action. These kind of ‘online’ decisions draw from the student’s beliefs about the
nature of mathematical activity and his/her role in it. Self-efficacy beliefs have a major
impact on the student’s will to remain persistent and focused when unexpected problems
suddenly arise in the course of their mathematical activity. Indeed, instructors witness how
strong students in advanced mathematics courses effectively monitor their mathematical
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actions while solving a problem, with a seemingly natural propensity to switch course when
they sense that current actions will not achieve success. On the other hand, less competent
CA students are usually less likely to begin anew when current ways of operating are
unsuccessful. When they are “stuck”, often they quit and require major assistance from a
tutor to assist in re-conceptualization of the problem, before beginning a new course. Table 2
shows examples of students demonstrating solution activity within levels of self-efficacy.

Table 1: Mathematical Beliefs Based on Formal Concepts

Belief Formal Concept Observed Examples
Students exhibit misunderstandings of
concepts constituted in rule-like action

a) Radical expressions Errors in simplifying: 122 =

e
e

+±=
+±

1
2
122

b) Quadratic equations Errors in simplifying:

246
2
2412

±=
±

Students exhibit fragmented
understandings of variables and variable
expressions

Polynomials (factoring sum
of cubes)

Applying rule for factoring
33 yx +

Students exhibit fragmented
understandings of function

Quadratic functions Solving for zeros, x1 and x2,
plotting   (x1 , x2 )

Students can often ‘see’ individual
pieces but not the unified whole (‘the
big picture’)

a) Binomial expansion
based on Pascal triangle

Omits the first co-efficient in
the expansion, nC0 , starts with
nC1 =1

b) Graphing rational
functions

Correctly identifying
asymptotes but plotting
contradictory points

Our comparisons of the students’ interview and survey results suggest that in CA courses,
differentiated instructional approaches may be productive. For example, students exhibiting
high efficacy beliefs might benefit from inquiry-based approaches that allow them to focus
on the larger problem context from which they can generate hypotheses. Students with low
efficacy beliefs might benefit from approaches that are supported by more didactic-based
approaches that help them analyze their own actions and provide suggestions for new
strategies when the student is unable to hypothesize one. We are not suggesting drilling skills
for low efficacy students; instead, instruction that coaches their problem solving strategies.
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Table 2: Mathematical Beliefs Based on Self-Efficacy Expectations

Examples of low self-efficacy:
• Student always operating in the

‘here and now’ – does not reflect on
action

• Student treats problems as
roadblocks; no way to proceed
when he/she gets “stuck”

• Student does not demonstrate
conjectures

• Student can only replicate simple
results

Examples of high self-efficacy:
• Student can distance himself/herself from his

actions (reflection)
• Student can generate hypotheses about

sources of difficulty
• Student can test conjectures
• Student can self-generate relevant questions
• Student can pose novel problems when

needed

In the remainder of the paper, we focus on the mathematical activity of a single subject,
Brad. We believe that Brad’s solution activity illustrates specific examples of beliefs-in-
action. Furthermore, the examination of episodes of Brad’s mathematical activity helps to
illustrate and explain the interplay between his formal mathematical knowledge and his views
concerning self-efficacy.

Introducing Brad and Summarizing His Difficulties
Brad was a Business major who had taken College Algebra the previous semester and

was repeating the class, a practice common among CA students. In the following paragraphs,
we will illustrate and discuss some of the conceptual difficulties demonstrated by Brad during
the interviews. We found that Brad’s knowledge is typical of College Algebra students; he
made common mistakes that many students make as they solve problems. We sought to
locate the sources of Brad's conceptual difficulties through our follow-up questions. For
example, the errors Brad made simplifying radicals during Interview #1 appeared within his
paper-and-pencil work; it was only after much questioning from the interviewer that the
probable source of Brad’s difficulty was uncovered. The task required Brad to simplify the
expression 812502 +  and he found an answer, 34, that did not agree with the answer

given in the book, 234 .  
Brad: I’ve worked it out twice but I didn’t get the answer that’s in the back of the book.
First thing I do is look at radicals and see if I can simplify anything, … 50 will break
down into 2 and 25, which are both perfect squares (sic),  so that’s what I went ahead
and did. And 8 is not a perfect square either, but I know that 2 and 4 are (sic), which are
factors of 8, so I went ahead and wrote that down

Brad’s retrospective reporting of how he tried to solve the problem indicated an overall
understanding of the task– he could both re-present and monitor his prior activity in an
objective manner. Brad’s problem here involved making sense of a discrepancy between his
answer and that given in the back of the book.

Brad: And from here I just go ahead and take the square root of this, 25 , bring the 5 out,
which would leave me ... 2⋅5 and go and bring the 2 out which would be 1, right ? ... or
now it’d just be a 2, right ?...(stares in space)... and then plus 12 then ... that’ll just be 1

42122252812502 ∗+∗=+
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and bring out a  4, which will be 2, and we multiply by 2, ...  2 x 5 will be 10, and 12 x 2
will be 24, which will leave 34, but that’s not what the book got.

Brad’s solution included the incorrect assertion that 12 = . Brad’s solution is
summarized below (#1-4); the correct solution is indicated within the brackets.

Brad’s Solution

[ ]
[ ]   234224210                        342410       4.

2212252  2112152       3.

42122252       2.

812502        1.

=+=+

∗∗+∗∗∗∗+∗∗

∗+∗

+

Brad: The book got 34 2 .  I can’t figure where 2  is?

Interviewer: It looks awfully close, only thing is the 2 there in the answer. Why don’t
you look back at an earlier step and see if there’s some place where there could’ve been a

2  and maybe it got lost somewhere.

Brad: (reflects) ... There and there.  (points to 225∗ and 4212 ∗ )
Interviewer:  So, what did you do at that point in the process?
Brad: I just took the square root of 25, which was 5 and the square root of 2, ... (long
reflection here) ...  that’s not perfect! ..., yes, it’s perfect, for some reason, I cannot ...
(realizes he has a problem) ... no, it’s not, is it? You know what I was getting confused
with ?  (writes 2 2 ) and for some reason I thought I could cancel  (cancels 2s in

expression 2 2 ).  Maybe that’s where I got lost, that has to be it, because there’s no

other place. (goes back to his board work and starts with 42122252 ∗+∗ )   Um.

252∗ .   Still gonna keep the 2 and it’s gonna be plus 12, um 4  is 2, still have

2 there. Then we go ahead and get 2 , 225∗  plus 2212∗ , that stays there.

(writes 224210 + ).
Brad: (several seconds of reflection) I guess this is just like 10X + 24X, the X stays the
same and you just go and bring down the radical. Then 24 and 10 is 34 (writes 234 )
O.K.  That’s what I was doing.  That’s the kind of lapse I’ll have, that right there. ... for
some reason it didn’t register with me on the homework.
While Brad experienced difficulties that related to his knowledge of formal mathematical

concepts, he nevertheless demonstrated efficacy knowledge in his actions. For example, we
observed that Brad was able to distance himself from his prior activity and objectively
review, monitor, and report results to the interviewer. College Algebra students are seldom
able to engage in such retrospective analysis of their actions. Brad’s actions included a
motivation to answer some self-generated questions regarding his overall approach to solving
the problem of the discrepancy between his answer and the book’s. Unlike many students
who merely try to match their work to the answers, Brad developed some working
hypotheses, which helped him develop goals of action. He had a sense regarding the source
of his error, and with the aid of the interviewer’s questions, was able to investigate his prior
actions in a new light. He systematically set about to simplify the radicals, never wavering
from his belief that his reasoning was sound. Brad’s inability to self-diagnose and correct his
work with radicals ( 122 = ), suggests that his misunderstandings about irrational expressions
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were deep-rooted within his flow of continuous action; it was only with the intervention of
the interviewer’s questions that Brad became aware of the error and set about to correct it.

One question that usually gets asked about these students is whether or not they have
some stable problem solving processes, more general heuristics that they appear to use
regardless of the problem. In Brad’s case, he did appear to be overly structured throughout
the interviews. He usually had a pretty good idea of what he needed to accomplish; however,
his fragmented understandings of formal mathematical concepts continued to hamper his
actions as he solved problems. In the following paragraphs, we examine Brad’s solution
activity as he tried to solve a problem that required more sophisticated conceptual knowledge.
This will demonstrate how his fragmented formal understandings impacted his conceptual
'big picture' view of things, thus indicating the complexity of his conceptual structures.

Brad’s Work Graphing a Quadratic Function
During Interview #4, Brad was asked to graph a quadratic function.  This task is among

the most difficult for CA students because of the conceptual knowledge involved. Although
Brad demonstrated that he had some connected sense of the actions he must perform to solve
the problem (i.e., first, find and plot the vertex; next, plot the intercepts, etc.), he experienced
difficulty at each juncture, making several errors as he carried out his actions.

Interviewer:  Let’s try a graphing problem.  How about graphing the following function:
2x3x)x(f 2 +−=

Brad: So first thing I do is have x=-b/2a , so x=minus 3, no, minus minus 3, (writes x=
3/2)  so your vertex is x= 3/2 and the y is 0. [ plots the point (0, 3/2) on the y-axis ]. So
you pinpoint your vertex, start plotting points.  I took a lot of good notes on this in class
so let me look at it. (consults his notes)… well, maybe not.
Interviewer: What about this point here, the vertex. I see you have the vertex there on the
y-axis. Do you remember what we called the point on the y-axis?
Brad: Yes, the y-intercept, the point that crosses the y-axis. That is where x equals 0, but
the vertex is the lowest point on the parabola. 2 is where the graph crosses the y-axis.
The vertex is … the lowest point (looks at his notes), now I remember (reads from notes)
we take the value of x (points to x=3/2 on the board) and plug it back into the equation to
find the y coordinate, so I guess you need to put that 3/2 back into the function.

Brad then computed the y-coordinate as follows: Brad’s Computations

Interviewer: Well, let’s see.  Tell me how you got those.   
26/34/9

23(3/2)(3/2)   2

+−
+−

       2.
     1.

Brad: Well I took (3/2) and just squared both 3 and 2 to get 9/4. Then I cross multiplied
to get 3/6, which is _ -- can I do that?
Interviewer: The 9/4 is fine.  Go off over there and show me again how you cross
multiplied and got 3/6 or _
Brad: Well, let’s see, it goes like this.  (writes the pair of fractions, and draws arrows) to
connect numerators and denominators of fractions)

2
3

1
3−

Brad: Wait, I don’t think it goes like that.  No, you just multiply across, so we get 9/2.  I
think I remember when we solved those equations a few weeks ago, we did that cross
multiplying 

2
3

1
3 =− . Brad re-computed and plotted the correct vertex (3/2, -1/4).
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Brad: Okay, so now I know where it crosses y and the vertex, I think I need to find the
places it crosses x, yeah, the x-intercepts. So they must be somewhere around here
(points to positive x-axis on graph). Okay so now we drop the f(x), the whole thing; then
you are finding the x-intercepts (points to f(x) ):  2x3x0 2 +−=
Brad: Okay, so I think I now solve this and get 2 points for x (sic).  And I think I can
make factors (writes the following factored form)       )1)(2(0 −−= xx
Brad: And I just take the opposites of these points (sic), to get 2 and 1 so we plot (2, 1).
No, I think I need to look at my notes again … yeah that’s right but I write them like this
(writes and plots correct points corresponding to the zeros) )0,1()0,2( and

After Brad added the two x-intercepts to his graph, the interviewer asked whether there
were now enough points to sketch the graph.

Brad: Well it’s a quadratic and most quadratics are parabolas (sic) (points to the vertex,
the x and y-intercepts) but we don’t know if it zig-zags over here (points to the right of
the x-intercept (2, 0) ). You need to go the right beyond this point (2, 0) and plot some
more points.  But I do know that this point (points to vertex) is the lowest point.
The interviewer asked Brad if he remembered what kind of function this was, and what

were some of its general properties (e.g., line of symmetry, etc.).
Brad: Wait a second … okay, now I remember that parabolas are, they have a line
straight though here (draws vertical line through vertex), and they are the same on each
side, the line of symmetry.  I think we also called these even functions.  So, I start here at
the vertex and go through these x’s (points to the location of the zeros) and draw the
graph... and make it look like it is the same on both sides because of the line through the
middle here (points to the line of symmetry).
Brad’s solution of the quadratic graphing problem was noteworthy because he

demonstrated: (1) a fragmented conceptual understanding of quadratics - he had some
connection and coherence about how the different aspects related but could not focus on any
one aspect without making mistakes; and (2) many of the same arithmetic operational
difficulties that most students have graphing quadratics.

Conclusions
This study contributes to the study of mathematical beliefs in the following ways. First,

these examples of formal mathematical beliefs in action help clarify the role of mathematical
beliefs as hypothesized by Schoenfeld (1985). The idiosyncratic rules we observed suggest
that solvers’ informal ways of operating appear to play a prominent role in how they solve
problems. Second, our findings about self-efficacy beliefs help clarify the ways that CA
students exercise control over their actions. Since most studies of mathematical self-efficacy
are conducted by asking students to rate their confidence to solve particular tasks (Pajares,
1996), the results here give specificity to the ways that students actually demonstrate self-
efficacy while solving problems.
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The “student-professor problem” was first reported by Kaput and Clement (1979), who
found that many students displayed particular types of errors when constructing equations to
describe a linear relationship between two variables. While translating between words and
symbols in “student-professor-type” situations are themselves interesting mathematical
tasks, Kaput (e.g. Kaput and Sims-Knight, 1983) has suggested that these errors can be most
useful as a lens to investigate the underlying mental processes that students use while solving
this problem, because students these same processes while working on other math problems.
The goal of this study is to investigate the student-professor problem from several new
perspectives and, in doing so, describe ways we might help students work more successfully
with related algebraic ideas.

Nearly thirty years ago, Kaput and Clement (1979) (and later Clement, Lochhead and
Monk (1981)) noted that students had difficulty with the following problem:

Write an equation using the variables S and P to represent the following statement:
‘There are six times as many students as professors at this university.’ Use S for the
number of students and P for the number of professors. (p. 288)

In multiple surveys of college students, roughly 40-60% solved the problem incorrectly.
The most common error made by students was the reversal error: 6S=P. This reversal error
was even more common when both variables in the linear relationship have coefficients other
than 1 (e.g. when the corresponding equation is 4C=5S).

This reversal error arises not only when students are constructing an equation based on
words, but also when they attempt to construct an equation based on a table of values or a
diagram. MacGregor and Stacey (1993) found that similar reversal errors occurred as well in
problems with an additive structure and they concluded that students “were not matching the
symbols with the words in an item but were expressing features of some underlying cognitive
model of a mathematical relationship.” (p. 228)

Clement (1982) identified several strategies used by students and suggested that the two
essential competencies for correctly solving the problem were recognizing that the letters
represented quantities and creating a “hypothetical operation” to make two quantities (such as
the number of students and professors) equal. Kaput, Sims-Knight and Clement (1985)
suggested that there are two components necessary for success with “student-professor-type”
problems:  “understanding variables (and the underlying notion of mutual variation of two
quantities) and understanding the syntactical features of the algebraic representation of
variables.” (p. 58) While Rosnick and Clement (1980) noted that a misconception of the
equals sign could be associated with incorrect responses, few other researchers have focused
on equality misconceptions as a potential source of error.

Not only does the reversal error appear in many situations, but it has also proven difficult
to remediate. Clement (1982) found that warning students that they might make an error did
little to improve their performance. Rosnick and Clement (1980) tutored students by pointing
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Figure 1

out incorrect features and demonstrating correct solutions but found that most students’
conceptual understanding of variable and equation did not change. Several studies (e.g.
Philipp, 1992) have shown that replacing S and P with different letters did not improve
students’ performance. Similarly, Fisher (1988) found that substituting Ns and Np (to more
actively suggest “number of students” and “number of professors”) did not increase
performance.

In recent years, increasing attention has been given to students’ ideas about the concepts
of equality and variables (e.g. Knuth, Alibali, McNeil, Weinberg, & Stephens, 2005)—and to
the concept of covariation (e.g. Carlson, Jacobs, Coe, Larsen and Hsu, 2002). It is possible
that this recent work could give us a new perspective on the reversal error and the underlying
cognitive processes. In addition, while translating between words and symbols is an
important mathematical activity, this translation is typically done in the service of solving a
problem and not solely for the sake of producing the translation. It is possible that while
students are prone to making the reversal error, they would still be able to effectively solve
problems involving “student-professor type situations” (e.g. involving a linear relationships
between two variable quantities).

Research Questions and Methodology
Much of the previous work on the reversal error has focused on remediation, but less

attention has been given to producing detailed descriptions of successful student strategies for
translating words and diagrams into equations. The first goal of this study is to provide a
more detailed account of these strategies and determine if any of these strategies suggest new
ways of increasing students’ success with translation. This study also seeks to describe
students’ conceptions of equality and covariation and any correlations between these
conceptions and success in “student-professor-type” problems. Finally, this study investigates
the different strategies used by students while solving problems in “student-professor-type”
situations.

A written survey was given to twenty-seven first-semester calculus students. Four of the
items involved “student-professor-type” problems. The first was the standard Student-
Professor problem, asking students to translate words to the linear equation 12P=S. The
second was similar but the resulting equation, 11F=2A, had two coefficients that weren’t 1.
The third asked students to “create a function” to describe a diagram that represented the
relationship 4C=3P. The fourth gave a situation that could be translated as the equation
5S=3C and asked students to predict a value when given a value for one of the variables.

To investigate students’ conceptions of the equals sign, they were asked to decide
whether several equations were true (such as 5x4=20+3=23 and a2+b2=(a+b)2). Their
responses were analyzed to determine if they used the equals sign to denote something other
than strict equality, or if they viewed the equals sign as denoting an operation
rather than a relation (see Knuth, Alibali, McNeil, Weinberg & Stephens, 2005).
As part of viewing the equality symbol as operational, a student might describe
it as having a “direction” and identify an equation such as ab+ac=a(b+c) as a
“reverse distributive property”. One item on the survey showed students a bottle
being filled with water (shown in Figure 1) and asked them to graph the height
versus the volume of the water; this was designed to investigate students’
conception of covariation using the framework of Carlson et. al. (2002).

Eighteen students participated in an additional open-ended interview, in which they
described their thinking on the written assessment and solved the survey problems again. The
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interviews were transcribed and, along with the written assessments, coded using both
previous descriptions from the literature as well as with codes to indicate patterns of
reasoning not previously described.

Results

Student Strategies
Students used and described a variety of strategies while working on the translation and

prediction tasks. Several students used what appeared to be a static comparison (Clement,
1982) in which they appear to be using the variable as a label instead of a varying quantity.
However, MacGregor and Stacey (1993) found that this apparent strategy was a “post hoc
explanation of an equation arising from a model formed without conscious intervention” (p.
230). These students may be performing an operation to represent unequal groups, such as
this student who was working on the student-professor problem:

Using these variables there are… I used S for students and P for professors. There are
twelve times as many students as professors, so if our variables are S and P, if you
have just S and P they're the same. So if we have twelve S, multiplying, that would
equal twelve times as many students per same number of professors.

A number of students indicated that they were using the equals sign to represent a ratio:

S: I put students to professors, and then I originally put dots for a ratio, then I wasn't
sure if a ratio would be right, so I put equal - I'm not sure if that's the same thing.
I: Is it the same thing to use the equals sign as the colon?
S: I guess that's what I wasn't sure of, cause there's twelve times many students as
professors at this university… I guess, now thinking about it the equals sign wouldn't
work, you'd probably just use the dots for it to say ratio.
I: What if you did need to write an equation using an equals sign? Could you still
write this, or do you think you'd have to write something different?
S: I probably still could write that, though.

Clement (1982) described the “operative approach” as a frequently successful strategy in
which students performed a “hypothetical operation” (p. 21) in which the size of one quantity
is changed to be equal to another quantity. In this study, students’ strategies could be
described in more detail as either operative reasoning or functional reasoning. In operative
reasoning, the student performed hypothetical operations on two quantities:

I should switch the three and the four, because there are three cows and there are four
pigs, but to equalize the numbers, you have to multiply the pigs by three and the cows
by four. Thus they both equal twelve.

In functional reasoning, the student performs operations on one of the quantities to
transform it into the other quantity. In this strategy, one of the quantities is used as an input to
a function and the other is used as an output:
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I took three to four ratio—cause for every four pigs there's three cows, which is point
seven five. And so if you're given four pigs, four times point seven five is three, and
so you can keep increasing by point seven five.

While working on the value-prediction task, students used different strategies than they
used on the translation problems. Several students used a strategy that was similar to
functional reasoning but performed the operations stepwise instead of all at once. For
example, one student divided a group of objects into “test samples” and then counted several
of these samples. This corresponded to first dividing the original quantity and then
multiplying the result in contrast to multiplying by a fraction or ratio. In this example, the
student was working on the problem: “In New York there are three SUVs for every five cars.
If there are 165 cars in a parking lot, how many SUVs do you expect there to be?”:

Well because, it says for every five cars… I wanted to… take it out of that one sixty
five and once I was done, I was just going to multiply it back out. So... 165 divided by
5 is 33? Yeah. 33, and I just like left that number alone and then there's three for
every five, so I did a test sample kind of thing, it’s one thing of five cars, so if there's
three for every five I just multiplied the 3 by how many test samples there are—which
is 33—and I got 99.

Numerous students used proportional reasoning to make their prediction by constructing
a proportion from the written description and cross-multiplying:

Okay, there are three SUVs for every five cars, so you can put that into a proportion…
So if you set up a proportion and set them equal to each other, so you know like three
over five, is SUV—or, is SUVs per car, so you set it equal to x over one sixty five and
you can cross multiply and divide through everything and you can find that there's
ninety nine SUVs with the hundred sixty five cars.

Student Performance
Roughly half of the students gave correct answers on the translation and function-

construction items on the written assessment; roughly one third of the students gave an
incorrect answer involving a reversal error.  This is in contrast to previous studies in which
students had more difficulty translating situations when one of the coefficients was not 1. On
the value-prediction item, students performed significantly better, with 70% of student giving
correct answers and only 11% supplying an answer that indicated a reversal error. Despite
students’ success with the value-prediction item, they had difficulty when asked to construct
an equation that represented the situation in this item.

While students were more successful predicting values than translating situations into
equations, there was no correlation between the strategy a student used to construct an answer
on the written assessment and their strategy on the same item during the interview. In
addition, there was little correlation between a student producing correct answers or making
reversal errors across multiple items. That is, there were few students who consistently
produced correct answers or consistently made reversal errors.

Students displayed a flexible conception of the equals sign. They avoided common
misconceptions, recognizing that (a+b)2 is not equal to a2+b2 and they did not describe
ac+ab=a(b+c) as “reverse distribution.” However, 20 out of 27 students asserted that the
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number sentence 5x4=20+3=23 was true and 22 out of 27 asserted that the number sentence
g(x)=x2=g’(x)=2x was true. One student summarized his view of the equals sign as having
numerous meanings:

I'm just not sure about having the equals sign to relate the two. There was probably a
better way. The whole thing was that—these two signs are what make the thing equal,
and that one just—it would be better to have something to say that one is in relation to
this.

While many students described this incorrect interpretation of the equals sign, there was
no significant relationship between displaying such a conception and either correctly
answering the other questions or a reversal error.

Students were generally successful drawing the graph of height versus volume for a bottle
filling with water. In both the written assessment and during the interview, roughly 60% of
students drew a correct graph and described their thinking in a way that reflected an
understanding of average or instantaneous rate of change (this corresponds to the highest two
levels of covariational reasoning using Carlson et. al.’s (2002) framework):

At first the—I guess the radi—like if you draw this into circles [shades in bottom of
bottle] the radius increases from very small to larger and larger, so it will take longer
to fill up a point—like if this was a circle here [shades in bottom of bottle] to fill up
that circle, then it will… because there's less of a circle to fill there. So it will be
quicker at first because it's smaller circles at first, until they start to increase, and then
eventually—at whatever location [draws in a horizontal line at the middle of the
bottle] it will start to get smaller again.

While most students displayed a relatively sophisticated conception of covariation, there
was no significant relationship between their level of covariational reasoning in the interview
and either giving a correct answer or a reversal error in the other items. On the written
assessment, the only significant relationship with drawing a correct graph was correctly
writing a function to describe a diagram.

Analysis and Future Directions
It is somewhat surprising that students’ overall success rate—and rate of reversal

errors—with the translation and function-creation items was consistent. Previous studies have
indicated that the items that used a coefficient other than 1 should be more difficult. More
striking is the variability in each student’s performance. We might expect certain students to
repeatedly make a reversal error or to get all of the items correct, but this was not the case. At
the very least, we can say that students’ strategies, successes, and errors depend on the
problem situation. More importantly, this provides evidence that there may not be a unifying
mental mechanism used by each student. Other studies have constructed descriptions of
students’ mental models in part as a predictor of their performance; since students are not
performing consistently, a mental model may not be a useful tool for this prediction. In
particular, the lack of relationships between a student’s strategy on the written assessment
and their strategy during an interview (even while looking at their previous work) suggests
that students are either not developing models that they can invoke in multiple situations, or
that they have many potential models and the impetus for using a particular one depends on
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more than the problem situation. There very well may be other important factors such as the
student’s perceived role as a problem solver and their previous pedagogical experiences,
although the current data do not shed light on these issues.

Overall, students were significantly more successful at predicting a value in a “student-
professor-type” problem than constructing an equation or formula based on words or a
diagram. This suggests that students’ strategies depend not only on the problem situation, but
also on the specific task they are asked to complete.

In making their predictions, students were able to use various algebraic tools to
successfully complete the task despite their translation difficulty. In addition to refining our
descriptions of the various mental models students employ when engaged with different
tasks, describing students’ various algebraic competencies and understandings could shed
light on the ways students choose and use their mental models. However, one fundamental
algebraic idea—covariation—did not have a strong connection to students’ strategies when
translating or predicting a value. This could mean that they are using ideas other than those of
covariation. It could also mean that the measure of covariation used here hasn’t captured the
aspect students employed. Alternatively, students may be relying on previous pedagogical
experience and memorized algebraic routines to produce their answers (although the data do
not provide explicit evidence for this).

Although it didn’t affect their performance on the other items, students’ flexible
interpretation of the equals sign  is troubling, although perhaps not completely surprising.
Instead of uniquely denoting “sameness,” the equals sign seems to be a “Swiss army knife” of
symbols, representing a ratio, the co-existence of unequal sets, or an undefined relationship
between two objects, ideas, or symbols. One student explicitly described multiple
interpretations of the equals sign that led to a reversal error (in the problem, the correct
equation was 4C=3P):

That one's [4P=3C] the relationship, but this one [C=3/4P] is the equation on how to
get it from number of pigs. If you had this many pigs, then you just multiply it by
three fourths and then you'll get the number of cows.

In addition to the “operative” strategy described by Clement (1982), students used several
strategies to produce successful solutions. The functional strategy is similar to the operative
strategy but involves thinking of one variable as an input and performing a sequence of
operations on that variable. The sequence of operations could be encapsulated as a rational
coefficient. In contrast, the operational strategy involves manipulating both variables to
produce equivalent mathematical objects. In the value-prediction item, students used
proportional and stepwise strategies to produce their answers. The proportional strategies
involved constructing a proportion based on the situation and cross-multiplying; several
students also referred to this as using a ratio. The stepwise strategy involved partitioning a
group of objects into several smaller groups and then collecting a number of these new
groups.

The proportional and stepwise strategies are particularly notable because they enabled the
students to produce computational answers without reversal errors. This suggests a potential
pedagogical strategy of developing students’ proportional reasoning and partitioning to help
them successfully translate between words, diagrams, and equations.

In addition to these potential pedagogical foci, students’ usage of functional
reasoning—both successful and unsuccessful—underscores the importance of helping them
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develop flexible conceptions of function. While there was little correlation between students’
success with translation problems and their conceptions of equality, their flexible
interpretation of the equals sign suggests that more attention be given to developing a robust
conception of equality.

As Kaput and Sims-Knight (1983) note, student-professor-type problems are useful as an
“acute theoretical lens” (p. 63) through which we can gain insight into students’ mental
models, understanding of algebraic notation and use of this notation. The results of this
preliminary study suggest that there may be previously undocumented mental models that
students can successfully use with these kinds of problems. Not only is it useful to describe
these models, but students’ varying performance suggests that we further need to investigate
the interaction with social aspects of problem solving—the aspects beyond the specific
problem that cause students to use particular models and interact with the models with
particular symbolism and techniques.

The results of this study can be used to inform future studies to develop and refine these
new mental models and the further explore the relationship with the idea of equality. By
systematically varying the tasks and goals given to students and refining questions to target
some of the connections between algebraic ideas, symbolism, and students’ solutions, we can
create pedagogical strategies to help students develop a more robust understanding of the
algebraic concepts.
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In this article we report on the procedures high school students used to relate the symbolic
language of spreadsheets (Excel) to that used in traditional paper and pencil method. The
word algebraic rate problem discussed herein is part of a series of problems implemented in
the classroom with the proposal of helping students learn the algebraic language. The
students demonstrated progress and difficulties in the understanding of the significance of the
algebraic symbols involved.

The incorporation of technology and new theoretical frameworks for describing processes
of teaching and learning mathematics has modified the manner in which algebra is perceived
in mathematics education. The possibility of relating algebraic language to table of values
and graphics with the incorporation of the spreadsheets (Excel) permits the students to work
with algebraic objects in a dynamic manner different from that encountered in the traditional
teaching methodology using paper and pencil.

In this article we report upon the analysis of part of a broader research project which
looks into the process in which the students moved from the language of spreadsheet towards
the algebraic language used in working with paper and pencil. We describe the form in which
a pair of students solved an algebraic rate problem which could be modeled on a system of
two linear equations with two unknowns. In the description we utilize theoretical elements of
Instrumental genesis.

Literature Review
Bednarz & Janvier (1996) defined the characteristics that determine the difference

between an arithmetical problem and an algebraic one. The algebraic, or disconnected,
problems were characterized by the difficulty presented in establishing direct bridges
between the known quantities. These must be operated with various unknown quantities at
the same time, making it necessary to establish equations in order to solve them. The word
rate problem reported here is a disconnected in Bednarz & Janvier’s (ibid) terms.

In the analysis of the work of the students we took the perspective of Instrumental
genesis, in particular the triad of technique, task and theory, whose role in teaching and
learning of mathematics was discussed by authors such as Artigue (2002); Chevallard (1999),
and Lagrange (2000). These authors emphasize the pragmatic and epistemic values of
technique, or the productive potential (efficiency, cost, field of validity), and its contribution
to the understanding of the objects involved.

Methodology
The two students who participated in this study were in attendance at a technological high

school within the public education sector in Mexico (SEP). They were in their first semester,
and they were both fifteen years old.

The work in the classroom, with the students working in pairs, was undertaken as follows:
a problem to be solved with the use of spreadsheet was given to each pair of the whole group,
the teacher then led group discussions, and finally, preliminary conclusions were arrived at
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within the group. An interview, quoted from herein, was planned with one of the pairs of
students. The task or following word algebraic rate problem was solved by the students:

PROBLEM 1. Juan bought 450 notebooks and 300 pens, spending $6,600. If
each notebook cost twice as much as each pen, what was the cost of each
notebook and pen? (Martínez, Struck, Palmas y Álvarez, 2001, p. 149.)

This problem can be solved in an algebraic manner by writing and solving a system of
equations such as the following.





=

=+

yx

yx

2

6600300450

Before giving the students PROBLEM 1 we asked them to establish the equation or
system of equations to solve it. In a previous session, the group had solved a problem using
spreadsheet and after they had written, directed by the teacher, the system of equations.

Results
The technique and theory the students used to solve the problem could be described in the

following manner: after reading the problem the students began to accommodate the
information (notebooks, cost, subtotal, pens, cost, subtotal, and total, Figure 1.) into the
spreadsheet. This accommodation of the information seemed, up to this point, to be part of a
routine for solving problems but the students were simultaneously analyzing the information
given in the problem: what they had to look for, or the unknowns (cost of notebooks and cost
of pens), the known quantities (number of notebooks and pens), and the total cost. The
attempts to understand the problem while accommodating the information could be seen in
the hesitation in categorizing the various columns, in organizing the information, and in
where to put the data. This accommodation was influenced by a problem previously solved
with a different structure, but they perceived it to be similar, which permitted them to start a
similar process of solution.
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Figure 1. Solution procedures of PROBLEM 1.

Thereafter, through trial and error the students began to solve the problem. However, the
part of the problem which said “each notebook cost twice as much as each pen” was taken by
them to mean the opposite. This meant that when the students considered that the cost of the
notebooks was $10, they determined that the cost of the pens was $20. This was due to the
order in which they had labeled “notebooks and pens” (Figure 1) in the spreadsheet rather
than a mistaken interpretation of the statement. After various unsuccessful numeric trials they
reread the PROBLEM 1, searching for the relationship between the quantity of notebooks and
pens and noticed their error.

Even then, however, they did not establish the relation B=2E o E=B/2, and instead
utilized recursive procedures in both columns B (=B3+2) and E (Figure 2). This affected, as
will be seen below, the symbolization process on paper and pencil environment.
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Figure 2. Values and formulas utilized by the students in approaching PROBLEM 1. With
these formulas values shown in Figure 1 were derived. The last column contains information
which was added during the interview.

When the students finished solving the problem and found that 11 and 5.5 were the values
they were searching for they proceeded to include the algebraic symbolization. However,
they had difficulties in determining what x and y were. The meaning of these objects was not
clear, and in fact they wrote 11x+5.5y, and explained to the teacher that x was 450 (the
number of notebooks), and that y was 300 (the number of pens); x and y seemed to be
considered as labels. During the interaction with the teacher, which was oriented towards the
understanding of x and y in their written relation in spreadsheet using it as paper and pencil
environment, the students determined that the correct expression was 450x+300y (cell C23,
Figure 1), wherein x and y appeared to acquire the significance of unknowns or the values to
be searched for. They did not write the equation; in other words, they did not make the
expression 450x+300y equal to 6600. They did not realize that this was a condition which
must be satisfied in order to solve the problem, nor did they see the need for writing any other
condition.

One of the students of this pair under study began to participate in the group discussion
(Excerpt 1) when the teacher was asking the students to establish the other relation, after the
group had identified the relation between the cost of the notebooks (x) and the cost of the

pens (y), to be  
2
x

y =  .

Excerpt 1 (Writing the second equation)
L1. Teacher: What other relation besides x and y can we establish? [Asking the group

for the other equation]
L2. Student 1: [Starts to speak, but the teacher asked him go to the board]
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L3. Student 1: From here [points to the equation relation 
2
x

y =   written on the board]

we can get the results you are asking for because we have that y represents,
y is equal to x divided by 2. From there one can get… [Did not finish the
idea and started to explain the other relation for x and y the pair had
identified]. The final result, the number of notebooks times their cost gives
us 4950. In the same way we could get the result by multiplying the
number of pens by how much each pen cost and then add them together.

L4. Teacher: Write it. How does what you are saying come out in terms of relations?
L5. Student 1: [Writing on the board]

450x+350y= 
450(11)+350(5.5)= 

6600 
L6. Teacher: What is 450x+300y? It is equal to what? [No one answered]

The teacher, who was at the back of the classroom, saw that no one responded and asked
if the equation was 450x plus 300y equals to 6600. The students were slow to respond, and
the answer some gave was no, including Student 1. The teacher centered the discussion for
several minutes on the understanding of the meaning of 450x and 300y, and then returned to
the question of whether 450x plus 300y equaled 6600 (Excerpt 2).

Excerpt 2 (450x plus 300y equals 6600?)
L7. Teacher: Does this equal 6600?
L8. Student 2: Yes, because if 450x is the cost of the notebooks and 300y is the cost of

the pens, well these two quantities add up to 6600, in other words, yes.
Student 2 spoke with conviction, but Student 1 in particular was in disagreement, arguing

that 6600 could only be arrived at when 11 and 5.5 were used in the calculations. They were
discussing for several minutes. The session was drawing to a close, and in conclusion the
teacher asked another student to write the relations identified in the problem. The student

wrote, with the help of his classmates: 
2
x

y =  and 450x+300y=6600.

Despite the exposition of Student 1 permitted the group to identify the system of linear
equations they were searching for, Student 1 seemed to have difficulties with the concept of
the equation and solution of an equation. This was brought up during the interview which had
been initially designed for the student pair, however, only Student 1 was present.

The interview began with the analysis of a linear equation with two unknowns. The
student searched for solutions through trial and error. These were substituted in the equation
and the student observed that equality was always reached when the quantities substituted in
the equation were the solutions, not when they were arbitrarily selected. Based on this
experience the student argued about what an equation was and what a solution or solutions
for an equation was.

The teacher returned to the procedure for solving the given problem (figures 1 y 2) and
asked the student to remember what they had done previously in the classroom using
spreadsheet. The student not only explained the procedure (Excerpt 3) but also wrote an
equation (Figure 3).

Excerpt 3 (Solution procedure)
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L9. Student 1: We represent x as 11 and multiply this by 450, which gives us 4950
[pointing to the quantities in cells C23, C24 and C25 in spreadsheet,
Figure 1]

L10. Teacher: Oh [Expressed to demonstrate that attention was being paid to the
explanation]

L11: Student 1: Then we multiply 300 by y and this is 300 times 5.5, because y equals
5.5.

L12. Teacher: Oh.
L13. Student 1: This gives us 1650. Then from this we have to add the two and we have

to come out with the result given here of 6600.
L14: Teacher: Oh. And if asked you to write the equation [asking it to be written with

paper and pencil]. Okay, to start with, is this an equation or not?
[Pointing to cell C23]

L15. Student 1: Yes.
L16. Teacher: If I asked you to write it, how would it be?
L17. Student 1: [Immediately wrote the equation in his paper, substituting the solutions

as shown in Figure 3. The manner in which it was written was derived
from the previous discussion. Then, in response to the teacher’s request,
the student explained how it had been done.]

Figure 3. Procedure followed by the student in writing one of the equations on which the
PROBLEM 1 was modeled.

The teacher asked the student if this equation was the only one, and as no answer was
forthcoming, began to give arbitrary values to x to determine the value of y and in this
manner to show that the identified equation could have many solutions. Student 1 did not
seem to understand what the teacher was asking, but was sure that the selection of the values
of x and y could not be arbitrary (Excerpt 4). This was taken up by the teacher in order to
emphasize in the symbolization of that other equation in the problem.

Excerpt 4 (How do you symbolize twice something?)
L17. Student 1: Here it has to be double.
L18. Teacher: No, what I want is that x to be two [insisting upon giving arbitrary

values].
L19. Student 1: Ah, okay.
L20. Teacher: Why does it have to be double?
L21. Student 1: Because that indicates that the cost of the pens is… [was interrupted].
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L22. Teacher: Ah. That means that there is another condition in the problem, that it is
not only this.

L23. Student 1: Yes.
L24. Teacher: How do you write this other condition?
L25. Student 1: It would be y=x_. [With this equation the student wanted to express the

relation of “each notebook cost twice that of each pen”].

It was difficult for the student to translate the relation “twice something” of verbal
language into symbols. The student practiced with expressions such as 2yx = , 22xy = ,

2xy = , which were discarded after substituting values into them, until the student identified
xyy =+  as the other equation being searched for.

Discussion of the Results and Conclusions
In the previous section two processes can be observed in the understanding of meanings:

an individual process and a social process. The identification and symbolization of the two
equations on which the problem are modeled were the product of the contributions and
analysis of the students as a group, along with the teacher. However, in spite of the fact that
the interaction of Student 1 permitted the whole group to identify the system of equations,
student’s knowledge was not sufficient for form a base from which to work and give meaning
to the system of identified equations.

In the interview the student went deeper into the meaning of an equation and its solutions,
which was important in order to give meaning to the system of equations identified in class.
However, other difficulties emerged which had not arisen in the group discussion. In the first
part, it was difficult for the student to determine how many equations needed to be written. In
the second part, the student had difficulty with the translation of the verbal language into a
symbolic language with the relation of “twice something”, even when in the group session
this relation had previously been symbolized.

The expression 450x+300y came out of the work with spreadsheet in the initial process of
labeling the columns. For this reason, if the students had related columns B and E through
some formula perhaps it would have been easier to generate an algebraic rule to represent the
relation of “twice something”. However, the technique they used, or the manner in which
they had solved the problem, had been based on the use of recursive procedures, over all in
columns B and E. These recursive procedures had been selected from the observation of the
series of values calculated in these columns. The theory underlying the written recursive
formulas seemed to be derived from previous teaching about the search for patterns when
there are a series of values.

With the use of this technique the students showed reasoning and routine work. Students
analyzing the series of values calculated on columns B and E and they connected them
among them using recursive formulas. However, the pragmatic value of this technique, as
well as the epistemic value, was not adequate for the modeling of the problem in terms of
equations.

In this case, the organization (Figure 1) of the whole information in spreadsheet was
exploited in focusing the students to reflect upon the problem, to relate the data in other
manners, and to write the system of equations.

However, the transition to algebraic symbolization using spreadsheet environment was
not immediate, nor were the processes of the use of algebraic symbols or the elaboration of
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their meaning. This required the teacher’s input and the teacher’s becoming involved in both
the design of the tasks or problems and in the discussion of the techniques and theory used by
the students.
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This paper reports on the results of a teaching experiment with seventh grade students who
are members of the same middle school class that is involved in an ongoing longitudinal
study that seeks to investigate the development of students’ algebraic thinking over three
years.  We report on the results of eight students who participated in a pre-clinical interview,
a teaching experiment over three months, and a post-clinical interview.  We report here on
the results of two tasks that involve decreasing linear patterns.  Students who were successful
in finding general forms for increasing linear patterns had difficulty doing so for decreasing
patterns.  We analyze the cognitive difficulties students exhibited using the theoretical
construct of transfer.

In the 21st NCTM Yearbook, Rosskopf (1953) claims that transfer theories change with
developments made in learning theories. For example, faculty psychology prior to the late
1800s claimed that the rigorous work that came with learning formal disciplines and doing
hard exercises would successfully facilitate transfer. It was discredited in the early 1900s and
replaced with the doctrine of identical elements as a consequence of developments in theories
of associationism and connectionism. The introduction of drill and direct practice in the
mathematics classroom that consequently emerged from such theories and resulted in the
necessity of establishing routine processes in learning was then again replaced with the
gestaltist theory in 1912 which emphasizes the need to provide learners with time to mature
and to reorganize or reconstruct their experiences. With the gestaltist view came the practice
of a developmental approach to learning which saw grouping, reorganizing, structurizing, etc.
as fundamental in effecting maximum transfer. Rosskopf (1953) then extracted the following
compatible instructional principles: teach for understanding and for concept formation;
provide opportunities for students to discover and explore through examples that illustrate the
same concept; apply concepts to new problems, and; use acquired principles in examples
without the need to memorize the principles. Such practices were the views in the 1950s with
a reminder from Rosskopf (1953) that newer perspectives were bound to take shape. He
further recommends that “(n)ot only do we need to learn more about what is transferred, but
we need to experiment to see how transfer can be facilitated [in larger percentages]” (p. 220).

The current discourse on transfer foregrounds the significant role of the learner as a
consequence of developments in research methodology, in particular, advances made in
classroom-based design experiments. Traditionally, transfer involves using an existing
knowledge acquired in one context in order to handle new or similar information in another
context (Anderson, Reder, & Simon, 1996). Lobato’s (2003) “actor-driven transfer” basically
articulates the primary and central role of the learner in seeing similarity in two different
contexts. In other words, similarity is relative to the person and not necessarily the relevant
knowledge itself. Thus, epistemological transfer necessitates foregrounding the perception of
similarity on the knower. For example, even if knowledge about determining the slope of a
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line and a wheelchair ramp share the same conceptual context, some learners might not see
this similarity at all (Lobato & Siebert, 2002).

In this research report, we address the following two research questions:
  Given seventh grade students’ existing knowledge of increasing linear patterns, to

what extent does such knowledge influence the way in which they deal with
decreasing linear patterns?  Further, do they construe both increasing and
decreasing linear patterns as similar?

 What strategies do they employ in establishing a generalization for a decreasing
linear pattern? Are such strategies similar to the ones used to handle increasing
linear patterns?  

We note that the seventh graders who participated in this study are members of the same
middle school class who are involved in an ongoing longitudinal study that seeks to
investigate the development of their algebraic thinking over the course of three years that
started when they were in sixth grade. In several recently published research reports, we have
documented the evolution of their generalization schemes in the case of increasing linear
patterns (Becker & Rivera, 2006a, 2006b; Rivera & Becker, 2006). In sixth grade, while the
students were successful in developing appropriate classroom mathematical practices in
relation to problem situations involving increasing linear patterns, they, however, found
decreasing linear patterns very difficult. One possible source of difficulty was an
underdeveloped conceptual competence with the integer operations involving negative
numbers which prevented them in establishing a direct, closed formula (involving negative
slopes). Among the several recommendations we developed last year was to further
investigate the students’ ability to deal with decreasing patterns in seventh grade. In this
research report, we talk about the results of the pre- and the post-clinical interviews of eight
students in the class.

Theoretical Framework
In investigating transfer from Lobato’s (2003) actor-driven perspective, at least three

issues need to be articulated:
 The need to “scrutinize a given activity for any indication of influence from

previous activities” and to “examine how people construe situations as similar” in
order to “understand the processes by which individuals generate their own
similarities between problems” (Lobato & Siebert, 2002, p. 89);

 The need to assess how transfer demonstrates “the process by which individuals
see one situation as being similar to another that they have already thought about”
(ibid., p. 90), and:

 The need to reconceptualize the traditional view of transfer as applying perceived
or encoded knowledge with the notion that transfer involves constructing relations
of similarity which consequently changes the view of transfer situations from
being static and unchanging to being “dynamic sites for invention and
reorganization” (ibid.).

Decreasing linear patterns take the direct form y = mx + b, where m < 0. An example is
shown in Figure 1. Task situations involving increasing and decreasing linear patterns are
structured similarly. Students are usually asked to determine both near (for e.g., item A in the
first task in Figure 1) and far generalization (for e.g., items B and C in the first task in Figure
1) tasks and to set up a general formula for any term in the pattern (for e.g., item D in the first
task and item A in the second task in Figure 1). Numerical and figural methods that are
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employed in establishing formulas for increasing linear patterns can also be used in the case
of decreasing patterns. Hence, it makes sense to investigate students’ ability to generalize
decreasing linear patterns from a “transfer perspective.”

Methods
A teaching experiment on patterning and generalization, in which decreasing patterns was

one among several topics, was conducted in a 7th grade class during Fall 2006 over the course
of three months. A pre-clinical videotaped interview was conducted with 10 students to
assess their knowledge and understanding of decreasing linear patterns. In the post-clinical
videotaped interview, only eight of the 10 students were available for analysis. We note that
the 10 students were intensively investigated in the previous year. Figure 1 contains the two
tasks on decreasing patterns that the ten students worked through in the pre-interview.
Analogous tasks were given in the post-interview but space precludes inclusion here.

1. Losing Squares Pattern.  Take a look at the three different stages in the design below.

     Stage 1       Stage 2         Stage 3
A. How many squares are there in stage 1? stage 2? stage 3?  B. How many squares are there
in stage 10? How do you know for sure?  C. How many squares are there in stage 15? How
do you know for sure?  D. Find a direct formula for the total number of squares in stage n,
where n is a positive integer.  If you obtained your formula numerically, what might it mean
in the context of the above pattern?  E. How many squares are there in stage 20? What might
your answer mean in the context of the given pattern?
F. For what stage number will there be no more squares left? How do you know for sure?
2.  Arrow Design Pattern. Take a look at the three different stages in the design below.

                         Stage 1                Stage 2
A.  Find a direct formula for the total number of arrows at any stage n.
If you obtained your formula numerically, what might it mean in the context of the above
pattern?  B. How many arrows are there in the 10th stage? Explain.  C. For what stage number
will there be no more arrows left? How do you know for sure?

Figure 1: Pre-Interview Tasks in Compressed Format
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Results

Pre-interview Results
 During the pre-interview, only three of the eight students were able to develop a direct

formula for at least one of the tasks; note that all of these students could successfully find
direct formulas for increasing linear patterns at the end of sixth grade.  One student attempted
a recursive formula, using a construction that she was able to explain to develop correct far
generalization tasks. For increasing patterns, with a positive number given for the dependent
variable, these students regularly could interpret a question such as part F of Task 1 to mean
to work backwards and could complete such a task.  Given zero as the dependent variable
value for a decreasing pattern, none of them approached the task by working backwards.  One
student used guess and check (what times -2 yields zero); four made a table until they arrived
at the zero value; two used mental arithmetic; and one acted it out with squares. For seven
students, interpretation of a negative number of squares was a variant of shading the squares
or otherwise indicating they were negative; only one said you could not have negative tiles.

Post-interview Results
  In the post-interview, six students were able to find a direct formula for at least one

decreasing pattern and use that to substitute in to find values for far generalization tasks; this
includes the three who were able to do so in the pre-interview.  To find the stage number that
yields zero squares, again no students worked backward using zero.  This time four students
started with stage 20 (-6 squares) and worked backwards from there; one student counted off
by twos as a way to check his answer for stage 20 (from use of the formula) and along the
way found the answer for zero; and one student persisted in guess and check.  Now four
students said one could not have negative values; two persisted in coloring the squares
differently; and two had no response.

Discussion
Given seventh grade students’ existing knowledge of increasing linear patterns, to what

extent does such knowledge influence the way in which they deal with decreasing linear
patterns?  Further, do they construe both increasing and decreasing linear patterns as
similar? Results of the pre-interview indicate that seven of the eight students were unable to
use the numerical methods they developed in relation to increasing linear patterns to deal
with the two decreasing patterns tasks. While the students tried to apply a familiar numerical
method (e.g., finite difference) in obtaining the form y = mx + b in both patterns, what
prevented them from obtaining the values could be traced to the negative values of m that
consequently prevented them from obtaining the values for b as well. In other words, the
combined operation of multiplying by m and adding b was complicated by the fact that the
values of m were negative integers. Also, even if the students employed a table or a listing
method in dealing with the far generalization tasks (item B in both tasks in Figure 1), most of
them could not make sense of the negative values of the dependent terms. Thus, in terms of
“transfer,” the students had difficulty seeing similarities between increasing and decreasing
linear patterns. This difficulty in transfer was again manifested in items C and F in Figure 1
when some of the students who managed to obtain a direct formula for the two patterns did
not use their knowledge of “working backwards” in finding an independent term. While
results of the post-interview indicate some progress in dealing with decreasing patterns, only
six of the eight students managed to obtain correct direct formulas. The students at this stage
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have overcome conceptual difficulties relevant to integer operations involving negative
numbers. However, in both pre- and post-interviews, most of the students were unable to
justify their generalizations, say, in a visual way, which they could easily do in the case of
increasing patterns.

What strategies do they employ in establishing a generalization for a decreasing linear
pattern? Are such strategies similar to the ones used to handle increasing linear patterns? In
the pre-interview, given that the students had some knowledge of numerical and figural
methods in obtaining direct formulas in the case of increasing patterns, seven of the students
developed recursive instead of direct formulas. The recursive method was the most frequent
method they employed prior to any formal discussion of increasing patterns when they were
in the sixth grade. Hence, initial strategies in dealing with unfamiliar tasks were similar in
structure.  In the post-interview, we note similar strategies as well.

Why is transfer difficult? The middle school students in this study found generalizations
involving negative differencing a difficult task to accomplish. In Year 2 of our longitudinal
study, we saw that the seventh graders’ primary cognitive difficulty with decreasing patterns
prior to a teaching experiment was how to handle negative differencing and, especially, how
to perform operations involving negative and positive integers in which the rules were not
consistent with their existing core arithmetical domain (Rivera & Becker, in press). While we
found that they were attempting to “transfer” the existing generalization process they
established in the case of increasing linear patterns, they could not, however, make sense of
the negative integers and the relevant operations that were used with such types of numbers.
For example, Tamara was first asked to establish and justify generalizations for two
increasing linear patterns, which she accomplished successfully. Her generalizations were
constructive and standard, and she was also able to justify the equivalence of several linear
forms with the ones she developed.  When Tamara was then asked to obtain a generalization
for the Losing Squares Pattern in Figure 1, she immediately saw that every stage after the
first involves “minusing 2” squares. She then used multiplication to count the total number of
squares at each stage. When she then proceeded to obtain a formula, she was perturbed by the
negative value of the common difference and said, “I was trying to think of, just like the last
time, I was trying to get a formula. … I was thinking of trying to do with the stage number
but I don’t get it.” The presence of the negative difference, including the necessity of
multiplying two differently-signed numbers, partially and significantly hindered her from
applying what she knew about constructing general formulas in the case of increasing
patterns. In fact, she had to first broaden her knowledge of multiplication to include two
factors having opposite signs before she was finally able to state the form S = -2 x n + 34.
Further, while she could explain what the numbers m and b meant in the case of increasing
patterns, which for her took the constructive form y = mx + b, she was unable to justify the
forms she established for decreasing linear patterns.    

Conclusion: Implications for Teaching Decreasing Patterns
Rosskopf (1953) has echoed the practical need to find ways in which transfer could be

facilitated in the greatest number of learners. In this study, we found that it was difficult for
students to establish similarity between increasing and decreasing patterns in several aspects.
The operations involved in setting up an increasing linear pattern were much more simple
compared with those in the case of decreasing linear patterns; negative differencing proved to
be too difficult for most students. Further, justifying decreasing patterns seems to require a
more sophisticated understanding of the implications of domain and range. One suggestion to
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facilitate better transfer involving decreasing linear patterns is to use a table method in order
to generate an explicit formula, say, from S = 32, 32 - 2(1), 32 - 2(2), ..., until the students are
able to see the relation S = 32 - 2(n - 1). Such a formula could then be justified visually (with
32 as the initial number of squares and -2 as the taking away of two squares at each stage, and
(n - 1) as representing the fact that the taking away of two squares began with stage 2). We
note that the finite difference method that the students conveniently employ in the case
of increasing linear patterns will not easily facilitate similarity between increasing and
decreasing linear patterns. Applying finite differences in the case of the first task in Figure 1
leads to Tamara's formula, S = -2 x n + 34 which could not be easily justified and
which actually confused the students even more. In fact, the students could not explain how
to obtain 34 squares when the initial total was 32. They were also confused with the negative
coefficient because the pattern decreased beginning with stage 2 and not stage 1.

An unresolved issue that we confronted at the end of year 2 of the study is how to help
students apply the working backwards strategy in the case of decreasing patterns.  For
increasing patterns, they all recognized that, to obtain the independent value in a pattern,
given the dependent value, they had to reverse the given operations primarily involving work
with whole numbers.  For decreasing patterns, students have to deal with negative integers,
and the analogy between these and increasing patterns was not apparent to them.  How to
enable students to recognize relations of similarity leading to effective reorganization and
meaningful invention of strategies relevant to decreasing patterns remains a question for
further research.
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We report on a study with adult algebra learners that employed an activity to explore patterns
and relationships between expressions that might suggest the sum/difference of cubes identity.
Our report describes the activity and discusses aspects of expressions to which students
attended. Our results to point to a need for refinements to this activity that might better support
re-invention of the identity.

Although it has been shown that technology can be used to support student understanding of
calculus (Heid, 1988), there continues to be debate about the role that technology can and should
play in algebra learning (NCTM, 1999).  We report on a study with adult learners that employed
an activity involving a computer algebra system (CAS) to explore patterns and relationships
between expressions that might suggest the sum/difference of cubes identity

 (a + b)(a2 – ab + b2) = a3 + b3. This activity was inspired by the work of Goldenberg
(2003), who outlined a similar activity designed to support students in re-inventing the difference
of squares identity (a – b)(a + b) = a2 – b2.

In an effort to understand the sources of their difficulties in deriving the sum/difference of
cubes identity, our report explores aspects of expressions to which students attended. We detail
the instructional activity and its outcomes, and we suggest refinements to the activity that might
better support this population of students in achieving the intended learning goals.

Setting and Participants
Our study was conducted in the context of an intact intermediate-level algebra course offered

at a large urban university in the Pacific northwestern United States. The course is designed for
students who have not had Algebra II or who require a review of elementary algebra concepts
and techniques. The students in this class have a wide variety of dispositions and experiences
related to mathematics, a variety of educational backgrounds and interests, and a wide spectrum
of ages. The 15 students who participated in our study reflect this diversity.

We initiated our study during the third week of classes, after students had developed some
experience in multiplying polynomial expressions and factoring perfect square trinomials and
differences of squares. The data we report on are drawn from students’ individual written work
on the first two parts of the activity. We examined their work for evidence of patterns they might
have construed from the sum/difference of cubes expressions generated by the CAS and for
connections they drew between those expressions and their factored forms.

Summary Description of the Task
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The Cubes activity was designed to support students in deriving the identities for factoring
sums and differences of cubes. The activity began by having students explore patterns arising
from the multiplication of a given sequence of a binomial and a trinomial whose product results
in a sum/difference of cubes. This was followed by having students use those patterns to generate
the sum/difference of cubes identity.  Specifically, students were presented with factored forms
of five sums and differences of cubes, each of which they were asked to multiply out using the
EXPAND command on their TI-92 calculator. Students recorded the results of these expansions
in the appropriate cells of a table (Figure 1), and they were directed to investigate whether the
“indicated multiplication of factors produces interesting results”.

Factored form Expanded form displayed by the calculator
1. (x + 2)(x2 – 2x + 4)

Figure 1. A portion of a table that students completed in the first part of the activity.

The intent in having students use the CAS to expand the products in this part of the activity,
rather than requiring them to do so by hand, was to focus their attention on the form of each final
expression, and to reduce the potential of diverting their attention to the mechanics of algebraic
manipulations. The next part of the activity aimed to orient students’ attention towards patterns
in the expanded expressions recorded in their table. To that end, the students were directed to
take note of the form of each expanded result produced by the CAS and to “describe how this
form relates to that of the corresponding factors”.

Analyses and Results
Our analysis of the data unfolded in a sequence of interrelated phases.  Following Saldanha

& Kieran (2005), we began by listing relationships of form and structure among expressions to
which the students might be expected to attend. We then examined students’ responses for
evidence of explicit or implicit attention to these aspects. On the basis of this first examination
we then revised and refined our initial list of aspects to arrive at a comprehensive list of them.
The authors then each re-examined the data independently, coding it according to the dimensions
in this list and documenting the frequency of their occurrence in the students’ responses across
task questions. In a final phase, the authors compared their code assignments and resolved their
few differences through a process of negotiation that involved re-examining relevant parts of the
data whenever necessary. This process converged to a 100% agreement in the coding of the data.

The table below displays a sampling of our results; it describes some of the aspects of the
expressions to which we hoped the students would attend and it gives the frequency with which
students actually attended to each of them. The aspects are listed in descending order, from the
most to the least salient for students, as indicated by our analysis.    

Students who
attended to aspectAspect of expressions

# %

Expanded version of each expression is shorter than the factored version 12 80%
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The first term of the expanded version is the product of  the first term in the
binomial and the first term in the trinomial

(a + b)(a2 – ab +  b2) = a3 + b3
10 67%

The first term of the expanded version is a cube
(a + b)(a2 – ab +  b2) = a3 + b3 8 53%

The second term in the expanded version of the expression is a cube
(a + b)(a2 – ab +  b2) = a3 + b3 2 13%

The last term of the trinomial is the square of the last term in the binomial
(a + b)(a2 – ab +  b2) = a3 + b3 2 13%

The middle term of the trinomial is the product of the two terms in the binomial
(sign withstanding)

(a + b)(a2 – ab +  b2) = a3 + b3
1 7%

The first term of the trinomial is the square of the first term in the binomial
(a + b)(a2 – ab +  b2) = a3 + b3 0 0%

Discussion and Conclusion
The results suggest that, in general, the students did not attend to most of the aspects of the

expressions that we deemed important. Due to space constraints, we only discuss a few of the
aspects and results in this paper.  For instance, of the twelve aspects we targeted, only four were
noted by more than 50% of the students.  Only one aspect—that the expanded forms of the
expressions are shorter than their factored forms—was noted by more than 75% of the students.
It is important to note that this modal aspect is arguably the least useful one in terms of helping
students generate the intended identity. Moreover, the characteristics apparently noted by the
fewest students centered on relationships between the terms in the factored form of the
expressions, which are arguably the most useful for generating the identity.

These findings suggest that the expanded versions of the expressions were much more salient
for students than were the factors themselves or relationships among the factors. This state of
affairs is consistent with, and might therefore be attributed to, students’ being inattentive to how
the expanded forms of the expressions arose from the factored forms. This hypothesis, in turn,
raises questions about whether our activity prompts adequately provoked students to reflect on
why the expanded forms of the expressions are shorter than their corresponding factored forms.
Indeed, since the students did not attend to aspects that could form the basis of a derivation of the
sum/difference of cubes identity, our activity sequence stands to benefit from prompts that orient
students to reflect on why only certain terms appear in the expanded form of the product of
expressions. Changes such as these might better support this population of students in attending
to crucial aspects of these expressions and structural relationships among them.

Endnote
1. The research reported in this paper was funded by the College of Arts and Sciences of

Portland State University.
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Four characterizations of students' conception of function have emerged from the research:
(1) Prefunction (2) Action, (3) Process, (4) and Object. Our goal was to further define this
framework in terms of student understanding of composition and inverse of functions. From
our analysis, we identified levels of sophistication within three of the four conceptions of
function. We discuss the implications.

Research has documented the importance of students’ progression from procedural to a
more dynamic view of function (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; Dubinsky
& Harel, 1992; Sfard & Linchevski, 1994). Of equal importance is the ability to make
connections between the representations. “Understanding a concept in one representation
does not necessarily mean that one understands it in another…. Different representations give
different insights which allow a better, deeper, more powerful and more complete
understanding of a concept.” (Even, 1990, p. 524)

Oehrtman, Carlson and Thompson (in press) provide an overview of essential processes
involved in knowing and learning the function concept. One focus of their discussion is the
notion of action and process conceptions of function (cf. Oehrtman et al, in press; Dubinsky
& Harel, 1992). From their investigation, the questions arise: Can we rigidly characterize
students’ understanding as either process or action? Are there other categories? And, if so,
what characterizes them?

Interpretive Framework
The research efforts mentioned above contribute to the knowledge of how to characterize

students’ understanding of algebra, and more specifically, functions (Breidenbach et al, 1992;
Dubinsky & Harel, 1992; Oehrtman et al, in press). Four characterizations of students’
conception of function have emerged from the research: (1) Prefunction (2) Action, (3)
Process, and (4) Object conceptions (Breidenbach et al, 1992).

Our goal is to further define this interpretive framework in terms of student understanding
of composition and inverse of functions. In particular, if the move from one conception to
another is transitional marked by oscillations between conceptions, can we categorize the
transitional steps? Are there subcategories of these conceptions? In this paper, we investigate
students’ approach to composition and inverse function tasks to further identify
characterizations of students’ understanding of function.

Method
We conducted seven, 40 minute, think-aloud interviews. Our protocol was made up of a

synthesis of selected tasks from the Pre Calculus Concept Assessment Instrument created by
Carlson and her research group, and the tasks we generated to further understand students’
thinking about composition and inverse of functions. The participants were all enrolled in a
Pre-Calculus course at a large university at the time of the interviews. In each interview
session, one researcher took field notes while the other served as an interviewer also taking
notes. All interviews were audio taped and reviewed by the researchers. Portions of the
audiotapes were transcribed for further analysis. Starting with the four conceptions of
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function defined by Breidenbach et al (1992) the written work of the students, transcripts of
the audiotapes and the audiotapes were analyzed in a cyclical process of coding and search
for confirming and disconfirming evidence (Strauss & Corbin, 1990) to delineate the
categories. Although we identified levels of sophistication for three of the four categories, in
this report we will only discuss the levels within the action category.

Results
As a result of this research, we were able to partition three of the four characterizations of

students’ conception of function with respect to composition and inverse of functions. We
identified levels of sophistication within the prefunction, action, and process conceptions
defined by Breidenbach, with the goal of delineating the framework in order to have a better
understanding of the process of how students come to understand function composition and
inverse. Below we delineate three levels of sophistication within the action conception.

The action-0 conception is marked by a flawed conception of mathematical ideas. In
particular, students may take actions that are contrary or inconsistent with definitions or
concepts accepted by the mathematical community. A student with such a conception often
confounds or has an incorrect recollection of previously learned concepts.

Davis (1984) points to evidence of the existence of frames or schemas observable across
different people. In our study, we found evidence for a common schema for the word
“opposite” to describe the how the inverse of a function relates to the original function
algebraically. Task 14 asks “Which of the following best describes the effect of f _1, given f is
a one-to-one function and f (d) = c?”  For all 7 students, algebraically the “opposite” referred
to the reciprocal of either the output or the argument of the function. That is, if f (d) = c then f
_1(d) = 1/c or f _1(d) = 1/d. Student A asserted, “f inverse is one over something.” This
suggests the subject is perhaps confounding properties of quantities with negative exponents
with inverse function notation.

We describe an action-1 conception as superficially correct. A student with this
conception is able to take reasonable action based on memorized facts with little to no
connections to meaning of the action. Initially in their response to the task, “What does f _1,
mean?” 5 students made reference to f _1 switching the domain and range or switching the x
and the y. Yet when given the function f(x) = 2x – 1 and asked for f _1 the students’ responses
revealed that they made little to no connections to meaning. Student C attempted to find the
inverse by setting the function equal to zero and solving for x. The interviewer asked Student
D “What would the inverse do to the point the point (a, b), if we know (a, b) is a point in f ”?
Student D asserted that the inverse would not change the point (a, b). Student E computed the
inverse by replacing y for f (x), then switching the y and the x in the equation and solving for
y. Both students F and G switched the x and y in the function and were unsure what to do
next. However on task 14 all suggested either if f(d) = c then f _1(d) = 1/c or f _1(d) = 1/d,
which contradicts their previous responses. Moreover, in the process of elimination, they all
rejected the first multiple-choice item “f _1 "undoes" what f does, so f _1(f (d)) = d” asserting
that “you cannot undo a process.” While their initial responses would suggest they have a
concept definition (Vinner & Dreyfus, 1989) for inverse of functions, their actions reveal a
lack of meaning for a correctly memorized fact.

The action-2 conception we identify as being equivalent to that of Breidenbach’s action
category, but we note that it is the idea the student has that must be correct, thus arithmetic
errors that lead to incorrect solutions are not taken into account. Student responses to tasks
coded as action-2 generally displayed procedural knowledge of composition by using a given
numerical input to find and output, then using that input to find another output. They could
also use tables or expressions to do compositions.
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Discussion
Of the 135 tasks coded, 82, or 61% were coded within the action category. The subjects’

actions were generally limited to symbol manipulation. Often students who could take no
action on a particular task said that they could complete the task if given an explicit equation.

The students displayed compartmentalized notions about inverse. Some could apply well-
defined procedures routinely to algebraic expressions. Those whose notion of inverse was the
“opposite” or reciprocal did not consider restrictions of the domain of rational functions.
They drew “inverse” functions as continuous graphs, reflections of the original graph about
the y-axis. Even when faced with the contradictions of their algebraic manipulations,
switching the x and the y and “flipping” the graph about the y-axis they believed the flaw lay
in incorrect algebra manipulations instead of conflicting notions.

Moschkovich, Schoenfeld, and Arcavi (1993), Even (1990), and Fridelander and Tabach
(2001) point to the importance of the ability to make connections between the representations
that define structure in order to develop clear notions about function. A lack of connection
between representations of function became a salient deficiency across subjects. Only on
lateral and horizontal shifts of the graph did some subjects connect the algebraic
representation to the graph and to a lesser extent table.

We do not suggest that our categorizations are exhaustive. That is, our set of data may not
have been sufficiently large enough to completely partition the conceptions of function.
Nonetheless from the data we collected we were able to further define the analytic
framework. Also the intention of our analysis is not to characterize a students’ way of
thinking as restricted to a particular conception but to describe observable approaches that
serve as a lens to understand student thinking. Moreover we argue that perhaps it is the
problem type itself that may elicit a particular conception in ones response. In particular, it
may not be necessary to express an object or process conception to respond to a task but this
does not mean that the subject cannot conceive of the task in that way.
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This study uncovers many problems that 8th grade students encountered when trying to make
sense of quantitative situations that could be represented by systems of linear equations in
two variables, and graphs of those equations. Mathematics education research from a
cognitive perspective over the past 15 years has brought to light the cognitive complexity of
school algebra. By coordinating analyses of classroom interactions, student interviews, and
teacher interviews concerning those interactions, this study sheds light on some of that
complexity and offers an alternative view for helping students and teachers address that
complexity: linking quantitative and orthographic reasoning.

Theoretical Framework
Several approaches to the study of algebraic reasoning focus on algebra as “generalized

arithmetic,” (Carpenter & Levi, 2000; Kaput, 1998) making the assumption that procedures
and inscriptions students learned in solving problems in which all values are known would
transfer to solving problems in which some values are known and others are unknown, or in
which some values could vary. In contrast, we take the position that algebra is much more
than generalized arithmetic. Reasoning algebraically requires a shift in goal structure from
computing an answer to generating a relation. Such a shift is not easily achieved. It requires a
focus on reasoning with quantities rather than on computing with numbers (Blanton & Kaput,
2000; Thompson, 1990). On top of that shift in goal structure and focus is layered a new
syntax with its own orthographic rules that are different from the syntax rules of arithmetic
(Mikulina, 1991), and graphical representations that need to be interpreted by students, but
are not necessarily interpreted as intended (Chazan & Yerulshalmy, 2003). This study builds
on our previous work with learner’s difficulties with quantitative units when solving word
problems (Olive & Ça_layan, 2006) as well as prior research in this domain (Schwartz, 1988;
Behr, Harel, Post & Lesh, 1994; Kieran & Sfard, 1999).

Context and Methodology
This study took place in an 8th-grade classroom in a rural middle school in the

southeastern United States.  The 24 students were between 13 and 14 years old and had been
placed in the algebra class based on their success in 7th-grade mathematics. The students were
racially and social-economically diverse, with an approximately equal distribution of gender.
The first eight class lessons on a unit that focused on graphing and solving systems of linear
equations were videotaped using two cameras, one focused on the teacher and the other on
the students. Four students were interviewed twice in pairs (a pair of girls and a pair of boys)
during the three weeks of the study. The classroom teacher was also interviewed twice during
the three weeks. All interviews were videotaped. Excerpts from the classroom videotapes
were used during both student and teacher interviews to provoke discussion of the learning
that was taking place in the classroom. Excerpts from the videotapes of student interviews
were also used in the teacher interviews. This paper focuses on selected problems from Unit 6
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of College Preparatory Mathematics, Algebra 1 (CPM, 2002). Some problems were based on
contextual situations involving co-varying quantities that could be modeled by a system of
two linear equations, others focused on notational form of linear equations (e.g. y-form) and
most involved graphing the linear equations to find a solution to the system as well as using
algebraic substitution to find a solution.

Each day the classroom video data from the two cameras were viewed and digitally
mixed using a picture-in-picture technology. A written summary of the lesson with time-
stamps for video reference was created from the mixed video. These written “lesson graphs”
were then used to select excerpts from the classroom video to be used in the student or
teacher interviews, and to plan questions and related problems to pose to the interviewees in
an effort to understand how the students (and teacher) had interpreted the problems and the
classroom discussions that followed from different students’ attempts to address the
problems. Subsequently, the corpus of classroom video data was reviewed, along with the
related lesson graphs to generate possible themes for a more detailed analysis.  All student
and teacher interviews were transcribed from audio files created from the videotapes of the
interviews. A chart of relationships among class lessons, student interviews and teacher
interviews was then created. A retrospective analysis, using constant comparison
methodology, was then undertaken during which the classroom video, related student
interviews and teacher interviews were revisited many times in order to generate a thematic
analysis from which the following results emerged.

Results and Conclusions
Issues that arose from our analyses include the following:
 Distinction between an equation in one unknown (e.g. 75=10x) and an equation as a

linear function (e.g. y=10x), where both are representing a journey traveled at 10 mph
for x hours, and the total trip is 75 miles.

 The algebraic notation “x” standing for both a fixed, unknown quantity and a variable.
 A disconnect between the written equation and the graph representing the situation

(e.g. do students understand that all points on the line graph satisfy the equation?).
 Graphs as discreet, point-wise maps of pairs of numbers derived from tables of values.
 Surface association among the numerical values in an equation and coordinates on the

graph (e.g. coefficients of x-terms determine the intersection point of two lines).
 Interpretation of “slope” of a line on a graph as iterations of discreet composed units

(e.g. “2 up and 1 over”) or as “composed unit of differences” (Lobato and Siebert, 2002).
 Solving equations by a series of arithmetical operations (over-generalizing arithmetic

operations when using algebraic notation: e.g. -3x=-4x+2 reduces to -4x=-4+2 by
taking an x from each side of the equation) and problems with negative variables (Are
their values always negative?).

 Confusion with the substitution method for solving a system of two linear equations
when both equations are equal to the same goal quantity – the solution may not solve
either equation (e.g. saving for a bike that costs $300 where the saving rates are different).

 Coordinating quantitative units – especially in situations involving both extensive and
intensive units (Olive & Ça_layan, 2006; Thompson, 1990).

 Teacher’s selection of equations to solve that help students grasp the mathematics.
One conclusion that emerged from this study is that many students’ problems arose from

over-generalizing arithmetic procedures that were used successfully in solving situations with
known, fixed values, to situations where quantities varied or were unknown (e.g. 5+.25=5.25
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but 5+.25x≠5.25x). Another conclusion that we draw from this study is that for many
students there is a disconnect between their graphical representations of situations and the
algebraic equation representing the same situation. As Chazan and Yerulshalmy (2003) point
out, “graphical representations are complex. One cannot simply expect students to be able to
read these representations in the ways they are intended” (p. 131).

Overcoming these difficulties requires a shift in students’ ways of thinking about
quantitative situations, and appropriately designed pedagogical situations along with
scaffolding by a sensitive teacher (attuned to students’ difficulties) to encourage the shift
from thinking about specific values in a situation to coordinating varying quantities. This
shift in quantitative reasoning needs to be linked with a necessary expansion of students’
orthographic reasoning; they need to learn a new notational syntax that does NOT follow the
same rules as the syntax of arithmetic. For example, when we add 50 and 3, we make a
contraction of the two numbers and write it as 53, but we cannot do the same for adding 50 to
x or adding 50 to 3x or adding 5 to x; but we CAN make a contraction when multiplying 5 by
x to get 5x. Our study suggests that linking such algebraic expressions with real quantities
and emphasizing the name-unit coordination of those quantities may help students to come to
terms with the rules of this new syntax.
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This report focuses on a case study of one secondary mathematics teacher and his development
of conceptualizing multiplicative behavior in the context of real-world applications involving
exponential functions. Data collected through interviews and teaching experiment methods
provided evidence for how emphasizing exponentiation as a process can result in an increased
ability to describe exponential behavior in robust and powerful ways.

Exponential functions are one of the most important function families taught in high school
algebra and expanded upon in college level mathematics courses. This function family provides a
model for representing multiplicative growth and decay patterns emerging from our everyday
world. It is vital that mathematics teachers provide meaningful opportunities for students to
develop robust conceptions of exponential behavior to enhance students’ ability to make sense of
the world around them.

In this discussion, the researcher presents a description of a secondary mathematics teacher,
Ben, and his ways of thinking about exponential behavior. This story focuses on addressing the
research questions of this study: (a) What conceptions does Ben hold about the notions of
exponential growth and decay? and (b) in what ways does an instructional unit focused on
exponential functions and multiplicative reasoning facilitate the development of Ben’s
understanding of exponential behavior?

Theoretical Framing of the Study
Drawing from the research literature on exponential functions by Confrey and Smith (1994)

and Weber (2002), the researcher developed a framework to characterize the notation, language,
and reasoning abilities needed to posses a mature understanding of exponential functions. The
purpose of this framework was to provide guidance in developing curricular activities on
exponential functions, as well as to direct data collection and analysis of this research project.
One component of the framework included exponential notation which can oftentimes be a
source of difficulty for students due to impoverished understandings of the exponentiation
process (Weber, 2002). Findings from Weber’s study suggest that students benefit from a more
conceptual understanding of exponent operations as opposed to relying on rote memorization.

This report focuses on Ben’s development in conceptualizing 

€ 

bx as representing 

€ 

x  factors of

€ 

b for rational values of 

€ 

x  using appropriate notation and language. Interpreting 

€ 

bx in this
manner proved to be a critical conception in transitioning to conceptualizing exponentiation as a
process. In this report, the researcher concentrates on this one component of the exponential
function framework to provide evidence for how emphasizing exponentiation as a process can
result in an increased ability to describe exponential behavior in more robust and powerful ways.
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Methods
This case study focused on Ben who was enrolled in a graduate-level mathematics education

course, called Functions: Mathematical Tools for Science. This exploratory investigation
employed task-based interviews and teaching experiment methodology to study teachers’ ways
of thinking about exponential behavior (Steffe & Thompson, 2000). The researcher conducted
two interviews, which were structured around 10 mathematical tasks involving exponential
functions, multiplicative reasoning and covariational reasoning. The teaching experiment
consisted of six two-hour episodes conducted over the course of four weeks. All interviews and
teaching experiment episodes were videotaped. All data was analyzed qualitatively for the
purposes of describing in detail teachers’ ways of thinking. Qualitative analysis included
retrospectively analyzing all videotaped sessions and coding teachers’ utterances based on the
framework.

Results and Discussion
Ben’s ability to describe exponentiation in robust ways seemed to evolve over the course

of this study. The interview data, which provided an initial evaluation of Ben’s understanding of
exponential behavior, suggest that Ben held an image of exponential behavior as a limited
recursive process. While Ben was able to think about statically multiplying previous outputs by a
factor to obtain the next output value, he was unable to extend this process of recursion for all
values of the domain.

In one interview task on comparing a multiplicatively increasing salary (growing by
constant percent) with an additively increasing salary (growing by constant amount), Ben was
able to articulate the idea of changing rate of change relative to constant rate of change. However
when asked to determine the two salary values after 10 years, Ben was unable to use the
exponentiation process of repeatedly multiplying the previous value by the given percent for the
number of years necessary even though he recognized that “your raises are going to continue to
increase as your salary continues to increase because it’s dependent on whatever that previous
year’s salary was.” Excerpt 1 illustrates Ben’s inability to extend his static image of
exponentiation as recursion to more dynamic images of recursion.

Excerpt 1
Ben: 1 You can easily predict what your [additive] salary’s going to be in 10

2 years because that means your salary went up $10,000 [$1000 for 10
3 years] whereas with the [multiplicative salary] it’s a little more difficult
4 to predict where 7% is going to take you in 10 years because it’s 7% on
5 top of whatever your previous salary was…you would have to know what
6 year nine was.

This interview passage illuminates Ben’s ability to conceptualize the process of repeated
addition for linear function situations (lines 1-2) yet he could not apply this notion to the process
of exponentiation as repeated multiplication. The evidence gathered in this study revealed how
deep-seeded Ben’s notion of exponential (constant percentage) growth is within the recursive
model of how a future output value is calculated based on the previous output value. The notion
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of exponential behavior as recursion seems restrictive for Ben in thinking about exponential
behavior in terms of an exponentiation model where the growth factor is multiplied by itself by
the number of compounding periods (i.e., the number of years passed). Using this dynamic
exponentiation as recursion model, the salary after 10 years could be found by taking the initial
salary of $35,000 multiplied by 

€ 

(1.07)10  where the growth factor of 1.07 serves as the
multiplicative object connecting the initial value and the desired output for a given input value.
This model provides the opportunity to think about exponential behavior beyond recursion when
previous output values are unknown. Ben did not realize how to jump from an initial salary to the
tenth year salary without knowing the intermediate salaries through year nine. This data seems to
suggest evidence of Ben’s inability to continue the process of repeated multiplication and
connect this process with exponentiation. As a result, Ben’s model of exponential behavior as
recursion restrained him from considering how this process can be continued indefinitely.

During the teaching experiment sessions, Ben was able to make advances in his
understanding of exponentiation. Activities for the teaching experiment were explicitly designed
to build Ben’s ability to use language and notation to represent 

€ 

bx as 

€ 

x  factors of 

€ 

b. Towards the
end of the teaching experiment, Ben was able to describe how 

€ 

0.635( )x  could be conceived as
having “infinite amounts of the 0.635’s you could be multiplying together.” Ben followed up by
explaining “that’s why it’s never going to get down to zero cuz there’s always going to be a
0.635 you can multiply in there further down the line.” During the last episode, Ben was able to
describe 

€ 

ert  as “

€ 

er raised to the 

€ 

t  power so when you raise to another power you multiply those
two powers together it means that I have 

€ 

t  amount of 

€ 

er so that will give me 

€ 

t  amounts of 

€ 

er.”
While most of Ben’s explanations involved an integer amount of factors of the base value, he

was able to provide a glimpse into thinking about the effects of multiplying by a full factor.
Excerpt 2 illuminates evidence of this shift in Ben’s thinking about 

€ 

bt .

Excerpt 2
Ben: 1 That’s how much it’s growing by so like each time we add to the 

€ 

t  we are
2 increasing by another 

€ 

b so a whole 

€ 

t  I mean so like from 

€ 

t  is one to 

€ 

t  is
3 two I go from having one 

€ 

b to now I’m increasing it by multiplying in
4 another 

€ 

b then another 

€ 

b and another 

€ 

b as 

€ 

t  is increasing…I have 

€ 

t
5 amount of 

€ 

b’s.

In line 2 of Excerpt 2, Ben was able to articulate how a “whole 

€ 

t ” would produce a full
factor of 

€ 

b and thus he could continue to multiply by full factors of 

€ 

b for increasing values of 

€ 

t .
Ben’s ability to think about (a) full factors of 

€ 

b,  (b) 

€ 

ert  as 

€ 

er( )
t
 and representing 

€ 

t  amounts of

€ 

er, and (c) 

€ 

0.635( )x  as an infinite amount of 0.635’s multiplied together provided powerful
opportunities for Ben to conceptualize exponential behavior relative to function situations
involving various contexts. The foundation for which dynamic conceptions of exponential
function is built upon is first constructed by the ability to view 

€ 

bx as a multiplicative process of
multiplying 

€ 

x  factors of 

€ 

b. This fundamental characteristic of exponential behavior can then be
extended to exponential functions of the form 

€ 

f (x) = abx  where 

€ 

f  is viewed as the result of the
multiplicative process of multiplying the initial value by 

€ 

x  factors of 

€ 

b.
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Being able to represent the same mathematical concept differently is among many reasons
why multiple representations have gained importance in mathematics education. Algebra
students’ attitudes towards and preferences for representations to solve mathematics
problems will be discussed. Results provided will indicate that the type and difficulty of a
problem might affect students’ preferences along with students’ previous knowledge and
experiences.

It is suggested that multiple representations provide an environment for students to
understand many major and abstract mathematical concepts when moving among different
representations of a mathematical idea. The goal of this study is to explore students’
preferences towards external mathematical representations in the problem solving process
and whether those preferences change when they use a particular representation to solve that
mathematical problem. Through the synthesis of various studies on students’ preferences for
representations, the framework for this study was constructed (such as Cunningham, 2005;
Keller and Hirsch, 1998; Senk & Thompson, 2006; Waters, 2004). The framework included
internal and external factors affecting students’ preferences. Internal factors are primarily
related to students’ cognitive processes, including preferences, experience and knowledge of
the mathematical subject, and beliefs about mathematics. External factors summarize features
of the outside environment, which might have an immediate effect on the ways of doing
mathematics. The difficulty of the problem and the way that problem is presented could
influence preferences or the use of a particular representation. Pedagogical aspects, such as
the use of simultaneous multiple representations or weighted use of symbolic representation
in instruction, and the use of technology or graphing utilities are examples of external factors.

Methods
Algebra I students in ninth grade (n=25) in a Midwestern high school area were asked to

express their preferences to solve several mathematics problems. A representation preference
instrument was developed and administered twice in order to investigate students’
preferences towards particular representations. The instrument is adapted from Keller and
Hirsch (1998). Eight tasks were presented with three representation choices: table, graph, and
equation. Two main types of tasks—four contextualized and four non-contextualized—were
involved in order to investigate whether the type of question affects students’ preferences.
Because the type of representation students use to solve a problem could be different from
their preferred representation, questions in the first administration did not ask them to solve
problems, but only to indicate which representation they would prefer to use. In the second
administration, students were asked to solve the same problems and indicate the
representation type used. A survey with a four point Likert scale and ten open-ended
questions was used in order to obtain information about students’ preferences and attitudes
towards mathematical representations. Students’ responses to open-ended questions were
coded and categorized. With the help of a panel of experts, instruments were improved and
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their content validity was obtained. Cronbach’s Alpha reliability coefficient for the
Representation Preference Instrument was calculated as .61. Data triangulation, member
check, and peer debriefing were used to ensure the trustworthiness of the data.

Results and Discussion
Most of the students (96%) agreed that mathematics problems could be solved in various

ways using different representations. Although they liked using more than one representation
in solving mathematics problems (66%), they agreed it is easier to focus on one
representation (72%). Ninety-two percent of the students also agreed that using different
representations does not lead to different answers. Students reported that they preferred tables
(56%) and equations (40%) to graphs (4%). Graphs (52.4%) and equations (42.9%) were
considered more confusing than tables (4.8%). The students’ responses to the open-ended
questions revealed that personal inclination played an important role in preference for a
particular representation. Being uncomfortable with one representation was the reason for
some students to prefer a different representation. Previous experience with or knowledge of
a representation and knowing how to manage it was another common reason for students to
choose one over another.

Cross-tabulation was used to determine whether students’ preferences in the first
administration and the representation they used to solve the questions in the second
administration changed or remained the same. A table was the most preferred and used
representation. The dominant arithmetical experience in K-8 education might lead students to
prefer tables for numerical representation. For half of the questions, students’ preferences and
usage of representations was not completely in agreement. It could be concluded that
students’ intended preferences to solve a particular problem could change when the time
actually comes to solve it.

Participants seemed to have certain preferences for specific types of problems. Tables
were preferred for the contextual single step problems. Graphs came more into play when
more interpretation was involved. Equations were mainly preferred for non-contextual
problems. Sometimes students are intentionally taught how to solve a specific type of
problem using a certain representation such as detecting slope and y-intercept from an
equation without any interpretation.

Students are developing their preferences towards representations where internal factors
play important roles. Taking those personal preferences, previous experiences, and
knowledge that students bring to the classroom into consideration; teachers could be more
beneficial in creating effective teaching and learning environments. Moreover, since external
factors might sometimes help and sometimes hinder students in developing their preferences,
educators should be careful in designing instruction. Dominant use of a particular
representation might restrict students’ preferences towards or usage of different
representations. Providing multiple representational environments could be beneficial for
students to become aware of what kind of information a representation may offer that is
different from another representation.
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Our focus was to link students’ activities when engaged in a number of open-ended tasks to their
growth of mathematical understanding. A teaching experiment with pre-algebra students was
conducted to enhance understanding of algebra concepts. Basing the analysis of four open-
ended tasks on frameworks developed by Pirie and Kieren (1994) and Lesh and Kelly (1994),
findings indicate a close relationship between tasks actions required of students and students’
actions related to understanding. The findings reported here are a step toward the development
of a theory that links mathematical tasks to students’ growth of mathematical understanding.

Introduction and Frameworks
Tasks that promote problem-solving and mathematical reasoning are powerful tools of

mathematics instruction, having the potential to build meaning, make sense, and connect ideas
(Lesh & Kelly, 1994). Lesh and Kelly (1994) state students’ understandings are constantly
evolving over time and are never complete, suggesting an iterative learning process. They
propose that tasks, experiences, and/or prior models, may impede or hasten the growth of this
understanding. In describing what makes a mathematical task worthwhile, Smith and Stein
(1998) focus on the cognitive demands of tasks on students’ thinking and identifying features of
the task associated with high and/or low levels. Heid, Hollebrands, Blume, and Piez (2002)
acknowledge that their definition of “task” differs from that of Smith and Stein in that they
envision tasks as directed by the goals of learning and occurring within a context that uses
technology as a tool of instruction. Their instrument identifies the sequence of tasks in which
students, working with technology, engage. This paper addresses the role that students’ actions
play in the growth of understanding fundamental algebraic concepts when engaged in open-
ended tasks. Christiansen and Walther (1986) speak to both task and activity as inextricably
linked within the instructional context. We define tasks within the role that they played in a
teaching experiment taking place during an academic year. Focused on pattern finding, the tasks
were open-ended in terms of students’ strategies, the representations they chose to describe the
patterns, and student outcomes. In this sense, the tasks were non-routine and unlikely to have
been previously experienced by students. The initial goals of the teaching experiment tasks were
to develop growth in understanding of 1) early algebra concepts including variable, change, co-
variation, and 2) representations of mathematical ideas including words, tables, graphs, and
symbols (Mojica et al., 2007; Wilson, et al., 2007; Bell & Ives, 2007). Our focus in this paper is
to link students’ activities when engaged in a number of open-ended tasks to their growth of
mathematical understanding.
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The first framework of this study is drawn from the work of Lesh and Kelly (1994) who
proposed six student actions that define worthwhile tasks. Definitions of these actions were
developed and modified based on data collected in this teaching experiment. Similarly to Lesh
and Kelly, we define ”model” broadly to include representations of the ideas such as charts,
graphs, tables, words, formulas, or concrete materials.
 Constructs model (C):  Uses manipulatives or drawings to construct what is given.
 Modifies model (MO):  Makes modifications to the given stages - adding/recording data.
 Extends model (ET): Draws/constructs next stage(s) using information from given stages.
 Manipulates model (MA): Uses another representation to record the data (ie. tables, graphs).
 Explains model (EP) : Explains in words features of the task. May include how to 1)

construct, verify, or modify the model, or 2) obtain the next stage numbers
 Predicts model (P):  Generalizes a rule that uses two variables to predict nth term.

The second framework was selected to determine students’ actions related to their growth
of understanding (Pirie & Kieren, 1994). This recursive, iterative, and dynamic framework
consists of eight levels of student actions. We considered the first five Pirie/Kieren actions in
our analysis of the tasks. These terms imply an order in that primitive knowing is the innermost
action and formalizing is an outer action. Folding back is their term to describe non-linear
actions as students move back to “thicken” inner levels of understanding.
 Primitive knowing (PK): Using previous knowledge to engage in the new task
 Image making (IM): Making an image of the task using a variety of concrete actions
 Image having (IH): Taking the visible image and mentally manipulating that image.
 Property noticing (PN): Noticing properties or features related to the task
 Formalizing (F): Generalizing a rule related to the task
Codes that explain the Table 1categories are included in parentheses after each framework term.

Method and Results
The teaching experiment was conducted during three-day, 90-minute sequences in August,

November, January, and March with 18 eighth grade students taking pre-algebra. Tasks were
selected that required students to work in small groups, often with manipulatives, to find patterns
related to perimeter. Two graduate students with five-years of teaching experience guided
instruction in both small group and large group sessions. The tasks involved students in looking
for patterns to generalize rules from the data they collected.  Artifacts and videotapes were
sources of data collected during class time, and were coded according to the 6 task actions (Lesh
& Kelly, 1994) and 6 understanding actions (Pirie & Kieren, 1994) for each of the four tasks

Table 1 summarizes the analysis of the data for four tasks that required students to generalize
rules relating to perimeter. Under each task, the categories of task actions and understanding
actions are headings for columns of cells that record, in sequence of occurrence, one observed
task action and the corresponding understanding action. The stair sequence task occurred in
August, the triangle and square train tasks were undertaken in November, and the hexagon train
task in January. Certain task actions appear to be associated with actions of understanding. For
example, constructing the model is always associated with image making in this analysis.
Modifying the model tends to be associated with image making, although not exclusively.
Explaining aspects of the model seem to elicit property noticing from students and usually
occurred in response to the teachers’ questions. Extending the model and predicting are
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associated with generalizing to formalize on the part of students. More variability was observed
for actions related to modifying the model although additional instances of this action are needed
from further analysis of the data. Also, the definition of the term, modify, may not be accurate.
Instances of folding back are found and movement between inner and outer layers of
understanding is evident. These results indicate that there appears to be a relationship between
students’ tasks actions and their growth of understanding actions.

Stair Sequence Task ` Square Train Task Hexagon Train Task
Task

Actions
Undstndg
Actions

Task
Actions

Undstndg
Actions

Task
Actions

Undstndg
Actions

Task
Actions

Undstndg
Actions

C IM C IM MO IM MO IH
MO IM MO IM MA F ET F
MO IM ET IM EP PN C IM
EP IH EP PN C IM MO IM
EP PN EP PN MO IM ET PN
EP PN P F MO IM EP PN
EP PN P F MO IH C IM
P F P F EP PN EP PN
ET F MA IM MA F P F
ET PN MO IM ET F MO PN
Table 1. A comparison of students’ task actions with their understanding actions across four
pattern finding tasks.

Discussion
The intent of engaging students in open-ended tasks is to enhance their growth of understanding
although Lesh and Kelly (1994) suggest that not all tasks are equal in terms of their usefulness
for increased understanding. Pirie and Kieren (1994) propose a model that assists our analysis of
student actions in relation to this growth of understanding. Their work posits that frequently
“folding back” to inner layers is an essential action in the growth of understanding. When
teachers begin their instruction by giving students a formula or definition, the students have no
supporting structures or inner layers and, according to Pirie and Kieren (1994), the formula or
definition becomes  “disjoint” from the student’s existing knowledge. They hypothesize that
further understanding is impossible without the supporting understanding of inner layers.  The
findings reported here have the potential for evaluating and designing open-ended tasks that
encourage students to construct, modify, and explain models so as to build understanding.
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For students beginning algebra, the concept of linear functions is central. As students
transition from arithmetic, pattern finding activities can act as a bridge to abstraction (Smith,
2003). This poster presents findings from a design experiment that seeks to help students
form ideas about covariation and function with pattern finding activities. Mathematical
functions can be seen as either a covariation between quantities or a correspondence between
values of two quantities. Though students may gain a deeper understanding if they focus on a
covariational approach and students usually approach function problems with a covariational
view (Borba & Confrey, 1996), much of school curricula present a correspondence approach.
Using stasis and change (Smith, 2003) as a frame, our research team designed a sequence of
tasks for a class of middle grades students to formulate notions of covariation using
patterning activities in efforts to provide conceptual underpinnings for the linear function
concept (see Mojica, Lambertus, Wilson, & Berenson, 2007). We conjectured that students
would attend to only one variable and generalize recursive patterns and have difficulties
transitioning to analyzing change in two variables (Wilson & Stein, 2007). Rather, many
students began with a cyclic view of patterns and described it with respect to time, but did not
acknowledge this second variable explicitly. The team designed a dialogue to help students
focus on linear growth. Also, we used a series of grid activities encouraging students to
analyze change in two variables individually and then to coordinate those changes, first with
pattern blocks and then with numbers. From these grids, students built tabular representations
and described those changes in words. When presented with pattern block activities after
experiences with this task, students attended to two variables simultaneously and began to
recognize covariation across verbal, symbolic, tabular, graphical, and physical
representations. At the end of the study, students were using arguments of involving rates of
change to solve problems involving linear functions. The findings suggest that explicit
attention to covariation may be a useful strategy in helping students transition from
describing change with one variable to the coordination of change across two variables, an
essential skill in approaching functions from a covariational perspective.
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Manipulating dynamic and linked multiple representations with the help of technology has
become one of the promising environments for students to study various algebra concepts. In
this research, students studied linear relationships with linked and semi-linked versions of the
same multi-representational software. This presentation will share the analysis of students’
learning processes in these environments through Piaget’s stage independent theory.

Studying the same mathematical idea with different embodiments was among the reasons
why the use of multiple external representations has gained more importance in mathematics
education. Linked multiple representations are a group of representations in which, upon
altering a given representation, every other representation is automatically updated to reflect
the same change (Rich, 1995). Semi-linked representations, on the other hand, are defined as
those for which the corresponding updates of changes within the representations are available
only upon request but are not automatic. Piaget (1952 and 1969) describes the development
of knowledge as a process of adaptation and organization. Adaptation occurs when the child
interacts with his or her environment. Assimilation is the process whereby the child integrates
new information into his or her mental structures, and it involves the interpretation of events
in terms of the existing cognitive structure, whereas accommodation refers to changing the
cognitive structure. Adaptation is achieved when assimilation and accommodation are
brought into equilibrium. Organization is described as the integration of cognitive structures.

Two groups of ninth-grade algebra students (n=20) used VideoPoint computer software
but with a different linking property—linked and semi-linked—for an 11-week period to
study linear relationships. VideoPoint is a software package that allows one to collect
position and time data from digital movies. Data collection methods included mathematics
pre-and posttests, follow-up interviews, and clinical computer interviews.

It was concluded that in the linked environment, when a question was asked, students
either used the linkage directly to answer the question or they assimilated the new
information and went to their previous knowledge to answer the question. When they used
the linkage, their explanation for their answer could be based more on the software. However,
in the semi-linked environment, students’ explanations were based more on the mathematical
aspects of the question. When students provided an inappropriate answer to a question and
they observed that they were not quite accurate through the linkage or computer feedback,
disequilibrium occurred. They needed to go back and interpret this new information through
their existing knowledge. If they could not interpret this new information, they needed to
accommodate their preexisting knowledge in order to reach equilibrium. Students who trusted
their knowledge and answers might not use the linkage at all. On the other hand, some
students did not use the linkage when they could have benefited from it.
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Ideas relating to pattern are part of students’ informal knowledge of algebra (Lannin,
2006). Pattern finding tasks, especially those which encourage students to make
generalizations, promote the development of algebraic reasoning in students. In this year long
teaching experiment, we focus on how middle school students communicate their
generalizations of patterning tasks with representations.

Students often communicate their ideas about mathematics using representations.
Friedlander and Tabach (2001) suggest the use of verbal, numerical, graphical, and algebraic
representations can potentially create meaning for students as they develop algebraic
concepts. Students also communicate their mathematical understanding using tables,
diagrams, gestures, models and metaphors.

The participants in this study are 18 eighth-grade students who are enrolled in a regular
mathematics class and are diverse in terms of race and gender. The sources of data used in
this study are student artifacts and videotapes of classroom teaching episodes. Analysis
includes: creating general description of the videotaped teaching episodes, identifying critical
events, and coding videotaped data and student artifacts.

Findings from this study indicate that the participants favored communicating their
mathematical ideas about generalizations using the following representations: numeric, both
verbal and written words, diagrams, and gestures. None of the students communicated their
generalizations about any of the patterns using graphs, even though they had previously
graphed linear functions and relations in their regular classroom setting.

Throughout this teaching experiment, students were engaged in patterning tasks in small
groups and as a whole class. Representations used for communication in small groups were
different than those used during whole class discussions. During small group work, students
mainly used words, diagrams, gestures, and numerical representations while generalizing;
however, they used words, tables, and algebraic equations and expressions while
communicating with peers and instructors during whole class discussions. If teachers want to
enhance students’ algebraic reasoning through patterning, they need to provide opportunities
for students to communicate using a wide variety of representations. Middle school teachers
should create learning environments to bridge informal written and verbal representations
with more formal systems of representations, like algebraic notation and symbols.

References
Friedlander, A., & Tabach, M. (2001). Promoting multiple representations in algebra. In A.

A. Cuoco (Ed.), The roles of representations in school mathematics: 2001 yearbook (pp.
173-185). Reston, Va.: National Council of Teachers of Mathematics.



214

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Lannin, J. K., Barker, D. D., & Townsend, B. E. (2006). Recursive and explicit rules: How
can we build student algebraic understanding? Journal of Mathematical Behavior, 25,
299-317.



215

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

REPRESENTATIONS USED IN GENERALIZING PATTERNS

Amanda Lambertus
N. Carolina State University

ajlamber@ncsu.edu

Gemma Mojica
N. Carolina State University

gmmojica@ncsu.edu

Sarah Berenson
N. Carolina State University
sarah_berenson@ncsu.edu

Students use various representations for generalizing patterns and move through levels of
complexity (Michael, Elia, Gagatsis, Theoklitou, & Savva, 2006).  This study is concerned with
external representations, meaning representations that are observed in students’ written work and
observed group work.  Specifically, we examined how students used manipulatives to build
patterns, tables, graphs, symbolic notation, numerical notation, and written notation in order to
generalize a pattern.  This study seeks to answer the following questions: Is there a tie between
students’ strategies using multiple representations, their justifications and levels of cognitive
complexity?

Michael et al. (2006) described three levels of cognitive complexity of understanding
relationships in patterns: empirical abstraction of mathematical relations, implicit use of a
general rule, and explicit use of a general rule.  In the first level, students are continuing to build
or create the pattern.  In the second level, students predict terms of further positions, although
they cannot continue the pattern.  Finally, in the third level, students are generalizing the pattern
and forming a rule.  Lannin (2003) observed a variety of strategies that students use to develop
generalizations of patterns: counting, recursion, whole-object, contextual, guess and check, and
rate-adjustment.

The participants in the teaching experiment are eighth grade students in a modified year
round school.  Students have participated in three cycles of a four cycle experiment.  The
students’ activities are video and audio recorded and their written work is collected.  By
examining and coding video data, the students’ work, strategies, and representations can be
tracked throughout the lesson.  For a pattern building activity in which students are using
toothpicks to model the truss structure of a bridge, they generalized early by using a few specific
strategies.  The students use the model throughout the activity to help them generalize and verify
their generalizations.  For level one cognitive complexity, continuing the pattern, the students
primarily relied on the counting strategy and their model.  One of the student’s proportional
reasoning demonstrated the level two complexity, predicting future terms of the pattern.  She
used knowledge created by the group earlier in the task, she then predicted future terms
(although incorrectly) by using proportions.  She demonstrated this technique using a numerical
representation.  For the level three complexity, the students jumped to finding a formula to
describe the pattern.  Initially, the students built on the proportional reasoning, later tying a
contextual strategy to the problem.

The students’ strategies and representations for this particular activity can be followed
through the cognitive complexity levels.  Further results and analysis will be provided in the
presentation.
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This paper examines two aspects of the processes employed by college students as they re-
present verbal problem statements as algebraic equations. First, the objects of students’ initial
focus and subsequent knowledge activations are used to describe the schemas engaged during
symbolization. Second, the interactions between the problem format and the learners’ cognitive
activity are examined.

The recognition and subsequent symbolic representation of the relationships embedded in
situations are necessary components of applying algebra during problem solving. This study has
two purposes related to these components. The first is to develop understanding of the cognitive
structures employed by learners as they re-present verbal problem statements as situational and
then algebraic experiences. The second is to examine the effects problem statements and
situations have on the application of these structures. Algebraic representation is viewed as a
constructive process integrating components from and interactions among multiple knowledge
areas including understanding of problem statements, problem situations, and algebraic forms.
This work builds on studies of symbolization, such as Sims-Knight and Kaput, (1983) and
problem solving, such as MacGregor and Stacey, (1998).

Task based interviews are employed to collect data. Four college students are asked to
generate linear equations to represent a series of familiar experiences presented in nontraditional
formats such as: “If gas costs $3 per gallon, write an equation to relate the total cost T to the
number of gallons of gas purchased.” The participants’ responses are analyzed from two
perspectives. First, their initial focus and subsequent knowledge activations are used to describe
the schemas employed during symbolization. Second, the interactions between the problem
format and the learners’ cognitive processes are examined. The variations in how students
activate, connect, and utilize these different structures in different situations are compared.

Participants’ initial focus is consistently on familiar aspects of the tasks, but those aspects
differ based on the learners’ experiences. The results indicate there are differences in knowledge
application associated with representation effectiveness. Less adept students have firmer
expectations concerning the explicit information provided by a problem statement and rely more
on that information. They attempt to generate equations without activating experiential
knowledge of the situations and subsequently struggle with more abstract problem statements.
More adept students may activate situation knowledge and determine a mathematical relation
between quantities. They then restructure the situational relation to fit existing algebraic models.
The most proficient learners recognize embedded relations in the described situations, activate
appropriate algebraic equations, and fit the situation components to the equations. This last group
is least affected by statement format.
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Fifty 4th-17th-grade students participated in individual interviews oriented toward probabilistic
intuition. Participants were given a boxful of equal numbers of green and blue marbles, mixed,
and a device for scooping 4 ordered marbles and asked to predict the most common sample.
Students replied that the outcome with the highest relative frequency would have 2 green and 2
blue marbles. Their verbal reasoning was accompanied by a deictic–metaphoric gesture to the
left then right, as if they were separating the colors in the box. Gesture, I argue, bridges direct
intuitive grasps of situations to conscious reflection, thus concretizing the prereflective, possibly
grounding it in material form such that it emerges as conducive to further elaboration in mimetic
symbolic form. Situated mathematical reasoning transpires largely as embodied negotiation
among kinesthetic image schemas afforded by available material resources and epistemic forms.

“The soul never thinks without an image” (Aristotle, On the Soul, 350 B.C.)
“To see a world in a grain of sand…” (Blake, Auguries of Innocence, ~1800)

Objectives
The objective of this study is to contribute to research on mathematical cognition by

illuminating implicit processes of embodied reasoning in situated problem solving. I argue that
situated mathematical reasoning transpires as an embodied negotiation between
material/perceptual affordances of phenomena and evolved cultural–historical cognitive artifacts
that include physical utensils, symbolical forms, and figures of speech. To build this argument, I
present empirical evidence of students engaging kinesthetic–imagistic reasoning in solving a
situated probability problem. I propose that situated mathematical reasoning transpires neither as
direct translation (mapping) from phenomena to symbols nor as chains of signification, as some
studies of semiotics or anthropology-of-scientific-practice may suggest, but in embodied
modalities drawing on both the material and symbolical and operating in complex dynamical
feedback iterations, in which these resources reciprocally constrain each other toward achieving
structures evaluated as cognitively coherent, locally effective, and socio–mathematically
normative. Specifically, I conjecture that material affordances of situated objects may facilitate a
gesture-based bridging from unreflective kinesthesia to representational intentionality, a process
that is instrumental to individual reasoning stimulated by and conducted in interpersonal
discourse practices. I speculate whether the mathematics-education community currently has
theoretical, methodological, and pedagogical wherewithal to successfully interpret the nature and
mechanism of such commonplace multimodal reasoning so as to draw implications for the
design and facilitation of learning environments. Toward this goal, I articulate the nature of
special mathematical learning tools—reflexive artifacts—that are conducive to drawing on
embodied resources such that the resources are coordinated into emergent solution procedures.
These tools may currently be rare, yet articulating their nature could be conducive toward
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designing new reflexive artifacts that facilitate students’ guided mathematical reasoning. As
such, this paper is part of an ongoing project to develop a design framework including principled
methodology for implementing constructivist pedagogical philosophy in the form of content-
targeted artifacts, activities, and facilitation emphases (see Abrahamson & Wilensky, 2007).

Theoretical Background
Following renewed post-Behaviorist interest in the roles of vision in mathematical reasoning

(Arnheim, 1969; Davis, 1993; Goldin, 1987), the mechanisms of imagery, in its broad
multimodal sense, have become foci of research on mathematics education (Presmeg, 2006;
Schwartz & Heiser, 2006). Yet, whereas design-based researchers have been cognizant of the
roles of perception in mathematical learning, attention to the microdynamics of multimodal
reasoning has not been articulated or consolidated in the form of a methodology with clear
directives for practice (but see Case & Okamoto, 1996, for a neo-Piagetian approach to the
design of contexts that support students in drawing on multiple resources and integrating these as
a ‘central conceptual structure,’ e.g., the case of counting, in which speech, perception, and
gesture are implicated). It thus appears timely to integrate considerations of multimodal
reasoning into design-research methodology including emphases for microgenetic data-analysis
of learners’ moment-to-moment interactions with artifacts designed to support content learning.
Toward outlining such a prospective methodology, this paper closely examines a case study as a
means for considering several theoretical models and their attendant methodologies, including
the following. McNeill’s (1992) foundational taxonomy of gesture types facilitates interpretation
of students’ multimodal actions as thinking-for-speaking with artifacts, with each micro-moment
constituting context for the subsequent embodied-cognition act. Grice’s (1989) theory of
pragmatics helps us interpret students’ gestures as including aspects of ostentation and
clarification that respond to the interlocutor’s conjectured perspective. Pirie and Kieren (1994)
offer a methodology for monitoring a student’s personal invention, consolidation, and use of
images that ground the meaning of a mathematical concept and later serve as resources for
further conceptual differentiation and development. Schwartz and Heiser (2006) draw on their
empirical studies of students’ situated problem solving to discuss the difficulty of coordinating
modalities (e.g., motoric and imaged)—work suggesting the importance of learning
environments that facilitate such coordination. Fauconnier and Turner’s (2002) conceptual blend
model illuminates cognitive mechanisms underlying the superimposition of images or percepts,
offering a viable extension of standard cognitive-science problem-solving models to include
attention to metaphor as image- and not proposition-based. Finally, Hutchins and Palen (1998)
delineate a distributed-cognition approach to explain the ubiquitous, quotidian, and inextricable
roles instruments play in supporting the coordination of multimodal and multi-person resources
in routinized, practice-based, problem solving. These learning-sciences resources have informed
the development of a constructivist/socio-constructivist approach to design that treats students’
mediated with-tools phenomenology as epigenetic of reinvention and conceptual understanding.
In particular, I seek to understand the ongoing construction of mathematics as developing webs
of coordinated multimodal resources. Data from design-based research studies constitute useful
arenas for investigating tool-based epigenesis of mathematical constructs, particularly due to the
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designer’s nuanced understanding of the artifacts students engage in problem solving—the tools
material properties, embedded mechanisms, contexts, and affordances of conceptual emergence.

Data Sources
The data used in this study are drawn from a design-based research project exploring the

nature, roles, and mechanisms of intuition in mathematical reasoning and learning. The subject
matter content that served as context for this study was probability and basic statistics. The study
was conducted in the form of ~75-minute semi-structured clinical interviews in which students
engaged individually in problem-solving and construction activities, using a set of innovative
learning tools under development. We have interviewed over 50 students, including Grade 4 – 6
students as well as undergraduate and graduate students majoring in mathematics, statistics, or
economics programs (for the design rationale, learning tools, and analysis of empirical findings,
see Abrahamson, 2007b; Abrahamson & Cendak, 2006). The current study seeks to achieve deep
understanding of a particular brief behavior manifested by most of the participant students.

Figure 1. The marble-scooper randomness
generator consists of a boxful of hundreds of marbles

of two colors and a utensil for scooping out a fixed
number of marbles. In the current embodiment, there
are equal numbers of green and blue marbles (p = .5),

and the scooper accommodates exactly 4 ordered
marbles. At the onset of the interview, students are

asked, “What will happen when you scoop?” Problem
solving and discussion involve several other mixed-

media learning tools pertaining to sampling,
randomness, distribution, and combinatorics.

Figure 1, above, shows the marble-scooper device developed for our studies. Each concavity
in the scooper can hold a single marble. The simultaneous scooping of four marbles out of the
hundreds of marbles is arguably commensurate with flipping four coins (or flipping a single coin
four times). Thus, the device supports a situated study of the binomial function (a + b)4. There
are 16 unique outcomes in operating this stochastic generator (24). For equal numbers of green
and blue marbles (p = .5), the expected outcome distribution in empirical experiments is
1:4:6:4:1, where these five coefficients correspond, respectively, to the cases of selecting exactly
0, 1, 2, 3, or 4 green marbles in any order (the rest would be blue). Thus, the numeral ‘6’
indicates an expected plurality of samples with two green and two blue marbles in any order.

By and large, all our participants predicted the 2-green–2-blue outcome as the most common.
When asked to support their prediction, all students initially said either that, “It looks that way”
or that they do not know how they know. For example, one applied-mathematics major said, “I
don’t know the reasoning behind it, but it seems kind of obvious to me.” Upon further thought,
undergraduate and graduate students articulated this intuition, saying that the most common
sample should reflect the green-to-blue ratio in the box. Only upon prompts did these older
students apply notions and solution procedures relating to expected value, the law of large
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numbers, the central limit theory, and the binomial function (the “mathematical reason,” as one
student called these). This study focuses on students’ initial, “non-mathematical,” yet accurate
judgment. In particular, I examine the microgenesis of seeing and applying symmetry and
proportionality in probabilistic reasoning (for a survey of related work, see Jones, Langrall, &
Mooney, 2007; in particular, see Tversky & Kahneman, 1974, for classical demonstration of the
‘representativeness heuristic’). A broader objective framing my work is to develop content-
targeted learning tools, activities, and facilitation supporting students in acknowledging their
non-analytic perceptual intuitions and coordinating these intuitions with standard solution
procedures—I view mathematics learning as the self study of perception (Abrahamson, 2007a).

Methods
My research group, Embodied Design Research Laboratory, based in UC Berkeley’s

Graduate School of Education (http://edrl.berkeley.edu/), operates primarily in design-based
research methodology, in which we investigate mathematical cognition through engaging
students in activities with objects of our design (Cobb, Confrey, diSessa, Lehrer, & Schauble,
2003). Once we have elicited video/audio data, we study student learning using collaborative
microgenetic qualitative-analysis methodology (Schoenfeld, Smith, & Arcavi, 1991). Thus, we
select and intensely examine short data episodes in attempt to build as complete as possible an
understanding of students’ thinking processes. For example—and most pertinent to the current
study—, in order to conjecture as to the resources students bring to bear in addressing a situated
mathematical problem, we pay attention to students’ gestures as they problem solve (see Alibali,
Bassok, Olseth, Syc, & Goldin-Meadow, 1999). Through iterated viewings, comparison, and
debate, members of the research team become fluent in the entire data corpus, such that analysis
of each participant’s data is contextualized by the complete interview as well as by all other
participants’ responses to corresponding items in the interview protocol. Whereas this approach
is methodologically incomplete, the potential validity of our insights lies in students’ increased
facility with learning tools that are improved iteratively, based on these insights, and in
subsequent triangulation with the literature and further data analysis. This paper reports on our
analysis of students’ reasoning processes as they initially brought to bear intuitive resources to
respond correctly to the marbles problem. More broadly, we are interested in emergent relations
between material substance (marbles, scooper, box) and conceptual constructs (e.g., probability,
proportion) and the roles embodiment plays in supporting students’ problem-based construction
of mathematical content as semiotic coordination of material and epistemic resources.
Understanding these complex dynamical processes informs our design of learning environments.

Results, Analysis, and Discussion
While referring verbally to equal proportions of green and blue in the marble box, about 3/4

of the students gestured to one side and then to the other, as though the hundreds of marbles were
separated by color to the left and right of the box. In so doing, several students performed a
left–right gesture away from the box without any clear referent, some gestured either toward the
box itself or to a box they constructed with gestures, and some of the participants
indicated—even touched—the middle point of the box immediately prior to gesturing to the
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“blue half” and the “green half.” We will focus on LG, who was typical in manipulating the
perceived and imaged.

Sample Data: The ‘Equal’ Gesture

00:01 00:02 00:03a 00:03b 00:06 00:07
LG (6th grade):
If there’re equal
amount

of colors on each,
[hands flap up
and down]

side, -- I guess you’re less likely
[scoops] to get more of
one color than the other.

Figure 2. A student engages in multimodal reasoning to support his anticipation of the
most frequent outcome in an experiment with the marble-scooper stochastic device (p = .5).

The 4-second pause in LG’s utterance suggests that his gestures are integral to the reasoning
process, not post hoc. LG’s entire sentence is built in the form of an IF–THEN structure: “If…,
[then] I guess…” In the IF clause, LG constructs properties of the stochastic generator, whereas
in the THEN clause he expresses assumed operative consequences of this construction for the
expected empirical outcomes of the projected experiment. Each of these two conjoined clauses is
uniquely associated with a proximal seeing of the marble box, yet in the IF clause the marbles
are separated, whereas in the THEN clause they are mixed. Thus, in his IF clause, LG considers
an event that is complexly related to the distal phenomenon before him. Namely, it is not the
case that “there’re equal amount of colors on each side”—the physical marbles are in fact mixed
and not separated. What, then, is the nature of LG’s statement? What is he referring to? Why
does a casual apprehension of LG’s discourse not appear strange to an unreflective interlocutor?
Following, I attempt to explain the nature of the gesture—its contexts, mechanisms, and roles.

Data Analysis: The ‘Equal’ Gesture as a Window Onto Problem-Solving Processes
To begin with, the social situation suggests that there is relevant information to derive from

the box so as to respond to the question about the scooper. Hence, the symmetrical shape of the
scooper—seen as two concavities on the left and two on the right—foregrounds in the marble
box its affordance for bisection. The gesture reveals the body’s role in porting these
intercontextual constraints back and forth between the material elements of the problem space. In
particular, the embodiment of symmetry and balance plays a mediating role between box and
scooper. In the process of reasoning through and communicating an idea about the marbles, the
student appropriates material properties of available media that include his body and, reflexively,
the gesture-constructed marble box. The partitioning gesture toward the constructed marble box
is complex deictic–metaphoric. It shows the referents of speech (“amounts of color on each
side”) in a reconstruction of the box’s content, perceived as two en-masse semantic categories.
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This mental partitioning organizes the marbles such that they better afford mathematization.
Finally, note that the marbles are held in a vessel. This particular vessel, due to prosaic reasons
of industrial engineering, production, storage, distribution, and marketing, is structurally
simple—a translucent rectangular plastic box. A feature of this box, then, is a straight line, the
long side of the box, which faces the student. This long side of the box constitutes an ad hoc
measurement tool—a primitive number line—upon which LG tacitly offloads the embodied ratio
of the green and blue groups, thus inadvertently concretizing the ratio as part-to-part indexes.

By this interpretation, embedded properties the marbles box (straight frame) constituted a
material bridge from a focal artifact (the actual marbles in the rectangular box) reflexively to this
artifact’s inherent mathematical information in question (green–blue ratio). Thus, pre-verbalized
images of symmetry and balance become articulated in bipartite linear form bespeaking
proportion. The ‘equal’ gesture, then, loops from an object and back to it—that is, from the
attended categories (color property) of an amorphous object (mixed marbles) and back to the
very object (container box), now serendipitously used to ground, elaborate, and communicate
embedded aspects of its own properties (half–half). The box of marbles is thus both an originary
resource and a vehicle carrying cognitively ergonomic expression of its own properties—it is a
reflexive artifact, enabling what Noë (2006) describes as using the world to represent itself.
Specifically, a reflexive artifact embodies as an affordance an epistemic form for indexing its
own properties, thus acting as a cognitive bridge from the phenomenal to the mathematical.

Discussion
Whence did the ‘equal’ gesture come and what roles did it play? When reasoning and

communicating, humans spontaneously leverage their capacity to represent absent objects, or
aspects of these objects, within their body space (McNeill, 1992). The epigenesis of a specific
gesture is in actual manipulation (Vygotsky, 1978)—the students’ ‘equal’ gesture may be
grounded in prior physical actions of sorting and partitioning. Yet it is precisely because the
marbles are not readily given to manifesting the ‘equal’ idea physically, that the participants
select an alternative medium, gesture, for conducting and communicating their problem solving.
The media-neutral quality of gesture, along with its malleability and portability, make gesture an
effective modality for situated problem solving. In particular, gesture marks the body as a buffer
for coordinating perceptions of disparate objects that (e)merge as structurally–dynamically
homologous. That is, gesture can carry essential structural properties of one element in a situated
problem (scooper) to induce it in another element (marbles). Thus, gesture both invests and
reveals epistemic forms (Collins & Ferguson, 1993), such as a:b, embedded in situated elements.

In Abrahamson (2004) I suggested that people engaging in situated problem-solving use
embodied spatial articulation, a type of dynamic visuo–spatial reasoning, to negotiate between
body-based mathematical knowledge (kinesthetic schemas) and socially mediated norms of
seeing mathematical tools (epistemic forms). That is, people manipulate situations—whether
physically or imagistically—so that they can apprehend the situations through familiar schemas
that are conducive to determining mathematical properties of the situations (this is the act of
modeling, mathematizing). The ‘equal’ gesture may indicate that the participants were engaging
in embodied spatial articulation—they were assimilating the marbles into an embodiment of
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proportion as a means to anticipate frequency, constructed as expected mode and variance.

Conclusions
Students’ mathematical problem solving is not either with or without objects, perceptual or

conceptual, situated or symbolic, concrete or abstract. In fact, these pairs of constructs assume an
ontology that does not capture the phenomenology of mathematical reasoning. Rather, problem
solvers negotiate among embodied schemas afforded by available material and representational
resources. In so doing, problem solvers spontaneously conjure and mimetically embody
cognitive artifacts that have representational affordances—a symbolic form, a diagram, a figure
of speech—as kinesthetic–imagistic substrate supporting the extraction of relevant phenomenal
aspects of situated objects. Gesture plays a central role in situated problem solving: gesture
bridges from prereflective absorption to reflective attention, from direct intuitive grasps to
processes of conscious reasoning and communication. Gesture, a physical action with
spatial–dynamic properties, concretizes personal kinesthetic negotiation for inspection,
verbalization, and intersubjectivity—gesture grounds embodied quantitative relations for further
elaboration.

Reflexive artifacts—e.g., sets of objects affording self-indexing by sorting or
tabulation—support embodied mathematical reasoning and therefore merit further design-based
research. Of particular interest are cognitive mechanisms governing these perceptual–epistemic
negotiations.

Finally, I see a tension between phenomenological and semiotic descriptions of referring-to
discourse—a tension that may be hampering productive collaboration within interdisciplinary
fields concerned with constructivist pedagogical philosophy, at least with regards to
mathematics. This study suggests a need for theoretical perspectives on mathematical cognition
that are geared to treat the multimodality of mathematical intuition, reasoning, and practice so as
to illuminate issues of design, teaching, and learning. Embodied cognition, informed by
phenomenological philosophy, effectively constitutes one such theoretical perspective.

Author Note
Thank you, Katharine G. Young, for tea and a host of figures of speech to embody. Thank

you to all members of the Embodied Design Research Laboratory, especially the Undergraduate
Research Apprenticeship Program students, for dogged scrutiny and a wealth of insights.
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This study applies an interdisciplinary approach combining linguistics, mathematics, and
education to examine test items on a state standardized exam for the eighth grade and the
challenges they present for English Language Learners (ELLs). The results of the study suggest
that despite being low level cognitive demand, the test items presented challenges for ELLs
which included technical vocabulary, complex noun groups, and relational processes (e.g., is,
are, have). Implications include a call for collaboration among mathematics teachers and ELL
teachers.

Mathematics teachers need to be prepared to work with students from a variety of
backgrounds. In fact, a key concern of teacher education programs is preparing mathematics
teachers to teach a diverse student body. This concern becomes even more critical as the U.S.
population becomes more diverse (Sleeter, 2001). Students who speak a language other than
English at home comprise 19.2% of the U.S. population (U.S. Census Bureau, 2005). In the state
of Indiana alone, the number of English Language Learners (ELLs) more than doubled between
1995 and 2000 (U.S. Census Bureau, 2000). Between 1993 and 2004, there was a 438% rate of
growth in the number of Limited English Proficient children in Indiana (U.S. Census Bureau,
2005). These students face many challenges in coping with the language of the content areas, in
particular in mathematics. The achievement gap in mathematics is pronounced for ELLs. Forty-
eight percent of students classified as Limited English proficient did not pass the mathematics
portion of the eighth grade Indiana Statewide Testing for Educational Progress (ISTEP+) exam.

Educating ELLs is among the equity issues to which the mathematics educational community
is attending. The increasing prominence of equity issues in mathematics education is reflected in
the designation of equity as the first of six guiding principles for ensuring a high quality
mathematics education program by the National Council of Teachers of Mathematics ([NCTM],
2000). The other principles are curriculum, teaching, learning, assessment, and technology.
Preparing to address equity issues is critical, and preparation must address both mathematics
content and issues around language for ELLs.

The NCTM (2000) identifies communication as one of five process standards to facilitate
students’ mathematics learning. Among the goals for student learning is that students “use the
language of mathematics to express mathematical ideas precisely” (NCTM, 2000, p. 60). Yet,
before ELLs can communicate mathematical ideas, they must understand the language that is
used to express mathematical knowledge in a variety of instances, such as textbooks, worksheets,
and standardized tests. The discourse of mathematics in particular has been identified as
problematic for students who have limited experience with the way knowledge is constructed in
mathematics classrooms (Lemke, 2003; O'Halloran, 2000). Students’ ability to make sense of
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mathematics is impacted by their understanding of the language used in teaching and learning.
For example, the word table acquires a specialized meaning when used in mathematics – a chart.
An ELL must recognize that table in the mathematics classroom takes on this alternative
meaning than the everyday meaning of table, a piece of furniture. These specialized meanings in
mathematics present challenges to ELLs (O'Halloran, 2000) and may hinder their performance in
standardized exams.

Research Study
The challenges of learning mathematics go beyond language issues. But clearly the language

challenges need to be addressed for students to be successful in mathematics learning.
Mathematics has been described as multisemiotic or multimodal, as math symbols, images,
diagrams, and language work together to build students’ understanding of mathematics
(O’Halloran). For ELLs, these language issues present another dimension – access, an equity
issue. This equity issue is addressed through our examination of standardized exam items. We
explore these questions from an integrated perspective of a mathematics educator and an
educational linguist that focuses both on the language and the content with the goal of improving
ELLs’ mathematics learning. The research questions guiding our study are: (1) What are the
language challenges in mathematical tasks on the ISTEP+? (2) What language knowledge is
required in order for ELLs to comprehend these tasks? (3) What mathematics knowledge is
required in order for ELLs to comprehend these tasks?

We analyze sample mathematics tasks for the eighth grade ISTEP+ exam. The eighth grade
level was selected because it is often a gatekeeper to advanced studies in mathematics. Eighth
grade is often the grade level at which students are tracked into college preparation courses such
as algebra. Thus, students’ performance at this grade level and placement into a particular
mathematics course has significant impact on their future mathematics course taking, access to
science- and mathematics majors and careers, and economic access. Thus, ELLs’ performance at
this grade level is critical in terms of their access to algebra, and we also know that students’
achievement is positively correlated with advanced mathematics course taking (Lee, Croninger,
& Smith, 1997).

The items analyzed in this study were released as samples (Indiana Department of Education,
2002). We selected one item from each of the categories of problems included on the eighth
grade exam: number sense, computation, algebra and function, geometry, measurement, data
analysis and probability, and problem solving. We classified each of the selected items as either
(a) what, traditionally, would be referred to as a word problem, (b) a task that required an
extended response, or (c) a task that involved understanding a pictorial representation (e.g.,
graphical). These criteria allow for our analysis to move beyond gauging procedural
understanding and include students’ meaning making and conceptual understanding.

Theoretical Perspective
This study applies an interdisciplinary approach combining linguistics, mathematics, and

education. The linguistic framework that guides this work is systemic functional linguistics
(SFL), which has already made some contributions to our understanding of the discourse of
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mathematics teaching and learning (e.g., Lemke, 2003; O’Halloran, 2000, 2003, 2005; Veel,
1999). This linguistic theory links language structure with social context, enabling us to analyze
texts in terms of the linguistic elements that construct meanings (Halliday & Matthiessen, 2004).
A functional analysis focuses on grammatical and lexical (vocabulary) features and their
realization of particular social contexts and sees language not as a set of rules to be followed but
rather as a set of language choices for making meaning (Halliday & Matthiessen, 2004). SFL is a
rigorous method of textual analysis and a theoretically coherent instrument used by several
researchers in the field of linguistics and education. This approach puts the focus on the content,
helping to identify how language works to construct disciplinary knowledge.

We employed the Task Analysis Framework (Stein, Smith, Henningsen, & Silver, 2000) to
analyze the cognitive demand of the test items. This framework outlines two primary categories -
lower level and higher-level demands. The lower level demands category has two subcategories -
memorization and procedures without connections, and the two subcategories of the higher level
demands category are procedures with connections and doing mathematics. In the Task Analysis
Guide, four to six characteristics are outlined for each of the four subcategories and are used to
classify a task. A given task may have features in two categories and selecting a category
involves some subjectivity. Moreover, tasks may be intended for a given category but
implemented at a different level.

Findings
We identified several features across the sample items that may hinder ELLs’ understanding

of the problem. Our analysis took on two perspectives. We analyzed the items with respect to the
mathematics content and language involved in each of the tasks.

Language Requirements
The test items differed in the challenges they presented for ELLs. However, even though

these differences were present, all of the test items analyzed fell into in at least one of the
following categories. First, technical terminology or the use of a specialized mathematics term
characterized several of the items. For example, the use of the term decrease requires ELLs to
associate the term with subtraction before the student could successfully complete a task. ELLs
must engage in multiple levels of comprehension while also having to decipher language
subtleties in order to make sense of what is being requested in the test item. Second, the use of
complex noun groups was a common feature. We classified a phrase as a complex noun group
when it consisted of two or more nouns, each of which must be understood separately before
combining those words for a new, single meaning. An example of a complex noun group is
prime factorization or the height of a right triangle. Third, relational processes constructed in
clauses of being and having are typical in these mathematical tasks and questions. Such
statements are particularly difficult for ELLs, as they require an understanding of language
structure before students can accomplish the mathematical task. We present findings that address
the overall task and construction of the question that is presented. Following is our discussion of
each of these common features providing specific examples for each of the three aforementioned
categories of challenges.
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The topics addressed in the seven test items included area, percentages, slope, scaling,
probability, volume of a three-dimensional object, and principles of a triangle. Below we provide
our analysis of the seven test items that we selected. First, we present the task. Second, we
provide a linguistic analysis of the task. The analysis of the cognitive demand of the task and
identification of the content requirements is described after all the test items are presented. The
first item was on number sense:

Test Item 3: The Caspian Sea is the largest lake in the world, with an area of 1.46 x 105

square miles. Lake Superior has an area of 3.17 x 104 square miles. What is the difference, in
square miles, of the areas of the two lakes? Write your answer in scientific notation.
The first two sentences use relational processes constructed through the verbs be and have.

In setting up the question, the first sentence The Caspian Sea is the largest lake in the world,
with an area of 1.46x105 square miles uses the relational process is to identify that The Caspian
Sea is a lake. The preposition with is used to show that the Caspian Sea has 1.46x105 miles. This
is a difficult sentence construction for ELLs, as they have to make the connection between the
preposition with showing possession and The Caspian Sea. This sentence construction, a
relational process is and a preposition with showing possession is highly academic. The second
sentence, however, Lake Superior has an area of 3.17 x 104 square miles is more characteristic
of everyday discourse. Here the sentence construction is straightforward and easier for students
to understand, as Lake Superior is already identified as a lake in its name and the relational
process has shows the possessive relationship. There are three features to which students must
attend in this question: (a) a Wh- word (i.e., what), a common feature of test items, is used; (b) a
relational process (i.e., is) is used; and (c) a complex noun group that identifies the key
mathematical focus of the questions is present (i.e., the difference, in square miles, of the areas
of the two lakes).  ELLs have to understand that the words between the commas - in square miles
– identify square miles as the required measurement unit for the solution. Despite the
aforementioned challenges/complexities that ELLs must overcome, the test item is ultimately
asking the student to calculate the difference of the areas of the two lakes.

The second item was a computation item:
Test Item 4: Last year, the freighter Mariposa carried 20 million tons of cargo. This year, the
Mariposa carried 16 million tons of cargo. What is the percent decrease in the amount of
cargo carried by the Mariposa from last year to this year? [Choices provided were 20%, 25%,
36%,and 40%)
The question presented in this item has the same pattern as the question discussed above,

Wh- word + is + complex noun group. The complex noun group is the percent decrease in the
amount of cargo carried by the Mariposa from last year to this year, and contains the technical
term decrease requires ELLs to associate the term with subtraction before the student can
successfully complete the task. In addition, the word percent, which modifies the noun decrease
is very important in the question, as it carries the meaning needed to determine which operation
is required for students to be able to answer the question correctly.

The third item requires students to select the slope of a line when a graph of a line is
provided:

Test Item 8: Look at the graph below. (We do not provide the graph here.)
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What is the slope of the line in the graph? [Choices provided were: -2, - _ , _, and 2].
This item also follows the same structure as the previous items. The complex noun group the

slope of the line in the graph is difficult for ELLs in that they are required to understand slope –
a concept with a specialized mathematical meaning - and work through the complex noun group
to be successful on this item. An additional challenge for ELLs is the interaction between
graphical representation and the words used to ask the question about the graph.

The geometry item was fourth and required students to calculate the height of a triangle
given the dimensions of the three sides. Test Item 12 asked students to “Look at the triangle
below” and answer the question “What is the height, in centimeters, of the triangle?” Again, the
question structure follows the same format as the other questions. As in test item 3, ELLs have to
understand that the words between the commas - in centimeters – identify the unit of
measurement that they have to use to answer the question, but that what they have to calculate is
the height of the triangle.

The fifth item was a measurement item:
Test item 16. George and Nancy are designing a house for a school project. They are making
a drawing of the house with a scale of _ inch = 1 foot. They want the living room in the
house to have a width of 12 feet and a length of 20 feet. What will be the width of the living
room, in inches, in the scale drawing?
The question presented in this item follows the same pattern as questions in test items 3, 4, 8,

and 12. The only difference is the addition of a prepositional phrase, in the scale drawing. This
prepositional phrase is especially difficult for ELLs since the noun scale, used in the second
sentence of the word problem is now being used as an adjective, modifying drawing. Therefore,
we’re not talking about any drawing, but the scale drawing. The question, as in test items 3 and
12, identifies the unit of measurement -in inches – between commas, and ELLs have to
understand that in order to answer the question. Technical vocabulary also occurs with the words
scale, width, and length.

The sixth item asked students to calculate the probability of two events:
Test Item 19: Carlos has 120 baseball cards. If he chooses a card at random, the probability is
0.6 that he chooses a pitcher, 0.3 that he chooses an infielder, and 0.1 that he chooses an
outfielder. What is the probability that Carlos will choose an infielder’s or an outfielder’s
card?
This test item starts with a statement that uses a relational process, has, which establishes a

possessive relationship between Carlos and 120 baseball cards. The following sentence is a
conditional sentence which starts with the conjunction If that determines a condition for the
results that show the probability for each card. Each one of the following is a result clause: 1. the
probability is 0.6 that he chooses a pitcher, 2. 0.3 that he chooses an infielder, and 3. 0.1 that he
chooses an outfielder; yet, they are all combined into a single sentence, with the probability is
omitted from the second and third result clauses, as this can be presumably understood by the
context. This sentence structure can present a challenge for ELLs, given the conjunctive
relationship between the conditional (i.e. If) clause and each of the result clauses.

The final item was a problem solving item:
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Test Item 21: The height of a right triangle is 3 centimeters and the area of the triangle is 6
square centimeters. What is the length, in centimeters, of the hypotenuse of the triangle? [The
choices provided were: 5 centimeters, 9 centimeters, 10 centimeters, and 18 centimeters]
This test item also contains relational processes in the first sentence. This sentence contains

two clauses linked by the conjunction and, but the clauses follow the same language pattern: a
complex noun group + relational process is + unit of measurement. The question asked in this
test item again follows the same pattern as items 3, 4, 8, 12, and 16: Wh- word + relational
process is + complex noun group. ELLs need to again understand that the words between the
commas - in centimeters – identify centimeters as the required unit of measurement for the
solution.

The test items selected for this study clearly present challenges for ELLs. These challenges
consist of technical vocabulary used with specific mathematical meanings, long and complex
noun groups that typically identify what the student is to calculate, and relational processes with
verbs of being and having that build relationships between parts of a sentence and are common
features of questions.

Mathematics – Content and Cognitive Demand Requirements
We employed the Task Analysis Framework (Stein et al., 2000). Overall, the tasks were

classified as low-level cognitive demand. In fact, we classified each of the tasks as procedures
without connections. Although memorization was a subcomponent of the procedures without
connections category, no item was a memorization task. It was not surprising that these items
required a low level of cognitive demand as this is a long-standing feature of mathematics
standardized exams. There were instances, however, for which a test item had at least one feature
of a procedures with connections task.

Each of the four categories in the Task Analysis Framework had between four and six
features. For the seven items examined in this project we identified six features across the tasks.
Five of the six features were all of those outlined in the Task Analysis Framework for procedures
without connections. They were (a) algorithmic, (b) limited cognitive ability, (c) lacked
connection to concept(s), (d) focused on correct answers, (e) required no explanation, and (f)
required more than a limited level of cognitive effort. All of the items except item 4 were
algorithmic. All of the problems required limited cognitive ability. In particular, “there is little
ambiguity about what needs to be done and how to do it” (p. 16). We note here, however, that
this notion of ambiguity differs from ambiguity that an ELL student might encounter with
respect to language. Two of the seven items, item 8 and item 16, lacked connection to underlying
concepts. Six of the seven items focused on correct items. One item, item 3, required students to
show all of their work allowing students to receive partial credit. None of the items required an
explanation, and only a few of the items could have classified as requiring more than a limited
level of cognitive effort. This final feature was more difficult to judge since it was not always
clear what prior instruction a student would have had.
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Discussion
The insights gained from this research project highlight the complexity of addressing equity

issues in mathematics education, and in particular those issues that concern the learning of
mathematics by ELLs. The features we identified not only highlight the complexity of the issues,
but our analysis provides insights for the design of assessment instruments. Assessment,
especially assessment on standardized examinations is often high stakes; this is especially true
for underrepresented students. Understanding how the construction of test items might add an
unintended dimension of complexity to a task for ELLs positions teachers, test writers, and
policy makers to make more informed decisions and allow for assessment that tells us more
about the mathematics that students know and can do.

Specifically, we gained three major insights from this inquiry. The first insight has to do with
standardized assessments. We found that the sample test items from the ISTEP+ presented
several challenges for ELLs. This was the case for the test items even though they were
classified as requiring lower level cognitive demand. As the field of mathematics education
advocates teaching and learning that promotes higher level thinking and conceptual
understanding, the challenges may become more pronounced as extended response questions are
being added to standardized exams. This suggests the continued need to consider both the
cognitive demand level of items on standardized exams and the language challenges for ELLs,
especially on high stakes exams. As we keep equity issues in mathematics education at the fore,
we must be mindful of how these demands might impact ELLs’ opportunities to both learn and
demonstrate their mathematical understanding.

Secondly, we found a reoccurring pattern in the test items. We believe that understanding the
structure of these items can be informative for both mathematics teachers and ELL teachers.
These patterns can be understood as resources for preparing ELLs in test taking. We encourage
collaboration among these teachers to prepare ELLs for standardized exams.

Finally, our findings demonstrate that the challenges faced by ELLs go beyond vocabulary
development. Additionally, ELLs must understand sentence structure and become familiar with
language patterns employed in these exams and in mathematics learning, in general. In order for
students to be successful on standardized exams, they must be able to determine what is being
asked. The language challenges we identified may hinder their understanding of the requirements
of the test items, thus impeding their ability to demonstrate their mathematical understanding.
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We are in the second year of a three-year study in which we are attempting to help teachers use
assessment to increase students’ mathematical knowledge. We are using open-ended tasks that
are aligned to existing curriculum, are completed after classroom instruction, and are not
graded. Students complete these individually and then work in pairs or fours with formative
feedback materials (called “hints”). The hints offer explanations of the mathematics inherent in
the problems without directly stating the correct answer.  Students use their completed tasks and
the hints to reach a collective understanding of the mathematics being assessed. In this
presentation we will trace student learning by charting changes in the students’ mathematical
discourse and argumentation across one school year.

Classroom assessment is typically used to indirectly improve student learning by providing
feedback to teachers. However, assessment is rarely used for formative purposes with students.
Thus, most students see little formative value in any form of assessment (Gipps, 1999). While
nearly all assessment has some formative intent, these goals are often undermined by more
summative goals (Shepard, 1993, 2000).

We are using open-ended tasks with elementary school students in a deliberate manner that
emphasizes the formative role of assessment. The open-ended tasks were created to be aligned to
the approved state curriculum and the adopted textbook. The tasks are deliberately designed no
to directly mimic the tasks in the textbook, however. To eliminate any summative function, the
tasks are not graded. Students complete two to three tasks related to one chapter of instruction
individually, and the they work in pairs or fours to discuss their solutions. They are provided
with “hints” that provide insight into the mathematics inherent in the task but do not directly give
away the answer. The goal of the small group discussions is for the group to reach collective
agreement on a solution for each task and for individuals to assess the correctness or
incorrectness of their own solutions and the thinking that led to those solutions.

This is a multi-faceted, multi-year study, so only one aspect of the study will be reported
here. In particular, this presentation will focus on tracing student learning by charting changes in
the students’ mathematical discourse and argumentation across one school year.

Theoretical Framework
We are drawing on discourse analysis in this work. To analyze students’ discourse, we are

using the nine discourse types identified by Weaver, Dick, and Rigelman (2005). These nine
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discourse types are sequentially organized from least to most cognitively demanding. We are
looking at the percentage of “idea turns” that fall in the lower third of Weaver et al. discourse
types, the middle third, and the upper third, and we are looking to see if these percentages change
across the school year. We are also looking for evidence of Toulmin’s argumentation structure of
claims, warrants, and data. We are looking to see what counts as evidence for warrants and how
warrants are used differently for rebuttals and agreements.

Methods
The overall method of the study is a design-based experiment in which we made refinements

to the tasks and hints as we collected and analyzed data. For the portion of the study reported
here, we are relying on written student work and videotapes of student dialogue. The data come
from students in nine fifth-grade classrooms. Additional data come from one control classroom.
Students participated in distal discourse assessments (DDA) at the beginning of the school year.
In the DDA, students worked in groups of four to write up solutions to two problems (Which is
larger–4/4 or 5/5? Draw a picture and write an explanation for why 2/4 = 6/12.) We have
analyzed written student work and videotapes of 27 groups of students. The DDA was repeated,
but with different problems, at the end of the school year.

In addition to the pre- and post-instruction DDA measures, we have video of intact groups of
students engaging in the post-investigation discussion for each of the 10 textbook chapters for
which we have written investigations. We also have each student’s individual written work from
the investigations. Although we are analyzing all of the investigations, for purposes of this
presentation, we have analyzed data that correspond to Chapters 1-3, 4-6, and 7-9 of the text so
that we have discourse measures from three different points of the year.

Results
We have found that instructing students to build consensus actually works against high

quality discourse. While we initially thought that encouraging consensus would force each
student to state an argument and force the group to evaluate the merits of these different
arguments, we found that students quickly converged on one answer with minimal discussion
when the goal was consensus. This led to a design change in how the goal of the group
discussion of the formative feedback was presented. Rather than consensus, which implies that
some individuals should abandon their ideas, we began encouraging discussion with a goal of
confirming or disconfirming your conclusion.

Second, with regard to Toulmin’s (1963) structure of argumentation, we are seeing lots of
claims but few warrants in the early year data. Students’ primary source of evidence in the pre-
DDA and Chapter 1-3 is whether or not the idea advanced by another makes sense to them. Basic
mathematical facts and procedures are also relied upon heavily as justification for claims that are
made. Neither of these things is surprising; we are interested to see if and how the use of
warrants changes over the school year. We are looking for evidence of growth in discourse that
leads to co-construction of knowledge and discourse that is oppositional. We are also looking to
see if the percentage of discourse turns shifts across the categories of accepting, rejecting,
discussing, and ignoring other students’ ideas over time.
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Discussion
We are attempting to create a classroom environment where students can participate in

authentic mathematical discourse (Sfard, 2000) and develop their mathematical expertise. The
small group discussions of the students’ solutions and the hints are intended to enhance the
formative value of assessment and enhance student learning. We have attempted to structure the
small group work so that students are encouraged to hold themselves and their peers accountable
for mathematical knowledge and discourse.  We are hopeful that the collective discussion of the
tasks serves scaffold the students’ discourse toward what Berieter & Scardamalia (1989) describe
as “intentional learning.”
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This qualitative study examines the influences that contribute to sixth-grade teachers’
instructional decisions in mathematics. The participating teachers identified similar multiple
influences but the nature of and responses to these influences varied. The results of this study
suggest the importance of aligning some of the influences on teachers, such as the district,
school administrators, and textbooks.

The instructional approaches teachers use in mathematics impact students’ attitudes and
achievement (e.g., Boaler, 2006). These instructional approaches can vary significantly, even
within the same or very similar settings (McLaughlin & Talbert, 2001). Various studies have
suggested a host of reasons for these variations (e.g., McLaughlin & Talbert, 2001; Smagorinsky,
Cook, & Johnson, 2003). However, few studies have asked teachers to explain their perspectives
on the reasoning behind their choices of instructional approaches. Therefore, this empirical study
examines two research questions. (1) Why do mathematics teachers teach the way they do? (2)
What do they perceive as the influences that helped to shape their instructional approaches?

Theoretical Framework
The theoretical framework for this study is based on Lemke’s (1997) view that the direction

of an individual’s path or trajectory is shaped by the history of events in her or his life and the
current context because of the way that past experiences open new potential for participation in
current events. For example, a teacher’s experiences as a student may help to shape her potential
decisions about the ways that she may teach her future students. However, Lemke noted that the
shaping that our experiences in various communities provide does not prevent the development
of unique perspectives and meanings.

The ways in which we connect past events and present ones are always partly unique; our
meaning systems have a biological ground, a cultural set of historically specific resources,
and a socially shaped set of commonalities with others, but they also have a psychological
individuality. (pp. 48-49)

In this qualitative study, I demonstrate how individual mathematics teachers’ history of past
experiences and current context helped to shape their instructional decisions.

Methods and Participants
I gathered data for this narrative inquiry through a series of lesson observations and

individual and focus group interviews. The participants in the study, Mary, Kathy, Holli, and
Susan, were sixth-grade public school teachers who taught at two elementary schools, Northside
and Parkview. These schools, which had high proportions of students of color and low
socioeconomic status, were in the same district and adjacent neighborhoods in a small Western
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city in the United States. At the time the study was conducted, both schools were meeting the
Adequate Yearly Progress expectations established by the state.

Evidence
The four teachers in this study each identified an extensive and very similar list of

interrelated influences that could be viewed as belonging to two main categories (personal
experiences/beliefs and external circumstances) and six subcategories (personal: K-12
experiences, teacher education/professional development, and beliefs; external: school personnel,
curriculum and assessment, and student characteristics). However, although they each identified
the same types of influences, the nature of these common factors and the teachers’ responses to
them varied. As a demonstration of these variations, I focus on the interrelationship among five
influential factors that contributed to a pivotal aspect of Kathy and Susan’s instructional
decisions. Both teachers explained that many of their students had low reading levels in
comparison to the district-selected mathematics textbook’s fairly high reading level.  In
addressing these two influences of student characteristics and curriculum, three additional
influences of their own K-12 experiences, their teacher education and professional development,
and their principals all played a part in their instructional decisions.

Kathy
In addition to the influences of student characteristics and the district-selected text

curriculum, Kathy’s response to the reading level issue was shaped by the three additional
influences named above. First, Kathy described her discomfort as a K-12 mathematics student,
including a sense of isolation and lack of support. As a result of these experiences, she placed a
priority on helping her students feel more comfortable in their studies of mathematics than she
had. Second, Kathy’s principal expected her to follow the district-selected mathematics text
closely unless she provided a justification for making changes. Third, Kathy explained that she
had had little teacher education and no professional development related to mathematics
instructional approaches. (Her lack of professional development was partially due to her
principal’s decisions.) Therefore, she relied on the mathematics textbook as a source for learning
how to teach mathematics, saying, “If it wasn’t for [the text], I wouldn’t even know where to
begin to teach math.” Kathy was understandably uncomfortable making major changes in the
curriculum it provided. She commented, “I’d be too afraid I’d mess it up.”

Kathy’s instructional decisions reflected these five interrelated influences. In most of Kathy’s
lessons, she followed the district-selected reform-oriented textbook in a scripted manner. She
explained that she addressed the conflict between her students’ reading levels and that of the text
by reading the lesson, questions, and examples aloud to her students and closely supervising their
completion of some of the problems with their partners or small groups before assigning
homework problems. She identified her interest in making students comfortable as an important
reason for reading the text aloud. “I feel this will circumvent any problems…it’s all clarification
up front.”
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Susan
 In contrast to Kathy, Susan viewed her negative experiences as a K-12 mathematics student

as related to a lack of learning about mathematics reasoning and communication. Therefore, she
believed it was important to provide her students with opportunities to learn the reasoning and
communication she had not. “I had to find a way for them to understand math.” Both of the
principals with whom she had worked had supported her exploration and experimentation with
innovative ways to teach mathematics, including providing funds for professional development
and additional resources beyond the textbook. Additionally, her current principal evaluated her
on meeting the state mathematics standards and on her students’ high-stakes test scores, rather
than on her use of the textbook.

Susan frequently used small group and whole-class formats to facilitate students’ extensive
discussion and debate about the meanings of key terms, as well as the associated characteristics,
examples, and non-examples of the terms. She followed these lessons with text work, but chose
the text topics carefully according to the questions asked most frequently on the state high-stakes
tests. “The place where [the curriculum] has to be flexible is the textbook…where it becomes
more of a guidebook.” Susan explained that the intensive focus on student discussion and debate
helped the students to have a strong understanding of the important vocabulary and concepts
before they began to work in the text. “It was great in that, by the time [we got to the text], they
had a really good picture of what it was in their heads.”

Conclusions
In considering how these results contribute to the PMENA goals of understanding the

psychological factors of mathematics teaching, the results of this study were consistent with
Lemke’s (1997) description of the way that individuals are shaped by their history and current
context and yet make unique decisions within these influences. Even this abbreviated focus on
one aspect of Kathy and Susan’s teaching illustrates that each teacher was confronted by similar
issues and influenced by similar multiple and intertwined factors. Yet, despite these similarities,
Kathy and Susan responded uniquely in ways that were related to the combined effects of their
previous experiences and the characteristics of the context in which they taught. In the same
way, each of the four teachers in this study demonstrated her own interpretation of the best ways
to teach mathematics based on her particular history and context.

These results are revealing in considering the characteristics of successful – and
unsuccessful- reform efforts in mathematics. In particular, reform efforts that do not align with
many of the other influences experienced by teachers may be overwhelmed by the other factors
that contribute to these teachers’ instructional decisions (e.g.,  Smagorinsky et al., 2003).
Conversely, these results also highlight reasons why reform efforts that involve alignment of
vision and effort across teacher education programs, school districts, school administrators, and
groups of teachers are more likely to be successful (e.g., Cobb, McClain, Lamberg, & Dean,
2003) because the teachers do not have to make choices among competing influences.
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This study examines levels of complexity of GED Mathematics Tests and state-level mathematics
assessments. Further, this study investigates ways in which GED instructors engage GED
students in mathematical reasoning. This study contributes to an understanding of the
mathematical experiences of the significant portion of students who dropout of high school and
subsequently attempt to attain a GED certificate.

The graduation rate in South Carolina hovers around 50 to 60% (NCES, 2007). Nationally,
20 to almost 50%, depending on the state, of high school freshman are expected to dropout of
school before getting a high school diploma (NCES, 2007). Many of these students who dropout
of school subsequently seek a GED certificate (NCES, 2004; Rachal & Bingham, 2004). Though
a significant and increasing proportion of teenagers are engaging in GED preparation programs
(Rachal & Bingham, 2004), scant attention in mathematics education research is focused on the
mathematical experiences of GED students. Recent studies investigating the expertise of GED
mathematics instructors, the mathematical rigor of the GED, and relationships between the GED
mathematics test and typical state-level mathematics tests are lacking. This project brings GED
students’ mathematical experiences into the fore by considering the following questions:

• What types and levels of mathematical thinking, reasoning, and knowledge do GED and
state-level examinations target?

• Is there a difference in GED students’ performance on GED test items and items from
state-level examinations?

• In what ways do GED mathematics instructors engage GED students in mathematical
reasoning?

Theoretical Framework
This study focuses on state-level mathematical examinations in South Carolina and the

mathematics portion of the GED. Items from Algebra 1, Algebra 2, and Geometry End of Course
(EOC) examinations and items from the GED Mathematics Test will be analyzed for level of
mathematical complexity, as outlined by the National Assessment of Educational Progress
(2005) framework. There is some research that supports the notion that at least some students
who dropout believe that attaining a GED is easier than completing the requirements for getting
a high school diploma (Rachal & Bingham, 2004). However, this scholar can find no studies that
explore this assumption in the content area of mathematics.  We currently know very little about
the relative mathematical complexities of state-level examinations and the GED Mathematics
Test. We do know, however, that access to quality mathematics education is a social justice issue
(Bartell, 2006), and we know that there are patterns in the demographics of students who dropout
of school. Ignoring the mathematical education of teenagers who are GED students devalues the
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experiences and understandings of a population who are disproportionally minority and of low
socio-economic status (Chan, Kato, Davenport, & Guven, 2003; Tyler, Murnane, & Willett,
2003; Tyler, Murnane, & Willett, 2002).

Methods
The National Assessment of Educational Progress (NAEP) outlined in 2005 guidelines for

analyzing the mathematical complexity of assessment items (Howe, Scheaffer, & Lindquist,
2004). This researcher attained test items from EOC exams in Algebra 1, Algebra 2, and
Geometry from South Carolina in addition to items from the GED Mathematics test. These items
are scrutinized for their level of mathematical complexity, following the NAEP guidelines, to see
whether GED test items differ from state-level mathematics test items in complexity. This
analysis addresses the first question of this project. The second question is addressed through
recruitment of GED students to participate in completing two mathematics assessments, one of
which is comprised of state-level mathematics items, while the other assessment is a GED
mathematics test. Scores from students taking these two tests are compared to allow insight into
student performance on GED and state-level mathematical assessments. The third question for
this study is addressed through observations of tutoring sessions for GED students in
mathematics. The researchers visit area GED centers to study the mathematical engagement of
GED students.

Results
Based on the little research that exists on GED students and mathematics, it is likely that

GED instructors are ill-versed in research-based educational practices and that most GED
students are engaged in mathematics through practice and drill (Ward, 2000). What remains to be
seen is how the GED Mathematics Test compares to state-level examinations in mathematical
complexity and how GED students perform on these assessments. This study, which is being
conducted as part of a collaborate creative inquiry project, will ultimately result in
understandings of the complexity of the GED Mathematics Test and how this test relates to state-
level assessments.

Discussion
Though this study is in process and a full analysis is not yet complete, discussion of the

findings will focus on relationships between the results of the study and the three initial research
questions. It is expected that further questions will arise during the course of analysis and
reflections. In particular, it is expected that further studies will be called for, which explore the
motivations and goals of GED students with the aim of transforming these students’ engagement
with mathematical ideas. For instance, it could be that GED students might be highly receptive to
critical mathematical contexts that explore social inequities and challenge power asymmetries,
and these critical contexts could be a way of actively engaging GED students in mathematical
reasoning. Before studies can be conducted that explore ways of transforming GED students’
engagement with mathematical ideas, however, we need to have a much more thorough
understanding of what GED students currently experience mathematically.



244

______________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

References
Bartell, T.G. (2006). Striving for equity in mathematics education: Learning to teach

mathematics for social justice. In S. Alatorre, J.L. Cortina, M. Sáiz, & A. Méndez (Eds.),
Proceedings of the 28th annual meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education. Retrieved February 2, 2007, from
http://convention2.allacademic.com/index.php?cmd=pmena_guest

Chan, C-K., Kato, K., Davenport, E.C. Jr., & Guven, K. (2003). Analysis of subsequent
educational decisions of high school dropouts and their life outcomes. Paper presented at the
Annual Meeting of the American Educational Research Association, Chicago, IL.

Howe, R., Scheaffer, R., & Lindquist, M. (2004). Mathematics Framework for the 2005 National
Assessment of Educational Progress. US Department of Education. (ERIC Document
Reproduction Service No. ED 486 473)

National Center for Education Statistics. (2007). Dropout Rates in the United States: 2002 and
2003. U.S. Department of Education. (http://nces.ed.gov/pubs2006/dropout/06.asp)

National Center for Education Statistics. (2004). Educational Attainment of High School
Dropouts 8 Years Later (Issue Brief). U.S. Department of Education. (ERIC Document
Reproduction Service No. ED 483 075)

Rachal, J.R., & Bingham, M.J. (2004). The adolescentizing of the GED. Adult Basic Education,
14(1), 32-44.

Tyler, J.H., Murnane, R.J., & Willett, J.B. (2003). The devil’s in the details: Evidence from the
GED on large effects of small differences in high stakes exams. Economics of Education
Review, 23, 339-349.

Tyler, J.H., Murnane, R.J., & Willett, J.B. (2002). Who benefits from a GED? Evidence for
females from high school and beyond. Economics of Education Review, 22, 237-247.

Wood, J. (2000). Arkansas GED mathematics instruction: History repeating itself. Paper
presented at the International Conference on Adults Learning Mathematics, Medford, MA.



245

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

GRADING WITHOUT GRADES: THE IMPACT OF PROVIDING
FORMATIVE FEEDBACK ON STUDENT ASSIGNMENTS

Joan Kwako
University of Minnesota Duluth

jkwako@d.umn.edu

Research has shown that providing students with feedback in the form of formative
comments instead of summative scores improves not only student learning but also students’
attitudes toward the subject (Black, Harrison, Lee, Marshall, & Wiliam, 2004; Butler, 1988).
Using this research as a basis, we investigated the impact this type of grading had on first year
elementary education undergraduate students. In our program, these students are in cohorts
taking the same five courses. In the study, all five of the students’ instructors provided students
with formative comments only on their assignments. These comments informed students of
where they currently stand in terms of their learning and what else they need to do to fully meet
the learning goals. No grades or scores were recorded on students’ assignments. We
hypothesized that with the decreased attention on grades, students would attend more fully to
what they are learning. In other words, if students focus on what they are learning, and not what
grade they got, they may actually learn more.

The participants completed a pre- and post-survey on their conceptions of grading and
assessment at the beginning and the end of the semester. In addition, eight students were
interviewed at the beginning and the end of the semester to get a more detailed account of their
grading and assessment conceptions. Finally, the eight students who were interviewed will be
followed and interviewed during the next two semesters to look at the impact of the study in the
students’ field placement and student teaching classrooms.

Preliminary results demonstrated that although students’ conceptions of grading and
assessment were somewhat stable from the beginning of the study to the end, they did expand
their views of the purposes of grading and expanded their ideas of the grading process itself.
However, the impact grades have on students cannot be ignored—many of the students in the
study repeatedly stated that although written comments provide more information and are more
motivating than letter grades, since they will eventually get a grade, it is the grade that is
ultimately the most important. This finding has important implications for us in the education
community, especially as we prepare students to become teachers. These future teachers will be
responsible for grading and evaluating future students. Awareness of the power and effect that
giving grades has on student learning is therefore of concern not only for these preservice
teachers, but in fact everyone in the educational community. Teaching is all about learning;
therefore it is important for future teachers to change their understanding of grading from
determining “what grade did I get?” to “what did I learn?”
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The leap from high school into college is broad and daunting for many. Unrealistic
expectations and lack of knowledge can make the gap even wider and more inaccessible. Nevada
needs a program that can offer foresight to high school students, their parents, their teachers and
their counselors about information critical for math course placement during that ever-so-critical
first semester or year of college.

Growth within Southern Nevada’s System of Higher Education means greater demand for
services, classroom space, and course offerings. Unfortunately, remedial programs in
mathematics are among those in greater demand. In an effort to minimize the present and future
need for remedial mathematics, the Center for Mathematics and Science Education at University
of Nevada Las Vegas and the Community College of Southern Nevada have entered into a
partnership with the Clark County School District to offer a Junior Undergraduate Mathematics
Placement Survey Test And Reflection Tool.

The JUMP START test, designed for college-intending juniors, provides students and their
parents and counselors with information that helps them recognize the benefits of continued
mathematics study during the senior year. The exam, resembling a university mathematics
placement test, is used to predict college readiness at the time the test is taken.

The primary goal of JUMP START is to significantly reduce the number of freshmen
students enrolled in required remedial mathematics courses. This is achieved by using the JUMP
START results to advise high school juniors (and their parents and counselors) as to the
student’s readiness to take college credit mathematics courses. Scoring reports to the students,
parents, and counselors suggest anticipated college placement and encourage specific additional
mathematics that would likely lift that placement to another level. Students obtaining this
information by the end of their junior year are able to take corrective action in the senior year. In
this manner, college-intending students are encouraged to “stay on track” in their high school
mathematics courses, and high school students are encouraged to take mathematics during their
senior year. Both of these effects have been shown to be factors in preventing college students
from having to take remedial mathematics courses at the college level. At Ohio State University,
where a similar program has been in place since the late 70’s, the percentage of first-year
university students enrolled in remedial mathematics dropped by 50% over a five-year period,
while the enrollment in senior level mathematics classes at the high school level in a
participating district increased by 72%.

No attempts are made to compare different teachers. The JUMP START program is designed
to be as non-threatening as possible to students and teachers. All participation is voluntary. It is
hoped that the program can eventually be offered at no cost since the NSHE will be saving
money by reducing mathematics remediation costs (and students and parents will save on tuition
costs for courses that do not contribute to their college degree).
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Each student receives a “personalized” report of their score and the implications of that
score. The “freshman” mathematics courses at the self-reported anticipated institutions are
outlined with reference to scores that would place a student in individual courses. Based on
performance, the student is directed to take an appropriate senior level mathematics course.
Parents will also be given a special brochure outlining many of the benefits of continued study of
mathematics during the senior year.
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This theoretical report considers connections in elementary mathematics between a model for
progressive generalization adapted from Realistic Mathematics Education, construction of
understanding from Cognitively Guided Instruction, and recent recommendations from the
National Center for Improving Student Learning and Achievement in Mathematics and
Science emphasizing the key mathematical practices of modeling, generalizing, and
justifying.

In a recent research-based teacher education and professional development publication
from the National Center for Improving Student Learning and Achievement in Mathematics
and Science (NCISLA), Carpenter and Romberg (2004) emphasize the role of three key
mathematical and scientific practices: modeling, generalizing, and justifying. They assert—

To fully understand mathematics and science, students must also participate in the
practices used by mathematicians and scientists. Typically, these practices go
unnoticed and unlearned by most students because they are not made an explicit
focus of attention…. Modeling is a practice central to the work of mathematicians
and scientists, but traditional instruction has relegated it to the periphery. A
commitment to the construction, evaluation, and revision of scientific and
mathematical models, however, can engage students in authentic practices that
provide coherence to the mathematics and science curriculum. Modeling is related
to two other important practices of scientists and mathematicians: generalization
and justification. Much of mathematics and science involves making
generalizations and constructing arguments to justify them. (p. 3)
Such publications, with video examples of students engaging in these processes, are

valuable for teacher education and professional development. Our perspective is that
interpretive frameworks for how cognitive processes (such as generalizing) progress are key
elements of teachers’ knowledge for teaching elementary mathematics.

Theoretical Framework
The process of progressive generalization, as we have conceived and applied it in our

research on teachers’ and students’ conceptions (knowledge and beliefs) (c.f. Smith, 1998;
Smith, 2000) is one dimension of the three-dimensional model shown in Figure 1. This model
is an elaboration of Freudenthal’s Realistic Mathematics Education (RME) and its model of
progressive mathematization as described by Gravemeijer (1994). Freudenthal advocated that
learning mathematics should consist of the guided reinvention of mathematics, whereby
students experience (with guidance) the process by which informal solutions to particular,
situated problems become progressively more general and more formal. This process would
end in the general axiomatic system of formal mathematics that has traditionally been the
starting point for teaching mathematics. The bottom-up approach of RME stands in stark
contrast to the top-down strategies that have dominated traditional approaches to mathematics
education, each of which have begun with formal, generalized knowledge and procedures.



250

___________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

From the RME perspective, mathematicians start with a problem situated in reality;
organize the problem according to mathematical concepts; gradually trim away the reality
through generalizing and formalizing, which emphasize the mathematical features of the
situation and transform the real problem into a mathematical problem that faithfully
represents the real situation; solve the mathematical problem; and make sense of the solution
in terms of the original situation. Generalizing consists of “a posteriori constructions of
connections rather than premeditated application of general knowledge” (Gravemeijer, 1994,
p. 83). Formalizing includes modeling, symbolizing, schematizing, defining, and
axiomatizing. This is the end point of the invention of mathematics. Romberg (1998)
identified progressive formalization as a curriculum design criteria across long sequences of
learning activities, while progressive generalization can occur across much smaller
collections of situations as learners make connections among those situations and make
generalizations from those connections.

Building on Treffers’ (1987) distinction between vertical and horizontal mathematizing,
our model separates the elements of the RME model into two distinct processes (progressive
generalization and progressive formalization). Consistent with Cobb (1994, 2007), our model
also has two layers (labeled individual and social) to provide for specific attention to and
deliberate choices in emphases on (a) individual cognitive conceptions, processes, and
contexts and/or (b) social processes and contexts in which the individual functions.

Figure 1. Smith Elaborated RME Model

Three levels of progressive generalization are shown in the vertical dimension of Figure 1
and in greater detail in Figure 2. These three levels are (a) situated conceptions that are linked
closely with a problem-solving context or situation; (b) connected conceptions that are
connected across contexts; and (c) generalized conceptions that are generalized from, yet
linked to, other conceptions and their contexts. In Smith (1998), the first author demonstrates
that the process of constructing mathematical generalizations progresses by connecting and
abstracting situated conceptions which are originally constructed as context-specific
conceptions embedded in particular problem-solving situations. In Smith (2000), the second
author recognizes that children’s invented algorithms, as described by the Cognitively Guided
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Instruction (CGI) Project (c.f. Carpenter, Fennema, Franke, Levi, & Empson, 1999) represent
generalized informal strategies for solving a wide variety of different types of story problems
in various contexts. These generalizations are learned in the context of solving specific story
problems, connecting what is learned in these individual experiences, and generalizing these
strategies for later use in solving similar problems. These examples show that generalizations
can be expressed using either informal or formal mathematical language.

GENERALIZED CONCEPTIONS
(GENERALIZED FROM, YET LINKED TO, CONTEXTS)

CONNECTED CONCEPTIONS
(CONNECTED ACROSS CONTEXTS)

CONTEXT SPECIFIC
CONCEPTIONS

CONTEXT SPECIFIC
CONCEPTIONS

CONTEXT SPECIFIC
CONCEPTIONS

PROBLEM-SOLVING
CONTEXT OR
SITUATION

PROBLEM-SOLVING
CONTEXT OR
SITUATION

PROBLEM-SOLVING
CONTEXT OR
SITUATION

Figure 2. Detail of Progressive Generalization

This theoretical report includes: (1) an example from Smith (1998) detailing the use of the
model to describe and explain a teacher’s conceptions of even, odd, and super-even numbers;
(2) our views of the nature of progressive generalization and its relationship to modeling and
justifying; and (3) possible applications of this model for describing students’ and teachers’
progressive generalizations as authentic cognitive processes central to constructing
mathematical understanding.

Using the Model to Analyze a Teacher’s Conceptions
This section provides an abbreviated example (Smith, 1998) of the use of this model for

analyzing progressive generalization by Sandy, a fifth-grade teacher who engaged during
multiple sessions with two other teachers in working through the student activities in the
fifth-grade units of a standards-based middle school curriculum. Figure 3 provides a
graphical representation of some of the details of the progressive generalization process
involving Sandy’s conceptions of even, odd, and super-even numbers. As defined in the
curriculum materials, a number is super-even if repeated halving eventually results in the
number 1. For example, 32 is a super-even number because repeated halving of it results in
16, 8, 4, 2, and 1. This provides an informal definition for powers of 2. The problems to be
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solved in this example were to determine which of a list of seven numbers are super-even
(Problem 7), show if 128 is super-even (P8), and find all super-even numbers less than 1,000
(P9). Table 1 provides selected statements of Sandy’s conceptions which are interconnected
in a portion of Figure 3.

C9
O3A

Conception Category:  Mathematical Content
Themes/Sub-Strands: Patterns and regularities, including even and odd numbers, 
    super-even numbers, and V-patterns.
MiC  Strands, Units:   Algebra, Patterns and Symbols

S9

P3
O3A

GP1

S28

P15
O1B,D
O2B

S29 S21

P11
O3A

C14
O1B,D
O2B

G2
O3A

S16 S17 S18 S22 S23 S24

P7
O3A

P8
O3A

P9
O3C

P11
O3A

P12
O3A

P13
O3A

P15
O1B,D
O2B

C3
O3A

C7
O3A

G2
O3A

G3
O3A

C6
O3A

C10
O3A

C11
O3A

Figure 3. Sandy’s Conceptions of Super-Even Numbers

S# Statements of Context-Specific Conceptions:
S16 If you can repeatedly take half of a number without using fractions until

you reach one, the number is called "super-even."
S17 In the process of halving a number to determine if it is super-even, once

I got to 32 (a known super-even number), I knew it was super-even.
S18 I did a similar problem last year and a few of my students realized they

could go up [multiply] instead of down [divide].
C# Statements of Connected Conceptions:
C6 I can double a super-even number to find another, instead of having to

test a number for super-evenness by repeatedly dividing.
C7 A large number is super-even if I can divide it by 32 and get another

super-even number.
G# Statements of Generalized Conceptions:
G2 The pattern of doubled numbers (1, 2, 4, 8, 16, 32, 64, 128 ...) are super-

even numbers.
G3 A large number is super-even if division by any known super-even

number results in another recognizable super-even number.
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Table 1. Selected Statements During Problems 7-9.

Context-specific conceptions are situated in specific problem contexts, whether of the
current problem or previous experiences. They are often stated in words that convey mental
images of specific events, results, or experiences. Connected conceptions are often stated as
conclusions based on more than one experience or repeated results, but remain connected to
the elements of specific contexts. Generalized conceptions are often stated as either informal
or formal rules that state or imply that the statement is always true or is useful in many
similar contexts. At this level, the mathematical focus dominates the references to specific
situations and highlights the general applicability of the models, strategies, or ideas. Careful
analysis of a transcript from a problem-solving episode can reveal ideas being brought
forward in time to be connected to new experiences and sometimes being generalized to
future applications. The application of these generalized conceptions to new problem-solving
situations provides additional evidence of their nature.

Progressive Generalization and Its Relationship to Modeling and Justifying
Since 1995, we have been asking preservice teachers enrolled in elementary mathematics

teaching methods courses and inservice teachers enrolled in CGI workshops to conduct CGI-
style interviews with students in Grades 1-3, posing story problems and analyzing children’s
understanding of addition and subtraction, multiplication and division, and our base-ten
number system. Based on our analyses and grading of hundreds of written reports of these
interviews, we have been able to recognize this process of progressive generalization as
children explain their strategies for solving specific problems, connect many such
experiences together, and begin to generalize their informal strategies and build flexibility in
the application of those strategies to new, nonroutine problem situations. We have seen this
process of progressive generalization begin with students’ use of direct modeling strategies
driven by their understanding of the actions and/or relationships expressed in the story
problem. As experiences solving story problems continue, these students’ collections of
generalized strategies eventually include a rich mixture of direct modeling, counting, number
fact, and invented algorithm strategies. Direct modeling strategies, by definition, are situated
in the specific contexts, quantities, and actions of a story. Invented algorithms are
generalizations that children have made from many experiences solving problems. Children
apply these invented algorithms in new situations without referring back to specific previous
solutions or contexts. Children’s invented algorithms are at an informal level—they do not
involve the formalized procedures and notations of the standard computational algorithms.

In their research-based recommendations on how to integrate arithmetic and algebraic
thinking in elementary mathematics, Carpenter, Franke, and Levi (2003) emphasize that
children need to use their understanding of equality and relational thinking to make their
informal knowledge of properties of number operations explicit by articulating, refining, and
editing conjectures. These conjectures constitute a basic form of informal generalization and
mathematical argument that can progress to more formal and rigorous justifications and
proofs. Since 2003, we have also been asking some preservice and inservice teachers to
conduct student interviews focused on children’s understanding of the equal sign and
relational thinking. Based on our analysis of these reports, we have been able to recognize
connections students make between their developing understanding of properties of base-ten
numbers and number operations and their strategies for solving story problems.

In addition, during our six-year longitudinal teaching experiment using the Investigations
in Number, Data, and Space curriculum materials, we have been able to recognize students’
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use of connected conceptions in making conjectures and other informal generalizations about
the properties of numbers and operations. We have also seen how making these conjectures
can be encouraged by teachers in standards-based learning environments through appropriate
worthwhile mathematical tasks and orchestration of classroom discourse centered on
children’s thinking, strategies, conjectures, and informal justifications.

Possible Applications of This Model in Elementary Mathematics
Carpenter et al. (February 2004) summarize how what they have learned from their

NCISLA studies can be used by others to develop similar innovative practices in new
settings. They explain, “Our conception of teaching for understanding entails teachers forging
connections among three bodies of knowledge: (a) the critical concepts, processes and
methods of inquiry and argumentation of the content they are teaching; (b) the ways their
students’ mathematical and scientific thinking develops; and (c) the nature and effects of their
teaching practices” (p. 6). We are convinced that the framework for organizing elements of
progressive generalization described in this theoretical report provides a succinct and
practical model for analyzing and understanding the ways in which the authentic process of
generalizing develops from students’ experiences solving story problems. As we have had
occasion to share this model with teachers, it has provided (a) a rationale for valuing
children’s invented informal strategies and (b) a model for how solving problems in context
and connecting context-specific conceptions through discourse about strategies, thinking,
understanding, conjectures, and justifications can lead to valued generalizations that are
important learning goals in elementary mathematics.
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The purpose of this paper is to highlight some parallels between enactive cognition and
Spinoza’s theory of mind. Both frameworks entail a single ontology and a dual epistemology.
The two systems can inform and support each other. According to Spinoza, mathematical
knowledge develops from common notions, ideas which are universally present in the world.
Common notions can be interpreted within the enactive framework as recurrent patterns of
enaction. In both frameworks mathematics reflects the deep structure of the world. However,
human mathematical knowledge is limited because a human individual, and indeed all of
human society, is only an embodied fragment of a large and complex universe. This viewpoint
offers an alternative to the constructivist approach and therefore has implications for
mathematics education research.

According to the theory of enactive cognition, cognition is the interaction between an
organism and the world in which it is embodied (Varela, Thompson, & Rosch, 1991). A
major inspiration for enactive cognition is the phenomenology of Merleau-Ponty. Campbell
(2001) has proposed a radical enactivism, with Merleau-Ponty’s notion of flesh as the
ontological primitive. This interpretation of enactive cognition has remarkable parallels with
Spinoza’s theory of mind. In both systems the monist ontology supports two epistemologies.
Spinoza can illuminate and inform some aspects of enactive cognition.

In Spinoza’s epistemology the mind is “the idea of the body,” which is altered by impact
with other bodies. Common notions are ideas that are present in all interactions between
bodies. According to Spinoza, common notions are the foundation of mathematics. From the
enactive perspective, common notions can be interpreted as recurrent patterns of enaction.

Spinoza’s metaphysics implies a deeply structured world. If it is assumed that there is a
deep structure to the world, then the objectivity and utility of mathematics is guaranteed.
However, humans are only finite, situated fragments of a large and complex universe. For
that matter all of human society constitutes only a small part of the whole. Human
mathematical understanding is limited by its fragmented, situated engagement with the world.

The approach to Spinoza and enactivism offered herein is not fully compatible with the
constructivist perspective. However, mathematics education research may benefit from an
interdisciplinary dialogue that offers alternative ideas.

Literature
Enactive cognition is developed in Varela, Thompson, and Rosch (1991). Damasio (1994)

provides additional neurobiological support for the theory, and Campbell (2001) proposes a
radical enactivism that utilizes Merleau-Ponty’s notion of flesh as ontological primitive.

The primary source for Spinoza is the Ethics (1677/1996). An explication of Spinoza’s
ideas, particularly as they can be related to mathematics, is given in Hampshire (2005).
Parkinson (1954) and Carr (1978) can help to clarify Spinoza’s theory of knowledge.
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Changeux and Ricoeur (2000) and Damasio (2003) engage Spinoza for the light he can shed
on current issues in ethics, philosophy of mind, and neurobiology.

The notion that the universe is deeply structured is a feature of Spinoza’s philosophy.
Campbell (2002) makes a strong argument for accepting the idea of a deeply structured
external reality.

Lakatos (1976) provides an interesting perspective on the limitivist conception of
mathematics implied by enactive cognition and Spinoza’s theory of mind.

The Embodied Mind
Cartesian dualism rigorously separates the two worlds of mind and body. Various monist

formulations, on the other hand, claim that all is mind (the idealists) or all is matter (the
materialists). The theory of enactive cognition of Varela, Thompson, and Rosch (1991) exists
in a middle ground between the extremes of monism and dualism. The residual dualism of
enaction is expressed in the fundamental idea of double embodiment. Thus, we are physical
beings existing in the world, but also we perceive the world, the world exists in us. According
to Merleau-Ponty, whose phenomenology is the philosophical foundation of enactive
cognition, “The world is inseparable from the subject, but from a subject which is nothing but
a project of the world, and the subject is inseparable from the world, but from a world which
the subject itself projects” (1962, pp. x-xi, cited in Varela et al). Varela et al write that
“embodiment has this double sense: it encompasses both the body as a lived, experiential
structure and the body as the context or milieu of cognitive mechanisms” (p. xvi, authors’
emphasis).

The embodied point of view implies an organism’s active engagement in its cognition
rather than its being a passive receptor of perceptual data. The very fact of being embedded in
the world means that the organism receives external stimuli that change the internal milieu. A
change in the internal milieu in turn will change the way the organism acts, altering the
stimuli it receives. Varela et al (1991) describe this in poetic terms as “organism and
environment enfold into each other and unfold from one another in the fundamental
circularity that is life itself” (p. 217). The circle spins at the flickering pace of phenomenal
time. It is impossible to identify which comes first, stimulus or response, and the enactive
perspective is to regard organism and the world in which it is embodied as a single,
interactive structure. According to Merleau-Ponty, “When the eye and the ear follow an
animal in flight, it is impossible to say ‘which started first’ in the exchange of stimuli and
responses” (1963, p. 13, cited in Varela et al).

According to Damasio (1994),
Perceiving the environment, then, is not just a matter of having the brain receive direct
signals from a given stimulus, let alone receiving direct pictures. The organism actively
modifies itself so that the interfacing can take place as well as possible. (p. 225)

Damasio’s neurobiological approach implies that action is necessary to optimize perception.
Varela et al (1991) go further to claim that no perception is possible without action. Even the
experience of color, for example, depends on active perception. The cycle of action and
perception continues unbroken and can only be halted with the cessation of both.
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It is mistaken, therefore, to regard the organism as an observer of a changing exterior
world. Action must accompany perception, but this action in turn alters the environment.
According to Varela et al (1991), “[P]erception is not simply embedded within and
constrained by the surrounding world; it also contributes to the enactment of the surrounding
world. . . . [T]he organism both initiates and is shaped by the environment” (p. 174).

Cognition is defined by Varela et al (1991) as “Enaction: A history of structural coupling
that brings forth the world” (p. 206). The history of structural coupling is the dance between
organism and the world. They move together in perfect synchrony, neither taking the lead,
but both moving to the same melody. The two are more closely intertwined than any lovers.
In my understanding of enactive cognition, the boundaries of the organism do not stop at the
physical shell of the body, but include organs, blood, and nerves—the body is itself part of
the world that it enacts—and therefore cognition arises also in the body’s interaction with
itself. Mind is the interaction of organism and the world, including this endogenous activity.
Consider the two aspects of embodiment. Firstly, the external manifestation of mind is
physical activity. This physical activity includes, but of course is not delimited by, the
electrical and chemical activity of the brain. Secondly, the internal manifestation of mind is
everyday lived experience. It is this world of lived experience that is brought forth by the
history of structural coupling.

Campbell (2001) argues that the residual dualism of double embodiment is “somewhat
redolent of more traditional ‘interactionist’ concerns with mediating between the Cartesian
real and ideal worlds than bypassing them altogether” (p. 7). He proposes instead a radical
enactivism based on Merleau-Ponty’s flesh as a single ontological primitive encompassing
both mind and matter. Accordingly, the “objective ‘real’ world we are in and the subjective
‘ideal’ world within us [are] manifestations of the same world” (ibid., p. 3). The “real” and
the “ideal” are therefore distinguished in epistemology not ontology.

There are remarkable parallels between the theory of enactive cognition and Spinoza’s
theory of mind. The agreement is even closer for radical enactivism.

Spinoza’s Theory of Mind
Spinoza’s philosophical system has been discussed recently with regard to ethics,

philosophy of mind, and neurobiology (Changeux & Ricoeur, 2000; Damasio, 2003).
Spinoza’s theory of mind also has implications for the theory of enactive cognition. The
parallels between the two may provide a way of understanding the nature of mathematical
thinking that could have implications for the philosophy of mathematics education.

Spinoza defines substance as “what is in itself and is conceived through itself, that whose
concept does not require the concept of another thing, from it must be formed” (E1 D3)1:
substance is that which is not contingent. Spinoza demonstrates that each substance must be
its own cause (E1 P6 C) and the cause of no other substance (E1 P6). Moreover, since these
self-caused substances can be conceived, they also exist (E1 P7). This implication follows
from Spinoza’s first definition: “By cause of itself I understand that whose essence involves
existence, or that whose nature cannot be conceived except as existing” (E1 D1, emphasis
added). There can only be one such substance (E1 P14), which, along with its modes
(discussed below), must therefore consist of all that there is. Spinoza calls it God or Nature.
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Substance can be known through its attributes, which “the intellect perceives of
substance, as constituting its essence” (E1 D4). Two attributes of substance are Thought and
Extension: “Thought is an attribute of God, or God is a thinking thing” (E2 P1); “Extension is
an attribute of God, or God is an extended thing” (E2 P2). Interestingly, Spinoza argues that
although substance necessarily has an infinite number of infinite attributes, Thought and
Extension are the only two conceivable by humans.

Thought and Extension are intimately related. A good way to understand this connection
is to consider their manifestation on the human level. Firstly, however, it is necessary to
determine what kind of thing a human individual is in Spinoza’s system. Spinoza defines
mode as “the affections of substance, or that which is in another through which it is also
conceived” (E1 D5). According to Spinoza, “Particular things are nothing but affections of
God’s attributes, or modes by which God’s attributes are expressed in a certain and
determinate way” (E1 P25 C). Human individuals as extended things are finite modes under
the attribute of Extension; human individuals as thinking things are finite modes under the
attribute of Thought. These two finite modes correspond to body and mind, respectively.

Spinoza defines idea as “a concept of the mind which the mind forms because it is a
thinking thing” (E2 D3). The fundamental connection between mind and body is expressed as
follows: “The object of the idea constituting the human mind is the body, or a certain mode of
extension which actually exists, and nothing else” (E2 P13, emphasis added). Moreover,
“The human mind does not know the human body itself, nor does it know that it exists,
except through ideas of affections by which the body is affected” (E2 P19). Changes in the
body, in other words, are precipitated by interaction with other finite modes. The mind is
simply the procession of ideas of the body as the body itself is changed through these
interactions. In addition, “The idea of any mode in which the human body is affected by
external bodies must involve the nature of the human body and at the same time the nature of
the external body” (E2 P16), meaning that external affects, in other words perceptions, are
necessarily integrated and transformed by the human perceiver.

Spinoza’s construction of mind appears to parallel enactive cognition. However, enactive
cognition requires an active engagement between organism and world, whereas Spinoza
implies that ideas can correspond to a passive body that is acted on by the world.

A crucial point is that the “order and connection of ideas is the same as the order and
connection of things” (E2 P7). In other words, it is better not to think of mind and body as
two separate entities, with somehow a causal relationship between them, but rather as one
and the same thing under two different attributes.

The idea of a single substance in which mind and body are finite modes of the two ways
in which this substance can be known, Thought and Extension, recalls Merleau-Ponty’s
notion of flesh, discussed above. Extension corresponds to the objective point of view, in
which we are embodied in the world; Thought corresponds to the subjective point of view in
which the world is embodied in us.

There are, therefore, substantial similarities between the two ways of understanding the
relationship between mind and body. The next task is to discuss the ways in which Spinoza
and enactive cognition can inform each other concerning the nature of mathematics and
mathematical thinking.
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A Limitivist Understanding of Mathematics
Spinoza’s epistemology has three categories of knowledge: Imagination, Reason, and

Intuition. According to Parkinson (1954),
An imagination is an idea which corresponds to the impact of external things on the body
. . . . Spinoza wishes to show that in the process of imagining the mind is passive: that the
order of thoughts is not a rational order, imposed from within, but is imposed from the
outside. (p. 139)

Imagination can be thought of, therefore, as sensory perception. Concretely, Imagination
would correspond to perception of a triangle. However, Spinoza is clear that these sensory
perceptions can originate endogenously as well as exogenously. Indeed, mind’s-eye
perception of a triangle following exposure to the word “triangle” is an act of Imagination
(E2, P40, S2).

The second category of knowledge, Reason, follows “from the fact that we have common
notions and adequate ideas of the properties of things” (E2, P40, S2). Parkinson (1954, p.
166) argues that Spinoza means Reason to cover general results reached by deductive
reasoning, except those forms of deductive reasoning that may be attributed to Intuition, the
third category. According to Parkinson (pp. 166-167), there are two aspects of Reason:
firstly, universality—the deduction, for example, that the angles of any triangle total two right
angles; secondly, inference to the particular—that a certain figure is a triangle implies that its
angles total two right angles, because this property is true of all triangles.

The third and highest category of knowledge is Intuition, and “this kind of knowing
proceeds from an adequate idea of the formal essence of certain attributes of God [i.e.,
particular objects] to the adequate knowledge of the essence of things” (E2, P40, S2).
Parkinson (1954, pp. 182-185) interprets Intuition to refer also to deductive knowledge, but
this time to knowledge concerning particulars rather than universal principles. According to
Carr (1978), on the other hand, while inference from universal to particular would be an
example of Reason, inference from particular to universal constitutes an example of Intuition.
Intuition, in other words, implies a different ordering of our thoughts. In concrete terms,
Intuition would be present when a general truth is immediately grasped from a particular
geometrical diagram. Reasoned argument may subsequently lead to proof. In my
understanding, mundane recognition that a particular geometrical figure is a triangle would
also count as an act of Intuition. I prefer Carr’s distinction to Parkinson’s, and I would
therefore categorize all deductive arguments under the heading of Reason.

The geometrical examples have suggested how different forms of mathematical reasoning
may be assigned to Spinoza’s distinctions. Spinoza’s categories of knowledge may also be
interpreted tentatively within the enactive framework. Accordingly, recognition that a
particular perception is a “triangle,” an act of Intuition, activates a specific, habitual manner
in which an individual interacts with the world, a recurrent pattern of interaction with the
world. A deeper Intuition, in which an individual immediately grasps a general truth, would
correspond to formation of a new, and potentially habitual, manner of interacting with the
world, a new recurrent pattern of interaction. Reason, on the other hand, charts connections
between existing recurrent patterns of interaction.
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According to Spinoza, “[T]here are certain ideas, or notions, common to all men. For . . .
all bodies agree in certain things, which . . . must be perceived adequately, or clearly and
distinctly, by all” (E2 P38 C). These common notions correspond to those recurrent patterns
of interaction that are universal, that are shared by everyone. Moreover, such ideas are
necessarily adequate (i.e. true) (E2 P38). According to Hampshire (2005),

Mathematics in general, and geometry in particular, is the science which Spinoza had
chiefly in mind as entirely founded on common notions; the fundamental notions and
propositions of geometry and arithmetic impose themselves as self-evidently defining the
universal and necessary properties of things. (p. 80)

In other words, the basis of mathematics, the common notions, are those ways of interacting
with the world that are shared by all.

While specific mathematical ideas may be true, because they express universal principles,
the common notions, the human individual is merely a finite mode and necessarily engages
the world in a limited capacity. Therefore, whatever patterns of recurrent of interaction are
available to the human individual necessarily entail a constrained understanding of the world
as a whole. According to Hampshire (2005),

Adequate [i.e. true] explanation is only found when we are dealing with an aspect of the
material world which is everywhere the same, the same in our own bodies as in all bodies.
Then we are concerned only with the laws that prevail throughout Nature and that are
systematically related. Along this path we arrive at the order of the intellect and we
approach the infinite idea of God or Nature. (pp. 10-11)

It is important to note in this passage that Hampshire refers to approaching, rather than
reaching, the “infinite idea of God or Nature.” In other words, the mathematical knowledge
that is achievable by humans in their capacities as limited fragments of a very large and
complex universe, is necessarily limited. It is worth quoting Hampshire in full on this point:

The infinite idea of God or Nature must be the true mathematical representation of the
deep structure of Nature and of its most general laws, everywhere and at all time in
operation. Our mathematical knowledge, as it develops and unfolds, gives us glimpses of
this; but the knowledge must always remain fragmentary, because our powers of thought
are finite, and because our active thought must always be subject to interruptions. Lastly,
the inputs that we receive in interaction with objects in the environment are limited both
by our position in the common order of nature and by our sensory equipment and brains,
that is, by the limitations of our bodies. Our minds are correspondingly limited. The mind
is the active part of the whole person, who is both mind and body. (p. 11)
There is nothing in this discussion of Spinoza’s view of mathematics that is inconsistent

with enactive cognition. Spinoza, in his “infinite idea of God or Nature,” clearly implies a
deeply structured world. Is it unreasonable to postulate the same within the enactive
framework, and that human mathematical thinking is limited because of the fragmented,
situated human engagement with this structure?

Campbell (2002) gives an embodied perspective on the existence of a structured external
reality. He argues that the very embodiment of human beings within the noumenal realm in
itself assures a correspondence between human ideas and an external reality:
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When one considers that we are conscious, reflective, and free embodied beings
constituted of and embedded within the noumenal realm, we are lead to the realization
that, subjectively, our autonomous actions can be seen to arise through us from within
that very realm. (p. 432)
If the correspondence does exist between human ideas and external reality, then a

structured human cognition implies a structured external world. Provided that a world with
deep structure is accepted, the objectivity of mathematics follows as a matter of course. The
utility of mathematics in modeling aspects of the world is also assured, because the
mathematics itself is the deep structure of the world: the model is the reality. Extending the
metaphor that cognition is the intimate dance between individual and the environment, it can
be seen, therefore, that we all dance to a common melody, a melody that emerges from the
groundswell of our being as embodied fragments of a deeply structured universe.

Human mathematical knowledge will always be limited because humans are only finite,
situated fragments of a large and complex universe—in fact, all of human society is only a
finite, situated fragment of the whole. However, human mathematical knowledge does
increase, and the increasing utility of mathematics implies that the direction of increase is
toward greater knowledge of the deep structure of the world. This view is consistent with the
method of proofs and refutations of Lakotos (1976), which is a reflection on the way in which
human knowledge of the deep structure of the world is enhanced.

Implications for Mathematics Education
The viewpoint discussed herein is constructivist in that recurrent patterns of enaction

create individual mathematical understanding. To the extent that society is a significant
environmental factor for cognition that is characteristically human, mathematical
understanding is also a social phenomenon. However, the radical constructivism of von
Glasersfeld (1995) and the social constructivism of Ernest (1998) are not fully compatible
with the views discussed herein because neither requires that mathematical knowledge should
reflect a deeply structured external reality.

The existence of a structured external reality as the basis for mathematics indicates that
the source of knowledge for the student is the same as that of the teacher. Their mathematical
knowledge will be the same because of the shared features of their situated embodiments as
human individuals in a deeply structured world—their mathematical knowledge will consist
of notions common to both. Just as cognition arises from the interaction between individual
and world, mathematical learning, can arise from the interaction between student and teacher,
in which the teacher is a significant component of the student’s environment. The teacher
structures this interaction to facilitate student learning. Mathematical learning results in new
recurrent patterns of interaction, intuitive knowledge in Spinoza’s sense.

Any academic discipline requires a theoretical framework, a firm foundation to ground its
empirical investigations. Mathematics education, in particular, needs to question the nature of
mathematics and the nature of education. To my mind, the answers given by mathematics
educators should reflect the humanity of education. By means of the ideas presented in this
paper I have made some tentative suggestions in this regard. The resulting interdisciplinary
approach is consistent with the goals of PME-NA.
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Endnotes
1. The quotes from Spinoza’s Ethics are Curley’s translations in Spinoza (1677/1996).

According to the usual practice, they are referred to by book (E), proposition (P), definition
(D), corollary (C), and scholium (S).
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This study explored elementary teachers’ transformations of textbooks into practice in
teaching fractions in the context of recent efforts to reform mathematics education. This
study focuses on the first chain of teachers’ transformations for classroom
instructions—that of selecting problems with their textbooks. Factors that support and
constrain teachers’ textbook transformation approaches are also explored. This study
revealed three problem selection patterns in terms of cognitive demand. Three influential
factors, textbook cognitive demands, curriculum policy, teachers’ view on textbooks were
identified.

This study examined teacher’s textbook transformations in terms of cognitive demand
when teachers select their problems with their textbooks. Research on teachers’ textbook
use and influential factors has been done over the course of two decades and has provided
a substantial number of categories of teachers’ textbook use patterns and factors that
influence them (e.g., Freeman and Porter, 1989; Kauffman, 2002; Schmidt, Porter,
Floden, Freeman, & Schwille, 1987; Stodolsky, 1989; Sosniak and Stodolsky). However,
most of the previous studies on textbook use focused on the maximal extent of coverage,
such as to what extent teachers use textbooks in planning and teaching school subjects.
They do not help us understand how teachers use their textbooks to provide different
students’ learning opportunities.

Professional Standards for Teaching Mathematics (NCTM, 1991) articulated that
students’ opportunities for learning are created by, what Stein and Smith (2000) called,
cognitive demands of task, “the level and kind of thinking required students to
successfully engage with and solve the classroom problems”. Although researchers have
documented mathematics instructional changes with different frameworks, such as, “new
mathematics topics,” “variety of manipulatives,” etc, to gauge teachers’ implementation
of reform ideas, opportunities for student learning are not created simply by putting
students into groups, by placing manipulatives in front of them, or by handing them a
calculator. Rather, it is the level and kind of thinking in which students engage that
determines what they will learn (NCTM, 1991).

The purpose of this study is to examine elementary teachers’ textbook transformation
when selecting problems in terms of cognitive demand and its influential factors. This
study focused on the topic of fractions. The detailed research questions are as follows:
1. What textbook transformation patterns, in terms of cognitive demand, do elementary

teachers exhibit in their problem selection?
2. What kinds of the factors influence teachers’ problem selection with textbook in terms

of cognitive demand?
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Conceptual Framework

Cognitive Demands of Problems
Problems here mean a mathematical object in the textbook and in teaching meant for

the students to figure out and solve. Cognitive demands of problems mean "the kind and
level of student thinking required when (students) engage in problems. Two different
levels of cognitive demands—high vs. low—identified by Stein and Smith (2002) were
used in this study.

Factors Influencing Teachers’ Textbook Transformation
To explore factors that influence teacher’s textbook use, this study employed three-

level factors: individual-level, contextual-level, and teachers’ opportunity-to-learn
factors. Table 1 shows three levels of factors and the sub-categories this study explored.
Table 1. Factors that influence teachers’ transformations
Factor-level Sub-category
Individual-level factors

Teacher use of student objectives
Teachers’ skills and knowledge
Beliefs about teaching and learning

View about textbooks or textbook use
Contextual-level factors

District textbook policy

Teacher perception of test (e.g., MEAP test,
NCLB)

Teachers’ perceptions of the students’
mathematics ability
Teachers’ opportunity to learn

Professional development opportunities
Teachers’ perceptions about cognitive
demands of textbook lessons

Methods
This study originally employed a mixed method design that combines both

quantitative (survey) and qualitative approaches (interview & observation) to explore
elementary teachers’ use patterns. However, due to space limit, this paper addressed only
one method, quantitative method.
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Participants
A total of 169 teachers participated in this study from second through sixth grade.

This is convenient sample. Participants were recruited through Master courses at Mid-
Western University and professional development programs in the U.S. Data was
collected from 2006 summer to 2007 fall semester.
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Data Instrument
The survey was first developed based on the previous studies (e.g., Horizon Research

questionnaires (2003) and then the pilot study was conducted. Survey were revised based
on their feedback and reformatted the survey to facilitate easier reading. The revised
survey is comprised of five parts: (1) background information, (2) teachers’ perceptions
of the cognitive demand of their textbooks, their problem selection and their questions,
(3) individual-level factors, (4) contextual-level factors, (5) teachers’ opportunities-to-
learn factors (see Table 2). Teachers’ textbook transformation patterns were measured
using teachers’ perception of the kinds and levels of problems presented in their textbook
lessons and in their problem selection. They were asked to indicate the frequency of the
various types of problems presented in their textbook and those used in teaching.
Influence of individual-level factors, contextual level factors, and teachers opportunity to
learn factors are measured by asking teachers to how much they would agree or disagree
with each of the provided statements.

Data Analysis
After the preliminary statistics using the Statistical Package of the Social Science

(SPSS), scatter plots were first used to get sense of the relationship between different
variables and textbook transformation patterns were identified based on the average
means of scale.  Then regression analysis were completed for two purposes: (a) to
examine relatively important influences among the three groups of factors and (b) to
identify the most influential group of factors among individual-level factors, contextual-
level factors, and teachers’ opportunity-to-learn factors.

Results
1. What textbook transformation patterns, in terms of cognitive demand, do elementary

teachers exhibit in their problem selection?
To find the relationship between cognitive demands of textbook problems and

selected problems in their teaching, this study used the scatter plot. Figure 1 shows the
linear relationship between cognitive demands of textbook problems and those in
teaching, indicating that the higher cognitive demand of textbook problems teachers
indicates, the higher cognitive demand problems teachers use. From this trend we can
draw two different transformation patterns, which are H-H pattern, teachers who selected
high cognitive demands problems with high cognitive demands textbooks and L-L
pattern, teachers who selected low cognitive demands problems with low cognitive
demands textbooks.
__
Figure 1 Scatterplot of Textbook Problem Cognitive Demands against Cognitive demand
of Problems in Teaching

Figure 1 also shows that there are variations, indicating that there are other possible
patterns. To explore precisely textbook transformation patterns, the average rating scale
(m=3) were used. For example, if the average composite score of textbook cognitive
demands problem is greater than 3, it was considered high cognitive demands textbook;
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otherwise low cognitive demands textbook. Three patterns are identified as shown Figure
1.

2. What kinds of factors influence teachers’ problem selection in terms of cognitive
demand?
This study used a hierarchical regression to explore this question. Based on the

literature review, the order of entering three groups of factors was decided. Since
individual level factors (e.g., teachers’ knowledge) are considering important factors, I
first entered individual level factors. In the second step, learning opportunities factors
were added. Then contextual level factors were added to create a full model that explains
teachers’ higher cognitive demands content selection.

The results show that while student objectives among individual-level factors
contributed significantly to the prediction of the teachers’ problem selection while
teachers’ knowledge and beliefs did not have direct effect. Second, the addition of factors
related to teachers’ opportunity to learn highly improved the prediction of teachers’
cognitive demands problem selection (24%_68%). Particularly, teachers’ perception of
textbook cognitive demands had a direct and significant effect, but the effect of student
objectives decreased and became insignificant. When contextual level factors were
entered, curriculum policy (groups with curriculum policy vs. no policy) was
significantly associated with teachers’ problem selections, meaning that teachers select
slightly high cognitive demands contents when there is curriculum policy. This study has
implications to policy makers, curriculum developers, and teacher educators.
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We discuss connections students made while exploring an open-response task in university
honors calculus. As students exercised their agency, they built connections amongst previous
tasks, their life experience, graphs of rate and quantity, and conceptually important calculus
ideas. Students used metaphor and linguistic invention to justify or explain these connections
to others. The conceptually important calculus ideas and connections students built
ultimately helped them to build conceptions of the Fundamental Theorem of Calculus

Connected understanding has been an increased focus in recent years (Hahkioniemi,
2006; Martin & Towers, 2006; Megowen & Zandieh, 2005; Walter & Gerson, 2007). The
nature of connections that students build, particularly within inquiry-based classrooms, has
not been clearly characterized.

Literature Review and Theoretical Framework
Students learn through the exercise of personal agency (Walter & Gerson, 2007). Through

sustained mathematical exploration, students activate their agency by making choices and
engaging in problem solving activities with a high level of motivation, and a sense of
enthusiasm as ideas are built and justified (Cifarelli & Cai, 2005, Zaslavsky, 2005).

To describe connections that students make, we use the idea of conceptual blending
(Fauconnier & Turner, 2002) where two mental spaces are connected to form a blended
space. Two specific types of connections are metaphor (Presmeg, 1998) and linguistic
invention (Brown, 2001; Walter & Johnson, in press) where students use a personal
experience to create a parallel story to the mathematical context they are exploring.

Research Methodology and Question
In winter, 2006, the authors conducted a teaching experiment in which 22 students

collaboratively explored cognitively important, open-response calculus tasks resulting in
multiple solution strategies as well as multiple directions of inquiry. The qualitative data is
extracted from three hours of videotape collected within two class periods, in which four
students explored the Quabbin Reservoir Task (Hughes-Hallet, 1994). Students were given
graphs of inflow and outflow of water in Boston’s Quabbin Reservoir as a function of time
(see Figure 1) and asked to reason about the quantity of water in the reservoir.

Outflow

Inflow

Jan (1993) Jan (1994)April July Oct

rate of flow
(millions of gallons/day)
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Figure 1: The Quabbin Reservoir Task (labels added)

In order to explore the question, ‘What connections do students make as they explore the
Quabbin Reservoir Task?’ the videos were transcribed and broken into episodes including
cognitively important discussions, questions, refutations, or justifications. Each episode was
coded for connections and organized chronologically and in collections of related episodes
which were further analyzed with respect to existent theories and emergent theories, resulting
in a multilayered analysis supported by strong evidence. The video and transcript were
viewed together throughout and theories were triangulated with field notes and student work.

Data and Analysis: An Example from Jay
Jay first drew a graph of the quantity of water vs. time by reasoning about how the rates

affected the quantities at individual points. As he drew his graph he made connections
between the rate of flow and the change in quantity, while remaining grounded in the context
of the reservoir (see Figure 2), building ideas important to understanding the antiderivative.

Jay: If you look here the inflow is kind of the same from right here to right here [pointing to
the maximum inflow at May] (see Figure 1), but the outflow is going up. And so you
know, we’ll be saying that this point [quantity] is going, is increasing.

Figure 2: Jay’s Blended Space: Rate and Quantity

Next Jay began to compare the quantities of water at the beginning and end of the year,
still reasoning about the differences between the rates. Shaun suggested that they could also
determine the quantity of water in the reservoir by comparing the areas between the inflow
and outflow curves. When later Shaun and Jay disagreed about how much water was in the
reservoir at the end of the year, instead of returning to his own reasoning with rates, Jay used
areas to justify Shaun’s answer and disprove his own (see Figure 1).

Jay:  Okay, well look at this. Just look at that section with this section put together and I
think you're right because…that little bowl (a)…That's all the gain in inflow…And then
that bowl (b), then that bowl (c) are all the outflow, so I think you are right.

In the course of Jay’s justification, he used a metaphor of a bowl as a container for the
area between the curves. This metaphor was a conceptual blend between Jay’s life experience
and the quantity of water in the reservoir. Thus, Jay built a three-way connection amongst the
area between the inflow and outflow of water, a bowl as a container, and the quantity of
water in the reservoir (see Figure 3). These connections were just the beginning of stronger
connections Jay later makes as he builds his understanding of area between curves.

a bowl as a container

area between inflow and outflowquantity of water

 positive rate—increasing quantity
negative rate—decreasing quantity

context of the reservoir
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Figure 3: Jay’s Bowl Metaphor

Later the group tried to make sense of the units of the area between the curves. Timbre
and Jay began to debate whether the units along the horizontal axis (quarters of a year) were
appropriate measures of time since the units of the inflow and outflow are millions of gallons
per day. Jay suggested that there was no reason to convert the quarters of a year to days. In
order to explain his thinking to Timbre, Jay introduced linguistic invention by suggesting that
they think about the acceleration of a “dude” jumping out of an Apache.

Jay: Acceleration is the distance over time over another time.…Well in an acceleration such
as gravity…you are going at a certain rate, like you’re falling, you have a certain
rate.…Alright, this dude jumps out of an apache, okay?…His rate is meters per second,
but he is going over a period of time. Time is passing while his rate is still a thing over
seconds…these passing seconds are not changing whether or not this second, as you
know it’s a part of a rate, it’s different than this passing time. Each notch on this passing
time is not effecting whether or not this is meters per second.

Conclusion and Implications
In the larger body of data, students made connections amongst previous tasks, their life

experience, graphs of rate and quantity, conceptually important calculus ideas such as: area
antiderivative, and concavity. In particular, they connected the quantity of water to both the
rate of change and the area independently within the context of the Quabbin Reservoir.
Students used metaphor and linguistic invention to justify or explain these connections to
others particularly in the face of disagreements or debates. The conceptually important
calculus ideas and connections students built while exploring the Quabbin Reservoir Task
ultimately helped them to build conceptions of the Fundamental Theorem of Calculus.

When students are allowed to exercise agency in the classroom as they build ideas, they
use their rich life experience, and shared classroom experience to justify and build
connections between those ideas. Metaphor and linguistic invention can be powerful tools for
students to communicate their understandings and in particular connections between ideas to
themselves and others. Facilitating an environment where students have the freedom to
choose their own connections will allow them to more freely build upon what they already
know. Establishing an environment where students explain and justify their thinking will
further allow students to build stronger connections through the use of powerful connecting
and communicating tools such as metaphor and linguistic invention.
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Recently has been an interest in the significance of complexity theories for educational
research. Complexity theory allows researchers to experience a shift in thinking to a “middle
way” mentality of proscriptive studies. Common principles of researching in this middle way,
however, have not yet been articulated. The paper reports on an inquiry about
methodological commonalities, the principles that appear to guide complexity-based studies.
The inquiry involved content analysis of seven complexity based theses. The commonalities
amongst others include: task oriented research, researchers as close participant-observer,
multiple research observers and diverse data interpretations. We argue that to the extent that
studies framed by complexity theory have common modes of inquiry that are unique,
complexity theory is a methodology.

Over the past three decades, the field of mathematics education has witnessed
development of new theories of knowing and knowledge such as constructivism, situated
cognition, critical theory and post-structuralism. With regard to mathematics education
research these new theories inform a proliferation of more descriptive studies among
researchers that problematize the assumptions behind prescriptive studies. Recently there has
been an interest by several researchers in the significance of complexity theories for
educational research. Complexity theory  allows mathematics education researchers to
experience a shift in thinking from an “either or” mentality between descriptive studies or
prescriptive studies to a “middle way” mentality of proscriptive studies that seek to
understand and build environments that support learning, teaching and research in complex
ways. Canadian mathematics educators, such as Kieren, Simmt and Davis view complexity
theory as a theoretically promising, middle way for investigating mathematics educational
issues. Common principles of researching in this middle way, however, have not yet been
articulated. A central question that we address in this paper is: What might research
techniques informed by complexity thinking look like?

Our intent in this paper is to contribute to the new interest in complexity theory. First we
offer a brief synopsis of the discourse, complexity theory, and its sub discourse, enactivism.
We then report on an inquiry about methodological principles, if any that guide mathematics
education researchers who adopt complexity theory. We have dubbed research guided by
complexity theory, proscriptive research. The inquiry is based on a content analysis of our
own work and the work of other complexity researchers as well as interviews with selected
complexity researchers. We seek for the commonalities among the studies with regard to the
nature of the research, the role and nature of observers, the form of inquiry structures
(including data interpretations and research writing) and the relation between empirical data
and theory. We conclude the paper by elaborating on these commonalities.
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Theoretical Framework: Learning as a Complex Process
Davis and Simmt (2006) define complexity science as a science that deals with “self-

organizing, self-maintaining, adaptive phenomena—in brief, with systems that learn” (p.
295). Adopting complexity thinking we view individual learners as well as collectives of
learners plus other learning systems as complex learning organisms whose study lends itself
to research methods that respect this complexity. Complexity research explores how complex
adaptive living systems, humans included, learn and live (Capra, 1996). One of the sub
discourses of complexity science is enactivism, which is based on the work of Varela and
Maturana (1992), and Varela, Thompson and Rosch (1992). Enactivism is a theory that views
cognition and learning as an “enactment of a world and a mind on the basis of a history of the
variety of actions that a being in the world performs” (Varela, Thompson & Rosch, p. 9).
Some Canadian mathematics educators frame their research with enactivism (see for
example, Gordon 2001 & Simmt, 2000). Kieren, Davis and Mason (1996) observe:

At the time when there seem to be conflicting views on mathematical cognition between
those which observe it as personally driven and those which observe it as externally
driven; between individually based and socially based views; between cognition as
fundamentally active or fundamentally receptive; …it is important and perhaps necessary
to seek and apply ways of thinking about cognition which are in the middle (p. 9).

In this middle-way mind, body and world; mathematical structures, individual learners and
collective of learners; teachers, learning resources and curriculum exist in relation to each
other, to the systems that they form (and those that form them) and to their environments. We
adopted the complexity theoretical stance for our studies but in doing so we find ourselves
enacting a form of inquiry that takes into account the embodied (biological), embedded
(socio-cultural) and extended (material-technological) nature of learning systems.

Methods: Analysing Our Three Studies
In the three studies that form the basis of this paper we each drew from enactivism in

particular and from complexity theory in general. Each one of us investigated the dynamics
that emerge during mathematics learning/teaching activities. For Author 1 (2005) the
dynamics were in terms of mathematical attentiveness. Her research involved both
classroom-based and extra curricular activities. The participants were secondary school
students. It involved two sites—one in Canada and the other in Uganda. For Author 2 (2004)
the dynamics were in terms of students’ talk and explanations. Her research study was in
Namibia and was classroom-based. Yet for Author 3 (2002) the dynamics were about the
nature and growth of knowledge of mathematics student-teachers as they undertake teacher
education programs. She too had two research sites, one in Tanzania and the other in Canada.

Author 1, Author 2, and Author 3’s studies are all qualitative but differ in terms of
focus—students learning, classroom practices and teacher learning. The researchers also were
African students in Canada. To isolate only the commonalities that pertain to the basis of the
studies in complexity theory we analyse the studies alongside four other studies whose
researcher did not have an African origin: Glanfield (2004) on teacher understanding, Gordon
(2001) on mathematical conversation, Simmt (2000) on mathematical knowing, and Reid
(1995) on proofs in mathematics learning. The inquiry method involved content analysis of
our three studies and of the other four complexity-based studies. In addition Author 2 carried
out semi-structured interviews with all the researchers except Reid. The goal of the inquiry
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was to ascertain the tacit principles that guided their research, principles that were not drawn
from established research methodologies such as ethnography. We sought for the
commonalities among the studies with regard to the nature of the research, the role and nature
of observers, the form of inquiry structures (including data interpretations and research
writing) and the relation between empirical data and theory.  This paper particularly focuses
on what, in terms of these methodological aspects, appeared common among complexity-
based studies.

Results: Commonalities among Complexity-Based Research
Although a number of education researchers at the University of Alberta have drawn from

enactivism, and later complexity science to inform their studies, no one has, at least not in
detail, explored complexity or enactivism as a research methodology. Perhaps this gap might
be explained by the fact that, in theory, neither complexity thinking nor enactivism is a
research methodology. Both are mainly thought about as theoretical frameworks. We argue
that to the extent that studies framed by complexity theory have common modes of inquiry
that are unique, complexity theory is a methodology.

Complexity research has its routes in scientific studies, especially, of brain and other
bodily systems. The methodology in the scientific studies is mainly clinical and laboratory
based with very few scientists drawing from disciplines in the humanities such as
phenomenology and hermeneutics to inform their experimental results. Thus it is interesting
that complexity-based, proscriptive studies in mathematics education have quite a lot in
common in terms of methodology. These commonalities include: use of task oriented
research, researchers taking on the role of close participant-observer, having multiple
observers at a site, encouraging diverse interpretations of data, making explicit the conditions
of observations, engaging in recursive writing, using organic inquiry structures, and braiding
empirical investigations with theory.

Discussion: Guiding Principles of Complexity Research
Put differently, the proposed paper shares methodological insights gained from

complexity-based studies. In the proposed paper we illuminate each of the principles with
examples from our studies. By doing so we explore how researchers could adopt the
complexity or enactivist perspectives to investigate mathematics learning and teaching. We
show that complexity studies require flexibility on the side of the researcher. Just like life or
adaptation, when proposing a study one may not know, for instance, who the multiple
observers are or where the multiple sites and interpretation will be. It is in carrying out the
study that a researcher happens to choose directions, explore techniques, seek opportunities
and identify subsequent data sources, thus laying down an organic study design. For that
reason, instead of thinking in terms of a pre-specified and descriptive research that is an
individualistic, static and pre-designed endeavor we look at it as a collective, co-emergent
and organic—proscriptive process. Proscriptive studies need only general principles,
principles that encompass many potentialities.
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WHY DO STUDENTS HAVE DIFFICULTIES RECOGNIZING THAT A LINEAR
EQUATION CONSISTS OF TWO ALGEBRAIC EXPRESSIONS?

Irini Papaieronymou
Michigan State University

papaiero@msu.edu

Data from a small empirical study of ninth grade students carried out by the author indicated
that although these students could simplify algebraic expressions and solve linear equations
with ease, they still had difficulties indicating a relationship between algebraic expressions
and linear equations. This report traces some of the developmental roots that aid in
explaining why students have difficulties recognizing such a relationship and suggests some
approaches to remediation.

Theoretical Framework
The available literature indicates that students face considerable challenges with

recognizing and using the structure of expressions and equations (Kieran 1989a). Kieran
(1989a) defines linear equations as open number sentences consisting of two expressions
which are set equal to one another and names this the surface structure of an equation.

Sample of Empirical Work
In a small empirical study of four fifteen-year-old ninth grade students carried out by the

author, students’ responses to the question “What are the differences between algebraic
expressions and linear equations?” were:
Ellen: Equations have an equal sign and variables … something equals something else.

Expressions don’t have an equal sign.
Tim: Expression is like giving a certain number to a variable, … I think! And then equation

is a whole bunch of numbers added together kind of a thing.
Kathy: I think equations don’t have variables and expressions do. When you have an

expression and you simplify you don’t find the exact answer, but you just kind of add
like terms together. But when you solve an equation you find the exact answer.

Susan: Expressions don’t have the equal sign. They have a variable like x.
As the responses indicate, only Ellen was able to indicate that equations consist of two

entities set equal to one another. Yet, Ellen was unable to recognize that these two entities are
algebraic expressions. Susan was able to recognize that the equal sign is not a characteristic
of algebraic expressions. However, Susan was merely able to recognize the existence of the
equal sign in equations but not its balancing nature. These responses confirm Kieran’s claim.

Questions
This report attempts to address the following questions: 1)Why do students who have had

instruction in algebra have difficulties in recognizing the surface structure of equations?
2)What are some possible approaches to remediation of this educational problem?

Developmental Roots and Cognitive Issues
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Various aspects of development can help explain the aforementioned difficulties that
students have. First, let us consider issues of memory. Once a new piece of information we
learn is stored in our memory, it becomes part of our knowledge base and can be retrieved
from memory by cues that are highly similar to what is stored in it (Rovee-Collier, 1999).
Perhaps when students encounter equations, adequate cues that relate expressions to
equations are not provided leading students to think that they are learning something
completely new and unrelated to expressions. Second, student difficulties might have roots in
categorization, in that students might only be able to form basic-level categories. These are
general categories whose members share overall shapes and characteristic actions (Mervis,
1987). In the case of algebraic expressions and linear equations, perhaps students form one
basic-level category for both according to their common characteristics such as numbers,
variables, and actions such as combining like terms in simplifying expressions and in
simplifying each side of an equation. In addition, students have difficulties in viewing the
equal sign as a symbol of balance. This might be because when students were learning
arithmetic they viewed the “=” sign as a symbol that potentiates action in arriving at the
exact answer (Ellis & Tucker, 2000). Once linear equations are introduced, students transfer
their knowledge from arithmetic to solving linear equations. Action potentiation caused by
the equal sign in the form of finding the value of the unknown is especially apparent in the
case when the method shown to students is one which transposes the terms in the equation.

Approaches to Remediation
The available literature suggests that physical manipulatives and metaphors provide

scaffolding for abstract ideas (Goldstone & Son, 2005; Boroditsky, 2000). In the case of
linear equations balance pans could be used in curricula – as physical manipulatives or
metaphors - to represent simple linear equations, emphasizing that each side of the balance
beam is an algebraic expression such that when these two expressions are balanced the result
is a linear equation. However, the balance pan metaphor can only be used to represent linear
equations that have a positive number solution. So, instruction on linear equations could start
with equations that have positive number solutions before moving on to complete symbolic
manipulations and to linear equations with negative number solutions. In this manner, the
process of concreteness fading can be used to first introduce students to concrete situations
(physical manipulatives) and then to reasoning about these situations explicitly, allowing
students to successfully generalize to a more formal understanding of the concepts
(Goldstone & Son, 2005).

Another approach to remediation is the use of priming tasks. When linear equations
are introduced in the classroom, priming tasks can help students retrieve the information
stored in their memory that relates to algebraic expressions. Teachers could write an initial
exemplar of a linear equation on the board, hide the equal sign and right-hand-side of the
equation and ask students what the left-hand-side is and if they have a label for it. The same
could then be done with the other side of the equation.

Further research is needed to identify whether these approaches to remediation indeed
help in overcoming the educational problem described in this report.
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COGNITIVE IMPACTS OF ATTENTION DEFICIT-HYPERACTIVITY
DISORDER (ADHD) ON COLLEGIATE MATHEMATICAL LEARNING
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  Many grade K-12 studies have indicated that students with ADHD are more likely to have
low academic achievement than non-ADHD students, but little research has been conducted on
this subject at the postsecondary level.  For years, those who have worked with ADHD college
students have generalized results from elementary and secondary students to the college level,
without a firm post-secondary research foundation.  It is now known that adults with ADHD
often experience different symptoms than in childhood (APA, 2000).  This new understanding of
ADHD experience for adults, coupled with increasing enrollments of students with ADHD in
postsecondary settings, means we must increase our understanding of the particular learning
needs of the collegiate ADHD student population.  Towards that end, my dissertation study
investigated the following questions:

Q1.  Are the cognitive and affective challenges encountered by college mathematics students
with ADHD different from those outlined in published literature for all college students
learning mathematics?

Q2.  If so, what is the nature of the difference(s)?
I used a purposeful case-sample design with three undergraduate students with ADHD who

were enrolled in mathematics courses at two Ph.D. granting universities. I completed constant-
comparative analysis of over 30 hours of task-based interviews to create cognitive-affective
profiles of students’ problem-solving activity. As points of comparison, I created similar profiles
for non-ADHD student work both from existing literature and additional task-based interviews
with ADHD participants, three non-ADHD college mathematics students, and two college
mathematics instructors using the “bottle problem” (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002).
My profile and theory building was informed by three existing but as-yet-separate theories
(Bandura, 1986; Barkley, 1994; Pirie & Kieren, 1994). Barkley’s unified theory of ADHD is a
combination of theory from education and neuropsychology that specifically addresses cognition
in those diagnosed with ADHD while Pirie and Kieren’s dynamic model provided a means for
visualizing growth in mathematical understanding. Both were situated in social cognitive
theory’s interacting personal, behavioral, and environmental factors.

The results of this study describe the patterns of mathematical activity specific to the three
college students with ADHD. Additionally, the “bottle problem” interview responses were
analyzed, profiled, and compared to similar analyses of responses reported in Carlson et al.
(2002).  As a result of the analysis and visual profiles (to be displayed on the poster) it became
clear that the answer to the first research question was: Yes, there appear to be unique aspects to
the kinds of cognitive and affective challenges faced by ADHD college mathematics learners.
And, in response to the second research question, the nature of the differences seems to hinge on
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the privileging of visualization and pictorial representations, over symbolic and tabular
representations, by college-level ADHD learners.
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The focus of this poster session will be to share a professional development model of Lesson
Study adapted from education experts such as Lewis (2002), Germain-McCarthy (2001), and
Yoshida (1999). This research sought to examine the effects lesson study had on mathematics
teachers and students in an urban middle school. In particular what effects lesson study had on
teachers’ instructional strategies and conceptual understanding as well as students’ achievement
and conceptual understanding was investigated.

The professional development of teachers is essential to improving the nation’s schools, but
for most teachers in the United States, professional development means attending a one-day
workshop designed to transfer a specific set of ideas, strategies, or materials with little or no
follow-up to facilitate classroom implementation (National Research Council, 2002; Smith,
2001). One growing consensus concerning professional development, however, is the
opportunity for teachers to engage in collaboration and follow-up discussions with their peers as
sustained motivation for instructional change (Guskey, 2000). Lesson study consists of the
elements researchers recognize as essential to positively influence instructional practice and
students’ understanding.

Consequently, 13 middle school mathematics teachers in a large urban school district formed
three lesson study groups. Data collection consisted of a pre and post questionnaire, planning and
reflection transcripts, observation notes, lesson plans, student’s work and assessments.  A
constant comparative analysis involving the three cases studies was used to analyze the data. The
two stages of analysis consisted of both within and across case comparisons. More specifically,
the researchers sought to examine the effects lesson study had on middle school mathematics
teachers and students in an urban school district and will share findings by addressing the
following objectives:

• Describe the design and implementation of lesson study in a large, diverse, urban school
district

• Discuss the forms of data collection and analysis
• Share research results related to teachers and students
• Discuss barriers, issues, successes, and future endeavors for lesson studies.
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Although it is estimated that between five and eight percent of school-aged children have
mathematical learning disabilities (MLD) (Geary, 2004), researchers are still struggling to
understand the cognitive deficits that characterize MLD. This field of study has been
constrained due to the lack of diagnostic measures. Because no test for MLD exists, the vast
majority of studies rely on achievement test scores below a researcher-defined threshold to
identify students with MLD (Geary & Hoard, 2005). This has led to an inability to distinguish
a low score caused by a disability from a low score due to other factors (e.g. poor teaching).
Reliance on achievement measures has resulted in an unintended over classification of
particular groups of students (low SES, minority, non-native English speakers) in the MLD
group (Hanich, Jordan, Kaplan & Dick 2001). This poster presents an exploratory study
aimed at understanding the ways in which the disability manifests itself.

I approach the study of MLD from a Vygotskian perspective, which presumes that a
student with a disability “is not simply a child less developed than his peers but is a child who
has developed differently” (Vygotsky, Knox, Stevens, Rieber, & Carton, 1993 p. 30).
Longitudinal data was collected from weekly tutoring sessions with one student over the
course of her 8th, 9th and 10th grade years (approximately 60 sessions total). The student’s
standardized math test scores place her in the bottom 25th percentile, which is comparable to
students in other studies that were classified as having MLD.

A microgenetic analysis of the tutoring sessions indicated that the student solves math
problems in non-normative ways. For example, she compensates for her inability to
memorize discrete number facts by memorizing lists of multiples. She refers to her “sixes” as
“6, 12, 18, 24, 30, 36…”. To solve a multiplication problem she counts on her fingers to keep
track of the ordinal position as she recites the list. Although this strategy is productive in
contexts where she is multiplying two numbers, it did not enable her to efficiently divide. In
attempting to solve the problem  2 x __ = 16, she said “You can’t do it… cause 2 doesn’t go
into 16 evenly… 5, 10. 6, 12. 7, 14. Oh! 8. Duh.”. In this case she was accessing the second
element in her “fives”, “sixes”, “sevens” and “eights” multiples list. Her inability to
automatically retrieve number facts constrains her ability to reason about more complex
mathematics. This, as well as other non-normative strategies are discussed in detail in the
poster presentation. A nuanced understanding of student difficulties is necessary to begin to
design diagnostic measures. Only then, can diagnostic measures be created which provide
reliable diagnosis and inform remediation.
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Cross-national research has identified many important and compelling differences between US
and Japanese students’ performance in mathematics. Yet, we believe that the majority of teachers
exposed to this literature are left with a message of achievement gaps couched overwhelmingly in
terms of US deficits (Moseley & Okamoto, in press; Puchner & Taylor, 2006). It remains an open
question as to how to fashion these findings into productive efforts to encourage US teachers to
adopt relevant and effective Japanese practices found in the research literature.  We argue that this
dilemma is the direct result of a lack of useful frameworks for making these findings
psychologically accessible to US teachers.

Many US teachers find cross-national research daunting and difficult to interpret in the context
of US school practices, not to mention the particular circumstances of their own classrooms. It is
clear that research findings have focused intensely on differences between teaching practices in the
two nations. We argue that this focus on differences, although based on accurate and compelling
results, has not provided a complete comparison. It has inadvertently created a very confusing and
intimidating situation for the very teachers that this research was intended to support (Puchner &
Taylor, 2006).

In this research we advance a competitive/collaborative social comparison (CCSC) framework
for facilitating the implementation of Japanese practices in US classrooms derived from empirical
research in social comparison theory (Staple & Koomen, 2005). This framework helps direct our
attention to the similarities, as opposed to differences, of teachers in both nations. By applying the
CCSC framework, we discuss how to: (a) re-interpret differences, (b) identify similar student
learning challenges, and (c) clarify important components of the larger of picture of  teacher
collaboration. We argue that making these factors prominent produces a more collaborative or
integrative mindset, which, in turn, makes the practices of Japanese teachers more accessible to US
teachers. Our argument unfolds in two phases, in which we first describe the CCSC framework and
its relevance to cross-national research in mathematics, and second we address possible
applications of the model that we believe hold promise for making cross-national research more
accessible to US teachers.
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BOTH RHYME AND REASON: TOWARD DESIGN
THAT GOES BEYOND WHAT MEETS THE EYE

Dor Abrahamson
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Drawing on design-based studies where students worked with learning tools for proportionality,
probability, and statistics, I appraise whether students had opportunities to construct conceptual
understanding of the targeted mathematical content. I conclude that visualizations of
perceptually privileged mathematical constructs support effective pedagogical activity only to
the extent that they enable students to coordinate perceptual conviction with mathematical
operations—intuiting that, and not how, two representations are related constitutes perceptually
powerful yet conceptually weak situatedness. In constructivist learning, as in empirical research,
regularity apprehended in observed phenomena is measured, expressed, and schematized.
Students should articulate or corroborate visual thinking with step-by-step procedures, e.g.,
synoptic views of multiplicative constructs should include tools for distributed-addition handles.

“Neither rhyme nor reason can express how much”
(Shakespeare, As You Like It, 3:2)

This theory-of-design paper builds on empirical studies of mathematical cognition and
cognitive psychology and is inspired by phenomenological and analytic philosophy. I argue that
visualizations of perceptually privileged mathematical constructs, e.g., proportionality (Gelman
& Williams, 1998), are effective teaching/learning activities only to the extent that they enable
students to coordinate intuitive and explicit knowings (Schön, 1981)—apprehending the that but
not the how of quantitative relations embedded in images constitutes perceptually powerful yet
conceptually problematic situatedness (e.g., Davis, 1993). Worse, students’ false sense of
understanding may hamper personal reflection or formative assessment. To demonstrate
epistemological tensions and pedagogical promise inherent to visual thinking (Arnheim, 1969), I
discuss four data episodes pertaining to the domains of proportionality and probability. In each
study, participant students can be said to have grounded the mathematical content in the situation
only to the extent that they were equipped to articulate their multiplicative judgments additively.

Theoretical Background
A critique proverbially inveighed against traditionalist instruction is that students who

demonstrate procedural skill often have not developed deep understanding of the mathematical
concept. Yet, could such procedural–conceptual hiatus result from participating in activities that
purport to embody constructivist pedagogical philosophy? This paper’s point of departure is that
some situational contexts intended to help students ground the meaning of a mathematical
concept may not do so, even when they appear as though they might. These pedagogical
situations have the trappings of powerful learning environments: interactive tools representing
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mathematical quantities, symbols, and relations are laid out for manipulation, and rules of
situated–symbolic translation are either empirically apparent or provided by a facilitator. Yet, I
contend, these rules of translation themselves may not be transparent. Namely, I argue, designers
are liable to inadvertently confound perceptual constancies with operatory conservation (Piaget
& Inhelder, 1952); psychology with epistemology (Papert, 2000); embodied schemas with
mathematical fluency (Abrahamson, 2004). Therefore, sorting out phenomenologically entangled
roles of perception and reasoning in mathematical learning is pivotal for constructivist design.
Learning tools purporting to make manifest quantitative relations underlying mathematical
concepts, I demonstrate, do so only if learners are supported in going beyond what meets the eye.

Rhetorical Case-Study Exposition: Epistemological Nuances of Perceived Equivalence

a. b. c.
Figure 1. Toward a critique of pictures that purport to ground equivalence: (a) equivalence

by perceptual judgment; (b) unit-stretching complementing the phenomenology of
geometrical similitude; and (c) grounding geometrical similitude with a fixed unit.

Figure 1a invites the learner to evaluate the geometrical similitude of two rectangles. An
intuition of sameness results from the activation of automatic perceptual mechanisms for judging
the identity of two percepts (for references, see Abrahamson, 2002). Namely, I contend, the
phenomenology of geometrical similitude is one of identity—by virtue of judging for geometrical
similitude one necessarily considers that the smaller and larger images are the very same object.

Whereas geometrical similitude is first apprehended perceptually, holistically, the
multiplicativity of the proportional relations between these objects’ corresponding dimensions
needs to be learned—whether prescribed or discovered empirically, it is a rule initially
dissociated from the phenomenology of perception. That is, the perceptuality per se of
geometrical similitude is not multiplicative, additive, or even logarithmic, for that matter—it is a
prereflective knowing embedded in our everyday sensory comportment, our being-in-the-world,
and is not given to explicitization (Piaget & Inhelder, 1952).

In Figure 1a no tools are provided for a learner to analytically elaborate and verify the
intuitive judgment of sameness. Figure 1b presents the larger of the two objects as a zoom-in of
the smaller object, as though the two objects are in fact one and the same object as seen from
different distances. Figure 1c provides tools for coordinating the perceptual apprehension of
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similitude with an empirical rule: The two dimensions of the smaller rectangle—height and
width—are each multiplied by the same factor so the smaller rectangle fit or become the larger.

The initial apprehension of identity (in Figure 1a) is visually seductive—it subtly carries over
as compelling positive affect, through a quantitative lens on geometrical similitude (stretched
grids in Figure 1b), to the empirical rule of applying a constant scalar factor to both dimensions
(uniform unit grids in Figure 1c), vesting a numerical proportional equivalence (4:3 = 8:6) with
truth value. Yet, note that Figure 1c does not elaborate Figure 1b—whereas Figure 1b engages an
opaque multiplicative transformation (Kaput & West, 1994), Figure 1c engages the accessible
repeated-addition model, an analytic model that deviates from the identity synopsis yet provides
semiotic equipment to ground multiplicative constructs as phenomenal–conceptual syntheses.

Examples From Empirical Studies of Design for Diverse Mathematical Content

1. Stretch/Shrink vs. Additive Construction of Proportional Progression

    

Figure 2. The ‘eye-trick’ design for proportion: Learning materials and student artifact

In the eye-trick design (Abrahamson, 2002), students work with proportionately equivalent
card pictures, each displaying a pair of personas, such as Danny & Snowy (see Figure 2).
Closing one eye and holding the smaller card nearer to their open eye, students experience an
optical illusion as though the cards are identical, due to the similar retinal prints seen through
monoscopic vision. Students use a ruler to measure the actual heights of the persons, 2’’ & 3’’
and 4’’ & 6’’, then mark these values in a table, under a pair of schematic rectangles (Figure 2).
Additional cards, for 6 & 9 and 8 & 12, are judged as similar, measured, and tabulated.

The design’s objective is for students to ground proportional equivalence in perceptual
identity and thus interpret corresponding measurement pairs as equivalent. Two high-achieving
Grade 3 participants determined the arithmetic sequence in each column and iteratively added
the constant addend down each (see ‘+2’ and ‘+3’ arrows). Yet, the students did not construct the
situation as multiplicative. In fact, they were surprised that differences between the values grew
(see numerals 1, 2, 3, & 4 between the columns). Moreover, when subsequently building coin
towers (Figure 2), where the iterative rule was “+2 coins here, +3 coins there,” neither student
perceived any relation to the earlier eye-trick activity, until they had tabulated the coin quantities
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and recognized the table as identical to the table they had previously built. I concluded that
apprehension of induced identity followed by tabulated measurement could be a compelling
extension activity yet is problematic as conceptual entry to proportional equivalence.

2. Global Color Density vs. Local Sampling in Statistical Investigation

S.A.M.P.L.E.R., Statistics as Multi-Participant Learning-Environment Resource, is a
collaborative activity designed for networked middle-school classrooms (Abrahamson &
Wilensky, 2002, 2007). The design introduces students to fundamental statistical constructs, such
as sampling. In the first activity, students are asked to estimate the percentage of light-colored
squares in an array of thousands of light and dark squares (Figure 3). Typically, students begin
by eyeballing the entire array and offering estimates. Yet, to warrant their estimates, students
spontaneously sample localized color densities, which they count (e.g., 4 light squares in a 3-by-
3 sample of 9 squares), compare, and compile (Figure 3). Thus, the array affords either
proportional reasoning or enumeration, and facilitated classroom discussion explores relations
between these perspectives so as to support their coordination.

    

Figure 3. S.A.M.P.L.E.R. activity: coordinating proportional judgment with sampling.

3. Perceptual- vs. Analysis-Based Frequency Expectation

Twenty-eight Grade 4 – 6 students and 25 college students were given a box with equal
numbers of mixed green and blue marbles—a few hundred in total—and a utensil for scooping
out an ordered sample with exactly 4 marbles (see Figure 4). We asked them to predict what will
happen when they scoop. By and large, all students expressed that whereas they cannot know
what they will receive on particular trials, their long-run expectation for the greatest relative
frequency is of a sample with two green and two blue marbles. When prompted to further
warrant their claim, students typically said, “I don’t know the reasoning behind it, but it seems
kind of obvious to me” or “I just saw it,” and many articulated that the mode sample should
reflect the green-to-blue ratio in the box (Abrahamson, 2007; Abrahamson & Cendak, 2006; see
Tversky & Kahneman, 1974, on the ‘representativeness heuristic’). Whereas such synoptic
reasoning is accurate, it is delimited in its trajectories as grounds for methodically appropriating
normative mathematical strategies, such as calculations pertaining to expected value, the
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binomial function, or combinatorial analysis. Moreover, such reasoning cannot readily
accommodate situations in which the green–blue mix is unequal (such that p is not equal to .5).

    

Figure 4. Selected materials used in studies of probabilistic cognition. From left: The 4-
block marble scooper samples from a green/blue mix of marbles; the combinations

tower—the 4-block’s distributed sample space; a computer-based empirical outcome
distribution.

We guide students to build the 4-block’s sample space and assemble it in accord with the
statistic in question, the number of green marbles (Figure 4). Upon beholding this configured set,
all the college students and all but one of the Grade 4 – 6 students immediately recognized an
analytic warrant for their intuitive assertion that 2-green outcomes would be the most common.
Thus, the participants coordinated one intuitive perceptual judgment, which they could not
directly articulate, to another perceptual judgment—phenomenologically disparate yet
mathematically commensurate—that is more conducive to appropriating normative mathematics.

4. Event- vs. Outcome-Based Expectation for Binomial Distribution

The combinations tower (Figure 4) is
designed to facilitate comparison of the marble-
scooping sample space (the 16 unique
configurations) and distributions of empirical
outcomes from numerous simulated trials with
this device (Figure 4; note similar shapes).
Whereas they appropriated this
perceptual–conceptual relation, students’
explanations revealed a lacuna in understanding
the emergence of distribution as contingent on
sample space, probability, and random selection.
Specifically, students initially failed to realize
that each of the 16 equiprobable outcomes was
expected to occur an equal number of times in

the experiment and that therefore the 1-4-6-4-
1 groups would converge to 1:4:6:4:1
distribution.

Figure 5 shows new interactive features
added to the computer-based simulation.
Outcomes from experiments with the 4-block
device accumulate in their respective columns.
Thus, empirical distributions are constructed
as “stochastic stretches” of the sample-space
distribution and enhanced by re-ordering and
color-coding. Middle-school and college
students working with these tools were more
likely to perceive the empirical outcome
distribution as 16 more-or-less equal groups
arranged in 5 columns in correspondence with
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the arbitrary criterion that had designated 4-block
events in the sample space by their number of
light-colored squares. Such perceptions mark
avenues for bridging classicist and frequentist
approaches to stochasm.

Figure 5. 4-Block Stalagmite, a computer-
based simulation, supports a seeing of

empirical distribution as emerging from the
sample space. From left: 16 unique possible

outcomes in a combinations tower; empirical
results from a simulated experiment where

random outcomes “drop” into respective
columns; a re-ordering of these outcomes
by type; and color-coding the 16 groups.
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Summary and Conclusion
Mathematics, at least K – 12 constructivist curriculum, is an inherently empirical discipline:

As in the discipline of physics, mathematical knowledge develops as the methodical articulation
of perceptually apprehended regularities governing relations among quantities situated in
phenomena under inquiry. As in physics, direct apprehension of phenomenal regularity is limited
by available resources: perceptual and para-perceptual mechanisms, memory, computational
algorithms, and representational forms. Some regularity is perceptually privileged, such that we
apprehend it synoptically with little or no mathematical training. Such seeing lends an affect of
knowing, yet the work then becomes to articulate quantitatively this empirical apprehension—to
synthesize intuition and mathematics (Schön, 1981). This paper examined four case studies of
constructivist design to investigate conditions supporting such tacit–explicit synthesizing.
Learners’ initial apprehension of the perceptual information was tacit proportional. Guided
attention to discrete properties of the situated quantities enabled students to construct an
enumerative–additive rule, such that tacit proportional judgment was reformulated as explicit
multiplicative, with the additive procedure acting as a buffer from the tacit to the explicit..

Note that the explicit does not directly articulate or translate the tacit (Abrahamson &
Cendak, 2007), because these faculties are epistemologically incompatible. Rather, the explicit
voices, concretizes, and ultimately enhances the tacit, rendering the somatic semiotic, i.e., in the
form of a socio–mathematical artifact bridging the personal prereflective into the disciplinary
domain. Curiously, whereas the mathematical disciplinary continuity is from the addition
operation to the multiplication operation, the phenomenological trajectory supported by
constructivist discovery-based design may traverse from multiplicative intuitive apprehension to
additive analytic procedures. Thus, counter to common premises of curricular design, some
additive procedures may be grounded in multiplicative intuition.

Broadly, designed embodiment of mathematical concepts can play critical roles in facilitating
learners’ tacit–explicit negotiation: Learning tools—their inherent perceptual information and
measurement tools—should alternately afford analytic handles on embedded quantitative
dimensions or tacit faculties for evaluating the veracity of emergent explicit assertions. These
designed embodiments act as ‘bridging tools’ (Abrahamson & Wilensky, 2007)—they mediate
tacit–explicit reciprocal negotiation fostering epistemic synthesis. Specifically, learning activities
that afford quantitative intuition grounded in proportional judgment should provide tools for
articulating this intuition through pertinent additive processes. Otherwise, students’ intuitions
remain encapsulated, inarticulate, uncoordinated with robust solution procedures—the students
sense they understand a concept, but such understanding is likely no more than tenuous.

In sum, students used additive models to ground explicit multiplicative reasoning in tacit
proportional apprehension. I therefore implicate the proportional-vs.-enumerative perceptual
tension as a contributing factor to pedagogical challenges of rendering design for multiplicative
constructs effective. Moreover, it is perhaps the phenomenological incompatibility of holistic
and analytic cognitive resources that raise concerns among some mathematics-education
researchers of an overly additive articulation of multiplicative constructs (e.g., Confrey, 1995).
Yet, I submit, it is precisely in painstaking synthesis of the embodied and calculated, the synoptic
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and sequential, the privileged and earned, that core conceptual learning transpires. Thus,
designers and teachers should create opportunities for students to coordinate holistic
multiplicative action models for situated mathematical problems with distributed-addition
solution procedures (Fuson, Kalchman, Abrahamson, & Izsák, 2002); to fit all-at-once synoptic
sense with step-by-step sensibility; to express how much as synthesis of rhyme and reason.
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This paper reports the case of Robert, a knowledgeable and experienced teacher, from a
larger study in which secondary mathematics teachers were interviewed about their
understanding of mathematical connections in a series of progressively more structured
individual interviews.  A model for categorizing mathematical connections is presented and
used as an interpretive tool. Robert values making connections, groups related ideas
confidently, but finds articulating specific mathematical connections difficult.

The National Council of Mathematics Teachers’ (NCTM) document, Principles and
Standards for School Mathematics (2000) identifies “mathematical connections” as one of
the curriculum standards for all grades K to 12.  In this framework, “… mathematics is not a
set of isolated topics but rather a web of closely connected ideas” (NCTM, 2000, p. 200).
Making the connections is taken to promote students’ understanding of new mathematical
ideas.  While students might make some useful connections spontaneously, the accepted
position in the pedagogical literature is that teachers’ interventions are necessary if students
are to deal with mathematical connections in a systematic and meaningful way (Weinberg,
2001, Thomas & Santiago, 2002).

Theoretical Framework
In the mathematics education literature, a “mathematical connection” is conceptualized in

a variety of ways ranging from mappings between equivalent representations (Hines, 2003) to
links between mathematical concepts (Zazkis, 2000), to unifying themes that cut across
several domains (Coxford, 1995). Just what a mathematical connection is often remains
implicit both in the research literature and in teachers’ professional dialogue.

In this study, I take a mathematical connection to be a true relationship between two
mathematical ideas.  I draw on Skemp’s notion of a person’s mathematical knowledge as a
set of hierarchical schemata (Skemp, 1987), composed of mathematical concepts and the
connections among them. These connections may be “vertical”, in which a concept can be
thought of as a composite of simpler concepts, or “horizontal”, in which a concept can be
thought of as a transformation of another.  I propose the following as a starting list of specific
types of mathematical connections where A and B represent two mathematical ideas:
1. A is an alternative representation of B. The alternative is a different category of

representation, for example, symbolic/algebraic, graphic/ geometric, pictoral, physical,
oral description, written description.

2.  A is equivalent to B. An equivalent is a different expression within the same form of
representation. For example, 3 + 2 is equivalent to 5 (all expressed in symbolic form).

3. A is similar to B (A intersects B). A and B share some features in common.
4.  A is included in (is a component of) B; B includes (contains) A.
5.  A is a generalization of B; B is a specific instance (example) of A.
6.  A implies B (and other logical relationships).
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7.  A > B; B < A (and other order relationships).
8.  A is a procedure (or algorithm) applied to B.

Methods
This study extends earlier work about teachers’ views of mathematical connections

(Businskas, 2005) by probing more deeply into teachers’ understanding of specific topics in
mathematics, to try to make their notions of mathematical connections explicit.  The study
asks: in considering their knowledge of a mathematics topic, what kinds of mathematical
connections can teachers explicitly identify and describe?

Research Setting
Participants in the study from which this case is derived were ten secondary mathematics

teachers who volunteered for the study.  Teachers were interviewed individually three times
over a three-month period in their schools.

Interviews
The first interview was an acclimatizing interview and drew out information about

teachers’ background and general views about teaching mathematics and the role of
connections.

The second interview was a semi-structured interview about a mathematical topic chosen
by the teacher.  Prepared questions included:

• Please tell me about your own understanding of this topic… What are the important
concepts/ideas and procedures that make up your understanding of this topic?

• Please tell me how the ideas and procedures that you’ve identified are related to each
other or related to other topics in mathematics.

• From your point of view as a teacher, what are the most important concepts and
procedures that you want your students to learn?

Teachers’ responses that included some reference to connections were followed up with
questions asking them to elaborate.  If teachers did not spontaneously make any references to
connections, I asked further probing questions, and sometimes even leading questions in an
attempt to get them to voice an opinion.  After the interview, I asked teachers to show me
their lesson plans/planning notes for their topic, which I examined for any references to
connections.

The third interview was a task-based interview in which all teachers dealt with the same
topic – quadratic functions and equations.  Teachers were given a set of 82 cards (see list
below) containing mathematical terms, formulae and graphs related to this topic, gleaned
from a selection of high school mathematics textbooks.  They were asked to organize the
cards in some way that showed the relationships among them.  They were instructed “Please
group them in a way that will show how they are connected”.  After completing the task, they
were asked to explain their organization, and were constantly pushed to elaborate their
statements about connections.

Terms
algebra associative property coefficient commutative

property
complete the square compression cone co-ordinates
curve derive directrix discriminant
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distributive property domain equation expansion
exponent expression factor factor theorem
focus FOIL formula function
geometry graph guess and check inequality
intercept inverse isolate the variable maximum
methods of solution minimum operations parabola
perfect square point properties of roots quadratic
quadratic formula radical range relation
remainder theorem root simplify solve
square square root substitute symmetry
table of values translation trinomial value

SymbolsFormulae
a, b, c (p, q) b2 – 4ac
p ±  √(-q/a) (-b/2a, (c - b2/4a)) x = p
x = -b/2a x= (-b ± √(b2 – 4ac))/2a x= 2c/(-b ± √(b2 – 4ac)
ax2 + bx + c = 0 x2 – (r1 + r2)x + r1 r2 = 0 a(x-p)2 + q = o
y = ax2 + bx + c y = a(x-p)2 + q

Coincidentally, one of the teachers, Robert (a pseudonym), chose “quadratic functions” as
his topic, thus providing me with three sources of data (2 interviews and his planning notes)
about his thinking about this topic.  This paper considers his views.

Analysis
All interviews were transcribed.
For the “chosen topic” interview, I read the text to extract the particular statements made

by Robert, that dealt directly with the topic of quadratic functions and equations and with
connections, or the teaching of these topics.  From the extracted statements, I compiled a
summary of Robert’s description of his understanding of the topic, and a list of specific
references to connections. In these, I looked for ideas, that because of their repetition or his
emphasis, might be indicators of consistent themes in Robert’s thinking.

For the task-based interview, there is also a visual record of the groupings (see photo
below).  From these data, I compiled another list of explicit connections that he made.

Results and Discussion
Robert is in his ninth year of teaching.  Teaching is his first career and he is at his second

school.  Robert has a Bachelor’s degree with a major in Mathematics.  He is confident in his
knowledge of the provincial curriculum, and is familiar with the NCTM Standards.   He also
has a Master’s degree in education.

In his teaching, Robert tries to promote his students’ understanding of the topic but
worries that “not all the kids are going to pick up on all the conceptual knowledge, a lot of
kids just learn procedural skills”.

He chose the topic of quadratic functions and equations because “I think it has a lot of
interesting connections, like visual and algebraic connections and lots of connections to real
physical problems”.  Right from the beginning Robert did not separate his own personal
understanding of the topic from his understanding of it for teaching.  His own content
knowledge and his pedagogical content knowledge seem conflated (Shulman, 1986).  In fact,
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he sees himself as teaching his students everything that he knows about the topic: “I think I
try to give them everything I know...  I try to tell them everything I know about it”.

Here’s what Robert had to say about quadratic functions and equations in each of the
tasks.  His comments are summarized and paraphrased, but all mathematical terminology
used is his.  Even though Robert was asked to talk about his own understanding of the topic,
he switched almost immediately to talking about what his students know (or should know).

“Chosen Topic” Interview

Content Summary
Robert’s description of the topic was an almost exact match to concepts and procedures

summarized in the curriculum guide.

Explicit Connections
Robert’s statements that explicitly referred to mathematical connections are listed below

(chronologically) in his own words, and categorized according to the system outlined earlier.
Statement Type of Connection

If you throw a baseball, it’s a quadratic
function, a parabola

Real world [not in the model]
Alternate representation

The connection between obviously an
equation and a graph

Alternate representation

The exponent is not going to make it linear A implies B
Max/min which is the vertex Equivalent representation

the important relationship is to
understand that a graph, the picture view of
the equation or the formula, is the same as
the algebraic

Alternate representation

I draw the picture, I do the algebra Alternate representation
the graph just shows them all the

different solutions to the equation, all the
different pairs of x and y that work in this
equation

Alternate representation

these two things are the same things,
one’s expanded, one’s factored [referring to
equations]

Equivalent

those with a value up front; typically they
have to find zeros that are not going to be
whole numbers [referring to coefficient “a”
in the equation ax2 + bx + c = 0]

A implies B
[non-zero “a” implies that zeros will not be
whole numbers]

it’s a quadratic function, I’m looking for
the maximum point, so I need to find a vertex

A contains B (quad function has max)
Equivalent representation

need to understand how to solve a
quadratic in order to solve those other ones
[i.e. cubic and quartic]

Procedure

Robert repeatedly emphasized that quadratic functions and equations can be alternately
represented algebraically and graphically but did not make specific mappings between
aspects of the equation and the graph.  In this interview, we talked only about mathematical
ideas that Robert introduced; the explicit connections that he made seem rather sparse.
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Task-Based Interview
After quickly examining all the cards, Robert proceeded to lay them out in groups with

little hesitation, completing the task in 15 minutes.  He used 57 of the 82 cards.  He made six
groups (see photo below).  The explicit connections that Robert made involving terms in each
group are listed in his own words, sometimes slightly paraphrased.  Connections among
groups are described later.

Group Explicit connections Type of connection
1.
function…

two different forms of the equation Equivalent representation

There’s the algebra side and the geometry side Alternate representation
2.
algebra…

factor, complete the square, quadratic formula,
guess and check – represents the algebraic skills
they need

Procedure

under factor, you’ve got the remainder theorem,
factor theorem, zero property of multiplication,
these are all ways to solve

Procedure

complete the square is… an algebraic method,
but it helps you find the vertex, which makes it
easy to graph

Procedure

the coefficients are a, b, c… you can find the
zeros by plugging into the quadratic formula

A is contained in B

3.
geometry…

a parabola is part of a conic section and it’s a
curve

A is contained in B
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geometry… curve
vertex with (p,q) Alternate representation
table of values give you co-ordinates that are
points on the curve

Equivalent representation

maximum and minimum… they help me to find
the range

Alternate representation

I just had some of the transformations grouped
together, expansion, compression… translation

A is an example of B

4. [zeros of
a function,
root,
intercept]

zeros and intercept I put in between the major
headings [algebra and geometry] because
algebraically that’s what you’re trying to find,
and graphically that’s also very easy to see

Alternate representation

5. inverse inverse which is a relation and an example of it A is a specific instance of B
6. focus another example of a conic section A is an example of B

The connections listed above are within-group connections.  Of the explicit connections
that Robert offered, only one was offered spontaneously, namely “there’s the algebra side and
the geometry side”.  The others were the result of probing, and sometimes repeated probing.
Robert was quick and confident in identifying ideas as related but had difficulty articulating
what the relationships were.

I also asked Robert “… can you see some extensions where some of the groups that
you’ve identified here might be related to other topics in math?”  Again, I report the explicit
connections that Robert made in his own words or close paraphrases.
Explicit Connection
Function is not just for parabolas, but for any type of function like linear or cubic, doesn’t
even have to be a polynomial function.
Remainder theorem, factor theorem… you could use it for solving quadratics but it’s mainly
for solving polynomials that are like cubic or higher.
Translations, or the transformations are not just moving parabolas… you could move any type
of graph.
Domain and range, max and min, are important concepts in anything… calculus and beyond.
Conic sections, there are lots more conic sections we can look at, not just the parabola
Table of values used in any type of graphing.
Symmetry and transformations… not just moving graphs around, but moving objects,
symmetrical objects and natural objects

Robert offered all the statements above in response to a single question, without any
additional probing.  Structurally, all the connections are similar in that they are
generalizations.  Robert identifies a concept or procedure as one that has a broader scope than
the topic of quadratic functions and equations, and then offers examples of other math topics
to which the general idea applies.  This type of connection is similar to Coxford’s themes that
run across mathematical topics (Coxford, 1995).

Cards Left Out
When I asked Robert about the cards that he left out, he said “I didn’t think that they

added anything new to what I had”.  When asked further to consider them one by one,
Robert’s reasons fell into two categories:
1. He did not recognize them.  Robert left out a third of the cards that showed symbolic

expressions or equations.  While he repeatedly emphasized the importance of the
connections between algebraic and geometric forms of quadratic functions and equations,
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he had difficulty making the connection when the algebraic form was the starting point -
for example, (-b/2a, (c - b2/4a)) are the co-ordinates of the vertex, x = -b/2a is an equation
for the axis of symmetry.

2. He didn’t think they were important.  When pushed further, he recognized some
connections but saw them both as far removed and obvious.

Planning
Robert’s 15 hand-written pages of planning notes contained definitions, examples,

homework assignments, and mostly model solutions for exercises in the text, but only one
reference to making a connection - “review completing the square – need it in 2.4 [section
2.4]”.  He acknowledged later that he does not attend to connections when planning.

Summary
Robert speaks positively about connections in general.  His ability to explicitly describe

mathematical connections seems related to the “grain size” of the concepts being considered.
For example, he was able to list a variety of ideas that are common to quadratic functions and
equations and to other topics in mathematics in general.  At a finer grain size, dealing with
simpler concepts, he found it easy to group them, but quite difficult to describe the
relationships among them.  At the risk of inferring too much, it seemed that he was blocked
by the belief that the specific connections were so obvious, they didn’t need to be stated.
Explicit connections that he did make were mostly alternate representations, in particular,
algebraic and geometrical.

The proposed interpretive model worked well to categorize Robert’s responses.
My next step is to analyze the data for the other nine teachers with two ends in view –

first, to further refine the interpretive model by using it with a larger data set, and second, to
find common themes, which might lay the groundwork for further studies.  Robert’s case
raises two important factors to consider in these further analyses – the grain size of the related
ideas and the consistency (or lack of it) between a teacher’s general statements about
connections and those views in application to specific mathematical topics.
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Promoting dialogical interaction is crucial to students’ learning mathematics. This study showed
that implementing approaches that embed writing and talk into classrooms helps students
develop deeper understanding of mathematics concepts. Given that we found statistical
difference between control and treatment students’ scores, we explored how the teachers change
their practices from “traditional” teaching to student-centered practices. Teachers’ pedagogical
practices in both control and treatment classes were measured using the Reformed Teaching
Observation Protocol (RTOP) instrument. The level of teaching in control classes remained the
same; whereas, there was a significant improvement in the level of teaching in the treatment
(MRA) classes. When students’ standardized test scores were compared, the MRA students’
scores were significantly higher than that of the control group students.

The central strand of the nature of knowledge is that knowledge is socially constructed within
a community through negotiated meaning of experiences, not static or stable, but inconstant
(Connolly, 1989; Ernest, 1998). Cobb, Yackel, and Wood (1992) and Ernest (1998) have pointed
out that children partly construct their knowledge as a form of collaborative meaning making
based on their interaction with others. Seeing mathematics learning as an active problem-solving
process, Cobb et al. (1993) stated that social interactions in the classroom can create
contradictions and conflicts in children, and in the process of resolving these conflicts, students
in turn reorganize their mathematical experiences and mathematical ways of knowing. Similarly,
von Glaserfeld (1993) showed at individual level, through dialogical interaction students find
inconsistencies in their thoughts and reorganize their conceptual relationships.

Analyzing the role of the teacher in collective argumentation, Yackel (2002) argued that
argumentation is crucial to students’ learning of mathematical concepts both as a collective and
an individual act. Teachers are essential to initiating such an argument, supporting students as
they interact, and supplying supports (data, warrant, and backing) that are omitted or left implicit
in arguments (Yackel, 2002). That said, it is often hard for teachers to give up old habits in favor
of new, student-centered techniques; thus, they need support and guidance (Borko, Davinroy,
Bliem, & Cumbo, 2000).

In order to guide teachers, we have developed the mathematics reasoning approach (MRA)
(Akkus & Hand, 2005). The intent of the MRA is to provide a framework for teachers to
combine different aspects of mathematics teaching and learning such as students’ knowledge of
mathematics, teachers’ knowledge of mathematics (Simon, 1995), negotiation of problem
solving methods, and embedding writing into mathematics instruction (Morgan, 1998). Another
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intent of the MRA is to guide students’ problem-solving behaviors and enhance students’
problem-solving skills via the use of writing (Kenyon, 1989; Morgan, 1998). The MRA is
designed to support students’ ability to develop a dispositional dialectic for writing in the context
of mathematical problem solving that will enhance their mathematical understanding.

There are two templates created for teachers and students (see Figure 1). Using the
mathematics reasoning approach requires teachers to engage in a planning phase that requires
them to determine the major concepts that they want their students to learn, identify what they
(teachers) know and do not know about the topic, and, importantly, align their teaching
according to the concept of how students learn. Teachers must create opportunities for students
to share their methods, hear alternative methods, and then compare advantages and
disadvantages of the methods (Hiebert & Wearne, 2003).

The second component of the mathematics reasoning approach, the student template (Figure
1), consists of a series of questions for students to consider when they are engaged in the
problem solving process. The student template resembles Polya’s (1945) four-stage problem-
solving heuristic (understanding, planning, carrying out the plan, and looking back) or
Schoenfeld’s (1985) phases of problem solving (analysis, design, exploration, and
implementation).The distinct feature of the template from other problem-solving frameworks is it
specifically asks students to compare their solutions with their peers and to reflect on their
problem solution after a classroom discussion.

Teacher Template Student Template
Preparation:
- Identify the big ideas of the unit.

- Make a concept map that relates sub-
concepts to the big ideas.

- Consider students’ prior knowledge

- Consider students’ alternative conceptions
during the lesson as they connect the prior
knowledge to the big ideas

During the unit:
• Students’ knowledge of mathematics
- Give students opportunity to discuss their ideas.
- Have students put their ideas on the board for

exploration.
• Teacher’s knowledge of mathematics
- Use your knowledge to identify students’

alternative conceptions.
- Guide students to the big ideas identified earlier

during the preparation.

• What is my question (problem)?
- Specify what you are asked (What is (are)
the question(s) being asked?).

- Outline the information/data given (What
information is/are given?).

• What can I claim about the solution?
- Use complete sentences to explain how
you will solve the problem.

- Tell what procedures you can follow.
• What did I do?
- What steps did I take to solve the
problem?

- Does my method (procedure) make sense?
Why?

• What are my reasons?
- Why did I choose the way I did?
- How can I connect my findings to the
information given in the problem?

- How do I know that my method works?
• What do others say?
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• Negotiation of ideas
- Create small-group and whole-class discussion.
- Encourage students to reflect on each other’s

ideas.
• Writing
- Have students write about what they have

learned in the unit to real audiences (teacher,
parents, classmates, lower grades, etc.).

- How do my ideas/solutions compared
with others?

a. My classmates
b. Textbooks/Mathematicians

• Reflection
    - How have my ideas changed?
- Am I convinced with my solution? Why?

Figure 1. The mathematics reasoning approach teacher and student templates.

Dialogical interaction and writing in the context of problem solving are the two core
elements of the MRA. Therefore, this study was guided by the following two research questions:
1. How do the teachers change their pedagogical practices through the use of the mathematics

reasoning approach?
2. Is there a difference in students’ mathematical performance on a standardized test between

the students in the control classes and the students in the treatment classes?

Methods
This study was conducted with three high school algebra teachers, two males (Mike and

John) and one female (Amy), who had a total of ten class sections for an Algebra I course, with
four sections chosen as control classes and six as treatment classes. The number of students
across teachers and group is given in Table 1 below. The teachers participated in the study
during the first semester of the school year and were supported during the implementation of the
MRA.

Table 1. Distribution of students according to teacher and group.

Teacher Group
Number of

students
Male Female

High
Achv**

Med
Achv

Low
Achv

Control 21 11 10 1*** 12 3Mike
Treatment (MRA) 44* 19 25 3 25 7

Control 43* 26 17 5 26 8John
Treatment (MRA) 45* 35 10 6 29 6

Control 24 13 11 1 12 5Amy
Treatment (MRA) 25* 8 17 2 20 2

* Teachers had two classes in this group.
** Achv (achievement) refers to proficiency level provided by the testing center using

students’ ITBS scores, relative to each other.
*** The number of students for proficiency level was obtained according to the data
reported.
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A mixed-research method was used with both quantitative and qualitative data sources. The
quantitative data included the Iowa Test of Basic Skills (ITBS) and Iowa Test of Educational
Development (ITED) scores that were used to examine performance differences between the
control and treatment classes through estimating analysis of covariance (ANCOVA). The
qualitative data included observations through both on-site observations and videotape
recordings in both MRA and control classrooms and interviews of the teachers that shed light on
the level of teacher implementation. This qualitative data enabled the researchers to determine
the teachers’ level of teaching in both MRA and control classrooms. To document the level of
teaching, we adapted an observation protocol called the Reformed Teaching Observation
Protocol (RTOP) used to measure “reformed” teaching in mathematics and science classrooms
(Sawada, Piburn, Falconer, Turley, Benford, & Bloom, 2000). The instrument consists of 25
items, each rated from 0 (not observed) to 4 (very descriptive). However, we chose 14 items
(Chronbach’s Alpha was .976) and then categorized them according to the relevancy to each
other and reorganized, and four sub-categories were constructed: Student Voice, Teacher Role,
Problem Solving and Reasoning, and Questioning. The values of Cronbach’s alpha for the first
three sub-categories were .908, .882, and .952, respectively. There was only one item related to
questioning so Cronbach’s alpha was not reported. Modified RTOP instrument is given in the
appendix.

Analyses
The analyses consisted of a series of passes through various aspects of the data. Regarding

qualitative data, the classroom and videotape observations and the field notes were analyzed in
terms of the level of teaching (i.e., level of dialogic teaching) in both control and MRA
classrooms. The sub-categories of the RTOP were thoroughly analyzed for the teachers’ MRA
practices. The findings from both types of observations were triangulated with the interviews,
email correspondence, and field notes, which provided a general trend of teachers’ pedagogical
implementation that confirmed our classification of the level of their teaching.

Table 2. Number of observations and RTOP scores provided for teachers.
Total

Number of
Observations

Number of
On-site

RTOP Scores

Number of
Videotape

RTOP Scores

Number of
Final RTOP

Scores
Control 5 5 5 5 (0*)Mike
MRA 20 11 9 11 (2)
Control 5 5 5 5 (0)John
MRA 18 11 8 11 (3)
Control 5 5 5 5 (0)

Amy
MRA 18 11 7 11 (4)

* Represents the number of final RTOP scores based on the on-site observation.
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The percentage of agreement (or the inter-rater reliability) between any pairs of observers for
teachers’ level of teaching ranged from 90% to 95%. All disparities were then reconciled through
discussions resulting in 100% agreement. The final score of the observers was also compared to
the lead researcher’s score for that particular lesson based on his on-site observations. There was
a 90% match between the group and on-site observation scores.

In terms of quantitative data, an analysis of covariance (ANCOVA) was estimated to control
for other variables that might impact students’ mathematics achievement (Agresti & Finlay,
1997). Students’ ITED mathematics scores of the year of the implementation were used as the
dependent variable, with teacher and group as the independent variables, and students’ ITBS
scores from the previous year as the covariate.

Results

Teachers’ Pedagogical Practices Improved Across Time
The teachers’ levels of implementation were identified using the RTOP instrument. Each

lesson observed and/or videotaped was attributed an RTOP score ranging from “0” to “4,” with 4
being the highest level of teaching. The mean scores of the observations were assigned to
teachers as final RTOP scores. Amy and Mike’s control teachings were rated .26 and .22,
respectively. Their MRA teaching levels were .88 and 1.60, respectively. John’s control and
MRA teaching levels were 1.40 and 2.10, respectively. Overall, while the teachers’ MRA
teaching improved, their control teaching level tended to score the same throughout the study.
John’s routine control teaching level was as high as Mike’s MRA teaching and higher than
Amy’s MRA teaching. Moreover, Mike and Amy occasionally regressed in their implementation
of the MRA approach, whereas John continued to improve after the 5th observation. Furthermore,
the detailed analysis of the teachers’ MRA teachings provides evidence that there was an
improvement in the teachers’ practices, with “questioning” being the critical component (the
right-hand side of Figure 3).

Patterns in the Teachers’ Pedagogical Shift to Supporting Dialogic Interaction
We first claim from the complementary qualitative analysis that when these teachers used the

MRA, their ability to support dialogic interaction for mathematical problem solving improved
across time. Second, we claim that during the process of learning to support dialogic interaction,
questioning skill was a forerunner to improving other pedagogical skills important for promoting
dialogic interaction, such as giving students voice, promoting student problem solving, and
listening attentively to student thinking.

From Figures 3b, 3d, and 3f, it can be seen that all the teachers, at some point, had a high
level of questioning yet were unable to incorporate that with problem solving and dialogical
interaction. For example, the major area that John needed to work on was his domination of
classroom interaction; that is, even though he asked thought-provoking questions, the interaction
was only with a particular student. This notion of interaction meant that student voice was lost in
his class. Throughout the debriefing sessions, he realized that “So, you just want me to shut up
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and not tell the answer?” (Fieldnotes, John, 11/13/2006). John’s level of questioning also helped
his role during problem solving improve by giving students more opportunities to discover their
own methods. He indicated that

In math there is always a right answer, and I tell the answer. But now with this project, [I
am] trying to step back. …The first time we did, it wasn’t as good as it should be. Because
they’d never done it before. But they get better at listening. I discovered ways of looking at
stories I’ve never thought of. One time, about a problem, one girl came up an idea, which I
never thought of, because I’ve never given them think time to tell me how they do it.
(Interview, John, 01/11/2006)
Similarly, Mike’s classroom observations showed that he often lost track of students’ ideas

since he focused on his questioning and had a teacher-only-one-student interaction pattern.
During the debriefing sessions the lead researcher focused on questioning and the effects of
higher-order questioning in other pedagogical areas. Mike worked on his questioning and on not
telling students the answer if the correct one did not emerge. To this end, he started to call on
different students, which required other students to be engaged in problem solving and listening
to their peers, and he often rephrased his questions to make them explicit to the students (e.g.,
Well, what I’m trying to ask is …). Thus, he managed to incorporate his questioning with
problem solving later in his implementation. For example, he spent more than half of a lesson
trying to come up with different ways of solving an equation. The students were fully engaged,
working together to come up with, as they said at the end of the lesson, “different routes to get to
the town if the high-way is closed” (Videotape, Mike, MRA-No. 10). On the other hand, Mike
solved four different problems in 15 minutes in his control class, without any discussion or
getting students’ ideas. This type of teaching was his regular control teaching throughout the
project. This view also came out during the interview, as he defined learning: “It [learning] goes
like hand in hand. I have x amount of knowledge and skills that I can pass on to the students”
(Interview, Mike, 01/17/2005). Even though he acknowledged students’ own knowledge and
ways of knowing, this idea was consistent neither with his pedagogical practices nor with his
definition of the teacher’s role in the classroom, as he indicated during the interview: “I think it
[the role of the teacher] depends on what type of learning atmosphere we want for the day.
Sometimes, I can be more of a facilitator, and other times, if it is information type, I need to
lecture and give it to them directly” (Interview, Mike, 01/17/2005).
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Figure 2. Teachers’ levels of teaching and RTOP scores for sub-categories in MRA.

Treatment and Control Comparison RTOP scores for sub-categories in MRA
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Control: y = 0.04x + 0.27
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The same perspective on teaching was also held by Amy. Her implementation of the MRA
was not as high as Mike or John’s. Yet, there were instances where she tried harder to get
students involved in discussion, as can be seen in her eighth observation (Figure 3f). From the
observation, it appeared as though Amy was struggling with managing classroom discipline. As
such she tended to go back to her traditional teaching, where she lectured most of the time. She
often indicated during the debriefing session and the interview that “these students are not used
to this kind of learning, so lecturing works better for them” (Debrief, Amy,2/05/2005).=

Treatment Improved ITED Scores Significantly over Control
Before estimating an ANCOVA model, possible violations of key assumptions were

investigated. The overall ANCOVA model was estimated using the ITED mathematics test of the
same year as the dependent variable, with the teacher and group as the independent variables,
and the ITBS Mathematics Problem Solving and Data Interpretation test of the previous year as
the covariate. The model yielded a significant main effect of group in favor of the MRA (F (1,
163) = 5.381, p = .022, η2 = .032). Moreover, even though there was no significant interaction
effect (F (2, 163) = .350, p = .706), the analyses of pairwise comparisons indicated that John’s
MRA classes (M = 284.554, SD = 18.721) significantly outperformed Mike’s control class (M =
273.645, SD = 14.700), t (52) = 2.288, p< .05, Amy’s control class (M = 268.555, SD = 14.361),
t (54) = 3.518, p< .05, and John’s own control classes (M = 276.154, SD = 18.585), t (75) =
1.976, p< .05. Corresponding Cohen’s d effect sizes were, respectively, .618 SD, .916 SD, and
.450 SD (see Table 5). Even though the difference was not significant, Cohen’s d effect size
difference between John and Amy’s control classes was .437 SD. Moreover, Mike and Amy’s
MRA classes had higher mean scores than their control classes (significantly higher in Amy’s
case). Mean Square Error was 345.281, and adjusted R2 was .316 for this model. Finally,
Levene’s test of equality of error variance showed non-significant results (F (5, 164) = 1.154, p =
.334), which confirms that the error variance of the dependent variable is equal across groups.

Table3. Pairwise comparisons in Cohen’s d effect size.
t (d.f.) Cohen’s d Magnitude

Mike (Control) 2.288* (52) .618 Medium
Amy (Control) 3.518* (54) .916 Large
John (Control) 1.976* (75) .450 Small
Mike (MRA) 1.165 (71) .273 Small

John (MRA)

Amy (MRA) 1.119 (60) .291 Small
Mike (Control) .531 (60) .143 Small

John (Control)
Amy (Control) 1.686 (55) .437 Small

Mike (MRA) Mike (Control) 1.203 (49) .332 Small
Amy (MRA) Amy (Control) 2.075* (40) .623 Medium
* p < .05
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Discussion and Conclusion
This study focuses on examining the changes in pedagogical practices when three teachers

shift from their traditional teaching to more student-centered practices. The study also looked at
the performance differences on the Iowa Test of Educational Development (ITED) between the
students in the control classes and the students in the treatment classes. The study particularly
focused on changes in the teachers’ pedagogical practices when using the MRA. The major
findings of this study are that implementing a student-oriented approach such as the MRA which
includes embedded writing-to-learn strategies does have an impact on student performance and
that teachers’ adoption of the required pedagogical practices varied as they attempted to move
away from their traditional practices.

The complementary qualitative analysis unpacks the evidence we gathered to document our
first claim that there was improvement across time in the three teachers’ ability to support
dialogic interaction for mathematical problem solving. Second, in order to support our
description of how teachers shifted their pedagogical practices over the time of the study,  we
illustrated our evidence that teacher questioning skills were a forerunner to improving other
pedagogical skills important for promoting dialogic interaction, such as giving students voice,
promoting student problem solving, and listening attentively to students’ ideas. Finally, the
results from quantitative analysis indicated that students in treatment classes did gain more
mathematical understanding compared to the students in control classes.

The three teachers in the study attempted to promote dialogical interaction between students
by changing their pedagogical practices where they first focused on changing their questioning
strategies which enabled them to improve other pedagogical areas. This change in questioning
approach promoted greater negotiation of meaning between individuals through a series of
“dialogues.” This negotiation process was supported in two ways with the MRA: classroom
discussion and individual writing that required the teachers to listen to students’ ideas.  This
study showed that implementing approaches such as the MRA helps students develop deeper
understanding of mathematics concepts.
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We offer an account of Erin’s re-invention of a common denominator algorithm for division
of fractions. This account is a first step in research to better understand how learners
develop mathematical concepts through their own activity in the context of a carefully
planned sequence of mathematical tasks. Whereas the overall goal of our research is to look
across mathematics learning of different concepts at different age levels to better understand
how learners learn through their activity with mathematical tasks, we present the analysis of
this initial study to demonstrate a phenomenon that is worth studying and a methodology that
allows the generation of accounts of learning.

Teaching can be defined as intentional actions to support and foster the learning of one or
more learners. Just as a good coach seeks to take full advantage of a player’s athletic ability
and just as a good mid-wife seeks to take full advantage of a mother’s innate ability to birth a
child, a good teacher and a good curriculum developer take full advantage of the child’s
innate ability to learn. However, as mathematics educators are we doing so? Do we have
sufficient understanding of how students develop mathematical concepts to be able to create
the conditions in which their learning is optimized?

The work discussed in this paper is based on the observation that humans develop
concepts through their own mental and physical activity. For example, young children
develop a concept of number through their activity. The development of the concept of
number, perhaps the greatest single mathematical achievement in a person’s life, does not
happen in response to the posing of mathematical problems. In fact, even the question “how
many?” is meaningless to the child who has no concept of number. Further, there is nothing
you can tell or show this child about number that will be meaningful to her. Instead Mom and
Dad engage the child in counting, first rote recitation of number names and later coordination
of the recitation of each name with touching of the next object. Even the coordination of
these two activities can be done with no concept of number. However, the engagement in
these coordinated activities eventually leads to an initial concept of number (i.e., a concept of
manyness). Are the parents important in orienting attention? Yes. Are the social practices
developed important? Yes. Nonetheless, there is something important for mathematics
educators to understand about how the child’s own activity contributes to this significant
learning.

The research described here is part of a larger effort to develop an understanding of the
processes by which learners learn through their own activity and engagement with
mathematical tasks. The broad goal of this effort is to contribute to a description of these
processes that can inform mathematics curriculum development, teaching, and research on
mathematics learning and teaching. We envision a scientific basis for task design and
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sequencing. By scientific we mean a number of interrelated things including: insights into
learning processes are driven by systematic empirical study of learners’ conceptual advances
as they engage with designed tasks; that these insights generate viable data-driven hypotheses
about learners’ advances in terms of their extant conceptual structures, goals, and mental and
physical activity; that these hypotheses and consequent models provide a basis for the
principled design (creation and refinement) of task sequences intended to leverage learner’s
own activity in ways that can optimize their learning of particular concepts. Scientific also
subsumes an empirically-based understanding of the social aspects of instruction (e.g., roles,
tool use, norms), however, these aspects are back-grounded in the design of the study
presented here and not the focus of our analysis.

Whereas the overall goal of our research is to look across mathematics learning of
different concepts at different age levels to better understand how learners learn through their
activity with mathematical tasks, we present the analysis of this initial study to demonstrate a
phenomenon that is worth studying and a methodology that allows the generation of accounts
of learning. Ultimately, we would have a diverse set of accounts from which we can derive
empirically-based hypotheses about the mechanisms of learning through activity.

Our paper describes part of a teaching experiment conducted with individual students to
create a context for studying learning through learners’ own activity and the engagement with
tasks. The mathematical domain for the entire study was division of fractions. Our report
focuses on one student’s re-invention (Freudenthal , 1973), with understanding, of the

common denominator algorithm for division of fractions (

€ 

a
b

÷
c
b

= a ÷ c ).

Conceptual Framework
The notion that students learn through their activity is not a new one; it is embodied in

Piaget’s (2001) construct of reflective abstraction. This construct, which suggests that the
development of new conceptions derives from activity and reflection on activity, orients our
study. Building on Piaget’s work, von Glasersfeld (1995) claimed that reflection is an inborn
mental ability and tendency of human learners, that it is often not conscious, and that it
involves creating records of experience, sorting and comparing records, and identifying
patterns in those records. In other words, seeing commonalities in one’s experience is a
natural and spontaneous activity of the human mind. However, Inhelder, Sinclair, and Bovet
(1974) cautioned, “Whatever the degree of regularity [from the observer's perspective, the
observations] are always organized by the human learner” (p. 12). Following Piaget and von
Glasersfeld, we understand this to mean that the commonalities perceived by the learner are a
function of the learner’s goals and her current assimilatory schemes.

Methodology
In this study, we were attempting to focus in on one aspect of the learning process, how a

learner learns through her own activity as she engages with a carefully sequenced set of
mathematical tasks. Our focus was on the student’s progress while interacting with the task
sequence. For this purpose, we adapted a single-subject teaching experiment. The choice of a
singe-subject approach reflected failed attempts to use data collected in whole classes and
small groups. The single-subject design minimizes periods of time in which the subjects are
watching or listening to another – situations in which the researchers have no indication of
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the student’s mental activity. Such periods in multi-subject data proved to severely
compromise our ability to generate compelling accounts of the learning process.

Because of our focus on students learning through their own activity, the researcher’s
interactions were limited to posing problems that were part of a carefully planned sequence
and probing thinking. The researcher’s role did not include demonstrating solutions, giving
hints, or asking leading questions. Although a social analysis of the situation would reveal
important aspects of the norms established in the teaching experiment sessions, our focus
dictated that these social features be considered as background and not the primary subject of
analysis. One adaptation that was included in the design were frequent assessments of what
the student seemed to have learned and of what was still to be learned. These interspersed
assessments, which were in addition to the pre and post assessments, were designed to allow
for clear delineation of the period of time during which the learning took place.

Three students—all prospective elementary teachers—participated individually in a series
of teaching experiment sessions. In the initial sessions students developed a conceptualization
of division of fractions as a quotitive division relationship [our words] of quantities. This
report describes the session in which they re-invented a common-denominator algorithm for
division of fractions and data from the post assessment conducted a week later.

Analysis of the video recording of the teaching experiment sessions, transcriptions of the
sessions, and written artifacts of the student’s work were aimed at building up an account of
the student’s learning process. This involved initially identifying relevant data to piece
together the descriptive story (without inference) of what happened. The data were then
reviewed multiple times to find small inferential steps that could be added to the account to
begin to explain aspects of the story. At every point in the analysis, disconfirming data were
considered as well as alternative explanations and challenges from members of the research
team. Even if no disconfirming evidence was present, explanations were excluded whenever
a sufficiently compelling case could not be made based on the evidence available. The result
of this process is an account that can be offered for public scrutiny/critique. The excerpts of
the account presented here are from Erin’s sessions. Data were similar for all three students.

Results
Erin began this section of the teaching experiment able to create division of fractions

word problems. She was comfortable doing the invert-and-multiply algorithm. However, she
did not know why this set of actions was appropriate. Our instructional goal was to foster
Erin’s re-invention of the common-denominator algorithm for division of fractions with
understanding through the posing of a sequence of tasks. Our account of Erin’s participation
in the teaching experiment sessions and her learning process is described in three
chronological phases.

Phase 1
We began by asking Erin to draw diagrams using rectangles to solve the problems given.

The first problems were word problems whose dividends and divisors had common
denominators. Problem One: I have seven-eighths of a gallon of ice cream and I want to give
each of my friends a one-eighth-gallon portion. To how many friends can I give ice cream?
Erin drew a rectangle to represent a gallon of ice cream and shaded out 1/8 of a gallon to
create a representation of 7/8 of a gallon (the unshaded area). She immediately reported the
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answer as 7. When questioned, she reported, “Because you have seven eighths, seven of these
one eighths, and each of the portions you are giving is one eighth. You have seven to give.”

Problem Two: A scuba diver has two hours worth of air in her tank. If each dive to the
bottom of the bay takes three-eighths of an hour, how many dives can she make with the air
she has? In the second problem, the divisor did not divide the dividend evenly. Erin used a
similar diagram strategy and reported the whole number part of the quotient and the
remainder. The interviewer (I) probed further:

257. I:  So, if we are interested in how many dives she can make, including fractions of a
dive…

258. E:  Five and a third.
259. I:  Why do you say five and a third?
260. E:  Because she needs three of these [indicates 1/8s], and we have one, so one out of

three.
Erin’s activity sequence for solving division of fractions problems using diagrams

follows. In parentheses, we illustrate the step based on how she solved the third problem
involving 11/5÷3/5:
1) Draws the original quantity, the dividend (draws 3 whole rectangles, divides them into

fifths, shades out 4/5 in the third rectangle leaving 11/5 to work with).
2) Identifies groups the size of the divisor (circles each 3/5).
3) Counts those groups (counts 3 whole groups).
4) Identifies the remainder as ungrouped part of dividend (r=2/5).
5) Identifies the fractional part of the quotient (fpq) by determining the fraction of the

divisor represented by the remainder (2/5 is 2/3 of 3/5).
Note that Erin created her activity sequence from her extant knowledge. Although she was
not invited to solve the problem in any way she chose (told to used rectangular diagrams), she
was not taught how to create diagrammatic solutions to the word problems.

In the final part of Phase 1, Erin is given a series of division of fractions expressions (e.g.,
8/5 divided by 3/5) devoid of problem context. She continues the same activity sequence and
explains her work in terms of the size of the groups being counted (e.g., “2 and 2/3 groups of
3/5”).

Phase 2
In the second phase, the researcher poses problems for which Erin is asked to do a

diagram solution mentally – without actually drawing.
R:  I am going to give you another [division of fractions expression], but the numbers are
going to be messy enough that you are not going to want to draw it. … can you anticipate
what you would get if you would draw it?  So, if I say I have 23/25, let me write it, 23/25 ÷
7/25. If you were to draw it do you know what you would get?
S:  Do you want me to tell you how I’d do it, or just the answer?
I:  Tell me the answer.
S:  I don’t know the answer unless I’d do the -- unless I flip them [referring to invert-and-
multiply algorithm].
I:  Without flipping, can you imagine what you would get if you drew diagrams? Do you
want to talk through what you would draw; is that what you are saying? [Erin nods.] OK.
Go ahead and do that.
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E:  I would draw one large rectangle split into 1/25’s and I would have 23/25, and then I
would section off 7/25- groups. So I could do three groups, and then I’d have two --
R:  [Interrupting] How do you know you’d have 3 groups?
E:  Because 7 X 3 = 21. … So, I could have 3 groups with that and then there would be 2
left over. So it would be 2. I’d have 3 2/7.

Erin’s inability to give an immediate answer and need to do a mental run of the problem
are evidence that she had neither observed a numerical pattern nor made a curtailment of her
diagram solution. The former could happen with no understanding, just an observation that a
particular pattern seems to hold. The latter would be an anticipation of part or all of the
solution process, an understanding of the relationships involved that makes going through all
of the steps unnecessary.

Erin’s mental run was an attempt to capture each step of her diagram solution strategy;
she had made no curtailments. Erin was still paying attention to the denominators as she
described what she would draw. She spontaneously called on her whole-number
multiplication, because she was thinking about how many groups of 7 boxes (that were
already created as 25ths) she would have out of the 23 boxes (already created as 25ths). This
use of whole-number multiplication is not a reflection of a decision to disregard the
denominators, but a function of a shift in focus. One could think of Erin’s thought process as
being analogous to the use of a pronoun. Once one has established the identity of the
antecedent, one can operate with the pronoun without particular attention to the antecedent.
Thus, when Erin says “7 parts”, it is as if  “parts” is a pronoun representing 25ths. Similarly,
when Erin was drawing diagrams, she did not need to focus on the size of the parts at this
point in her activity sequence, she counted the number of parts to make each group and then
counted the number of groups she had formed (steps 2 and 3). The already established
diagram embodied the size information. The shift to the mental run problems required that
Erin concentrate on the number of available parts and the number of parts per group, the
numbers she would need to work with, and to use her whole number multiplication.
Multiplication was required because she no longer had countable items in front of her.

For the next problem (compute 7/167 ÷ 2/167 mentally), once again Erin needs to do a
mental run of the diagram solution.

Phase 3
In Phase 3, we observed the emergence of the curtailment that was not previously

available. The researcher gives Erin 7/103 ÷ 2/103. Although only the denominators have
been changed from the previous problem, he does not call Erin’s attention to this fact. Erin
immediately says, “3 _.” Erin thus shows an anticipation that she did not have in the prior
problems. As we review further evidence, we invite the reader to recall the distinction we
made earlier between an anticipation based on the observation of a number pattern and the
anticipation of the results of an understood process (a curtailment).

The researcher asks Erin to explain:
R:  You did that awfully quick.  How did you know it so quickly?
E:  Because I didn’t work with those numbers over here.  I didn’t use 167. [Erin refers to the
denominator of the previous problem (probably by mistake), but that does not change the
explanation.]
R:  How come you didn’t use them.
E:  I don’t know. I didn’t need them…
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The researcher gives no indication that she has done something that is valid or significant.
Rather, he challenges her to defend her claim:

R:  What do you mean you don’t need it?  If you drew it, you need it. Right? … Are you
saying you don’t need it to draw it either?
E:  No, I need it to draw it.  Or if, like if I want it to represent 7/167, that wouldn’t be the
same as like 7.
R:  OK.
E:  Though, well [reflecting on what she just said], I think it might be, if I’m just drawing --
R:  Are you saying that you have a way to draw that without worrying about one hundred
sixty seven?  Draw me a picture.
E:  I might be wrong.

Erin draws one rectangle divided into 7 parts.
R: So what did you draw there?
E:  I drew 7 equal parts of a whole.
R:  And what does that have to do with this problem? [referring to 7/167÷2/167]
E:  … so I have 7 parts, and I want to break, separate that into groups of 2, and I can
separate it into one, two, three groups, and I have one, one but I need two to make it, so I
have one out of two for the other one too, so it’s three and a half.
R:  Three and a half what?
E:  Three and a half [pause] parts [immediately self corrects], groups.
R:  Three and a half groups.  And how big are those groups?
E:  Two.
R:  Two what?
E:  Two parts.
R:  This is my problem…
E:  [Anticipating his objection, Erin breaks in.] Well, I could just say they are two one sixty
sevenths if I wanted to.
R:  Is that what you’d say?
E:  Yeah.
R:  So then what did you draw?  You started out by drawing 7 parts.  What is that?
E:  Each of these [points to 1 section in diagram] represents 1/167.…

Whereas Erin can think about the parts as representing a particular size part (e.g., 167),
she shows that she can think about the parts as representing any size part. When asked
whether she would change her diagram for the problem 7/103 ÷ 2/103, she explained “No …
I’ll just say this [points to one section of her diagram] is 1/103”.

In subsequent problems, Erin calculates the answers without doing a mental run of the
diagram-drawing strategy. She has now developed a curtailed computational strategy. It is
important to note that the curtailment was not the result of observing a pattern in the
numbers. The data showing this development indicate that she instead came to see the
equivalence of particular problems and could explain the logical necessity of their
relationship.

Erin went on to demonstrate that she was able to do problems with improper fractions and
mixed numbers (converts to improper fractions). However, when given a problem with unlike
denominators, she realized and indicated that she was unable to use her newly developed
algorithm, because she did not have common denominators. However, when the researcher
asked if she could make common denominators, she did so and solved the problem. Note, for
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the purposes of this study, we were not interested in whether she spontaneously made
common denominators, nor whether she understood the mathematics involved in doing so. It
was indicative of her understanding that she did not over generalize to problems with
uncommon denominators.

Post-assessment
A week later, Erin was given a post-assessment using an interview format. When

confronted with a division of fractions problem (25/17 ÷ 8/17) and told she could not invert
and multiply, she used the algorithm she had re-invented during the last session and justified
it:

…I’m really seeing how many … 8/17 pieces are in 25/17 pieces, … I know like
what the piece stands for, so I don’t have to use the bottom, the denominator …
If I had it written out with a picture, I would have like twenty five sections and there
were really one seventeenth each of them, and then I would see how many groups of
eight I could get from the twenty five … the eights would be the same like, they each
would be one seventeenth plus one seventeenth plus one seventeenth.  They would all
stand for one seventeenth.  But it would just be understood.
Later in the interview, Erin was given the following problem:

One student who used this algorithm, went back and looked at two thousand four hundred
divided by four hundred and said it explains why the answer of two thousand four hundred
divided by four hundred is equal to twenty four divided by four.  Can you explain what this
person was thinking?

Erin’s explanation follows:
Well, what if you drew these things?  You just drew 24 little rectangles…OK.  If you
had twenty-four of those and each stood for a hundred, you really have 2400. So if
you were dividing it into four hundreds, you would only need four of the rectangles,
which would equal, each one is equal to one hundred.  So that would be four hundred
for four of them, whatever you separated those into it.  And that’s why that would be
equal to twenty four divided by four, because if you just had twenty four divided by
four with each rectangle standing for one, you would still get the same answer, but
they would just stand for different things.
Erin’s explanation indicates that she has a deep understanding of the reasoning that she

developed in the prior sessions. She learned that there are equivalent division problems that
can be thought of as having the same number of units, but different common units. These
units can be parts of a whole or can be composite units, multiples of 1. She had developed an
understanding that as long as the units are the same for the dividend and the divisor, the
problem is equivalent to a problem in which the unit is 1. This was the basis of her
reinvention of a common denominator algorithm for division of fractions. Most importantly,
Erin did not just know that the relationship holds and that the algorithm works, she
understood the logical necessity involved and could articulate it. [The importance of this
distinction is developed in more detail in Simon (2006).]

Discussion
The account of Erin, on which this report is based, provides an example of a student

learning from her engagement with a carefully sequenced set of tasks. Although classroom
discussions, collaborative problem solving, and other more elaborate types of classroom
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interaction are important parts of mathematics instruction, this account focuses attention on a
valuable and not sufficiently understood aspect of mathematics learning – a part that could be
more scientifically accounted for in lesson design.

The task sequence employed was crucial to Erin’s learning. However, our research is not
focused on analyzing successful task sequences. The account of Erin is the first step in
generating accounts of successful learning through activity with task sequences. The ultimate
purpose of which is to understand learning through the learners’ own activity at a level that
permits the generation of a useful set of design principles for creating successful task
sequences.
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The objective of this study was to analyze children’s understanding and difficulties with
multiplicative commutativity. In this study, 58 fourth- and fifth-graders were individually
interviewed, solved 8 multiplication word problems, and explained one given commutative
strategy. Their responses suggest that many children recognize the commutativity if they are
directly shown, but do not commute two factors when they solve equal grouping and price
problems. Children’s explanations for the given strategy and their own strategies indicate
that their understanding of the property in contextualized problems is rather limited.

The commutativity of multiplication is one of the critical properties that may facilitate
fluent problem solving for arithmetic and algebraic problems. In U.S., the commutative
property of multiplication is often taught as a pattern or rule to reduce the multiplication facts
to learn. However, students’ conceptual understanding of the property in problems with
contexts has not been well documented. In this study, I investigate students’ understanding
and difficulties with the commutativity in equal grouping and price contexts.

Theoretical Framework
Math educators have advocated increased use of problems contextualized in everyday

situations in a current math reform movement (Baroody, 1987; Carroll, 1997; NCTM, 2000;
Schoenfeld, 1988, 1992). Results from a number of research studies supported the argument
that children are more successful solving problems when the problems are presented in
everyday situations than problems with numbers and symbols with no context (Baroody,
1987; Carraher, Carraher, & Schliemann, 1987; Saxe, 1988). Children solving contextualized
problems were not only more successful coming up with correct answers but also
demonstrating more understanding of solution procedures. In a recent National Research
Council report (Kilpatrick, Swafford, & Findell, 2001), the authors asserted that one of the
ways to help children develop number sense is to provide them with word problems.

Results on students’ problem solving of multiplication problems indicated advantages of
story problems in facilitating children’s understanding of multiplication. For example,
Carpenter and his colleagues (Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993)
showed that more than 70% of kindergartners in their study solved a multiplication problem
correctly using counters after completing 8 months in kindergarten where teachers spent a
large portion of their math classes solving word problems. Other researchers also documented
mathematically sophisticated strategies that children in grades 3-5 constructed when they
were given word problems (Baek, 1998, 2005; Kamii, 1994; Lampert, 1986a, 1986b).

Multiplication problems situated in everyday contexts have been classified to several
categories (for review of the problem types see Greer, 1992). In the elementary school, equal
grouping and price situations have been frequently used in word problems in order to assist or
assess children’s understanding of multiplication in curricula or research studies. For
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example, one of the NSF funded curriculum series, Investigations in Number, Data, and
Space (TERC, 1998), introduces multiplication as things that come in groups, using equal
grouping problems such as, “2 cartons of eggs. Each carton has 12 eggs.” (p. 2). Price
problems, such as “A bag of cookies cost $3. How much do you need to buy 5 bags?,” are
also often used in multiplication lessons. In these problems, the multiplier and multiplicand
play different roles, which means that for the cookie problem, for example, 3+3+3+3+3
matches the problem better than 5+5+5. Schwartz (1988) argued that these different roles of
the numbers make multiplication and division referent transforming operations, distinctively
different than addition and subtraction, which he called referent preserving operations.

Research studies that documented children’s strategies for multiplication word problems
often used equal grouping or price problems. Many strategies reported in the studies are
based on the distributive and associative properties. For example, one of the students in
Baek’s study, Laura, solved the problem 153 bags of 37 balloons in each bag, using
distributivity and associativity. She knew that 100 groups of 37 is 3700, and 50 groups is
1850 because it is a half of 100 groups. Then she figured out 3 more groups of 37 by adding
three 37s. She computed the final answer 5661 by computing 3700+1850+111 (Baek, 2005,
p. 245). Results from these studies indicated that word problem contexts not only help
children make sense of problem situations, but also provide contexts that facilitate students’
partitioning strategies using the distributive and associative properties, and in turn, construct
sophisticated computational procedures.

However, other researchers asserted that multiplication problems in equal grouping or
price situations hinder students’ understanding of the commutativity (Fischbein, Deri, Nello,
& Marino, 1985; Nunes & Bryant, 1995; Schiliemann, Araujo, Cassunde, Macedo, & Miceas,
1998). They connected the structure of multiplication to students’ understanding of the
operation, and discussed their difficulty with the commutativity in multiplication. Fischbein
and his colleagues argued that repeated addition is children’s intuitive model for
multiplication, and different roles that multiplier and multiplicand play hinder students’
success in solving multiplication when the multiplier is smaller than 1, whereas the size of
the multiplicand does not matter. Fischbein’s study has been replicated with many other age
group participants and produced the same results (e.g. Bell, Greer, Grimison, & Mangan,
1989; Greer, 1988; Mangan, 1986).

 Nunes and Bryant (1995) reported Brazilian students’ limited understanding of the
commutatativity in equal grouping situations. The students in the study demonstrated more
difficulty recognizing the property in equal grouping situations than arrays. The authors,
however, concluded that students’ overall difficulty with the property regardless of the
situations overshadowed impacts of contexts. They results showed that although many
children recognized that a×b is the same as b×a, they also thought that the products would be
the same if the additive difference between two factors is the same (e.g. 35×17=33×19).

In a study by Schliemann and his colleagues (Schilemann, Araujo, Cassunde, Macedo, &
Niceas, 1998), Brazilian street vendor and schooled students solved price multiplication
problems. The authors found that street vendors were more limited in use of commutativity.
They also found that the use of commutativity is closely tied to a greater success of solving
multiplication problems. They concluded that street vendors’ experiences with price
problems impose limits on the development of their commutative understanding.
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In contrast, ter Heege (1985) and Squire, Davies, and Bryant (2004) reported that some
success of children in ages of 9-11 years. Ter Heege documented that Dutch fourth graders in
the study used the commutativity in solving single-digit multiplication problems. However, it
is not clear how students understood the roles of the multiplier and multiplicand since the
problems were presented in number sentences without any contexts. In addition, the author
did not report how widely the property was used among children. Squire and her colleagues
administered a timed multiple-choice assessment using equal grouping, array, and Cartesian
product contexts, and showed that many British students correctly identified the commutative
problems regardless of the contexts. However, since students were given only 40 seconds for
each problem, and they chose an answer for b×a when the product for a×b was given, it is not
clear how they understood the property.

In this study, I further investigated children’s understanding and difficulty of the
commutativity in solving in equal grouping/price multiplication problems. Specifically, I
aimed to better understand children’s use of the property in problem solving as well as their
recognition and explanation the property when they are shown a commutative strategy.

Methods
Thirty-two fourth graders and twenty-six fifth graders in three multi-graded classrooms

were individually interviewed. They were asked to solve eight multidigit multiplication word
problems and to explain and replicate a commutative strategy. The eight word problems
included two 1-digit × 2-digit numbers, four 2-digit × 2-digit numbers, and two 2-digit × 3-
digit numbers in equal grouping and price contexts. For the commutative strategy task, the
children were told a child in a different class constructed the strategy for the problem, 127
children paying $6 each for a field trip, and were shown the strategy (Figure 1). Children
were asked if the strategy would solve the problem, and if so, why adding the multiplier,
instead of the multiplicand makes sense.

127
127
254 2
254 2
508 4
254 2
762 6

Figure 1. The given commutative strategy
During the interviews, children did not have any concrete tools available, but only paper

and pencil. The classroom teachers had participated in a research program designed to help
teachers focus on children’s mathematical thinking and routinely encouraged children to
construct meaningful solution procedures for word problems and to discuss meaning,
similarities, and differences of their strategies. The teachers did not teach formal algorithms,
and discouraged the use of them if children could not explain why they work. Many children
in this study were observed to routinely use the algorithm for addition and invented strategies
for multiplication. All interviews were audio-taped and children’s written work was
collected. Children’s strategies for solving word problems analyzed by strategy types and use
of the commutativity.
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Results

Commutativity in Children’s Strategies
Among children’s 464 solution strategies for the eight word problems, 303 strategies

were valid and widely ranged from drawing tallies, to partitioning, and to the formal
algorithm. Among the valid strategies, students’ understanding of the commutativity was
identifiable in 267 strategies, and 36 unidentifiable strategies involved partitioning both
factors or the formal algorithm. When children kept the multiplicand intact, and computed the
multiplicand the multiplier times, the commutativity in the strategy was classified as
identifiable. For example, a fourth grader, Dana, used a doubling strategy for the problem
153 bags with 37 balloons in each bag. In this strategy she kept the multiplicand intact and
added two 37s for 2 bags and two 74s for 4 bags, and continued the doubling and additional
adding to figure out 153 bags (Figure 2). This strategy clearly shows that Dana did not
commuted the multiplier and multiplicand, even though it would have been significantly
more efficient if she had computed 37 groups of 153s, instead of 153 groups of 37s.

Figure 2. Dana’s commativity identifiable strategy
In other hand, Sean, a fourth grader, partitioned both factors for the problem 43 boxes

with 24 cards per box, his understanding of commutativity was unidentifiable.  Sean
explained his strategy that he wrote down 43 boxes on the top and kept 24 cards in his head.
He computed 20x40, 20x3, 4x40, and 4x3, and then added all the partial products (Figure 3).
Sean’s abstract strategy does not allow a reasonable identification of how he understood the
roles of the two factors, and his strategy would work the same way if he switches the roles of
the factors.

Figure 3. Sean’s commutativity unidentifiable strategy
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Among 267 strategies that the commutativity was identifiable, children kept the role of
the multiplier and multiplicand as given in the problem context in 207 strategies (77.5%).
Students’ explanations of their strategies during the interviews revealed more clearly that
their choice of not-commuted strategies was not a random choice for many children, but an
important part of their strategy in making sense of the solution processes. For example, in
solving the problem about 43 boxes with 24 cards in each box, Maureen first started by
writing down “43×10”, but quickly erased 43, saying “no, there are 24 cards” (Figure 4).
Then Maureen changed it to “24×10” for 10 boxes with 24 cards in each, and solved the
problem by computing 24×10 for 10 boxes, 240×4 for 40 boxes, and adding 12 for 4×3 and
60 for 20×3 for 3 more boxes.

Figure 4. Maureen’s strategy, partitioning the multiplier.
There were 60 strategies (22.5%) that children partitioned the multiplicand. Unlike

children who partitioned the multiplier, those who partitioned the multiplicand often did not
use the problem context in their explanation of the partial products. For example, in solving
the problem, 47 children paying $34 each, Laura partitioned 34 into three 10s and 4 (Figure
5). Laura explained her strategy that she calculated 47×10 because 10 is from 34 and she
knew “times 10.” However, she did not mention dollars or children in her explanation.

Figure 5. Laura’s strategy, partitioning the multiplicand

Commutativity in a Given Strategy
Initially 30 of the 58 children (12 of the 32 fourth graders and 18 of the 26 fifth graders)

responded that the given strategy in Figure 1 made sense to them. When the interviewer
asked to explain the strategy using the references of children and dollars in the problem, eight
of them became confused, and changed to say that the strategy was wrong because the
strategy added the number of children, instead of the number of dollars. The twenty-two
children who maintained that the strategy works for the problem were asked to explain why
adding the multiplier would solve this problem. Six of them stated the property as a rule that
multiplication is “reversible”, or 127×6 and 6×127 are the same because the numbers are
“switched around”.  Five children tried to explain the property by providing more examples,
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such as 3×4 = 12 and 4×3 = 12, and 4×6 =24 and 6×4 = 24. The rest eleven children provided
more generalizable justifications, including explanations such as 127+127 means $127+$127
when each of the 127 children brings $1 at a time. Although there were variations of clarity
and certainty in these 11 children’s explanations, these children understood the property as
more than a rule.

Conclusion
It is very common to see teachers teaching commutativity in a third grade class as a way

to reduce multiplication facts that children need to learn. However, it is not clear how
children understand or use the property. Do they know the commutativity as rule or fact? Or
do they understand what it means or why it works? If they know or understand the property,
do they use the property flexibly in their problem solving?

Ironically, the findings of this study are consistent with previous conflicting studies. First,
as Squire and her colleagues (2004) found, many children (30 of 58) recognized the property.
However, their justification of the property and use of it in problem solving indicate that their
understanding of the property is not deep or not deep enough to take advantage of it.  This
aspect of the findings is consistent with many other studies at the beginning section that
reported students’ struggles.

This gap between students’ recognition, justification, and use of the commutativity when
problems are contextualized in equal grouping or price problems presents us several
challenges. Are we satisfied as long as children know a×b=b×a as a rule? Or do children need
to understand why it works? Or is a flexible use of the property the true barometer of
knowing the commutativity? If we can come to a consensus on the standard, the next
challenge will be to develop instructional strategies that will help children understand and use
of the commutativity in number sentences and various contextualized problems.
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We outline a major exploratory study of affective interactions around conceptually
challenging classroom mathematics in low-income high-minority urban communities. We
describe procedures for classroom observations, individual interviews, and analysis with
respect to four aspects: flow of mathematical ideas, affective events, social interactions, and
teacher interventions. A particular episode exemplifies the interplay of mathematical ideas
and key affective events.

This report partially describes an exploratory study, now under way, investigating the
development of powerful affect around conceptually challenging mathematics in urban
classrooms in low-income, predominantly minority communities. Considerable research
suggests the critical importance of affective issues for children in schools within urban
communities (e.g. Anderson, 1999). Here we briefly outline the scope of the broader study
and offer an illustrative example describing the interplay between the flow of mathematical
ideas and key affective events in a particular classroom episode. Additional data and further
interpretations, drawn from a different school participating in this study, are discussed in a
related report (Epstein, Schorr, Goldin, Warner, Arias, Sanchez, Dunn, & Cain, 2007).

Theoretical Framework
Our framework is eclectic and interdisciplinary, drawing on urban studies and social

psychology, as well as mathematics education and cognitive science. We build on research
paying close attention to children’s mathematical thinking as they construct representations
and justify their solutions to challenging problems (Davis & Maher, 1997; Maher, Martino,
& Alston, 1993). But to gain insight about the basis for students’ success and their
developing confidence in mathematics, we see it as necessary to attend to issues of affect,
context, and culture, as well as mathematical activity and interactions (Martin, 2000;
Moschkovich, 2002). We see the development of mathematical knowledge in students taking
place in a social context of discourse within the classroom community (Cobb & Yackel,
1998), and influenced by the wider, urban community of the children. And we are informed
by work on affect in mathematics learning, and beliefs in mathematics education (DeBellis
and Goldin, 2006; Goldin, 2000, 2002; Leder, Pehkonen, & Törner, 2002).

Conceptually challenging mathematical activity involves gaining or changing some
understanding. Children need to “figure something out,” and may experience a sense of
impasse. In this domain mathematical meanings are at least as important as procedures, and
problems are often nonroutine for students. Classroom activity may involve mathematical
discussion and argumentation, exploration, individual students expressing their own ideas
and conjectures, “wrong answers” and “blind alleys” as well as fruitful suggestions, and
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questions posed not only by the teacher but by students to each other. While not all teachers
may take the approach of encouraging mathematical exploration and discussion, this study
focuses on the classrooms of teachers selected because they do so. Such processes of learning
and doing mathematics evoke significant affective responses in class. Children (and teachers)
may experience a variety of changing emotional feelings – e.g., curiosity, puzzlement,
bewilderment or confusion, anticipation, frustration, annoyance or anger, fear or threat,
defensiveness, suspicion, pleasure, elation, satisfaction, a sense of safety and trust, etc. Over
time, students usually develop a range of more stable attitudes towards mathematics, coming
to see it as something interesting or dull, enjoyable or hateful. They form enduring beliefs
about mathematics (e.g., what it is, or what it is good for), and about themselves in relation to
mathematics (e.g., about their own ability). They develop values in relation to mathematics
and the doing of mathematics – whether and why mathematics is valued, or what kind of
mathematical understanding or performance they will value.

By “powerful positive affect” we mean patterns of affect and behavior that foster
children’s intimate engagement, interest, concentration, persistence, and mathematical
success. The main conjecture underlying the research is that powerful affect in relation to
conceptually challenging mathematics is fundamental to developing mathematical ability and
essential to present and future mathematical achievement. Our focus is on aspects of urban
classroom environments that are likely to influence the development of such powerful affect.

Research Questions and Methods
Research questions for the overall study include: How do teachers contribute qualitatively

to creating an emotionally safe classroom environment for urban students to engage in
exploring conceptually challenging mathematics? How do teachers contribute to (or impede)
the development of powerful mathematical affect in such an environment? What are the
affective and cognitive consequences for urban children learning mathematics, including
students’ social interactions, emotional states, and mathematical learning? How do these
develop over the course of the school year?

By an emotionally safe environment, we mean one where mathematical inquiry
(including mistakes, false starts, discovery, criticism of each others’ ideas, and impasse) does
not lead to experiences of fear, pain, humiliation, shame, or domination and submission. We
mean an environment where children’s experiences include trust, confidence, dignity, and
shared respect (with the teacher and with other students) in the doing of mathematics.

Three middle-school classrooms in two urban school districts with large numbers of
minority and low SES students were selected for the larger study. In each of the three
classrooms, the research team collected data during at least four cycles spanning the school
year. Each cycle includes a pre-interview with the teacher and the videotaping of two
consecutive lessons. Four “focus students” in each class were followed particularly closely
during the year. Immediately after the second lesson in each cycle, the research team viewed
the videotapes and selected several evocative segments as a basis for individual follow-up
interviews with each focus student and with the teacher. As time permitted, interviews were
also carried out with some other students in one of the classes. The methodological intent is
to capture the classroom activity and interactions as closely as possible, gaining as much data
as possible about the students’ affective responses to and feelings about the class sessions, the
mathematics, and the social interactions taking place in the classroom.
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One senior researcher, one graduate student observer and two videographers with roving
cameras following focus students were in the classroom during each lesson. A stationary
camera captured an overview of the class. Each interview was conducted by one member of
the research team and videotaped by a single camera. Classroom and interview videos were
transcribed, and analyzed through four “lenses,” with the goal of creating narratives
describing: (1) the flow and development of mathematical ideas; (2) key affective events, by
which we mean instances where strong feeling or emotion is expressed or inferred, and the
immediately subsequent development; (3) social interactions among the students; and (4)
significant interventions by the teacher (see also Powell, Francisco, & Maher, 2003).

Observations and Preliminary Inferences
The episode described below occurred in a 7th grade classroom in a public school district

designated by the state as one of its most disadvantaged. In this middle school, more than
99% of the students are classified as minority and more than 70% are eligible for free or
reduced lunch. The school population over the past decade has changed from being
predominantly African-American to include a rapidly growing number of Hispanic students.
The data were collected during the first cycle of observations, when school had been in
session for less than three weeks, and students were still being assigned to the class. On the
first day of the cycle this class included 18 students, 11 girls and 7 boys, assigned by the
teacher to work collaboratively in small groups. Our illustrative discussion pertains to the
first 26 minutes of this class, augmented by analyses of interviews with three of the students
and the teacher after the session. The lesson was based on an investigation from “Variables
and Patterns,” a unit from Connected Mathematics 2 (Lappan et al, 2006).

Mr. Pedran [all names are fictitious], the classroom teacher, is a Caucasian male in his
early 30s who has been teaching in the school for about five years. Tyanna, a project focus
student, is an outspoken African-American girl. Taurean, an African-American boy, is also
quite forthcoming in offering his ideas in class. Ryan, another focus student, is a slender soft-
spoken boy whose family has emigrated from the Dominican Republic. Denzel, a frequently
volatile African-American boy, had been assigned to a Special Education class. He was
included in Mr. Pedran’s class in response to a special request by his mother. Nammi is a
very confident and assertive African-American girl. Shaniyah, Tyanna’s partner, is an
African-American girl.

The previous day, students had prepared graphs from a four-column table that they had
completed working collaboratively in small groups.  In the table, column 1 represented the
time in hours from 1 to 6. In columns 2 through 4, distance was to be recorded for each hour
of time at a particular speed: 50 mph in column 2, 55 mph in column 3, and 60 mph in
column 4. Ryan had asked Mr. Pedran the previous day to let him share his graph with the
class. After a short discussion clarifying the data to be graphed from the day before, Mr.
Pedran asked Ryan to share his graph using a transparency of his original work that Mr.
Pedran had prepared (Fig. 1). Mr. Pedran had also made copies of Ryan’s graph, and
distributed one to each group as Ryan came forward. Note that Ryan had not drawn three
distinct lines to represent the vehicles traveling at three speeds, but had connected all of the
points in the order that he had plotted them, creating what Tyanna refers to below as “zigzag
lines.” For each time point on the horizontal axis, Ryan had plotted the three points
(representing distances for 50, 55 and 60 mph), yielding vertical line segments when he
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connected them. Ryan had also incorrectly completed the middle column (for 55 mph) in his
table; the first three entries were correct, but all the subsequent entries were calculated by
adding 5 (instead of 55) to the previous cell (Fig. 2).

The transcripts from which excerpts are reported below have been coded according to
broad, preliminary categories: SA (notable student affect); TA (notable teacher affect); SI
(notable social interaction); TI (notable teacher intervention). More elaborate coding is being
developed within the ongoing analysis. Times are in minutes and seconds from the start of
the class period.

Segment 1: Getting started. (2:33) Mr. Pedran: So yesterday, you guys remember what
we were talking about yesterday? [TI - focusing and connecting with previous lesson]
Tyanna: Oh, yeah - I know what we was talking about. We was talking about the - um - the
graph that we did yesterday about - um - about how like, like the multiples of 55 -  and then
uh - and uh - about multiples of 55, and 50 and 60 - and you had to put them on the graph in
the right way. Taurean: We was talking about miles per hour and the distance that you go.
Mr. Pedran: OK - the distance that you go. Miles per hour and the distance that you go.
Anybody else? Tyanna: You said that Ryan was going to show us his graph because his
graph was the same way as yours. Mr. Pedran: Well - it was ... Tyanna: Well, not the same
way - but it was the right way – [SA - belief that any student’s idea, put forth with support
from the teacher, must be correct, or “the right way”] (3:55) Mr. Pedran: Well, when I show
something, it’s not about - uh - right or wrong - it’s - if you remember the last time we had
one of these debates, we still think that our way is the way we want to do things, and others
think that theirs is the way. Remember when we had to have a talk about “face”? [TI, TA -
underscoring the value of being open to the ideas of others] Tyanna: Oh yeah - and then you
were like: “Get out of my face!” Mr. Pedran: Mm – hmm.

Figure 1:  Ryan’s graph Figure 2:  Ryan’s table Figure 3:  Nammi’s table
and graph

Ryan stood at his desk, smiling shyly, and moved toward the overhead projector with the
completed table from his group in his hand. Denzel, a member of Ryan’s group, forcibly took
the table from Ryan’s hand. When Ryan protested, Denzel indicated that he needed that
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table, and that Ryan could refer to the completed one that Mr. Pedran had at the overhead.
Ryan hesitantly approached the overhead, and began his explanation.

Segment 2: Ryan’s presentation and class discussion. (7:42) Ryan: (speaking very softly,
almost inaudibly, in front of the class) So when I looked at the chart, I put time on the x-axis
and distance in the y-axis, and when I saw the, um, distance in the chart, I looked at 1 in the
time and 50 in the distance. So I thought 1 goes over there and 50 goes down there and next
in the chart - then next after 50 in the chart is 55, so I thought 1 and 55, and after 55 it’s 60
and I did the same thing, and it came up to here. (Ryan indicates the points on the overhead
to illustrate each pair of coordinates.) [SA - hesitant anticipation and pride] (8:46) Mr.
Pedran: Ok - so - ok - so what do you guys think? Do you guys agree with the placement of
the points? Nammi: No. I don’t. [SA - confidence] Mr. Pedran: Ok - well let me let Tyanna -
Tyanna had a question. If anyone has questions anytime, feel free to ask. Go ahead Tyanna!
[TI - encouraging open discourse] Tyanna: Why you put your lines like “zigzags”? Why not
go straight up? [SA - confidence, curiosity, confusion] Ryan: These (pointing to the middle
of the graph)? Tyanna: No - the zigzag lines. Ryan: (lowers his voice and responds, but
inaudibly) [SA - nervousness and uncertainty] Tyanna: I can’t hear you - Huh? [SA –
tenacity] Ryan: I just connected the dots. Tyanna: Oh - oh – oh! Ryan: It’s because this ...
[SA – persistence] Nammi: My question is - why connect all the dots together and not just
put each one in a separate line? Tyanna: Yeah - because it’s like - all together. It’s like - it’s
like one big graph but it’s only - it’s only like separate graphs. Nammi: It’s three separate
graphs - it’s three separate datas. [SA – confidence] Mr. Pedran: So it’s three separate sets of
data.  And so - well I thought - Ryan wanted to share. And when I looked at it, I thought it
was an interesting way that he decided to connect the points. So you think it should be
something different? Do you want to come up and show us? [TI -mediating student
discourse, leaving the question of “right or wrong” open]

Nammi walked forward to join Ryan at the overhead and began to examine his graph,
apparently trying to see her representation embedded in his. After attempting unsuccessfully
to trace her three lines by going across Ryan’s vertical lines as he tried to show her the
appropriate points on his graph, she asked Mr. Pedran if she could make a transparency of
her own graphic representation. Ryan stood quietly beside Nammi as she constructed a graph
on a second overhead beginning with the straight line formed from the data for distances at
50 mph. Ryan tried to indicate that his data also showed this - but she waved him away. Ryan
moved back toward his group, Denzel stood up to meet him with a “high-five”, the comment
“No sweat. Man!” and a big smile of appreciation. Mr. Pedran challenged the rest of the class
to consider Ryan’s representation as it compared to theirs, and students began talking within
their groups. While Nammi was interacting with Ryan and preparing her graph (Fig. 3),
Tyanna and her partner, Shaniyah, compared their  graph with Ryan’s.

Segment 3: Tyanna, Shaniyah, and Ryan. (11:27) Shaniyah: Okay - you choose three
graphs. I don’t get why he connected them. [SI - trying to make sense of Ryan’s graph]
Tyanna: Now - It looks like - now it’s like one big graph that’s like coordinates of different
numbers. If you - if you - it would be better - but this graph here is confusing - because he‘s
got this one - this one. Mr. Pedran: Do you think that he’s graphed the same information as
you? [TI - focusing the students, challenging them to look closely at the two representations]
Shaniyah: No! Tyanna: Because - because we connected ours. Ours looks totally different.
He like - he like added his own numbers in - ... and it looks confusing. [SA - puzzlement,
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confusion and desire to understand] Mr. Pedran: Well - that’s the way - These lines here - I
think are the way he makes sure he lines them up - the dotted lines (from the plotted points to
the vertical axis)?  These, I’m not sure. Would you - maybe do you want to ask him why he
did that? (Tyanna shrugs) Maybe if he’s not in front of the class he can explain it to you. Do
you want to go talk to him? He’s right over there. [TI  - giving responsibility for
communicating and comparing to the students]

Tyanna joined Ryan, who once again explained that he was connecting the points
sequentially from his chart and that the dotted lines were added to help determine the number
on the vertical axis. Tyanna indicated her understanding with another: ”Oh!” After several
minutes of discussion in small groups, Mr. Pedran asked Nammi to present her graph using
the overhead that she had produced showing her three lines (Fig. 3). A whole-class
discussion followed with apparent consensus that Nammi’s graph seemed the more
appropriate way to represent the data. Subsequent review of the work of the class, however,
indicated that a number of students’ graphs were similar to Ryan’s.

Segment 4: Mr. Pedran’s conclusion. (25:51) Mr. Pedran: Let’s not - let’s not debate
what he should have and what he did do. My question is that he chose to do this, and he
wanted to share that, and I’m glad he did, because when we look at it, he decided to connect
all the dots - and if we look at Nammi’s - and a lots of other people do this - Ryan’s just -
he’s - he’s just got what Nammi’s got in here. What is that? [TI, TA – pulling the discussion
together, affirming the value of Ryan’s presentation] Shaniyah: He just connected the dots.
Tyanna: But in different forms. (26:24) Mr. Pedran: But in a different form. He’s got the
same - same - I noticed a couple things within here, but if we were just to follow the green
line or the blue line ... (Nammi and Mr. Pedran had attempted to overlay the lines
representing the three data sets using different colors – and had been perplexed by the points
that resulted from Ryan’s computations in the middle column.) It’s difficult to do at the same
time - he’s got the same thing - that’s why I wanted to point that out. [TA - uncertainty
around Ryan’s solution and how to connect the two representations]

Retrospective interviews. Ryan’s interview tended to confirm the interpretations of his
affect noted in the transcripts. When asked how he felt about presenting his solution, he
responded: “It made me feel excited, but when I got up there, it made me feel a little bit
nervous.” His interview indicated that at no time did he recognize any real difference in the
two solutions, nor did he recognize that any of his plotted points were incorrect. Rather he
stated: “That - uh – this” (his graph) “was the same thing as the graph” (constructed by
Nammi) “but she didn’t know it.” Finally, he said again that explaining to Nammi and
Tyanna “made me feel excited again, but I didn’t want to tell her. ... Because then - I don’t
know ... I feel like they’ll get embarrassed.” Tyanna’s retrospective interview, while
confirming that she was convinced about her own graph and had been confused by Ryan’s,
indicated that she thought that both might be correct. In reflecting on her questions for Ryan,
Tyanna said, “I be feeling like, ‘Oh my God I got this wrong, they’re gonna crack on me’ - I
feel bad when I get things wrong.”  She went on to say that when the teacher and the class
affirm her ideas, “... that make me just feel good!” Nammi was much more convinced that
her understanding of the problem was correct and that the three sets of data should be
graphed separately. She expressed confusion about Ryan’s representation, noting that she
thought others in the class were confused as well but were hesitant to say anything. In his
post-interview, Mr. Pedran expressed both satisfaction and uncertainty about the class
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discussion: “I think the kids did a good job of listening to him (Ryan). I think that he (Ryan)
did a good job explaining what it was that he did ... and probably he felt good that his work
was being shown to the whole class. I liked the way that she (Tyanna) had a question and she
asked it, and I still haven’t answered the question yet ... We’re going to get back to that issue
... why he chose to connect the dots the way he did or if they see anything wrong there ... or
if he sees anything wrong there.”

Discussion
In this short episode, the rich variety of ideas, beliefs, and expectations underscores both

the complexity and the importance of analyzing actual classroom lessons, especially in urban
settings. Students are not only expressing mathematical ideas and beliefs about school
expectations, but are grappling with accompanying feelings toward each other. Note the two
very different responses in Segment 1, where Tyanna remembered the patterns of numbers,
multiples of the three speeds, increasing by 5 from 50 to 60, while Taurean recalled that the
data had been describing miles and distance. This dichotomy presages the action of the
following 20 minutes, as the class considers the two different representations of the data.  In
studying the curriculum unit, it was noted that nowhere before this investigation had students
been asked to represent more than one set of data on the same graph, nor did the directions
for the task indicate that the data sets should be graphed as separate lines. The episode
reported here raises questions for researchers and practitioners alike concerning how best to
address the ensuing uncertainty in the students, and the accompanying cognitive and
affective challenges to a teacher committed to a role of facilitator rather than “teller.” Note
the interaction about why Ryan’s representation was selected for consideration. Tyanna
appeared to believe that the selection must have been made because it was “right.”  Mr.
Pedran suggested instead that looking at alternative representations, different ways of doing
things, might be interesting for the class. He and Tyanna agreed about the potential for strong
emotional feelings about a student’s solution, and the need to allow each person “emotional
space” in comparing mathematical ideas. As we study the narrative of this episode, these and
other potential questions and implications about teaching and learning become salient. This
will inform our continuing analysis of the complete set of data with respect to the four
“lenses” described above.
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University students participating in an inquiry-based introductory honors calculus course
draw conclusions about the volume of water in a reservoir based on graphs of the rates of
water entering and exiting a reservoir over a period of one year. Through grounded theory
research methods, students’ introduction and negotiation of meaning for conventional
mathematics vocabulary were characterized and analyzed in the context of their participation
in mathematical discourse. Students shared and created personal experiences through a
process of linguistic invention to describe their personal interpretations of “point of
inflection” and “concavity.” This study opens further dialogue on Sfard’s (2001) notion of
learning mathematics as becoming a participant in mathematical discourse.

Conventional mathematical vocabulary is often used in university mathematics classes.
However, the appropriation of mathematical vocabulary and notation by learners of
mathematics has not been widely studied. Students participating in mathematical discourse
develop their own methods of communication as they negotiate relationships between ideas
and the words and symbols used to express those ideas (Walter, 2005). This study analyzes
negotiation of meaning for the mathematical terms “point of inflection” and “concavity” in
mathematical discourse among university honors calculus students.

Theoretical Framework
Psychologists often view human thought and speech as closely related. Vocal speech is

that which is audible, while inner speech is human thought that resembles vocal speech
(Vygotsky,1986). Developmentally, egocentric vocal speech is considered to be an
intermediate state between inner speech and vocal social speech. In egocentric speech,
individuals speak without the specific purpose of communicating with others (Piaget, 1997;
Vygotsky, 1986). In social speech, on the other hand, the speaker takes on the point of view
of the listener (Piaget, 1997). Brown (2001) cites Habermas and Gadamer in describing a
dualistic nature to the relationship between humans and language itself. While Gadamer
views humans as part of language, Habermas views humans as operating on language. These
views on the nature of language suggest a variety of purposes and products for language,
including organization of human thought, communication, and participation in society.

We view learning mathematics as becoming a participant in mathematical discourse
(Sfard, 2001). Meaningful participation in mathematical discourse includes constant
negotiation of meaning (Doerfler, 2000). We interpret the social context in which
mathematical learning occurs as analogous to “humans as part of language,” and negotiation
of meaning as analogous to “humans operating on language” (Brown, 2001). Here, we focus
on negotiation of meaning by learners of mathematics and on two processes of social speech
through which meaning may be negotiated. The first process may be seen as a learner’s
comparison of their own usage of words with how other speakers in the discourse use the
same words. Learners exercise personal agency as they purposefully choose (Walter, 2005;
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Walter & Gerson, 2007) to invite their peers to share their interpretations of conventional
mathematical terminology. As a result of engagement in the negotiation of meaning,
individual participants evaluate the way in which they believe terminology is or should be
used and compare and contrast their own expectations with how vocabulary is used in the
present discourse (Blumer, 1969). The second process may be seen as learners’ borrowing of
words from other contexts to compare newly negotiated meaning with shared experiences in
a process of linguistic invention (Walter & Johnson, in press).

Method
This study took place in a university honors calculus classroom at a large private

university in the Rocky Mountain Region of the United States. About 20 students met with
two professors three mornings a week for two hours to investigate open-ended problems and
discus related mathematical concepts. This paper focuses on four university students enrolled
in the calculus course. At the time of the course, Daniel was a sophomore majoring in
actuarial science who took a statistics course and Advanced Placement calculus courses in
high school. Jamie was a senior majoring in geology who had previously taken this a first
semester calculus course from another instructor at the same university.  Julie was in her first
semester at the university and planning to major in mathematics education. Justin was a
junior who had not declared a course of study but expressed interest in engineering,
mathematics, and mathematics education.

In the seventh week of the fourteen-week course, the participants began to work on the
Quabbin Reservoir Task (Figure 1), which the instructors adapted from Connally, et al.
(1998). The task shows a graph of inflow and outflow of water in a reservoir over the period
of one year. Participants are asked to describe and create a graph of the volume of water in
the reservoir during that year.

The Quabbin Reservoir in the western part of Massachusetts provides most of
Boston’s water. The graph in Figure 6.38 represents the flow of water in and out of
the Quabbin Reservoir throughout 1993.

a. Sketch a possible graph for the quantity of water in the reservoir, as a function of
time.
 b. Explain the changes in the quantity of water in the reservoir in terms of the
relationships between outflow and inflow during each quarter of the year. How are
these changes evident in your graph in part (a)?
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Figure 1: Quabbin Reservoir Task

We used grounded theory methodology (Strauss & Corbin, 1998) to conduct a constant
comparative analysis of video, transcript, original student work, and researcher field notes
relevant to student discourse on the Quabbin Reservoir Task. The codes, which are described
below, helped us to identify and delineate categories of language use and events in
mathematical discourse. As subcategories developed within individual codes we then
identified relationships between different subcategories. Patterns and themes in the process of
negotiation of meaning emerged through this continuous review of data.

We began coding the transcript according to the mathematical concepts that were the
focus of the discourse. For example, utterances could focus on concepts such as rate, volume,
increasing, decreasing, points of inflection, and concavity. The participants used different
forms of language, drawn from a variety of contexts, to refer to these concepts. For example,
“rate” was described in the context of the reservoir (R) as “the flow of the water.” In terms of
graph interpretation (G), “rate” was often described as “slope.” The participants also referred
to “rate” and “volume” as “velocity” and “displacement” respectively, which reflected
language that they had used in an earlier task (the Desert Motion Task) about a woman
driving through a desert (V) (diSessa, Hammer & Sherin, 1991). Other contexts (O) were also
introduced, including “rate” as the speed of a person going down a slippery slide (S), and a
context that made reference to the physical sensation of drawing (D).

We then coded language as egocentric or social. Due to the mutual respect and
camaraderie among the participants, it was difficult to code any utterance as purely
egocentric. There were few utterances captured by the camera that were not acknowledged by
the other participants, and therefore any utterances that may have originated as egocentric
speech were responded to as social speech. However, within this category of social speech
there was a difference in the use of pronouns. The transcript analyzed here is coded in the far
right column according to the type of pronouns used as first person (1), second person (2), or
third person (3). Line numbers are given for reference purposes in the far left column.

Data and Analysis
To complete the Quabbin Reservoir Task, Daniel created a graph of the volume of water

in the reservoir versus time (Figure 2). He then created a graph of net flow of water (Figure
3) by graphing an estimated difference between the inflow and outflow of water on the
original graph (Figure 1). Although he did not label the horizontal axis of the graph with
points A-G until after the episodes described here, Daniel’s labels are shown in Figure 2 and
referred to in the transcript to indicate the points and intervals that Daniel points to with his
pencil on all three graphs.

Figure 2: Daniel’s Graph of Volume with the Horizontal Axis Labeled

A B E F GDC
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Figure 3: Daniel’s Graph of Net Flow

In the transcript that follows, Daniel uses social speech to explain his volume graph to
Justin, Jamie and Julie.

1 13:35 Daniel: Like right here [volume graph from A to B] it is going negative
until about that point [indicating point B on the rate graph and
the volume graph].

3 G

2 Julie: Right.
3 13:50 Daniel: So, it has a negative slope. And then it starts going positive up

to that point [point E, July, on the rate graph]. And so it levels
off at zero [point E, July, on the volume graph].

3 G

4 Cause the v-, the v- [pauses] I don't know what you call that.
The velocity of the flow of the water or something? The
velocity of this is zero.  Which is correct on our velocity chart
[pointing to the rate graph].

1 V

5 And then it starts going negative again. And then it starts kind
of sloping out. And it has, its greatest slope is right here [point
F, October, on the original graph], so that's its inflection point
[point F, October, on the volume graph].

3 G

Daniel primarily uses the third person to describe intervals on the graphs. His use of the
first person in line 4 may indicate uncertainty about his own language in describing the shape
of the volume graph. In line 3, Daniel describes the slope of the graph as negative. However,
in line 4 Daniel hesitates, saying that he doesn’t quite know how to call that which is zero. He
uses “the velocity of the flow of the water,” which is later shortened to “velocity,” as in his
use of  “velocity chart” to refer to the graph of rate in line 4. As Daniel continues to describe
the shape of the graph of volume, he uses the term “inflection point” in line 5. Daniel
describes the location of the inflection point as the point with the greatest slope.

Jamie and Julie continue to question Daniel about inflection points, and Daniel develops
different methods for explaining what an inflection point is. He begins to refer to maximum
velocity quite frequently, reminiscent of language used in the Desert Motion Task (V).
Daniel’s explanations of inflection points also focus on his ideas about the shape of the graph
(G) rather than events in the context of the reservoir. Discussion of the inflection point differs
from discussion of other portions of the graph as Daniel repeatedly chooses to use first and
second person pronouns.

In the next transcript Julie invites Daniel to again share his meaning for the term
“inflection.” Daniel hesitates in line 14, and then introduces the context of going down a
playground slide in order to share his meaning. He draws curves (Figure 4) he explains the
point of inflection to Julie.

13 19:13 Julie: I don't think I understand the inflection idea. 1
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14 19:19 Daniel: Okay, so if you're, like, here's kind of an, idea, okay. So if
you're drawing, a curve. Um, you just. Ah. [pauses]

2 D

15 Okay, so the inflection point is where the velocity is the highest,
so, like,

3 V

16 if it, if you were like going on a slide and if you're falling down
on it, your speed would be increasing, you'd be going like down
really really quick-

2 S

17 Julie: Um hm.
18 19:48 Daniel: Then at some point you'd start to level off. And where would

your velocity be highest?
2 S
V

19 19:53 Julie: Right there.
20 19:55 Daniel: Yeah, like, before you start to slope off. 2 S
21 Yeah, that's the inflection point. Like where the velocity is

highest.
3 V

22 Julie: Okay.

In line 15, Daniel again refers to maximum velocity to describe the
point of inflection. In lines 16 through 20, Daniel introduces a context
that involves velocity, or the speed of a person riding down a slide. He
describes this person in the second person, inviting Julie to draw upon
her own experiences in order to notice a feature of the graph that she
may not have noticed before: the point of inflection. To justify having
found the correct point, Daniel again returns to his third person
reference to maximum velocity in line 22.

Daniel offers Julie another opportunity to draw on her own experience in order to notice
the point of inflection as he is noticing it. Using second person pronouns, he invites Julie to
feel what it is like to draw a point of inflection. He animatedly narrates the process of
drawing in the first person.

23 20:05 Daniel: Like if you were to draw, like a line, like you can kind of feel
the point where you start to curve off.

2 D

24 Julie: Right.
25 20:13 Daniel: Cause you're like drawing and AHHH! 2 D
26 Julie: [laughs]
27 20:14 Daniel: Like I'm falling and then whew. 1 S

Daniel has consistently described a point of inflection as the point where the velocity is at
a maximum. He has also found other ways to describe a point of inflection to his peers.
Although members of the class have used the term “concavity” while describing points of
inflection, Daniel has not referred to a point of inflection in terms of concavity. In the
following transcript, Julie asks Daniel to clarify the connection between inflection and
concavity.

28 20:17 Julie: And so, when you were talking before the inflection point, did,
did the concave, right? Did it start the concave or was that the
point of-

2

Figure 4
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29 20:30 Justin: It was the point where they changed, wasn't it? 3 G
30 20:33 Daniel: I don't remember the concave thing. 1

Any apparent neglect of the term “concavity” on Daniel’s part may have to do with his
admitting that he doesn’t remember anything about it. The other participants at the table now
take their turn to help Daniel to notice and describe a feature of the inflection point that he
may not have noticed previously.

31 20:36 Justin: Concave, like, because this- 3
32 20:37 Jamie: [as if reciting] Concave up like a cup, concave down like a

frown.
3 O

33 20:41 Justin: [laughs] So concave down, like that, [drawing a curve on
Daniel’s curve shaped like a parabola opening down] that's
concave down.

3 G

34 Daniel: Um hm.
35 20:44 Justin: This is concave up [drawing curve shaped like a parabola

opening up, Figure 5], so they-
3 G

36 Daniel: Ohh!
37 20:46 Justin: -change at that point of inflection. 3 G
38 Daniel: Ohhh! That's smart.
39 20:48 Justin: So that's what you're saying, the point, that's, the velocity's

highest at that point of inflection on a displacement graph.
2 V

40 Daniel: Oh, okay.
41 20:58 Julie: So it's when they change. 3 G
42 20:59 Daniel: Ooh. Concavitivi-ness-us

In line 32, Jamie draws on her on experience with her description of
concavity. She refers to common objects in her experience, a cup and a
frown, to describe the shapes of concave down and concave up through
analogy. The tone in which she recites this analogy suggests that she has
heard the rhyme before, perhaps during her experience in a previous
calculus course.

Justin recognizes and expounds on Jamie’s rhyme by drawing
parabolic shapes on the graph that Daniel has drawn. Daniel expresses
excitement as he notices the concavity of the graph that he has drawn.

Although he has not spoken a great deal in the transcript to this point, Justin reveals that
he has been listening to Daniel’s explanations of inflection point. He not only modifies
Daniel’s drawing to show him the relationship between concavity and the inflection point, but
he also uses Daniel’s words in line 39 to describe an inflection point as having the “highest”
velocity, just as Daniel has been describing it.

Daniel is excited to recognize the change in the shape of the graph, and continues to trace
the parabolic shapes that Justin drew. He creatively describes the concept of concavity in his
use of the term “concavitivi-ness-us.”  Meanwhile, in her characteristically soft voice, Julie
verbalizes the answer to her question in line 28 by describing a point of inflection as “when
they [the concavity of an interval on the graph] change.”

Figure 5
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Discussion
In the data presented here, Daniel was able to describe a point of inflection to his peers

without referring to concavity. His descriptions used language that referred to his personal
experiences. Daniel developed a personal definition for a point of inflection as a point with
maximum velocity. His definition used vocabulary from a previous task, a context within
which all the participants had recently participated in much mathematical discourse. Daniel
also participated in linguistic invention (Walter & Johnson, in press) to relate the concept of
point of inflection to other personal experiences. He used first and second person pronouns to
invite the other participants to share his experiences and notice the things that he was
noticing. One of these experiences was enacted on the spot, as Daniel invited Julie to draw a
curve and “feel” the point of inflection. Physical experiences has been found to affect
students’ representations of motion (Speiser & Walter, 1996), but this may be a rare example
in which the actual creation of a graph becomes the shared experience in motion.

Daniel’s experiences in describing his interpretation of a point of inflection may have
prepared him to recognize and appreciate Justin’s descriptions of concavity. In masterful
exhibition of social speech, Justin not only explained how he viewed concavity, but also
attempted to take on Daniel’s point of view by basing his explanation in Daniel’s own words
and representations. By consistently inviting one another to share their personal
interpretations of “concavity” and “point of inflection,” and carefully listening, the
participants were able to negotiate not only a common usage for conventional mathematics
terminology but also identify relationships between mathematical concepts.

As students negotiate meaning for conventional mathematics vocabulary, they use
personal experiences to build mathematical discourse. As demonstrated by the participants in
this study, respectful listening, questioning and seeking to understand one another may better
enable learners and teachers take on the point of view of others in social speech. We suggest
that in order to learn mathematics, a learner must creatively use and negotiate meaning for
vocabulary to be an active participant in mathematical discourse. This study extends
conversations about how learners negotiate meaning for the purposes of participation in a
broader discourse of mathematics.
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In order to better understand the connections between effective teaching and student
learning, two secondary mathematics teachers’ uses of instructional representations are
viewed from the perspective of the Pirie-Kieren theory of students’ growth of mathematical
understanding. Results indicate the need to examine what and how teachers communicate
mathematical ideas during instruction and how that affects students’ learning of those ideas.

The purpose of this qualitative study is to examine mathematics teachers’ uses of
instructional representations in order to better understand how theory of effective teaching
can be connected to theory of student learning. Teaching is considered effective when teacher
knowledge contributes to positive student learning outcomes (Ball, Lubienski, & Mewborn,
2001; Borko & Putnam, 1996; Fennema & Franke, 1992; Shulman, 1986; Wilson, Shulman,
& Richert, 1987). Teachers’ knowledge has a direct impact on their instructional practices
and how effective those practices are for student learning (Fennema & Franke, 1992).
However, the relationships among the knowledge components teachers use during practice
that contribute to effective teaching, and thus to student learning, are not well understood
(Ball, 2000; Grossman, Wilson, & Shulman, 1989; Shulman, 1986; Wilson et al., 1987).

The practice of teaching is a complex web of inter-related procedures in which teachers
attempt to convey their knowledge of subject in such a way that students can grow in their
understanding of that subject. This study focuses on the teacher practice of using instructional
representations. Instructional representations can be described as the words, pictures, graphs,
objects, numbers, symbols, and contexts (including examples, metaphors, and analogies) that
teachers use during instruction to communicate abstract mathematical ideas to students
(Berenson & Nason, 2003). They are the external representations created and/or used by a
teacher during instruction. The concept of using representations as a means of
communicating abstract mathematical ideas is a prominent focus of research in teacher
knowledge and student learning (Borko & Putnam, 1996). The ways teachers use
instructional representations connect what teachers know about mathematics and what they
know about teaching it (Ball et al., 2001; Berenson & Nason, 2003; Wilson et al., 1987).
Furthermore, teachers’ uses of instructional representations provide a connection between
effective teaching and student learning. This study uses a theoretical framework based on
students’ growth of understanding in order to better understand how teachers’ uses of
instructional representations may contribute to effective teaching and thus, to student
learning.

Theoretical Framework
The Pirie-Kieren (1994) theory concerns a student’s growth of understanding of a

particular mathematical concept or idea whereby the processes of learning are dynamic,
recursive, and nonlinear. The theory describes embedded layers that consist of eight potential
levels in the growth of understanding for a specific student and a given topic or concept. This
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study considers only the first five activity levels: 1) primitive knowing, 2) image making, 3)
image having, 4) property noticing, and 5) formalizing. The first three levels are based on
informal and context-dependent levels of understanding and the next two levels are more
formal and abstract levels. A key feature of the Pirie-Kieren theory also considered in this
study is the activity of folding back, an activity that is vital to growth in understanding
(Martin & Pirie, 1998; Martin, 2000; Pirie & Kieren, 1994). Folding back occurs when a
student is faced with a problem that is not immediately solvable within the current level of
understanding and reverts to inner levels of understanding. The Pirie-Kieren theory is used to
examine the processes of mathematical learning, but this study adapts the theory to analyze
the uses of instructional representations by two secondary mathematics teachers and how
those uses may facilitate students’ growth of understanding.

Methods
In this case study of teachers’ uses of instructional representations, two secondary

geometry teachers, David and Nancy (pseudonyms) were each observed on five occasions
during classroom instruction and interviewed twice about their ideas concerning instructional
representations, once before the observations and once after all observations were complete.
David was an experienced teacher and Nancy was a novice teacher, both teaching honors
geometry, at the time of data collection. Their uses of instructional representations during
instruction were coded for their use within the activity levels adapted from the Pirie-Kieren
theory.

Primitive knowing is defined by Pirie and Kieren as the knowledge a student brings to a
setting. In this study, an instructional representation is used within this activity level if it is
used to encourage students to review or recall concepts that have been previously taught by
the teacher. In the Pirie-Kieren theory, image making occurs when a student uses actions to
form mental images and in image having, the student can use those images without the need
for the prior actions. These two activity levels are combined in this study to refer to informal
and context-dependent uses of instructional representations. In the next level, property
noticing, a student can focus on and connect properties of images. Instructional
representations are used within property noticing if they are used to prompt students to notice
particular properties of a concept and to convey to mathematical meaning. In the level of
formalizing, a concept takes on a formal mathematical characteristic and a student can
enunciate a formal definition or algorithm. In this study, using a formal instructional
representation such as an applied algorithm or symbolic formula is considered to be used
within the activity level of formalizing.

Results and Discussion
An emergent theme from the analysis of the observational data was the amount of

instructional time each teacher used instructional representations within particular activity
levels. David spent more time using instructional representations within the activity levels of
image making/having and property noticing. David’s instructional representations were used
most often within the informal activity levels when introducing concepts. He encouraged
students to move towards more formal activity levels when reviewing previously taught
concepts. Nancy spent more time using instructional representations within the activity levels
of property noticing and formalizing. Nancy’s instructional representations were most often
used within formal activity levels when introducing concepts and when reviewing previously
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taught concepts, her instructional representations were used within the informal activity
levels. David used instructional representations within the formal activity levels when he
encouraged students to fold back, while Nancy used informal and context-dependent
instructional representations when she encouraged folding back.

Connecting effective teaching to student learning requires examination of what teachers
do within the practice of teaching that contribute to students’ growth of understanding.
According to the National Council of Teacher of Mathematics, “effective mathematics
teaching requires a serious commitment to the development of students' understanding of
mathematics. Because students learn by connecting new ideas to prior knowledge, teachers
must understand what their students already know” (NCTM, 2000, p. 17). The results of this
study reveal the importance of examining how teachers communicate their knowledge of
mathematics and of how to teach mathematics through their uses of instructional
representations and also how they encourage students to fold back with their uses of
instructional representations. Furthermore, future research needs to examine students’ growth
of mathematical understanding based on the instructional representations used by teachers
during instruction.
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In this paper, we describe a case study focused on the interplay between teacher listening and
the use of representations while implementing a reform-oriented curriculum at the 5th grade
level. We found that changes in a teacher’s use of representations often coincided with
student indications of uncertainty or misunderstanding and the teacher’s attempt to listen to
student thinking.

“The idea of representation is continuous with mathematics itself” (Kaput, 1987, p.25).
More specifically, the ability to create meaning using mathematical representations is the
essence of doing mathematics and communicating mathematically. Having a set of
conventional or taken-as-shared representations allows members of a mathematical
community to articulate patterns, relationships, generalizations and, together, to advance the
state of mathematical knowledge. Thus, mathematics learners “must progress from
idiosyncratic and ad hoc representations of particular problems to conventional, abstract, and
general representations that function for a class of problems” (Smith, 2003, p. 264). Teachers,
then, must fill the tall order of supporting both the development of individual understandings
of mathematics, which may rely on idiosyncratic representations, and developing collective,
taken-as-shared conventions and meanings in the classroom (NCTM, 2000). Reform-oriented
curricula are designed to support teachers in this effort by including rich tasks that foster
discourse around mathematical processes such as representation and generalization.

In this paper, we examine the role of the teacher in guiding both the individual and
collective sense-making process using various representational forms. More specifically, the
purpose of this study was to investigate the factors that influenced how a teacher used various
representational forms while implementing a reform-oriented curriculum.

Theoretical Perspective
We adopt the definition of representation provided by Davis, Young, and McLaughlin

(1982): “A representation may be a combination of something written on paper, something
existing in the form of physical objects, and a carefully constructed arrangement of ideas in
one’s mind” (p. 23). This definition includes externally observable images such as physical
objects, diagrams, tables, graphs, and equations, yet also acknowledges the role of the agent,
or constructor of representations (NCTM, 2000; Monk, 2003). Given the interaction between
internal and external representations, and the social context of the classroom, we view student
mathematical learning through the lens of the emergent perspective as described by Cobb and
Yackel (1996).

Investigating representations in a social setting requires an examination of how teachers
and students interact while discussing representations. When students play an active role in
discourse, teachers must continually interpret and respond to student ideas. Hence, the ways
in which teachers ask questions, listen to students, and respond to students during instruction
may influence their decisions about which representations to introduce and when to introduce
them.
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Davis (1997) characterized three types of teacher listening: evaluative, interpretive, and
hermeneutic—the first two being of interest for this study. When a teacher is engaged in
evaluative listening, she is often listening for a particular response, rather than listening to the
students. In this mode of listening, the teacher evaluates student responses against a
preconceived standard for a correct response with the aim of leading students toward a
particular learning goal. When a teacher is engaged in interpretative listening, she continues
to listen for specific responses, but also is careful to listen to students in an attempt to
interpret student thinking. Although, student thinking is valued and incorporated into the
lesson, the trajectory is not greatly affected.

Method, Data Sources, and Analysis
A case-study methodology was used to examine how one fifth-grade teacher used

representations when teaching. The teacher used a reform-oriented, NSF-funded mathematics
curriculum and adhered to a philosophy that promoted student involvement and encouraged
sense making. Three consecutive lessons on patterns were videotaped and transcribed.

The data were retrospectively analyzed using a data reduction approach (Miles &
Huberman, 1994). Initially, all transcripts were coded in terms of the representation used
(visual, tabular, symbolic) and the mode of listening (evaluative, interpretive) employed by
the teacher. A protocol was developed to provide criteria for the classification of listening via
prompts and cues observed in the video. In addition, special attention was paid to the context
surrounding a change in representation or listening mode.

From this initial round of coding, schematics (such as figure 1) were developed to
graphically depict the use of representation and listening for each episode of the observation.
Researcher comments were added to describe the context surrounding changes in
representation and listening. These schematics were then analyzed to identify the factors that
appeared to induce a change in representation. A constant-comparative method (Glaser &
Strauss, 1967) was applied to test and revise emerging patterns, which are discussed in the
following section.

Results and Discussion
By analyzing the interactions among representations, student verbalizations, and teacher

actions that indicated her mode of listening, we detected several patterns. Overall, we noticed
that the teacher was often engaged in evaluative listening. During periods of evaluative
listening, the teacher introduced representations in a very sequential manner. She listened for
particular responses that propelled the discussion forward toward her goal of moving students
from diagrams and physical objects to tables of values to symbolic representations. When the
teacher engaged in interpretive listening, the sequential pattern of representations was often
disrupted. Catalysts that prompted changes in listening and representation use were varied,
but were typically associated with an apparent disagreement between teacher and student
about how a representation was interpreted.
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Figure 1. Representation and listening schematic

In the episode depicted in figure 1, the teacher, Emily, discussed a pattern in which three
toothpicks were added at each step to extend a string of toothpick-outlined squares. Emily
created a table to represent the sequence of steps in the pattern. She led a discussion about
values in the table, and eventually led the students to a symbolic generalization.

Figure 1 illustrates the representations (diagram, table, and symbols) that were the focus
of discussion during the episode. Because the teacher perceived these representations to be
sequential (diagram to table to symbols), correct responses to the teacher’s questions seemed
to provide the teacher with the green light to continue discussing the current representation or
to move up to the next level of representation. On the other hand, a disagreement either led to
further discussion of the current representation or precipitated a change to a “lower level”
representation.

Likewise, such disagreements and changes in representation corresponded to a change in
Emily’s mode of listening. After a disagreement, her listening became more interpretive. She
offered students the opportunity to explain their thinking, which often required reference to a
lower level of representation. Perhaps this downward trend occurred because the diagram, in
particular, was a closer representation of actual context and thus facilitated sense-making in
the situation.

Conclusions
The complex social environment of the classroom makes a teacher’s job of facilitating the

negotiation of mathematical norms and practices, while monitoring individual
understandings, a difficult task. Listening to students can help teachers know when a change
of representation may help students build a bridge from their own mental constructs to a
shared understanding of how information is encapsulated in conventional representations.
Although much previous research has focused on individuals’ use of representations, this
work considers issues affecting representational choices in the context of the teaching. As a
result our work is well aligned with the goals of PME-NA and with the theme of the 2007
Conference, “Exploring Mathematics Education in Context.”

References
Cobb, P. & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the

context of developmental research. Educational Psychologist, 31(3/4), 175-190.
Davis, R.B., Young, S., & McLaughlin, P. (1982). The roles of “understanding” in the

learning of mathematics. Urbana: University of Illinois, Curriculum Laboratory.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: strategies for

qualitative research. New York: Aldine De Gruyter.
Kaput, J. J. (1987). Representation systems and mathematics. In C. Janvier (Ed.) Problems of

representation in the teaching and learning of mathematics (pp. 19-26). Hillsdale, NJ:
Erlbaum.

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook (3rd ed.). Newbury Park, CA: Sage Publications.

Monk, S. (2003). Representation in school mathematics: Learning to graph and graphing to
learn. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to
principles and standards for school mathematics (pp. 250-262), Reston, VA: NCTM.

National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics, Reston, VA: NCTM.



349

___________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Smith, S. (2003). Representation in school mathematics: Children’s representations of
problems. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to
principles and standards for school mathematics (pp. 263-274), Reston, VA: NCTM.



350

______________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

A COMPUTERIZED TIME-SAMPLING TOOL FOR OBSERVING
ELEMENTARY MATHEMATICS CLASSROOMS

Helena P. Osana Guy L. Lacroix Nicole Pitsolantis Vanessa Rayner
Concordia University Carleton University Concordia University Concordia University

osana@education.concordia.ca

Our research focuses on the development of first-grade students’ conceptual and procedural
knowledge in addition and subtraction. Mathematics educators (e.g., Ginsburg, 1997) have noted
that the development of mathematical cognition should ideally be studied in relation to the in-
struction children receive in school. Our main research objective, therefore, is to describe chil-
dren’s thinking in addition and subtraction as it develops under various forms of mathematics
instruction. To this end, we are presently engaged in a longitudinal project comprising two main
data collection activities. First, we are interviewing first-grade children on their procedural and
conceptual knowledge related to addition and subtraction and associated foundational concepts
of place value and part-whole relations. Second, we are collecting detailed observational data of
teaching practices in several first-grade classrooms. Our poster will focus on the software tool
(called Domains of Mathematical Teaching, or DMT) we created to collect the observational
data in these classrooms. Inspired by the instrument constructed by Scanlon and Vellutino (1997)
to observe early literacy teachers, the DMT is a digitized time-sampling checklist designed to
measure various aspects of teaching that have been shown (or hypothesized) to be related to the
development of both conceptual and procedural knowledge (e.g., Hiebert & Wearne, 1996).
These data will be used to create distinct instructional “profiles” that will be correlated with ob-
served patterns of children’s thinking over time.

Baroody (2003) presented a classification scheme for describing different approaches to
mathematics teaching. His framework can account for instructional practices that vary from be-
ing primarily procedural to those that are conceptual or “investigative” in focus. Baroody’s
framework was thus a valuable guide for us as we designed the DMT; as such, the tool measures
aspects of teaching, such as classroom organization, specific tasks in which the teacher and stu-
dents are engaged, and the nature of the discourse occurring in the classroom, that can be aligned
with the instructional profiles generated by the framework. Specific operationalizations of the
components in Baroody’s framework were gleaned from pilot data as well as other studies of
mathematics teaching, namely TIMSS (Stigler et al., 1999), Hiebert and Wearne (1996), and the
Study of Instructional Improvement (see Ball & Rowan, 2004).

Our poster will (a) describe the theory used to design the DMT, (b) address methodological
issues with respect to the instrument, including sampling and the operationalization of the theory
used to construct the DMT, and (c) present data collected with the DMT to describe the instruc-
tional profile of one first-grade teacher as an illustration of the power and versatility afforded by
the instrument. The poster will exhibit portions of the DMT itself, which will entail the display
of various screenshots illustrating the techniques used to capture different forms of mathematics
teaching.
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CONNECTED MULTIPLE REPRESENTATIONS:
A POSSIBLE TEACHING PERSPECTIVE?

Preety Tripathi
State University of New York at Oswego

tripathi@oswego.edu

This poster presentation will describe preliminary results from a study that focused on the
following question: How can instructors foster the use of multiple representations of
mathematical ideas among their students as a tool for mathematical reasoning? The study
examined the instructor’s own beliefs and the translation of these into pedagogical strategies, as
well as students’ responses to these strategies.

A number of research studies have explored the connections between mathematical problem
solving ability and the ability to translate between different representations of a mathematical
idea. Most have reported a definite and positive correlation between the two (Gagatsis and
Shiakalli, 2004; Janvier, 1987). These studies provide strong motivation to educators to examine
the questions: Can teachers purposefully foster the ability to use diverse representations among
their students? If so, how? Can students be taught to reason using different representations? It
was with the intent of seeking answers to these questions that I embarked upon this study.

The students with whom I worked in this project were undergraduates studying pre-calculus.
Traditionally, such college students have had some difficulties with algebra learning. It was this
understanding of their background that led me to believe that such students were prime
candidates for a study that focused not merely on honing their algebra skills but on consciously
developing their abilities to reason through a variety of representations. The large number of
studies that have focused on functions and their different representational forms also spurred me
in my efforts.

The two main questions that I examined in this study were: What are the strategies that an
instructor can employ with her students to foster the students’ ability to use diverse
representations? How can students be helped to use the diverse representations to reason
mathematically? Thus, I was primarily interested in developing students’ ability to use the
different forms and the connections between them as a means to develop logical and coherent
arguments while performing various mathematical tasks.

In this study, I documented the changes I made in my own instructional and assessment
strategies. This metacognitive activity enabled me to examine my own attitudes and beliefs,
regarding the use of multiple representations. The second part of the research project is an
analysis of the documented work that is part of the coursework.

The poster includes:
(a) a rationale for the study
(b) examples that illustrate the instructor’s attempts to foster the use of multiple

representations by students, and students’ responses to these efforts.
(c) preliminary results from the study
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In this project, through these activities, I present findings to the pedagogical conundrums of
how best to help students succeed in mathematics by offering them a repertoire of
representations for different ideas that they study as tools that facilitate mathematical reasoning.
Also, I present some strategies that foster connections between different representations.
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DO HUNGRY HIPPOS AND GREEDY ALLIGATORS
EAT INTO ALGEBRA PERFORMANCE?

Nancy O’Rode
California State University Northridge

nancyo@csun.edu

Mathematical ideas are expressed using symbols that allow us to be brief and succinct in
order to express ourselves economically (Pimm, 1995). Young children often have difficulty
with numerals and letters that have a single orientation. The mirror-image greater than and
less than symbols are easily reversed and cause confusion when introduced to elementary
students. Thus it is popular wisdom for early elementary teachers to introduce the idea of a
hungry animal with its mouth wide open for eating the larger number in order to distinguish
between the inequalities. Cute. Simplistic. But is it good mathematics?

Pre-algebra and algebra students have difficulty with inequalities. An item analysis of
algebraic skills on the Early Mathematics Placement Testing program (Rachlin, 2001)
showed that students generally find it more difficult to solve inequalities than equations. It is
certainly expedient to teach about hungry hippos and greedy alligators in the early grades,
however, there is a question as to whether the conceptual underpinning needed for higher
mathematics is served by this expediency. Is it possible for students to be successful if they
learn about inequalities in the elementary grades using conventions that are mathematical
(rather than zoological) and that use the salient features of the symbols to make sense of the
inequality symbols? A preliminary step in finding out whether educators can improve
students’ understanding of inequalities, is to first explore conceptions of inequality symbols
among in-service and pre-service teachers.

In wide-ranging discussions and written reflections with pre-service and in-service
teachers (n = 93) on distinguishing between the inequality symbols, five common perceptions
have emerged. The ideas are listed from most common to least common with explanations
and commentaries found in the poster.

1. Greedy Alligators or Hungry Hippos: The wide mouth or symbol is directed in the
correct direction toward the greater number. Referents are numbers.

2. Spacing Comparison of the Symbols: The greater number faces the wider opening in
the symbol. The smaller number is closest to the point.

3. Number Line Similarities: The arrows at the ends of a number line are related to the
directionality of inequality symbols.

4. The Lazy L: If a capital L is compressed from the top, it forms a misshapen inequality
symbol for less than. The L is a mnemonic for less than.

5. Reading from Left to Right: As you read from left to right, the greater part is first;
therefore that sign is greater than.

All students need to make sense of the mathematics they are learning. It is certainly
expedient to teach ways to help students distinguish between the confusing inequality
symbols. However, the results reported here show adults struggling for meaning when
deciphering these symbols. Young children, and older students alike, should be given the
chance to construct meaning for these symbols.
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ELEMENTARY FUNCTION IN CONTEXT: AN ELEMENT
THAT HELPS IN EVALUATION OF UNDERSTANDING

Asela Carlón
FES-Acatlán-UNAM-México
correoaselasergio@gmail.com

Ernesto Sánchez
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This study reports how 70 students working in small groups constructed and interpreted
graphs of some elementary functions. The students who were in the second year of high
school had received some class room instructions on the subject prior to de task. The study
helps to evaluate the level of understanding of the students in polynomial functions of the
type: ,baxy n +=  where R ∈b,a , 0≠a  and 3y  2 ,1=n .

Theoretical Framework
Listed below are some of the elements that play important roles in the study; studying and

understanding, working in small groups, functions, data representation and its conversion
among others. A theoretical posture is taken in relation to the elements, giving brief
explanation only on understanding in this section. Hieberth and Carpenter (1992) observed
that an idea, a procedure or mathematical step is understandable if its mental representation is
part of a representational network. According to the authors the the attempt or creation of an
external representation by students reveals or speaks volume about the student’s frame of
reference –their internal or already existing representational network. They also considered
that one product of understanding is an increment in transference.

Methodology
(i) A learning environment in line with that of Brandford, Brown and Cocking (1999) was

designed. (ii) Class instruction was given to 70 students. They work on the functions
especially on their graphical and algebraic representations laying emphasis on the conversion
of the data representation. These were carried out strictly from mathematical viewpoint.
Attention is paid to the global behavior of the graph. (iii) Instruments to measure students’
understanding were applied. These consisting of 5 situations, with a total of 14 questions. The
following areas were explored; qualitative and quantitative interpretation of the graphs at a
point, in an interval and globally. The contexts of the study are: 1) the water consumption by
two families, 2) distance traveled by two vehicles in a given time, 3) the variation or change
in area of a rectangle (of a constant perimeter) as the length of one of its sides is varied and 4)
the production of three pots of different sizes. The 5rd involved the drawing of graphs of a
real life situation which is cost of transport fares of two journeys along a route of at least 12
km using 2 types of vehicles mostly used in Mexico City.

Results
In general terms working in small groups enabled each group to have “relative” success in

the tasks. The average mark scored was 70%. Their performance which indicates how
pertinent relations were drawn with other stated functions that were not contained in the
instruction possibly indicates that the students applied their knowledge with some degree of
“flexibility” in the face of “new” situations. In other words they were able to transfer or
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applied the knowledge earlier acquired. This according to Hiebert and Carpenter (1992) is a
product of their understanding.
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MISCONCEPTIONS IN CALCULUS TEXTBOOKS

 Ann Kajander         Miroslav Lovric
   Lakehead University McMaster University
ann.kajander@lakeheadu.ca             Lovric@mcmaster.ca

A mathematics educator and a mathematician developed a theoretical framework for the
analysis of text content potentially supporting the development of mathematical misconceptions
in calculus textbooks. Sample texts were then analyzed and the framework refined.

Rightly or wrongly, high school and university textbooks continue to fundamentally
influence classroom practice. Some effort has been put into content analysis and exploring the
ways in which textbooks are used in classrooms and beyond (for example, Love & Pimm,1996;
McCrory, 2006). However, rarely have we taken a really close look at what is in the textbooks,
with the focus on how the material is presented and what kind of learning may be implied. In
many cases, “Unscientific market research is chiefly used to determine content and approach”
(Clements, 2007, page 55) in published textbooks.

Evidence suggests (Davis, 2001; Biza et al, 2005) that formed beliefs (situations in which
new knowledge is incompatible with the prior knowledge) are very strong in one’s cognitive
environment. It is important to identify these and to apply adequate means to overcome them.
Textbooks can play a role in strengthening or dispelling students’ incorrect or synthetic models.

Using an initial framework, we examined a number of textbooks commonly used to teach
calculus in Ontario, Canada, at the grade 12 and first year university levels, with the aim of
examining how they potentially contributed to students' misconceptions. We found material in
several textbooks that could support (or at best fail to correct) various such mathematical
misconceptions. We then strengthened and broadened our framework based on this work.

Textbooks have the potential to significantly support or inhibit the quality of mathematics
teaching and learning if they are used extensively. The fact that (mathematically incorrect)
synthetic models can be quite robust means that a serious effort needs to be employed to devise
strategies aimed at weakening the beliefs that inhabit them; textbooks are one means to do so.
We offer a theoretical framework for identifying and analyzing textbook errors that have the
potential to strengthen mathematical misconceptions, and believe it warrants further study.
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STUDENT INTERPRETATIONS OF A GRAPH OF EVERYDAY MOTION: AN
ANALYSIS OF HOW JOINT FOCUS OF ATTENTION MEDIATES CONCEPTIONS

William Zahner
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This study analyzes how four pairs of middle school students collaboratively worked on
interpreting a piecewise linear distance-time graph depicting everyday motion. Successful
completion of the task called for a great deal of flexibility from the students. Questions about
distance required students to attend only to vertical displacement, while questions about speed
required students to attend to the ratio between changes in distance and time. We analyzed
student interpretations of horizontal segments, canonically representing no movement. All pairs
consistently interpreted segment “e” located on the x-axis as “stopped” or “not moving.”1 In
contrast, when interpreting the other horizontal segments in the graph (located at various heights
above the x-axis), three pairs shifted among contradictory interpretations (see Table 1).

Table 1: Interpretations of horizontal segments during peer discussions
Session 1 Session 2

Part of Graph Moving Not Moving Moving Not Moving

a 4 3 2 4
c 4 3 2 4
e 0 4 1 4
g 2 2 2 4
The numbers represent the number of pairs (out of four) that interpreted each segment
as moving or not moving at least once during a peer discussion session.

We assume that the process of learning to interpret graphs involves students appropriating
(Rogoff, 1990) the meanings and perspectives needed to accomplish this task (Moschkovich,
2004). Our analysis documents how the pairs of students generated and coordinated meanings for
inscriptions and utterances, sometimes working from a shared focus of attention, and at other
times failing to achieve a shared focus of attention. Changes in students’ joint focus of attention
may explain their shifting interpretations of horizontal segments in the graph. While responding
to some questions, students’ joint focus of attention was on the height or length of a particular
horizontal segment. In contrast, the pairs who established a joint focus of attention on the slope
of the lines consistently interpreted all horizontal segments as stopped.

Previous studies of students’ initial conceptions about rate (Thompson & Thompson, 1996;
Thompson, 1994; Thompson & Thompson, 1994; Lobato & Siebert, 2002; Lobato & Thanheiser,
2002) help us contextualize these findings and provide evidence of persistent student conceptions
in related problem contexts. For example, Lobato et al. (2002) relate this difficulty in viewing
rate as a measure to the challenge students face while working with intensive quantities. Our data
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provide similar findings about students’ conceptions while working on the task of interpreting
and using intensive quantities (i.e. the slope of a segment) in distance-time graphs.

Analyzing students’ conceptions in terms of joint focus of attention can shed light on
ongoing questions regarding the origin of student conceptions while interpreting graphs
depicting distance-time relationships. Highlighting the role of joint focus of attention also shifts
the analysis from individual conceptions to the social dimensions of cognition, and to the critical
role of shared meanings and coordinated perspectives in the process of appropriation.

Endnote
1. With the exception of one pair who made one utterance about “e” meaning “moving really

slow,” but who otherwise consistently interpreted “e” as stopped throughout the remainder of the
discussion session.
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In this paper, we examine elementary pre-service teachers' understanding of the phrase ``is a
special kind of'' as in ``a square is a special kind of rectangle.''  Data collected from 109
students indicated that they possess varying interpretations of the phrase. Our findings
suggest that difficulty with shape categorization may be related to the meanings students
attach to such phrases.

Several studies have suggested that students have difficulty understanding the equal sign
(e.g., Knuth, Stephens, McNeil, & Alibali, 2006; McNeil et al., 2006; Baroody & Ginsburg,
1983; Kieran, 1981; McNeil & Alibali, 2005). These studies indicate that students at all
equivalence (relational).  Such a conception of the equal sign is a hindrance to understanding
levels commonly have an operational rather than a relational understanding; that is, the equal
sign indicates the results of a computational process (operational) rather than mathematical
important mathematical and scientific ideas (McNeil & Alibali, 2005; Knuth et al., 2006).
Herein we present data from a study of pre-service teachers to argue that this lack of
relational understanding may be a symptom of a larger issue. Students may have difficulty
understanding mathematical relations in general.

In this paper we examine a different mathematical relation; that represented by the
phrases “special kind of” and “is” when categorizing geometric shapes. For example, the
phrases “a square is a special kind of rectangle” and “a square is a rectangle” indicate a
mathematical relation on the set of quadrilaterals. The relation “is” is reflexive (e.g., a square
is a square) and transitive (e.g., a square is a rectangle, a rectangle is a parallelogram, thus a
square is a parallelogram) though it is not symmetric (e.g., a rectangle is not a square).

More formally, the statement “a square is a rectangle” means that the set of squares is a
subset of the set of rectangles. The statement “a square is a special kind of rectangle” means
that the set of squares is a proper subset of the set of rectangles. To generalize, we have A is
B if and only if the set of all A is contained in the set of all B; A is a special kind of B if and
only if the set of all A is properly contained in the set of all B. Thus “is” is reflexive but “is
special kind of” is not.  For our present purposes, we do not focus on the distinction between
“is” and “is a special kind of” though it is quite possible that students interpret these two
expressions differently.

Theoretical Framework
Our literature search has not revealed any studies which explicitly explore students’

relational understandings of mathematical relations other than equality. Although much
research has been done concerning students’ understanding of shapes it is not of direct
relevance here. Any of the many studies which are the descendants of van Hiele’s levels of
geometry would provide us with a framework for talking about students’ understanding of
geometric shapes (van Hiele, 1985). Other studies have noted students’ use of prototypical
images or metonyms to represent whole classes of objects (e.g., Presmeg, 1992; Landau,
Smith, & Jones, 1998). For example, a square may not look like a student’s idealized version
or prototype of a rhombus; she or he may not acknowledge that squares are special kinds of
rhombi.
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However, categorizing shapes may be difficult for reasons beyond deficiencies in
geometric understanding and protyping. Students may have difficulties with the relations “is”
and “is a special kind of”. Our study is thus more aligned with the studies on students’
understanding of the equal sign cited above than with those which discuss geometric
categorization.

The connection which we draw between the equal sign and the relations of geometric
classification is based upon their co-categorization as relations by the mathematics
community. We do not intend to argue that student understanding of mathematical topics can
be mapped according to the definitional boundaries established by mathematicians. Rather we
use this co-categorization as a theoretical and an analytical tool. It allows us to draw
comparisons between difficulties with geometric relations and with equality. It adds an extra
dimension of analysis for students’ experiences with shape classification.

Methods
Identical pre- and post-tests were given to 109 students in a mathematical content course

for pre-service elementary teachers at a large public southwestern university in the U.S. The
test was about categorization of quadrilaterals and was part of a larger research study about
students’ argumentation and reasoning patterns. In between the pre- and post-tests was a
week of instruction centered around a Geometer’s Sketchpad activity in which students
explored and described subsets of quadrilaterals. An observation emerged from the pre- and
post-test data; students may have difficulty interpreting the phrase “is a special kind of”. The
scope of the present analysis is students’ misunderstanding of the relation “is a special kind
of”. We will not make comparisons between pre- and post-test nor will we examine the role
of instruction.

Results
We identified multiple classes of student answers which indicate misunderstanding of the

phrase “is a special kind of”; in the remainder of this paper we describe two such classes. The
students were all responding to the question, “True or False? A square is a special kind of
rhombus. Give a reason for your answer.” In the first class of answers, students indicated
recognition of the phrase but answered false because they associated the phrase with a
different pair of geometric objects (e.g., a square and a rectangle). They may have seen
“special kind of” as an exclusive relation; a square cannot be a special kind of both a
rectangle and a rhombus. In the second class of answers, students answered false because
they reasoned with an inverted definition of “special kind of”. That is, they suggest that A is a
special kind of B ⇔  {B} ⊂  {A} rather than {A} ⊂  {B}. Readers should note that many
students answered false for reasons other than those we will examine (e.g., limited concept
image of a rhombus); our focus here is on difficulties students may have with the phrase “is a
special kind of” and whether it is appropriate to compare this to misunderstanding of the
equal sign.

Examples of Exclusivity
Some students argued that a square could not be a special kind of rhombus because a

square is a special kind of something else. Examples of their reasoning include “a square is a
special kind of rectangle” (pre-test) and “a square is a special type of parallelogram” (post-
test, different student). Both of these statements are, in fact, true. The students here may
consider “special kind of” to be an exclusive relation; a square can only be a special kind of
one thing. One student who did not believe that a square is a rhombus reasoned: “I may be
confused but I thought it was a special kind of parrallelogram [sic]” (post-test).
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Another student answered that a square is not a special kind of rhombus because “a
rectangle is a special kind of rhombus” (pre-test). A rectangle is indeed a special kind of
rhombus only when that rectangle is a square. Putting aside the fact that a rectangle is not a
special kind of rhombus, this perhaps indicates that some students are not comfortable with
the transitivity of “is a special kind of” as a relation. If a square is special kind of rectangle
(assuming the student knew this) and a rectangle were actually a special kind of rhombus
then, by transitivity, a square is a special kind of rhombus.

Examples of an Inverted Definition
Several students gave responses which indicated a faulty understanding of “is a special

kind of”. They answered that a square could not be a special kind of rhombus because a
square has all the features of a rhombus plus a few others. In a sense, they reversed the set
containment that is part of the formal definition of “is a special kind of”. Such students
argued that a square is not a special kind of rhombus because “a rhombus is a special kind of
square”, “A square is not a rombus [sic] but a rombus [sic] is a square... square always has
90° angles”, “A square also has four Right angles”, and “a square has 90° angle and equal
sides, a rhombus doesn’t”; each of these responses is from the post test.

Discussion
Students’ incorrect answers to the question “True or False? A square is a special kind of

rhombus. Give a reason for your answer.” reveal that many of them may not understand the
mathematical relation “is a special kind of”. By focusing on this mathematical relation we are
able to identify an obstacle for students other than proficiency with the geometric shapes.
Furthermore, relations come with a set of vocabulary which may have potential as an
analytical tool.

Students who have difficulty classifying geometric concepts may misunderstand the
mathematical relations which frame tasks and instruction. This issue shares features and
implications with student understanding of the equal sign. Both “is a special kind of” and the
equal sign involve student interpretation of a mathematical relation. Misconceptions about
these relations have implications for student learning and understanding. We have not drawn
the same distinction between operational and relational understanding that is relevant to the
equal sign. Rather we have noted two classes of misconceptions about “is a special kind of”,
exclusivity and an inverted definition.

It is unlikely that students make connections between the equal sign and geometric
relations such as “is”. However we have connected them by virtue of their co-categorization
in formal mathematics as relations. There are perhaps opportunities for educational research
and for developing descriptive frameworks in the space between mathematicians’ and
students’ ways of thinking.
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This paper advances understanding of instructional phenomena by focusing on instructional
situations. We argue that the decisions in managing a situation require a teacher to respond
to norms by negotiating dispositions that might contradict each other. We illustrate this by
examining the installing of theorems in high school geometry.

Recent research on mathematics learning has called attention to the nature of the situation
that serves as context for that learning (Brousseau, 1997; Lave & Wenger, 1991; Schoenfeld,
1998). In our research, we conceive of classroom life as organized by recurring instructional
situations: frames that allow teacher and students to exchange the work they do for claims on
the stakes of teaching and learning. Decisions and actions made by teacher or students not
only result from individual thinking or belief, but also respond to the norms of the
instructional situation in which those decisions and actions are made. Depending on the
instructional situation, different actions may be normative. For example, in the situation
we’ve called ‘doing proofs’ in high school geometry classrooms, it is normative for the
teacher to state the proposition to be proved in terms of a specific diagram (Herbst & Brach,
2006), but in the situation of ‘installing’ a new theorem, it is normative for the teacher to state
a theorem in terms of abstract concepts (Herbst & Nachlieli, 2007).

In this paper, we advance understanding of instructional phenomena by focusing on the
norms of those instructional situations as they relate to two different activities which have
traditionally been studied in their cognitive and epistemological dimensions: convincing (or
bringing someone to a state of belief) on the truth of a statement (Harel and Sowder, 1998)
and proving (or establishing the truth of a statement for a given community of knowers;
Balacheff, 1987). We argue that a teacher’s management of those activities requires them to
respond to norms of the instructional situations where those activities occur. A teacher’s
response to those norms is constructed by decisions and actions that articulate various
dispositions that might contradict each other. We illustrate this point examining further the
situation of installing theorems in the high school geometry class and drawing from teachers’
responses to an animated representation of the teaching of a theorem about medians.

Teaching in Classroom: Practical Rationality
Classroom instruction relies on a tacit contractual relationship vis-à-vis the knowledge at

stake: the teacher teaches that knowledge to students, the students study that knowledge with
the help of the teacher, and the teacher attests to the students’ learning of that knowledge
(Brousseau & Otte, 1991). That contractual relationship is more specific (in terms of who can
or has to do what, when, how, and to get what) depending on the particular kind of symbolic
goods that are at stake. The solving of an equation in algebra, and the doing of a proof in
geometry, for example, are both activities that require students to lay down a reasoned
sequence of statements. But they differ in terms of the role of reasons in those sequences, and
in the extent to which those reasons need to be explicitly laid down alongside the statements.
What is at stake in both situations is not just a claim on the final statement in the sequence
(the statement of what x equals, or the statement of the conclusion to be proved) but also a



367

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

claim on knowing the “method” of solving an equation in one case, and a claim on knowing
“how to do a proof” on the other (Chazan & Lueke, in press; Herbst & Brach, 2006).  With
the expression “instructional situation” we name each of the various frames that enable
teacher and students to bill stretches of classroom work on account of the objects of
knowledge they have contracted about. We model situations as systems of norms that
organize those transactions. By “norm” we mean a central tendency around which actions in
instances of a situation tend to be distributed. We posit that those (mostly unspoken) norms
shape a teacher’s and her students’ actions: As they participate in an instructional situation,
they hold themselves and each other accountable for responding to the presumption that they
should abide by those norms.

We are interested in the situation of “installing theorems", namely the system of norms
that regulates the work teacher and students need to do in order to be able to take for granted
that the class knows a specific theorem. We explore two norms that we hypothesize to be
characteristic of the situation "installing theorem": (1) students should come to believe the
statement asserted by the theorem is true, and (2) for a statement to be a theorem it has to be
provable. We investigate how teachers manage their way about those two norms as they act
and make instructional decisions about the teaching of a theorem.

As the discipline of mathematics accrues its knowledge, the capacity to show that a proof
exists is the sole grounds on which the mathematical community comes to officially believe
the truth of a statement (Lakatos, 1976). But a mathematician’s belief on the plausibility of a
result often hinges on other means (e.g., Pólya, 1954). Mathematical proof is only one of the
strategies that might obtain ascertainment and conviction on the part of individuals (Harel &
Sowder, 1998). Our focus is neither on the discipline nor on the individual, but rather on the
public work done in the classroom. In the classroom, teachers are accountable to mathematics
as they propose that a statement is a theorem and also accountable to students as they expect
students to take such statement as true. It is thus reasonable to hypothesize the two norms
listed above as having a hold on the way the teacher goes about her work teaching a theorem.
But to say these norms regulate that work means not that they determine or dictate what a
given teacher does; rather a given teacher constructs original actions in response to, against
the backdrop of, those norms. The value of modeling instructional situations as systems of
norms is that it allows us to study the resources with which teachers construct those actions.

We propose that to construct original actions in response to those norms, teachers, in
particular, make use of a practical rationality: a system of dispositions, categories of
perception and appreciation that allow them to notice and value possible actions (Bourdieu,
1998; Herbst & Chazan, 2006). This paper explores the practical rationality that geometry
teachers invest when handling the two norms: that students need to come to believe the
statement of a theorem, and that for a statement to be a theorem it needs to be provable.

“Convincing” and Proving
In a previous analysis (Miyakawa & Herbst, 2007), we identified the term “believe” as

one used by teachers to describe a desirable state of affairs for students vis-à-vis a true
statement. We use the term “convincing” to describe the work a teacher might do to make
students “believe” a statement is true. Clearly, this “convincing” could conceivably be done
in several ways, ranging from mere appeal to authority (“trust me”) on one extreme, to the
organization of an adidactical situation of validation (Brousseau, 1997) on the other. One
conceivable way of convincing a class could be by engaging the class in proving the
statement. Is the engagement of students in proving a statement a viable way for a geometry
teacher to convince students of the truth of a statement? We seek an answer to that question
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based on the rationality that teachers invest when they do their work.
Before proceeding, we clarify the difference between convincing and proving. In both

processes, the statement dealt with is the same. However, the end products each process seeks
for that statement, proved and believed, are different. Duval (1991) uses the expressions
“logical value” and “epistemic value” to describe the different values attributed to a
statement. The former expresses the mathematical value of true, false, or unknown.
Independent of this, Duval proposes "epistemic value" to represent “the degree of certitude or
conviction attached to a statement” by an individual, often expressed with words such as
“probably,” “impossibly,” “certainly,” etc. Convincing is a process of attributing or
modifying an epistemic value to a statement; proving is a process of attributing a logical
value. Of course, it is conceivable that proving might also help to convince.

The notion of “cognitive unity” has been proposed to gauge the relationship between
conjecturing and proving theorems in classroom activity (Garuti et al., 1998). The notion that
there exists “cognitive unity” characterizes the case in which there is continuity between the
two processes of conjecturing and proving. This continuity is visible, for example, in the use
of the same arguments during conjecturing process and proving process (Garuti et al. 1996, p.
113).  We use “cognitive unity” to examine the relationship between convincing and proving
in terms of the geometric objects students might be asked to work with and how they might
be asked to work with them. The data that we use to examine our question on practical
rationality consists of teachers’ reactions to a teaching episode where a lack of continuity in
cognitive unity is described.

Method
To pursue our interest in the practical rationality of teachers of geometry, seen as a

collective, our study gathers data from groups of experienced teachers of high school
geometry who confront together representations of teaching that showcase instances of
installing a theorem (see Herbst & Chazan, 2006). We use a novel technique to gather data on
teachers’ practical rationality. We create stories of classroom interaction and represent those
stories as animations of cartoon characters. These characters interact in ways that might or
might not be common in American geometry classes. They showcase instruction that
straddles the boundaries between what we hypothesize to be normal and what we expect
practitioners might consider odd. The representations of teaching are shown at monthly
meetings of experienced teachers. In the discussions that ensue participants point to odd or
intriguing moments in a story, suggest alternative, possible stories, or bring concurrent stories
of their own collection. We focus on discussions of a story called “Intersection of Medians,”
and present a result of the analysis on the transcription of the teachers’ discussion.

Analysis of “Intersection of Medians”
“Intersection of medians” deals with a theorem about the centroid of a triangle: the

intersection of the medians of a triangle, when joined to the vertices of the triangle, forms
three triangles of equal area. The installation of that theorem in the animation is hypothesized
to be odd for the following reasons. The teacher draws a diagram on the board showing the
intersection of the medians and the three triangles and asks students, “What do you
conjecture the theorem will say about those triangles?” Students are not given an opportunity
to measure dimensions and calculate areas. Merely looking at the diagram from their seats,
they grope from claim to claim until they succeed, creating the impression that they are using
the teacher’s verbal responses to prior guesses, “Close but not quite… Anybody else?” as
resources to improve a conjecture. Once the students hit at the right conjecture, the teacher
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affirms it (“They have the same area, that’s right”) and proceeds to produce a proof by
himself, requiring only limited participation from students. Empirical verification of the
theorem is prompted after proving by the teacher.

We expected that experienced practitioners would react to the sequence of events in that
story. Particularly, we expected that the temporal displacement of the empirical activity to
after the proof would be denounced as depriving students of a resource for conjecturing. We
also expected that the location in time of this empirical activity would be denounced as
potentially bringing to question the capacity of the proof to build conviction.

We suppose that the measurement of
area in each of the target triangles (ΔAOB,
ΔAOC, and ΔBOC) would normally be done
to convince students that those areas are
equal in spite of looking different. Typically
a student would measure the area by
choosing bases and drawing corresponding
altitudes for each triangle, measuring those,
and then calculating each area separately
using the area formula. There are two
options for the choice of bases: either the
three sides AC, AB, and BC, or the three internal segments AO, BO, or CO.  The choice of a
base automatically determines the altitudes. In contrast, the proof given in the animation (Fig.
1) requires students to consider not only the three target triangles, but also the mid-size
triangles (e.g., ΔAXB), and the small triangles (e.g., ΔAXO). And to prove that the areas of
two target triangles are equal in this proof, it was not necessary to consider the bases and
heights of these triangles at all — just the bases and heights of the mid-size and small
triangles. The comparison of areas of the target triangles is done by subtracting the areas of
the small triangles from the mid-size triangles, not considering any multiplicative relationship
between heights and bases in the target triangles. Thus this story represents a continuity gap
between the convincing and proving processes in terms of the objects used (triangles,
altitudes, and bases). Whereas the conception of equal area at play in the proof is one that
deals with area of figures as quantities, the one used in the convincing activity deals with area
of figures as a number produced out of multiplying measures of quantities (see Herbst,
2005).[1]

Results and Discussion
Miyakawa & Herbst (2007) identified the disposition “it is desirable that students believe

the truth of a statement before proving it.” Participants of study group reacted to the
animation by arguing that the conjecturing process did not allow students to "come to
believe” the truth of the theorem, and proposed as an alternative that the measurement of
areas take place before proving. This indicates that teachers value students’ thinking to the
point that they may spend time on (possibly empirical) work to build conviction of the truth
of a claim. We now identify dispositions on the relationship between convincing and proving.

Negative Attitude toward a Gap between Convincing and Proving
 Participants identified a gap between measuring and proving. They assumed students

would measure the areas of target triangles using the sides of ΔABC as bases.

Ester I’m not sure it [measurement] would give them ideas about proving. I think it

Fig. 1. Proof given in the animation



370

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

might confirm to them that it’s, whether it’s true or not but I’m not sure, I’m not
sure if it would help them get any ideas about how to prove.

Megan Yeah, one drawback though I see, I didn’t think of this before, but if he had
them do it [measurement] at the beginning, then they’d be looking at those
alti—those different altitudes. […] So then you’ve sort of steered them in the
wrong way for the proof. […] When you’re doing the proof, you’re not really
looking at those triangles.

For Megan, the measurement activity constitutes a “drawback,” because the objects used
in measuring — in particular the altitudes and bases of the three target triangles — are
different from the objects used in the proof. This is the gap we mentioned above in the
analysis of the animation. She also expresses misgivings (“steer them in the wrong way”) that
might make her reconsider the measurement activity or the proof itself. The disposition we
may identify here is “it is not desirable for a the teacher to steer students in a wrong way.”
This seems to recommend a different course of action than the disposition about conjecturing.
On the one hand, since it is desirable that students believe a theorem true before proving it, a
measuring activity seems to be advisable. On the other hand, since a teacher should not
mislead students, a measuring activity that does not involve the ideas to be used in the proof
(or, worse, one that suggests using different ideas) might not be best. These two dispositions
suggest a tension in the teaching of this theorem: should the proof be a different one to
reinforce what the measurement achieved, or should the measuring activity be left for later to
avoid steering students in a direction opposite to that of the proof? And what if the
measurement produced areas that were slightly unequal (as happens in the movie)?

Alternatively, a teacher might choose another proof, one that had more cognitive unity
with the measuring activity (see endnote 1). This might allow the teacher to avoid the tension
between those dispositions. But it might require students to invest different knowledge (e.g.,
the capacity to look at the same triangle from different points of view, or knowledge of the
fact that the centroid divides a median in a 1:2 ratio). We hypothesize that another
disposition, such as “it is desirable that the conceptual complexity of a proof be kept under
control,” is active at the moment of deciding which proof to use, and that might militate
against those alternatives. The outcome of such tension might be the decision not to
undertake the proof of this theorem at all. Indeed, while teachers acknowledge that every
theorem should be provable and could be proved, they also report as a matter of course that
not every theorem is actually proved (Miyakawa & Herbst, 2007). The presence of competing
dispositions touching on matters of conviction of the truth of statement, cognitive unity, and
conceptual complexity, might help explain why some theorems are not proved.

Positive Attitude toward a Gap between Convincing and Proving
We also identified in the same study group session a positive attitude toward the gap

between measuring and proving. In particular, Karen liked the proof given in the animation:
Karen That’s what’s really cool about the proof. Is that you’re proving something,

you’re proving something about these areas without ever finding the base and
the height of these other triangles. […] Wait how’d you do that?  It’s magic.

Later in the same session, she mentioned again the benefit of this particular proof.
Karen […] How does someone come up with this incredible idea to measure, to

figure out that these are the same by doing some sort of subtraction deal?  And
in that way, you are able to highlight what a beautiful proof it is.  You know, I
like proofs that go around to the back door.
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First of all, for Karen, the proof (Fig. 1) is “really cool” and “beautiful.” One criterion of
beauty visible in Karen’s comment is that the proof can be accomplished without using the
objects necessary for the measurement (“without ever finding …”). That is to say, she
appreciates the discontinuity between measuring and proving (“magic”), contrary to the
disposition noted previously which assigns negative value to that gap because it could cause
students’ difficulty. From Karen’s comment we propose the disposition that “it is desirable
for a teacher to show a beautiful proof.” This disposition supports the use of measurement in
the process of convincing, since it helps bring home the point that the proof predicted such
result. But Karen did recognize a possible difficulty students might encounter. The following
excerpt of transcripts shows that in spite of the difficulty, the gap is worth considering.

Karen It’s a roundabout proof.  So like that you can’t, like if you’re stuck on a proof,
and you can’t figure out how to prove the next step, you back off and go
around to other ways to find it.  Whereas what happens with the kids is they
get stuck and they just, you know, they’ll quit or they’re, ye--, or they’ll yell.
But they don’t do a whole lot of thinking about how else could I look at this?
And we have to keep getting kids to look at how else could I see this?  […]

Karen anticipates that students might encounter difficulty and might simply give up on a
proof. Despite of this possibility, she allocates value to the process of exploring an argument
when students encounter a difficulty in proving: “we have to keep getting kids …” We may
identify here another disposition that could be a reason for the former disposition about
“beautiful” proof, why it’s worth teaching: “it is desirable for students to bridge the gap
between conviction and proof.” This supports the use of measurement and the proof, and
takes into account not only students’ difficulty but also the process of overcoming it. It seems
that this disposition relates more generally to problem-solving or strategic skills that students
need to draw upon when they encounter a difficulty. The need to bridge the gap between
what convinces students of the truth of a statement and the proof that such statement is true
might be a place in which to develop those skills.

Summary
Different dispositions mentioned in this paper can be summarized as follows (see also

Miyakawa & Herbst, 2007). They are activated in response to a representation of teaching in
which a gap in the cognitive unity between measuring and proving is identified.

1. It is desirable that students build conviction of the truth of statement before proving
2. It is not desirable for a teacher to steer students in a wrong way
3. It is desirable for a teacher to show a beautiful proof
4. It is desirable for students to bridge the gap between conviction and proof

These dispositions sometimes conflict with each other and push teachers to value
different actions in teaching. The disposition (2) could push a teacher to avoid proving a
particular theorem, so as not to mislead students. On the other hand, (3) and (4) could push a
teacher to engage students in appreciating a “beautiful” proof and valuing the work involved
in bridging a gap. The proof is indispensable in this case. We may also find that (2) focuses
more on students’ understanding of the given proof, whereas (3) and (4) focus more on the
teaching of specific aspects of proving. We could understand therefore that the matters of
conviction of a truth of statement, difficulty caused by the gap of cognitive unity, “beauty” of
proof, and problem-solving skill can be taken into account when installing theorems. The
participants in our study group allocated various values to these aspects of teaching.

All of these dispositions are not necessarily specific to the situation of installing a
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theorem even though they bear on the desirability of giving a proof and on the desirability of
a particular proof. (1) is apparently specific to the instructional situation of installing
theorems. (2) is a more general clause of the didactical contract that makes the teacher
responsible to teach true knowledge to learners; it is only activated in this situation by the
concomitant identification of a gap between measuring and proving. (3) might help teachers
make decisions related to proving not only when installing a theorem but also when choosing
problems where students are expected to do the proof. All of them help a teacher navigate the
installation of a theorem.

Notes and Acknowledgements
[*] This work is supported by NSF grant ESI-0353285 to P. Herbst. Opinions expressed

are the authors’ sole responsibility and don’t necessarily reflect the views of the Foundation.
[1] There are some alternatives for proving this theorem, which might have more

continuity in terms of the triangles used between measuring and proving. For example, if the
segments AO, BO, and CO are seen as bases of target triangles, any two of three triangles
always have the same height and base (e.g., the segment AO as a base of ∆AOB and ∆AOC).
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This study explores the use of concept maps and accompanying essays as a means to foster
the development of higher levels of geometric reasoning with respect to finite, neutral,
Euclidean, and non-Euclidean geometries and characterizes the journey of preservice
secondary teachers toward an integrated understanding of several axiomatic systems.

The combined use of concept maps and interpretive essays can be effectively used to
enhance and assess higher levels of geometric reasoning. While the concept map provides a
graphical representation of the mathematical connections perceived by the student, the
interpretive essay expands upon these relationships and focuses on communicating
mathematical ideas in writing. By relying on two avenues of expression, schematic and
verbal, students can explicitly communicate aspects of their knowledge of mathematical
concepts and/or topics, both strengths and weaknesses, in a more extensive manner. The
current study is based on research related to the importance of developing a knowledge-base
in which mathematical terms and topics are viewed as an integrated whole rather than as
isolated pieces of information (Bishop, Clements, Keitel, Kilpatrick, & Laborde, 1996;
Hiebert and Carpenter, 1992; NCTM, 2000); the use of concept maps to enhance and assess
knowledge in mathematics (Bolte, 1999; Williams, 2002); the van Hiele levels of geometric
thought (Fuys, Geddes, and Tischler, 1988); and studies related to preservice secondary
teachers exposure to Euclidean and non-Euclidean geometry (Blair, 2004).

Method of Inquiry and Data Sources
Data for the current study consist of three drafts of a concept map constructed throughout

the term and a final concept map and interpretative essay from a survey of geometries course.
Qualitative analysis of the data served as the basis for rich descriptions of students who
demonstrate different levels of axiomatic reasoning as categorized by the van Hiele levels of
geometric thought — from limited facility working deductively within the Euclidean system
(beginning Deduction) to ability to compare and contrast different axiomatic systems in a
meaningful way (Rigor).

Concept maps were based on 36 instructor-generated terms and evaluated holistically
with respect to organization (i.e., depth and quality of links among various terms; clarity and
quality of clusters of related terms; quantity of terms used) and accuracy (i.e., evidence of
inaccuracies, misconceptions, and omissions). Accompanying essays were evaluated with
respect to level of communication (i.e., representation of interpretations and/or
understandings of mathematical ideas) and organization (i.e., level of integration of
understandings). Trends, patterns, and common errors that emerged from student work form
the basis of descriptions of levels of geometric reasoning with respect to different, but related,
axiomatic systems.

Results and Conclusions
Results indicated concept maps and accompanying essays provide a valuable means of

enhancing and assessing the development of geometric reasoning with respect to various
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axiomatic systems. General descriptors of the van Hiele levels, as noted by Fuys, Geddes, and
Tischler (1988), were used to characterize levels of geometric reasoning illustrated by
participating students. At the Deduction Level these include establishes interrelationships
among networks of theorems, examines effects of changing an initial postulate in a logical
sequence, establishes a general principle that unifies several different theorems; at the Rigor
Level descriptors include explores how changes in axioms affect the resulting geometry, and
establishes theorems in different axiomatic systems, and compares axiomatic systems.

Analysis of student work indicated three levels of depth of understanding and integration
of related topics that span the Deduction and Rigor categories. At the most basic level
(Figure 1), students were able to categorize different geometries according to the parallel
property (i.e., no parallel lines, unique parallel lines, multiple parallel lines) that was either
stated as part of the axiomatic system or deduced from the axioms. Most students correctly
distinguished between finite and infinite geometries, with the exception of Young’s
geometry. The most common misconception noted was inferring a system contained an
infinite number of points because the existence of a specific number of points was not stated
in the axioms and the use of non-specific linking words.

Figure 1. Concept map at basic level

An intermediate level of understanding (Figure 2) is indicated by addressing the role of
statements equivalent to Euclid’s 5th postulate, its negation, and its converse; and
distinguishing between neutral geometry and elliptic geometry. The most common
misconception at this level involved the converse of Euclid’s 5th postulate, which is true in
neutral geometry, and the role the Alternate Interior Angle Theorem plays in defining neutral
geometry (i.e., it guarantees the existence of parallel lines). These portions of the concept
maps indicate the beginning stages of reasoning at the Rigor Level.
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Figure 2. Concept map at an intermediate level

The most integrated level of understanding (Figure 3) accurately conveys the relationship
between the parallel postulate, the existence of rectangles, the distance between parallel lines,
and the sum of the interior angles of a triangle. Although many students correctly linked
rectangles and an angle sum of 180° to Euclidean geometry, use of linking works such as
“has” or “exist in” rather than explicitly indicating the deduction of these properties from a
parallel postulate indicated a more superficial understanding of the relationships.

Figure 3. Concept map at an integrated level

In general, it appears the use of descriptive, mathematically meaningful linking words on
the concept is one factor that indicates the depth of student thinking. This range and depth of
understanding is also supported by the qualitative analysis of the accompanying essays.
Comparison of the two drafts completed during the quarter and, at times, a preliminary draft
of the final concept map with the final map illustrate a progression from viewing the terms as
isolated statements to increasingly integrated defining properties of related axiomatic
systems.



385

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

References
Bishop, A., Clements, K., Keitel, C., Kilpatrick, J., & Laborde, C. (Eds.) (1996).

International handbook of mathematics education. Boston: Kluwer.
Blair, S. (2004). Describing undergraduates’ reasoning within and across Euclidean, taxicab,

and spherical geometries. (Doctoral dissertation, Portland State University, 2004).
Dissertation Abstracts International, 65/03.

Bolte, L. (1999). Enhancing and assessing preservice teachers’ integration and expression of
mathematical knowledge. Journal of Mathematics Teacher Education, 2, 167-185.

Fuys, D., Geddes, D., & Tischler, R., (1988). The van Hiele model of thinking in geometry
among adolescents. Journal for Research in Mathematics Education Monograph Number
3. Reston, VA: National Council of Teachers of Mathematics.

Hiebert, J. & Carpenter, T. (1992). Learning and teaching with understanding. In D.A.
Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 65-97).
New York: Macmillan.

National Council of Teachers of Mathematics. (2001). Principles and standards for school
mathematics. Reston, VA: Author.

Williams, C. (2002). Using concept maps to assess conceptual knowledge. In J. Sowder and
B. Schappelle (Eds.), Lessons learned from research (pp. 203-205).



374

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

LEARNING TRAJECTORIES: CASE STUDIES OF TWO SECONDARY TEACHERS

Ginger Rhodes
University of Georgia

gar0209@uga.edu

Teachers acknowledge that the ways that students think mathematically influences their
instructional practices. Through this study I considered how learning trajectories might provide
insights into the ways that teachers understand and make use of students’ mathematics in
classrooms. Specifically, I examined the ways that two teachers intended student learning to
progress in lessons and their reflections of how learning actually progressed. Results indicated
that the projected learning trajectory doesn’t always coincide with enacted learning trajectory.
One reason for these differences was whether the students or the teacher led the direction of the
learning trajectories during enactment.

There is a growing body of literature in mathematics education that suggests teachers make
instructional changes when they focus on student thinking (Carpenter, Fennema, Peterson,
Chiang & Loef, 1989; Lubinski & Jaberg, 1997). In addition, research also indicates that
instructional practices that supports and builds on students’ thinking will promote students’
mathematical understanding (Fennema et al., 1993; Hiebert & Wearne, 1993). Teachers must
have an understanding of students’ mathematical thinking in order to create learning
opportunities that builds on and supports that thinking. Learning trajectories provides a
framework for considering the complex ways that teachers make sense of and use their students’
mathematical thinking. This research paper will report on a study that examined the learning
trajectories that teachers create of students’ mathematical thinking through their teaching
practice.

Theoretical Framework
In order to support and build on students’ mathematical thinking one must consider the

relationship between the learning activity and learning process. In other words, when planning
lessons one must consider how a student might engage in a mathematics task and what learning
might happen because of that engagement. In recent years, mathematics educators have noted
this importance of instructional planning when the goal is to build on and support students’
current mathematical thinking (Gravemeijer, 2004). Learning trajectories are models that
represent children’s starting points, the changes that occur due to the mathematical activity, and
the interactions that were involved in those changes. In Simon’s (1995) discussion about learning
trajectories he noted that the “path by which learning might proceed” is hypothetical because
“the actual learning trajectory is not knowable in advance. It characterizes an expected tendency”
(p. 135).  Simon noted that the hypothetical learning trajectory (HLT) includes three
components: the intended direction, the learning activities, and the hypothetical learning process.
Teachers can refine and modify existing learning trajectories through interactions with children.
Steffe (2004) notes, “the construction of learning trajectories of children is one of the most
daunting but urgent problems facing mathematics education today” (p. 130). He also mentions
that children and a teacher/researcher should co-produce these learning trajectories.
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Methods
This research paper details case studies of two high school geometry teachers. These

teachers, Judy and Barbara, were selected because they were experienced teachers with advanced
college degrees who were willing to discuss their instructional practices and attend working
group sessions. Data were collected for both teachers during one semester in one of their
semester long geometry classes. Over the course of the semester there were 13–16 classroom
observations and six working group sessions. Field notes were taken for each observation. For
six of the classroom observations there were 30–60 minute pre-observation and post-observation
interviews. The focus of the interviews was the teachers’ descriptions of the components of the
learning trajectories. When possible, the classes were observed the day before and the day after
these six observations. The six lessons for each teacher and all of the working group sessions
were videotaped. In addition, all teaching artifacts for the observations and the working group
sessions were collected and analyzed.

The complexities of the classroom make it difficult for teachers to focus specifically on
students’ mathematics. With that in mind, there were six working group sessions that occurred
approximately every two weeks. The purpose of the sessions was not to change teachers’
instructional practices, but to support the two teachers in their efforts to discuss their students’
mathematical thinking. The tasks in these sessions included solving a mathematics tasks,
watching videos of students solving tasks, creating tasks to use in their own classrooms, and
discussing their student solutions to their developed tasks. In two of the sessions the teachers
created or modified a task to use in their own classrooms. The two lessons that included those
tasks were part of the six lessons that pre- and post-interviews were conducted.

Data was analyzed based on the learning trajectory framework and using an interpretative
stance in order to examine “how individuals experience and interact with their social world,
[and] the meaning it has for them” (Merriam & Associates, 2002, p. 4). I began initial analysis
during data collection through a research journal. The contents of this journal included my
reactions to lessons, ideas about possible answers to the research questions, and themes that were
emerging. After data collection I began a retrospective analysis with four stages. During the first
stage I coded field notes and interviews. Next, using interview data, field notes, and teaching
artifacts I created the teachers’ learning trajectories. In order to distinguish between what the
teacher planned to happen during the class and what the teacher noted about what actually
happened during the class, I created two learning trajectories for each of the six lessons—the
projected learning trajectory (PLT) and the enacted learning trajectory (ELT). When necessary, I
used video data to fill in missing components of field notes. Third, I used the coding scheme to
revisit the data by coding the created learning trajectories. In the process of coding the learning
trajectories, I compared the PLTs and ELTs for individual lessons. Finally, I looked for
confirming and disconfirming evidence for each of the themes that emerged.

Results
The learning trajectories that I created for both teachers’ six lessons were complex due to the

factors that influenced their development. I want to acknowledge that I am adapting Simon’s
(1995) notion of hypothetical learning trajectories to create the teachers’ learning trajectories.
The learning trajectories were based on the teachers’ thoughts about the initial learning goal(s),
the students’ current mathematical understandings, the learning activities, and the changes that
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occurred in students’ mathematical understandings during the lesson. The learning trajectory
began with students’ starting points, or their current mathematical understandings. Through some
mathematical activity, students progressed through the learning process to conclude at some
ending point. There are large learning trajectories, which span multiple concepts, and there are
smaller learning trajectories, which cover individual concepts (e.g., a learning trajectory for area
of polygons or a learning trajectory for area of regular polygons). In this study, I was interested
in the learning trajectory that teachers described for their students during individual lessons,
which spanned one to three days and covered anywhere from one to five learning goals. I also
want to mention that the learning trajectory can represent learning for one student, a subgroup of
students, or a class of students. Figure 1 represents what a learning trajectory might look like.
I’ve chosen to create a simple figure to oversimplify learning trajectories in order to later
describe and highlight results. I want to emphasize that learning is not necessarily continuous nor
does it fit the curve as shown in the figure.

Figure 1. A Learning Trajectory

Let’s consider an example from the data. During working session three the teachers chose a
task that fit both of their learning goals. The teachers modified the task appropriately for their
class and created lessons that incorporated the task. Figure 2 is the task and the diagram that
went along with the task. Working session four was spent with the two teachers describing what
happened during their classes and analyzing student work.

Students’
beginning
mathematical
understandings

Students’ ending mathematical
understandings

Mathematical activity
and mathematical
learning
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Given an equilateral triangle ABD and a rectangle EFGC. Suppose point C is allowed to
assume different positions on the line segment BD (as C changes positions the points E, F,
and G also change accordingly.)  Is there a position for point C along line segment BD where
the perimeter of the window EFGC is the largest? … area largest?

D

B

A F E

G C

Figure 2. Window Task

This lesson spanned two days in both teachers’ classrooms. The goals that the two teachers
had for their lessons varied. Barbara’s goal for her lesson was for students to engage in a
culminating activity that incorporated a lot of concepts from the semester. She expected her
stronger students to quickly generalize and use an algebraic representation to support their
answers. In addition, she expected some of her students to struggle to begin the task. There was
another group of students who she expected would use a measurement strategy, but she thought
they would realize that they needed an algebraic solution in order to prove their answer. These
different solution approaches signified that Barbara was considering three learning trajectories
for her students. She thought her students would think differently about the task and would vary
in what they learned from engaging in the task. Judy wanted her students to explore the idea of
maximum area and perimeter with some organized investigation. She expected her students to
use a measurement strategy and she hoped they would justify their solutions. Judy acknowledged
that some of her students would approach the task at a deeper level, but the multiple solutions
she described all dealt with the same solution strategy and the same learning progression (just at
different paces).

During the first day of the lessons the two teachers’ classrooms looked similar with
corresponding teacher moves and corresponding student solutions. The two teachers introduced
the task in a similar manner. They put a transparency of the Window Task on the overhead
projector. The teachers described the task and posed questions to help students begin. Both
teachers gave very little guidance about possible solution paths. Then students were asked to
work individually for ten minutes to think about possible solutions. After that time the students
worked in groups to solve the task. The students solved the task with some variation of a
measurement strategy. On the second day there were noticeable differences between the two
classes.

Barbara was disappointed that no students approached the task using algebra and that many
students solved the task with very little data to support their solutions. On the second day
Barbara became more prescriptive in her interactions with students. Barbara created a table of
student measurements on the board. She mentioned to students that a measurement solution
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required a lot of numerical data. Afterwards she made a comment about the difficulty with
measurement was that it doesn’t prove something was true. Then she asked students if there is a
way to represent the changing length of segment CE and students quickly answered by labeling it
x. From there the class came up with an equation and graphed that equation on a calculator to see
the maximum value for the function.

Judy’s class was different. Judy gave students ten minutes to work again in their groups.
Then, students explored the task using a teacher-prepared sketch on Geometer Sketchpad (GSP;
Jackiw, 1991). During this time Judy walked from group to group to listen to conversations.
Following this activity Judy asked particular students to share their solutions. The class looked at
a table of values and graphed the values. Judy noticed that many of her students were not
connecting the table values to the graphed values, so she decided to change the task to finding
the maximum area for a rectangle with a constant perimeter of 24 (the perimeter in the window
task varies).

These two teachers made different teacher actions for different reasons during the lesson and,
ultimately, progressed through the same task differently. The teachers’ enacted learning
trajectories were different based on their different learning goals for the learning activity. When
comparing the projected and enacted trajectories for each of the teachers’ lessons there were
some instances where they matched, while in other instances the trajectories were different. In
making decisions about the relationship between the two trajectories I examined whether the
learning goal, learning activities, and learning process matched or whether they changed during
the enacted lesson. I am operating under the assumption that none of the ELTs matched perfectly
with the PLTs, so when I claim that the PLT and the ELT match I am claiming that the two
learning trajectories matched closely. A change in plans did not automatically suggest a direction
change in the learning trajectory or a change in the mathematical activity. For example, on the
first day of the lesson on the Window Task Judy felt that there were some students who were not
making progress on the task and were not making the necessary connections. On the second day
she created a GSP sketch for students to explore. Even though the GSP sketch was not originally
planned on the first day I consider the ELT and the PLT to still match. The overall idea of the
task did not change; only the method for solving the task was modified. So, instead of students
physically measuring the side lengths of the rectangles, the computer program GSP measured the
sides. In this portion of the lesson the ELT and the PLT matched closely because the change in
method did not change the learning progression nor did it change the overall goal. Now, Judy did
make a change in the direction of the lesson partway through the second day’s class. Judy
created a new task that took the lesson in a different direction than originally intended. This
decision was made based on comments that her students made in class that implied they were
missing the connection between the numbers that represented the length, width, and area of the
rectangle and the graphical representation of those numbers. Notice in Figure 3 that during the
beginning of the lesson the PLT and the ELT matched, but along the way the ELT took a
different direction.
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Figure 3. A different direction

When comparing Barbara’s PLT and ELT for the lesson on the Window Task it was clear that
the students did not progress through the lesson as she planned, which caused the ELT to take a
different track than originally planned. Her learning goal for the lesson was not for all of her
students to justify their solution with measurement, but to use algebra as a way to prove. Barbara
made the decision to bring students back to her original learning goals and learning activity.
When she made that decision she became more directive and leading with her comments and
questions in order to push students in the direction she wanted them to go. Her actions abruptly
changed the ELT so that it matched more closely with what she projected and hoped students
would do. Figure 4 illustrates how the enacted learning trajectory started going a different
direction than the PLT, but shifted when Barbara intervened.

Figure 4. Let’s get back on track

There are three findings that I briefly discuss. First, the PLT and ELT did not always match.
In Judy’s lesson on the Window Task the trajectories didn’t match because Judy left the original
task to pursue a different task. In Barbara’s lesson the trajectories didn’t match because students’
solved the task in a way that she expected only a subgroup of students to solve. The different

Projected Learning Trajectory

Enacted Learning Trajectory

Projected Learning Trajectory

Enacted Learning Trajectory
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solution path led to a different learning progression. From the data there is significant evidence to
support the idea that the reasons for why the enacted learning trajectory took the path that it did
related to who led the lesson. There are varying degrees to which the ELT was determined by the
teacher or by the students. For instance, in Barbara’s lesson she led the students back to her
projected learning trajectory by being directive. Based on the teachers’ intentions and the fact that
students were not going in that direction, Barbara intervened. Towards the end of the lesson the
ELT matched the PLT. In contrast, in Judy’s lesson the students took more of a lead role in the
direction of the ELT. Students were left to explore the original task without Judy directing them
in particular directions. The students began exploring the relationship between tables and graphs
when Judy noticed a gap in knowledge. Based on her students she changed the task. In the
example provided both PLT were only partially followed. In other lessons there were instances
that the ELT matched the PLT and was led by either students or the teacher. Again, the reasons
for the ELT matching the PLT were related to who led the lesson.

Describing students’ mathematics was difficult for both teachers. As the study progressed the
teachers began to question how they assess their students’ mathematical thinking within lessons.
Barbara noted, “you know you’ve asked me that so many times that I’m like I really don’t know
that I assess that very well” (Interview, p. 43). As one would expect, in instances that the teachers
interacted with students doing mathematics the teachers could elaborate on students’
mathematics. Barbara noted that during the first day all of her students solved the Window Task
with measurement. In her reflection on the first day she was able to describe several student
solutions, whereas on the second day she was only able to describe a couple students’
mathematics based on who spoke in class. Judy was able to describe, with detail, students’
mathematics after both days. She elaborated on the various measurement approaches that she
observed during class. For example, one student noted that the perimeter of the window is larger
as the point C approached the side of the triangle because the side of the triangle is larger than the
height of the triangle. Judy thought this solution was very intuitive and acted on it later in class.
Throughout the lesson Judy interacted with students actively engaged in mathematics.

The third finding was teachers created different learning trajectories for different groups of
students. Typically, the teacher created two to three groups and used a couple students in each
group to describe how all the students in the group were thinking. For example, Barbara thought
one group of her students would have trouble solving the window task because she felt like they
couldn’t “see” the diagram. She thought another group would use measurement and the rest of the
students would immediately use algebra. Even though the learning goals and learning activities
were similar, Barbara created different hypothetical learning processes for the different groups of
students as she felt these students would approach the task differently.

Discussion
This research study presents significant insights into how learning trajectories might be used

for teacher development and for research. Specifically, learning trajectories could be used to
frame the ways that teachers consider the relationship between learning activities, teacher
actions, and students’ learning process. Teachers find it difficult to observe and discuss their
students’ mathematical thinking. This study shows that learning trajectories has the potential to
encourage teachers to think about and use their students’ mathematical thinking in their
instructional planning. Currently, researchers develop learning trajectories through intensive



381

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

work with children. These learning trajectories are a valuable resource for teachers, but are not
yet readily or easily available for teachers’ use. Practicing teachers develop their own trajectories
based on their years of planning activities and interacting with students. These trajectories are
not as detailed or refined as the ones created by researchers, but they can provide powerful
insights for teacher education. As researchers continue to develop learning trajectories of
childrens’ mathematics I think it would also be valuable to examine teachers created learning
trajectories.
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In this study we explore intuitions of “same shape” held by low achieving middle school
students through an analysis of their strategies for differentiating, classifying and
constructing similar figures. Findings suggest that student’s intuitions of “shame shape” are
not reliable and vary by context. There is a need to include more diverse figures in the study
of similarity.

Despite its usefulness in daily life and critical role in many branches of mathematics,
research studies have repeatedly shown that similarity is by far the most challenging context
for the study of proportional reasoning. Researchers have claimed that student intuitions and
informal experiences can be leveraged to secure a conceptual understanding of this topic. It
remains under debate, however, what intuitions exist and how best to draw on them.  Among
the hypotheses is the idea that students should be formally grounded in classifying distorted
and non-distorted figures (Swoboda & Tocki, 2002).  This perspective is in sharp contrast to
a common assumption made by some middle school math curricula that the idea of same
shape is intuitively clear to all students, and can thus be used to define “similar figures” as
“figures with the same shape” (Lo, Cox & Mingus, 2006). The purpose of the current study is
to uncover the conceptions of “same shape” this particular group of students may have.

Theoretical Framework
We draw from Tall and Vinner’s constructs of concept definition and concept image

(1981) to help us frame our research questions. Concept definitions are the words used to
specify a concept. Concept images include all the mental pictures and associated properties
and processes built through experiences over the years. Influenced by an individual’s
experiences both inside and outside of school, concept images can vary in terms of the degree
of richness and connectedness. In our study we explore the concept definitions and concept
images of “same shape” held by middle school students. Specifically, the following three
research questions guided the design and analysis of the current study:

 What daily experiences provide students with the images of the “same shape”?
 What aspects of an image do students use to determine the similarity?
 What strategies do students use to create a similar copy of a given shape?

Methodology
The study was carried out in an urban Mid-western middle school with a diverse student

population in a low-socio-economic neighborhood. Over 80% of the students participate in
the free and reduced lunch program. Seven seventh grade students identified as low-
achieving on the bases of performance on standardized tests volunteered to be interviewed.
Students were first asked about their experiences with “same shape” in daily life. They were
then asked to classify four sets of figures that included photographs of their math teacher, L-
shapes, M-shapes and a rectangle. Each set contained an original, a 150% dilation, a 200%
dilation, and a distorted shape that was created using additive growth.
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After the classifying task, students were given selected images from the shape sets and
grid paper and asked to draw shapes that are “of the same shape but twice as long on a given
side.” One additional image was used, a rectangle with a dot inside the upper left corner.
These interviews were videotaped and partially transcribed. Student responses were analyzed
across individual tasks and then grouped under each research question.

Partial Results
Due to space limitations, we will only discuss the findings for our second research

question in this proposal. The findings on the others will be discussed during the presentation.
None of the participants in our study had developed the intention or systematic approach

to prove two given figures to be similar. Generally speaking, their determination of the
sameness among figures depended on whether they noticed any distorted aspects of the given
figures.  In the photograph set, those that looked like “real life” were deemed good blow-ups,
or “the same shape” as one another. Students refer to specific lengths of portions of the image
including the teacher’s head or face, using comparative terms such as “skinnier,” “fatter,” or
“smooshed” to describe ways they identified the distortions.

The use of correspondence was the key for students as they differentiated within the
remaining shape sets. However, students tended to see a limited number of correspondences
and they did not use the identified relationship in a consistent way. Thus it is not surprising
that they did not interpret similarity as being transitive in nature. In fact, there were no
intuitions that all partitions or parts of a shape need to have the same mathematical
relationship as the others. None of the students were able to successfully identify all three
similar rectangles from the set, but all could identify at least one pair. Those students who
established two distinct subsets of shapes were then given an additional probe to make a cross
comparison between the third similar rectangle and the correctly identified pairing. When
asked to consider cross-pair comparisons, two out of three students identified one but not
both of the rectangles as belonging to both sets.

Discussion
This study has provided some evidence that intuitions and informal experiences with the

idea of “same shape” possessed by low achieving seventh grade students my not be
compatible to those defined formally in mathematics, thus making the assumption about the
intuitions of middle school students problematic. Students in this study have experiences that
both enhance and interfere with conceptual understanding of “same shape” and similarity.
The findings of this study inform curriculum development as to ways to capitalize on prior
constructive experiences, and adjust for potential interfering ones. Our findings also point to
the need to include more diverse figures in the study of similarity so that they can see the
necessity of having ALL corresponding angles be equal AND the ratios of ALL
corresponding sides be equivalent in order to maintain the shape. Further studies are needed
to study how this can be achieved among diverse student population.
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Del Grande (1987, 1990) and Bishop (1980, 1983) have associated geometric understanding
with perception of spatial relationships.  Recent studies (Gutiérrez & Jaime, 1998; Saads &
Davis, 1997) have helped establish a framework for research that considers spatial relationships
within the context of 3-dimensional geometry. Gutiérrez (1996) used the work of others
(Presmeg, 1986; Yakimanskaya ,1991) to refine definitions for visualization, mental image,
external representation, and process.   Our research uses the definitions he established.

The National Council of Teachers of Mathematics [NCTM] (2000) has proposed that all
students in grades 6-8 should be able to use defining properties to describe and understand the
relationships between both 2D and 3D objects, while all students in grades 9-12 should be able to
“visualize three-dimensional objects from different perspectives and analyze their cross
sections”(p.308) and solve problems involving 3D figures characterized by Cartesian
coordinates.  In its grades 5-8 Addenda series, NCTM suggested using 3D physical models as
starting points to develop the concepts of “parallel and perpendicular lines and planes, skew
lines, [and] angles in two and three dimensions” (Geddes, 1992, p. 6).

Since the landscape of geometry education in the U.S. includes a definite push towards the
inclusion of 3D geometry in the secondary curriculum, we must ask whether U.S. teachers are
prepared for this.  Gutiérrez (1996) argued that even though “visualization is a basic component
in learning and teaching 3-dimensional geometry...[but] there is very limited research activity in
this specific area (p.11).”

Research Objectives
The main objective of this research is to begin a series of investigations that shed light on

teachers’ visualization of basic 3D concepts.  How deeply do teachers understand these concepts
and their relationships?  More specifically, how do they visualize basic relationships and
manipulations such as bisections and rotations of fundamental geometric objects in a 3D
environment?

Methodology
This study involved 32 preservice and inservice secondary mathematics teachers (22 female

and 10 male) at a large research university in the United States.  All participants held a
bachelor’s degree in mathematics or its equivalent, and had successfully completed a geometry
course and the calculus sequence including multivariable calculus as undergraduates.  The
participants were mathematics education graduate students enrolled in two separate pedagogical
content knowledge courses.  The students participated in the activities described as part of course
requirements.  They were given the option of having their data used anonymously for research
purposes, and all agreed.
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Eleven items from a written examination were used in this study.  The 11 items all
represented 3D concepts or 2D concepts in a 3D environment that NCTM has suggested are
appropriate for secondary mathematics students.  They were designed to assess the teachers’
ability to determine relationships between different spatial objects.  The examination was
developed in light of recommendations suggested by Gutiérrez and Jaime (1998) for paper and
pencil assessments in terms of van Hiele levels.  After consultations with colleagues and a pilot
of the instrument, items were modified as needed.  The examination was then administered to the
participants at the beginning of each course to determine their abilities to perceive spatial
relationships among basic 3D figures.  Members of the research team individually analyzed the
participants’ responses looking for patterns in the data.  After the initial, individual analyses were
completed, the team verified their findings against each other and the data.

Results
The research findings indicate some teachers persist in working in the plane, even when the

situation requires a 3D environment, or they often refer a particular plane.
When given a drawing of a right triangle and asked to rotate it to determine the solid of

revolution, 28% of the responses to this typical calculus problem were incorrect.  Three of the
teachers gave two-dimensional answers as shown below.
Problem: If the right triangle shown below is revolved about its 4 inch side, describe, draw
and label the lengths of the resulting solid of revolution.

Student A Response:

Student B Response:

Student C Response:

Even in a 3D environment, teachers often try to reference familiar 2D objects: horizontal and
vertical planes or the xy-, yz-, and xz-planes as is seen in the select items shown in the table
below.
Examination Question Responses of 3 Students (None of whom are Students A, B, C or D)

False: 2 points could lie on bottom and 1 on top, they are different
planes.

True or False. Explain.

Any 3 distinct points in
3-space lie on a single
plane. False: Three points could be in the xz plane or yz plane, or xy plane,

not necessarily in the same one.

3

4

5
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Points could lie on same plane but don’t necessarily lie on same line.
a (1, 2, 3) b (1, 4, 5) c (0, 6, 9)
a, b, and c don’t lie on same line because don’t all share common x,
y, z coordinate.

In another example, Student D responded a horizontal line when asked, “What bisects a
plane?”  The following are the frequencies of the incorrect responses to the open-ended question,
“What bisects a 3-space?” Point – 4, Segment – 1, Ray – 2, Nothing – 3, Anything because a
space means anything – 1, Any geometric figure – 1, Forgot definition of space – 1, Not
sure/?/blank– 6.

Discussion
Internationally, de Villiers (1997) has called for major changes to teacher education

programs claiming that even “qualified” secondary mathematics teachers hardly know more
geometry than their students. This is supported by Malara’s (1998) findings concerning middle
school teachers’ difficulties with 3D visualization.  Teachers seem to understand fundamental
geometric concepts in 2D, but profound understanding of these concepts must be questioned
when they struggle with them in a 3D environment.  The results from this study suggest that
teachers have difficulty visualizing geometric objects and manipulations in a 3D environment
and would have difficulty teaching the geometric concepts called for at secondary levels.
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How many edges are on a cube? This question was asked of fourth graders as part of the Third
International Mathematics and Science Study (TIMSS) and only 35% of US fourth graders
correctly answered it (TIMSS 1995,1998). I take this poor performance as a starting point in
trying to understand student thinking in three-dimensional geometry. Since the TIMSS report is
limited to the percentage of students choosing each of the four responses provided, I continued
my investigation by analyzing children’s responses on an open-ended written version of the task
and examining some students’ work in an interview setting. My purpose is to show that Battista
and Clements (1996) notion of spatial structuring can be applied to understand students’
thinking about various polyhedra.

Theoretical Framework
In trying to understand students’ approaches for determining the volume of rectangular

prisms Battista and Clements (1996) proposed that meaningful enumeration of cubes in a 3D
rectangular array was supported by students’ spatial structuring of the array. They considered
spatial structuring to be “the mental act of constructing organization or form for an object of set
of objects” (p. 282). It involves creating a coherent whole from different parts and recognizing
the relationship of the parts to the whole and to each other. They also noted that individuals do
not “read off” this structure but have to create it from mental actions. While they applied this
construct to children’s thinking about arrays of cubes, I found it useful to consider children’s
thinking about less complex 3D objects.

Method
In addition to the published TIMSS data (TIMSS 1995, 1998), I analyzed assessments given

to a group of third-grade students participating in a classroom-based design experiment. The 17
students attended an ethnically diverse public elementary school, GW, in Northern California
where 81% of the students are considered economically disadvantaged and 60% are designated
English Language Learners. At the beginning of the investigation each of the children took a
pencil and paper test which included a constructed response version of the “how many edges on
a cube?” task. 13 of the children were also videotaped while participating in a dynamic
interview, where I offered students support after they initially attempted problems.

Results
When “how many edges are on a cube?” was asked of students on the TIMSS the children

could choose from the responses 6, 8, 12 and 24. The first three choices could be obtained by
counting some component part of the cube (faces, vertices, or edges) and the last response arises
from multiplying the number of faces (6) by the number of sides on each (4). All of these
responses assumed that children would successfully count some part of the cube. The prevalence
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of the answer 8 in the TIMSS and GW data (see Table 1) suggests that the part of the cube that
US students seemed to count were the vertices. Analysis of interview data showed that 3 of the
13 children (23%) were counting the vertices, and they provided the answer of 8. It is worth
noting the location of the word “edge” in the task makes it unclear whether the term refers to an
edge, a face, or a vertex. When students counted the vertices in the interview, I clarified the
meaning the term edge by showing the children a poyhedron that I had constructed and running
my finger along some of its edges. None of the 3 children who initially counted vertices were
able to successfully revise their answer. While they were able to spatially structure the cube to
count the vertices (counting the four on top and then the four on bottom), they had more trouble
counting the edges.

Table 1 Answers provided by students
6 8 12 24 9 Other

TIMSS – US 4th graders 22% 37% 35% 4% (not an option) 2%
GW Written test 23% 31% 0% 0% 6% 40%
GW Interview
(initial answer)

0% 31% 23% 8% 23% 15%

 Data from the GW written test suggest that many of the students did not successfully count
any parts of the cube. Children offered 4, 5, 7, 9, 10, and 16 as answers. Comparison of written
test data and interview data show that only 2 of the 13 children were consistent in their
responses, and both of these children were counting the 8 vertices. I inferred from this
comparison that most of the students did not have a stable approach for completing the task.

Children’s work in the interview showed that 4 of the 13 children (31%) counted only the
edges visible in the diagram disregarding the parts that were hidden. They were unable to
consider the cube from an alternate perspective and edges seemed to be an uncoordinated set of
component parts. These children could be said to be operating on a level similar to Battista and
Clements’ (1996) “medley of views” level. Two of the children successfully counted all of the
edges but did so without imposing a structure on the cube. These two children seem to have
constructed a mental model of a cube which included parts not visible in the picture. One noted,
“there are two faces on the other side and you have to imagine that the faces are on the paper.”
Some of the children did engage in spatial structuring of the cube but in only one case did this
yield a correct answer. In this case the child noted that there were four edges on the top, four
“around the sides” and four on the bottom. Four of the 13 children in the interview imposed
structure on the cube after they were asked to show what they were counting. For example one
child started counting in a haphazard fashion but when asked to show each edge, he pointed to
the 4 vertical edges and then the four edges connecting the front and back to the top and bottom.
He neglected to count the other edges and so got an answer of 8.

Discussion
Analysis of student performance on the “how many edges in a cube?” task shows that

enumerating this component part of a polyhedron is more complex than simply learning the
correct vocabulary (as one might infer from analyzing the TIMSS data for this task). Students
need to take into account perspective by recognizing that the drawing only shows part of the
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cube. In addition, spatially structuring the cube, by decomposing it into constituent parts makes
the task more manageable. I posit that spatial structuring develops gradually as students
continually face challenging enumeration situations. Battista and Clements (1996) indicated that
“perceptual and physical actions …become inputs for the structuring process” (p. 290) so it
would seem that curriculum should be developed to allow students the opportunity to manipulate
3D objects so they can begin to engage in this process.
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Activities that helped two groups of eighth-grade students (13-14 years) to discovering and
stating—in their own terms—the Pythagorean Theorem are described in this poster. Another set
of activities on applications of the Pythagorean Theorem was implemented with a third group of
ninth-grade students (14-15 years). All activities were at the level of knowledge development
(formal definitions, formulae, or rigorous proofs of the mathematical results implied were not
used). The designing of these activities was based on a particular version of propositions 12 and
13 in Book II of Euclid’s Elements (equivalent to our trigonometry Law of Cosines): Students
had to construct squares on the sides of obtuse and acute triangles, and to determine whether the
area of the largest square so constructed could be completed with the areas of the other two
squares. That is, we took as an attractor this geometric version of the Law of Cosines.

By constructing shapes with rubber bands on a geoboard and by exploring and manipulating
those shapes, students built an understanding of geometrical relationships. Their achievements
under this empirical-inductive approach allowed them to develop a network of mathematical
relationships in their thinking, setting the stage for more advanced study of results related to
those on which the knowledge development experiences here described were based.

Different researchers are discussing the potential of complexity theory as a model to
explaining school mathematics learning experiences (e.g., Davies & Simmt, 2003; Jones, 1994).
A particular area of the nascent discipline of complexity is the study of complex adaptive
systems—cas—(Holland, 1996). A feature of a cas is that agents show coherence under change,
they adapt. We can think of each student as well as of a classroom environment as a cas. As
learners, we undergo processes of attempts to bring order to ideas which “form a system because
they interact in some way, […] we understand or learn when an attractor [our emphasis]—in the
language of complexity theory—brings order to the collection of ideas” (Jones, 1994, p. 41).

Activities were organized as follows: (a) Introductory activities (2 work sheets, whose
purpose was to familiarize students with the construction of polygons on the geoboard and the
computation of their areas); (b) Exploration of triangles (4 work sheets, whose purpose was
allow students to discover the Pythagorean Theorem by means of constructing squares on the
sides of obtuse as well as of acute triangles—and eventually using right triangles—; we
identified that students of the three groups also created an understanding of the Converse of the
Pythagorean Theorem), and (c) Applications of the Pythagorean Theorem (3 work sheets about
determining the area of the square on any of the three sides of a right triangle—given the areas of
the squares on the other two sides—and then the lengths of its three sides).
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Preservice elementary teachers interacted with computer graphics demonstrations in
conjunction with 2D and 3D manipulative activities to improve understanding and motivation
within a geometry-methods course. Subjects described and rated their knowledge of geometry
and described their perceived level of preparation to teach it. Modest gains in their
geometric knowledge and in their perceived teaching readiness were observed pre-post
course.

To improve preservice elementary teachers’ geometric experiences, we developed
instructional materials in the project, Using 3D Computer Graphics Intensive Technologies to
Encourage Teachers and Students’ Involvement in STEM, supported by a grant from
Appalachian State University. One theme was: Using 3D Computer Graphics Demonstrations
to Illustrate How 2D and 3D Geometry is Applied to Create Computer-generated Figures. The
primary challenge in developing materials is that the majority of computer graphics geometry
is advanced, yet we must provide information at a PSET level and depict it accurately. It is
crucial to create lessons that broaden PSETs’ understanding of geometry and help them
connect what they are learning to what they will teach. We provided PSETs with experiences
in manipulating computer graphics demonstrations followed by 2D and 3D geometric
activities with manipulatives, i.e. creating a 2D figure with pattern blocks followed by
translating this pattern to a 3D figure with Polydrons. We surveyed 87 PSETs in four sections
of a geometry methods course (pre/post course) to explore their perceptions of their geometric
understanding and readiness to teach. The survey questions were clustered in triads where
each PSET was asked: 1) to rate their content knowledge of key geometry concepts; 2) how
prepared they felt to teach these concepts; and 3) to define or describe the concept in their own
words. Other open-ended questions also asked students to: List three occupations that use
geometry and specify how geometry is used. The surveys were given pre- and post-course after
students had participated in active-learning and technology-enhanced approaches to geometry.
Five areas of interest emerged from the pre-course survey. 1) The PSETs generally rated
themselves as not understanding geometry topics very well. 2) They tended to define geometry
by simply providing lists of words, primarily names of geometric shapes, with little evidence
of in-depth understanding of geometric topics. 3) PSETs lacked appropriate geometric
terminology. 4) PSETs indicated they felt unprepared to teach geometry to children. 5) PSETs
were unable to express how geometry is used professionally. Using the technology-enhanced
lessons in class seemed to help PSETs gain perspective on geometry’s usefulness. It made
them more aware of the importance of devoting adequate instructional time in class and the
importance of learning proper geometric vocabulary. Their geometric vocabulary improved
and we saw modest conceptual gains in the van Hiele levels evidenced in their answers. Even
a dedicated geometry methods course however, provides insufficient time to address the
geometric learning needs of PSETs. This study will be extended in Fall 2007 with the addition
of evaluation questions from the Learning Mathematics for Teaching project.
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Twelve middle school teachers participated in a professional development focused on improving
their content and pedagogical content knowledge of probability. A key part of the professional
development was the planning, implementation and analysis of a rich probability task, the maze
problem. The implementation of these lessons were then videotaped and analyzed for student-
teacher interactions about key probabilistic concepts, particularly interactions where
misconceptions were identified. These interactions were then written up as scenarios to share
with the teachers. The teachers were asked to identify the key probabilistic concepts in each
scenario and consider questions they might ask to support and extend the understanding of the
students in the scenario. Three of these scenarios are shared and the questions teachers
developed are analyzed in relation to current research on student thinking in probability.

Theoretical Perspective and Purpose
Probability is a relatively new topic within the grade school and secondary curricula of the

United States (NCTM, 2000). The inclusion of this topic in standards, curriculums, and
textbooks has led to new challenges and questions for teachers and teacher educators as they
attempt to learn the necessary content and pedagogical content knowledge associated with this
topic (Kazima & Adler, 2006). Moreover, Shulman (1986) and more recently Ball, Hill, and
Bass (2005) have called upon the mathematics education community to identify and describe
specialized teacher knowledge. When teachers are able to not only solve basic probability
problems but also identify the multitude of ways students develop and think about probability
concepts, they gain a deeper understanding of mathematics, in other words a specialized
knowledge of mathematics (Ball, Hill & Bass, 2005).

Probabilistic reasoning is often counter-intuitive for both students and teachers. This counter-
intuitive nature of probability has been explored and detailed in numerous studies on student
thinking leading to the identification of a variety of common misconceptions such as the
outcome approach, representativeness, negative and positive recency effects and the conjunction
fallacy (Shaughnessy, 2003; Fischbien & Schnarch, 1997). Understanding how students think
probabilistically and handling possible misconceptions students may have is a part of the
specialized knowledge of mathematics teachers need. Research on student thinking in probability
provided this study with a foundation for identifying student misconceptions and analyzing the
ways teachers used their specialized knowledge of mathematics to help students modify and
change their misconceptions.

This paper explores the specialized teacher knowledge of probability by focusing on twelve
participating teachers’ implementation and analysis of one rich task, the maze problem (figure
1). The maze problem was selected because it is a multi-faceted task that does not lend itself to
quick algorithmic thinking, but to actually “doing” mathematics (Stein, Smith, Henningsen, &
Silver, 2000). The task also provides opportunities to explore numerous topics within initial
probabilistic thinking previously identified by research in this area (e.g., Shaugnessy, 2003; Amit
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& Jan, 2006; Benko & Maher, 2006), including topics such as experimental and theoretical
probability, equiprobability, compound events, randomness and the law of large numbers. Thus,
we asked the question, “What specialized knowledge of mathematics, specifically probability, is
evident as teachers analyze real scenarios from their implementations of the maze problem?”

Figure 1. Maze Problem

Methodology
The twelve participating teachers in this study were part of professional development

program for middle school mathematics teachers. The program focused on improving the content
and pedagogical content knowledge of teachers through summer institutes and follow-up
meetings throughout the school year. The summer institutes focused primarily on improving the
teachers’ content knowledge while the follow-up meetings during the school year were designed
to focus primarily on pedagogical content knowledge.

The data collection for this study took place during the school year follow-up meetings. Each
teacher was initially asked to determine the experimental and theoretical probability for each
room of the maze problem. The teachers were then provided time to plan how they would teach
this problem to their students. Fieldnotes were taken during these sessions with the teachers with
a focus on key probability ideas that were discussed and any misconceptions the teachers
exhibited.

Each of the twelve teachers was videotaped during the implementation of the maze problem
and these videos were then analyzed for mathematical topics related to probability. Interactions
between teachers and students were coded for topics such as experimental probability,
randomness, and law of large numbers. When misconceptions were identified within these
interactions, they were written as scenarios that could be shared with the teachers. The scenarios
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served as an anchor for conservations where we could observe teachers’ specialized knowledge
of probability. Each scenario details the ideas of the students but does not mention how the
teacher interacted with the students. Nine of the scenarios were then chosen to share with the
teachers. These scenarios were chosen because each one represented a misconception dealing
with a key probability concept the teachers had discussed during their own solving of the maze
problem, and are part of the literature on student thinking in probability (e.g., LeCoutre, 1992;
Tversky and Kahneman, 1982).

Groups of two or three teachers were then asked to identify the mathematical concepts
involved in each scenario. In addition, each group was asked to imagine if they were the teacher
in the scenario, what questions or prompts they would ask students to support development of
probabilistic reasoning. Each group of teachers was asked to record the above information and
share it with the rest of the participating teachers and researchers. The results section below
shares three of these nine scenarios, the questions and prompts developed by the groups of
teachers, and an analysis of teachers’ specialized knowledge in relationship to the questions and
prompts they developed.

Results
The maze problem asks students to determine the experimental and theoretical probability of

moving through the maze and arriving in the two different rooms, room A and room B. As
students develop simulations to determine the experimental probabilities of each path of the
maze a variety of topics and corresponding misconceptions can arise.

Scenario 1
The first scenario was initially identified while the teachers worked on developing their own

simulations for the maze problem. This scenario was then re-identified in three of our teachers’
classrooms during their implementations of the problem.

A group of students are setting up an experiment for The Maze. They decide to
label the terminating part of each path the numbers 1 through 6 respectively and
then use a die to determine the path traveled.

The mathematical concept the teachers identified for this scenario was independent events.
The more apparent misconception identified by LeCoutre (1992) is misunderstanding of
equiprobability. Children with an equiprobability bias assume all outcomes of an event are
equally likely. In the scenario above the students appear to have an equiprobability bias and they
have created an experiment to verify this misconception.

Although independence is not the main mathematical concept of this scenario, the questions
the teachers suggested, display pedagogical content knowledge. Their suggestions for working
with these students were to ask them the following questions:

• If you walked into the maze, would you see all six paths?
• If you rolled a five how would you know the path to follow?
• Is there an equal chance for each path? Why?

The first two questions appear to be designed to help students understand the maze as a
compound rather than simple event. In addition, the last question they came up with suggests the
teachers may be aware of the equiprobability misconception. Although the teachers did not
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identify this mathematical concept their question “Is there an equal chance for each path? Why?”
suggests they are trying to help students with this misconception.

Scenario 2
The next scenario deals with issues of sample size. Although the teachers initially struggled

with understanding the need for large samples in order to approximate theoretical probabilities
(i.e., the law of large numbers) when they solved the problem, most understood the need to run
more than one trial. The scenario below occurred in only one classroom because the majority of
the teachers required their students to run a certain number of trials rather than leaving this
decision to their students.

In a classroom, a teacher did not specify the number of trials for each group of
students to run. One group did only one trial and determined Room A was most
likely. Another group ran twenty trials and determined that Room A and Room B
were equally likely.

The teachers identified three mathematical concepts associated with this scenario:
understanding of event, experimental probability and law of large numbers. The teachers were
accurate in identifying the law of large numbers and experimental probability as key ideas within
this scenario. Their suggestions for working with these students were the following three
questions:

• Why just one trial? Is this enough information to make a decision?
• Why stop at 20 trials?
• How can you prove room A and room B are equally likely?

These questions appear to be consistent with the mathematical concepts and might support
students developing ideas. For instance, questions such as why only one or why twenty suggest
the need for more trials. It is not clear from the teachers’ questions if they were aware of the
misconception first identified by Konold (1989; 1991) called the outcome approach. Students
with an outcome approach to probability believe they need to predict what will happened on the
next trial of an experiment rather than what is likely to occur or what will occur most often after
numerous trials. Students holding this misconception would not see a need for performing more
than one trial. Konold’s research suggests students with this misconception would feel
comfortable making a decision based on only one trial.

 Misconceptions surrounding the effect of sample size are well-established within the
literature (e.g., Tversky and Kahneman, 1982) and are notoriously difficult to modify. Although
it is not possible to know how students would respond to, “Why stop at 20 trials?” or “How can
you prove room A and room B are equally likely?” it is likely that the teachers are
underestimating how difficult it is to help students see a need for a large sample size.

Scenario 3
Unlike the other scenarios the final scenario we chose to share in this paper was not initially

identified while the teachers solved the maze problem. This scenario is related to the
overgeneralization of rational number concepts in determining experimental probabilities.

In a classroom, after all trials were run and experimental probabilities were
recorded on the board, a teacher asked students to find the experimental
probability for the entire class. The results from the class were as follows: 3/20,
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7/20, 8/20, 9/20, 6/20, 5/20. One of the students found that the experimental
probability for the class as 38/20.

The original interaction differed slightly from this scenario. The students in the class had all run
a different numbers of trials and it was not a student but the teacher that asked the students to
“find a common denominator and add the fractions.” The students were currently learning about
the addition of fractions and the teacher believed this would be an excellent opportunity to
practice the concept.

The participating teachers identified the mathematical concept in the following manner, “The
student lacks an understanding of why you don’t add the fractions. The part and total (whole)
both changed.” Although the language of fraction, part, and total are problematic because it can
lead to the misconception originally exhibited of “adding the fractions” the teachers appear to
have identified the main mathematical concept of ratio. The importance of understanding ratio
and relative frequency is critical for students in the development of probabilistic thinking
(Garfield and Ahlgren, 1988; Fischbein, Pampu, and Manzit, 1970). These and other studies
highlight the need for students to be careful of overly generalizing their learning of rational
number concepts and procedures.

The teachers’ suggestions for these students were the following:
• What does 38/20 mean?
• Is 38 out of 20 more than or less than 100%?
• Is it possible to have a probability greater than 100%?
• Why should we add the top and bottom and not just the top?
• What is the total number of trials for the entire class?
• Was the experiment only performed 20 times for the entire class?

The teachers’ first three questions focus on the incorrectness of reporting a probability greater
than one. The last three questions focus on trying to help the students understand that as the total
number of trials changes it is important to reflect this change in the ratio that is reported. These
questions, however, do not directly attack the misconception that combining experimental
probabilities is different than adding fractions and the underlying conceptual difficulty.

Conclusions
Each of the scenarios above provide a glimpse of the ways in which teachers must deal with

a variety of content and pedagogical issues raised by students when working with an open-ended
mathematics task. These issues are particularly difficult for teachers when the content addressed
within the task is unfamiliar and often counter-intuitive such as probabilistic reasoning. As
exhibited by the final scenario often the misconceptions of students are those also held by
teachers and most adults (Fischbein & Schnarch, 1997). In addition, it appears from each of these
scenarios that the teachers had a difficult time correctly identifying and naming the main
mathematical concepts displayed in each scenario. Due to the importance of language and
communication in developing mathematical ideas (Cosogno, Gazzolo, Boero, 2006) this
difficulty may lead to continued misconceptions by students. On the other hand the teachers did
appear to directly address the main misconceptions of each scenario in their questions for the
students, which suggests their pedagogical content knowledge might occasionally out pace their
content knowledge. This finding is particularly interesting given the extensive studies
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documenting teachers limited content knowledge and its potential impact on student
understanding (e.g., Ball, Hill & Bass, 2005).

Implications
This project is an attempt to move forward our understanding of the specialized knowledge

of mathematics necessary to effectively teach probabilistic thinking. Although a focus on one
problem limits the number of topics within probability that might be explored, we argue that this
narrow slice allows for a different, but more connected and nuanced view of teacher content and
pedagogical content knowledge than has been previously reported in the literature. Clearly some
topics associated with the maze problem were more fully explored by our teachers than others
because of the individual demands of the age of their students, their state standards, and the
affordances and constraints of the maze problem. However, the benefit of providing a common
context from which teachers and teacher educators can explore probability we believe outweighs
the limitations of focusing on a single task.

Our goals were to help both teachers and teacher educators develop their understanding of
how to support the development probabilistic reasoning in students. Since teachers are likely to
exhibit some of the same misconceptions as their students, there is a strong need for teachers to
think deeply about the mathematics of the task before implementation. Moreover, this experience
can provide opportunities to analyze different solution strategies, possible student
misconceptions, and possible pedagogical moves.

The strong link between misconceptions of students on the maze problem and the literature
on student thinking in probability provided a grounded opportunity to examine teacher thinking
and extend the research on specialized knowledge of mathematics in the area of probability.

This study highlights two areas for further research to better understand specialized
knowledge of mathematics. First, teachers need support in selecting and using appropriate
mathematical language for diagnosing and discussing the mathematical concepts of a task, and in
their interactions with students. Second, teachers may benefit from exposure to research on
student thinking directly tied to problems of practice, such as the scenarios described in this
paper. Research on professional development that incorporates these key features will continue
to expand our understanding of the specialized knowledge of mathematics necessary for teaching
probability.
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Santiago Inzunsa
Autonomous University of Sinaloa (Mexico)

sinzunza@uas.uasnet.mx

In the present article results of a research with undergraduate students about confidence
intervals and their relationship with sampling distributions in a simulation environment are
reported. The results show that the students developed correct meanings of concepts like
influence of the sample size in sample variability and margin of error in the intervals, but not in
the wideness of the intervals. Some difficulties in the interpretation of results of sampling
distributions were detected.

A fundamental concept that gives the base for the study of the statistical inference is
sampling distributions. A sampling distribution represents the value that a statistic can take (e.g.
a proportion) in each random sample in a size given that it is possible to extract them from the
same population.

The experience from many teachers and results of some research coincide in that sampling
distributions constitute a difficult concept for many students. According to Chance, delMas &
Garfield (2004), the difficulty resides in that the sampling distributions require integration and
combination of many statistics ideas, such as distribution, sample, population, variability and
sampling.  Lipson (2002) on his side, attributes the difficulty to the dynamic process of sampling
and the diversity of mathematical and symbolic representations of the concept. Other researchers
like Moore (1992), associate the difficulties in comprehension of the statistical inference and
sampling distributions, to the traditional teaching that has prevailed up to now, -mostly in
university level-, where a approach based on theory of probability is adopted, which is
considered one of the most complex areas of mathematics.

In the presence of such difficulties, the teaching of sampling distributions and statistical
inference by a frequency approach based on computer simulation has been searched. Research
works made by Meletiou-Mavrotheris (2004), Lipson (2002) and Cumming and Fidler (2005)
suggest that a dynamic environment along with multiple representations may help students to
develop an adequate comprehension of these topics. Our research work finds itself in this line.

In the present work we have established the following question, what meanings do students
assign to confidence intervals and its relationship with sampling distributions in a computer
simulation environment, like the one that Fathom software gives?

Theoretical Framework
In this study, we use the meaning of a mathematical object as stated by Godino and Batanero

(1998). In this model, the meaning is conceived as a practical system used by people to solve a
field of problems where the concept arises. This system can be observed by means of various
elements involved in mathematical activity developed by people in solving problems. There are
five elements or meaning components:
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1. Problem-situations (phenomenological elements). It refers to a field of problems or
situations where the concept under study arises.

2. Language (representational elements). It is any verbal or written representation used to
represent or refer to concepts and features involved in a problem.

3. Actions (procedural elements). These are the procedures or strategies used in solving
problems.

4. Concepts and properties (conceptual elements). These are concepts, properties and their
relationships with another concepts involved when solving a problem.

5. Argumentations (validative elements). The argumentations or validities used to convince
others of the validity of our solutions to the problems or the truth of the properties related
to the concepts.

The comprehension of a mathematical object consists of a continuous and progressive
process where students acquire and connect different elements involved in the meaning of
concept.

Methodology
The study was carried out with a group of 24 students from the Public Politics School of the

Autonomous University of Sinaloa (Mexico). The study was conducted when an introductory
course on Probability and Statistics was taken by the students. Before of each simulation
sessions, the students solved problems by means of probability formulas and tables. Each of
these topics was accompanied by a theoretical explanation with computer simulation by the
teacher.

Three activities were designed (1.5 hours each one) that involved sampling distributions of a
proportion, and they were linked with the confidence intervals. Each of the students had its own
computer to solve the activities. At the end of the activities a questionnaire was provided to
evaluate its understanding and some students were interviewed. A learning process was designed
where the participants’ students themselves built a conceptual meaning based on the solved
problems. The first two activities emphasized the discovery of sample distribution properties and
sample variability mainly.  The third activity was centered in exploring relations in sample size,
distributions and reliance intervals.

The software Fathom (Finzer, 2002) allowed having three different simultaneous
representations, bound to each other, from the same situation (numerical, symbolic and
graphical). Such form allowed, by pressing a key or modifying some parameters, the immediate
generation of 1000 more samples and to visualize the changes in the representations. At the end
of the activity, the students obtained three sampling distributions for sizes of sample (20, 50 and
100) in the same screen, which allowed them to visualize patterns of behavior in the different
representations and to establish conjectures about the sampling variability, the form in which the
sample size can affect the behavior of the sampling distributions, the dimensions of the
confidence interval and the margin of error.

Results and Discussion
In the analysis of meanings constructed by the students we have considered the elements that

according to Godino and Batanero´s model (1998) compose the meaning of a mathematical
object.  When these elements are acquired and connected by the students among a series of
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activities (in this case computer simulation activities) they inform us about the developed
comprehension.  We have taken these meanings from student work with class computer sessions,
from work forms that were designed for each activity and from some personal interviews.

Phenomenological Elements
The three situations consisted of sampling distributions of a proportion. A representative

example of the type of situations contemplated is the following:
A survey made in the Faculty of International Studies and Publics Politics, with a sample random
of 20 students, indicates that 6 are smokers, that is to say, 30%.

a) It generates sampling distributions with 1000 samples of size 20, 50 and 100 respectively.
b) It calculates the mean and the standard error of each distribution.
c) It determines a confidence interval of 95% for each distribution and its respective margin

of error.

Representational Elements
In the construction of the sampling distributions process, the students made an intensive use

of representations (cases tables, charts, formulas and descriptive tables), to explore the
relationship between the sample size and the behaviour of distributions and intervals (see figure
1).  This contributed to that many students showed an adequate comprehension of the effect of
the sample size in sampling variability and the margin of error of intervals, like we will see in the
following paragraphs.

Fig. 1: Some used representations in the sampling distributions exploration.

Procedural Elements
In the simulation process of a sampling distribution, the students were required to identify the

parameters of the population (n and p) to simulate the extraction of the samples, subsequently in
another column they calculated the proportion of the samples and graphed them (see figure 1),
also they constructed a summary table with the most important descriptive measurements.

This part of the process did not imply major difficulties, because of the software flexibility
and the experience of the first activity; they were able to continue with the rest with a minimum
intervention of the researcher.
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Conceptual Elements
The main concept around which the attention of the study was centered was the sampling

variability, the effect of the sample size in the sampling distributions and its relationship with the
confidence intervals.

In the course of the activities the majority of the students demonstrated an adequate
conception of the sampling variability and the expected value of the proportion in one sample.
This was due to the activity of the students with the software in which they simulated a repetitive
extraction of samples and observed that the results, if they varied from one sample to the other,
frequently they corresponded to an interval close to the parameter.  For example, once the
simulation activities were concluded, in the context of a problem that signalled that in the
Mexican population approximately 30% of obese children (binomial population), a student
(Karina) was asked to answer what the results of the simulation in the Fathom cases table meant
to her. (See figure 2)
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Fig. 2: Simulation Developer by Karina

R: What does the first number in the table mean?
K: That in the first sample there are 39 obese children, 33 in the second.
R:  How many obese children would you expect in a sample of 100?
K:  30
R: But there is a sample of 21.
K: The result is not always the same, they vary.
R: Could you tell me a variation interval?
K: Approximately from 25 to 35.

Another student (Rosario) in the same context answered as follows:
R: Could you explain the meaning of each of the numbers that appear in the table?
Ro:In case 1 there are 20 obese children from the 100 children in the population.
R: What do the 100 numbers represent?
Ro:100 samples
R:  Is it normal that the sample results vary?
Ro: Of course, you do not always get the same.
R:  What would be the variation interval?
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Ro: From 24% to 34% approximately.
We can see that both students have constructed a correct meaning of sampling variability

since they identified that the results vary from one sample to another and they defined an
acceptable variation interval around the parameter.  This is due to the availability of a chart with
a great grouping of samples and their graphic representation. In other words, the representational
elements of the software have an important impact in the discovery of properties and the
construction of the sampling variability concept.

On the other hand, the sample size influences in sampling distribution properties and its
relationship with intervals, the activities were designed so that students simulated sampling
distributions for sample sizes of 20, 50 and 100.  Simultaneous histograms of distributions were
used so that students identified behaviour patterns easily (see figure 3) and the results were
captured in a chart to help interpretation.

In the first activity students made inaccurate descriptions of the behaviour of the distributions
in relation with the sample size. But, in the following activities, they were asked to focus their
attention in the center, the dispersion and the form to be able to discover the properties. Once
more the software representations contributed in an important way so that the majority of the
students constructed a correct meaning of the effect of sample size in the behaviour of sampling
distributions. The interviews and the final survey demonstrate the results. For example in the
final interview with a student (Adalberto) answered the following:

Fig. 3: Sampling distributions for different sample sizes

R: Do you think there is a relationship between the mean of each sample and the mean of the
population?

A: Yes because in both the 100 sample size and in the 200 sample size there is no variation
and they are near 0.30. That indicates that the 30% data about obese children of the
population is important.

R: In the standard deviation? In the sample of 100 we have that it’s worth 0.04 as opposed to
the sample of 200 that is 0.03. We can see that the biggest sample has a minor standard
deviation.

R: What does that mean?
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A: It gives us more confidence because the ranking is smaller.
R: Now construct a distribution with sample size of 500 and compare the three distributions.
A. Practically the mean is the same, it equals to 0.30, or 30%, and dispersions lower, now

they are worth 0.02.
R: Which of the three is more precise?
A: The one with a sample size of 500 is more precise because the standard deviation is

smaller and the mean is closer, actually is equal to the population proportion.
R. If we continue incrementing the sample size, what do you think will happen with the

center of the sampling distribution?
A: It would be the same, it does not vary.  It would be equal to 0.30 and the standard

deviation will continue to decrease.
R: If we generalize.
A: For diverse sample sizes, we see that the mean is equal (it does not vary a lot) but as the

population is bigger the dispersion is smaller.
We observe that Adalberto understands the effect of the sample size in the center and

variability of the sampling distributions and he adequately relates it with precision. Karina
answered as follows:

R: Construct another sampling distribution of a size of 200 and observe the differences in the
center.

K: The mean is the same in both cases, 0.30.
R: Do you think there is a relationship with the 30% of the obese children in the population?
K: Yes
R: Why?
K: Because it’s based on the 30% of the population.
R: What happens with the standard deviations?
K: It decreased from 0.04 to 0.03.
R: Now construct a distribution with a sample size of 500.
K: The mean is the same and the standard deviation decreases even more.
About the relationship between sampling distributions and intervals, students were asked to

make calculations in a theoretical manner and by simulation. The result of the simulation was
very similar and in many cases almost equal to the theoretical results. Thus, the simulation
besides of allowing the exploration of the involved concepts and to help understanding the
relation among them, can be a tool that provides results sufficiently precise to solve problems.
For example, a student obtained the following results in a problem which parameter was p=0.30
and a confidence level of 95%.

Size of
sample

Simulation results Theoretical results

Interval Error Interval Error
20 09% - 51% 21% 10% - 50% 20%
50 17% - 43% 13% 17% - 43% 13%

100 21% - 39% 9% 21% - 39% 9%
The fact of calculating the interval limits and the margin of error for the different sample

size, and concentrate them in a chart contributed to the students understanding of the effect of
sample size in the wideness of the intervals and the margin of error. In a question in the
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worksheet where they were asked to decide the sample size that gives a best precision (for a
given confidence level), all answered 100. Also, they were conscious of the effect of increasing
the confidence level in the wideness of the interval. Lets see some answers:

The intervals become wider, but the margin of error increases. (Rosario)
For the 99% they become wider and include all data. (Issel)

      They become wider, but the result would not be precise. (Laura)
We can observe that these students have noticed that the confidence level increase the

wideness of the interval, but at the same time it makes it more inaccurate and increases the
margin of error.

In a final questionnaire, 17 students manage that statistics are variables and 15 of them
identify that this variation was in concordance with a distribution form-predictable pattern.
While, 21 students indicated that the statistics serve to estimate parameters. Twenty two of the
students indicated that the variability of the sampling distribution diminished as the sample size
increased and 18 indicated that the average distribution is not altered, and only three of the
students identified that the mean of the sampling distribution is equal to the population
parameter.

In an item that contained the graph of three sampling distributions, 19 students assigned the
correct way of the sample sizes taking care of the variability and 17 correctly identify the
average of the population from which the samples come. Respect to the sample size effect in the
margin error of a confidence interval, all the students indicated that this diminishes it as increases
the sample size, but 15 of them incorrectly indicated that the wide of the interval increases.

Some students had difficulties to interpret the simulation results when these are concentrated
in the graph. They saw the sample distribution, when in fact it was a set of samples. This
difficulty has been identified in a previous study with another type of students (Sanchez &
Inzunsa, 2006).

Conclusions
From the design of the activities that were emphasized in the exploration of sampling

variability, the search of relationship between the sample size, the sampling distributions and the
confidence intervals, to the dynamic characteristics and the representational elements of the
software were all key elements so that a lot of students constructed correct meanings of
implicated concepts. Even though various students were not able to develop a correct meaning of
some implicated concepts, the results show that there exists a potential in the computer
simulation tool in dynamic environments to equip abstract and complex concepts with meaning,
like sampling distributions and confidence intervals.
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TEACHERS’ PROBABILISTIC THINKING RELATED
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This study investigated teachers’ understanding of probability related to situations that tend to
elicit the use of the representativeness heuristic. Sixteen K-8 teachers’ probabilistic thinking was
examined before and after being involved in learning to use simulation-based activities designed
to address misconceptions related to the representativeness heuristic. Findings from this study
suggest that teachers can increase their probability content knowledge and develop more
sophisticated understandings while also enhancing their instructional practices for teaching
probability through simulation-based activities.

The existence of probabilistic misconceptions has been well documented for the general
public (Shaughnessy, 1992; Kahneman, Slovic, & Tversky, 1982). One common misconception
in probability occurs when a person assesses the probability of an event based on how
representative the event is of its parent population or how closely the process by which it is
generated reflects the randomness of the event (Kahneman & Tversky, 1982). In such cases a
person is using the representativeness heuristic (Kahneman & Tversky, 1982). For example, the
judgment that the lottery number 12345 is less likely to occur than the more “random” looking
93827; or the conclusion that after tossing a coin four times and getting HHHH that on the next
toss it is more likely to get a Tails (to “balance out” the Heads and reflect the expected 50:50
ratio of Heads to Tails).

Although probabilistic misconceptions have been studied for the general public, very little
research has specifically investigated teachers’ understandings and misconceptions of probability
and their pedagogical understandings related to probability (Stohl, 2005). Further, although the
use of probability simulations has been advocated as an important way for students to investigate
situations of uncertainty (NCTM, 2000), little research has investigated teachers’ use of
simulation tools for instruction as well as teachers’ understandings gained from the use of
simulations (Stohl, 2005).

The purpose of this study is to investigate teachers’ understanding of probability related to
situations that tend to elicit the use of the representativeness heuristic. This study examines K-8
teachers’ probabilistic thinking before and after being involved in learning to use simulation-
based activities designed to address misconceptions related to the representativeness heuristic.
This study investigates the existence of teachers’ misconceptions and the role of simulation-
based activities as both a pedagogical tool and a learning tool for teachers. This study addresses
the following research questions: (1) Do K-8 teachers’ have probabilistic misconceptions related
to the representativeness heuristics? (2) Do the probabilistic understandings of teachers change
as a result of working with simulation-based activities designed for K-8 classrooms? (3) Are
teachers able to retain these new understandings and transfer them to similar tasks?
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Methods and Procedures

Sample
This study involved 16 practicing K-8 teachers involved in a K-8 mathematics specialist

masters program in the southeastern part of the United States. These teachers were involved in a
two-week summer mathematics content course on probability and statistics designed for K-8
teachers.

Procedures
Teachers were given four tasks related to the representativeness heuristic as part of a pre-test

for the summer course. At the end of the two-week course a post-test was administered to the
teachers that included these same four tasks. Approximately six months later, the same four tasks
were administered a third time to the 16 teachers. In addition, at the six-month point, teachers
were given four new, but similar, tasks related to the representativeness heuristic. These new
tasks were given to test for transfer of knowledge.

The Summer Course
The two-week course focused on both content and pedagogy related to probability and

statistics for grades K-8. During the two-week course teachers were involved in learning to use
simulation-based activities involving both regular (e.g., coins, dice) and irregular (e.g., tacks,
loaded dice) random devices. They also learned to use simulation tools involving the computer
(e.g., Probability Explorer, [Stohl, 2002]) and the graphing calculator (e.g., ProbSim on the TI-
84 Plus). Several activities were directly related to the representativeness heuristic and related
concepts such as independence and the impact of sample size on variance.

Results and Discussion
The tasks involved in this study were based loosely on those used by Kahneman & Tversky

(1982) and Shaughnessy (1981) to elicit misconceptions related to the representativeness
heuristic (see Tables 1-4). Each of the tasks are presented in turn along with a summary and
discussion of teachers’ responses. Each table presents the frequency of responses for the four
tasks on the pre-test, post-test (end-of-course), and transfer test (after six months). Finally, the
four new tasks also administered on the transfer test are discussed (see Appendix).

For Task 1 (see Table 1), prior to the course, a majority of teachers answered that there
would be about 50 heads. Their explanations reflected the idea that the number of heads to tails
should coincide with the expected 50:50 ratio. One teacher explained in response to how many
heads one would expect to get, “I guess 40 more times. Since there is a 50/50 chance that it will
turn up heads each time you toss it, out of 100 it would be about 50 times.” This explanation
reflects the notion that the sample of tosses needs to balance out to 50/50.
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Table 1. Description of Task 1 and the Frequency of Teachers’ Responses.

An experiment requires you to flip a penny 100 times and record whether the penny
comes up heads or tails. On the first 10 flips the penny comes up heads. After flipping
the penny 90 more times, how many heads would you expect to get out of the total
100 flips? Explain.

55/45 50/50 Other
Pre 4 11 1
Post 15 1 0
Transfer 11 2 3

After instruction, a majority of the teachers answered that they would expect 55 heads. Their
explanations reflected the notion that the second set of tosses was independent from the first 10
tosses and thus the total number of heads would not reflect the 50:50 ratio. One teacher who
changed her answer from the pre-test explained, “because each flip is independent you still have
a 50/50 chance each time, 50% of the remaining flips would be 45 plus 10 heads already flipped
would be 55.” After six months, based on their responses, eleven of the teachers seemed to
maintain this level of understanding for this task. Three teachers’ provided ‘other’ answers, two
of which seemed to reflect a correct intuitive sense for this task, but their explanations were
incomplete or non-existent.

For Task 2 (see Table 2), initially, a majority of the teachers correctly explained that either
Heads or Tails was equally likely to occur after four successive tosses of a Head, however, there
were five teachers that believed that it was more likely for a Tails to occur. For example, one
teacher explained, “I would expect it to land on tails simply because the common expectation is
that it has landed on heads 4 times, so it is ‘time’ for it to land on tails.” After instruction, 15 out
of 16 teachers explained that either Heads or Tails was equally likely. Most of the teachers
correctly explained their choices based on the notion of independence of events. For example,
one teacher who initially chose Tails explained, “there is still an equally likely chance that the
coin will land on either heads or tails. The flipping of the coin is an independent event of the
previous 4 trials.” Interestingly, several teachers still expressed intuitions leaning toward Tails
although they correctly explained why either Heads or Tails was equally likely to occur. After
six months, based on responses, teachers overall seemed to maintain a correct understanding of
this situation, and based on their explanations seemed to maintain an increased understanding of
why their choice was correct.



417

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Table 2. Description of Task 2 and the Frequency of Teachers’ Responses.

If a fair coin is tossed, the probability that it will land heads up is 1/2. In four
successive tosses the coin lands heads each time. What do you expect to happen when
it is tossed a fifth time? Explain your answer.

Heads Tails Either Other
Pre 0 5 11 0
Post 0 0 15 1
Transfer 0 1 14 1

For Task 3 (see Table 3), seven out of 15 teachers initially chose HTTHTH as more likely to
occur, most often claiming that this choice reflected the expected 50:50 ratio of Heads to Tails.
One teacher explained that HTTHTH “represents 1 head per 2 flips, 1:2 or 50% chance.” After
instruction, all of the teachers chose “the same chance for each of these sequences,” and after
six-months 15 out of 16 teachers chose the correct response for this task. However, several
teachers seemed to base their correct choice on the idea that each individual flip in the sequence
was independent making each of the sequences equally likely, “the coin has a _ chance each time
it is flipped to come up heads or tails. It doesn’t remember what it did before,” instead of treating
each sequence as an individual event among a sample space of equally likely events. For
example one teacher explained, “out of a possible 26 set of possible outcomes, these possibilities
are each equally likely.” Although the later represents a subtle shift in explanation, it represents a
more complete understanding of the situation. Overall, teachers’ intuitions about the situation
seemed to have shifted away from a dependence on the representativeness heuristic; however,
only six teachers’ explanations represented this complete understanding on the post-test.

For Task 4 (see Table 4), only eight out of 16 teachers initially chose the small hospital as
more likely to have more days when at least 60 percent of the babies born were girls. As one
teacher claiming that it makes no difference explained, “it wouldn’t make a difference because it
is a percent of boys to girls, so it doesn’t matter how many of each.” However, after instruction,
all but one of the teachers chose the ‘small hospital.’ Moreover, several of the teachers correctly
used their understanding of the law of large numbers and its relationship with sample size to
describe the differences in variability around the expected value and thus that the number of girls
born in the small hospital would be more likely to be at least 60 percent. As one teacher
explained, the “law of large numbers states that the bigger your sample size of data the closer
you will be to the theoretical probability. You can deviate more from the TP [theoretical
probability] in a smaller data size.” After six months, 13 of the 16 teachers still chose the ‘small
hospital’ and in most cases were able to correctly explain their answers.
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Table 3. Description of Task 3 and the Frequency of Teachers’ Responses.

If a fair coin is tossed, the probability that it will land heads up is 1/2. If the coin is
tossed 6 times which of the following is more likely to occur? Choose one.

a) HTTHTH b) HHHHTH c) The same chance for each of these sequences.
Give a reason for your answer.

HTTHTH HHHHTH Same
Pre 7 0 9
Post 0 0 16
Transfer 1 0 15

Table 4. Description of Task 4 and the Frequency of Teachers’ Responses.

The chance that a baby will be a girl is about 1/2. Over the course of an entire year,
would there be more days when at least 60 percent of the babies born were girls:

a) In a large hospital b) In a small hospital c) Makes no difference.
Give a reason for your answer.

Large Small No Difference Other
Pre 2 8 5 1
Post 1 15 0 0
Transfer 2 13 1 0

At the six-month point four additional tasks were also administered to the teachers (see
Appendix). These tasks were created to assess transfer of understanding associated with the
representativeness heuristic as reflected in the first four tasks. Transfer Task 1 was intended to
assess transfer of understanding associated with the original Task 3. In this new task, instead of
working with sequences of coin tosses, the item referred to lottery numbers and asked which of
the numbers is more likely to be a winner. For this new task all 16 teachers indicated that the
three lottery numbers had the same chance of winning.

Transfer Task 2 was intended to assess transfer of understanding associated with the original
Task 4. In this new task, instead of working with births in large and small hospitals, the item
referred to drawing different sized samples of balls (10, 100, or 1000) from an urn containing
black and white balls in a 50:50 ratio in hopes of getting a sample of balls that is at least 70%
black. All of the teachers indicated that a sample of 10 balls would be most likely to result in
70% black.
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Transfer Task 3 was intended to assess teachers’ understanding related to the notion that
when conducting an experiment that the experimental probability approaches the theoretical
probability as the sample size gets larger, but that in absolute number the average discrepancy
from the theoretical value gets larger. For example, in this task, with the large number of tosses
(100,000) the proportion of heads to total tosses would be very likely to be close to 50% (i.e.,
within 0.51 and 0.49). However, from an absolute point of view the discrepancy between the
number of heads and tails could be large in absolute number (e.g., 2000) and still represent a
proportion relatively close to the theoretical. All teachers indicated that it would be very likely
that the proportion of heads would be between 0.49 and 0.51; however, half of the teachers also
indicated that it would be very likely for the number of heads to be within 300 of the number of
tails (and one additional teacher who chose ‘False’ but who’s explanation indicated otherwise).
These teachers’ explanations seem to convey correctly that as the sample size gets larger that the
proportion of heads would approach 50%: “these numbers are close to 50% or _ which is what
you expect.”  However, these teachers seemed not to differentiate between the proportion of
heads and the absolute number of heads and recognize that it is unlikely for the number of heads
out of 100,000 tosses to be close to 50,000 (e.g., within 50,150 and 49,850). Of the eight teachers
who indicated that it would not be very likely for the number of heads to be within 300, only
three gave clear explanations for their choice, the others gave incorrect or incomplete
explanations, or only focused on the proportion being close to 50%. This inconsistency may
suggest that some teachers still maintain some notion of “balancing out.” However, given the
overall success on the other tasks, it is unclear whether this represents a clear dependency on the
representativeness heuristic, but instead a misunderstanding of the relative proportions, an
overextension of the law of large numbers, or a level of task novelty beyond the understanding
necessary for success on the other tasks. Further investigation would be necessary to clarify this
inconsistency.

Transfer Task 4 was intended to assess transfer of understanding associated with several
concepts related to the representativeness heuristic. In this task participants were asked to choose
from two sequences of 150 tosses of a coin the one that was “made up” and not based on an
actual experiment. Most of the teachers (13 out of 16) chose James’ sequence as the one that was
made up explaining that the  sequence, for example, “bounced back and forth between H/T very
evenly,” “never has more than 3 in a row,” “seems to follow a pattern,” or “looks like he is trying
to make it look like 50-50.” Two other teachers indicated that they couldn’t tell, one indicating
that these sequences were both equally likely. Overall, explanations reflected a recognition of the
notions of the representativeness heuristic that are often misapplied in situations of uncertainty.

In general, responses to the original four tasks indicate initial dependence on the
representativeness heuristic in situations of uncertainty. Results from the tasks after instruction
indicate change in teachers’ understandings, in that, teachers relied less on the representativeness
heuristic and were, to a greater extinct, able to provide better explanations for their answers.
After six months these understandings seemed to be maintained and for the most part were
transferred to new tasks. However, the novelty of one of the transfer tasks may have been too
much for the understandings gained from the work with the simulation activities.
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Conclusions
The purpose of this study was to investigate teachers’ understanding of probability related to

situations that tend to elicit the use of the representativeness heuristic. In particular this study
considered the role of simulation-based activities for enhancing both the pedagogical and content
knowledge of teachers related to their understanding of probability. Based on the results of this
study, some teachers were initially found to have probabilistic misconceptions related to
situations involving the representativeness heuristic. However, after instruction involving
simulation-based activities, overall, teachers’ seemed to be less likely to depend on the
representativeness heuristic to make probability assessments. The explanations for their answers
were also found to be more sophisticated and reflect understandings of independence and
sensitivity to sample size. Further, in general, these understandings were maintained for at least
six months, and were successfully applied to new tasks, although these understandings may be
limited to more familiar situations and less transferable to the most novel situations. Overall,
findings from this study provide promising evidence that teachers can learn probability content
and develop more sophisticated understandings while also enhancing their instructional practices
for teaching probability through simulation-based activities.
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Appendix

Transfer Tasks and Frequency of Teachers’ Responses
Number of teachers choosing a particular response is in parentheses and bolded. The correct

response is in italics.

(1) In the State Lottery game of Pick-5 a player picks 5 numbers from 0-9 and the order in which
they will come up. Which of the following sequences is more likely to be a winner?

a) 12345 (0) b) 66667 (0) c) 59372 (0) d) The same chance for each of these sequences. (16)
Give a reason for your answer.

(2) You are selected to participate in a game with the possibility of winning $5,000. In this game
you will choose balls with replacement from an urn that contains 50% black balls and 50%
white balls. In order to win the $5,000 the sample of balls that you draw must be at least 70%
black. You can choose to draw 10, 100, or 1000 balls. Which would you choose?

a) Draw 10 balls (16) b) Draw 100 balls (0) c) Draw 1000 balls (0) d) It makes no difference
(0)
Give a reason for your answer.

(3) If a fair coin is tossed, the probability that it will land heads up is
1

2
. A fair coin is tossed

100,000 times. Indicate whether the following statements are true or false.
a) It is very likely that the number of heads will be within 300 of the number of tails.

True (8) False (8)
b) It is very likely that the proportion of heads will be between 0.49 and 0.51.

True (16)   False (0)
Explain your answers.

(4) Two students were each asked to toss a penny 150 times. One of the students did the
experiment and recorded the results and one student made up their results. The students
recorded their tosses in order using H for Heads and T for Tails. Following are the students’
reports. Which student made it up? How can you tell?

James: HTHTHTTHHTTHHTHTHTHHHTHHTTHTHTHHTTTHHTHTHTTHHTH
THHHTTTHTHHTTHTHTHHTTHTHTTHHTTTHTHTHHTTHHTTHTHT
HHTTTHTHTHTHTHHTTHTHHTTHHTTTHTHTHTHTHHTTHTHHTTH
HHTTHTHHH

Adam: HTHTTTTHTHHTHTHTHTTTHTTHHTHTTHTHTTTHTHHHTHHHHHT
HHTTHTHHHHHTTTTTHHHTTHHTHHTHTTHTHHTTTTHTTHHTHTH
TTHTTTTTHHHHHHHHHHTHHTHTTHHTTTHHHHHTHHTTTTHHTHT
HTTHHHHHT
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James (13) Adam (1) You can’t tell (2)
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Arithmetic mean is a concept which, although simple in form, is quite complicated to fully
understand. The purpose of this exploratory study was to examine how experts understood
arithmetic mean. Analysis of task-based interviews led to an articulation of two distinct
conceptions of arithmetic mean: understanding the algorithm for arithmetic mean and
understanding arithmetic mean as a mathematical point of balance. The experts did not have
a readily-available description of how these conceptions were interrelated. Further analysis
of a follow-up telephone interview led to a hypothesized connection between the conceptions
through the use of leveling-off. This hypothesis lays a foundation for future studies of how
children may develop a fuller and more connected understanding of arithmetic mean.

The arithmetic mean is a foundational concept for the development of basic data analysis
and statistical understandings. Although quite simple from the standpoint of the algorithm, it
is a quite complex concept to understand (Mokros & Russell, 1992). Research has been
conducted to examine either how children might best come to understand arithmetic mean or
what they currently understand (Brousseau, Brousseau, & Warfield, 2002; Cai, 1998; Cai &
Moyer, 1995; Cobb, 1999; Cortina, 2001, 2002; Zawojewski & Shaughnessy, 2000).
Descriptions of what is needed to understand arithmetic mean deeply have been limited to
non-research based reflection. The research study presented here was conducted to examine
how experts understand arithmetic mean. The descriptions of their understandings of
arithmetic mean are used to hypothesize how educators may help students construct a deeper
understanding of arithmetic mean.

Theoretical Framework
The current study was basically constructivist in nature, building upon the major premise

that knowledge is not “passively received through the senses or by way of communication,
but must be actively built up by the cognizing subject” (Von Glaserfeld, 1995, p. 18). This
building up occurs in the learner through a process of assimilation and accommodation of
understandings as described by Piaget (Singer & Revenson, 1996). That is, students learn by
reflecting on what they have done. They then either organize what they have reflected upon
by fitting it into an existing schema (assimilation) or by reorganizing their schema
(accommodation) to take the new reflection into account. To develop instructional
interventions that assist students in “building up” their understanding of a concept, it is useful
to have a sense of what the students currently understand and a description of what the goal
understanding might be. In this way, thoughtful instruction can be developed that allows
students to reflect on the instruction in such a way that they build up from the current
understanding to the goal understanding.

Because the study is based on constructivism, the articulation of the experts’
understandings are my description, as a researcher, of what I perceive to be the critical
concepts, or relationships between concepts, of others’ constructed understanding of
arithmetic mean. A goal of the articulation is that it be useful for mathematics education. The
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descriptions of understanding are used to hypothesize ways students may construct
understanding of arithmetic mean.

Methodology
The study was exploratory in nature. To develop an articulation of understandings of

arithmetic mean, task-based interviews were used to probe the nature of the understandings of
several individuals. These individuals were chosen because of their likelihood of possessing
sophisticated understandings of arithmetic mean. The methodology was designed to provide
information to explore the various ways the experts were thinking about arithmetic mean. An
initial interview was developed based upon possible understandings of arithmetic mean that
were identified from existing research. After conducting the initial interview, the tasks were
adjusted to enhance the information about the nature of experts’ understanding of arithmetic
mean. For example, in the initial interview the expert was given the following question (titled
the “Class Average Problem”):

In a certain class there are more than 20 and fewer than 40 students.  On a recent
test the average passing mark was 75.  The average failing mark was 48 and the class
average was 66.  The teacher then raised every grade 5 points.  As a result the
average passing mark became 77 1/2 and the average failing mark became 45.  If 65
is the established minimum for passing, how many students had their grades changed
from failing to passing?

The expert ended up using variable replacement and algebraic techniques to solve the
problem. This particular way of solving hid possible understandings of arithmetic mean, so
they task was changed. Experts in the rest of the interview were asked the following problem
and were also asked not to use algebra or variable replacements in their solution.

A class of students took a test. The class average on the test was 68. The average
grade of the students who passed was 80 and the average grade of the students who
failed was 64. What percentage of the class passed?
The interview tasks were designed to help answer questions raised through the review of

pertinent literature. The tasks used were designed to be open-ended in order to encourage the
person being interviewed to answer in ways that may not have been predicted by the
researcher.  Three experts were interviewed initially.  An analysis of the responses in the
interview was then conducted and the results were used to hypothesize and articulate what
might be the understandings of arithmetic mean expressed by the experts. The interview
questions were then studied. Wording that was considered unclear by the researcher was
adjusted and additional questions to probe newly hypothesized understandings were added.
A subsequent interview was then created and conducted with four new participants.  The
analysis of this second phase of interviews was used to continue to hypothesize and articulate
understandings. Two very different ways of understanding arithmetic mean were articulated.
These understandings appeared to be disjoint in the experts’ ways of thinking. This led to a
focus in the study on the possible connections of the two different understandings. A
telephone interview was then conducted with all previous participants in order to clarify
understandings related to this focus. The analysis of this new interview added to the overall
articulation of understandings of arithmetic mean.
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Results
Two distinct conceptions of arithmetic mean appeared to be used by the participants. The

first conception is that of understanding the algorithm for arithmetic mean. The second
conception is that of understanding arithmetic mean as a point of balance in the data set. Both
conceptions have been referred to in previous literature from researchers’ reflections on
personal understanding. The presented articulations here use research as a basis for the
descriptions and attempt to be more specific.

The experts who were interviewed all understood the algorithm for the arithmetic mean.
When working with data sets they examined the total accumulation and then shared this
accumulation equally with each data point. The experts demonstrated an understanding of the
division that was being done as partitive division. When the given representation (i.e.
individual data point each represented by a bar in a bar graph) allowed, they would share the
accumulation without finding the total accumulation first. The experts also understood that
the result of the fair sharing was a per-one ratio; the amount any one data point would be if
all accumulation were equally shared. For example, when asked how arithmetic mean was
different from the median, one expert described a situation where one person had a lot of
money in his pocket and nine people had very little. This was not a good situation for the
arithmetic mean because the average money would be “mostly that one person’s money.” The
expert understood that the total accumulation was shared equally and was supposed to
represent what the accumulation would be per one person.

Additionally, the experts viewed the arithmetic mean as a ratio-as-measure (Simon &
Blume, 1994). That is, the arithmetic mean could be used to replace an entire data set with
just one number. The arithmetic mean algorithm (add everything up and divide by how many
points you have) results in a per-one ratio. However, this one ratio can represent the entire
data set. In the Class Average Problem (presented in the methodology section), one expert
used the given average to represent the entire set of students that were in the classification
“passing” and the other given average for those students in the classification “failing”. He did
not view it as a list of the same number repeated a certain number of times (as other expert
did) but rather the one number (ratio-as-measure) represented the entire group. The experts
did not view the arithmetic mean as simply a number result of a particular formula; rather
they understood the implications of the algorithm as the result of partitive division and as a
ratio.

The second way that experts understood the arithmetic mean was as a mathematical point
of balance. The experts in the study used the word “balance” to describe the work that they
were doing with the arithmetic mean. The activity that was most often related to the use of
this term was that of equalizing the deviations from a proposed arithmetic mean. When the
participants were attempting to find that point of balance, they would propose an arithmetic
mean, and then check to see if the deviations on either side of the proposed arithmetic mean
were either equivalent (absolute deviations) or cancelled out one another (signed deviations).
One problem given was that of a bar graph that depicted building heights. The experts were
asked to find the average building height.
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Building Height Problem

One expert drew the dashed line to propose a mean and then began to check to see how
accurate his estimate was. He added up the units of bar above the proposed mean and
compared these to the units of space to the top of the bars below the proposed mean. His goal
was to have these amounts be the same. This activity gave him the arithmetic mean.

In another task, another expert represented the deviations from his proposed mean
numerically and then “cancelled out” positive and negative deviations.  A hallmark of all of
the experts’ understanding of balance was that balance was not some notion based just on
physical experience, but rather was a mathematically precise notion of equivalent deviations.
The activity of equalizing deviations was how the expert found the mathematical point of
balance.

The study not only highlighted the two articulated conceptions of arithmetic mean but
also highlighted the point that the experts did not have an overt way to discuss how these two
understandings were related other than that they were both the arithmetic mean. The follow-
up telephone interview included the question, “Could you explain how you understand that
the arithmetic mean defined by the standard algorithm and the mean as a mathematical point
of balance are the same thing?” The experts did not have a way (beyond algebra) to show
how both concepts were the same even though they could move seamlessly between the
understandings. The experts did, however, have a way to think of arithmetic mean that
connected individually with each conception. The experts used leveling-off as a way to think
about the arithmetic mean when working with both conceptions.

Discussion
The data led me to hypothesize a possible way to relate these understandings through

the use of leveling-off. Leveling-off can be used with a bar graph representation of individual
data points. Each bar’s height represents the value of one data point. The bar graph of
individual points is not a typical representation for data points in a data set. When using
leveling-off, the total value of all the bars is never changed. Instead, taller bars have pieces
“taken off” and shorter bars have these pieces added to their bar. The activity of moving
pieces is continued until the bars are all the same height.
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Leveling-Off Illustrated

The experts understood the algorithm for arithmetic mean as a result of partitive division.
The data values were accumulated and then shared fairly with each data point. This was
equated to leveling-off by suggesting that the fair sharing could be done by simply moving
pieces of a bar graph (or numerical amounts) until every data point was the same value. Thus,
when leveling-off was completed, the height of one bar was equated with how much value
there was per-one data point.

In other tasks, the experts used leveling-off to explain how they were thinking about
arithmetic mean as a mathematical point of balance. The activity of leveling-off allowed the
experts to “visualize” the deviations from a proposed mean. In order to obtain balance, and
thus find the arithmetic mean, the pieces over and the pieces under had to be equivalent. The
experts implied that leveling-off would find a point of balance because any amount over the
mean exactly matched an (absolute) amount under the mean. In this sense, the leveling-off
was the same as numerically cancelling deviations. When leveling-off to find a point of
balance, the experts focused on the deviations from the mean and their equivalence.

Because the experts seemed to connect the notion of leveling-off with both conceptions, it
was reasonable to consider the notion as a clue to one aspect of how the two conceptions
might be connected. As the experts completed tasks, they moved seamlessly between the two
conceptions using the conception with which it was easiest to work in the given task or
representation. How did they develop this implicitly connected understanding that allowed
them to work flexibly with both conceptions of arithmetic mean? The following is a
hypothesis of how a connected understanding may develop in a child. It is generated from the
data which suggest that leveling-off is one possible connecting strategy.

A child’s earliest experiences with the concept of arithmetic mean may be with two data
points. In finding the arithmetic mean, the child may use a variety of ideas. They likely have
experiences that include finding the midpoint between the two data points. This might be
done physically, such as on a dot plot or number line, or it may be done numerically by
adding the two values and using division to share the total amount. The child may use a
leveling-off strategy such as increasing one number and decreasing the other number by the
same amount. Or, the child may think about the midpoint as equidistant from both values and
use a primitive notion of balance. This assortment of experiences might contribute, for some
learners, to a connection among notions of leveling-off, partitive division, and balance.

1 2 3 4 5 6 7
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When the data sets become larger and more demanding, the connection among these ideas
may become less obvious and therefore more difficult to make explicit. The data in this study
suggest that the notion of leveling-off may (perhaps not explicitly) continue to serve as a
connecting idea. An early understanding of arithmetic mean is to conceive of the arithmetic
mean as a fair sharing of total accumulation. This conception appears to initially involve a
specific order: First find the total accumulations and then share that accumulation equally
among all data points. This is an activity (often described by the operation of division) that
requires a total amount. However, this can develop into understanding the activity of partitive
division without first finding the total accumulation. For example, finding the arithmetic
mean in a concrete situation such as a set of Unifix towers of different heights can be
accomplished through leveling-off. Activities of this type may help the child develop a
connection between the strategy of leveling-off and partitive division. Both of these strategies
are then also connected to arithmetic mean.

As understanding of the arithmetic mean continues to develop, I hypothesize that the
focus of the child may move from the total accumulation of the data set being equally shared
to the amounts (or deviations) that data points are from an estimated mean being shared to
level-off the data. It is possible to develop either the cancelling of positive and negative
deviations or the equalizing of absolute deviations from the activity of leveling-off.
Typically, when a data set is given, the arithmetic mean is unknown (such as in the Building
Height Problem). Many children will use trial and error of moving pieces of bars to find an
equal height. However, in order to use leveling-off in a more efficient manner, an arithmetic
mean may be proposed. It is reasonable to assume a child will often have an incorrect
estimated arithmetic mean. When the child levels-off the data the result is that there will be
extra deviation in one direction or the other. This provides an opportunity for the child to
focus on the deviations. As corrections to the estimate are made, the need for equivalent
deviations becomes more apparent. Thus, leveling-off is connected to the need for equivalent
deviations.

Previous research (Inhelder & Piaget, 1958; Siegler, 1976) suggests that children take
much time to develop a conception of balance. It is possible that the conception of physical
balance as torque must be developed independently from conceptions of arithmetic mean.
Once a conception of arithmetic mean as a point where the deviations are equivalent has been
developed, the conception can then be connected with an equivalent conception used in
physical balance. It is unclear how the mathematical and physical connection is made.
However, I hypothesize that the use of representations for data sets that highlight the physical
nature of balance (such as the dot plot) may encourage the connection between the physical
and mathematical conceptions. Further research may fill out the proposed progression for
learning of arithmetic mean and determine its efficacy.
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PRESERVICE TEACHERS’ KNOWLEDGE OF
RANDOMNESS AND TEACHING PROBABILITY

Sarah Ives
North Carolina State University

In the past decade the teaching and learning of probability and statistics has been receiving
increased attention by the mathematical community. Empirical research details the complexities
and difficulties of understanding probability by students at grade levels varying from elementary
up to the college level (Fischbein & Schnarch, 1997; Jones, Langrall, Thornton, & Mogill, 1999;
Lee, Rider, & Tarr, 2006). Additionally, research has been conducted regarding teachers’
understanding of certain probability concepts and how to teach probability (Begg & Edwards,
1999; Mojica, 2006; Watson, 2001). However, little research has been done specifically on
preservice mathematics teachers understanding of probability and the teaching of probability.

 As curriculum reform requires more attention be given to the learning of probability and
statistics, research on preservice teachers’ pedagogical knowledge is needed (National Council of
Teachers of Mathematics, 2000). This study will advance the current research by giving teacher
educators a better understanding of preservice mathematics teachers’ knowledge of randomness
and probability. With this knowledge, teacher educators can improve the teaching and learning
of probability. The results in this paper are taken from a larger study into the relationship
between preservice teachers’ beliefs, content knowledge, and pedagogical content knowledge of
probability. The focus of this paper is on preservice teachers’ beliefs about randomness and how
those beliefs relate to their perspective of the meaning of probability.

Theoretical Frameworks
One of the fundamental aspects of probability is the notion of randomness and chance. The

work done by Batanero and colleagues (Batanero, Green, & Serrano, 1998; Batanero & Serrano,
1999) offers a way to describe students’ understandings of randomness. The word ‘random’ is
used in everyday language as well as in mathematics classrooms. The definition of randomness
is not clear and this ambiguity can increase the possibility of students having difficulty with this
idea. Random is usually used as an adjective such as random number, random experiment,
random variable; definitions of these tend to concentrate on the object being described as random
rather than a definition of random itself (Batanero et al., 1998).

In addition to the definition being unclear, the meaning of randomness varies depending on a
person’s perspective of the meaning of probability. There are multiple perspectives that one can
have for the meaning of probability; these perspectives fall into two categories: objective and
subjective. Within the objective category there are the classical and the frequentist perspectives
of probability. From a classical view of probability, one understands the meaning of probability
as a ratio of favored outcomes over total outcomes. This view is limited to finite number of
outcomes and thus someone with this perspective would believe randomness is tied to
equiprobability. “In the classical conception of probability we would say that an object (or an
event) is a random member of a given class if there is the same probability for [it as there is for]
any other member of its class” (Batanero et al., 1998, p. 115). Someone with a frequentist
perspective considers probabilities to be assigned based on the long run behavior of random
outcomes. Within this perspective the equiprobability principle need not apply and a
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preconceived theoretical probability may not be known. Batanero et al. state, “here, we might
consider an object as a random member of a class if we could select it through a method
providing a given a priori relative frequency in the long run to each member of this class” (p.
115). This view of randomness is also an objective property of an event, yet it is based on
relative frequencies.

Another view of probability is that it is subjective, meaning that the probability one assigns
to an event is subjective to that individuals' beliefs. This view requires an understanding of
randomness that is also subjective. What may be random to one person may not be considered
random to another. This view is applicable when we know something that may affect our
judgment of the randomness of an event.

Methodology
This study is a qualitative case study of 5 preservice teachers. The subjects are juniors and

seniors in a mathematics education major with a focus on high school. The participants are
purposefully sampled from a 400-level mathematics methods course on teaching with
technology. Multiple data sources used for this study include interviews, classroom observations,
and documents. Each student participates in an initial interview, a focus group, and a final
interview. The interviews are task based and focus on the nature of the preservice teachers’
understanding of probability: their beliefs, content knowledge, and pedagogical content
knowledge. Data collection and concurrent analysis is occurring during the Spring 2007
semester.

Results
In the initial interview participants were asked to explain what random means to them. The

following table shows their responses and their possible perspective of probability.
Participant &
perspective

“What does random mean to you?”

Brad [frequentist] Um it just means, wow, usually use random in the definition… Um, it just
means its messed- jumbled up, uh there’s no real order to it at all its just, I
don’t really know what else to say, just there's no order to it, it just happens,
[pause] randomly [laughs].

Yasmin
[frequentist]

Random means not coming in any particular order, not having a sequence
or something you can calculate- like pi.

Jeff [frequentist
and classical]

Well if you think about it … blindly picking something out of a pile. It is
hard to put into words as far as random goes,  not repetitive … I don’t know,
its hard to put into words.

Pam [subjective] Uh, I guess, in terms of probability when I think of random I think of a
random sample so it would just be so if you were to have a completely um
you know like not hand picked group of people but just kind of like uh
really open sample and you were to just randomly pick someone from it.

Sam [classical] Events that happen by chance there's not any predetermined outcome.
Definitions of random included – no order, not repetitive, not hand-picked, equal chance,

unknown outcome, can’t be calculated. Three of the five subjects displayed a frequentist
perspective; their definitions of random referred to the order of outcomes being non-repetitive.
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One subject, Pam, did not define random but instead defined what a random sample means. Later
in the interview Pam said, “probability is all personalized, I don’t know if I’d actually be that
great at teaching it because I think about it as more of a choice: you’re given information then
you do what you want with it.” This comment suggests she has more of a subjective perspective.
Both Sam and Jeff indicate a classical perspective in their responses that random is equal chance
and not predetermined. Three of the five subjects had difficulty defining the meaning of random.

Discussion
These findings support the claims made by Batanero et. al. (1998) that students’ have

difficulty understanding randomness. In addition, one’s understanding of randomness is related
to one’s perspective of probability. These findings indicate a need for more emphasis on the
concept of randomness in teacher education to improve the teaching of probability. Through the
use of pedagogically oriented tasks teacher educators can increase awareness of these different
perspectives of probability.

Teacher educators can use the tasks from these interviews to stimulate discussion within
mathematics education classes. The use of these tasks could possibly raise further questions into
the nature of beliefs of randomness and direct improved instruction in this area. Questions for
further research include: 1) how does ones’ understanding of randomness influence pedagogical
decisions/activities? 2) what experiences in teacher education could foster a deeper
understanding of randomness? and 3) how does a teachers’ understanding of randomness effect
students’ understanding?
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SAMPLE SPACE REARRANGEMENT (SSR):
THE EXAMPLE OF SWITCHES AND RUNS

Egan J. Chernoff
Simon Fraser University
egan_chernoff@sfu.ca

This study continues research in probability education by altering a “classical” problem,
referred to as the sequence task. In this task, students are presented with sequences of heads
and tails, derived from flipping a fair coin, and asked to consider their chances of
occurrence. A new iteration of the task –that maintains the ratio of heads to tails in all of the
sequences– provides insight into students’ perceptions of randomness. Students’ responses
indicate their reliance on the representativeness heuristic, in that they attend to sequences by
their representative features, rather than by considering independent events. The study
presents an unconventional view of the sample space that helps situate students’ ideas within
conventional probability.

The Sequence Task
Psychologists Tversky and Kahneman (1974) found that students, when considering

tosses of a coin, determined the sequence HTHTTH to be more likely than HHHTTT,
because the latter sequence did not appear random. Furthermore, they found HTHTTH more
likely than HHHHTH, because the latter sequence was not representative of the unbiased
nature of a fair coin (i.e., the ratio of the number of heads to the number of tails was not close
enough to one). The caveat is that, normatively, all three sequences have the same chances of
occurring. A number of researchers in mathematics education (e.g., Shaughnessy, 1977; Cox
& Mouw, 1992; Konold, 1989) have continued Tversky and Kahneman’s work and as such
have furthered research involving the sequence task.

As Shaughnessy (1992) reflects: “There was no attempt made [by Tversky and
Kahneman] to probe the thinking of any of these subjects” (p. 473). Shaughnessy’s (1977)
work brought two new elements to the sequence task. First, “[t]he subjects were asked to
supply a reason for each of their responses. In this way it was possible to gain some insight
into the thinking process of the subjects as they answered the questions” (p. 308). Second his
tasks gave students the option of choosing “about the same chance” (p. 309) as one of the
forced response items. The results echoed the conclusions of earlier work by Tversky and
Kahneman. The sequence BGGBGB was considered more likely to occur than the sequences
BBBGGG and BBBBGB. However, with the new “supply a reason” element to the task,
Shaughnessy was able to confirm that subjects did find the sequence BBBGGG not
representative of randomness, nor was the sequence BBBBGB representative of randomness,
because it did not have a representative ratio of boys to girls: all of which had previously
been inferred from the number of subjects choosing particular forced response options.

Konold’s (1993) research built upon the two elements introduced to the sequence task by
Shaughnessy. Konold found that when students were asked to determine which of the
sequences were most likely to occur from flipping a fair coin five times, they often chose that
all of the sequences were equally likely to occur. However, when students’ were asked which
of the sequences were the least likely to occur, they picked out a particular sequence. In fact,
of the sequence options presented, HTHTH was deemed to be the least likely, because it was
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too representative. In other words, it did not reflect the random nature of the task; its
archetypical appearance demoted its likelihood.

Researchers have found that humans are poor judges of randomness and, moreover, have
determined the evaluation of randomness to be an important component of the sequence task.
Batanero and Serrano (1999) found that students’ ability to determine what was considered
random, in results from flipping a fair coin, was derived from two variables. The proportion
of the number of heads to the number of tails in the sequence and “the lengths of the runs
and, consequently, the proportion of alterations” (p. 560). Reflecting these findings, Cox and
Mouw (1992) state: “The sampling form [of representativeness] is seen both when a small
sample is assumed to adequately represent some phenomenon in a population [e.g., 1:1 ratio
for coin flips], and also when a sample is expected to appear random” (p. 164). Falk (1981)
gave students two long sequences and asked which of the sequences appeared more random.
The results show that sequences in which more switches occurred appeared more random.
Furthermore, sequences in which a long run occurred appeared to be less random. In other
words, randomness was perceived via frequent switches and thus short runs.

Sample Space Rearrangement
As presented, a number of issues have been addressed with subsequent iterations of the

sequence task; however, one element remains the same. In each instantiation of previous
research (by mathematics educators) presented, subjects were offered sequences with a
different population ratio in each of their choices. For example, one option would be
HTHTTH (3H:3T), while the second option would be HHHHHT (5H:1T). Cox and Mouw
(1992) found disruption of one aspect of the representativeness heuristic, such as the
appearance of randomness, did not exclude the population ratio being used a clue. Also,
Shaughnessy (1977) found that “many students picked ‘the same chance’, but gave as a
reason ‘because each outcome has 3 boys and 3 girls’” (p. 310). While previous research has
addressed sequences with a disparate number of heads and tails, this report examines
responses from students when all of the choices presented contain the same ratio of heads to
tails. As such, the task was constructed based upon an alternative view of the sequences: the
view of switches and runs. A “traditional examination” of the sample space, when a fair coin
is tossed five times, takes into account the numbers of heads and number of tails. However,
rearranging the sample space (see Table 1) shows that the sequences can be organized by the
number of switches, denoted S (a change from head to tail or tail to head), and, consequently,
the longest run, denoted LR (the number of times the same result occurs).

0S & 5LR 1S & 3LR 1S & 4LR 2S & 2LR 2S & 3LR 3S & 2LR 4S & 1LR
HHHHH HHHTT HHHHT HHTHH HHHTH HHTHT HTHTH
TTTTT TTTHH TTTTH TTHTT TTTHT TTHTH THTHT

TTHHH THHHH HHTTH HTHHH HTHHT
HHTTT HTTTT TTHHT THTTT THTTH

HTTHH THHHT THHTH
THHTT HTTTH HTTHT

THTHH
HTHTT

P(0S5LR) P(1S3LR) P(1S4LR) P(2S2LR) P(2S3LR) P(3S2LR) P(4S1LR)
=2/32 =4/32 =4/32 =6/32 =6/32 =8/32 2/32

Table 1: Sample Space organized according to Switches and Longest Runs
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Results and Analysis
Students were presented with the following:
Which of the sequences is least likely to result from flipping a fair coin five times:(A) HHHTT
(B)HHTTH (C)THHHT (D)THHTH (E)HTHTH (F) All sequences are equally likely to occur.
Provide reasoning for your response…

Although approximately sixty percent (30/49) of the students –14 to 15 year old high
school students, from Vancouver, BC, Canada– incorrectly chose one of the sequences to be
the least likely to occur, there was approximately an even split between those who chose (A):
HHHTT (14 students) and those who chose (E): HTHTH (16 students). Justifications for why
sequences (A) and (E) were not representative (of randomness) fell into two categories.
Students who chose (A) said that the perfect alternation of heads and tails was not reflective
of a random process, while students who chose (E) said that a run of length three was not
indicative of a random process because it was too long. Given the ratio of heads to tails was
maintained, determining randomness relied upon switches and, subsequently, longest runs.

This report suggests that heuristic reasoning (more specifically representativeness) is not
incongruent with probabilistic reasoning. Illustration of this point draws upon the
probabilities associated with the rearrangement of the sample space. For (A) there is a 4/32
chance that a sequence of five flips of a coin will have one switch with a longest run of three.
For choice (E) there is a 2/32 chance that a sequence will have four switches and a longest
run of one. From this alternative perspective of the sample space, organized according to
switches and runs, all other sequences presented in the task have higher probabilities than
sequences (A) and (E) (e.g., a sequence with three switches and a longest run of two has an
8/32 chance of occurring). As such, it can be inferred from the data that the students are
unconventionally, but naturally, looking for features in the sequences which are least likely to
occur. From this perspective of a rearranged sample space, it can be argued that the students
were correctly choosing which of the sequences are least likely to occur.

Conclusion
An alternative view of the traditional sample space for five flips of a coin via switches

and runs, not the ratio of heads to tails, suggests a probabilistic innateness associated with use
of the representativeness when determining, heuristically, the randomness of a sequence.
Given that “we need to know more about how students do learn to reason probabilistically”
(Maher et. al., 1998, p.82), sample space rearrangement may become one such approach.
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With increased curricular attention to probability and access to technologies, teachers are
encouraged to use an empirical introduction to probability, as a limit of the stabilized relative
frequency, through experiencing repeated trials of the same event, with concrete materials or
computer simulations (Batanero, Henry, & Parzysz, 2005). Most teachers have little experience
with conducting probability experiments and use of simulation tools and may have difficulty
implementing this empirical approach to probability (Stohl, 2005). Specifically, we investigated:
• What is the role of experiments and simulations in middle school probability lessons?
• How do middle school teachers use data generated from probability experiments?

Framework
We make a distinction between a probability experiment and a probability simulation. In a

probability experiment, one examines a random phenomena of interest by carrying out specific
actions (trials) and observing outcomes of repeated trials. For example, if one is interested in a
game that requires the use of two 6-sided dice and we use two physical 6-sided dice to repeatedly
play this game, we are conducting an experiment. We define a simulation as a special type of
experiment in which a random generating device, either physical (dice, coins, marbles in bag) or
computer-based, is used to model random phenomena and perform the needed actions (trials)
repeatedly. Thus, if we were interested in the same game that uses two 6-sided dice, but created a
model of the dice using two different spinners, then we are simulating the original context
through a different physical device. We could also simulate the 2-dice game by using a
technology tool. The framework for our study, adapted from Watkins (1981) and Travers (1981),
is grounded in two important aspects: 1) considerations of major components in an experiment,
including use of a simulation, and 2) decisions a teacher makes during a lesson. Table 1
describes the major components of a probability experiment and the corresponding teacher tasks
that may provide insight into the role an experiment or simulation plays in a lesson, with a
particular focus on how teachers use empirical data.

Table 1. Components of Framework
Steps in a Probability Experiment A teacher should be able to:
1. Understand the problem context to
identify the random event(s) of interest.

• Choose problem contexts amenable to
experiments or simulations.

• Define the random event in the problem context.
2. Identify the possible outcomes for the
random event.

• Construct the sample space.
• Understand probabilities of each event.
• Decide if students should compute theoretical

probabilities a priori.
3. Select an appropriate random
generating device

• Choose appropriate device(s) that maintain the
mathematical characteristics of problem. Either
o Use identical device as stated in problem

context to carry out experiment or
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o Use different device to simulate problem.
4. Determine what a trial and sample
will consist of.

• Define a trial (a single occurrence) and a sample
(a collection of trials).

5. Repeat a number of trials to form
samples, possibly repeat sampling.

• Decide on number of repetitions or allow
students to make this decision.

• Decide whether to structure data collection
process and organization of collected data or to
allow students this choice.

• Understand role of independence or dependence
in repeated trials/samples.

• Understand the law of large numbers.
6. Analyze results to compute
empirical-based probability of random
event(s).

• Decide how to use collected data, including any
public displays of tables, charts, etc.

• Decide how to help students make sense of
empirical results.

• Understand how to interpret results in relation to
sample size and theoretical probabilities (if
applicable).

7. Use empirical probabilities to make
decision about original problem context

• Interpret empirical results in terms of the original
problem context.

Methods

Participants and Data Sources
Teachers in this study were enrolled in a graduate-level course focused on Data Analysis and

Probability. One pedagogical objective of the course was increasing teachers’ understanding of
how to conduct experiments and simulations with concrete materials and technology tools. One
course requirement was for teachers to plan, teach, and reflect on a lesson. Of the 29 teachers in
the course, nine taught a lesson using an experimental approach to probability. The data include
a 15-minute lesson episode and written reflection.

Analysis
Following Powell et al. (2003), the videotapes were viewed several times and described.

Verbatim transcripts of the lessons were created, including reproduction of representations
created by the teacher, either on the board or overhead projector. Initial descriptions and
researcher impressions of each classroom episode were made. For each of the nine teachers, the
components of the framework were used to describe the steps in the probability experiments in
each lesson and to describe what was known about each of the teacher tasks.

Results and Discussion
Of the nine teachers, five had students conducting experiments in a game context with

devices such as dice, coins, spinners, and chips in a bag, while four teachers had students
simulate a problem context. Table 2 contains a brief overview of each lesson, including claims
about teachers’ learning goals. Teachers’ were often focusing students on using empirical data to
make different types of comparisons. Comparisons were often dependent on students’ computing
either empirical or theoretical probability. Thus, computation was a major theme. Lessons also
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illustrated teacher-controlled experiments, where students had little control over collecting data
(e.g., sample size), organizing or displaying results. Only two teachers had a learning goal for
students to form an argument about the problem context, with one teacher giving students control
in data collection and choice of sample size. Teachers instructed students to conduct experiments
with small sample sizes, with little repeated sampling. In seven lessons, students conducted 40 or
less trials. Only three of the teachers (Whitney, Frank, Helen) displayed data publicly in such a
way that students could attend to variability across samples of the same size, while one teacher
(Pam) had students verbally share their different results.

Table 2. Summary of Lessons
Teacher Grade Experiment or Simulation? Tools used Main Learning Goals for Students

Kathy

6

Experiment drawing chips
Chips in
bag

Predict and then compare to data,
Compare data across samples, Compare
theoretical to empirical, Provide a context to
compute probabilities

Pam
6

Simulate gumball machine
Chips in
cup

Predict and then compare to data

Wanda
6 Simulate die rolls to test

fairness
GC-
ProbSim

Importance of sample size, Collect data to
form argument,

Frank
7

Experiment rolling die 2 dice
Compare theoretical to empirical, Provide a
context to compute probabilities

Whitney
7

Simulate basketball shots spinner
Compare data across samples, Provide a
context to compute probabilities

Megan
8

Simulate basketball shots
2 different
spinners

Provide a context to compute probabilities

Helen
8 Experiment die game to

evaluate fairness
Sums of 2
dice

Predict and then compare to data, Provide a
context to compute probabilities

Marsha

8 Groups had different
experiments

Coins, dice,
spinners,etc

Collect data to form argument, Provide a
context to compute probabilities

Morgan
8 Experiment of Montana Red

Dog card game
Deck of
cards

Predict and then compare to data, Provide a
context to compute probabilities

All contexts had a known distribution and were amenable to computing a theoretical
probability. Teachers demonstrated an overwhelming tendency to privilege the theoretical
probability as the best or most reliable estimator of probability, often using empirical differences
to justify this preference. Although these teachers are using experiments, their approach does not
foster a conception of probability as a limit of a stabilized relative frequency after many trials.
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Three mathematicians were observed solving related rates problems. This data was analyzed to
develop a framework for solving related rates problems. It was found that the mathematicians
engaged in a series of phases to generate pieces of their solution. These phases were identified
as: draw and label a diagram, construct a meaningful functional relationship, relate the rates,
solve for the unknown rate, and check the answer. To complete each phase and construct a piece
of the solution, the mathematicians built and refined a mental model of the problem situation.
The framework captured how the solution to the problem emerged from the mathematicians’
thinking as they responded to related rates problems.

Background
Little research has been published on the solution process for related rates problems in first

semester calculus. Martin (2000) conducted a study investigating students’ difficulties with
geometric related rates problems. In attempting to understand students’ difficulties with these
problems, Martin broke down the procedure for solving them into seven steps and then classified
these steps as either conceptual or procedural as follows:

1. Sketch the situation and label (Conceptual)
2. Summarize the problem and identify given and requested information (Conceptual)
3. Identify the relevant geometric equation (Procedural)
4. Implicitly differentiate the geometric equation (Procedural)
5. Substitute specific values and solve (Procedural)
6. Interpret and report results (Conceptual)
7. Solve an auxiliary problem, e.g. solve a similar triangles problem before being able to use

the volume of a cone formula to relate the variables (Varies)
In her study, Martin found that the problems that appeared to be the easiest for students were the
ones that required only the selection of the appropriate geometric formula, differentiation,
substitution, and algebraic manipulation. The most difficult questions were those that required
Step 7, solving an auxiliary problem. She also indicated that while conceptual steps are more
difficult for students than the procedural ones, students’ poor performance was linked to
difficulties with both procedural and conceptual understandings.

The research to date suggests that students have a procedural approach to solving related
rates problems (Clark, Cordero, Cottrill, Czarnocha, Devries, St. John, Tolias, & Vidakovic,
1997; Martin, 1996, 2000; White & Mitchelmore, 1996). It has also been reported that students’
difficulties appear to stem from their misconceptions about variable, function, and derivative –
particularly the chain rule (Clark et al., 1997; Engelke, 2004; White & Mitchelmore, 1996). The
ability to engage in covariational reasoning allows a problem solver to construct a mental model
of the problem situation that may be manipulated to understand how the system works (Carlson,
Jacobs, Coe, Larsen, & Hsu, 2002; Saldanha & Thompson, 1998; Simon, 1996). The purpose of
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this study was to develop a framework to describe how a mental model for a related rates
problem developed during the solution process.

To describe how a mental model emerged during the solution process, Carlson and Bloom’s
(2005) multidimensional problem solving framework provided an initial structure with which to
examine the data. Their framework describes four phases of the problem solving process:
orienting, planning, executing, and checking. They observed that in each phase the problem
solver accessed resources and heuristics. Using these ideas, it was my goal to identify the content
knowledge and heuristics that were used when solving a related rates problem. It was also
desired to describe how content knowledge and heuristics informed the development of the
problem solver’s mental model of the problem situation.

The Study
The purpose of this study was to generate a framework to describe the solution process for

related rates problems in calculus; the resulting framework was subsequently used to analyze the
data from a teaching experiment on related rates problems. To study the role of the mental model
when solving related rates problems, three mathematicians were asked to solve three related rates
problems in a think aloud problem solving session which lasted about 45 minutes. Each
mathematician was given a sheet of paper with the three problems printed on it and asked to
work through the problem aloud and to attempt to verbalize everything they were thinking. The
interviewer asked clarifying questions about their statements when additional information was
needed. Each session was videotaped and transcribed for analysis. Discourse analysis was used
to analyze the mathematicians’ solution processes. Video recordings captured everything the
mathematicians said, wrote , and gestured. Gesture became particularly important to be able to
identify how the problem solver used and referenced information he had written as part of the
solution process. Everything that had been written down was initially coded as an artifact.
However, some pieces of written information were defined to be solution artifacts. A solution
artifact is more than a piece of information that has been written down as part of the solution
process. It is a written piece of information that is referenced or used by the problem solver to
continue the solution process; it is the creation of an additional resource.  Particular attention was
given to how they talked about what they were imagining and how they talked about the
diagrams they drew and modified throughout the solution process. Because it is not possible to
see what an individual is imagining in his mind, these are the data that allow one to best
conjecture how the mind is interpreting and modeling the problem situation.

Results
One of the related rates problems the mathematicians were asked to solve required the

problem solver to create a powerful mental model as the geometric figure in the problem
situation does not have a commonly known volume formula. The problem was stated as follows:
Coffee is poured at a uniform rate of 20 cm3/sec into a cup whose inside is shaped like a
truncated cone. If the upper and lower radii of the cup are 4 cm and 2 cm, respectively, and the
height of the cup is 6 cm, how fast will the coffee level be rising when the coffee is halfway up
the cup?

One mathematician’s solution will be examined to illustrate the framework for the solution
process. After reading the question, each of the mathematicians drew a diagram of the problem
situation. This diagram was then usually labeled with variables and constants. However, before
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drawing the diagram, there is evidence that the mental model may have already been revised one
or more times. Adam began (transcript lines have been numbered to facilitate the discussion):

Adam: 
1. All right, well this is my kind of problem. Coffee is poured at a uniform rate of 20

cubic cm per second into a cup whose inside is shaped like a truncated cone.
2. Oh, this must be one of those horrible, uh, um hotel things, right? They have the little

plastic deals with the little conical cups and that always signals bad coffee. So, cause
they always make it much too weak, you know. So there you are in this windowless
ballroom, drinking out of this flimsy [hand motion]…yeah, I know what you’re
talking about. All right, a truncated cone.

3. All right, upper and lower radii of the cup are 4 and 2.
4. Um, this makes a difference. I don’t know what the upper and lower radii means.
5. Do you mean is the cup 4 inches wide? so it’s a shallow cup? or a tall narrow cup?

INT: The cone has actually been truncated so the bottom doesn’t actually exist.
Adam: Oh, oh, oh, I see. I’m still thinking about those horrible hotel cones. All right, so it’s

truncated like this. All right, gotcha, like that. [artifact-diagram]

Observe in Line 2 above that Adam’s initial interpretation of the problem situation is of a
whole cone and is related to his experience with coffee cups at conference hotels. In Lines 3 and
4, the phrase upper and lower radii appear to be in discordance with his current mental image.
After the interviewer explained the truncated aspect of the problem, Adam adjusted his mental
image and drew an accurate diagram of the problem situation. Thus, we have observed Adam’s
mental model develop. In addition to the verbal statements that Adam made, he drew a diagram.
Adam’s diagram of the problem situation was the first solution artifact that he created. This
diagram was further modified as Adam completed the first phase of the problem solving
framework: draw a diagram.

Adam continued the solution process by identifying that he needed to find the volume of the
coffee cup, and more specifically the volume of a cone:

Adam:
1. Ok, so now, we’re going to pour coffee into this thing, and we want to know how fast

the coffee is rising when the coffee is halfway up. So, this means we have to figure
out first of all what the volume of this thing is. So what’s the volume? The volume is,
um, is like one half pi r squared h, or something like that [artifact-equation]

2. cause this is where you could give them the whole deal. There’s a factor of 2 pi about
the, you know. Oh, there’s a factor of 2 pi here cause you do the little shells, and you
rotate it around, right? Yeah. [hand motion] I don’t remember it, Nicole. pi r squared
h? Does that sound right? I will go on that assumption here. You know, I’m terrible at
memorizing formulas. Let’s see. Is one half the base times the height, and you rotate
it around. No, that’s not right. That would be like a cylinder, a cylinder. [artifact-
diagram]

As Adam considered pouring coffee into the cup, he transitioned to the next phase of the
problem solving process: construct a functional relationship. He restated that he wanted to find



444

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

how fast the coffee is rising when the coffee is half way up the cup which caused him to identify
that he needed to know what the volume is. (Line 1) The volume of a cone formula was not
readily accessible as part of Adam’s content knowledge. In reconstructing the volume of a cone
formula, Adam accessed his knowledge of integral calculus and the shell method. (Line 2)

Adam then spent a considerable amount of time trying to reconstruct the volume of a cone
equation. After Adam decided on the formula for the volume of a cone, he proceeded to find the
volume of the actual coffee cup by computing the difference between the volume of the entire
cone and the volume of the piece of the cone that does not exist. In previous problems, Adam
was observed making similar calculations that appear to allow him to better understand what is
happening in the problem situation.

After completing these calculations, Adam reconsidered how he should be thinking about the
problem situation.

Adam:
1. All right now, ok. So now actually what I need to think about here is, um, should I

think about height from the, um, the imaginary tip here? Or should I, should I start
thinking about height from here on up? And I think about height from the bottom of
the imaginary tip and hope that I made the correct adjustment when I get over here

2. Um, cause all you want to know is the rate of the change in the coffee. So whether I
measure from here or from down here, um, that doesn’t make a whole lot of
difference. So, that’s important, ok.

3. Let’s see. Um, yep, ok. Now in this case, since we have a cone, the volume depends
upon the height. So in this particular case then, the radius is, um, so the radius…
We’re going down here, what? 2 cm in the space of 6 cm. So it’s changing at the rate
of um one third cm per cm, so the slope is a third. So that means that this is one half
times pi times one third h [artifact-volume equation]

4. Ahh, I’m looking back to worry about whether to measure from my imaginary tip, or
whether I’m going to start measuring from um the actual bottom. Um, what do I want
to do here? This is much, boy this is, there must be a slicker way of doing this in the
book cause it would be too hard for the students to be talking about, well, measuring
from the tip or here or whatever. Um, so what should I think about? I’m going to go
with the imaginary tip. So this is one third h, zero is here, 6 is here, and 12 is here.
[artifact-modified diagram]

Adam was concerned about how he should measure the height of the cone. (Line 1) This lead
him to the revelation, “cause all you want to know is the rate of the change in the coffee. So
whether I measure from here or from down here, um, that doesn’t make a whole lot of difference.
So that’s important, ok” and decided that he would measure from the imaginary tip of the cone.
(Lines 2, 4)

In the middle of deciding how he should measure the height, Adam also noted that the
volume depends on the height. (Line 3) To relate the volume and height, he observed that, “so
the radius we’re going down here what 2 cm in the space of 6 cm so it’s changing at the rate of
um one third cm per cm so the slope is a third so that means that this is one half times pi times
one third h” and modified his volume equation so that it was in terms of height. He constructed a
linear relationship between the radius and the height of the cone and used composition to express
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the volume in terms of height. Thus, it would appear that his content knowledge of functions was
accessed to allow him to relate the volume and the height of the cone.  Adam also commented
that an example in the book would likely be helpful and provide a “slicker” way to solve the
problem. (Line 4) However, this resource was not available to him in this session.

He continued:

Adam:
1. So this is what I would do in my office, and then I would think of a slicker way of

doing it. Then it would all look nice for the students. That’s why we always look like
geniuses in front of the black board, cause, ok.

2. Um, so do I have to worry about my offset here? Maybe not, ahh. I’m worrying about
what this offset means here. I’d have to offset the bottom, ehh. I’d have to worry
about, see what I’d have to worry about is this, uhh, maybe. Let’s see. I have to
remember to subtract 12 pi from everything. I don’t know. What would I do?

3. If I were to think out loud about this, I would say, ok my guess is it doesn’t matter.
See, because if you had a, if you had a really truly conical coffee cup, not one that
was lopped off here, you could just as well imagine. So instead of worrying about, so
what I would tell the students is, I would say, well instead of worrying about this kind
of cup, um, think about this kind of cup. Just imagine that you already filled it up with
coffee to here, um, because who cares about the total volume. All you want to know
is how fast the coffee is rising when you’re at this volume. So you’re, it doesn’t really
[hand motion] So it’s the same answer. Getting the students to see that is perhaps one
of the things that distinguish the expert like me from them. …

4. And um, all right. So now, um, in the cup, all right. So this, for that reason I’m just
going to look at this long cup. And so now, I’m going to measure height from the tip
of the cup. So this is h, and here is h equal to zero, and here is going to be h equal to
12. [artifact-labeled diagram] All right. So halfway up the cup then is going to be, I’m
going to worry about the point where h equals 9, because that’s the point where the
height in my imaginary cup corresponds to halfway up the actual cup. [artifact-
modified labeled diagram]

As Adam continued to struggle with how to measure the height of the cone, he appeared to
have a revelation about how the problem situation worked. (Line 2, 3) He then stated how he
would it explain it to students, “well instead of worrying about this kind of cup um think about
this kind of cup just imagine that you already filled it up with coffee to here um because who
cares about the total volume all you want to know is how fast the coffee is rising when you’re at
this volume.” (Line 3) He realized that it did not matter if the cone had been truncated. Adam’s
mental model appears to have undergone several changes as he developed his formula for the
volume of the cone and what each variable meant in terms of the problem situation. It would
seem that each time he played out the situation in his mind he gained a little insight until he
finally understood how the situation worked. It is at this point that Adam completed his step of
construct a functional relationship between the variables. An important part of completing this
step was that he understood exactly what the relationship between the variables was. (Line 3)
Thus, his algebraic equation had meaning in the context of the problem.
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After simplifying his volume equation to 3

18

1
hV π= , Adam continued to his next step of

relate the rates:

Adam: And, um, we’re interested in dh dt. So dv dt is dv dh times dh dt. [artifact-general chain

rule form equation 
dt

dh

dh

dV

dt

dV
⋅= ] Um, and that means that dv dt is 20 cm per second

cubed, cm per second, and dv dh, uhh is what it’s going to be, pi over 9 times h squared

times dh dt. [artifact-differentiated equation 
dt

dh
h ⋅= 2

9
20

π
]

Adam identified 
dt

dh
as the rate he wanted to find and then expressed a relationship between

the rates using the chain rule. He did not operate on the volume equation he constructed. Rather,
he expressed a relationship between the rates using the chain rule and then associated each rate
with a numeric value or a function.

An interesting aspect of Adam’s solution is that even though he expressed the volume
equation in terms of height, he did not operate on the function he constructed to relate the rates.
Instead, when he carried out the relate the rates step, he wrote out the chain rule as

dt

dh

dh

dV

dt

dV
⋅= . He then proceeded to associate each rate, such as

dh

dV
, with either the appropriate

numeric value or function. He did this when solving the previous problems, too. Neither of the
other two mathematicians related the rates in this manner on any problem they solved. Rather,
they operated on the algebraic equation they constructed.

The completion of Adam’s solution came when he substituted in the known values into his
differentiated equation and performed appropriate algebraic manipulations to obtain a numerical
answer to the problem. Thus, he completed the fourth phase: solve for the unknown rate. After
obtaining an answer to the problem, he performed a unit analysis to check his answer for
reasonability and complete the fifth phase of check the answer for reasonability.

Five phases were identified in the related rates problem solving process: draw a diagram,
construct a functional relationship, relate the rates, solve for the unknown rate, and check the
answer for reasonability. In each of the first three phases, the problem solver’s mental model
appears to be continually evolving as the result of interpreting the problem situation and
accessing content knowledge. To begin the draw a diagram phase, the problem solver accessed
his knowledge of geometry to imagine what a cone looks like and draw a representation on the
paper. Content knowledge of variable was then accessed to refine the diagram by labeling the
quantities that were imagined to change with variables thus creating the first solution artifact, a
labeled diagram. While transitioning to the phase of construct a functional relationship, the
problem solver imagines the problem situation changing over time to decide which variables
should be related. Geometric content knowledge is then accessed yet again to facilitate the
creation of a functional relationship, the second significant solution artifact. The problem solver
then imagined the problem situation changing over time and accessed his content knowledge of
rate of change to facilitate completion of the third phase of relate the rates and create another
solution artifact, a differentiated function. In the fourth phase of solve for the unknown rate, the
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problem solver relies almost exclusively on his content knowledge of algebra to substitute in the
known quantities and perform appropriate algebraic manipulations to determine the unknown
rate, the final solution artifact. Finally, the problem solver checks his answer for reasonability by
imagining the problem situation again and performing a unit analysis.

Conclusions
The mathematicians had a richly connected understanding of the concepts of geometry,

variable, function, and derivative. This allowed them to easily access information and relate it to
the problem situation. This abundant source of content knowledge also facilitated their ability to
build a mental model that accurately characterized the problem situation. For example, the
mathematicians could easily identify the formula for the volume of a cone and then think about it
as a function of two variables that change in tandem. The mathematician could then note that one
of the variables could be eliminated by assessing relevant knowledge of geometry and applying
function composition. This new function that was created could then be thought about as a
function of time. They identified time as the independent variable stated in the given rate, thus
making a connection between their function knowledge and understanding of derivative.
Consequently, they were able to relate the rates and successfully solve the problem.

This framework focuses on the relationships that exist between the columns of resources and
heuristics in Carlson and Bloom’s (2005)  multidimensional problem solving framework. The
problem solver’s resources and heuristics are likely supplemented with a mental model of the
problem situation. Resources are considered to be one’s mathematical content knowledge,
heuristics are strategies an individual chooses to apply to the problem situation, and a mental
model is a representation in one’s mind of the problem situation. The resources, heuristics, and
mental model reside in the mind of the individual, and as an individual accesses this knowledge
and applies it to the problem situation, solution artifacts are generated.
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This report explores developing problem solving skills of first-semester calculus students
(n=202) at a midsize (25,000 students) university in the southwest with one-fourth of the student
body enrolled at the graduate level. The study was designed to determine base-line problem
solving performance among the first-semester calculus students and then measure any change in
problem solving performance over the course a fifteen-week semester. Also, an experimental
group (n=73) worked 1.5 hours per week in addition to regular class time on challenging group
problem solving activities. Findings suggest that students moved from an emergent or developing
performance to a proficient performance over the course of the semester at each level of
sophistication studied.

Incorporating learning activities that enhance students’ ability to become effective
mathematical problem solvers is complex in that it requires a framework for understanding
problem solving and mechanisms for studying the affects of instruction or learning activities that
attempt to improve or enhance students’ progress in mathematical problem solving. Lester
(1994) indicates that the problem solving literature from 1970 to 1994 suggests that problem
solving performance is a function of several independent factors such as knowledge, control, and
beliefs.

The interaction of problem solving and competency in using mathematical knowledge cannot
be overlooked.  Hiebert and Leferve (1986) claim that competency in mathematics involves
knowing how concepts, symbols, and procedures relate. This underscores that both conceptual
and procedural knowledge are needed to be a successful mathematical problem solver. Studies
(White & Michelmore, 1996; Carlson, 1998; Baker, et.al., 2000) find that calculus students have
limited conceptual understanding and fare poorly on non-standard mathematics problems.

The work of White and Michelmore (1996) in studying students’ conceptual knowledge in
calculus and Epperson (2004) motivated the design of the problem solving tasks created to
examine problem solving performance among the subjects of this report. The test characterizes a
goal of having students move away from applying only procedural knowledge (procedures
learned by cues) and move toward applying conceptual knowledge (grasping the relationships
between mathematical objects in context). Recent work by Carlson and Bloom (2005) suggests
that expert problem solvers possess well-connected conceptual knowledge which “appeared to be
an essential attribute for effective decision making and execution throughout the problem-
solving process (p. 45).” The tests used in this study focus on snapshots of the artifacts of the
heuristics and monitoring problem solving attributes in the executing and checking phases of
Carlson and Bloom’s (2005) Multidimensional Problem-Solving Framework.
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Method
The study was conducted at a midsize (25,000 students) university in the southwest with one-

fourth of the student body enrolled at the graduate level. A group of 202 first-semester calculus
students participated in the study. These students were enrolled in three large lecture classes
(class size 

≥
60). Each lecture class met for 5 hours per week (3 hours regular lecture format and

2 hours recitation). Each class was divided into two recitation sections—each recitation enrolling
less than 40 students. One hour per week of all recitation sections focused on more in-depth
calculus problem solving tasks. Also, one of the lecture classes (the experimental group) worked
for an additional 1.5 hours per week on challenging group problem solving activities. The
experimental group lecture class incorporated attendance and participation in these supplemental
1.5 hour sessions into the overall course grade. Students from the other lecture classes did not
attend the additional sessions and no such equivalent was included in their overall course grade.

Data was collected systematically throughout the study in the form of student feedback forms
(on group work and study habits), student class work, performance on departmental exams, and a
problem solving test that was administered at four different intervals during the 15-week
semester. Standardized test scores (such as SAT and placement exam scores) and other
demographic and background variables were collected from student records. Incomparability of
the time intervals in testing caused by semester time constraints that affected only one of the
three sections required reduction of the data set to 135 participants instead of the original 202 for
analysis. The remaining group analyzed (n=135) consisted of 64.9% males and 35.1% females.
SAT quantitative scores were available for only 55% of the group; however, it is important to
note that 38.2% of these scores were in the 500-590 range, 50% in the 600-690 range, and 11.8%
were greater than or equal to 700. White students comprised 47.2% of the group and African
American, Hispanic, and Asian students comprised 13.4%, 9.4%, and 22.8% of the group,
respectively. More than three-fourths of the participants were science and engineering majors.

As a group, the regular problem solving recitation sessions consisted of some short lectures,
small group and whole class discussions, student and group presentations and constant feedback
and reflection as students worked on carefully selected in-depth mathematical tasks; this model
is characterized by Santos-Trigo (1998) and Schoenfeld (Schoenfeld, 1991, 1994) as indicative
of a successful problem solving classroom setting. The extra experimental group sessions
focused on carefully selected tasks with a more narrow mathematical focus designed to enhance
students’ procedural and conceptual knowledge on calculus topics as they were studied in the
course. The experimental group sessions included student presentations and board work as well
as the structure of the regular problem solving recitation sessions. Those students in the
experimental group who missed the experimental group sessions were required to complete the
work missed in order to receive full participation credit for the missed session.

One of the authors designed a series of tasks that had been developed into four items each to
delineate between various levels of sophistication in problem solving. Four tasks were the focus
of the test items for this study. The mathematics needed to solve the tasks did not go beyond a
typical high school pre-calculus course. Each task was structured in four versions so that the
manipulation (procedural knowledge) required to solve each version was essentially the same.
However, the difference in the versions (items) was that at each successive level the depth of
conceptual understanding of the mathematics and the sophistication of the modeling and
generalization decreased. Thus, Item 1 was the most challenging version of the task, while item 4
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was the version that required almost no translation into mathematics but simply a straightforward
manipulation because almost all of the translation to mathematics had already been completed.

In total, there were sixteen different items created from the original four distinct tasks. A
descriptive name was assigned to each task based upon the context given: Projectile Task, Bottle
Task, Car Task, and the Inequality Task. The Projectile Task was adapted from prior work by
one of the authors (Epperson, 2004). The Car Task is adapted from Carlson’s (1998)
functionality test and is given in Figure 1. The Bottle Task and the Inequality Task were also
adapted from Carlson’s functionality test.

As seen in Figure 1, Car Task Item 4 only required a solution for part (b). This represented a
basic interpretation from function values shown on the graph. Car Task Item 3 not only asked for
the seemingly straightforward interpretation in Item 4, but also required participants to
demonstrate their understanding of rate with the inclusion of part (c). Car Task Item 2 layered
part (d) onto the parts included on Item 3. Participants with calculus knowledge could present an
argument using integrals, but participants without prior knowledge or accessible knowledge of
integrals could employ a sense-making approach and observe that car A had been traveling faster
than car B during the entire time interval.  As noted Carlson’s (1998) work, this question focuses
on the misconception that higher acceleration means “catching up” and on students’ abilities to
interpret correct information from a graph. The most complex item, Car Task Item 1, presented
all four parts. Part (a) delineates participants’ abilities to monitor their progress and interpret
graphical information correctly. Although use of calculus was not necessary to answer any of the
questions, useful application of a calculus knowledge assists in all but the easiest version of the
Car Task.

The given graph represents speed vs. time for two
cars. (Assume the cars start from the same position
and are traveling in the same direction.)

(a) State the relationship between the position of
car A and car B at t =1 hr.: Explain.

(b) State the relationship between the speed of car
A and car B at t =1 hr.: Explain.

(c) State the relationship between the acceleration
of car A and car B at t =1 hr.: Explain.

(d) What is the relative position of the two cars
during the time interval between t = 0.75 hr
and t =1 hr.? (i.e. is one car pulling away from
the other?) Explain.

Item 1: Included parts (a)-(d).
Item 2: Included parts (b)-(d).
Item 3: Included parts (b)-(c).
Item 4: Included part (b) only.
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Figure 1. Four Levels of the Car Task

Participants were tested on four occasions in four-to-five week intervals beginning the
second week of the semester. The participants were randomly divided into four parallel groups of
4.  Four tests were constructed (test A, test B, test C, and test D) and each test included four
items: one version of each of the four tasks. Each version of each task occurred on one and only
one test and each test had only one question in each version. As in White and Michelmore
(1996), a cyclic scheme was used to administer the tests to each of the four groups over the four
data collections.

Note in Table 1 that Test A consisted of Item 1 from the Projectile Task, Item 2 from the
Bottle Task, Item 3 from the Inequality Task, and Item 4 from the Car Task. Also, note that the
items on the Inequality Task labeled Item 3A, Item 2B, Item 1C, and Item 4D denote that the
most difficult (with respect to problem solving sophistication needed for solution) version of the
Inequality task is on Test C. Thus, the label Item 1C is given to the highest level Inequality
problem. A similar scheme is used in enumerating the other items. Each item has a unique
identifier that indicates the test on which is occurs and its problem solving level.

Test A Item 1A:
Projectile Task

Item 2A:
Bottle Task

Item 3A:
Inequality Task

Item 4A:
Car Task

Test B Item 1B:
Bottle Task

Item 2B:
Inequality Task

Item 3B:
Car Task

Item 4B:
Projectile Task

Test C Item 1C:
Inequality Task

Item 2C:
Car Task

Item 3C:
Projectile Task

Item 4C:
Bottle Task

Test D Item 1D:
Car Task

Item 2D:
Projectile Task

Item 3D:
Bottle Task

Item 4D:
Inequality Task

Table 1. Problem solving test composition per group.

Participants were randomly placed into four different groups: A, B, C, and D. Their group
name corresponded to the test they took first. In the successive administrations of the exam, the
following cyclic scheme was used: (A,B,C,D)  (B, C, D, A)(C, D, A, B)(D, A, B, C).

For the quantitative analysis of the problem solving tests, a three-fold rubric informed by the
work of Carlson et. al. (2002) and Epperson (2004) was developed for each question so that
students received three scores for each response for (1) understanding, (2) strategy and accuracy
(STAC), and (3) conclusions and justification (CNJU). The tests were scored independently by
the two researchers and then compared and discussed to validate the final assessment of
performance.

The scores associated with each category of the rubric ranged from zero to five. For each
category, a score of zero indicates no attempt at solving the task. Scores of one, two, three, four,
or five in each category indicate emergent, developing, proficient, masterful, and sophisticated
demonstrations in each category, respectively. Scores were tabulated on frequency charts. For
initial data analysis, the scores were grouped into dichotomous sets. The scores 0-2 were grouped
in each category to indicate underdeveloped understanding, ineffective strategies and poor
accuracy, or poor justification and unsupported conclusions, respectively. Scores higher than 3
were also grouped and indicate expanded understanding, useful strategies and adequate accuracy,
or sound justification and conclusions, respectively.
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Several statistical analyses used model-smoothed estimates to examine the students’ STAC
and CNJU score respectively on the 0-5 rubric scale. The STAC and CNJU scores focused
primarily on aspects of problem solving involving strategies, heuristics, and reasoning and thus
could be measured over time and difficulty level without regard to the specific task used. Only
the STAC scores analysis will be included in this report. The data was then modeled using the
parameters of testing time and difficulty level with continuous adjustment for quantitative SAT
(SAT-Q) scores. To determine the main effects of overall calculus problem-solving-focused
instruction (CPSFI), the data was modeled combining the experimental and control groups.

It should be noted that there are plausibly more weak students taking the first two tests who
eventually withdrew from the courses before taking the final two tests. The analysis takes this
into account by excluding any students who only participated in the first and/or second testing
period. In this way, the analysis uses roughly the same set of students at each test time.

A separate analysis examined possible experimental treatment main effects by comparing the
control group to the set of students in the experimental group who satisfactorily completed 75
percent or more of the additional group sessions.

Qualitative analysis of the data included categorizing the various problem solving techniques
used and responses given on each task. Each test was coded according to these classifications
and then organized according to test time, item number, and experimental or control group.
Frequency data and descriptive statistics were calculated to detect what proportion of students
used the various strategies on each item and how this changed over time. Further analysis, seeks
to characterize—using final course grades—those problem solving strategies that strongly or
weakly correlated with the top performing students in the classes.

Results
The statistical analysis of the CPSFI main effect reveals that there was a significant rise in

the students’ strategy and accuracy scores over the course of the semester. SAT-Q score had a
significant effect on problem solving performance, but its effect was uniform across the test
times and difficulty levels. The analysis indicates that in comparing two students with a 100
point difference in SAT-Q scores their problem solving would differ by .38 on the rubric scale.
In Figure 2, the graphs represent the modeled performance of a student with an SAT-Q score of
600 at the four different problem difficulty levels. Note that the modeled performance of a
student with 500 SAT-Q could be indicated by a vertical shift of these graphs by -0.38.
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Figure 2. Modeled STAC Performance for Students with SAT-Q score of 600

In a statistical test of main CPSFI effects on STAC scores, the difference between the
modeled score at time 4 and at time 1 were estimated and in every case the difference was
significant at level .05 as seen in Table 2. The difference between the modeled score at time 4
and time 1 was also calculated for students who earned a course grade of A or B. The differences
were only significant at level .05 for items 3 and 4 as seen in Table 2.

Problem version Estimate of (time 4 – time 1) p value A-B student estimates p-value
Item 1 (most difficult) .74 .0106 .47 .1983
Item 2 (second difficulty) .79 .0063 .18 .6350
Item 3 (third difficulty) .72 .0118 1.05 .0044
Item 4 (least difficult) .88 .0024 .89 .0170

Table 2. Main Effect of Calculus Problem-solving-focused Instruction on STAC scores

Analysis of the main effect of the experimental treatment revealed no conclusive trends.

Conclusions
The results of the statistical analysis only strongly supported the presence of one of the main

effects that were considered in this study, which is the CPSFI main effect. Findings indicate that
the base-line problem solving abilities of an incoming calculus student with 600 SAT-Q is at or
below developing (rubric score 2) for each difficulty level, only reaching developing on the
simplest item. Even the modeled performance for a student with 700 SAT-Q shows base-line
performance above developing, but not close to the proficient level. The main effect ranged from
0.72 to 0.88 with the greatest effect being on the simplest item. This indicates that upon
completion of the course, a student with 600 SAT-Q is closer to the proficient level (3) than the
developing level (2) on items 1, 3, and 4.

Considering that the test is somewhat sensitive to calculus instruction, it should be expected
that student problem solving performance would improve with increased exposure to calculus
topics. This may indicate that the main effect came more from the expansion of the students’
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skill knowledge rather than the expansion of their depth of insight and mathematical reasoning.
However, their success at using calculus skills effectively to solve problems at a proficient level
is certainly a goal of such courses.

Findings suggest that students earning an A or B in the calculus class benefited less from the
calculus instruction on the more difficult items 1 and 2 than on simpler items 3 and 4. This may
be due to the more procedural nature of the item 3 and item 4 tasks. The A-B students’ baseline
performance was higher on the more difficult items and lack of significant improvement may be
due to a ceiling effect since improvement from the calculus treatment seems to be linked to an
increase in procedural rather than conceptual knowledge. This is despite the design of the
calculus course to incorporate problem-solving activities in recitation sessions to increase
students’ conceptual knowledge and use of various problem solving strategies.

The overall indication of the analysis is that there was not a sizeable enough experimental
treatment main effect to be detected in the present study. This would indicate that 1.5 hours per
week of extra problem solving is not sufficient to boost problem solving performance beyond
what is already done by a problem-solving-based calculus treatment as was employed during this
study.
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In this paper we characterise the growth of collective mathematical understanding as an
improvisational process. Drawing on elements of improvisational theory, in particular the notion
of etiquette, to analyse extracts of data gathered in an apprenticeship training classroom, we
demonstrate how this theoretical framework can illuminate and inform collaborative group
processes in a mathematics classroom.

Collective mathematical understanding is a phenomenon that has received increasing
attention in recent years from a number of different perspectives (e.g., Bowers & Nickerson,
2001; Cobb, 1999; Davis & Simmt, 2003). In referring to collective mathematical understanding
we point to the kinds of shared learning and understanding we may see occurring when a group
of learners, of any size, work together on a piece of mathematics. We observe collective
understanding as a phenomenon that is bound up in the social context of the learning
environment, and as such can not be described merely by attending to the actions of individual
learners. Elsewhere, we have demonstrated how a collective perspective on mathematical
understanding can more fully explain its growth (Martin, Towers & Pirie, 2006; Towers &
Martin, 2006). In those works we have employed and extended the theoretical work of Becker
(2000), Sawyer (2000, 2001, 2003), and Berliner (1994, 1997), and characterised the growth of
collective mathematical understanding as a creative and emergent improvisational process. In
further developing our framework, we have documented the ways in which learners’
improvisational coactions (Towers & Martin, 2006) lead to the growth of collective
understanding. Here, we extend that conceptual analysis to a yet finer-grain to explore a key
feature of the improvisational process—the etiquette of improvisation.

Improvisational Theory and Improvisational Etiquette
Improvisational theorists have proposed particular characteristics of the improvisational

process. There are many more than can be fully articulated here, but those which we suggest are
particularly significant in the study of the growth of collective mathematical understanding
include the notions of (a) the potential pathways of action, (b) the emergence of collective
structure, (c) striking a groove, (d) performance etiquette, (e) listening to group mind, and (f)
pursuing the better idea. In this paper we seek to elaborate and illustrate one of these key
theoretical constructs—improvisational (performance) etiquette—and discuss how this can be
employed in considering and describing the growth of collective mathematical understanding.

Becker (2000) talks of improvisational etiquette as requiring that, in a group improvisational
performance, “everyone pay close attention to the other players and be prepared to alter what
they are doing in response to tiny cues that suggest a new direction that might be interesting to
take” (p. 172). It is a process involving “attentiveness, care, and willingness to give ground and
take direction from each other” (p. 173) and as such it “calls attention to the granting of equal
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status to everyone’s ideas and intuitions” (p. 173). The improvisers “agree, implicitly and
collectively, to give priority to what, in their collective judgment, works” (p. 174), and that might
lead to something better. In improvisation, when one person does something that is obviously
better (in the view of the collective) then “everyone else drops their own ideas and immediately
joins in working on that better idea” (p. 175). In mathematics, better is likely to be defined as a
mathematical idea, meriting the attention of the group, which appears to advance them towards a
solution to the problem.

Methods & Data Sources: The Case of Andy, Joe and Mike
This paper draws on a case study of a small group of apprentice ironworkers as they engage

with mathematics in the early stages of their training at a local institute of technology in a large
Canadian city. The group and their instructor were observed and video-recorded over a number
of sessions, and their in-class work collected for subsequent analysis. Data analysis, using the
framework of improvisational theory, was conducted following the method proposed by Powell,
Francisco, and Maher (2003), a multi-step process which involves repeated viewing and re-
viewing of the video and supporting data to develop valid and coherent coding, analyses, and
narrative storylines. One such storyline, focusing on the key improvisational construct explored
in this paper, is presented briefly here. In the session discussed in this paper, Joe, Andy, and
Mike have been posed the task of establishing the size of choker sling required to lift an
assembled structure of four large iron beams into an upright position, and later of determining
where the crane should be positioned to accomplish this. The size of choker is something that is
dependent on the total weight of the structure to be lifted, and it is this weight that the group first
has to calculate. The apprentices have a set of eight technical plans, showing different elevations
and views of the framework for the building. The plans contain all the information necessary to
assemble the framework, but the form in which this is presented requires considerable extraction
from the various diagrams. What makes the task more complex is that fact that on the set of
plans, not all the measurements and specifications are in imperial units. Some of the eight
drawings are solely labelled in metric whilst others actually mix imperial and metric units. We
join the apprentices at the start of the task where they are looking at a number of the technical
plans, locating the relevant beams on these and determining their specifications in order to
calculate their weights. On the drawings the beams are labelled with two pieces of information:
their depth and their weight per metre or foot, depending on whether metric or imperial measures
are being used. For example, in this task one of the beams is W ten by twenty-one, indicating a
depth of ten inches, and a weight of twenty-one pounds per foot. On a plan this would simply
written as ‘W10 x 21’.

Extract 1
Mike: It’s a W ten by twenty-one. It’s right here (pointing to a drawing of a beam on

one of the plans where the specifications are in imperial units).
Joe: It’s not what it says here partner (pointing to the same beam on a different plan

where metric units are used).
Mike: Yeah, I know. Maybe that’s f……g metric or something? I don’t know.
Andy: W two fifty by thirty-three? (reading from the same page as Joe)
Mike: There’s no way that’s two fifty inches deep. It’s way easier if you
Joe: That’s mills (He means millimetres). Yeah.
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Mike: It’s way easier if we do it with inches. It’s a W ten by twenty-one.

In the above extract, the apprentices begin by working with the drawn elevations, extracting
the mathematical information contained in them that will be necessary for the calculation of the
weight of the beam. They understand how to read the plans and they are able to locate the correct
beam and its specification from a complex diagram. However, Mike and Joe are using two
different diagrams; one is a plan view (the structure from above), the other a cross-sectional
elevation of the structure. Because the first of these gives a metric specification and the second
an imperial, they become concerned about which units they are working with. Mike has found
the beam specification in imperial units, whilst Joe has it in metric. Mike, still thinking in
imperial, appears troubled by the figure of two-hundred and fifty (“no way that’s two fifty inches
deep”), and although he already has a suspicion that Joe is invoking metric units (“Maybe that’s
f......g metric or something?”), he is not confident, or happy, to just assume this is the case, and
suggests they adopt inches as their working measure, believing that for the group this will be
‘way easier’. He now proceeds to try and find the total length of the beam from the diagram and
in the next extract we see that almost immediately attention turns from the chosen imperial
measures to the alternative metric ones.

Extract 2
Joe: Okay. See? It’s right there
Mike: I’m just trying to find out how long it is (pause). All I need is one measurement.

Maybe it’s three thousand forty eight? (reading a length from the plan whose
measures are metric).

Andy: For what?
(Pause and mumbling from all three apprentices. Joe and Mike are looking at one of the plans.)
Andy: That’s what our centimetres will be, three thousand forty eight.
Mike: You think so? Oh yeah, it will. It will be, three thousand forty eight. We know

how long it is.
Andy: I already got that (laughs).
Mike: Well. That’s what we were after.

In the above episode, the apprentices return to the diagrams and are looking for the stated
length of the beam. Though the group had initially, as suggested by Mike in Extract 1, pursued a
solution using imperial measures, their collective attention now focuses on working in metric
units. They locate the correct dimension, three thousand and forty-eight, though they think this is
centimetres rather than millimetres (2). There is a slight sense of them not being sure about this
measurement, but they end the episode confident that they have the correct piece of information
to take forward to a subsequent calculation. They now attempt to use the figures they have
abstracted from the plans to calculate the weight of the beam.

Extract 3
Joe: So twenty-one times three forty-eight (working on calculator). You already got

this down, don’t you? (talking to Andy) equals? Is that what you got? (Asking
Andy).

Andy: Yeah (he sounds uncertain)
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Joe: In mills?
Andy: In mills. That’s f…..g
Joe: sixty-four (He has actually calculated 3048 x 21)
Andy: sixty-four thousand. So it would be sixty-four.
Joe: That’s not right.
Andy: sixty-four?
Joe: kilograms?
Andy: Kilograms. Yeah. (pause). That can’t be right, though. We did something wrong.

Those beams ain’t a hundred pounds.

In the above extract, having found the required specifications Joe now begins to calculate the
weight of the beam. He knows the calculation to perform and obtains the correct answer for that
calculation. On seeing that the answer is sixty-four thousand, the group collectively decide this
must mean a weight of sixty-four kilograms, a more likely weight for a beam than sixty-four
thousand kilograms. However, the mistake here is that they have incorrectly chosen to multiply a
metric length by the pounds per foot specification, twenty-one, which has given the wrong
answer. At the end of the episode Andy invokes his workplace mathematics understanding to
question the group’s solution, or at least their units of measurement and therefore the magnitude
of the answer. He offers a challenge to the group, pointing out that a beam of the type under
consideration “ain’t a hundred pounds.”

In the next episode, we see how the group responds to the challenge—not by abandoning
their solution but by accommodating Andy’s challenge and adapting their strategy.

Extract 4
Mike: Well, you have to do it the metric way. You can’t times anything by forty point

eight. (Note that there is no indication on the videotapes of where Mike obtains
this figure. He may still be thinking about the three thousand and forty-eight)

Joe: (Pause). No, I’m not. I’m just timesing it by the weight per kilogram which is
twenty-one.

Mike: Oh yeah.
Andy: Is that per metre?
Mike: No, that’s per foot.
Andy: Yeah, we’re doing metres though.
Mike: We got to change something around before we do that.
Andy: Because if we’re changing that. No…
Mike: Yeah, yeah, yeah. This is per foot.
Andy: This one that you had over here (indicating the other plan) the three fifty and the

two fifty times thirty-three, that would be the millimetres.
Mike: Yeah.
Joe: Yeah, you’re right.
Mike: That can’t be two fifty by thirty-three.
Andy: That’s just the…
Mike: Oh yeah, thirty-three kilograms per?
Andy: Per?
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Mike: Per metre. (They both nod). Okay, yeah. We’re happening now. Do it like this.
Times it by thirty-three.

Andy: thirty-three kilograms
Mike: thirty-three kilograms per metre.

At the beginning of the above episode, although all three apprentices recognise now that the
calculation is incorrect, no one participant is instantly able to determine what to do instead.
However, Mike and Andy draw upon their understandings of the mathematical relations involved
to realise that they “need to change something around.” Andy realises that they don’t actually
need to convert from imperial to metric, but instead could simply use the metric specification
offered on the other diagram, and Mike and Joe agree with this. Mike knows this specification is
in kilograms, but is not sure ‘per what’. Again, it should be noted that no units are printed on the
diagram, so the beam is simply labelled as W250x33. Mike is clear about the mathematics to use
here, now that he realises they are working with metric measurements. Once he confirms with
Andy that the specification is given in kilograms per metre he knows quickly that all that is
required is to multiply the length of the beam by the weight per metre, though it has taken him a
moment to be sure of this and he seems to need the confirmation of the group (offered with nods
of agreement) before he pursues this solution method.

Analysis and Interpretation
As Becker (2000) notes, the etiquette of collective improvisation is subtle.
Everyone understands that at every moment everyone (or almost everyone) involved in
the improvisation is offering suggestions as to what might be done next, in the form of
tentative moves, slight variations that go in one way rather than some of the other
possible ways. (p.172)
We see this kind of nuanced coaction (3) play out in the apprentices’ collaboration,

especially at the beginning of their task where each apprentice offers (sometimes tentative)
possibilities for action—which plans to consult, the weights of which beams to calculate,
suggestions to use both imperial and metric measures, etc. They locate relevant plans and agree
initially to work with imperial specifications. From here on, the contributions of each apprentice
continue to build on these collective decisions.

As the collaboration progresses, we see the apprentices listening closely to one another,
collectively choosing which pathway to pursue, and demonstrating a willingness to abandon
personal motivations (and their own preferred strategies or approaches) and to defer to the
“group mind” (Sawyer, 2003). As Becker (2000) notes, as improvisers listen closely to one
another “some of [their] suggestions begin to converge and others, less congruent with the
developing direction, fall by the wayside” (p. 172). In our data extracts, we see the initial
approach of using imperial measures fall by the wayside as the group mind coalesces on the idea
of metric measures, and this strategy, though not the one initially favoured, emerges as the better
approach and leads the group towards a solution. This is possible because of the willingness of
the three apprentices to listen to different ideas, to be receptive to the mathematical value of
these, and to collectively decide whether to take them on board. This kind of co-operation we
suggest is etiquette in action.

In his analysis of improvisational etiquette, Becker (2000) goes further to reveal how a group
works together “when there is no audience immediately present and instead the improvisers are
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trying to solve a problem for its own sake or their own sake, because it is there to do and they
have agreed to devote themselves collectively to doing it” (p. 174). In such situations, he
suggests that rather than simply recognising “a hierarchy of ability already...known” the
improvisers “ignore the past, ignore reputations, ignore everything but the contribution people
make to the collective effort....The rule in these situations is to treat everyone’s contribution as
‘potentially better’ than all the others” (Becker, 2000, p. 175). So, for example, although in
Extract 1 Mike favours the use of imperial measurements, in Extract 2 we see Mike and Andy’s
contributions to the conversation coalesce around the potentially better idea of invoking metric
measurement. Here we can see that it is not that a particular person is being afforded special
status in the collaborative effort (indeed, the talk shifts fluidly between all three apprentices and
all three contribute important ideas to the collective), but rather that particular mathematical
ideas are afforded special attention—those being the ideas that the group, collectively, determine
have the potential to advance them towards a solution to the problem.

Discussion
Becker (2000) suggests that that the kind of improvisational action we have described occurs

where the group have “shared a past…which...suggests their long-term participation in an
organized world in which the kind of activity they are improvising is common, probably a
professional or quasi-professional world where ties of occupation bring people together in joint
projects” (p. 175). This description is particularly true of the apprentices discussed here; they are
participants in the world of ironworking with its particular structures, conventions and practices.
Problem solving (and the associated practices seen here, such as interpreting complex diagrams
and plans) is a vital part of their working life, and, with the high degree of unpredictability that
exists within the workplace, is potentially an improvisational process. The need to collectively
improvise, to be able both to offer ideas and to build on those offered by others, is particularly
important in the context of the workplace, where wrong decisions or incorrect calculations have
real costs and dangers. In our brief data extracts here, we do see the apprentices setting aside
personal histories and reputations and genuinely coacting on the ideas of others based solely on
the perceived mathematical value of what they offer, rather than on who they are. Becker (2000)
acknowledges that “it is an interesting question-to which I have no answer-as to when people
become unselfish…but it is a common observation that, even in settings not likely to produce
such a commitment…people do act that way” (p. 175). Like Becker (2000) we do not yet know
why people choose to act this way, but we would suggest that environments such as the
workplace training classroom (and potentially the school mathematics classroom) offer the
possibility of being such a context, in which participants have a set of common mathematical
experiences and expectations that can provide the basis for unselfish, collective mathematical
action, driven by the desire to solve a problem rather than to advance one’s personal standing or
reputation. Our data so far, and as illustrated by the extracts in this paper, suggest that, as Becker
(2000) states, “the occasions on which this kind of more radical improvisatory experimentation
occurs need not be rare or require people of extraordinary talent or psychological abilities (e.g.,
tolerance for looseness)” (p. 175). The idea of working together is something that teachers of
mathematics are increasingly asked to encourage in their classrooms, yet there is a scarcity of
detailed models of how these collaborative processes might enable problem solving and/or the
growth of mathematical understanding. We suggest that the notion of improvisational etiquette is
one key element of such a model, and that attending to the characteristics of improvisational
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etiquette (in the context of the emerging mathematics) such as “attentiveness, care, and
willingness to give ground and take direction from each other” (Becker, 2000, p. 173) within the
classroom, may offer one way for teachers to see how group work supports the growth of
collective mathematical understanding.

Borrowing from Becker (2000), we also note that one could identify a whole range of kinds
of (mathematics education) situations that vary between two poles—those that work on the basis
of an etiquette that recognises and maintains a formal ideology of (mathematical) status (and
hence render mathematics inaccessible to many) and those whose etiquette requires recognition
of differentials in the contribution made to the collective effort (and hence encourage
mathematics learners to participate in generating solutions to problems by recognising and
valuing the potential worth of every mathematical contribution to the collective action). “These
differences are embedded in and supported by differences in larger social organizations, which
create the conditions making one or the other possibility more likely” (Becker, 2000, p. 176) and
hence we suggest that research attention might fruitfully focus not only on the classroom
structures that support improvisational etiquette but also on the larger administrative and societal
structures in which individual classrooms and their actors are embedded.

Endnotes
1. The research reported in this paper is supported by the Social Science and Humanities

Research Council of Canada, (SSHRC) through Grants #831-2002-0005 & 501-2002-005. We
would also like to thank the British Columbia Institute of Technology, Burnaby, BC, and the
course instructors, for their assistance with this project. We would also like to acknowledge
Andy, Joe and Mike for their willingness to be involved in the study, and Lionel LaCroix for his
work in collecting such interesting data.

2. 3,048 millimetres is equivalent to ten feet in imperial units, and has resulted from the
conversion of this imperial length to metric before adding to the diagram.

3. Their coaction is evident in these brief extracts of transcript but more clearly observed in
the longer (and richer) video record.
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The focus of this study is to investigate resources and strategies that high school teachers
exhibited while working on problems related to change and variation. The results indicated
that during their problem solving processes, they transit from incoherent and limited
approaches to more robust ways to solve the tasks as a result of discussing their ideas within
a community.

The analysis of the process involved in learning mathematics is complex: What types of
tasks and instructional activities help students develop forms of reasoning that are consistent
with mathematics practice? How can students construct or develop mathematical knowledge?
To what extent does the use of computational tools benefit students’ problem-solving
approaches? In order to answer these questions, it is necessary to address issues related to the
nature of mathematical knowledge, learning scenarios, and the tasks that make it possible for
students to understand and use mathematical concepts in problem-solving instruction. In
terms of developing teaching activities, it is necessary to take into consideration a very
important aspect which is the inquiry of real life situations. This inquiry will allow students to
handle data and build models or designs for further analysis so that they are motivated to use
mathematics and provide meanings to the concepts and their use (NCTM; 2000; NRC, 2000).
In addition, the learning situation in the classroom should become a learning community in
which students get used to develop, display, and assess ideas related to problem-solving
tasks, both individually and in groups so that they develop criteria to validate those ideas
collectively (Boaler, 2000, Manouchehri, 2003).

It is well known that problem-solving tasks are important for students to develop or
increase their mathematical knowledge. They help students practice and value processes such
as posing questions, seeking for mathematical relations, using different forms of
representations, using several arguments to support conjectures and communicating results
(Schoenfeld, 1985). Such activities are important to transform the classroom activities into a
learning community.

This transformation is not a linear and sporadic process; it depends on the instructor
initiative and the ways to structure and organize the learning activities, for example, the
instructor should select the tasks and the strategic instruction in terms of the type of
knowledge and abilities sought, and the activities that can be developed by the students in this
learning situation (Manouchehri, 2003). Thus, the research questions in this report are: How
can a group of students become a learning community? What influence does a learning
community have on encouraging students to constantly reflect on the approaches used to
perform problem-solving tasks? What ways of mathematical reasoning do students develop
and use in this learning community?

Conceptual Framework
The term “learning community” is used to refer to a classroom environment where

students are interested in achieving a shared goal (in this case, comprehending mathematics
ideas or solving mathematics problems) as they get engaged in collaborative work. Thus,
students infer, share, discuss, and explain the arguments that support their assumptions. In
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this context, students, in a collaborative way, find criteria to explore and assess their own
conjectures. The instructor organizes and guides the activities so that students work
individually, in small groups, and within the whole group. Furthermore, the teacher must
provide activities to help students analyze situations using different resources and
representations; stimulate the comparison of their results; promote individual and collective
work; and encourage the need of learning, increasing, and redefining new mathematical
concepts and topics (NCTM, 2000).

In this type of environments, students not only learn, explore, and examine concepts,
methods, and mathematical processes in classroom activities, but also learn habits that are
consistence with mathematical practice. Learning mathematics cannot be separated from this
interactive participation that takes place in the classroom throughout the learning period
because both of them have influence on each other (Boaler, 2000).

Problem-solving tasks based on real contexts require asking and answering questions
arisen from the different perspectives embedded in the situations; therefore, there is not
necessarily a unique answer like those required in most math problems. In such approach,
there may be several answers, according to the conditions and assumptions made. In order to
answer these problems, it is necessary that students represent and explore different
approaches to create and redefine previous inferences, changing from their initial incoherent
and unorganized inferences to better organized and structured ones. It is useful to observe and
trace each student’s assumptions to be aware of them and be able to analyze the episodes they
go through to understand the situation, as well as the procedures they follow in order to
answer the question or questions asked. This will give us information that will allow us to
identify certain aspects of the process of the student’s cognitive development (Lesh y Doerr,
2003).

A mathematical concept may have different meanings in different contexts and the ways
in which it is used may be different, even if the same definition is used. During their
academic studies in mathematics, teachers develop some meanings of concepts that should be
seen as a part of the broad group of meanings of concepts. When students are solving
problems, in a non-mathematical context, which requires the use of their previous knowledge
and computational tools or other resources, they need to listen to other students and discuss
their ideas openly in order to reflect, improve, and restructure the associated meaning with
the concepts involved. This perspective is different from the traditional way of learning.
(Biehler, 2005)

Procedures and Participants
The observations were made during a course which purpose was to develop students’

problem-solving skills and improve their comprehension of mathematical concepts,
processes, and their ways of reasoning. This study was conducted with seven students of a
master program in mathematical education who were in-service teachers at high school level.
All of them have a bachelor degree in science in areas like mathematics (three), engineering
(two), and business (one). There were sixteen sessions, each one of three hours weekly. The
contexts of the problems included situations related to population, credits, concentration (of
substances), movement, volume calculations, and substance mixture preparations. While
working on the tasks, the participants were allowed to use computers, calculators, or any
other resources. In all sessions, students worked individually, in pairs, and then each pair
presented their results to the class. Students recorded their approaches on the computer or in
their notebook, and they also made reports; all of the evidences were collected at the end of
every session. The presentations and group discussions were audio taped.
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Results and Discussion
The information used was taken from the reports made by the students while working

with two of the activities; the first one was assigned in the first part of the course and the
other one in the last part of the course. The first activity did not have only one solution and
could have been approached from different perspectives by using several mathematical
concepts and procedures. The second one required students to use concepts such as
successions and recursive procedures. The information was analyzed in order to identify
characteristic aspects of the episodes followed by the participants when solving each
problem: understanding the problem, devising a plan, carrying out the plan, and looking back
throughout the different phases of classroom work, focusing to the mathematical concepts
and process, and in the representation used.

Problem A. A ladder which has a length of L
meters is leaning on a wall and the top edge is at
a distance of h meters from the floor. All of a
sudden, the ladder begins to fall in such a way
that the top edge moves downwards at a constant
speed of v m/sec. Describe the speed at which the
other edge of the ladder moves.

The reports of the individual work indicated that the initial comprehension of the problem
was similar among students: to determine the speed at which the bottom edge of the ladder
moved. Three participants first claimed that it moved at the same speed as the top edge.
However, only two of these participants explored to support the claim that their first
assumption had been wrong (see Fig. 1 and Table 1).

Al lado sin identificar le llamo p, entonces L 2 =h2 + p2. 

El valor de L es: 

22 phL ??

 

El valor de p es: 

22 hLp ??

 
Si la escalera se desliza, lo hará una distancia, entonces si la v=d/t  

La velocidad del punto inferior es 

t

hLph
V

2222 ???
?

 

Analizamos  en primer lugar  el desplazamiento del extremo inferior, 
dando valores al largo de la escalera (L), a la altura (h) y al piso donde está 
apoyada por su parte inferior la escalera (p). Obteniendo la siguiente tabla:  
 

L h p Desplazamiento  
10  8 6 1.141428429  
10 7 7.14142843  0.858571571  

10 6 8 0.660254038  
10 5 8.66025404  0.504897352  

10 4 9.16515139  0.374240624  
10 3 9.53939201  0.258566957  
10 2 9.79795897  0.1519154  

10 1 9.94987437  0.050125629  
10 0 10  

 
Supuse que la parte superior de la escalera se movía a una velocidad de 1 m/s.  
De la tabla se puede ver que si h recorre 1  m en un segundo, p recorre 1.14 m 
en el mismo tiempo. Los extremos no tienen la misma velocidad . 

Fig.1 Excerpt of student G’s report after
individual work.

Fig. 2 Excerpt of student F’s report
after individual work

The initial assumptions shown by five of the seven students were based on the use of the
Pythagoras theorem, in which the right triangle is formed by the ladder, wall, and floor (fig.

  

L  h  
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1). Within this group, one of them considered this relation as a situation of implicit functions
and used calculus to determine the speed of the movement of the bottom edge (fig. 2); four
students used this relation to observe how the bottom point moved by using a numerical
approach in Excel (fig. 1), within these four, one of them used functions and derivatives on
one variable to get the expression that would provide the speed as a function of time. Among
all of the participants, only one used the concepts related to the movement of the angle and
kinetic and potential energy in his first assumption. It is possible to see that at this stage, most
students reached a level of comprehension of the problem: they identified the unknown
quantity and the relations between important quantities, the changing process among each
one, and at the same time they made suppositions about these changes that leaded them to
make assumptions related to the aspects that characterize the answer to the question.

According to the reports handed in, the sharing of ideas among students in pair work led
them to change the type of strategies used to solve their problem. Their comprehension of the
problem was focused on describing how the position of the bottom edge of the ladder
changed. One pair of students used the terms velocity and speed as synonyms, not in the same
sense as in physics, but as the quotient of dividing distance by time. The strategies used to
reach the answer were divided in three types: one using numerical approximations and the
other two using approximations based on functions and calculus, one of which led the
students to use simple differential equations.

ConsiderationsStu
dent Individually Pairs

J Both edges move at the same speed.

G
Both edges move at the same speed.
Explores and rejects the assumption. Then,
continues exploring.

Use Pythagoras theorem, assign values and
explore using procedures in Excel, use speed as
the quotient of distance divided by time.

I
Both edges move at the same speed, reflects
on the situation, rejects the assumption and
finds a relation.

F
Establishes implicit functional relations and
uses implicit derivatives to obtain the speed.

Use Pythagoras theorem, and implicit functions
and derivatives. Speed is considered the
derivative of position. Algebraic representation.

C Both edges move at the same speed.

B
Establishes functional relations and uses the
derivative to obtain the speed.

D
Uses concepts of the movement of the angle
and the law of conservation of energy.

Use Pythagoras theorem, and functions and
derivatives as one variable. Speed is conceived
as the derivative of the position. Use algebraic
representation without explicitly establishing
time as an independent variable.

Table 1. Approaches to the problem made by students during individual and pair work.

During group presentations, these last two assumptions were considered, and participants
determined that both led them to the decision that analogue expressions were used for the
expression which would result in the position and speed as a function of time of the bottom
edge of the ladder.
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Con estas ideas  englobamos los resultados para plantear la solución final:  
Supusimos que en el tiempo t= 0, la escalera no estaba vertical,  sino que tenía una altura 
del piso a su extremo superior, que denotamos por A, de 8 unidades, la escalera media 
10  unidades y la distancia del extremo inferior (B) a la pared es de 6 unidades por el 
teorema de Pitágoras.  
DA(t) = Vt que es igual a la dist ancia recorrida por la escalera cuando se va 
desplazando.  
A(t) =A 0 – Vt que es la posición del punto A en el eje y en el tiempo t.  

Entonces B(t) = 

22 ))(( tAL ?

 es la posición del punto B en el eje x en el tiempo t.  

B0 =

2
0

2 AL ?

 y dB(t) = B(t) –B0. Con estos resultados podemos sacar la expresión 

general, que nos indica la posición en que se encuentra el extremo inferior de la escalera 
en el tiempo t ,la cual sería:  

2
0

2 )( VtAL ??

. 

Ahora para sacar la velocidad instantánea a  la que se desplaza ese extremo inferior, hay 
que encontrar la derivada de esa expresión con respecto a t, que es la variable que se 
mueve. La derivada es la siguiente:  

2
0

2

0

)(

)(

VtAL

VtAV

??

?

 en donde si sustituimos diferentes valores de t, nos dará la ra pidez a 

la que se mueve el extremo inferior de la escalera. Nótese que efectivamente la 
velocidad no es constante, cuando la rapidez si es constante en el otro extremo.   

Fig. 3 Determination of A(t) y B(t) carried out by Student B

At this stage, the instructor asked some questions concerning the different assumptions,
such as: Do they describe how the bottom edge of the ladder moves?  How are they different?
This guided students to reflect about what they had done. There were some observations
about the “particular nature of the numerical approaches, and also about the general nature of
functional ones. Therefore, the instructos asked if the numerical approximation could be used
and how. Student B explained how he used the numerical approximation, which helped him
to understand the way in which the magnitudes involved were related. Throughout this
process of reflection, the necessity of using both the adequate algebraic representation and the
convergence of the two assumptions based on functional expressions became evident. The
students realized that they had to be careful with the symbols and definition of variables,
relations, and conditions of the problem (see Figure 3).

Problem B. Initially, a pond has n units of volume of natural water, with a c uniform
concentration of salt. Due to the sun, one unit of volume of water evaporates every week.
Besides, one unit of volume of the rest is taken out and both are replaced with two units of
natural water so that the concentration of salt does not increase. Describe the concentration
of salt in the pond.

The first approaches to understand the problem, which were made individually, are
characterized for being numeric. Students assigned values to the initial volume of water and
the initial concentration (or quantity) of salt in the pond, and used procedures in Excel to
determine the concentration of salt at the end of every week without giving any extra
information (see Figure 4). Their main interest was to determine the quantity of salt as a
strategy to get the salt concentration, which determines the quotient of the quantity of salt and
volume of the water. On the whole, students identified a recursive process, such as the one
carried out by the student G (see Fig. 4), which helped them find the amount of salt in terms
of what it had been the previous week C7, volume B7, and the initial concentration D6.
Furthermore, they were even able to obtain the concentration of salt at the end of the
following weeks by repeating the procedure.
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Figure 4.Student G assigned 400 m3 of V and a concentration of 1kg/m3 (Individual
report)

At this phase, two students found it difficult to understand and apply the concept of
“concentration” when they were representing the process of variation in the concentration of
salt in the pond. Pair work helped students improve the representation of the process in Excel
by making visible the relevant amounts at the beginning and end of the week, and also, by
posing questions such as: What should I obtain? What is the amount of concentration of salt
per week? How do I get these sums?  We observed that when students work in pairs, they are
compelled to explain and clarify the process used to find the answers (see Figure 5).

The presentations for the whole group made it possible to assess what had previously
been done in pairs, in terms of answering other participants’ questions and doubts. This
allowed them to identify structural aspects of the procedure and also consider criteria to
assess the relation between the initial information and the results obtained.

Figure 5. Modified table carried out by pair of Students C and G.

This activity led students to seek an algebraic representation of the process. The
contributions that came up within the group were analyzed in pairs. Each student wrote a new
report individually, then they discussed it with their partner, and each pair made another
presentation for the whole group. In these presentations, all participants accepted the
expression and propositions made by one of the pairs of students (Students G and C). The
pair highlighted the recursive nature of the process followed, and used this detail, even
though it was used in an incorrect way, to obtain a simple algebraic expression, which guided
them to establish that the process in week 2 was a repetition, with the only difference that the
initial amount of salt is 1X . The same process was repeated for the following weeks (see Fig.
6).
Students used this expression to determine the time in which the concentration would reach a
value that is equal to the double of the initial amount of concentration. The previously

statement would be represented in the following equation: 
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In the group discussion, nobody doubted about the results obtained, and they did not
consider the procedure performed at the first phase, in which a slow increase in the
concentration was visible. The instructor took part in the activity to help students identify this
difference and guide them to reflect about what they had done, the model concepts, and the
representations of a phenomena or situation. The students worked on the problem again in
pairs. Some of them were able to obtain the symbolic representation of the process and then
informed the group of this result. During the discussion, it became evident that different
approaches, if they are correct, should lead to the same result.

Ya que al iniciar la primera semana hay X0 = nc  cantidad de sal en el acuario. 
Al final de cada una de las siguientes  semanas habrá: 
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Figure 6. Wrong recursive representation, made by student G, which is initially accepted by
the class.

Reflection
While students were searching the answers to the activities, they developed attitudes and

concepts they had not shown previously; for instance, they established criteria to value the
answers given to the questions asked, and searched for more general answers instead of
particular ones. Students also valued some procedures more than others. During pair work
and group work, students who worked with numerical approaches accepted other types of
approaches, especially if “advanced” mathematical concepts and theories were used (for
example, calculus). Even though the numerical approach in Excel (not using paper and
pencil) could have provided them with the necessary information to answer the questions
asked in the problem as well as required to describe the situation. The fact that they had
favored the approaches that implied “advanced” mathematical concepts was possibly due to
the students’ limited knowledge of the tool or it may also be because of beliefs developed
during their previous academic training (Schoenfeld, 1985). The discussion concerning a
situation that had multiple answers allowed students to pay attention to mathematical
concepts such as precision, exactitude, approximation, function, and others, of which students
proved to have a limited understanding associated to algorithmic activities.

It is important to reflect on relevant problem solving behavior that the participants
exhibited during the development of the sessions. The initial approaches to the problem
shown by the participants, in general, were incoherent and seemed to aim at representing the
problem algebraically. However, examining those first attempts led them to recognize that it
was crucial to visualize and comprehend relevant data and particular relationships associated
with the task. In this context, the participants recognized that there may be various ways to
approach the problem and even those with certain limitations were important to be discussed
for meaning and mathematical properties embedded in the solution process. The structure and
development of the sessions seemed to be a fundamental ingredient to generate a learning
community that values and accepts that learning takes place within an inquiry environment
that reflect principles that are consistent with the practice and development of the discipline.
In particular, the participants recognized that initial incoherent attempts to solve the problems
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can be transformed into robust approaches when the learning environment values and
promotes the active participation of the learners.
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The paper examined the uses of visual representations in Japanese and U.S. elementary
mathematics textbook series and investigated how they support student learning differently. U.S.
series used representations to narrow student thinking to help them solve problems in the
manner that have already been learned; Japanese series used representations to create space for
students to analyze contexts using mathematics. The purpose of the contextual problems in U.S.
textbooks is for application of the previously learned concepts and methods, while Japanese
textbooks used them for mathematical analysis and explorations.

With recent attention to international studies, we are increasingly becoming aware that
mathematics is not taught in the same way in different countries (e.g., Third International
Mathematics and Science Study, Programme for International Student Assessment). This paper
will examine how differently visual representations are used in U.S. and Japanese textbook series
and how they support student learning of mathematics. Role of representations in contextual
problems (story problems) and non-contextual problems (number problems) in the two series are
analyzed, and the different expectations and goals of mathematics teaching and learning
suggested by the uses of the representations are discussed.

Perspectives
The Third International Mathematics and Science Study (National Center of Education

Statistics, 2003) compared different aspects of mathematics education in different cultures to
examine the reasons for achievement differences (e.g., video study of teaching), and one of the
core studies examined mathematics curricula (Schmidt, et. al., 1997). The study found that,
although some common mathematics topics are taught, the organization and the presentation of
these topics varied across countries. Small and frugally bound textbooks used in Asian countries
were compared with large and expensive U.S. textbooks that cover varied goals in the “mile wide
and inch deep” curricula across the fifty states (Schmidt, et. all, 1997).

Japan is one of the high-scoring countries in the international studies mentioned above. The
Japanese curriculum focuses on a few core topics, and there is little repetition and re-teaching of
these topics. Concepts are typically introduced as an extension of students’ prior learning to
make the connections among their learning experiences stronger. Moreover, a long time is spent
on each major topic to create successful learning by all students. These curricular approaches
minimize the need for re-teaching. Topic presentation is carefully thought out with common
visual representations to connect core ideas across topics and across grades: students’
mathematics experiences are centered around supportive representations and situations to help
students build meanings (see other studies for discussion, such as Mayer, Sims, and Tajika,
1995).  For instance, the National Center for Education Statistics (2003) found, in comparing
videos of teaching as a part of TIMSS, the Japanese instruction made two to four times more use
of visual representations than did other countries.
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National Council of Teachers of Mathematics (NCTM, 2000) defines representation as the
“act of capturing a mathematical concept or relationships in some form and to the form itself
(p.67)”. Representations are an essential part of and an effective tool for learning and doing
mathematics, and it is important for students to understand mathematical concepts and be able to
use multiple representations to show their understanding of the concepts. This paper will
examine how these representations are used in the U. S. and Japanese textbook series and their
roles in student learning of mathematics.

Methods
One U.S. and one Japanese elementary mathematics textbook series are analyzed for the

study. Scott Foresman Addison Wesley Mathematics (Pearson, 2004) and Study with Your
Friends: Mathematics (Gakkkotosho, 2005) are selected because they are one of the most used
textbooks in each country (Horizon Research, 2002; Japanese Ministry of Education 2006). All
Grades 1 – 6 instructional units were analyzed for their uses of representations. At first, the units
were marked for their use of different representations. From there, the five most frequent visual
representations across the two textbook series across all grades were identified (namely, pictorial
representation (1), tape diagrams, number lines, ten frames, and base-ten blocks), and the units in
the two series that used them were further analyzed for their uses in terms of contextual problems
(story problems) and non-contextual problems (numerical problems). The units in the U.S. and
Japanese textbooks that had similar instructional goals (for addition and subtraction) were then
pulled out and contrasted for the structural differences for lessons. These topics are selected
because they are the key topics in lower-elementary grade levels when students use visual
representations for the first time for mathematical concepts, and it is considered important to
understand the early mediating role of the representations. Teachers’ instructional manuals were
also examined for additional information in terms of instruction as well as homework
assignments.

Results and Discussion
For both textbook series, pictorial representations (actual pictures of objects) are the primary

representation for the early part of their learning (Grade 1 and early Grade 2); ten frames are
used as students work with numbers less than 10; and base-ten block representations are used for
multi-digit number operations. While many units in both textbook series use visual
representations, their uses differ in an important way. The U.S. series uses representations to
accompany more problems that are not contextual. For example, pictures of flowers accompany
solutions to the numerical problems such as 3 + 5. In contrast, the Japanese series use
representations mainly for contextual (story) problems. Table 1 shows the percents of the visual
representation uses in both textbook series for contextual and non-contextual (numerical)
problems.
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Table 1. Percentages of addition and subtraction units in Grade 1 – 3 that used visual
representations for contextual and non-contextual problem solving in two textbook series

Scott Foresman Addison
Wesley Mathematics

Study with Your Friends
Mathematics

Types of
Representations

Contextual Non-context Contextual Non-context
Pictorial 50% 65% 88% 6%

Tape diagram
.

15% 5% 53% 0

Number line 10% 50% 0 18%

Ten frame 0 35% 12% 6%

Base-ten blocks and
cubes

15% 75% 53% 18%

Average percentage of
representation use

18% 46% 41% 10%

Note. Only the units in each textbook series that concerned addition and subtraction concepts
were analyzed (e.g., geometry and measurement chapters were not analyzed). There were 20
such units in Scott Foresman Addison Wesley Mathematics, and 17 units in Study with Your
Friends Mathematics for their Grades 1 – 3 volumes.

In average (of five frequent representations), the U.S. series uses the representations 18% of the
time for contextual problems and 46% of the time for non-contextual problems. In contrast, the
Japanese series uses the representations 41% of the time for contextual problems, and only 10%
of the time for non-contextual problems.

Zooming in further, Figure 1 contrasts typical guiding steps and questions used for problem-
solving using tape diagrams in the two textbook series (for contextual problems).
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Figure 1. Examples of guiding steps and questions used for problem solving with tape diagrams
in two textbook series (as shown in student books)

Scott Foresman Addison Wesley
Mathematics
Grade 3, Unit 2 (early Grade 3); Addition
and subtraction number sense

Study with Your Friends Mathematics
Grade 2, Unit 7 (mid Grade 2); Addition and
subtraction (1)

Problem: Mitch bought a cap and a
pennant. How much did he spend
altogether?

Guiding steps:
1. Identify the main idea.
2. Draw a picture to show the main idea*.
3. Describe the two parts in this problem.
4. Write a number sentence for the

problem.

Note. * in teachers’ manuals, the sample
picture for this steps is shown as below:

Problem: There are 38 blue sheets of paper and 63
red sheets.

Guiding questions:
1. How many sheets of colored paper are there?
                            Total: � sheets

    Blue paper: � sheets       Red paper: � sheets

2. Which one is how many more?
       Blue paper: � sheets

                                         The difference: � sheets

                             Red paper: � sheets

3. She uses 25 red sheets, how many will be left?
                               Red paper: � sheets

          � sheets are used           � sheets are left

The Japanese example was taken from the Grade 2 unit on addition and subtraction; the U.S.
example was taken from the Grade 3 unit on addition and subtraction number sense. These two
units were chosen because they introduced the use of tape diagrams for the first time for
students, and thus believed to provide necessary scaffolding steps for using the diagrams for
problem solving. In the U.S. example, the problem was given at the beginning (Mitch bought a
cap and a pennant. How much did he spend altogether?), the necessary information followed (a
table summarizing the prices of the items), and students are then guided by a set of questions (in
student books) to solve the original problem. For the Japanese example, the context is given at
the beginning (There are 38 blue sheets of paper and 63 red sheets), and questions follow to
examine the given situations that accompany different tape diagram representations. The
questions guided students’ attention to different aspects of the addition and subtraction

Eagles Baseball Souvenirs
         Cap . . . . . . . . $12
         T-shirt . . . . . . $18
         Pennant . . . . . $4
         Poster . . . . . . $3

?9

24
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relationships in the given context and how the tape diagram could show the relationships. The
U.S. approaches utilize the representation to solve a problem, while the Japanese approach
focuses on analysis of the context using representations.

U.S. and Japanese lesson structures are also different in the two textbook series. A U.S.
lesson starts with a simple problem (often non-contextual) that shows a step-by-step solution of
the problem. Following the example, several problems are given that require students to take the
same steps for solution. Representations guide the problem-solving at this point, but they are
typically shown in an identical manner from one problem to the next so students may focus on
the patterns with the set of problems and finding answers. There may be one or two story
problems embedded in the lesson, while the focus of the lesson is clearly on learning how to
follow the given steps and finding answers to a set of similar problems.

The Japanese lesson structure is different. A lesson begins with one problem, and for an
entire lesson (that can range from one to several class periods), students take time to represent,
explain, solve, and discuss the problem and their approaches to solving the problem. Problems in
Japanese textbooks are often “worked out” and relevant representations support the entire
problem-solving process (Mayer, Sims, and Tajika, 1995). Representations are used for students
to analyze and understand the problem and generate a space for instructional conversation. Each
instructional unit includes a set of non-contextual problems, but they are not the main focus of
the learning.

The U.S. and Japanese textbook series took different approaches in incorporating
representations to support students’ learning: U.S. series used representations to narrow student
thinking to help them solve problems in the manner students previously learned with numerals;
Japanese series used representations to create space for students to analyze contexts using
mathematics. The purpose of the contextual problems in U.S. curricula is for application of the
previously learned concepts, while in Japanese curricula, it is for analysis of mathematics in
situations. In the application approach, students enter the problem situations knowing that they
are to use what they have just learned to solve them, thus quickly move to make the contextual
problems into numerical ones (Boaler, 1994; Brown, Collins, and Deguid, 1989). In the analysis
approach, while students know that mathematical ideas will follow contextual problems, space is
allowed to think of the presented situations without a known goal that students engage in the
situation in more-meaningful ways.

Conclusions
Comparative studies are often useful in highlighting the underlying assumptions of cultural

practices. Different instructional approaches are often reflections of different beliefs on how
students should learn mathematics, and the different uses of representations are examples of
such. If the goal of instruction is to support the development of competent mathematics students
who can follow steps and learn to solve numerical problems quickly and accurately, the U.S.
approach to focus on simple steps and solving multiple problems of the same kind will make
sense. If we believe that mathematics instruction should support students’ deeper conceptual
understanding of how mathematics works in contexts (Kilpatrick, et. al., 2001; NCTM, 2000),
Japanese approach will work better.

We need to question ourselves of the purposes when we use contextual problems in
mathematics classrooms. If contexts are there to simply practice mathematical concepts students
have already learned, students won’t investigate how mathematics works in the contexts



478

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

carefully because of the shared instructional priority on numerical problem solving. If we want to
use contexts meaningfully in mathematics instruction, we will need to find new ways to present
problems so that students will focus on the investigation and analysis of mathematical ideas in
the contexts and not on practicing already-learned concepts and methods. The Japanese approach
presents an example on how contextual problems may help create instructional space where
students can analyze mathematics and communicate their ideas that is guided by representation
uses.

Contextual problems do not always need to happen at the end of the chapters, and there are
different ways to utilize the contexts to support student learning. As we are now faced with the
challenge to support all students learning mathematics who come to the classrooms with
different values and experiences, we need to rethink the way we value the differences (for their
interpretation of the contexts in instructional conversation) and how to make connections
between these different ideas and core mathematical ideas. Representations can play a critical
role in supporting the communications of ideas (to make connections) in classrooms and
meaningfully bridge and add extra meaning to the numerical problem solving, however, the ways
in which representations are currently used in textbooks will need to be reconsidered in order to
support these new purposes.

Endnote
1. When pictorial representation is used but does not support actual problem-solving process

(e.g., a large picture of an apple is shown for a problem that discussed grocery shopping), it was
not considered to be a representation that supported problem solving.
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The main purpose of this study is to document and analyze high school students’
competencies exhibited while working on models and modeling activities. Students worked a
set of tasks that involves decision-making strategies and the use of proper representations to
communicate and support their responses. Results indicate that the context and structure of
the tasks helped students look for approaches and resources that often are not part of the
curriculum they have studied and also recognized the need to constantly examine and refine
their initial approaches to the tasks.

The objectives of school mathematics helping students develop powerful conceptual tools
to build and work in systems that are progressively more complex in our present world
(NCTM, 2000) which tend to revert the anumerical behavior that according to Paulos (1988)
increase the vulnerability of the citizens before different influences of the natural and social
environment that surrounds them. On the other hand, there are mathematical thought
processes that are not classified within the mathematics curriculum in the place they should
be (Doerr and English, 2003; Santos, 2002). Among those processes we could mention
ponder, order, control, describe, experiment, classify, assess, select, organize and transform
complete sets of data instead of specific data.

Models and Modeling (Lesh and Doerr, 2003) is a theoretical perspective that tries to
rationalize the mathematics problem solving, and the teaching-learning processes of
mathematics. The main idea in the models and modeling approach is that individuals give
sense to their experiences in terms of the models that they have previously built. The
concepts of models and the modeling cycles are important in this perspective.

“Ends-in-View-Problems” are relevant to the present world (Lesh and Doerr, 2003).
“Ends-in-View-Problems” are those that give students specific criteria to generate useful,
complex and multisided products that go beyond the information they received. Among the
different products this type of problems generates are the models and the systems to assess.
On the other hand, decision-making is one of the relevant problematic situations for future
citizens. Decisions are constantly made during the day and decision-making if fundamental in
science.

Methodology

Problematic Situations
A set of nine problematic situations were designed, but five of them required an

assessment instrument before decisions were taken. An example of one of those situations is
included below, such as these was presented to students.

The Zapatas have to move.
The Zapatas, the parents, a 16-year-old daughter and an 11-year-old son, have to move

because of the father’s job. The options the company gives them are: Aguascalientes,
Tijuana, Ciudad Juárez, Saltillo, Distrito Federal, León, Guadalajara, Morelia, Puebla y
Cancun. The family now lives in the Metropolitan Area of Mexico City (suburbs located in
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the boundary of Mexico City and the State of Mexico). The Zapatas, mainly worried because
of their children, would rather have their new home in a “quiet” place.  To make their
decision, they got the following table in which the main problems in the different cities
(depending on the number of inhabitants) are recorded.

MAIN PROBLEMS FOR INHABITANTS IN 12 CITIES

CITY PO INS UNE CRI VIO PUSER DRAD POL
Aguascalientes 8 29 38 10 2 4 7 3
Tijuana 16 29 6 21 10 4 11 2
Ciudad Juárez 15 22 3 18 18 2 21 1
Saltilllo 5 29 5 18 13 7 22 1
Distrito Federal 12 32 10 27 8 6 4 1
Metropolitan
Area

12 20 10 24 10 6 13 3

León 17 12 19 10 4 21 1
Guadalajara 18 34 16 15 9 2 5 5
Morelia 18 21 12 20 12 2 9 2
Monterrey 18 29 18 16 8 7 9 5
Puebla 20 24 9 18 6 11 5 5
Cancún 20 26 10 17 2 19 10 1

Where: PO: Poverty; INS: Insecurity; UNE: Unemployment; CRI: Criminality; VIO:
Violence; PUSER: Public Services; DRAD: Drug Addiction; POL: Pollution. (Each
percentage corresponds to a city and to a problem. The number indicates the percentage of
inhabitants who consider that problem as the most important.)

Help the Zapatas by pointing out which the best three options are! Write a letter to them
explaining in detail how and why you chose those cities. Illustrate your decision with graphs
or diagrams, yet with enough reasons so that they can choose the best option.

In these problems, essential mathematical ideas are centered in notions that include
pondering, quantifying qualitative information, ordering, selecting and adding (combining,
joining) ordered amounts, and constructing classifications. The problems are thought to elicit
the multifactorial ordering notion to make a decision. It can also be stated that all of them are
isomorphic from a mathematical viewpoint, what changes is the context of the problematic
situation.

Sample Studied
The school where this test was applied is a public school that is part of the Colegio de

Ciencias y Humanidades of the UNAM. 51 junior high school students participated, 37 were
girls and 14 boys. They were all between 15 and 16 years of age. They constituted a typical
school group and said group was chosen without taking into consideration any particular
criterion.

Sources and Analysis of Information
While the students were solving the problems their oral participation was recorded and

later transcribed. In addition, written records of each of the work groups they kept for each of
the situations they considered were also collected. On the other hand, the professor-researcher
took notes of all those aspects he considered relevant during all the work sessions.
Consequently, data analyzed came from transcripts of the recorded participation, the written
work kept by the groups and the notes taken by the researcher.  At first, six transcripts
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(supported by the researcher’s notes and the student’s written work) corresponding to the
solving process carried out by six small groups on six different tasks were analyzed. This
analysis was focused on the numbers and the relationship among them the students
considered, on the different ways in which they interpreted the tasks, on their mathematical
reasoning to focus the problem, and on the representations they used. This analysis identified
the different interpretation cycles of each of the small groups through each of the tasks.
Secondly, the analysis was focused in describing the variations between the different models
that were developed by the students for each for each and every one of the nine tasks.
Products obtained in the student’s written work together with the field notes of the small
groups were analyzed to identify the differences between the different models that were
constructed.

Results
 Some students begin by supposing which they consider the best option is. In this

case during the modeling process the actions are oriented towards assessing,
proving or justifying what they propose.

 Most of the students do not take into account the conditions in which the need
emerges when they make their decision.

 The students asses which the relevant characteristics of the options are in respect
to the conditions that surround the need.

 When a characteristic has almost the same values for a certain number of options
(which might be all of them) the students consider it irrelevant for the decision in
the options in which said characteristic is present.

 The students, once the characteristics of the option have been pondered, eliminate
those that are not relevant.

 When the values of the characteristics are given in a qualitative form, students
transform it into a quantitative one constructing measuring scales to carry out said
transformations.

 Students order numerical data collections.

Some Observed Limitations
There are basic competencies in which the students have certain limitations. Those that

were noticed are:
 They have difficulties in interpreting what certain numeric values included in the

table represent:
 They have difficulties in applying the order relationship when the numeric values

included in the table are written as decimal numbers;
 They have difficulties in ordering the numerical values of the columns when said

column is “big” (for example, three columns by twelve rows); this might possibly
because they get “confused” when they see “many” numbers and they then do not
know what to do;

 They do not recognize the particularities surrounding the need, possibly because
they do not pay attention to the statement that describes the problem and they
focus their attention more on the values included in the table.
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We analyze data from classrooms to build upon pilot research in which we found an association
between certain types of student behaviors and the development of understanding. The pilot
focused on an after school program in a suburban setting. In this case, we focus on several inner
city classrooms. Our findings indicate that there are many similarities. These results may have
important implications for understanding how student behaviors evolve over the course of a
particular problem solving experience.

This research is one component of a larger longitudinal study in which University researchers
partner with teachers in a large and densely populated urban school district to provide
professional development (Schorr, Warner, Gearhart & Samuels, 2007). In the present study, we
analyze data collected from two classrooms in an effort to build upon research gleaned from a
pilot study that took place in a middle-class suburban after-school center (Warner, 2005). In the
pilot, the behaviors of the students were examined as their mathematical understanding of a
particular idea grew (using the Pirie/Kieren model for the growth of mathematical
understanding). Results suggest that there appears to be a relationship between certain types of
student behaviors and the growth of a particular strand of ideas. These behaviors include, for
example, building and linking representations, reorganizing and questioning your own and/or
others’ ideas, setting up hypothetical situations, etc.. In the current research, we test these
hypotheses in 2 other classroom situations. Our results suggest that such similarities do take
place, along with a few differences. This has important implications for understanding how
student behaviors evolve over the course of a particular problem solving experience.

Theoretical Framework
The Pirie-Kieren model for the growth of understanding (Pirie & Kieren, 1994) provides a

framework for analyzing student growth in understanding, via a number of layers through which
students move both forward and backward. Pirie (1988) discussed the idea of using categories in
characterizing the growth of understanding, observing understanding as a whole dynamic process
and not as a single or multi-valued acquisition, nor as a linear combination of knowledge
categories. Pirie & Kieren (1994) illustrate eight potential layers or distinct modes within the
growth of understanding for a specific person, on any specific topic: primitive knowing, image
making, image having, property noticing, formalizing, observing, structuring and inventizing. In
Warner (2005) a relationship between student behaviors and movement through layers in the
Pirie-Kieren model was reported on. The results were based upon detailed case studies of three
middle-school students’ problem solving efforts as they solved a series of combinatorics tasks
with the same or similar underlying structures. A summary of the observed behaviors and the
associated layers in the Pirie-Kieren model follows:
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• There was a general marked decrease in students re-explaining, questioning and/or
using their own or others’ ideas, with this being the most frequent behavior occurring
when the students were working in the inner-layers or early stages of understanding.

• Students moved to new representations at a fairly constant rate throughout the
process, with instances of this behavior occurring in each of the layers.

• There was a slight increase in students reorganizing or building on their own or
others’ ideas, beginning with a high frequency in the inner-layers of understanding.

• There was a general marked increase in students linking representations to each other,
with a low frequency in the inner-layers of understanding.

• There was a marked increase in students setting up hypothetical situation and
connecting contexts, with almost no instances of these behaviors in the inner layers.

These findings suggest that as understanding grows, there is a general shift in behaviors such
as students questioning each other, toward those involving the setting up of hypothetical
situations, linking of representations and connecting of contexts. The present study allows us to
investigate whether or not these same associations occur in the context of two inner-city
classroom settings. As part of the current study, we also revise and refine our associations to
better account for the observed behaviors.

Methodology

Background
The research reported on in this study takes place in the largest urban school district in the

state of New Jersey.

Data
As with the pilot study, the data that forms the basis for this study consists of at least six months
of videotaped sessions (regular classroom sessions in the present study). In each case, at least
two video cameras captured different views of the students’ group work, students’ presentations,
etc. All student work was collected and descriptive field notes were compiled.

Analysis
In this study, the investigation of a task, over several classroom sessions, is analyzed using

observations, field notes and videotapes. In both classrooms, we analyze the students
investigating a combinatorics problem involving a mathematical structure of the form: n(n - 1)/2.
The problem essentially is to find the fewest number of calls that needs to be made when 15
people call each other only once. It is also important to note that the students in each classroom
explored a task with the same underlying structure (the “handshake problem”, NCTM, 1989), at
least 4 months prior to these sessions.

Selected episodes were identified based upon student(s) understanding in the outer-layers of
the Pirie-Kieren model. We traced these moments back in time in an effort to document specific
behaviors or actions on the part of students (see bullet points above) that appeared to contribute
to movement through the layers of the Pirie-Kieren model. Detailed summaries and transcript
were compiled.
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Results and Discussion
Our analysis, which is thus far consistent with the pilot study, suggests that a number of

student behaviors appear to be associated with the growth of mathematical ideas in specific
ways. For example, in one particular case, which was typical of many others, an eighth grade
student began her problem solving experience (for a task similar in structure to one that was used
in the pilot) in the image-making layer (doing something to create an image). There were many
instances in which she explained, used, and questioned her own and others’ ideas. Others also
questioned her. During the early stages of understanding, it is to be expected that students would
in fact, question each other, and build representations that others don’t understand at the time,
thereby resulting in repeated questioning and requests for explanations and clarifications.

As this student moved from the image making layer to the image having layer (reaching a
“don’t need boundary” where she is no longer tied to the action), we began to see more instances
of her moving to new representations and reorganizing and building upon other’s
representations. We suggest that one explanation for this is that she wanted to refine her
representation in order to make it more useable to her, and in order to address the challenges of
her peers. This is consistent with activity in this stage of understanding, which is still in the
process of formation until the learner has an ‘image.’

In the process of moving from image having to property noticing (connecting her images to
each other), we began to see more instances of her linking representations to each other and
setting up hypothetical situations. These behaviors began to increase as she moved to, and began
working in, the formalizing layer (creating a “for all” statement). As an example, she began to
set up many hypothetical situations until she began to realize how the ideas she had been
considering would correspond to any case, for any number. We suggest that when working in the
formalizing layer, a student seeks to “tie up loose ends” as she links representations to each other
in an effort to justify her formal statement.

In our findings, there wasn’t a decrease in students re-explaining, questioning and/or using
their own or others’ ideas, as students moved to the outer-layers or later stages of understanding
(which was the case with the pilot study). In both of the classrooms, we found that the teachers’
actions may explain this inconsistency. For example, each teacher spent a good deal of time
highlighting selected students’ ideas and encouraging them to present their ideas to the class after
they moved to the outer-layers of understanding. They also encouraged the students in the
“audience” to ask questions. In one of these classrooms, in particular, the justification questions
asked by students in the audience appeared to heavily influence the students’ move to another
outer-layer of understanding.

Conclusion
It is our hope that by documenting the relationship between these behaviors and the

development of understanding, at least for this type of mathematical problem, we can shed more
light on the problem solving process in general, and when one might anticipate the occurrence of
specific behaviors as students are working on mathematical problems.
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Under investigation are the components that are emblematic of mathematical problem solving.
Participants, N=22, 13 men and 9 women, completed three rounds of a Delphi Survey which was
created to investigate experts’ opinions on mathematical problem solving (MPS). Experts agree
that MPS is an identifiable process and has identifiable descriptive characteristics.

Mathematical Problem Solving in Literature
When mathematical problem solving (MPS) is defined, it is described as a verb or noun. As a

verb, mathematics educators describe what problem solvers are doing as a process. As a noun,
mathematics educators describe characteristics of curricula inherent in MPS tasks. With myriad
definitions, a Delphi Study was conducted to solicit opinions of experts throughout the world to
reach consensus on what constitutes MPS.

As a process, students must be engaged in solving a novel task or one for which the solution
is not known prior to starting it (Carpenter & Moser, 1983; NCTM, 2000; & Wheatley, 1999).
The novelty of the situation may suggest that implementing a simple algorithm will not be
sufficient to successfully solve the problem. Some mathematics educators suggest that for MPS
to occur, iterative cycles must take place in an attempt to create a model (Doerr & English, 2003;
Lesh, et al, 2000). This process means that problem solvers continually work to create a
mathematical model to explain the situation and it has been referred to as expressing, testing, and
revising (Lesh & Zawojewski, in press) which may occur to approximate an adequate
mathematical model. Other mathematics educators suggest that metacognition must occur for
problem solvers to truly be engaged in solving a problem (Despete, Roeyers, Buysse 2001;
Metallidou & Efklides, 2000; Teong, 2003). Another process in which problem solvers may be
engaged when solving a problem is representation (Moreau & Coquin-Viennot, 2003; NCTM,
2000; Reusser, 1989; Staub & Reusser, 1995). In MPS, representation means that an external
method may be adopted to represent something. As an example, first-grade students may use
pictographs to pictorially represent the number of boys and girls in their classroom. In so doing,
students gain an alternate perspective of what the various numbers represent.

MPS has also been described as a list of characteristics such as realistic to problem solvers’
lives (Lesh, et al., 2000). Creating equitable kick ball teams for recess is realistic to a class of
third graders, but creating a budget for a trip from Missouri to Oregon on a Conestoga wagon in
the mid 19th century is not realistic. A grouped list of characteristics often mentioned regarding
MPS is interesting, challenging, and/or problematic to the students (Hiebert, et al., 1997; NCTM,
2000; Resnick & Ford, 1981). These descriptors are closely tied to realistic, because students
may be unlikely to be interested, challenged, or to find the task problematic if the task is not
realistic. A final characteristic of MPS worth mentioning is that more than one successful
solution may be created by the problem solvers (Hiebert et al., 1997; Hiebert & Wearne, 1996;
NCTM, 2000). As an example, one group of problem solvers might use the arithmetic mean to
calculate an average while another group may find that the standard deviation is more
informative to solving the same problem.
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Methods
A website was designed by a mathematics educator with expertise in instrument design. The

instrument was comprised of two prompts, “What is your definition of MPS?, and “What is your
definition of a mathematical exercise?” MPS is the focus of this paper. Following responses to
the two open-ended prompts, the qualitative data was analyzed and made into Likert items which
had a scale of 1-4 (1 indicates never and 4 indicates always). Subsequently, the second and third
round of data collection took place to reach consensus among participants. Nearly all
participants, 17 of the 22, were full professors and had more than 50 publications. Moreover,
several participants were current or former presidents of national or international mathematics
education groups.

A Delphi study has two pieces of data which are instrumental to interpreting the results. The
first piece of data is a grouped median and it illustrates the rating of the topic (e.g. 1-4). The
second piece of data is an interquartile deviation, IQD, and it shows whether or not agreement
was reached by the experts. In a Delphi study, agreement is statistically achieved when the IQD
is less than one-tenth of the total Likert Scale. In this study there were four ratings from which to
choose so the IQD must be < 0.4 for agreement. For the sake of these results, the second piece of
data has been omitted because only those data points that have less than a 0.4 IQD have been
reported. The IQD is calculated by the formula ( 3Q - 1Q ) ÷  2 where 3Q  represents the third
quartile and 1Q  represents the first quartile.

Results
Grouped medians of Likert ratings reveal the rating of the topic among experts. Participants

agreed to the following topics:
A. For problem solvers to successfully complete a problem solving task, they must
o engage in cognition (4.0)
o seek a solution to a mathematical situation for which they have no             immediately

accessible/obvious process or method (3.78)
o seek a goal (3.75)
o mathematize a situation to solve it (3.24)
o define a mathematical situation or goal (3.13)
o create assumptions and consider those assumptions in relation to the final solution (3.06)
o revise current knowledge to solve a problem (3.0)
o engage in iterative cycles (2.94)
o create a written record of their thinking (2.88)
o create mathematical models (2.83)
o create new techniques to solve a problem (2.78)
o communicate ideas to peers (2.73)
B. Problem solving activities
o DO NOT lend themselves to automatic responses (3.94)
o can be solved with more than one approach (3.18)
o promote flexibility in thinking (3.18)
o can be used to assess level of understanding (3.06)
o can be solved with more than one approach (3.0)
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o require the implementation of multiple algorithms for successful solution (2.94)
o can be purely contrived mathematical problems, puzzles, or games of logic (2.94)
o can be solved with more than one tool (2.89)
Implications are that teachers and curriculum coordinators could use this data to identify the

types of tasks they are implementing in their courses. Moreover, the data compiled, may be used
to create a rubric to analyze tasks currently used by teachers.

References
Carpenter, T. P., & Moser, J. M. (1983). The acquisition of addition and subtraction concepts. In

R. A. Lesh, & M. Landau (Eds.), The acquisition of mathematics and concepts and processes
(pp. 7-44). New York: Academic Press.

Despete, A., Roeyers, H., Buysse, A. (2001). Metacognition and mathematical problem solving
in grade 3. Journal of Learning Disabilities, 34, 435-449.

Doerr, H. M., & English, L. (2003). A modeling perspective on students’ mathematical reasoning
about data. Journal for Research in Mathematics Education, 34, 110-136.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Wearne, D., Murray, H., Olivier, A.,
Human, P. (1997). Making sense: Teaching and learning mathematics with understanding.
Portsmouth, NH: Heinemann.

Hiebert, J., & Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and
subtraction. Cognition and instruction, 14, 251-283.

Lesh, R. Hoover, M., Hole, B., Kelly, A., & Post, T. (2000).  Principles for developing thought-
revealing activities for students and teachers.  In A. Kelly & R. Lesh (Eds), The handbook of
research design in mathematics and science education (pp. 591-646).  Hillsdale, NJ:
Erlbaum.

Lesh & Zawojewski (in press). Problem solving and modeling. The handbook of research on
mathematics teaching and learning (2nd ed.).

Lowenthal, F. (2000). Model creations and deductions in an axiomatic system-in 9, 10, and 11
year olds. Communication and cognition, 33, 175-198.

Metallidou,  P., & Efklides, A. (2000). Metacognitive aspects of self, cognitive ability, and
affect: Their interplay and specificity. Psychology: The Journal of the Hellenic Psychological
Society, 7, 365-389.

Moreau, S., & Coquin-Viennot, D. (2003). Comprehension of arithmetic word problems by fifth-
grade pupils: Representations and selection of information. British Journal of Educational
Psychology, 73, 109-121.

National Council of Teachers of Mathematics (2000). Principles and standards for school
mathematics. Reston, VA: NCTM.

Resnick, L. B., & Ford, W. W. (1981). The psychology of mathematics for instruction. Hillsdale,
NJ: Erlbaum.

Reusser, K. (1989). Problem solving beyond the logic of things: Contextual effects on
understanding and solving word problems. Instructional Science, 17, 309-338.

Staub, F. C., & Reusser, K. (1995). The role of presentational structures in understanding and
solving mathematical word problems. In C. A. Weaver, S. Mannes, & C. R. Fletcher (Eds.),
Discourse comprehension: Essays in honor of Walter Kintsch (pp. 285-305). Hillsdale, NJ:
Erlbaum.



491

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

Teong, S. K. (2003). The effect of metacognitive training on mathematical word-problem
solving. Journal of Computer Assisted Learning, 19, 46-55.

Wheatley, G. (1999). Effective learning environments for promising elementary and middle
school students. In L. J. Sheffield (Ed.), Developing mathematically promising students (pp.
71-80). Reston, VA: NCTM.



492

TRACING AND EXTENDING HIGH SCHOOL STUDENTS’ PROBLEM SOLVING
APPROACHES BASED ON THE USE OF DYNAMIC SOFTWARE

Manuel Santos-Trigo
Center for Research and Advanced Studies, Cinvestav

msantos@cinvestav.mx

This study documents problem solving approaches that high school students develop as a results
of using systematically Cabri-Geometry software. Results show that the use of the software
becomes an important tool for students to construct dynamic representation of the problems that
were used to identify and examine different types of mathematical relations. In particular, there
is evidence that the use of the software allowed students to engage in a line of mathematical
thinking in which they constantly reflected on the plausibility of conjectures and ways to support
them.

Research programs in mathematics education, curriculum proposals or instructional practices
all involves the design or construction of tasks or problems that are used to explore or promote
students’ development of mathematical thinking (Schoenfeld in press, NCTM, 2000). The
identification and evaluation of mathematical qualities that make those tasks worthwhile to use
often demand that researchers or teachers to examine hypothetical approaches or solutions’ paths
that students may consider while working on the tasks. In addition, when students work on those
tasks there always appear new ideas that often become a source of new approaches or extensions
to those tasks. In particular, the use of computational tools seems to offer students the possibility
of formulating questions to examine the tasks from diverse perspectives or angles. For example,
the use of dynamic software often allows the students to represent the task dynamically and use
that representation to identify relations or conjectures that can be explored numerically or
geometrically. To what extent does the use of the software help students identify and visualize
mathematical relations related to the problem and ways to support them? What types of problem
solving strategies and mathematical arguments are enhanced when students use the software in
their problem solving approaches? To what extent do initial or potential learning trajectories,
identified by the research team, get modified, adjusted or enhanced during the students’ actual
process of working on the tasks using dynamic software? These are relevant questions used to
frame the process of development and implementation of series of tasks in which students had
the opportunity to use systematically dynamic software. Thus, we are interested in documenting
and analyzing students’ types of representations, questions they pose and pursue, and arguments
they use to support conjectures during their approaches to the tasks.

Theoretical Framework
This study is part of an ongoing research program that aims at documenting and analyzing

high school teachers and students’ use of computational tools in mathematical problem solving.
Thus, a theoretical construct used to design and select series of tasks was an adjusted version of
what Simon and Tzur (2004) call hypothetical learning trajectory. Here, we distinguish aspects
that helped us organize the study: The students’ learning goals, the type of tasks used to promote
students’ development of those goals; the hypothetical process that students’ may be involved
during the learning process; and ways for teachers and students to reflect on the development of
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a new problem solving tool or knowledge. This view is consistent with what Clements and
Sarama (2004) characterize as learning trajectories:

We conceptualize learning trajectories as descriptions of children’s thinking and learning in a
specific mathematical domain and a related, conjectured route through a set of instructional
tasks designed to engender those mental processes or actions hypothesized to move children
through a developmental progression of levels of thinking, created with the intent of
supporting children’s achievement of specific goals in that mathematical domain. (p. 83)

The use of dynamic software during the construction and discussion of hypothetical students
learning trajectories and students’ actual use of the tool became an important component of the
study. Here, we recognize the importance for teacher and students to transform an artefact, in this
case the Cabri-Geometry software, into a problem-solving tool as a process that involves
thinking of the problems or tasks in terms of the facilities and constrains provided by the tool.
Guin and Trouche (2002) recognize that this process is complex and involves aspects related
both to the actual design features of the tool and also to the cognitive process involved in
students’ appropriation of the instrument to solve problems (the development of instrumentation
schema). That is, it is crucial to document the way students develop and use a style of work in
the context of a new tool (Cuoco, 2002). In this context, it became important to pay attention to
the design limitations associated with the use of the software that might have interfered with
students’ work.

Research Design, Methods and General Procedures
The study involves two related phases: The design and selection of series of tasks in which a

research team (a math educator, two graduate students and two high school teachers) worked on
the identification of hypothetical learning trajectories associated with each of the selected tasks;
and the actual implementation of the tasks in which 12 high school students participated in a 3 h
weekly problem-solving sessions during one semester. The dynamic of the sessions includes
students working on the task individually, in pairs, presentations of their work to all participants,
and plenary discussions orchestrated by the teacher. All the pair students’ interactions were
recorded, students’ presentations and plenary discussions were video-taped, students’ handed in
their initial individual work and pair work (including their electronic files). Data analyzed in this
report come from the pairs’ presentations to the session and plenary discussions. Here, we focus
on analyzing the students’ approaches to a task that included two problem-solving sessions. To
sketch the hypothetical learning trajectory of this task, the research team chose to present this
task as a sequence of squares (without particular dimensions) to explore initially the students’
ways to support their responses. Later, they were asked to approach related cases to develop a
method or tool (including an argument to support it) that could be used in other figures
(rectangles, parallelograms, and hexagons).  Relevant contents that appear in this task includes
area concept, triangles congruence, triangle’ area formula; mathematical arguments (proofs); and
the use of proper notation.

The initial problem: Two farmers, John and Paul, will seed a piece of land that has a square
shape. The plan is to divide the land in such a way that each farmer will get the same area. Figure
1 and 2 represent the two initial ways that they were considering to divide the land. A neighbour
suggested that they could take any point on any side of the land and draw a line that passes by
the centre of the land (square), then the line divide the land in two regions that have the same
area (Figure 3). Does the neighbour’ procedure always work? Justify your response. How is the
neighbour’s method related to the farmers’ procedure? Justify your response.



494

D

C

B

A

M

M'

Figure 1: M and M’ are
midpoints of side AB and

CD respectively

D

C

B

A

Figure 2: AC is a diagonal
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Figure 3: Point P is any
point on one side of ABCD,
point M is the centre of the
square

Presentation of Results and Discussion
Five pairs of students used their rulers to measure the side of the square and argued that in

figure 1 and 2 the square was divided into two “equal” rectangles and two “equal triangles. Only
one pair did not use a ruler and mentioned that in both cases the square was divided in two
congruent figures. It was interesting to observe that in the third case (Figure 3) all students
initially used the software to check numerically whether the line PP’ divides the square in two
regions of equal areas. When they moved point P along the sides of the square they noticed that
the other cases (figure 1 and 2) appear when P becomes the midpoint and a vertex of the square.

So, at this point all students were convinced that the line
passing by the centre of the square divides it in two regions
with same areas. They used visual, rotational arguments
(rotating quadrilateral P’BCP around point M, 180
degrees), and congruence arguments to support their claims.
For example, a pair of students, which happened to be the
same students who did not use the ruler initially, showed
that triangles PMC and P’MA are congruent (SAS) which
implies that quadrilaterals PDAM and P’BCM have the
same area (using here that the diagonal AC divides the
square in two congruent triangles) (Figure 4).
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Figure 4: Searching for
arguments to support their
conjectures.

The students’ presentation (pairs) to the whole session helped
them discuss the importance of presenting various types of
arguments and their relations. At this point, the teacher suggested
another way to divide the land: Select any point P inside the square
and join point P with the square vertices to draw triangles APB,
BPC, CPD, and DPA. Based on this construction, a farmer will get
the shaded part and the other the white part (Figure 5). Does each
farmer get the same area? Justify your response.

All students used the software to check whether the teachers’
method divided the square in regions of equal areas. By moving
point P inside the square and calculating the shaded regions and the
square areas (directly using the software), they observed that the
shaded area was half of the square area.
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Figure 5: Point P is
any point located
inside the square.
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Here, students used diverse arguments to support the conjecture. One involves drawing
perpendicular lines from point P to the sides of the square and noticing that the square was
divided in four rectangles, HPEC, EPFD, FPGA and HPGB (Figure 6). They argued that each of
the rectangles includes two triangles (shaded and white) that have the same areas. Other
approach focused on calculating the areas of the triangles and observing that the sum of the areas
of the shaded triangles is half of the area of the square (Figure 7).
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Figure 7: Calculating the sum of the shaded areas

During the presentation of these approaches to the session, a student posed a question: Is
there another method to divide the square different from the teacher’s procedure? They were
asked to explore other options and Hugo using the software proposed to draw parallel lines to
DC and AD passing by P. These lines intersect the sides of the square at point Q, R, S and T.
Then the area of the quadrilateral QRST is the same as the area of the white region (Figure 8).

Area of ABCD =  12.02 cm2

Area of QRST =    6.01 cm2
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Figure 8: Area of QRST is the same as the area of the white region.

Students recognized immediately that Hugo’s method also worked since they had used
similar construction previously in figure 6 and used the same argument to show that the shaded
area was the same as the white region (Figure 8). It was evident that the use of the software
became a problem-solving tool for students at this stage. Here, the teacher challenged the
students to examine whether the methods used to divide the land could also be used for other
shapes of the land. For example, can you show that the procedure functions to divide rectangles,
parallelograms, pentagons, etc?
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Here, students realized that when the land’s shape is a parallelogram, which is a more general
case than a rectangle, the methods used to divide the square also worked (Figure 9 and 10).

Area of ABCD =  51.22 cm2

Area of APD =  8.55 cm2Area of BCP =  17.06 cm2

Area of APD + Area of BCP =  25.61 cm2
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Figure 9: Area of APD + area of BCP = half
of area of ABCD

Area of ABCD =  51.22 cm2

Area of QRST =    25.61 cm2
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Figure 10: Area of QRST is half of area of
ABCD

In addition to checking (using the software) that for different positions of point P both
methods to divide the land in equal areas work, students also presented a formal argument to
support their responses. In general terms, they observed that in figure 9, area of ABCD can be
expressed as 

€ 

d(AB) × d(QS) = d(AD) × d(RT) while the sum of the areas of triangles ADP and
BPC can be written as:
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2
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, and this

expression is half of the area of ABCD. Similarly, students argued that, in figure 10, lines RT
and QS which are parallel to sides AB and BC divide the quadrilateral ABCE into four
parallelograms (RPQD, PFCQ, ASPR, and SBTP). The diagonals of each parallelogram divide
each parallelogram in two congruent triangles. Therefore, the shaded area is the same as the area
of the white region.

Other cases that students explored includes a hexagon. Here, they drew using the command
“regular Polygon” one hexagon and a point P inside of it. Then they drew perpendicular
segments from P to sides CB, AB, FE, and DE. Here they found that for different position of
point P, area of GHIJ was half of the area of the hexagon (Figure 11).
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Figure 11: Does the method work for a
hexagon?

Area of ABCDEF =  21.75 cm2
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Figure 12: Looking for an argument to
support the conjecture.

While looking for argument to show that area of ABCDEF is half of area of GHIJ, some
students found that the area of rectangle E’F’B’C’(constructed by taking point E’, as the
intersection of the perpendicular line to line EF passing by point I; point C’ as the intersection of
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that perpendicular with line BC, B’ as the intersection point of line BC and the perpendicular to
BC passing by point G; and F’ as intersection of that perpendicular with line EF) is the same as
the original hexagon (figure 12). Here, the students’ goal was to check the conjecture: the area of
rectangle E’F’B’C’ is the same as the area of the hexagon. In addition, with the use of the
software, some students found that the intersection points (U, V and T) of lines ED and BC; BC
and AF and ED respectively are the vertices of equilateral triangle UVT (Figure 13).
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Figure 13: Looking for other relations
around the hexagon ABCDEF.

Here, students also showed that in this
case a line passing by the centre of the
hexagon and a point on a side of it divides
the hexagon in two regions of equal areas.
They also were asked to justify the
existence of the equilateral triangle and the
possible relation between the height of that
triangle and the sum of the perpendicular
segments drawn from point P to each side
of the triangle.  Again the use of the
software became important for them to
identify relations to support findings.

A Variation Connection
The use of the software led the students to explore relations (invariants) dynamically, for

example, while they were moving the point P (figure 6) inside of the square, they observed that
the area of quadrilateral QRST was constant; however its perimeter changed at different position
of P. Here they posed a question: Where should point P be located to identify the inscribed
quadrilateral with the minimum perimeter? They also used the software to respond to this
question. Figure 14 shows that when point P is situated at the centre of the square, then the
quadrilateral QRST becomes a square with the minimum perimeter.
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Figure 14: When P is located at the centre of the square, the quadrilateral
QRST has the minimum perimeter.
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Remarks
The construct “hypothetical learning trajectory” was used as a framework by the research

team during the design of series of mathematical tasks to promote students’ mathematical
thinking. Discussing the potential associated with each task becomes relevant to identify
concepts, resources and problem solving strategies that students could use during their
interaction with the tasks. It was noticeable that the students’ use of dynamic software evolves
from considering static representation initially to dynamic representation of the task. This
process became important for students to explore and pursue questions that were not initially
considered by the research team. For instance, students examined the behaviour of elements of
those dynamic representations to identify invariants or other relations that resulted from moving
objects within the representation. Thus, the students’ use of the software requires that the teacher
to be flexible and reflective to direct what students represent and explore. In addition, they
searched for arguments to support diverse conjectures that they had checked numerically with
the use of the software. As a consequence, students recognized and value the importance of
presenting geometric or formal arguments to “prove” what they had visualized and checked
numerically. Thus, the use of the software becomes important for students to explore initially
numerically the behaviour of a particular relation and later to look for proper information to
justify or support that behaviour or result. For example, in Figure 6 they observed that when
point P was moved inside the square the area of the shaded region was always half of the square;
then they focused their attention on finding an argument to support this conjecture. Using the
software allowed them to explore whether the methods used to divide the square could also used
to divide other related figures. That is, there is evidence that the use of the software provided
them ways to initially formulate a conjecture and later to search for an argument to support it. In
this process, new mathematical relations appeared as a result of adding and moving mathematical
objects within the configuration. At this stage, students were aware that any mathematical
relation that they had found needed to be justified in terms of providing a mathematical
argument. Thus, students got engaged in activities that guided them to the search of those
arguments. In short, the use of the software offers students ways to represent mathematical tasks
or objects dynamically and while moving particular objects within that representation, students
could visualize and formulate relations or conjectures that eventually need to be justified.
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This study explores how Latino first grade students develop mathematical problem solving
and communication in their native language. Problem types came from Cognitively Guided
Instruction (Carpenter et al. 1999) and were embedded in students’ cultural and linguistic
experiences. Findings show students solved a wide range of CGI problems and developed
confidence, flexibility, and sophistication in their strategies and explanations.

Problem solving and communication are at the center of reform mathematics education
(National Council of Teachers of Mathematics, 2000). Word problems embedded in
culturally and linguistically familiar situations allow young children to use what they know
about the world to make sense of mathematics and learn with understanding (John-Steiner &
Mahn, 1996; Carpenter, Ansell, Franke, Fennema, & Weisbeck, 1993; Hiebert & Carpenter,
1992). Students from diverse backgrounds, however, may not have equal access to reform
mathematics curricula (Lubienski, 2000; Carey, Fennema, Carpenter, & Franke 1994). Latino
immigrant children in U.S. schools deal with issues of culture, class, and language that affect
their opportunities for full participation in problem solving activities (Trueba, 1999). This
study explores what first grade, Spanish-speaking, Latino immigrant students can accomplish
when they have repeated opportunities to solve problems and communicate their thinking in a
native-language learning environment. Specifically, we show how children talk, draw, and
write about word problems based in familiar contexts. Problem types used for the study were
drawn from Cognitively Guided Instruction [CGI] (Carpenter, Fennema, Franke, Levi, &
Empson, 1999).

Research Design and Methods
Researchers and teachers collaborated to design and implement problem solving lessons

in two first-grade bilingual classrooms. For a period of one year we engaged in co-teaching
mathematics lessons in Spanish with the purpose of developing students’ problem solving
strategies and their abilities to communicate their mathematical reasoning. In these lessons
we worked with the teachers to contextualize word problems for young students (Carpenter et
al., 1999).

Two bilingual first grade classes from an elementary school in a city in the Southwestern
United States participated in the study. The school population is identified as Hispanic
86.3%, Native American 6.4%, Anglo 4.3%, African American 1.5%, Asian 0.8%, and other
0.9%. The majority of the students in this school speak Spanish, come from low
socioeconomic backgrounds, are Mexican immigrants, and 99.1% of the students receive free
or reduced price meals.

Data were collected on a purporsefully selected group of eight focal students, two boys
and six girls. The criteria to select the students were: 1) they had participated in a CGI
problem solving study the previous year (Turner, Celedón-Pattichis, Marshall & Tennison, in
press), and 2) their first grade teachers agreed to receive classroom-based professional
development on the CGI approach to teaching mathematics.
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Data collection focused on how first grade students learn to solve CGI word problems and
communicate their mathematical thinking. This process involved pre and post student
assessments in the form of individual video taped clinical interviews where students were
asked to solve CGI word problems using manipulatives or paper and pencil and to explain
their solutions. The problem types were similar to those used by Carpenter et al. (1993) and
included Join, Separate, Compare, Multiply, Divide, and Multi-step problems. Focal students
were also videotaped three times solving CGI problems in pairs and in groups of four to
observe the effects of peer interactions on students’ problem solving strategies and
communication. Weekly field notes recorded focal students’ words and actions during
mathematics lessons and their drawings were collected from these sessions.

Data analysis involved open coding and axial coding (Creswell, 1998) of students’
strategies, verbalizations and drawings. Codes were consolidated into categories and themes.

To ensure that teachers had support in problem-solving lesson development, researchers
and teachers debriefed after each weekly lesson to discuss students’ reactions to the day’s
problems, strategies students used to find solutions, the obstacles students encountered, how
students communicated their thinking, and how student understanding could be assessed.
Based on these conversations, the lesson for the next week was planned. These debriefing
sessions were audio taped.

Preliminary Findings
The data from this study demonstrate that young Spanish-speaking immigrant students

can successfully engage in key processes of reform mathematics when they have the
opportunity to make sense of word problems by building on what they already know
culturally and linguistically about the world. We found that:

 Students developed confidence and flexibility in problem solving and successfully
solved a range of problem types not usually introduced in first grade including
multiplication, division, compare and multi-step problems.

 Students developed increasingly sophisticated ways of talking about their
mathematical understanding in their native language, Spanish, and for some, in
their second language, English.

 Students’ conceptual development went hand-in-hand with more flexible thinking
and their ability to use more than one method to find a problem solution.

 Students demonstrated growing networks of mathematical understanding, but this
growth was nonlinear with many concepts still partially or superficially developed
and connections among concepts weak.

 Students’ pictorial representations of problem solutions gave a valuable window
into student thinking and showed both insights and gaps in student understanding.

Implications and Recommendations for Future Research
When students had repeated opportunities to solve problems and explain their thinking,

they developed a flexible set of strategies and approaches that showed they were learning
mathematics with understanding (Hiebert & Carpenter, 1992). This level of success would
not have been possible without access to their native language and culture to make sense of
the mathematics involved (Trueba, 1999). Although students were highly successful, the
findings also show that all students, even the most advanced, need multiple exposures to
concepts and repeated opportunities to practice with a variety of problem situations so that
their growing knowledge base can become more secure. Along with multiple problem solving
opportunities, teachers should give students multiple opportunities to demonstrate their
thinking in order to truly uncover the depth of student understanding.
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This study confirms the importance of exploring students’ mathematical thinking and
problem solving development. Specifically, the longitudinal data show the central role of
non-linear concept formation among primary grade students and the importance of
developing students’ mathematical discourse to help them organize and consolidate their
thinking (NCTM, 2000). Because representation gives valuable insight into student thinking,
further research is needed to provide more evidence on how students represent increasingly
complex problem types.

Endnote
1. This research was supported by the National Science Foundation, under grant ESI-

0424983, awarded to CEMELA (The Center for the Mathematics Education of Latino/as).
The views expressed here are those of the author and do not necessarily reflect the views of
the funding agency.

References
Carey, D., Fennema, E., Carpenter, T. & Franke, M. (1995). Equity and mathematics

education. In W. Secada, E. Fennema, & L. Adajian (Eds.), New Directions for Equity in
Mathematics Education (pp. 93-125). New York: Cambridge University Press.

Carpenter, T., Ansell, E., Franke, M., Fennema, E., & Weisbeck, L. (1993). Models of
problem solving: A study of kindergarten children’s problem solving processes. Journal
for Research in Mathematics Education, 24(5), 427-440.

Carpenter, T., Fennema, E., Franke, M., Levi, L., & Empson, S. (1999). Children’s
mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann.

Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five
traditions. Thousand Oaks CA: Sage Publications.

Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grouws
(Ed.), Handbook of research on mathematics teaching and learning, (pp. 65-97) Reston,
VA: National Council of Teachers of Mathematics.

John-Steiner, V., & Mahn, Holbrook (1996). Sociocultural approaches to learning and
development: A Vygotskian framework. Educational Psychologist, 31(4), 191-
206.

Lubienski, S. T. (2000). Problem solving as a means toward mathematics for all: An
exploratory look through a class lens. Journal for Research in Mathematics Education,
31(4), 454-482.

National Council of Teachers of Mathematics (2000). Principles and standards for
school mathematics. Reston, VA: Author.

Trueba, E. T. (1999). Critical ethnography and a Vygotskian pedagogy of hope: The
empowerment of Mexican immigrant children. Qualitative Studies in Education, 12(6),
591-614.

Turner, E., Celedón-Pattichis, S., Marshall, M., & Tennison,A. (in press). “Fíjense amorcitos,
les voy a contar una historia”: The power of story to support solving and discussing
mathematical problems among Latino/a kindergarten students. To appear in Mathematics
for ALL: Instructional Strategies for Diverse Classrooms: K-2. Reston, VA: NCTM.



502

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

INVESTIGATING STUDENTS' MOVEMENT TO GENERALIZATION
AND ABSTRACTION USING DIENES' "LEARNING CYCLE"

Cecilia C. Arias
Rutgers University

Lisa B. Warner
Rutgers University

Roberta Y. Schorr
Rutgers University

Introduction & Theoretical Framework
Generalization can be described as: “…deliberately extending the range of reasoning or

communication beyond the case or cases considered, explicitly identifying and exposing
commonality across cases, or lifting the reasoning or communication to a level where the focus is
no longer on the cases or situation themselves but rather on the patterns, procedures, structures
and the relationships across and among them” (Kaput, 1999, p. 136). Students’ abilities to
construct generalizations are often linked to their engagement in the process of abstraction
(Davydov, 1990), which provides them with a means to move beyond the context of a given
problem and transfer their knowledge to new problem situations. For the purposes of this study,
it was useful to consider Dienes’ notion of the ‘learning cycle’ (Dienes, 1970) in order to
examine the ways in which students engage in generalization and abstraction during mathematics
learning. According to the six stages within the “learning cycle”, students first engage in a
pattern of preliminary, unstructured exploration with a given concept, extend their learning
through consequent, more structured explorations, and later, test the applicability of the concept
in new situations before it becomes a ‘functional’ idea to them. Using Dienes’ ideas as a lens, we
document and examine students’ ability to move beyond the mathematical context of a
combinatorics task toward generalizations, which in this case, involves exponential, quadratic,
cubic and other functions of that nature, and their graphs.

Methods
For this poster session, we analyze video-data of ten ninety-minute sessions in an eighth

grade inner-city mathematics classroom, while students worked on a problem-solving task.

Preliminary Findings
One finding demonstrates that after students had found local solutions to a specific problem,

a student-posed hypothetical situation (one that extended the problem beyond the specifics of the
original task), highlighted by the teacher, contributed to students’ movement to generalizations.
The students found patterns as a result of unstructured exploration. For example, as the students
were exploring exponential functions on the graphing calculator, they noticed that as their bases
increased, the graph of the function remained in the first quadrant. One particular student posed
the question about how to move their functions into other quadrants, which appeared to
contribute to the students’ exploration of other exponential functions, and later, functions with a
variable base and constant exponent. Consequently, students developed formal statements to
describe the behavior of their functions. Moreover, as time elapsed, the students began to pose
more of their own hypothetical situations, thereby prompting themselves to extend their ideas
through additional self-structured explorations, and ultimately, were able to use the new
mathematical concept in a functional way.
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MATHEMATICAL PLAY AND STUDENT AFFECTIVE EXPERIENCE
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When a student has experienced consistent pedagogies in school mathematics for a number
of years, s/he develops particular beliefs, attitudes, and emotions for mathematics and
mathematics classes. As mathematics teachers enact teaching practices different from students’
prior experiences with school mathematics, for example, a less teacher directed and more student
centered pedagogy, it becomes increasingly important to understand the transitions students must
make sense of to successfully engage in these mathematics courses. When expectations for
student engagement are differently defined, students’ affective experiences likely come to play a
crucial role in their efforts to make sense of the new experience. Further when middle grades
students, who necessarily experience a transition in the mathematics content, are confronted with
a shift in pedagogy, supporting optimal experience (Schiefele & Csikszentmihalyi, 1995)
becomes an important concern for the teacher.

The study described in this poster presentation was conducted to address these concerns and
to test the conjecture that allowing students the opportunity to engage in mathematical play
(Holton, Ahmed, Williams, & Hill, 2001; Steffe & Wiegel, 1994) could promote productive
affective experiences during such a transition. Technology tools providing a microworld for the
student’s activity were incorporated with the intention of supporting students’ efforts to engage
in mathematical problem solving with a playful orientation. As the teacher of the seventh grade
mathematics course studied, I used achievement goal theory (Ames, 1992) in order to choose
participants who engaged in activity with varying goal orientations. Data sources included
student artifacts, structured and semi-structured student interviews, teacher/researcher field
notes, and video recordings of student activity with technology tools during the sixth and seventh
months of the academic year. Using students’ emotional experiences as an entry point to the
analysis of students’ mathematical play and affective experiences provided a unique insight into
their mathematical play, problem solving, and the transition in experiencing school mathematics
students endeavored to make sense of. Opportunities to play and to use technology tools proved
productive for many students’ affective experiences on multiple occasions, but not for all
students. Findings and implications suggest how students with differing goal orientations
engaged in the course and offer thoughts for teachers who hope to employ a more student-
centered pedagogy and/or incorporate technology tools into school mathematics.
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Rationale
Much of the difficulty children encounter with word problems may be attributed to

mathematical language, which differs from the language they encounter in other contexts (e.g.,
Kliman & Richards, 1992). Both the vocabulary (Paramar, Cawley, & Frazita, 1996), and the
semantic structure (LeBlanc & Weber-Russell, 1996) may influence problem difficulty.

For many years, oral retelling has been an accepted strategy for developing and assessing
reading comprehension (e.g., Gambrell, Pfeiffer, & Wilson, 1985), yet only a few studies (e.g.,
Vershaffel, 1994) have applied oral retelling to word problems. Cutler and Monroe (2006) found
oral retellings to enhance problem solving among sixth grade students. We wondered if oral
retellings would also aid younger students in solving word problems.

Research Questions
To explore the effects of oral retelling on third graders’ ability to solve word problems, we

addressed the following questions:
1. After instruction with oral retelling, to what extent do third graders use this strategy in solving
word problems when they are not required to do so?
2. What is the nature of the oral retellings that third graders use in solving word problems?

Method
The study employed pre-treatment interviews, a sequence of researcher-developed lessons,

and post-treatment interviews of the same children. The 8 students interviewed were teacher-
selected as representative of the mathematics abilities and backgrounds of students in the class.
1. During pre-treatment interviews, students were asked to solve several multiplication and
division word problems and urged to explain their thinking.
2. Fifteen lessons of 30-40 minutes were conducted over a 4-month period. These lessons
included (a) a brief review of why and how to use oral retellings, (b) guided practice in using
oral retellings for a “problem of the day,” (c) a challenge to solve the problem in at least two
different ways, and (d) opportunities for 2 or 3 students to present their solutions to the class,
followed by a class discussion of their strategies.
3. During post-treatment interviews, students were asked to (a) explain what strategies they
generally used in solving word problems, (b) solve several multiplication and division word
problems and explain their thinking, and (3) orally retell at least one of the problems before
solving it.

Findings
Of the 8 third graders interviewed, 6 retold a specific problem completely and accurately and

solved the problem correctly. Although most students interviewed stated that they used oral
retelling in solving word problems, particularly difficult problems, they did not spontaneously
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use this strategy during the interviews. However, they frequently used what we refer to as partial
retellings. Often they repeated the numbers given in one or both conditions, sometimes giving
the nouns as well: “10 rows of flowers,” “five cookies in six bags.” Some restated the problem
question; others framed their own questions to clarify a problem condition or to check their
understanding. Their spontaneous use of language did not seem to be related to the formal
instruction they had received in oral retelling, as neither the frequency nor the sophistication of
these partial retellings increased from pre-treatment to post-treatment interviews.

Implications for Future Research
Additional research needs to be conducted to examine the point at which oral retellings, as

described in the research literature, become initially helpful in solving word problems. In
addition, the nature and role of partial retellings as a word problem solution strategy should be a
rich field for investigation.
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STUDENTS’ MATHEMATICAL PARTICIPATION IN COOPERATIVE GROUPS

Carla Gerberry
Purdue University
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The National Council of Teachers of Mathematics (NCTM) (1989; 2000) has called for
changes to education that incorporate cooperative group work. In implementing such ideas into
the K-12 classroom, it is important to examine the types of interactions that students take part in
within the aforementioned groups. This examination is important in identifying the types of
participation that may help or hinder learning within cooperative environments. The purpose of
this study is to refine an existing coding scheme (Barnes, 2003) in order to apply it to a follow-
up study.

The study conducted for this poster session focused on ninth grade Algebra students’
participation within a cooperative task at a Midwestern high school. The students completed a
three session open-ended task which required them to work as a group to solve a problem
concerning exponential functions.

The mode of inquiry utilized for this study was videotaped sessions of students working in
aforesaid cooperative groups. Videotapes will be analyzed based on a coding scheme created by
Barnes (2003) while examining calculus students in a high school classroom. Codes will be
categorized in order to reveal emergent patterns of participation which arose from the
cooperative task.

Results of the study will include the adapted coding system based on the specific
environment in the given Algebra classroom. Codes will be applied to data from a pilot study in
order to further refine them for a larger study.
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This presentation, jointly prepared by university educators and teachers, will describe
outcomes from a model of school-based professional development developed by Rutgers faculty
in mathematics education for university-school partnerships where teachers study the lessons
they teach and the mathematical thinking of their students within the structure of off-campus
graduate courses. The courses are located in middle schools in two New Jersey school districts:
Monroe Township, once rural but now suburban, and Plainfield, an urban community. The
shared context of the professional development at the two sites is their goal of deepening
teachers’ attention to the specific mathematical thinking and activity of their students and
enabling them to better meet their students’ needs while simultaneously engaging as learners
themselves of the mathematics that they are expected to teach. This model has facilitated
articulation across grade levels in that Monroe involves middle school and high school teachers
focusing on lessons from the Integrated Mathematics Program (IMP), and Plainfield involves
teachers from elementary school and middle school focusing on lessons from the Connected
Mathematics Program (CMP2). For the Plainfield site, in particular, this presentation builds a
“teacher as researcher” research initiative that has been supported by two NSF initiatives (REC-
0309062 and ESI-0333753).

Dual Research Perspectives and Guiding Questions
1. For the university educators: What evidence, if any, is there in teachers’ reflections and

actions of a shift from surface characteristics about the activity toward a closer attention to
students’ thinking and subsequent implications for classroom instruction?

2. For teachers as researchers:  (a) What particular mathematical strategies and representations
do we observe among students as they engage in solving mathematical investigations that
embody concepts that are basic to the district’s curriculum?  (b) What teacher decisions,
questions, and interventions do we observe during implementations of the lessons and how
do they affect the students’ mathematical thinking?

Context and Methodology
Within the context of the off-campus graduate courses the teachers analyze particular strands

of mathematics from the IMP or CMP2 curriculum, and are further informed by selected
literature from research as well as state and national standards. Plainfield has adopted CMP2 as



510

their middle-school curriculum, which permits close study of samples of their students’ work for
the group to identify specific concerns and develops “research lessons” specifically focusing on
these needs. Monroe is in the process of transitioning from more traditional texts to reform
curricula, thus their teachers are forging new ground in exploring use of the IMP materials.
Common to both sites is that the lesson is implemented in one or more of the teachers’
classrooms as a part of the course. A plan for the lesson is prepared cooperatively, including
anticipated strategies and representations to come from the students and possibilities for teacher
questioning that might enhance the activity without directing the students. Members of the class
are released to observe the first implementation of the lesson as it is facilitated by a volunteer
from the group with his or her students, videotaped for closer study and followed by a discussion
of the students’ mathematical activity, which is also videotaped when possible. Subsequent
implementations are carried out by other members of the class, also videotaped and observed by
the instructor and others of the group. Each participant documents any classes observed as well
as developing a reflective analysis of the session that he/she facilitates. These data, along with
artifacts from each session and samples of student work are collected as a class portfolio. The
data provides opportunity for further study by both the university researchers and the teachers as
researchers that build on earlier findings (Alston, Potari &Myrtil, 2005; Maher, 1998; Martino &
Maher, 1999).

Findings To Be Shared
Documentation from the portfolios, samples of student work, and critical segments from the

classroom implementations will be analyzed and organized to provide a narrative of the cycles of
development and implementation of particular lessons. The intention is to provide evidence of
the teachers’ deepening attention to their students’ thinking and to identify issues that are
common to the two sites.
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TWO DIFFERENT TYPES OF PROBLEM-SOLVING METHODS IN EXPOSITORY
TEACHIG IN HONG KONG EIGHTH-GRADE MATHEMATICS CLASSROOMS
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One Hong Kong classroom from the Learner’s Perspective Study (Clarke, Keitel, & Shimizu,
2006) is analyzed to examine two different types of problem-solving methods across sixteen
consecutive lessons during expository teaching. The study explores how the teacher portrays
two different types of problem-solving methods to his students and how these different
methods affect students’ understanding of mathematical concepts.

The expository teaching style, typically utilized in whole class instruction, is still
prevalent in Hong Kong. This type of instruction is described as ineffective for learning of
mathematics conceptually. Hong Kong students are depicted as passive learners from a
Western view (Watkins, & Biggs, 2001). However, Lopez-Real and Mok (2001) argue that
mathematical ideas are explained in depth during the expository instruction in Hong Kong
classrooms creating opportunities for students to learn conceptually.

In this study, one Hong Kong classroom selected from the Learner’s Perspective Study
(LPS) (Clarke, Keitel, & Shimizu, 2006) is analyzed for the purpose of examining how
expository teaching portrays two different types of problem-solving methods in class:

(1) If the teacher emphasizes utilizing an efficient method (easiest way or the simplest
way to solve) regardless of connecting concepts

(2) If the teacher focuses on using an efficient method (looking for the best method to
produce a meaningful solution) related to mathematical concepts.

A comparative case study method is employed in the study to explore how the teacher
portrays two different types of problem-solving methods to his students and how this
influences students’ understanding of mathematical concepts. Sixteen consecutive lessons
transcripts are analyzed in terms of what counts as a mathematically noticeable solution in
teacher’s explanation; Does expository teaching focus on the efficient or the effective the
problem-solving method? The lessons are examined using a coding scheme to identify
instances of the efficient and effective methods during expository teaching in Hong Kong
classroom with regard to mathematical concepts. Student post-interviews, simulated recall
interviews, are investigated for students’ ability to solve problems using the methods and
students’ comment upon classroom events during the interview. This analysis provides
information about the impact of teacher’s portrait of mathematically significant solutions on
students’ understanding of mathematical concepts.

The study pursues the results which will reveal expository teaching in Hong Kong
classrooms in terms of what counts as a mathematically noticeable solution and its impact on
students’ learning of mathematics conceptually.
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Recent calls for research on the impact of the Principles and Standards for School
Mathematics (NCTM) indicate a need to better understand the relationship between teachers
and curricula. This paper examines 2nd grade teachers’ implementation of Standards-based
whole number lessons in terms of an enactment’s fidelity to two curricular forms: the literal
and the intended curricula, and then in terms of teachers’ instructional moves. In so doing,
we explore interactions between teachers’ instructional moves and students’ opportunities to
learn mathematics. We conclude by considering how curricula support or fail to support
teachers’ instructional moves and choices.

Standards-based mathematics curricula are viewed by many as engines for reform, for
they integrate the new standards for teaching and learning into mathematics lessons. For this
reason and as argued by the Mathematical Sciences Education Board (2004), it is important
to measure the extent to which teachers adhere to the content and ideas within such curricula.
Despite efforts to measure fidelity levels (e.g., Chval et al., 2006), we know little about the
extent to which curricular modifications stray from the core ideas of teaching and learning
espoused in the materials. Drawing on data from the Math Trailblazers Whole Number
Study, this paper explores the relationship between an enactment’s fidelity ratings, described
in more detail below, and teachers’ instructional moves. In so doing, we explore the ways in
which teachers’ instructional moves, i.e., the instructions, questions, and guidelines teachers
put forth during lessons, are indicative of instructional choices, i.e., teachers’ decisions about
how tasks and activities should unfold during lessons (e.g., Lampert, 2001).

Background
Given the integral role of teachers in curriculum use, research on fidelity is shifting its

focus from assessing the extent to which teachers implement curricula to understanding how
teachers use curriculum materials to create learning experiences in classrooms (Snyder et al.,
1992). Moreover, some researchers have begun to attend to differences in teachers’
orientations toward curricula (e.g., Remillard, 2004), while others have explored factors that
impact how teachers read and use curriculum materials (Floden, 1980; Manouchehri &
Goodman, 1998) or how the inherent qualities of curriculum materials influence teachers’
reading and understanding of the curriculum (Ben-Peretz, 1990). Furthermore, as noted by
many (Clark & Elmore, 1981; Lampert, 2001), teaching is a complex activity during which
teachers face decisions and challenges that influence the course of instruction, and ultimately,
students’ opportunities to learn. Moreover, to support students’ engagement in tasks a variety
of pedagogical skills are necessary. For example, resisting the persistent urge to simply tell
and direct students how to work on the task can provide students with enough time to think
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through what they are asked to do (Donovan et al., 2000). Anticipating student responses and
having an awareness of common errors can help teachers effectively respond to students’
during discussions (Fennema et al., 1993). Employing such instructional practices, however,
requires extensive and demanding work on the part of teachers.

Methodology
Interviews, videotaped classroom observations, surveys, and teachers’ responses to

classroom video excerpts constitute the data sources for the Math Trailblazers Whole
Number Study. Our analysis of the classroom observations, the focus of this paper, followed
a protocol for examining an enactment’s fidelity to two curricular forms, the literal
curriculum and the intended curriculum.1 To analyze videotaped classroom observations, we
transcribed the videotapes and then partitioned the transcripts into segments, with each
segment beginning and ending with a shift in activity. Each segment was coded to indicate
which opportunities to learn arose, arose in a limited manner or failed to arise during the
enacment. To characterize students’ opportunities to learn we developed nine subcodes, with
five subcodes addressing students’ opportunities to reason, and four addressing students’
opportunities to communicate about mathematics. Coded observations were then given two
summary ratings, with one rating indicating the extent to which the enacted lesson aligned
with the lesson description in the written materials, i.e., a fidelity to the literal curriculum
rating, and a second rating indicating the extent to which the intended opportunities to learn
arose during the enactment, i.e., a fidelity to the intended curriculum rating.

Research Results
In this paper, we focus on the instructional moves observed in four Grade 2 teachers’

enactment of two lessons, Base-ten Subtraction and Zoo Lunches. The lessons Base-ten
Subtraction and Zoo Lunches were designed to support students’ exploration of mathematical
operations in particular contexts. Thus, these lessons align well with the curriculum’s
approach to whole number operations, described within the Math Trailblazers Teacher
Implementation Guide (TIG) as consisting of two components. The first component deals
with the use of representations “that highlight the attributes of the numbers and operations”
(TIG, p. 205). The second deals with the use of context-based problems which students are
asked to solve “before they learn formal, paper-and-pencil procedures” (TIG, p. 205).

In Base-ten Subtraction the students, having had prior experiences representing and
adding numbers with base-ten pieces, are asked to use the base-ten pieces to solve a series of
subtraction problems. Thus, the lesson is intended to create a context in which students can
invent strategies for using a representation of number, namely base ten pieces, to explore the
operation of subtraction. Questions such as, “what do I do when I run out of bits,” are meant
to arise naturally from the children’s mathematical activities.2 In Zoo Lunches the students
are given data from Chicago’s Lincoln Park Zoo and are asked to determine, given a
specified shipment of food, how much food a given group of animals might receive. Thus, in
Zoo Lunches students are given context-based division problems, prior to the introduction of
formal division algorithms, with the intent of creating opportunities for students to draw on
their knowledge of number and invent arithmetic strategies.
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Fidelity Rating Low Literal Moderate Literal High Literal

Low Intended Base-ten Subtraction- Mrs. Smith
Zoo Lunches – Mrs. Miller

Moderate Intended

High Intended Zoo Lunches – Mrs. Olivier Base-ten Subtraction- Mrs. Patton

Table 1. Fidelity Table

The classroom observations we will discuss in this paper (see Table 1) were selected to
illustrate the instructional moves observed in enactments rated as high or moderate fidelity to
the literal lesson. In other words, we chose enactments where we observed no major
alterations to the lesson steps described in the written materials. These enactments, however,
showed a great deal of variation with respect to the level of fidelity to the intended
curriculum, and therefore, the degree to which the intended opportunities to learn arose.

As indicated in Table 1, Mrs. Smith’s3 enactment of Base-ten Subtraction was rated as
low fidelity to the intended to the curriculum. This rating indicates that many of the intended
opportunities to learn were not observed during the lesson enactment. Analysis of the data
indicate that Mrs. Smith made several moves (i.e., she put forth instructions, questions, and
guidelines) during the beginning of the lesson that ultimately derailed the lesson, i.e., the
teachers’ moves created contexts for learning that differed from those intended. For example,
rather than create an environment in which students might explore using base ten pieces in
subtraction contexts, Mrs. Smith chose to lead the students through tasks with step-by-step
instructions. These instructions began with Mrs. Smith stating which number to represent (the
minuend), having students state the number of skinnies and bits needed, stating the
subtrahend, and directing the students while they removed the appropriate number of bits and
skinnies. Thus, the students’ work with subtraction was highly structured by Mrs. Smith’s
prompts and questions, as illustrated below.
Teacher: I want you to show me the number fifty-six.  Show me fifty-six.  Fifty-six. Look

at your neighbor; see if your neighbor's matches yours.  Looking good.  Looking
good.  And does yours match mine?  Fifty-six.

Students: Yeah.
Teacher:  Five skinnies, how many bits?
Students: Six.
Teacher:  Six, okay.

Furthermore, when Mrs. Smith’s students began work on the first subtraction task that
required regrouping, rather than allow students to explore and discuss how to regroup in this
context, Mrs. Smith chose to continue to structure the students’ work. In this case, rather than
ask for the number of bits to be removed, Mrs. Smith immediately pointed out that there was
a “problem.” Consequently, the question “what do I do if there are not enough bits?” did not
arise from the children’s activities as intended, but rather was posed directly as a teacher-
initiated question. Moreover, Mrs. Smith funneled students’ responses towards a teacher-
selected answer, as illustrated below.
[Task: 84-25]
Teacher: If I have eighty-four, right now, can you reach down and take, well you tell me.

How many ones do I have to take for this problem?
Students: Five.
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Teacher: Five. If you have four ones on your mat right now, can you reach down and take
five?

Students: No.
Student: No, it's impossible.
Teacher: It is impossible. You can't do it. So, what is a, what's our solution? How are we

gonna fix this problem? What are we gonna do with this problem? What, what's,
what could we do? […]What do you think they could do? Let's remember, what
does one of these skinnies equal?

Students: Ten.
Teacher: It equals ten. What would happen if I took this skinny and I broke it up into bits?

Does anybody get an idea of what I can do? Could you go to a pretend bank? […]
If you took this and you took it to an imaginary bank, what would the person give
you back for it? If you were just exchanging it?

This enactment lies in contrast to Mrs. Patton’s, whose high fidelity rating to the intended
curriculum indicates that many of the intended opportunities to learn arose during the lesson.
Analysis of the data indicates that Mrs. Patton’s instructional moves played a different role
than Mrs. Smith’s during the lesson. For instance, during whole class discussions Mrs. Patton
repeatedly posed questions aimed at exploring students’ mathematical thinking rather than at
guiding students’ toward a specific answer.
Teacher: Okay. Somebody knows another way to do it? A different way?  No? This is it?

Those are your favorites?
Eric: I did the Two Hundred chart, but different.
Teacher: How did you do it differently on your Two Hundred chart? Okay, tell me.
Eric: I, I started at, I, I did it like Avi but you go up, uh, from, instead of going down

you go up.
Teacher: Oh. On Two Hundred chart, yes definitely, you need to move because...
Eric: No, I meant, like Avi, like Avi, but instead of moving from, from...
Teacher: Seventy-eight?
Eric: Seventy-eight to down. I went from thirty-six to up.
Teacher: From forty-two up?
Eric: Yeah.
Teacher: Okay. Show us how you did it? That's good. That's good too. Do you, do you

understand what he's saying?
Students: Yeah.
Teacher: Okay. Lead us. Tell us how you have done it and we will do it, we’ll follow you.

Furthermore, when Mrs. Patton’s students began work on subtraction tasks requiring
regrouping, the question of “what do we do if there aren’t enough bits?” was a response to
students noting, as opposed to the teacher, that they had encountered a problem. Moreover,
the answer to this question was elicited from students and thus, a result of student thinking.
[Task: 52-14]
Teacher: Seth?
Seth: Take away one skinny.
Teacher: We can take away one skinny. Okay, I will cross it out. We will take it away.

Now? (A few students raise their hands)
Eric: It's a tricky one, but I can do it.
Teacher: (To Eric) Yeah? You found it is tricky? (To Seth) Do you think it's tricky?
Seth: Mm-hmm.
Teacher: Why?
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Seth: Because you can't take four (unintelligible).
Teacher: We don't have four bits, right? We need to take four bits and we don't have it. So

what can we do? (Students are raising their hands.) What can we do Eric?
Eric: You take away two from the ten. You take away two from here (points to drawing

of a skinny) and leave that.
As shown in the excerpts, the distinction between Mrs. Patton’s and Mrs. Smith’s

enactments are, in some ways, subtle. For example, Mrs. Smith posed questions to students
about the tasks and their thinking, but not nearly to the same extent or in the same manner as
Mrs. Patton. While Mrs. Smith provided highly structured guidance for students’ work and
engaged in dialogues predominated by known-answer and funneling questions, Mrs. Patton
engaged students in dialogues rich with exploratory questions aimed at eliciting students’
ideas and approaches.

In the enactments of Zoo Lunches, there are similar differences in terms of the
instructional moves teachers employed. Mrs. Miller’s enactment of Zoo Lunches was rated as
low to the intended curriculum, indicating that many of the intended opportunities to learn
did not occur during the lesson. Analysis of the data indicates that Mrs. Miller made several
moves during the beginning of the lesson that led to fundamental shifts in the tasks involved.
For instance, Mrs. Miller initiated Zoo Lunches, a lesson aimed at supporting students’
invention of arithmetic strategies, by repeatedly reminding the students to carry out a strategy
she modeled for the class, as illustrated below.
Teacher: The problem is each day the zookeeper receives sixteen carrots, okay. Everyday

she gets sixteen carrots. She wants to give each of the four apes the same number
of carrots. How many carrots will each of the apes get? So you're going to take
sixteen carrots and share them with four apes. Do you remember; how do we
show our four apes? What did we do to show our groups? Mona?

Mona: We drew circles.
Teacher: Yeah. We said like here's one, here's two, three, four and then we started handing

them out. We didn't just start saying one, two, three, four, five, six; we gave each
ape one. […] Okay so start handing out your sixteen carrots. Can you start
handing them out? Start handing them out. Can you start handing one out to
everybody? We're going to hand them out until we get to sixteen. Okay, so one.
[To student] Oops, does that guy get two before anybody else gets another one?

Mrs. Olivier’s lesson enactment, in contrast, was rated as high fidelity to the intended
indicating that many of the intended opportunities to learn arose during the lesson. Analysis
of the data indicates that Mrs. Olivier made several moves during the lesson that fostered
situations in which students could invent strategies to solve context-based division problems.
For instance, Mrs. Olivier initiated the lesson by posing a mathematical situation for which
students had no known solution strategy, as illustrated below.
Teacher: I'm going to read the problems and I want you to use your paper to, um, help you

solve the problem. You can draw pictures. You can do other things to help you
figure out the answer. Harry?

Harry: Can we do it with our partner?
Teacher: And, yes, I'd like you to work with your partners also. But, before you begin you

have to look at the problem because it's real important. Okay. Each day the
zookeeper receives sixteen carrots. She wants to give each of the four apes the
same number of carrots. How many will each ape receive? Okay. Now remember
there are sixteen carrots and there are four apes, and each ape is going to get the
same number. So I would like you to work with your partner to try to solve that
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problem. And I'm going to call someone up to explain it. Okay. Is there anyone
who doesn't understand the problem? Okay. You can begin.

The distinctions between Mrs. Miller’s and Mrs. Olivier’s instructional moves at the
beginning of the lesson are, like those of Mrs. Smith and Mrs. Patton, somewhat subtle. Both
Mrs. Miller and Mrs. Olivier set up contexts where students could represent a problem
situation and determine how much food each animal would receive. Mrs. Miller’s students,
however, did this by employing a teacher specified-strategy, while Mrs. Olivier’s students
were given an opportunity to develop strategies of their own. Furthermore, these differences
where indicative of differences we observed throughout the enactments. Mrs. Miller’s
instructional moves tended to structure students’ work in ways that ultimately reduced a
task’s mathematical complexity. In contrast, Mrs. Olivier’s instructional moves tended to
support students’ mathematical explorations and thus, their engagement in tasks more
demanding that those seen in Mrs. Miller’s enactment.

Linking Teachers’ Instructional Moves and Choices
With the examples provided, we explored how teachers’ instructional moves, i.e., the

instructions, questions, and guidelines put forth by the teacher, can impact the types of
opportunities to learn that arise during an enactment. For instance, in the enactments we
contrasted one can see significant differences in terms of students’ opportunities to select,
compare and contrast strategies, as well as differences in students’ opportunities to describe
and clarify either their own or others strategies. Teachers’ moves are also important to
consider because they are indicative of teachers’ instructional choices, i.e., teachers’
decisions about how tasks and activities should unfold during lessons. For instance, consider
the two enactments rated as low fidelity to the intended curriculum. Mrs. Miller’s decision to
begin the lesson with specific instructions on how to distribute the animals’ food is indicative
of an instructional choice: namely, the instructional choice of replacing open-ended tasks
with practice tasks (e.g., tasks where students repeat a specified procedure). Similarly, Mrs.
Smith’s moves, e.g., leading students to a particular “problem” and then guiding them to a
pre-selected solution, are indicative of an instructional choice: namely, the instructional
choice of introducing students to a regrouping strategy, as opposed to creating a context
where students must develop strategies if they are to solve problems. Since these instructional
choices were at odds with the curriculum’s approach to whole number operations it is not
surprising that they hindered rather than supported the intended opportunities for students to
learn mathematics.

Discussion
If one takes into consideration that all four teachers followed the literal curriculum, i.e.,

the written lesson steps, yet varied with respect to their level of fidelity to the intended
curriculum, then the degree to which the curriculum materials inhibit or support teachers’
instructional choices comes into question. For instance, the Unit Resource Guide (URG) for
Zoo Lunches states, “Present these two problems and have children show their solutions by
making drawings and writing number sentences” (p. 44) The URG, however, makes no clear
reference to the importance of having students invent strategies to solve problems, nor does
the URG contain information for teachers on how to help students make sense of the
potentially varied and, at times, erroneous strategies. Making reference to the importance of
affording students’ opportunities to invent strategies may help teachers better understand why
it is important that they do not alter this component of the lesson. Furthermore, teachers’
inclusion of strategies in their set up of tasks severely limits the need for discussion and
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consensus building. Being without information about the interplay between students’
opportunities to select strategies and the development of whole class discussions that explore
students’ mathematics in meaningful ways, teachers may fall back on instructional practices
that are at odds with the curriculum’s approach to whole number operations, especially if
appropriate practices conflict with legitimate concerns, e.g. “students might not tell in a way
that is productive for the rest of the class or in a way that moves the class forward” (Lobato et
al., 2005). Thus, one must ask, given the teachers’ adherence to the literal curriculum, would
the teachers have enacted the lessons differently if such information were included in the
URG?4 Such questions highlight the need for work exploring interactions between teachers
and curricula that simultaneously consider the ways teachers use curricula (e.g., Remillard,
2004) and the affordances of the curricula, i.e., the ways curricula support teachers’
instructional moves and choices.

Endnotes
1. For more information about the protocol see Brown, S., Ditto, C., Kelso, C. R.,  &

Pitvorec, K. (2006) Teachers’ Implementation of Standards-based Elementary Whole
Number Lessons. S. Alatorre, J. L. Cortina, M. Sáiz, A. Méndez (Eds.) Proceedings of the
Twenty-eighth Annual Meeting of the North American Chapter of the International Group for
the Psychology of Mathematics Education.

2. The term bits refers to small solid cubes used to represent ones. The term skinny, used
later in the article, refers to larger solid pieces that resemble a stack of ten bits.

3. All names are pseudonyms.
4. We acknowledge that curriculum developers are limited in the amount of information

they can provide if they are not to produce lessons that are weighty tomes.
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This study is part of an ongoing NSF-funded investigation into middle school students’ changing
ideas of rational numbers over a three-year period. Elvio was chosen and analyzed over the two
years for changing ideas of rational numbers as measures. Results showed a change in his
thinking when approaching measurement problems, away from classic part-whole notions to
those of measurement.

Past research has documented middle school students’ difficulties interpreting rational
numbers as measures, specifically when dealing with perimeter and length (Martin & Strutchens,
2000). Only 39% of the eighth graders could estimate length of one object correctly using
another, and only 21% could predict the perimeter of a quadrilateral using the given unit of
length (National Center for Educational Statistics, 2005).

In part, to address these difficulties, previous foci have been students’ knowledge of rational
numbers in developing curricula. They emphasized fractions, ratios, and proportions (Lesh, Post,
& Behr, 1988). Despite these efforts, they did not analyze student growth longitudinally over
several grade levels (Carraher, 1996).

This investigation is part of a larger NSF-funded research project that investigates students’
conceptions of rational numbers over a two-year period. In particular, we describe one student’s
changing ideas of rational numbers as measurement over a two-year period.

Theoretical Framework
Lamon (1999) noted five interpretations of rational numbers as ratio, part-whole, quotient,

operator, and measurement. The measurement interpretation of rational numbers includes
identifying some length, defining a unit, and measuring the length with the unit via iteration
(Lamon, 1999). For example the fraction 2/3 can be interpreted ,in terms of the measurement
subconstruct of rational numbers, as a length of 2 (1/3 units). Defining the unit in some way is
termed unitization. Unitization is the “cognitive assignment of a unit of measure to a given
quantity”, rational numbers that represents the measurement then change according to this new
unit (Lamon, 1999). For example, when measuring a length of a table as 2 meters, 2 meters can
be seen as 2 (1-meters), or be unitized differently as 4 (1/2 meters).

Students’ ideas about measurement change over time with exposure to classroom practice
and the mathematics in their daily lives (Lesh, Post, & Behr, 1988). While a specific,
generalizable learning trajectory, or finite set of learning trajectories, is desirable (Carruthers, et
al., 2007), it is outside the scope of our analysis.

Methods
This study took place in an elementary and middle school in an urban area in the

southwestern United States. The school was predominately Hispanic, with over 90% of the
students receiving free or reduced lunch. The students were taken from math classes and
interviewed once every three weeks concerning a variety of rational number concepts. Their
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math classes occurred five times a week for 50 minutes a day, and interviews typically lasted
forty to fifty minutes. Interviews were supplemented with classroom observations twice a week.

A cohort of 31 students were observed and interviewed over the two years, from sixth to
eighth grade. Data collected means to document their notions of rational numbers and how those
notions change over time. For this study, we selected one student, Elvio (pseudonym), based on
the clarity with which he expressed his ideas, and analyzed his changing measurement thinking
during interviews over the two-year period.

Results

Initial Stage
Elvio began by approaching measurement problems using part-whole strategies. Rather than

iterating units to measure he focused his efforts on counting parts, relative to a whole. For
example, Elvio, when asked to compare 1/2, 2/4, and 4/6 he drew the following fraction bars:

Figure 1. Elvio’s part-whole fractions.

When comparing three fractions Elvio consistently used three different wholes. He focused
on counting the number of parts relative to the wholes (each of a different size), rather than
iterating the unit some number of times. This was indicative of part-whole, not measurement,
thinking (Lamon, 1999).

Intermediate Stage
Elvio, over time, began to use a consistent unit, or whole, to compare fractions using a part-

whole partitioning strategy. For instance, when he was asked to compare _ and 2/3 he drew two
fraction bars of the same length, and partitioned them into two and three equal pieces,
respectively (see Figure 2). He then counted the number of pieces appropriately and compared
the size of each shaded portion. On another occasion, when he was asked to find how many
lengths of 1/3 of a yard fit into 2 yards he drew the representation in Figure 3.

Figure 2. Elvio’s comparing of fractions.            Figure 3. Elvio’s finding of 1/3.

Initially, Elvio drew the first portion of the rectangle, divided it into three equal pieces, and
shaded one piece and labeled it “1/3”. He then drew the second portion and also divided it into
three equal pieces. Then he counted the number pieces to arrive at his answer of six. Elvio used a
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part-whole partitioning strategy to find 1/3 as a part of the whole, one yard. Although he does not
consider 1/3 as a length measure, he iterates the part. By iterating the part, he shows limited
measurement understanding because 1/3, as stated, is not treated as a length measure but as a
portion of the whole.

Current Stage (Last Stage Over Time Period)
Elvio was asked to locate _ on a number line as shown in Figure 4. He determined the size of

his unit by comparing the distance from 7/2 to the next given mark on the number line, then
iterated the unit of _ backwards from 7/2 to 6/2, 5/2, 4/2, 3/2, 2/2, and to _ to correctly find his
answer. Elvio’s focus was on the length of _ rather than it being one part of two in some whole.

Figure 4. Elvio’s strategy for locating _ (Elvio’s work is in the red).

Discussion
Elvio’s interviews over the two-year period showed a change in his thinking when

approaching measurement problems, away from classic part-whole notions to those of
measurement proper. Initially, he lacked concept that required a consistent unit. This was
especially problematic when comparing fractions, even via part-whole strategies. He was able to
compare counted parts of wholes of one fraction to another, but the part-whole ratios did not
reference a consistent whole, so the relative size of the fractions was not comparable. Over time,
his thinking included consistent wholes in part-whole comparisons, and later a consistent length
as a unit of measure.

Iteration was also an initial difficulty for Elvio. He did count a subset of the total number of
pieces in each whole, representing his part-whole fraction, but did not iterate a unit to measure a
length. Specifically, the 2/3 in Figure 2 was not interpreted as 2 (1/3 units) but instead as two
parts of three total parts in the whole. At the end of the two years, he acquired an understanding
of iteration. He was not only able to iterate by _ units backwards from 7/2 (see Figure 4) but also
remarked to the interviewer, “if I go one forward I will have 8/2.”

Initially unitization occurred in Elvio’s strategies, but not in a consistent, useful way. At the
intermediate stage he engaged unitization, but only as a strategy that established consistent part-
whole units, or wholes, which facilitated his part-whole comparisons. In the current stage, he
determined his unit as a length. While this does constitute unitization, it may have created
problems for him if his unitization had not conveniently measured the entire length without a
remainder. The interview data did not provide information about unitization of different lengths
as units so how Elvio would have responded to a remainder is unknown.

Elvio’s thinking, as he more commonly applied measurement strategies such as unitization
and iteration, demonstrated the strategies emphasized by Lamon (1999) within the measurement
subconstruct of rational numbers. Elvio, however, does not yet exhibit the simultaneous
reunitization of continuous, connected units (Bright, et al., 1998).
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This study explored elementary teachers’ transformations of textbooks into practice in teaching
fractions in the context of recent efforts to reform mathematics education. This study focuses on
the first chain of teachers’ transformations for classroom instructions—that of selecting
problems with their textbooks. Factors that support and constrain teachers’ textbook
transformation approaches are also explored. This study revealed three problem selection
patterns in terms of cognitive demand. Three influential factors, textbook cognitive demands,
curriculum policy, teachers’ view on textbooks were identified.

This study examined teacher’s textbook transformations in terms of cognitive demand when
teachers select their problems with their textbooks. Research on teachers’ textbook use and
influential factors has been done over the course of two decades and has provided a substantial
number of categories of teachers’ textbook use patterns and factors that influence them (e.g.,
Freeman and Porter, 1989; Kauffman, 2002; Schmidt, Porter, Floden, Freeman, & Schwille,
1987; Stodolsky, 1989; Sosniak and Stodolsky). However, most of the previous studies on
textbook use focused on the maximal extent of coverage, such as to what extent teachers use
textbooks in planning and teaching school subjects. They do not help us understand how teachers
use their textbooks to provide different students’ learning opportunities.

Professional Standards for Teaching Mathematics (NCTM, 1991) articulated that students’
opportunities for learning are created by, what Stein and Smith (2000) called, cognitive demands
of task, “the level and kind of thinking required students to successfully engage with and solve
the classroom problems”. Although researchers have documented mathematics instructional
changes with different frameworks, such as, “new mathematics topics,” “variety of
manipulatives,” etc, to gauge teachers’ implementation of reform ideas, opportunities for student
learning are not created simply by putting students into groups, by placing manipulatives in front
of them, or by handing them a calculator. Rather, it is the level and kind of thinking in which
students engage that determines what they will learn (NCTM, 1991).

The purpose of this study is to examine elementary teachers’ textbook transformation when
selecting problems in terms of cognitive demand and its influential factors. This study focused
on the topic of fractions. The detailed research questions are as follows:

1. What textbook transformation patterns, in terms of cognitive demand, do elementary
teachers exhibit in their problem selection?

2. What kinds of the factors influence teachers’ problem selection with textbook in terms
of cognitive demand?
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Conceptual Framework

Cognitive Demands of Problems
Problems here mean a mathematical object in the textbook and in teaching meant for the

students to figure out and solve. Cognitive demands of problems mean "the kind and level of
student thinking required when (students) engage in problems. Two different levels of cognitive
demands—high vs. low—identified by Stein and Smith (2002) were used in this study.

Factors Influencing Teachers’ Textbook Transformation
To explore factors that influence teacher’s textbook use, this study employed three-level

factors: individual-level, contextual-level, and teachers’ opportunity-to-learn factors. Table 1
shows three levels of factors and the sub-categories this study explored.
Table 1. Factors that influence teachers’ transformations

Factor-level Sub-category
Individual-level factors

Teacher use of student objectives
Teachers’ skills and knowledge
Beliefs about teaching and learning
View about textbooks or textbook use

Contextual-level factors
District textbook policy
Teacher perception of test (e.g., MEAP test, NCLB)
Teachers’ perceptions of the students’ mathematics ability

Teachers’ opportunity to
learn

Professional development opportunities
Teachers’ perceptions about cognitive demands of
textbook lessons

Methods
This study originally employed a mixed method design that combines both quantitative

(survey) and qualitative approaches (interview & observation) to explore elementary teachers’
use patterns. However, due to space limit, this paper addressed only one method, quantitative
method.

Participant
A total of 169 teachers participated in this study from second through sixth grade. This is

convenient sample. Participants were recruited through Master courses at Mid-Western
University and professional development programs in the U.S. Data was collected from 2006
summer to 2007 fall semester.

Data Instrument
The survey was first developed based on the previous studies (e.g., Horizon Research

questionnaires (2003) and then the pilot study was conducted. Survey were revised based on
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their feedback and reformatted the survey to facilitate easier reading. The revised survey is
comprised of five parts: (1) background information, (2) teachers’ perceptions of the cognitive
demand of their textbooks, their problem selection and their questions, (3) individual-level
factors, (4) contextual-level factors, (5) teachers’ opportunities-to-learn factors (see Table 2).
Teachers’ textbook transformation patterns were measured using teachers’ perception of the
kinds and levels of problems presented in their textbook lessons and in their problem selection.
They were asked to indicate the frequency of the various types of problems presented in their
textbook and those used in teaching. Influence of individual-level factors, contextual level
factors, and teachers opportunity to learn factors are measured by asking teachers to how much
they would agree or disagree with each of the provided statements.

Data Analysis
After the preliminary statistics using the Statistical Package of the Social Science (SPSS),

scatter plots were first used to get sense of the relationship between different variables and
textbook transformation patterns were identified based on the average means of scale.  Then
regression analysis were completed for two purposes: (a) to examine relatively important
influences among the three groups of factors and (b) to identify the most influential group of
factors among individual-level factors, contextual-level factors, and teachers’ opportunity-to-
learn factors.

Results
What textbook transformation patterns, in terms of cognitive demand, do elementary teachers
exhibit in their problem selection?

To find the relationship between cognitive demands of textbook problems and selected
problems in their teaching, this study used the scatter plot. Figure 1 shows the linear relationship
between cognitive demands of textbook problems and those in teaching, indicating that the
higher cognitive demand of textbook problems teachers indicates, the higher cognitive demand
problems teachers use. From this trend we can draw two different transformation patterns, which
are H-H pattern, teachers who selected high cognitive demands problems with high cognitive
demands textbooks and L-L pattern, teachers who selected low cognitive demands problems with
low cognitive demands textbooks.
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Figure 1 Scatterplot of Textbook Problem Cognitive Demands against Cognitive demand of
Problems in Teaching

Figure 1 also shows that there are variations, indicating that there are other possible patterns.
To explore precisely textbook transformation patterns, the average rating scale (m=3) were used.
For example, if the average composite score of textbook cognitive demands problem is greater
than 3, it was considered high cognitive demands textbook; otherwise low cognitive demands
textbook. Three patterns are identified as shown Figure 1.

L-H
Pattern

H-H
Pattern

L-L
Pattern
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1. What kinds of factors influence teachers’ problem selection in terms of cognitive demand?
This study used a hierarchical regression to explore this question. Based on the literature

review, the order of entering three groups of factors was decided. Since individual level factors
(e.g., teachers’ knowledge) are considering important factors, I first entered individual level
factors. In the second step, learning opportunities factors were added. Then contextual level
factors were added to create a full model that explains teachers’ higher cognitive demands
content selection.

The results show that while student objectives among individual-level factors contributed
significantly to the prediction of the teachers’ problem selection while teachers’ knowledge and
beliefs did not have direct effect. Second, the addition of factors related to teachers’ opportunity
to learn highly improved the prediction of teachers’ cognitive demands problem selection
(24%_68%). Particularly, teachers’ perception of textbook cognitive demands had a direct and
significant effect, but the effect of student objectives decreased and became insignificant. When
contextual level factors were entered, curriculum policy (groups with curriculum policy vs. no
policy) was significantly associated with teachers’ problem selections, meaning that teachers
select slightly high cognitive demands contents when there is curriculum policy. This study has
implications to policy makers, curriculum developers, and teacher educators.

References
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This study analyzes the emergence and travel of ideas about fractions on the number line in
three upper elementary school mathematics classrooms. The findings indicate that students’
public displays of ideas shifted during the course of the lesson, classrooms varied in their
treatment of the number line, and shared discourse within classrooms was rooted in different
understandings.

A principal canon of inquiry-oriented mathematics classrooms is that teachers use student
thinking as an instructional resource. In their instructional moves, teachers pose problems,
solicit contributions, and orchestrate discussions in ways that lead students to make public
their ideas and put their ideas in relation to those of others. In this process, students’
mathematical ideas emerge and become elaborated, sometimes refined, and often transformed
in classroom communities. Over the course of such classroom discussions, ideas may be
taken up or rejected, valued or devalued, and understood differently by individual students in
the community. The travel of ideas may take varied trajectories, and these trajectories may
vary across classrooms implementing the same lesson. Thus, not only may the ideas that are
taken up by students differ across classrooms, but also students within a given classroom may
understand the same ideas in varied ways. Understanding the emergence and travel of ideas –
what travels and how -- is basic to understanding learning and teaching in inquiry-oriented
classroom communities. It also requires new ways of extending and elaborating empirical and
conceptual frameworks.

The purpose of this paper is to present an analysis of the travel of mathematical ideas in
three upper elementary school classrooms, each implementing the same lesson sequence
involving fractions and number lines. In the paper, we focus on a single lesson across the
three classrooms. The lesson presented a non-routine Problem of the Day (PoD) that involved
the identification of a fractional point on a number line. In the problem, the number line was
partitioned into unequal intervals, and the ‘big idea’ of the lesson was to support students in
understanding the function of partitioning the line into equal intervals in conceptualizing the
fractional value of a point. Our focus on the travel of ideas is important, particularly for
understanding emergent mathematical environments and learning opportunities in such
inquiry-oriented classrooms.

Though existing empirical approaches to the study of teaching and learning have made
important contributions, they reveal in only very partial ways processes whereby ideas travel.
For example, quantitative efforts have made use of rating scales to capture the depth of
coverage of subject matter and the extent to which teaching builds on assessment of student
thinking (e.g., Gearhart et al., 1999; Saxe, et al.,1999). Though these studies point to general
processes that enhance learning in inquiry-oriented classrooms, they do not reveal well
processes whereby ideas travel and become elaborated or put aside. Qualitative analyses
describe with greater texture the interplay between learning and teaching in classrooms,
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including teachers’ instructional decisions (Ball, 1993) and representational contexts (Cobb,
2002; Lampert, 2001; Sfard, 2002). But these studies typically do not follow the emergence
and transformation of mathematical ideas in classroom life over a lesson, series of lessons, or
even longer durations of time.

The Focal Lesson
The multi-phase lesson structure is depicted in Figure 1. It consisted of initial independent

work on the problem, whole class and small group discussions, whole class problem
resolution, and ended with independent work on problems that were similar to the PoD.

Figure 1. Lesson structure for the PoD: Identifying a point on the number line

Methods
Three teachers implemented the hour-long lesson in their untracked mathematics

classrooms (1 fifth grade, 2 sixth grade) in an urban school district. We videotaped whole
class and small group discussions, and interviewed a subset of students after class about the
character of change in their thinking from their initial independent work to their current
thinking. We also queried students both via written responses and in interviews about ways in
which peers and the teacher may have influenced shifts in their thinking about the problem.
In addition, we made use of a sociogram to identify students that were seen as particularly
competent in mathematics, perceptions that we suspected might influence uptake and travel
for some students.

Results/Discussion Points
Drawing upon our framework for studying the travel of mathematical ideas within

classrooms (Saxe, Earnest, & Shaughnessy, 2007; Saxe, Shaughnessy, Earnest, & Cremer,
2007), we triangulated our data sources. In this process, we first coded worksheets to
determine shifts in students’ approaches to solving the PoD, and we followed up these
analyses with an examination of (a) case studies of uptake of ideas in whole class and small
group discussion, (b) the relation of uptake to issues of social position (based upon sociogram
data and self reports influence). The following are a subset of our findings and discussion
points:

1. Initial Student Ideas: As expected, at the beginning of class, some students viewed the
PoD as an incompletely partitioned number line, and added or removed hash marks to
create intervals of equal length. But others made sense of the number line with
fraction names like “2/6,” “2/7,” “2/4” and “2,” responses that suggested whole
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number reasoning (counting marks) and idiosyncratic understandings of number line
conventions (confusions of the role of the zero, hash marks, or arrows).

2. Travel of Ideas: Students’ public displays of ideas shifted during the course of whole
class and small group discussion. Students’ approaches to naming points on the
number line were taken up, resisted, elaborated and coordinated in different ways in
each of the three classrooms. Additionally, students varied in their approaches to
treatment of 2/8 as a potential answer.  Some students developed geometric arguments
(removing hash marks) and other students developed arithmetic arguments (reducing)
to argue that 2/8 = _.

3. Social Influences on Ideas: Analyses of student reports about who influenced shifts in
their thinking and sociograms that revealed beliefs about their peers’ mathematical
competence provide a basis to identify social sources of change – who, if any one,
influenced change in thinking and why.

4. Comparative Analyses: In all classrooms, the number line was a focus of discussion;
however, students’ use of the number line to solve the PoD varied by classroom.

5. Shared discourse and individual understanding: In all classrooms, students and
teachers used collective language about fractions, points, and hash marks. But
interviews with students revealed that what was shared in ostensibly coherent back-
and-forth dialogue was rooted in different understandings.
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This report will describe the findings of a new two-year curriculum research project studying
student understandings of operations involving fractions, decimals, and percents. The focus of
the project is on middle school students in urban classrooms to help them meet the 6-8 National
Standards for fractions, decimals and percents as stated in the NCTM (2000) Principles and
Standards for School Mathematics. Although the curriculum covers many topics, the focus of
this report will be on fraction multiplication and division strand and how the presentation of this
strand has evolved throughout the various stages of development. Insights into student
understandings as they interact with different models of this difficult topic will be presented.

Many middle school students are able to apply the algorithm for multiplying fractions, but
most are unable to describe the reasons why the algorithm works. Even fewer are able to make
sense of the division algorithm. Previous work on addition and subtraction of fractions (Cramer
& Henry, 2002) show how sustained uses of manipulative models develop mental images that
support students as they make sense of these operations. There has not been as much work done
in the area of multiplication or division of fractions. We will present a variety of models for
multiplication and division of fractions and how students made sense of each of these models.
We will also describe how students attempt to use mental images of these models to make sense
of the standard algorithm for multiplying and dividing fractions.

Theoretical Framework
The Rational Number Project (RNP) http://education.umn.edu/rationalnumberproject is a

cooperative, multi-university research project funded from 1979 - 2002 by the National Science
Foundation (with the exception of one year). The Rational Number Project is most known for its
investigations into students’ initial fraction learning. Initial fraction learning includes developing
meaning for fractions using a part-whole model; constructing informal ordering strategies based
on mental representations for fractions; creating meaning for equivalence concretely; and adding
and subtracting fractions using concrete models.

The theoretical model we use to guide the curriculum development is the same model used to
guide the work of the RNP. We strongly believe that the reason the RNP fraction curriculum has
been so successful with students is that the lessons emphasize translations within and between
modes of representation with an emphasis on extended use of concrete models. In this translation
model, five modes of representation are identified: real-world situations, manipulatives, pictures,
spoken symbols, and written symbols. Conceptual understanding is dependent upon students
having experiences representing mathematical ideas in each of these modes and translating
within and between modes. A translation is the reinterpretation of a concept from one
representation to another. For example, when multiplying fractions, a student might be asked to
model a story problem using a concrete model and to describe how her actions with the
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manipulatives model the action in the story. She might be asked to record these actions using
symbols; she might be asked to create another story problem for the same fraction multiplication
problem. The constant movement and intellectual activity in the model reflects a dynamic view
of instruction and concept development.

The seminal publication for this research on fraction learning was published in the Journal
for Research in Mathematics Education (JRME) (Cramer, Post, & delMas, 2002).  In this study,
students’ achievement on initial fraction ideas was contrasted between students using a
commercial curriculum with students using the RNP fraction curriculum.  The study involved
1600 students; 66 fourth and fifth-grade classrooms were randomly assigned to treatments.
Results revealed significant differences in favor of RNP students across several strands.
Qualitative data showed differences in students’ thinking – RNP students’ thinking was more
conceptually based while student thinking among those using a commercial text was more
procedural in nature.

RNP research documents effective methods for developing initial fraction concepts at the
fourth and fifth grade. Much less is known on how to move students beyond this beginning level
to master the fraction, decimal and percent goals for grades 6-8 as stated in the National
Standards. Little research has been done to understand students’ thinking about multiplication
and division of fractions; research also is limited on identifying effective instructional strategies
for developing meaningful understanding of these topics. Student performance data on state and
national assessments shows we need to address this area.

State and national assessments measuring fraction, decimal and percent understanding has
consistently shown that students struggle to learn these concepts in a meaningful way.  Perhaps
as educators we have underestimated the complexity underlying working with these numbers.
Perhaps in our effort to move towards proficiency with symbols, we have neglected developing
meaning for fractions, decimals and percents as numbers themselves, resulting in too many
students operating on them in a rote manner; this, in turn, limits their abilities to estimate
reasonable answers and to apply these skills to solve problems embedded in realistic contexts.

The state of Minnesota was ranked first among eighth grade mathematics performance on the
2003 NAEP. But our own state tests paint a less optimistic picture among students of color.
Eighth grade students in Minnesota are required to pass a basic skills test in math and reading in
order to graduate. The Basic Skills Test specifications indicate that about 30% of the test
involves fractions, decimals and percents. While 81% of the white eighth-grade students passed
the test in 2005, only 35% of African American students passed; only 46% of Hispanic students
passed; only 47% of American Indian students passed (Minnesota Department of Education,
2005). Currently, over 16,000 students still need to pass the Basic Skills Test to graduate. Most
of these students are students of color. This is only one indicator of the achievement gap in
Minnesota. Other indicators show that Minnesota has one of the largest achievement gaps in the
nation.

While the need to improve instruction is needed for all students, the need is greatest for
students who traditionally under-perform on state and national tests. The goal of this project is to
improve student learning in this content strand, particularly among students of color.
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Methods
The teaching experiments were all conducted in an urban school district in Minnesota. Both

of the schools that participated in the teaching experiments serve diverse student populations.
The curriculum contains 34 lessons on fractions, decimals and percents, 12 of these lessons deal
specifically with fraction multiplication and division.

All of the students in the study were exposed to the entire RNP Level One curriculum
(Cramer, Behr, Post, & Lesh, 1997) in a previous year or they completed a ten-day review packet
of the Level One curriculum weeks prior to the introduction of the new curriculum. A pre-test
was given to each student and taped interviews were completed with at least six students in each
classroom before the teaching experiment began, twice during the experiment, and once after the
teaching was completed. All students took two tests during the experiment and one post test.
Student work during the lessons was collected and student comments were recorded in a field
notebook throughout the entire teaching experiment.

The first draft of the curriculum was developed and field tested in a school with 28 sixth-
grade students. The results of the teaching experiment were used to revise the curriculum.
Comments from an expert panel were also used in the writing of the second draft. The second
teaching experiment was completed with 24 sixth-grade students at a different school. The
results of this teaching experiment were used to write a third draft of the curriculum. The third
draft of the curriculum will be pilot-tested during the 2007-08 school year in over 20 urban
classrooms.

Results and Discussion
The preliminary findings of this project indicate that students are able to make appropriate

connections among manipulative models, real world situations, mental images, and symbols
when they work with addition and subtraction of fractions. The mental images support these
students as they develop and make sense of the formal rules for fraction addition. Developing
mental images related to multiplication and division of fractions proved to be much more
complex.

The student work collected during the teaching experiments and interviews helped sort and
classify the various ways students think of fraction multiplication and division. We were able to
document some of the ways that students make sense of the varied situations related to these
operations. We found how sequencing of models for multiplication and division relate to student
sense making. We are finding that certain models are helpful for students as they learn about
situations involving fraction multiplication and other models help develop the formal algorithm.
We are also finding other models that can be used after the introduction of the algorithm that
help students make more sense of multiplication and division situations involving fractions.
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This study examines third, fourth and fifth grade students’ recorded strategies of a two-step
problem. The students written recordings of strategies differed across grade levels. The fifth
grade students used a less conceptually complex strategy compared to the lower grade
students. Implications for the development of number sense and efficiency are discussed.

Theoretical Framework
     Number sense is a central aspect of understanding number and operations (NCTM
Principals and Standards, 2000). Furthermore, the NCTM principals and standards (2000)
document states that students must be capable of using efficient strategies. In other words;
simply memorizing strategies for solving problems without understanding is not adequate.
Students must use their number sense to figure out efficient strategies to solve problems. This
means that students can use a variety of formal and informal written and mental methods to
find solutions to problems (Anghileri, 2000).
    We are currently involved in a professional development project in a western state. One of
our goals is to help teachers facilitate number sense development in their students. We also
want to help students use more efficient strategies as well. Therefore, we developed a 10
question test to understand the types of strategies that children use to solve basic problems
involving number operations. Our larger goal is to use the analysis of student strategies to
plan our professional development sessions with the teachers. In this paper, we present an
analysis of one test item that we found interesting. The problem that is analyzed is a two step
problem. The questions that we are investigating are: What kinds of strategies do children in
grades three to five use to solve a two step problem. What can we learn about the problem
type and children’s development of number sense?

Method
Students in grades 3 to 5 were asked to solve the following problem:

There were 15 students in the bus. The bus stops and drops off 5
students. Then it stopped again and drops off 3 more students. How
many students are still on the bus after the second stop? Solve the
problem and show your work.

The participants in the study are third, fourth and fifth grade students from a western
state. The data represents a total of 274 students. Fifty-seven students were third graders, 89
students were fourth graders and 128 students were fifth graders. This sample represents 15
classes in rural settings in a large geographic area. The test was administered by a project
team member in each classroom. The data was analyzed based on the solution strategies that
emerged. Two types of data emerged. Students either used numeric strategies involving digits
or they used pictorial representations such as drawings, tally marks. We coded the data as
follows based on the strategies that emerged:

Code Student Cognitive Strategy Explanation of strategy

N1 (numeric)
a-b=c ;  c-d=e Solve problem in two steps as two separate subtraction

problem using numerals.
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N2 (numeric) a-b-c=e Repeated subtraction using numerals.
N3 (numeric) a-(b+c)= e Add the total quantity that needs to be subtracted together

then subtract from whole using numerals.

Pictorial
P1  (pictorial) a-b=c ;  c-d=e or a-b-c=e Solve problem in two steps as two separate subtraction

problem using pictorial representation.
P2 (pictorial) a-(b+c)= e ; a-b-c=e Repeated subtraction using pictorial representation. Or

added the total quantity that needed to be subtracted from
the whole. (1) Hard to distinguish which cognitive strategy
used therefore we coded these strategies as P2

Table 1:Coding Used

Results

Table 2: Graphical Representation of Strategies Used across Grade Levels

Answer Code Grade 3 Grade 4 Grade 5

N1 31.6 46.1 59.4

N2 29.8 15.7 3.9

N3 21.1 28.1 29.7

P1 8.8 4.5 3.1

P2 8.8 5.6 3.9
Table 3: Percentage of Strategies Used for Each Question Type

A high percentage of third, fourth and fifth grade students were able to successfully solve
this problem. The pictorial strategies mirrored the numeric strategy. The data in tables 2 and
3 represents the distribution of the different types of strategies recorded by students. Almost
two-thirds of fifth graders (59.4%) used the numeric strategy a-b=c and c-d=e. The recording
of students strategies indicate that the problem was noted as two separate subtraction
problems. Only 3.9% of fifth graders recorded the solution to the problem as repeated
subtraction a-b-c=e (N2). About a third (29.7%) of fifth grade students used the a-(b+c)=e
(N3) strategy. Almost half of the fourth grade students (46.1%) used the N1 strategy. 15.7%
of fourth grade students used the N2 strategy. Almost a third of the fourth grade students
(28.1 %) used the N3 strategy. Third grade students’ strategies were evenly distributed
among the different types of strategies as indicated in table 3.
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Discussion
Majority of students in this study were successful in solving the problem correctly. The

word problem or the numbers in the word problem was not difficult for students. However
their strategies differed across the grade levels. What we found surprising is the recordings of
fifth grade students used in N1 strategy is conceptually simpler than the other strategies used.
More fourth grader used this strategy than third graders. We conjecture that this trend
indicates that even though the strategy was less sophisticated it was actually a more efficient
strategy. For example, it is easier to break the problem into two smaller subtraction problems
and also keep track of their recordings. It is also likely that students are also using familiar
calculation strategies to solve the problem. Furthermore, students are likely using formal
notation that they have been taught to record their answer. A repeated subtraction problem
recording (N2) a-b-c is a less conventional strategy. The N3 strategy is more conceptually
complex. As students use more efficient recordings, it is likely that the strategies are less
conceptually complex.

The problem posed in this study could lend itself to the development of more
sophisticated mathematical ideas as indicated in the solution types that emerged. For
example:

a-b=c and c-d=e involves conceptualizing the problem as a two step problem
   involving subtraction

a-b-c = d            involves understanding repeated subtraction and also that the
  associative property cannot be used.

a-(b+c)=d          strategy lends itself to exploring the distributive property and the
  order of operations

The data in this study did not reveal if students understand connections between these
recorded strategies. For example, a-b-c=a-(b+c). The limitation of this analysis is that we
examined the recorded strategies of students. In addition, the question itself is limited in the
complexity of the numbers used. We found very few studies in the research literature that
actually addresses two step problems. Therefore, further research is needed to fully
understand the potential of using two step problems to support student thinking and
development of number sense.

Endnote
*1. The test item was developed by the Northeastern Nevada Mathematics Project team:

project Teruni Lamberg, Bob Quinn, Dave Brancamp, Sharon McClean and Gini Cunnigham.
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THE IMPACT OF MEASUREMENT MODELS IN THE
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This study investigated the models students used to solve problems involving the comparison
of rational number quantities. One hundred ninety-one fifth-, sixth- and seventh grade
students at two research sites were given three rational number problems and their responses
were analyzed to determine what diagrammatic representations were used to support
students’ reasoning for their answers.

This study investigated whether students used models to solve problems involving the
comparison of rational number quantities, and, if so, what type of models they used. The
research questions were: How does a measurement perspective for the development of
rational number affect students’ conceptual understanding? How does a measurement
perspective for the development of rational number affect the representations used by
students? Does an emphasis on the concept of unit impact children’s approach to comparing
numbers?

Theoretical Framework
The researchers for this study are involved in a research and development project,

Measure Up (MU) (Dougherty, 2003), at the Curriculum Research & Development Group at
the University of Hawai‘i. The MU approach to elementary mathematics challenges the
traditional notion of what constitutes the basics of early mathematics learning. While
mathematics in the early grades traditionally begins with counting, number recognition, and
simple computations, the MU program starts with an emphasis on the structure of
mathematics through measurement and algebraic thinking. In grade 1, students compare
continuous quantities such as volume, area, mass and length through direct and indirect
measurement to develop understanding of relationships, operations, and unit. In each
successive grade level, mathematical ideas are linked to measurement, including the
development of rational number.

MU is based on a Vygotskiian distinction between spontaneous and scientific concepts
(1978). Spontaneous or empirical concepts are developed when children abstract properties
from specific experiences or examples. As an example, spontaneous concepts progress from
natural numbers to whole, rational, irrational, and finally real numbers, in a very specific
progression. Topics are taught within each number system, and often not connected across
systems. Scientific concepts, on the other hand, are developed from generalized experiences
with properties, and specific instances are then explored. The scientific approach focuses on
real number concepts first; then specific cases related to natural, whole, rational, and
irrational numbers are studied. Davydov (1975) conjectured that a general to specific
approach in the case of the scientific concept was much more conducive to understanding
than using the spontaneous approach. This challenges the essence of what has constituted
elementary mathematics and sets MU apart from other curriculum development projects.

The concept of unit is fundamental to measurement and plays a central role in MU,
particularly in the development of rational numbers. The researchers were interested in the
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degree to which MU students’ experiences with unit and the use of measurement models
were reflected in their understanding of certain rational number concepts. Additionally, we
wondered whether MU students understood concepts of rational numbers differently than
students who have not learned rational numbers through measurement. Others (Sophian et al.,
1997; Stafylidou & Vosniadou, 2004) have noted a relationship between students’ errors in
solving problems involving comparing fractions and experiences they have with whole

numbers. For example, when asked to name a number between 

€ 

1
5

 and 

€ 

2
5

, students often say

there is none, which is attributed to over-generalizing a pattern known to work with whole
numbers while not recognizing the density of the number. Sophian, however, posits that if
students worked with whole number in ways that emphasized an understanding of unit, they
might not be as limited in their solutions.

Methods
One hundred ninety-one students in grades 5 through 7 at two research sites, the

University Laboratory School (ULS) and Connections Public Charter School (CPCS), were

given three problems to solve: (1) Which fraction is closer to 1: 

€ 

5
6

 or 

€ 

6
5

? (2) Are the fractions

€ 

6
9

 and 

€ 

10
15

 equivalent?; and (3) Name a fraction between 

€ 

1
10

 and 

€ 

2
10

. Students were instructed

to explain their reasoning and “support their answer” for each question.
All students completed the three-problem assessment in their mathematics class. Twenty

minutes were allowed to complete the tasks. The responses were scored independently by two
researchers. A score of 1 was given for responses that were correct and included correct
explanations. A score of 0 was given for all other responses. Any discrepancies in scoring
were discussed by the researchers until agreement could be reached. Data was also collected
on the use of models employed. This paper discusses the issues of correctness and model use.

In addition to scoring responses and categorizing models used, twenty-four students were
selected for individual interviews within a day of completing their written assessment. Six of
the interviewees were fifth-grade MU students. Six were sixth-grade students who had been
in MU and six were sixth-grade students who had not been in MU. None of the six seventh-
grade interviewees had been in MU. Students were selected to represent low, middle and high
achievement levels as determined by their teachers. A semi-structured interview protocol was
used. Each student was provided a copy of his/her written solution and asked to explain the
work. This data is still being analyzed and is not reported in this paper.

Results and Discussion
The data below indicate the percent of correct responses per question. While there is very

little variance in percent correct across grade levels, there seems to be an ordering of the
difficulty of the questions. Of those who answered correctly, the fifth-grade students (all MU)
were more likely to have used a model, and the use of a model decreased from grades 5 to 7.
None of the seventh-grade students in the study had been in MU.

Percent correct per question Question 1 Question 2 Question 3
Grade 5 (N = 35) 20 26 46
Grade 6 (N = 73) 27 41 43
Grade 7 (N = 83) 23 39 46
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Of those correct, percent
who used a model

Question 1 Question 2 Question 3

Total 46 25 24
Grade 5 86 67 50
Grade 6 50 30 19
Grade 7 26 9 16

We classified the models students used into five categories: area, not circular; area,
circular; linear; linear, area [e.g., a rectangular area model that used only linear attributes];
and discrete. The table below contains the percent of students who used these models on each
question. It is interesting to note that the type of model per question varied by grade level.
For example, 40% of students in grade 5 used a strictly linear model for question 1 while only
3% and 1% of sixth- and seventh-grade students, respectively, used this model. In general,
more grade 5 students used models on each question, and use of models decreased in grades 6
and 7. For example, only 3% of seventh-grade students used a model on question 2.

A discussion of comparison of use between MU and non-MU students as well as results
from the 24 interviews will be reported upon the completion of the analysis.

Percent of students
who used each model

on Question 1

Area, not
circular

Area,
circular

Linear Linear,
area

Discrete No
model

Grade 5 9 9 40 0 0 42
Grade 6 10 12 3 23 0 52
Grade 7 0 7 1 5 0 87

Percent of students
who used each model

on Question 2

Area, not
circular

Area,
circular

Linear Linear,
area

Discrete No
model

Grade 5 3 17 31 6 3 40
Grade 6 12 4 3 19 0 62
Grade 7 0 0 1 2 0 97

Percent of students
who used each model

on Question 3

Area, not
circular

Area,
circular

Linear Linear,
area

Discrete No
model

Grade 5 0 6 37 3 0 54
Grade 6 3 3 7 7 1 79
Grade 7 1 2 12 4 0 81
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UNDERSTANDING OF FRACTIONS THROUGH THE USE OF FAIR TRADES:
DEVELOPMENT AND IMPLEMENTATION OF A HANDS-ON UNIT ON FRACTIONS

Cheryl D. Roddick
San Jose State University
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Christina Silvas-Centeno
John Muir Middle School

christina_centeno@sjusd.org

Many elementary and middle school teachers have expressed frustration with students’
understanding of fractions. This topic seems to be a stumbling block for many children as they
progress in mathematics. Numerous reasons for such difficulties have been offered by the
research community, such as the material being taught too abstractly, too procedurally, and
outside of any meaningful contexts (National Research Council, 2001). Steffe and Olive (2002)
detail some of the problems observed in students’ understanding of fractions, and suggest that
students’ difficulties stem from learning fractions using rote memorization of procedures without
a connection “between what is taught and their informal ways and means of operating” (p. 128).

The activities developed for this research project use the idea of fair trade with pattern blocks
as a common theme throughout the unit on fractions. This study reports on the development of
the hands-on unit as well as two sixth grade classes’ development of fractional understanding.

Objectives
The primary research goal in this project was to investigate the outcomes of teaching a six-

week hands-on unit on fractions to sixth graders. The sub goals of this project were to (1)
determine students’ initial strengths and misconceptions about fractions, (2) identify elements of
the unit that address such misconceptions in fraction knowledge, and (3) determine increase of
knowledge of fractions.

Theoretical Framework
The framework used in this study is based primarily on constructivist theory, with a specific

focus on the work done by Simon, Tzur, Heinz, and Kinzel (2004) on mathematical conceptual
learning. Their perspective reflects three key principles of constructivism: 1) Mathematics is
created through human activity; 2) existing knowledge affects the assimilation of future
understanding; and 3) learning results from the adaptation of one’s existing conceptions. They
elaborate on a mechanism for conceptual learning that builds on Piaget’s theory related to
disequilibrium and reflective abstraction. These ideas have been incorporated in the design of the
fraction activities, and have been revisited during the analysis phase.

Developing the Unit on Fractions
Part of the inspiration for the development of the activities used in the project can be

attributed to Van de Walle and Lovin (2005). The approach to fractions teaches conceptual
understanding through the following means:
• The approach is hands-on. Pattern blocks are used as the foundation for understanding all

aspects of fraction concepts as well as computations.
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• The instruction progresses through three distinct phases of learning and understanding
fractions: 1) visual representation of fractions using pattern blocks; 2) developing fractional
“number sense” (independent of the visual representation); and 3) developing the algorithms
for addition, subtraction, multiplication, and division of fractions using pattern blocks and
pictures.

• Real-life problems add a context to the operations. Students are given word problems
involving fractions and are asked to make sense of the word problem through use of pattern
blocks and their own, created models.

• The idea of “fair trade” to create equivalent fractions is the critical theme woven throughout
each of the lessons in the unit on fractions. This theme is used to give meaning to the
procedures related to fraction operations, and sets this unit apart from other hands-on units on
fractions.

Mode of Inquiry
The study took place with two sixth-grade classrooms in a public school in the San Francisco

Bay Area. This school was purposefully selected based on the researcher’s interactions with one
of the teachers (the second author) during several years of content-based professional
development institutes. The second author had experienced frustration in teaching fractions to
her sixth graders, and had expressed a desire to improve her conceptual development of
fractions. The two of us met weekly for two months during the summer to develop the activities
and to create an implementation plan. At the time of implementation, we team taught the lessons
over a six-week period.

Data and Analysis

Data Collected
Data collection included pretests, posttests, quizzes, homework, and field notes on

interactions with students during activities, including individual and whole class discussions. In
addition, each of the sixth grade classes in the school took part in a common exam on fractions
after the unit had been taught. The exam questions were produced by experienced mathematics
teachers in the district. This data was used as a comparison to other classes who had studied
fractions in a more traditional manner, and had not taken part in the unit on fractions described
above.

Analysis
Qualitative data was analyzed with reference to the framework by Simon et. al. (2004). T-

tests were run on the pretest and posttest scores to determine significant differences in
understanding based on written tests.

Results and Discussion
During the teaching of the unit on fractions there were many opportunities to observe

students’ developing understandings of fractions. In agreement with other studies, students did
not seem to have a strong foundational understanding of fractions upon which to build (National
Research Council, 2001; Steffe and Olive, 2002). We found the following to be true for many of
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our students: 1) Students have not yet come to understand that a larger denominator represents a
smaller fractional piece. 2) Students understood that the denominator tells them how many
groups to break the whole into, yet many students didn’t realize that the groups have to be of
equal size. 3) Students lacked a number sense about the size of fractions, which resulted in
difficulties when ordering fractions. 4) Students demonstrated an inability to extend their
understanding of whole number operations to fractions.

One of the tasks addressed the common misunderstanding represented in #2 above. Students
were given a picture created by pattern blocks and were asked if it were possible to create one
fifth of the picture. (This was not possible using the pattern blocks.)  Several students chose
blocks of unequal size to demonstrate how it could be done. For example, one sixth grader
represented the answer of one fifth using five pieces—four blue rhombuses and one green
triangle. This child experienced no cognitive dissonance between his answer and his concept of
fractional parts, because his understanding of fractions did not yet require the parts to be equal.
For the second part of this task students were asked to “prove,” using fair trades with pattern
blocks, that their answer was correct. It was at this point the student encountered a situation that
caused him to reflect on his understanding of fractions.

The issue described in #4 above was demonstrated by some students by the inability to use
pattern blocks to solve problems such as, “find 1/5 of 20”, although they could solve problems
such as, “find 1/5 of 5”. Steffe and Olive (2002) refer to prefractional concepts, one of those
being the belief that one-fifth refers to “five single elements in a collection or to five parts of a
continuous whole” (p. 129), rather than “five composite units of indefinite numerosity” (p. 129).
Building upon the research, it is also important to view this limited understanding of fractions in
light of students’ prior experiences with models of division. What we found in our interactions
with sixth graders was that the students who struggled to find 1/3 of 12 with pattern blocks also
had trouble when asked to divide 12 into 3 groups. This problem uses the sharing interpretation
of division. Students’ difficulties with fractions seem to be connected to their lack of facility with
the different models of division. Students with these difficulties were presented with problems
that encouraged them to broaden their understanding of a denominator to represent a certain
number of equal parts rather than the limited view of a denominator representing a certain
number of equal pieces, with the number of pieces equal to the denominator.

One of the surprising strengths that developed over the course of the unit was in students’
abilities to explain mathematics conceptually. Using the pattern blocks and fair trades in their
explanations, students were able to explain why fractions were equivalent, for example. Students
also developed their strengths in solving word problems. Since students had spent six weeks
using pattern blocks to develop their conceptual understanding of fractions, they were able to use
these same skills to create models to represent word problems involving fractions. Results from a
pretest showed that only a few students could solve word problems involving fractions. Results
from the posttest show a marked improvement in students’ ability to approach, and correctly
solve, word problems involving fractions. Furthermore, students did not express the usual fear of
word problems during this unit. Students actually exhibited more confidence in solving the word
problems than they did with a straight computation problem involving arithmetic of fractions.

For the second author (the classroom teacher), the most impressive results were from the
school wide test on fractions that was given at the end of the unit. Analysis has revealed a
difference in favor of the group that took part in the hands-on fraction unit.
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Summary
Over the course of the six-week period, students demonstrated growth in their conceptual

understanding of fractions. Many of the students’ misconceptions were addressed by the tasks
that were presented in this study; these tasks encouraged students to further refine and adapt their
conceptions of fractions. The use of pattern blocks and the concept of fair trade have shown to
help students attach meaning to the formerly abstract procedures related to fractions.

Moreover, pretest and posttest results indicate an increase in student achievement within the
group. Comparisons based on the school wide test on fractions favored the group that took part in
the hands-on fraction unit.
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We examine elementary school teachers’ prior understandings of concept of fractions within
different contexts. We argue that teacher' understanding on fractions significantly improves
when they are offered opportunities to investigate fractions in new context, specifically, in the
situations when they cannot rely on familiar procedural approaches. This leads to cognitive
conflict when approaching problems involving both, continuous quantities and wholes consisting
of several objects. These situations arise when problems related to Egyptian fraction are
introduced to the pre-service teachers. Investigations of these problems have led to deeper
conceptual understanding of fair share concept, fractions comparison, relations between
different wholes, fractions part-part-whole representations (bigger fraction represented as sum
of smaller fractions), connection of different fraction representations with numerical measure
(number of cuts), and- to understanding of why Egyptians used unit fraction representation.

Introduction and Theoretical Perspective
Despite recent reforms in K-12 mathematics curriculum, fraction concept and understanding

of rational numbers remain one of the weakest points in pre-service teachers' mathematics
education. Many researchers agree that the root of the difficulties in teaching and learning
fractions lies in the fact that fractions comprise a multifaceted construct (Brousseau, 2004;
Kilpatrick et al., 2001; Lamon, 2001).

First examples of fractions in the history can be found in Egypt from around 3,000 B.C.,
where principally unitary fractions were used in sophisticated problems. This representation (as a
sum of unit fractions) is described, in detail, in the Rhind (Ahmes) Papyrus, the most extensive
Egyptian mathematical papyrus (Boyer, 1991). According to the papyrus, this was a method
recommended, e.g., for dividing loaves of bread between several people. Most algorithms for
computing Egyptian fractions described in the literature are quite complicated.

The question why Egyptian fractions were used in the first place has puzzled many
mathematicians. For example, according to Hoffman (Hoffman, 1998), when R. Graham (who
wrote his Ph.D. dissertation on unit fractions) asked Andre Weil this question, A.Weil answered,
"They took a wrong turn".

Several simple activities were described in the literature and successfully used in middle
school grades (Bentley, 2004; Oliver, 2003, O'Reiley, 1992; Gardner, 1978). However, they are
used quite rarely, and very little related curriculum material exists. We argue that there is need
for expanding research in this area. As pointed by David Lingard, "the use of unit fractions by
the early Egyptians goes largely unnoticed. If ever there was a topic ripe for exploration, with a
well documented historical background, which would help many learners to gain a deeper
appreciation of the arithmetic of fractions, then this is surely it" (Lingard, 1999).
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      Authors have developed a new approach to teaching Egyptian fractions and general
procedure for the algorithm of finding unit fraction representation. They also showed that in
most contexts Egyptian fractions representations given in the Rhind Papyrus provide an optimal
solution (smallest number of cuts). This approach has led to the development of new exploration
activities appropriate for incorporating into mathematics and mathematics methods classes for
pre-service elementary teachers. This activity has become a focus of our study with pre-service
elementary school teachers learning how to teach mathematics.

Method, Participants, Procedures and Results
The sample of the study consisted of 75 pre-service teachers involved in the study of

mathematics and mathematics teaching methods. Both control (60) and treatment (15) group of
students were engaged in learning fraction concept during two months period. Control group
received the instruction, focusing on both conceptual and procedural aspects of fractions derived
from a standard textbook for math methods. Students in the treatment group also studied
conceptual and procedural aspects of fractions derived from a standard textbook, and, at the same
time were involved in mathematical project investigations in the context of word problems
related to the Egyptian fractions. Pre-service teachers' investigations of these problems have led
to deeper conceptual understanding of fraction concepts compared to the control group.

At the end of the cycle both control and treatment groups' teachers designed and
implemented lessons in elementary classrooms. Specifically, treatment group designed and
implemented lessons related to Egyptian fractions. The lessons captured through field notes were
analyzed and compared. Pre-service teachers' reflections, learning journals, and pre- post-
surveys were collected and analyzed.  The results indicated a statistically significant
improvement in posttest scores for the treatment group. Student interviews and surveys indicated
that bringing new contexts in teaching and learning of fractions (1) helped students to see the
practical applications of fractions in the new light, (2) illustrated that addition of fractions can be
illustrated without common denominator procedure, and (3) made study of mathematics more
interesting and meaningful for pre-service teachers.

References
Bentley, K. (2004). Egyptian fractions in Modern Times. Mathematics in School, Jan., 9-10.
Boyer, C.B. & Merzbach U.C. (1991), U.C. A History of Mathematics, Wiley, New York.
Brousseau, G., Brousseau, N., & Warfield, V. (2004). Rationals and decimals as required in the

school curriculum. Part 1: Rationals as measurements. Journal of Mathematical
     Behavior, 23, 1-20.
Eppstein, D., Egyptian fractions website. http://www.ics.uci.edu/~eppstein/numth/egypt/
Gardner, M. (1978).Puzzles and number-theoretic problems arising from the curious fractions

of Ancient Egypt, Scientific American, October.
Hoffman, P. (1998). The main who loved only numbers: the story of Paul Erdös and the search

for mathematical truth, Hyperion, New York.
Schappelle (Eds.), Providing a Foundation for Teaching Mathematics in the Middle

Grades, (pp. 31-66). Albany: State University of New York Press.
Kilpatrick, J., Swafford, J., & Findell, B. (2001).  Adding it up: Helping children learn

mathematics.  Washington, DC: National Academy Press.



550

                                                                                                                                                                                                   
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Lamon, S.L. (2001). Presenting and Representing: From Fractions to Rational Numbers. In A.
Cuoco & F. Curcio (Eds.), The Roles Of Representations in School Mathematics-
2001Yearbook (pp. 146-165). Reston: NCTM.

Lingard, D. (1999). The history of mathematics: an essential component of the mathematics
curriculum at all levels. Proceedings of the International Conference on Mathematics
Education into the 21st Century: Societal Challenges, Issues and Approaches, Cairo, Egypt.

Oliver, J. (2003). Fractions in Ancient Egyptian Times. Mathematics in School, Jan., 14-16.
O’Reilly, D. (1995). Creating Egyptian Fractions. The Australian Mathematics Teacher, 51, (1).



551

                                                                                                                                                       
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

A BASE-TEN PACKING INVESTIGATION AND ITS INFLUENCE ON
WHOLE-NUMBER COMPARISON SUBTRACTION METHODOLOGIES

Jennifer DiBrienza
Stanford University

dibrienza@stanford.edu

This poster session reports on the findings of a research study that examined second grade
student approaches to comparison whole-number subtraction problems.  Research on students’
difficulties with the operation of subtraction as well as place-value understanding is well
documented (Fuson, 1992).  This study seeks to examine the effects of connecting a base-ten
packing investigation directly to comparison subtraction situations.

The NCTM, in its Principles and Standards (2000), states it is “essential that students
develop a solid understanding of the base-ten numeration system and place-value concepts by the
end of grade 2.” (p. 79).  The Council also points out that by allowing students to work in ways
that have meaning for them, teachers can gain insight into students’ developing understanding
and give them guidance (p. 85).  Research shows that students also develop understanding of
place value through invented strategies (Fuson et al.,1997).  When subtraction problems arise in
meaningful contexts, students invent ways to solve them that incorporate and deepen their
understanding of place value, as well as their facility with the operation of subtraction itself.
Fosnot and Dolk discuss the power of base-ten packing investigations in helping students to
develop a deep understanding of our place-value system as well as create meaningful strategies
for adding and subtracting multi-digit numbers (2001).

In this study, a second grade class of twenty students participated in a two-week investigation
of base-ten packing problems in which they eventually subtracted in comparison situations using
invented strategies.  In the investigation, students first worked to determine how many ten-packs
and how many single pieces of bubble gum were needed to fill various bubble gum orders.
Eventually they worked on combining orders (addition) and determining what was needed for
partially filled orders (subtraction).  An assessment consisting of three contextualized subtraction
questions was given to all county students and the responses of the 20 students were compared to
those of 100 others who took the assessment.  The analysis shows that there was a significant
difference in the approaches taken between the students who experienced the investigation and
those who did not.  While the majority of the students in the control group used either the
traditional subtraction algorithm or simply provided an answer with no explanation, a plurality of
the students in the case study group began with the subtrahend and took leaps of tens and single
units to get to the minuend or began with the minuend and removed the subtrahend in tens and
single units to get to the answer.  The results show that case study students were more flexible in
their approach to subtraction problems and that they more often considered the difference
between the minuend and subtrahend as a distance.  The finding suggests that targeted
subtraction instruction using a packing investigation has an effect on student conception of
comparison subtraction.
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BUILDING A MORE PROFICIENT MODEL OF
RATIONAL NUMBER UNDERSTANDING

Cathleen Alexander
University of California, Davis

 
Rational numbers have a variety of interpretations making them difficult for children to learn.
Lamon (2001) described five fraction representations for alternative instructional approaches to
the often used Part/Whole model. Just as Lamon noted that as rational numbers need to be
taught and understood as a system of contexts, meanings, operations and representations, so too
should children’s perception, understanding, and conceptual coordination be assessed in
multiple ways. My research explores how students’ understanding of fractions is revealed in
their drawings and original story problems. Analysis of their responses utilizing Lamon's
framework revealed misunderstandings arising from confused interpretations of fraction
representations.

At a public school in Northern California, I individually interviewed six teacher-chosen fifth-
graders and asked a series of questions about the problem _ + 2/3 and its solution. Students were
asked to add the fractions symbolically, to draw the parts and solution, to estimate the answer,
and to explain if their drawing matched their symbolic answer. They then represented the
problem and solution on a number line, and finally wrote a story problem with addition.

On the surface, my study showed results similar to Peck and Jencks’ study twenty five years
ago where students were “terribly confused” about fractions (1981). In my study, only one out of
six had a firm understanding across all representations of fraction addition. Most had difficulties
with their story problems, both in set-up and solution. However, I also found that even when
students were unsuccessful with symbols, they had at least a partial mathematical understanding
as expressed in their drawings and stories. Drawing helped some students realize that their
algorithm solution was not correct. Two students could see by their pictures that the answer was
slightly more than 1, showing an understanding that the incorrect symbolic solution did not
indicate.

When I examined the student generated story problems, I found that their authors used one
of, or a combination of, the five Lamon fraction interpretations: part /whole comparisons with
unitizing, operator, ratio and rates, quotient, and measure. All but two had some notion of
part/whole within their story. One used only part/whole, correctly representing and solving the
problem. One used part/whole correctly but could not complete the solution. The other four used
an incorrect combination of fraction representations. For example, one student said, “Molly has _
cookie and she has 2/3 (2 friends and one is missing) How much would Molly have to break it up
in?” She interpreted 2/3 as  “two out of three” and then used that quantity as an operator. Also
apparent in the story is the idea of sharing, a construct often associated with fractions. As Peck
and Jencks pointed out, children make sensible mistakes, that is, their mistakes have sensible
origins (1981). 

By utilizing students’ writing and drawing as evidence of their thinking, the level of their
existing understanding can be determined. This analysis offers a proficient analytical model
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using the role of representation to determine student understanding of rational numbers. As
educators, we can build upon this information to enhance conceptual fraction understanding.
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FROM RESEARCH TO PRACTICE:
TEACHING FRACTIONS CONCEPTUALLY

Christina Silvas-Centeno
John Muir Middle School

christina_centeno@sjusd.org

Cheryl D. Roddick
San Jose State University
roddick@math.sjsu.edu

What happens when sixth graders, with a background of learning fractions very procedurally,
experience a hands-on, conceptual approach to learning fractions? That was the question
explored by a middle school mathematics teacher and a university mathematics educator when
developing and co teaching a unit on fractions. This poster will describe our process of
collaboration in the development of the unit, and will present the evolution of the activities over
the course of the year.

Development of the Activities
This project began in the summer of 2005, at which time we met to discuss areas of concern

in the teaching and learning of fractions, and to develop a hands-on approach that would directly
address many of these student misconceptions. The constructivist framework that builds on the
ideas of disequilibrium and reflective abstraction (Simon, Tzur, Heinz, and Kinzel, 2004) was
incorporated in the design of the fraction activities.

This approach to fractions teaches conceptual understanding and encourages the learner to
make sense of the properties of fractions. Introductory activities build on the concepts of
multiplication and division of whole numbers to develop the concept of a fractional part, and
make liberal use of two models of division: partitive (sharing) and measurement (repeated
subtraction). The instruction progresses through three distinct phases of learning and
understanding fractions: 1) visual representation of fractions using pattern blocks; 2) developing
fractional “number sense” (independent of the visual representation); and 3) developing the
algorithms for addition, subtraction, multiplication, and division of fractions using pattern blocks
and pictures. Real-life problems are included to encourage students to make sense of problems
through use of pattern blocks and their own, created models. These created models are then
linked to the traditional algorithms. Part of the inspiration for the development of the activities
used in the project can be attributed to Van de Walle and Lovin (2005).

Implementation of the Activities
In the fall of 2005, we team taught the lessons over a six-week period. Initial assumptions

about prior understanding of fractions led to numerous adjustments in the lessons, primarily to
reintroduce basic concepts. Once student misconceptions were exposed, the subsequent lessons
were altered to focus on establishing these appropriate conceptions. One of the surprising results
of this unit was related to students’ ability to solve word problems. Throughout this unit students
were encouraged to use student-generated strategies to make sense of their math calculations in a
meaningful way. Students actually gained confidence in their ability to solve the word problems
correctly.
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Implications
During the implementation phase of this project it became apparent that it is indeed difficult

to teach students conceptually after years of procedural learning. At the sixth grade level,
although understanding of fractions was low, their knowledge of procedures was strong enough
to give students a false sense of security. During the six-week period we were able to see
substantial improvement in students’ understandings of fractions. Yet we were not able to
address all of the misconceptions that students had accumulated over the years of working with
fractions. In order for this approach to be more successful, it needs to be implemented when
students originally encounter fractions, and built upon each year. Subsequent implementations of
these activities occurred in grades two, three, and five. The final result of this project was an
alignment of fraction content with state grade level standards and NCTM Standards, so that the
activities could be used at multiple grade levels.
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A RESEARCH-BASED MODEL FOR ANALYZING THE QUALITY
OF ONLINE ASYNCHRONOUS MATHEMATICAL DISCOURSE

Linda M. Simonsen
University of Arizona

simonsen@math.arizona.edu

Kay A. Wohlhuter
University of Minnesota Duluth

kwohlhut@d.umn.edu

The purpose of this paper is to describe a model for analyzing the quality of mathematical
discourse in online asynchronous discussions. Using the constant comparative methodology
for developing theory, the analysis revealed five hierarchical stages for coding individual
messages of the mathematical discourse: participation, contribution, deliberation,
justification, and expansion. The paper also discusses implications of the findings and
recommendations for research.

Introduction and Theoretical Framework
Student participation in mathematical discourse is a foundational idea of the Principles

and Standards for School Mathematics (NCTM, 2000). As students propose methods for
solving tasks, question each other’s ideas, and make conjectures based on investigations, they
are engaged in processes that facilitate their mathematical thinking and learning. Research
demonstrates that although teachers play a key role in the discourse process as they learn
when to intervene, students must take on more responsibility for contributing to the discourse
development (Cobb, Boufi, McClain, & Whitenack, 1997; Groves & Doig, 2004; Hufferd-
Ackles, Fuson, & Sherin, 2004; Nathan & Knuth, 2003; Sherin, 2002; Simonsen & Banfield,
2006).

An online setting in which mathematical discourse is prevalent provides a natural venue
for investigating mathematical discourse and learning more about students’ role in the
discourse process.  In fact, in online courses taught using an asynchronous communication
teaching strategy, students are virtually forced into engaging in some level of mathematical
discourse as a course requirement (Simonsen & Banfield, 2006). The quality of individual
students’ contributions to the discourse, however, is not well documented.

Researchers have tried to make sense of asynchronous discourse threads in many ways
including examining systematic construction of knowledge (Gunawardena, Lowe, &
Anderson, 1997), construction of professional content knowledge (Bairral & Gimenez, 2002),
and patterns in interactions that constitute classroom cultures (Sandovel, Lozano, &
Trigueros, 2006). Moreover, research has shown that asynchronous discussions can enhance
higher level communication (Jarvela & Hakkinen, 2002) and aid students in processing
course information at fairly high cognitive levels (Hara, Bonk, & Angeli, 2000). Yet, little
research exists on the quality of asynchronous mathematical discourse.

Gunawardena, et al. (1997) provided a model for examining the social co-construction of
knowledge in computer conferencing.  This model was developed for analyzing global online
debate with a distinct emphasis on cognitive conflict.  In the researcher’s past experience in
using the model to analyze mathematical discourse it was evident that a mathematics-based
model would better capture the nuances of the discourse (Simonsen, Luebeck, & Bice, 2007).
Thus, the primary purpose of this paper is to describe a research-based model for analyzing
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the quality of individual messages of the mathematical discourse in the context of online
asynchronous discussions in a statistics course for teachers.

Methods

Setting
Using a completely asynchronous model of distance delivery, one of the researchers

developed and implemented an online graduate level statistics course to meet the needs of
place-bound mathematics and science teachers. During its annual offering over a six-year
period, the course consistently had a maximum enrollment of 25 students. The class
membership consisted of secondary mathematics teachers preparing to teach AP statistics or
secondary science teachers interested in the design and analysis of data-driven classroom
experiments.

Procedures
The statistics course instructional format was a completely asynchronous model of

distance delivery using the WebCT course management system. The structure of the eight-
week course consisted of a series of online, multi-element lessons organized in parallel with
the AP statistics curriculum and the required textbook (Moore & McCabe, 2006). Students
turned in assignments every Monday and Thursday, took weekly quizzes, and made at least
three required weekly postings to the asynchronous discussions. The required asynchronous
discussions between students and instructors served as the main instructional component of
the course. Nine topics that corresponded to the online lessons provided the organization for
the discussions: (1) graphical and numerical summaries, (2) design, (3) sampling, (4)
sampling distribution of the mean, (5) confidence intervals, (6) hypothesis tests and t-tests,
(7) least squares and regression, (8) comparing two means, and (9) ANOVA. Within each
lesson, discussion postings were grouped as threaded discussions. Participants were required
to monitor all threads. The course discussant also monitored the discussions while using the
“withhold” discourse intervention strategy for online asynchronous discussions (see
Simonsen & Banfield, 2006). The discussant was minimally responsive, and informed the
students that information was being purposely withheld in order to let the discussion develop.
Students also had the opportunity to work with each other or the instructor privately. These
interactions, however, were quite limited given the course design. Students’ required
contributions to whole class discussions earned credit, but not their private e-mail discussions
with the instructor.

Data Analysis and Model Development
The research database consisted of the archived asynchronous discussions from one

offering of the course. Although 1018 discussion messages occurred during the course,
messages not directly involved with one of the statistical content discussion areas (117) or
those posted by the course discussant (68) were not used. The researchers analyzed 833
messages using the constant comparative methodology for developing theory (Bogdan &
Biklen, 1992). Merriam’s (1998) “category construction” provided assistance in giving
structure to the stage development. The development began by sorting messages into
categories while looking for key issues, recurrent events, and questions posed.  Two graduate
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students (one in mathematics education and the other in statistics who was also the trained
course discussant) assisted in initial category development by meeting weekly with the
researcher who was also the course instructor. Continuous refinement of the stages generated
two distinct but corresponding models: one for coding statements and another for coding
student questions.

The two authors conducted the second phase of model development. After using the two
models (statement and question) to code the first and largest set of discussion threads, the
researchers combined the two models into one. The primary reason for this change was the
realization that punctuation marks did not always appropriately identify whether a message
was a statement or a question. Continued discussions prompted stage reconstruction and
refinements.

The researchers used the individual message as the unit of analysis while recognizing the
importance of the entire thread as a context for examining the messages. This decision was
based on the recommendation of Garrison, Anderson, and Archer (2001) in that a single
message represents a complete collection of one writer’s thoughts.  Though a single message
may contain sentences representing various stages of the model, each message was associated
with a single numeric code representing the highest stage reached for that message. The
interrater reliability for the coding of the remaining eight sets of threads ranged from 75% to
88%, with an average of 80%. When disagreements occurred, researchers discussed the
coding until reaching a consensus.

Results

The Model
The resulting model consisted of five hierarchical stages for coding individual messages

within a given discussion thread: participation, contribution, deliberation, justification, and
expansion. Multiple descriptive statements delineate each stage of the model (see Table 1).

Stage Identity Description
I Participation A. Statements of thanks, affirmation or agreement without elaboration.

B. Simply restating the question or statement.
C. Assignment clarification.
D. Asking a knowledge question (list, tell, locate, name…)
E. Answering a knowledge question incorrectly (no justification given).

II Contribution A. Adding to the discussion (including restating the idea in their own words,
correcting an error, references to text, websites, calculator/technology use
(what technology to use, not the helpful procedure of how to use it),
attachments, data sets, real-world idea and extraneous variables) without
elaboration.

B. Providing an initial answer to a homework problem without elaboration.
C. Contributing classroom or philosophical statements that may not be

directly related to the discussion of the concept.
D. Answering a knowledge question but no justification given.
E. Asking a comprehension or application question (explains, interpret,

discuss, solve, show, illustrate…)
F. Answering a comprehension or application question incorrectly (no

justification given).
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III Deliberation A. Answering a comprehension or application question but no justification
given.

B. Identification of misconception but no justification given.
C. Elaborating on a new description, definition, real-world idea, classroom or

contextual example to help with the deliberation process but no thoughtful
justification given.

D. Attempts to provide justification to any question or concept but with
obvious uncertainty.

E. Attempts to provide justification to a knowledge, comprehension or
application question or concept but is incorrect.

F. Provide helpful description of a procedure (telling how) but not
justification of the conceptual understanding of the procedure (not telling
why) (including detailed calculator steps).

G. Asking an analysis question (analyzes, compare/contrast, investigate,
distinguish, examine…)

H. Answering an analysis question incorrectly (no justification given).

IV Justification A. Thoughtful justification of their own understanding of the concept.
B. Thoughtful justification of another’s misunderstanding of the concept.
C. Providing justification to a knowledge, comprehension, application, or

analysis question.
D. Asking a synthesis or evaluation question (create, invent compose,

predict/infer, formulate, judge, debate, prioritize…).
E. Answering a synthesis or evaluation question incorrectly.

V Expansion A. Adding a new contextual example and elaborating on it to enlighten the
discussion.

B. Examining the knowledge from a new perspective (including the
classroom perspective) and elaborating on it to enlighten the discussion.

C. Making connections between multiple concepts and elaborating on it to
enlighten the discussion.

D. Elaborating on a synthesis question and taking the discussion of the
content to new level.

Table 1. Model for Coding Mathematical Discourse

Sample phrases provide further guidance for characterizing individual messages with
respect to the model. In participation messages, students’ inputs were more general in nature
as they acknowledged others’ contributions or asked for assignment clarifications. For
example, “I agree with you. The answer is …” or “How did you get your answer?” In the
contribution stage, students’ messages contained helpful information but without elaboration
or posed questions at a comprehension or application level. Examples included phrases such
as “I found the example on page 77 helpful when trying to find the probability.” or “How do
we interpret the Bonferroni results?” At the deliberation stage, students shared their initial
thoughts about the discussion topic but did not justify their thinking or were unsure how to
proceed. For example, “This is how I was thinking about approaching this design question
…” or “Some times I think that the data can be analyzed using the hypothesis tests and other
times I think they cannot.” Justification messages showed students explaining and defending
their mathematical thinking. For example, “I think this is a stratified random sample since
…” or “I understand confidence intervals in this way… because…” In the expansion stage,
students identified and elaborated on new contexts and new perspectives. Examples included
phrases such as “If we take the idea of confidence intervals one step further …” and “Let’s
look at simple random sample in another way.”
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Application of the Model
Researchers used the resulting model to analyze the individual messages within a

mathematical discourse thread. An example of a thread with the respective coding follows. In
this example, one student posted a message asking for assistance on an assigned homework
problem in which she had to state whether the given percentages were statistics or
parameters. The homework problem clearly stated that the Tennessee STAR experiment
randomly assigned children into two different treatments, regular or small class, for high
school. It then stated that 40.2% of blacks in small classes, and 31.7% of blacks in regular
classes actually ended up taking the ACT or SAT college entrance exams.

Message no. 416 Posted by Ann Tuesday, June 28 3:19pm
Okay I have a question on 3.64.  I understand how to determine whether it is a

statistic or a parameter, that depends on whether it's a sample or a population.  What I'm
not sure about on this problem is whether it's a sample or a population.  The word
experiment kinda makes me think it's a sample, therefore they are statistics since these
percents are from the students that were in the experiment. I just want to make sure I'm
thinking correctly!  Thanks!

STAGE III - Deliberation

Message no. 424 Posted by Beth Tuesday, June 28 6:09pm
Now you have me thinking!  I had one answer but because of your question I am

changing it! Another way to think of parameter vs. statistic is that a parameter is "a
number that describes a population" and a statistic is "a number computed from the data."
p.240.

So I think 40.2% was computed, here's my thinking. There was data on who took the
ACT or SAT tests and this data was broken down by what type of class they were in
(small classes or regular classes).  So 40.2% and 31.7% were calculated from this data.
What do you think?

STAGE IV - Justification

Message no. 429 Posted by Curt Tuesday, June 28 10:32pm
Using the fact that a statistic refers to a sample (parameter-- whole population) I agree

(I think) that the two percentages are referring to the samples.
STAGE II - Contribution

Message no. 436 Posted by Dawn Wednesday, June 29 8:59am
I looked at the data as talking only about the students in the STAR program - the

40.2% and 31.7% are from just that group of students and not the population as a whole.
So I think these are statistics.

STAGE III - Deliberation

Message no. 448 Posted by Eve Wednesday, June 29 6:12pm
A couple thoughts on this question...
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1.  I don't think that the ability to compute a number dictates whether that number a
statistic or a parameter.  Although it's unusual to have enough data to compute an exact
parameter, it's possible. For example, in problem 3.63, 56% of registered voters had
voted.  This percentage is a parameter because it refers to the entire population (registered
voters).  It was computed because they had data on every single registered voter.
However, when I look at the full definition that the book gives of parameter, it says that
"in practice we do not know its value."

2.  I don't think the problem gives us enough information to determine whether these
percentages are statistics or parameters.  The key (as someone else mentioned) is what the
population is.  If researchers are only focusing on the children in the STAR program, then
they are the entire population and both of the figures would be parameters.  If researchers
are focusing on all school children, then the children in the STAR program are only a
sample of the entire population, and both of the figures would be statistics.

3.  I have a general frustration with this type of question -- it seems to me that
everyone who has posted in this discussion has a good understanding of the difference
between a sample and a population, and the difference between a statistic and a
parameter. However, the lack of clarity of the question makes me feel like we just need to
flip a coin to see what the text writer wanted for a correct answer.

STAGE V - Expansion

Once familiar with the model, the coding of the individual messages was often
straightforward. For example, Ann’s message was clearly an example of initial thoughts in a
deliberation process. Also, most Stage V messages were not difficult to detect. Though not
difficult to detect Stage V messages required more discussion than other level messages
simply to make sure that the contents warranted the high ranking. Eve’s message contribution
was an example of expansion as she provided a new example and elaborated on it to
enlighten the discussion. Some messages required more effort to understand the context of
the writer’s thoughts or the content of the discussion thread’s preceding messages. For
example, if taken in isolation Curt’s message may be considered deliberation; however, his
response was simply a restatement of the ideas in his own words. Perhaps even more
challenging was Dawn’s message. It was evident that Dawn justified that the STAR program
was a sample; therefore, the percentages were statistics. However, her justification was more
of an elaboration of Ann’s ideas and did not constitute thoughtful justification.

Discussion and Directions for Future Research
Ultimately the goal of this research is to evaluate the quality of mathematical discourse.

With respect to asynchronous communication mathematical discourse corresponds to
discussion threads. The resulting model was designed to analyze the quality of individual
messages within a given discussion thread. Further investigation is needed to determine the
relationship between the coded messages and the quality of the discussion thread. Does a
discussion thread containing an expansion (Stage V) message represent quality mathematical
discourse? If students’ justification of ideas is the goal, then perhaps threads containing
justification (Stage IV) messages indicates quality mathematical discourse? What is the role
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of deliberation (Stage III) messages? Perhaps quality mathematical discourse is related to the
number of distinct participants posting deliberation (Stage III) messages or above?

The ability to document quality mathematical discourse in a discussion thread has direct
implications for online teaching practices. Do discussion threads based on homework
problems or group projects tend to prompt higher levels of mathematical discourse? Will
discussion threads that begin with a deliberation (Stage III) message engage a higher
percentage of participants? What does it mean if the majority of the discussion threads are of
low quality? Answers to these types of questions will challenge instructors to decide how best
to create an online course designed to facilitate mathematical thinking and learning.
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The purpose of this study is to characterize elementary school students’ explanations for
their solutions to whole number computation problems. The analysis of 4th and 5th graders’
work showed that students were more effective at describing their solutions, but were
challenged to provide both complete descriptions and justifications as they struggled with the
roles of representations and taken-as-shared knowledge.

Theoretical Framework
Research has shown that establishing a classroom environment where students are

expected to communicate their mathematical thinking by describing their ideas, listening to
each other, questioning each other’s ideas, and providing reasonable arguments to convince
each other helps students see that mathematics makes sense. It further helps students develop
the ability to reason by justifying their thinking (e.g., Ball & Bass, 2003; Lampert, 2001;
Martino & Maher, 1999; Wood, 1999; Yackel & Cobb, 1996). Less is known, however,
about how the thinking and sharing that takes place in these kinds of discussions transfers to
contexts where students must explain their thinking in writing.

In considering the ways students explain their thinking, it is our contention that there is
an important distinction to be made between describing one’s thinking versus justifying it.
We define a description as relaying the steps of a procedure one follows. For example, to
solve 45 – 17 = ___, one might use a strategy that breaks apart the subtrahend in order to do
the subtraction in smaller parts. A description of that strategy might be: “I first subtracted 15
from 45, which gave me 30. Then I subtracted 2 from 30 and I got 28.” We consider a
justification, on the other hand, as relaying reasoning about why a procedure is
mathematically legitimate. For the strategy above, a reasonable justification might be: “This
works because for the original problem I needed to take 17 away from 45, but instead I
started by taking 15 away from 45. Then I needed to take 2 more away. As long as I end up
taking 17 away altogether from 45, it doesn’t matter in how many parts I do it.”

Research has shown that when discussing solutions it is more common for teachers to ask
students to describe their thinking rather than explain it (Fraivillig, Murphy, & Fuson, 1999;
Grant & Kline, 2002, 2004), and one would expect students’ written work to reflect this
emphasis. In this study we explore the written work generated by students experiencing a
curriculum that focuses on reasoning and explanations of thinking in order to analyze the
nature of the explanations students produce.

Methodology
The data for this study were gathered from one elementary school building as part of a

larger study on the impact of implementing a new curriculum, Investigations in Number,
Data, and Space (Investigations) (TERC, 1998), on both teachers and students. Classroom
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practice and teachers’ use of the curriculum materials during a pilot phase and the first year
of implementation were the foci of the larger study. The data included videotaped classroom
observations and interviews with teachers. Student work was also collected to study student
progress and inform discussions about implementation.

In Investigations there are typically two main formal assessments in each unit along with
a collection of more informal checkpoints. For these informal checkpoints, students work
either with their peers or individually while the teacher observes, listens, and documents
information on the students’ performance. The two formal assessments are embedded in the
curriculum materials as part of the students’ daily tasks. For these assessments, students are
typically expected to work independently on the task and are prompted to show their solution
methods using representations and/or explain their thinking in writing. For this study, we
chose to utilize the formal embedded assessments in the curriculum to analyze student
explanations rather than develop additional assessments in order to collect authentic data on
the impact of the curriculum.

We collected assessments from all students in grades 1 - 5, approximately 230 students.
One assessment task was chosen from the number units taught in the beginning of the year,
and one assessment task was chosen from the number units taught towards the end of the
year. The focus of this paper is on the results of the fourth and fifth grade student work,
where expectations were higher for both descriptions and justifications. The assessment tasks
for fourth and fifth grades are shown in Table 1. Both of the assessment tasks for the fourth
graders involved solving a multiplication problem in two different ways. The first assessment
task for the fifth graders was about finding factor pairs of a number and the second
assessment included a multiplication and a division problem. All of the tasks required
students to write about how they solved the problems and to explain their thinking.

First Number Unit Second Number Unit

Fourth Grade

Solve 27 × 4 in two different ways.
After each way, write about how
you did it. Be sure to include: what
materials you used to solve this
problem; how you solved it; and an
explanation of your thinking as you
solved it.

Solve 34 × 12 in two ways. Write
about how you solved it. Be sure to
include: what materials you used to
solve this problem; how you solved
it; and an explanation of your
thinking as you solved it.

Fifth Grade
Find some factor pairs of 1100, and
write about how you found each
factor pair.

Solve the following problems and
write about how you solved them
(record each step of your strategy)
42 × 51, 374 ÷ 12

Table 1. Assessment Tasks for Fourth and Fifth Graders

The analysis of the explanations was an iterative process. Initially, the student work was
categorized according to their descriptions and grouped into three categories: explicit, valid,
and complete description of the strategy; valid description of a part of the strategy; and
incorrect, vague, or not matching the strategy. Students’ justifications were analyzed by
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following a similar method, and the following features--meaning of the operation, reasoning
behind the steps of the strategy, and connections between the steps and the original problem--
were searched for to identify partial and full justifications. Finally, the justifications were
analyzed to identify missing components in order to ascertain issues relevant to the
knowledge that may have been taken-as-shared by the students.

Results and Discussion
The analysis of the student work indicated that the majority of the students

communicated their thinking about solving computation problems by using representations,
such as numbers, number sentences, and drawings. Both describing and justifying were
challenging for students, but as shown in Table 2, they were better at describing than
justifying their thinking. There were 324 responses in total as some of the tasks required two
separate solution methods. Of those responses, 124 included full or partial descriptions of
their work, while 49 included partial justifications as well. Of the 69 responses that included
full descriptions, 30 of those also contained a partial justification. Of the 55 responses that
had partial descriptions, 19 had partial justifications. There were no responses that included
both full descriptions and full justifications.

Partial
Justification

No
Justification

Full Description 30 39

Partial Description 19 36

Table 2. Number of Responses Including Descriptions & Justifications (324 responses
total)

Relationship Between Descriptions and Justifications

Full Description and No Justification
The example shown in Figure 1 is indicative of those responses that included a full

description of their work with no justification. This student clearly described the steps of her
strategy. However, she did not include justification for the steps taken. She does not explain,
for example, why putting 34 × 2 and 34 × 10 together makes 34 × 12. Therefore, this work
was considered as having a full description without justification.

Figure 1. Full Description and No Justification 
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Partial Description and No Justification
Overall, 36 of the responses were considered as having a partial description with no

justification and the example shown in Figure 2 is indicative of such responses. This
student’s representation suggests a utilization of the partitive meaning of division as the
student interprets the divisor as a number of groups (as represented by the circles). The
written explanation also provides some description about how the student solved the problem
as she suggested that she drew 12 circles and she multiplied 30 by 12, presumably by placing
30 in each circle, which gave her 360. However, she did not describe the step of adding 12
and whether she essentially thought of placing one more in each circle, nor did she explicitly
explain what R2 meant. Therefore, this response was considered a partial description, since it
included a valid description of only a part of the strategy. In addition, the response was
considered as having no justification, because it didn’t address any of the three components

Figure 2. Partial Description and No Justification

Full Description and Partial Justification
Students who partially justified their strategies could usually demonstrate the meaning of

the operation in their responses, but the reasoning behind the individual steps of their
strategies and the connections between the steps and the original problem tended to be
missing. For example, in Figure 3 the student shows work that involves solving 27 × 4 = ___
by counting by fours 27 times. The student explains that he used the 100’s chart and
continued counting beyond the chart by adding two more groups of four. Since the student
described each step taken in the strategy, this written work was considered as a full
description. Also, the meaning of the original problem, that 27 × 4 represents 27 groups of
four, was implied in the statement, “I counted four 27 times.” Furthermore, his statement “I
just added two more” implied that he added two more groups of four. However, neither the
reason for why this strategy made sense nor the connections between the individual steps and
the original problem were explicitly stated (e.g., including a statement about how there were
25 groups of 4 in 100, and that 2 more groups of 4, which is 8, would make 27 groups of 4).
Therefore, the justification was considered as only a partial one.
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Figure 3. Full Description and Partial Justification

Partial Description and Partial Justification
In the next example shown in Figure 4, it is interesting to note that while the solution is

incorrect, both the description and justification of the student’s thinking provide important
information. The description is only a partial one, because some, not all, of the steps of the
strategy were explicitly stated. For example, drawing 12 circles, placing 10 in each circle,
and repeating this 3 times was included in the text, but the description of some of the other
steps was omitted, such as how the total came to 32 with a remainder of 1. Similarly, it is
only a partial justification because there is no explicit discussion of the use of the partitive
meaning of division, that is, sharing 374 things among 12 groups and finding out how many
things each group receives. In addition, the statement “ten twelve times was not over 374”
justifies why the student kept adding more cents into each circle. However, the connections
among other steps and the connections between the steps and the problem were not justified
explicitly.

Figure 4. Partial Description and Partial Justification
Interpreting Students’ Difficulties with Justifications
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Given that this was the students’ first year using a curriculum that encouraged reasoning,
it was not surprising that they were challenged to justify their thinking. Beyond this
“experience” issue, two additional factors seemed to influence the nature of students’
justifications. One is the assumption made about what can be counted as taken-as-shared
knowledge. In other words, as students work on justifying solutions to computation problems
over and over again, they and the teacher may either publicly agree or assume that certain
ideas or steps in a strategy do not have to be justified any longer. A second factor may be the
negotiation of what information is provided by one’s representations versus words. We
questioned which aspects of the students’ explanations may have been present or missing as a
result of these issues.

Using Basic Facts or Basic Calculations (Such as Multiplying by 10, Doubling, or Adding)
The majority of the students who provided partial justifications did not include written

explanations for how they found the answers to the calculations they used in their strategies.
The examples shown in Figures 1, 2, and 4 illustrate this issue. All three strategies included
steps where students multiplied numbers by 10 (e.g., 12 × 10 = 120), doubled numbers (e.g.,
34 × 2 = 68), and added numbers (e.g., 120 + 120 = 240). However, none of those
explanations included reasoning for these calculations. It might be the case that students
already established this kind of knowledge as taken-as-shared in their classrooms and did not
consider a justification for each calculation necessary. There were also cases where students
used basic facts, such as 7 × 4 = 28, and none of the students provided a justification for how
they knew that 7 times 4 was 28. Given the fact that these were fourth and fifth grade
students, it might be reasonable that explanations for these steps were omitted from their
written justifications.

In addition, on the first assessment task in fifth grade, where students found factor pairs
for 1100, there were several students who included statements that may have been based
upon taken-as-shared knowledge. Some examples included the following: “I found this factor
(1 × 1100) because anything times 1 equals itself”; and “I split 1100 in half and got 2 × 550”;
or “11 × 100 works, because 10 or 100 times anything just adds one or two zeros to the end.”
While these are valid statements, they are not justified. However, it is reasonable to think that
these ideas may have been discussed in these classrooms and students may have believed that
they did not need to provide justifications for those statements in their written work.

Connections Between the Steps of a Strategy and the Original Problem
Interestingly, none of the students provided a justification for how the steps of their

strategies were related to the original problem they were solving. A significant example of
this was not justifying why it makes sense to add partial products together to get the solution
to a multiplication problem. While several students described how they found the partial
products, and stated that they added these together at the end, none of them explained why it
made sense to add them all. For example, in Figure 1, the student described how he solved 34
× 12 = ___ by breaking 12 into 10 and 2, finding 34 × 2 and 34 × 10, and then adding those
two quantities together. However, he did not justify why putting 34 × 2 and 34 × 10 together
makes 34 × 12. This would require utilizing language about the meaning of multiplication,
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for example, that he was adding 2 groups of 34 to 10 groups of 34 to get 12 groups of 34
altogether, a seemingly important statement in justifying this strategy.

Negotiating the Role of Representations
It was most often the case that students used their pictorial representations as a way to

describe their work, but did not often refer to them in justifying their strategies. For example,
in Figure 2 where the student drew 12 circles and placed 30 in each circle to solve 374
divided by 12, she simply wrote “I did 30 x 12 = 360.”  She did not access that representation
to explain why making 12 circles or why placing 30 in them made sense. It may be the case
that students viewed these representations as an avenue towards solution, and connected
them with any wording they would include to describe their solution, but did not necessarily
view them as something that required justification. In other words, in the students’ minds, the
picture might just speak for itself.

Conclusions
In writing justifications for computational problems, depending on the grade level, it

would be reasonable to establish norms for not including reasoning for each single
calculation that takes place in a strategy. However, it does seem important to expect students
to include reasoning about both the meaning of the operation and the connections between
the steps of the strategies and the original problem in their justifications. These expectations
need to be explicitly discussed with students by comparing and contrasting a variety of
explanations one might provide for different strategies.

The fact that students were challenged to both describe and justify their work in this
study is not surprising given the fact that they were in their first year of a curriculum that
encouraged these kinds of explanations. While it was not part of our study to analyze
classroom practice, it may also be the case that the nature of the discussions around student
thinking may have been tentative as teachers were just learning ways to engage effectively
with their students’ ideas. With that said, the ways in which students struggled with their
explanations provides important information for teachers and curriculum developers alike on
what to be cognizant of when developing students’ reasoning. Describing their work
involved a negotiation between the use of representations and written text to explicitly
communicate how they arrived at their solutions. And determining appropriate justifications
involved knowing what to support and what to assume as “taken-as-shared” knowledge.
These are difficult decisions for students to make and trying to make public what is private is
incredibly demanding on both students and teachers. It is our contention that working on
what makes both a satisfying description and justification of one’s thinking is critical to
realizing the full potential of developing students’ understanding.
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This study documents the type of proof schemes that high school teachers developed and used
in problem solving scenarios that involve the use of dynamic software (Cabri-Geometry).
Research questions that helped organize and structure the development of the study include:
(i) To what extent does the high school teachers’ process shown to pose questions or
formulate problems influence their ways to validate mathematical relations or conjectures?
(ii) What types of problem solving strategies do the participants use to identify and support
conjectures that emerge as a result of constructing and examining dynamic problem
representations? Results indicate that the subjects’ use of dynamic software to represent
mathematical objects and situations dynamically not only favors their ways to formulate
conjectures; but also the schemes’ construction to support and validate those conjectures.

How does a mathematical relation emerge? What does it mean to prove or demonstrate a
particular mathematical relation? What types of arguments are important to validate a
mathematical conjecture? How visual, empirical, geometric, and analytic arguments are used
to validate mathematical relations? To what extent do the systematic use of dynamic software
favor or enhance a particular ways of reasoning and thinking about proofs’ construction? The
discussion of these types of questions sheds light on the complexity involved during the
subject’s construction of mathematical arguments and the relevance of problem solving
approaches that promote the teachers and students’ use of technology to foster both the
formulation of relations and the search for arguments to support mathematical conjectures.
Those problem-solving experiences involve the subject’s direct participation in formulation
of questions or problem posing activities, the development of problems solving strategies and
the use of different artifacts, including computational or digital tools, to represent and explore
mathematical ideas or problems.

It is common to associate the term “mathematical proof” to the development and
presentation of deductive arguments, based on a set of propositions, to support results or
mathematical relations; however, the process of proving involves more than only the use of
logic or formal arguments; it includes for the subject to be convince himself/herself initially
and to convince others about the viability and validity of the conjecture or mathematical
relation to be proved (Harel & Sowder, 1998). What does it mean for the subject to be
convinced about the validity of a particular mathematical relation? We argue that it means the
opportunity for the subject to explore conjectures or mathematical relations in terms of visual
and empirical explications that often rely on measuring figures or attributes (areas,
perimeters, lengths, etc.) and moving objects and observing patterns of particular behaviors.
Since the use of technology seems to facility the representation and exploration of
mathematical situations, then it is important to investigate the extent to which the use of
particular tools helps teachers and students develop ways of reasoning that favor the use of
distinct arguments to validate and prove mathematical conjectures or results.

Thus, in this study, we are interested in documenting and analyzing the process exhibited
by high school teachers to construct dynamic representations of situations that lead them to
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formulate and examine conjectures and ways to support them. The research questions used to
guide and structure the development of the study were:

1. To what extent does the high school teachers’ processes shown to pose or
formulate questions influence their ways to validate mathematical relations or
conjectures? Here, there is interest to document how the participants’ construction
of dynamic representations of situations helped them to initially pose questions
that eventually led them to identify and explore mathematical conjectures.
Similarly, we focused on analyzing ways in which the participants look for
arguments to support those conjectures. In particular, we identify and discuss the
proof schemes that emerged through the participants’ use of dynamic software.

2. What types of problem solving strategies do the participants use to identify and
support conjectures that emerge as a result of constructing and examining
dynamic problem representations? Here, we focused on documenting the types of
problem solving strategies (examining particular cases, looking for patterns, using
coordinate system, and finding objects’ loci) used to solve problems and construct
arguments and proofs.

Conceptual Framework
An important feature in the process of learning mathematics is the construction of a line

of thinking in which the learners have the opportunity of using their previous knowledge to
identify mathematical relations and to provide arguments to support results. Harel and
Sowder (1998) distinguish two related aspects that are relevant during the subjects’
construction of proofs or arguments to justify conjectures: The subject self-convincement
stage in which he/she is convinced that the conjecture is valid and make sense to him/her; and
the need to persuade others about the validity of that conjecture. That is, one is an individual
recognition and the other a community acceptance. Harel and Sowder (1998) also identify
seven types of sub-categories of proof schemes: (a) ritual proof scheme in which the subject’s
convincement is based on accepting the form rather than the content or argument; (b)
authoritarian proof scheme in which the subject’s convincement is based on arguments or
affirmations presented by an authority (teacher, textbook, or expert); (c) symbolic proof
scheme in which conviction is based on symbolic manipulations without explicit explanation
of the meaning attached to those manipulations; (d) perceptual proof scheme in which
conviction is based on using rudimentary mental images that lack actions to anticipate results;
(e) inductive proof scheme in which conviction is achieved through the use of quantitative
evaluations; (f) transformational proof scheme in which the subject relies on goal-oriented
operations on objects to anticipated results; and (g) axiomatic proof scheme which is also a
transformational proof that relies on the use of axioms and established definitions.

Thus, each proof scheme becomes relevant to explain the cognitive process embedded in
both the subject’s own convincement about the validity of mathematical relations and the
subject process to convince others about the pertinence, meaning, and proof of that
conjecture.

We also argue that the cognitive process involved during the construction of
mathematical arguments to support relations can be traced or explained in terms of the
subject’s ways to formulate and pursue significant questions (Santos-Trigo, et al., in press).
Thus, problem solving approaches that encourage students/learners to formulate, examine,
and support conjectures might help them value the use of distinct types of arguments to
justify results and conjectures. Santos-Trigo (2007) illustrates ways in which high school
teachers and students can transform typical textbook problems into nonroutine problems
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when they construct various representations (including dynamic representations) of those
problems and look for distinct ways to approach them. In particular, the use of computational
tools (dynamic software for example) seems to offer proper conditions for the learners to
pose and examine questions that lead them to formulate and later support conjectures. In this
context, we are interested in documenting the extent to which the categories identified by
Harel and Sowder (1998) can be used to explain the subjects’ construction of arguments
within a problem solving environment that promote the use of dynamic software.

Participants, Design, and Procedures
Seven high school teachers participated in a weekly 1.5 hr problem solving sessions

during one semester. However, we focus on the work shown by three of those participants
because their approaches to the tasks are representative of the group’s work. The aim of the
sessions was to work on a series of tasks that involves the construction of geometric
configuration, using Cabri-Geometry software to identify and support mathematical relations
or conjectures. In general, the pedagogic approach that consistently characterized the
development of the sessions included:

1. The responsible or coordinator of the sessions introduced a task to the participants
and explains to them ways to work and report their work.

2. The participants worked on each problem individually and later they had
opportunity to present and examine their work within the group.

3. At the end, each participant handed in a report that included electronic files and
written comments and observations that appeared during their individual and
collective participation.

To analyze what the three participants showed during their problem solving approaches,
we focus on those tasks that involve the construction of geometric configurations that were
used to identify and discuss mathematical relations. The initial tasks and instructions that the
participants received to construct those dynamic configurations included:

1. Given a line and a point that does not belong to that line, construct an isosceles
triangle with one side lying on the line and the third vertex the given point that is
not on that line.

2. Draw a square given one of its vertices, and the middle point of one of the side of
the square that is not adjacent to the given vertex.

3. Draw a tangent circle to two given circles.
Data used to analyze the participants’ approaches to the tasks come from electronic files,

written reports, and field notes taken by the sessions’ coordinator during the problem
sessions. The first goal was to analyze the extent to which the proof schemes identified by
Harel and Sowder (1998) consistently appear in the participants’ performances. In addition,
the identification of problem solving episodes (Schoenfeld, 1985) became important to
identify the type of strategies used to identify, construct, and support mathematical relations.

Presentation of Results and Discussion
There is evidence that the use of the software became important for the participants to

initially identify key elements which they used to construct a dynamic representation of the
tasks. Thus, dragging particular points or objects within the representation was an important
activity that helped them detect invariants or conjectures. For example, Ann approached the
first task (isosceles triangle) by drawing a line l and point C out of that line. She chose point
P on line l and drew a circle with center at point C and radius the segment CP. Thus the
triangle PCQ is isosceles by construction. In this case, Ann observed that she could draw a
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family of isosceles triangles when point P is moved along the line l and asked at what
position of P the triangle PCQ becomes equilateral? (Task 1.1) (Figure1a). Hugh drew line l
and point Q on that line and a circle with center at point Q and radius QC (C is not on line l).
Then he drew the perpendicular bisector of segment QC, located point S and asked: What is
the locus of the point S when point Q is moved along the line? (Figure1b). He observed that
the locus of point S was a line and verified this assertion by selecting two points on the locus
and drawing a line passing by those points and observed that it overlaps the locus.

l
C

P

Q

P'

Q'

Figure 1a: At what position of point
P, triangle PCQ becomes equilateral?

l

l1

Q

C

S

R

Figure 1b. What is the locus of the point
S when point Q is moved along line l?

Hugh noticed that the locus intersects line l at point
R (Figure 1b) and then he drew segment CR and a
circle with center at point C and radius CR, and located
point T to construct the equilateral triangle. He used
the software to measure the angles in order to verify
the measure of each interior angle was 60 degrees
(Figure 2).

What types of proof schemes (following Harel and
Sowder, 1998) did the participants utilize to convince
initially themselves and later to convince others about
the pertinence and validity of their results? Table 1
shows a summary of the type of proof schemes used by
the three participants.

l

60,0 °

60,0 °

60,0 °

C

R

T

Figure 2. Equilateral triangle.

Task
Participant 1 1.1 2 3

Ann d, g d N d, f
Mary e, g e, g d, e d
Hugh e, g d, e d, f d

Type of proof scheme: (a) ritual, (b) authoritarian, (c) symbolic (d) perceptual,
(e) inductive, (f) transformational, (g) axiomatic, (N) problem not solved.

Table1: Proof schemes used by the participants

Mary constructed an equilateral triangle by drawing a line L, and a perpendicular to L
passing by point C. This perpendicular line cuts line L at M. Then se drew line l2 and points
D1, D2 and D3 such as MD1 = D1D2 = D2D3. Then drew segment CD3 and parallel lines to this
segment passing by points D2 and D1. The latter intersects line MC at T. She drew a circle
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with center point T and radius TC. This circle intersects line L at points A and B. Here she
stated that triangle ABC was equilateral. How did Mary convince herself that the triangle she
had constructed was equilateral? Mary, as the other participants, used the software initially to
measure the angles in order to verify if they measured each 60 degrees (Figure 3a). When the
participants exchanged ideas and discussed their approaches with the whole group, they
recognized the importance of providing other type of evidence to show that, in this case that
the triangle was equilateral. For example, Mary at the end of the session in her report wrote:
CM is perpendicular to L (by construction) and T divides segment CM into a ration 2:1. Let h
be equal to TM, then CT = AT = BT = 2h, this is because CT, AT and BT are radii of the

same circle (Figure 3b). Triangle AMT is right triangle, therefore, MA = 

€ 

3h ; similarly CA

= 

€ 

2 3h , and CB = 

€ 

2 3h . As a consequence triangle ABC is equilateral. A key idea used in
Mary’s report is the identification of point T (center of the circle). Her construction was
based on assuming the existence of the equilateral triangle and to identify its relevant
properties. That is, she used the properties to guide her construction.

L

l1

l2

l3

l4

60,0 °

60,0 ° 60,0 °

C

M

D1
D2

D3

T

B A

Figure 3a. Constructing an equilateral
triangle.

L

60,0 °

60,0 ° 60,0 °

2h

2h2h
h

C

M

T

B A

Figure 3b. Providing an argument to
validate the construction.

Hugh observed that the locus of the perpendicular bisector when point Q was moved
along line l (Figure 1b) seemed to be a parabola. His first strategy to convince himself that
the locus was a parabola was to use the software command (conic) to visualize if five points
on that locus determined that conic (parabola) (Figure 4a). At this stage, he was convinced
that the locus was a parabola; but he was aware that it was important to think of other types
of arguments. Later, he chose point P on the locus and drew a perpendicular line to l that
passes through point P. This perpendicular line intersects line l at point R. Then, with the use
of the software he measured distances PR and PC and observed that for different position of
point P the distances were the same (Figure 4b). Here, Hugh assumed that line l and point C
were the directrix and focus of the parabola respectively and used the software to verify the
definition of this conic.
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l

l1

This Parabola

Q

C

S

P1

P2

P3

P4

P5

Figure 4a. Perceptual scheme to
validate the existence of a parabola.

l

l1

8,4760 cm

8,4760 cm

d(PC) =

d(PR) =

Q

C

S

P

R

Figure 4b. Empirical validation of the
definition of a parabola.

The use of the software also allowed the participants to display transformational proof
schemes. For example, Ann approached the task that involved the construction of a tangent
circle to two given circles by initially focusing on a partial solution. That is, given the circles
with centers at point A and B respectively, she situated points R and Q on each circle. Then
she drew lines AR and BQ and observed that for certain positions of these points the lines get
intersected at point C. She drew a circle with center at point C and radius CR. This circle is
tangent to circle with center at point A (Figure 5a) (partial solution). Ann noticed visually
that when point R is moved along the circle there was a point on circle with center B at which
the circle with center C is tangent to both circles. To justify this construction, Ann argued:
For certain positions of point R the circle with center C does not intersect the circle with
center B while for other positions of point R the circle intersect that circle at two points
(Figure 5b), then there should be a position for R in which the circle intersects the other at
only one point. That is, there must be a position for point R in which the circle with center at
C is also tangent to the circle with center at point B.

A B

R Q

C

Figure 5a. A partial solution to the
problem.

A B

R Q

C

R'

C'

Figure 5b. Dragging point R around
circle with center A to find the solution.

Another example of the appearance of a transformational scheme is shown in Hugh’s
approach to the construction of the square. He constructed a family of rectangles holding the
condition that P was one vertex and Q the middle point of the opposite side (Figure 6a).
When point N is move along the circle, he observed that one element of that family of
rectangles represented the solution of the problem. To justify his method to identify the
square, Hugh argued that when point N is moved along the circle, the family of the generated
rectangles holds initially that the length of segment PN is less than the length of segment PR
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(Figure 6a); however, for certain positions of point N it appears that the length of segment PN
is greater than the length of segment PR (Figure 6b). Therefore, there should be the case in
which both lengths are equals.

P

Q

M

N

N'

R

Figure 6a. M is the middle point of
segment PQ and N’ symmetric to N with

respect to Q.

P

Q

M

N

N'

R

Figure 6b. The length of segment PN is
greater than the length of segment PR.

Final Remarks
There is evidence that the use of the software helped the participants construct dynamic

representations of mathematical objects that eventually became a source or departure point to
formulate questions and problems. What relevant features characterize the participants’
process to construct a dynamic representation of the situation? It was observed that the
participants started to analyze the situation in terms of geometric properties and translated
this information into the construction of objects that eventually could be moved and observed
components’ behaviors. For example, when Hugh situated point Q on a line and point S be
part of a circle, he was aware that when moving point Q on line l, it was important to follow
the path left by point S and the perpendicular bisector of segment CQ. Indeed, tracing those
loci led them to construct the equilateral triangle and to identify the locus of the
perpendicular bisector as a parabola. At this stage, Hugh directed his attention to finding
distinct types of arguments to support his finding. Again, the use of the tool was relevant to
explore a quantitative approach (measuring distances and angles) to initially verify the
properties of those loci.

Although some of the proof schemes identified by Harel and Sowder (1998) seemed to
appear in the participants’ problem solving approaches, there is evidence that with the use of
the tool, the participants can move from visual, empirical and perceptual approaches to more
formal or deductive schemes. In addition, the participants’ process of posing problems helped
them to initially be convinced that the problem or question and associated conjectures were
relevant and needed to be explored or supported. As a consequence, it was natural to think of
different ways to support their responses.

Finally, the use of the tool seems to enhance problem solving strategies that include (i)
assuming the problem solved and then to identify properties to construct a dynamic
representation; (ii) representing and solving the problem partially and then examining the
representation by moving some elements within the representation to find the complete
solution; and (iii) using the tool “locus” to observe the behavior of some elements of the
representation to solve the problem or to formulate other questions or problems.
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A group of twenty-four middle-school students from a low, socioeconomic community worked
collaboratively on open-ended problems involving fractions during an informal after-school
program. This paper describes the forms of reasoning that emerged as the students co-
constructed arguments and provided justifications for their solutions.

Although the goal of building students’ mathematical reasoning is a priority among educators
and policy leaders, according to results disclosed by the Seventh Mathematics Assessment of the
National Assessment of Educational Progress (NAEP), students have difficulty explaining and
justifying their solutions in ways that are mathematically adequate  (Arbaugh et al., 2004). Other
researchers have found that participating in discussions about mathematical ideas leads to
mathematical learning (Balacheff, 1991; Cobb et. al., 2001; Maher, et. al., 2006). The purpose of
this research is to build a deeper understanding of how reasoning can develop in middle-school
students by showing the variety of ways they reason in problem solving.

Theoretical Framework
 Thompson (1996) defines mathematical reasoning as “purposeful inference, deduction,

induction, and association in the areas of quantity and structure” (p.267). Yackel and Hanna
(2003) extend this definition to recognize the social aspects of reasoning and describe it as a
communal activity in which learners participate as they interact with one another to solve
(resolve) mathematical problems. They stress that in a supportive environment, all students, as
early as elementary school, have the potential to make and refute claims and participate in
inductive and deductive reasoning. However, Yackel and Hanna (2003) also emphasize that we
are only beginning to understand how students’ mathematical reasoning develops and what
environments can support this development. Our study addresses these issues. We placed
students in an environment where collaboration and justification were encouraged and
documented the development of their reasoning over time. In particular, the question that guided
our work is, in developing a community of learners: What forms of reasoning emerge as students
provide justifications for their solutions?

Method of Inquiry and Data Source
This research is a component of a larger, ongoing longitudinal study, Informal Mathematics

Learning Project (IML), conducted through an after-school partnership between a University and
school district that is an economically depressed, urban area and whose school population
consists of 98 percent African American and Latino students. This report focuses on the
development of reasoning of middle-school students. We report on the first cohort of students, 24
sixth-graders, who, over five, 60-75 minute sessions, worked on fraction tasks, interacted with
peers, and had ample time to explore, discuss and explain their ideas. Students had available
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Cuisenaire rods to work on their tasks; they were invited to collaborate, and they were
encouraged to justify and make sense of their solutions

Video recordings and transcripts were analyzed using the analytical model outlined by
Powell, Francisco & Maher (2003). The video data were described at frequent intervals; critical
events (episodes of reasoning) were identified and transcribed, codes were developed for
flagging for solutions offered by students and the justifications given to support these solutions.
Arguments and justifications were coded according to the form of reasoning being used (direct;
by contradiction; by cases; using upper and lower bounds) and as valid or invalid (did the
argument start with appropriate premises and was each deduction within the argument a valid
consequence of previous assertions).

Results
Examining the data across sessions, we found: (1) there were instances in which direct

reasoning, reasoning by contradiction, upper and lower bounds, and case-based reasoning were
used correctly by students in our study; (2) for many tasks, multiple arguments were presented
correctly using different forms of reasoning; (3) students challenged one another’s arguments
that began with inappropriate premises, when the method used to draw conclusions was not
sound, and when the conclusions that students drew led to contradictions; (4) challenges
sometimes led the community to tighten or refine previous incomplete arguments; (5) the
frequency in which students questioned or challenged each others’ arguments increased over
time.; and  (6) all of the students whom we focused on in our analysis actively participated in this
process of argumentation. Each of these points is discussed below.

Forms of Reasoning
In Session 2, we see an example of direct reasoning in an episode where a student poses the

following challenge: What is the number name for red (when blue is named one?
Dante: I said that two whites equals up to the red and then there’s one white would be

one-ninth and two whites would be two-ninths.
Brittany: I think it’s two-ninths because um three, I mean one red and one white equals

green and if you take away um and um if you take away that one you’re still
going to have red and two of the whites make one red.

In the same session, we observe reasoning by contradiction in which R1 poses the challenge:
If I call the blue rod one, I want each of you to find me a rod that would have the number name
one-half. In response, Chris explains that there is not a rod that is half of the blue rod because,
“There’s nine little white rods you can’t really divide that into a half so you can’t really divide
by two because you get a decimal or remainder so there is really no half, no half of blue because
of the white rods”.

Reasoning by cases is also observed in the same task in which Justina explains: “I was just
making half of the color rods, I just made this picture, so like um, half of the orange was yellow,
half of the brown was purple, half of dark green was light green, and the same for those two.” At
the overhead, Justina presented her diagram and drew all of the rods with halves along side (e.g.,
two yellow rods lined up next to an orange rod, and said that she just wanted to indicate the set
of rods for which there were halves in the set.
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For arguments with upper and lower bounds, we present an example by Dante who explained
that the purple rod and the yellow rod are not halves of the blue rod. Dante said, “It’s not half,
it’s just equal, it’s not half because yellow is bigger than the purple”. He held up the yellow and
purple rod to show this. R1 asked him how much bigger the yellow rod was and Dante replied,
“by one white, one white piece.” Dante continued, “We tried all we can because if usually for the
blue piece, it would usually be purple or yellow but yellow would be one um one white piece over
it and the pink would be, I mean purple would be one white piece under it”.

Multiple Arguments
For the problem: If I call the blue rod one, I want each of you to find me a rod that would

have the number name one-half, eight students produced arguments that represented the four
forms of reasoning. Three of these arguments are highlighted below.

Reasoning by Contradiction: Chris explained that there is not a rod that is half of the blue rod
because, “There’s nine little white rods you can’t really divide that into a half so you can’t really
divide by two because you get a decimal or remainder so there is really no half, no half of blue
because of the white rods”.

Reasoning by Cases: At the overhead, Justina presented her diagram. She drew all of the rods
that have a half next to the two rods that make up the half (two yellow rods lined up next to an
orange rod, two purple rods lined up next to a brown rod, two light green rods lined up next to a
dark green rod and two red rods lined up next to a purple rod). She explained, “I was just making
half of the color rods, I just made this picture, so like um, half of the orange was yellow, half of
the brown was purple, half of dark green was light green, and the same for those two”.

Reasoning by Upper and Lower Bounds: Chanel stated that the blue rod does not have a half
“because it needs one more white rod”. She displayed a model of the blue rod lined up next to
nine white rods and a model of the blue lined up next to a purple rod and a yellow rod. When
asked how she knew that the length of the yellow rod is not half of the length of the blue rod, she
stated, “Because blue, this is blue and the yellow is a little, is, the yellow is a little bit more than
a half and the purple is shorter than a half” and showed a model of the two rods next to the blue
rod.

Students Challenging Each Other
For the problem of finding a rod whose length was equivalent to half of the blue rod, Michael

and Shirley identified the purple and yellow rods as being equivalent to half of the blue rod. In
response, Dante and Chanel explained why they were not correct.
Michael Purple and yellow
Dante No, yellow is not
Michael I said purple and yellow
Chanel No [she has lined up two yellow next to the blue]
R1 Chanel doesn’t agree with you, why not Chanel?
Chanel Because if you put two purple together its still smaller than the other, than the

blue [she built a model of two purples lined up next to blue and points to the
space that is remaining]

Michael Purple and yellow [he has a model of a purple and yellow lined up next to the
blue]
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Dante I know, I know, there is none
Shirelle Yellow and purple can make a half [she has a model of a yellow and purple lined

up next to the blue]
Dante But they’re not the same length
Michael That what I been saying yellow and purple, yellow and purple, yellow and purple,

but y’all won’t listen
Dante Yeah but um there not really actually halves
R3 Why?
Dante Because the yellow is bigger so it’s uneven
R3 So it would be uneven
Dante So there’s no half
Chanel And the yellow takes up more space than the purple and to be halves they should

be the same

During session 5, students were asked to name the white rod when the orange rod was named
one. In response, Herman named the white rod ten. Dante corrected him and named the white rod
one-tenth, comparing the task to the previous challenge of naming the white rod when the blue
rod was named one. Herman disagreed with Dante, and R1 asked Dante to explain his argument
again. He used Herman’s model of ten white rods lined up next to the orange rod and explained
that if he took ten rods away, he would be left with one-tenth. He continued to add the rods back
on, counting by tenths, up to ten-tenths.

Students were asked to find a number name for the red rod when the orange rod was named
one.  Chanel named the red rod one-half and R1 asked the class what they thought about this.
Dante replied, “I disagree because, because the red, the red shouldn’t be a half because the
yellow is a half of orange, so how could red be a half of orange if it takes five of them instead of
two. So that’s why I disagree”.

Challenges Refining Incomplete Arguments
In Session 2 students attempted to solve the problem of finding a rod equivalent to half the

length of the blue rod. The arguments produced by Michael, Shirelle, Dante, and Chanel
illustrate this point. For example, Michael and Shirelle insist that the yellow and purple rods
could be named one-half (when the blue rod was named one), Dante and Chanel used different
types of reasoning to contradict their statements.

Another example is provided by Chris who built a model of nine white rods lined up next to
the blue rod.

Chris  If you take out four that’s an even number but if you put the four back … that’s
not a half because it’s only nine and nine is an odd number.

Danielle This one is even too. What did she say the blue one was?
Chris One, so you can’t find a half of the blue one because if you put all white you only

have nine so for nine you can’t really do it.

Brittany built a model of the following combinations of trains of rods lined up next to the
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blue rod: yellow and purple, red and black, light green and dark green, brown and white,
and two purple and white.

Brittany But I can explain it because I can say you can’t do it because if you put a black
and then a red you can’t do it because they are not a half and they are not the
same size

Chris And also if you put the white ones you it’s an odd number which is nine and you
can’t do it.

A student lined up two purple rods next to the blue rod and Jeffrey said that she needed a white
rod.

Chris See that’s not a half so you can’t use blue, it’s an odd number
Danielle So you can’t use this one, one, two, three, so for the whole thing you can’t use it

because of the white ones, you can’t really divide an odd number…..If you had
like, say if you had two yellows that would equal the blue right? That would equal
the blue that’s one-half, no I know it wouldn’t equal the blue I’m just saying if the
yellow did go into half the blue.

Chris Overall you can’t do it because if you use a white one it is an odd number so you
can’t divide by two.

Jeffrey Unless you get a decimal or a remainder.
Chris And you wouldn’t be able to do it anyway because none of these are even.

Jeffrey and Danielle then began to reason using upper and lower bounds using the purple
rod as the lower bound and the yellow rod as the upper bound.
.
Danielle If only we had the two yellows but the yellows were shorter.
Jeffrey If purple was bigger.
Danielle Yeah if the purple was bigger, then the green was kind of shorter so that the same

color green could fit on it.
Jeffrey If the purple would have been a little, like half of the white, it would have been

good.
Danielle Or if the light green was um, it was, yeah like a little bigger, then you could only

have one up there or two.
Jeffrey Bigger than the purple one has to be like  .
Danielle But the purple has to be bigger, the purple has to be bigger equally because if you

take another purple you’re going to have to add a white, yeah you’re going to
have to add a white, see it don’t work

Chris The thing we should say is that since we put the white cubes and we got an odd
number then if you have an odd number you can’t divide by two so you get one-
half so you get a decimal or a remainder so you can’t really divide it, right? [He
points to his model of nine white rods lined up next to the blue rod]

Jeffrey Yeah
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Chris I got it already, see you can’t do it since you have one blue and you get nine white
cubes so you can’t do it because you can’t divide an odd number into two, I mean
by two

The Frequency of Challenging Each Other Increased Over Time
In the process of integrating their ideas with the ideas of others, students corrected each

other. The occurrences of corrections increased gradually; in the first three sessions combined,
there were seven instances of the questioning or challenging of students’ arguments; however, in
the fourth session there were 14 such instances and 19 in the fifth session. As students became
more comfortable in the learning community, they felt safe correcting one another and
challenging each other’s ideas.

Full Participation
Table 1 highlights the eight students involved in the analysis and displays the occurrence of

and types of reasoning that they engaged during the five sessions.
Forms of

Reasoning
Chanel Dante Michael Shirelle Ian Chris Brittany Jeffrey Danielle

Direct 17 15 5 1 7 7 2 1
Contradiction 1 2 2
Upper/Lower

Bounds
2 1 1 1

Cases 1
Table 1. Forms and occurrences of reasoning over the five sessions

Discussion and Implications
    Our results indicate that the middle-school students in the sessions generated mathematical
justifications using the various forms of reasoning in order to convince their peers of the
correctness of their solutions. Also, they sought to understand and proceeded to challenge the
justifications of others. These results support the idea that given a supportive environment, all
students can and do make and refute claims and participate in inductive and deductive reasoning
(Yackel and Hanna, 2003). The results are consistent with the findings of previous longitudinal
studiesi that document the fact that students are able to use convincing arguments and various
forms of reasoning in the development of mathematical ideas. This study differed from the
previous studies in three ways. First, the students in the previous longitudinal studies had been
working together for years in an established mathematical community (Maher, 2005); the first
five sessions documented in this paper, consisted of approximately six hours of contact with us
and students began to engage in mathematical discourse as early as the first session. Second, the
students in this study were in middle school and from a disadvantaged, urban environment.
Finally, this study was conducted in an informal, after-school environment rather than in the
context of the mathematics classroom. The data in this paper also suggest ways in which a
culture of reasoning can develop. These include, but are not limited to, the following: providing
students with open-ended tasks and sufficient time to investigate and re-visit tasks, with minimal
researcher/teacher interventions; beginning in small groups and then opening up discussion to the
larger community; researcher/teacher modeling listening to student explanations; inviting
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students to explain and justify their reasoning; having materials available so that models can be
built; and providing a safe, supportive environment for collaborative learning.
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This study documents the mathematical development of a group of eleventh-grade students
who built representations to solve challenging combinatorics tasks and then refined and
linked those representations in order to develop an understanding of the relationship among
the tasks, the combinatorial idea of (m choose n), and Pascal's Triangle. The students' use of
representations was critical for their development of an understanding of combinatorics, a
topic that has been noted to cause difficulty for students. This suggests that ideas of
combinatorial notation should not be imposed on students, but rather students should be
given time to develop these ideas in environments that encourage them to recall, produce,
refine, and connect representations.

Purpose and Theoretical Framework
The National Council of Teachers of Mathematics [NCTM] is explicit about the

importance of students learning discrete mathematics, including combinatorics: “As an active
branch of contemporary mathematics that is widely used in business and industry, discrete
mathematics should be an integral part of the school mathematics curriculum…” (2000, p.
31). Research indicates, however, that combinatorics is a field that most students find very
difficult (Batanero, Navarro-Pelayo, and Godino, 1997; Eisenberg and Zaslovsky, 2004;
Hadar & Hadass, 1981). Many students associate combinatorics with negative experiences
calculating permutations and combinations, often confusing one with the other (Sriraman and
English, 2004). One explanation offered for this difficulty may be the manner in which
combinatorics is traditionally taught—with teachers’ demonstrated use of conventional,
symbolic notation and algorithms. “Students often face an overwhelming difficulty when
studying combinatorics. They are given many formulas (with little justification), they attempt
to memorize these formulas (with no relational framework), and the resulting confusion can
be disastrous” (Schielach, 1991, p. 137).

This research is based on the view that when students are presented with challenging
problem-solving tasks in an appropriately supportive environment, and have opportunities to
build, modify, and connect representations for their ideas, their thinking and reasoning also
develop (Davis & Maher, 1997; NCTM, 2000; Tarlow, 2004; Warner & Schorr, 2004).
According to Davis (1984), the building of mental representations is the foundation of doing
mathematics. Mental images formed by individuals are used in building representations of
mathematical ideas. After students have built their own representations for a problem task,
they seem ready to listen to the ideas of other students (Maher & Martino, 1992). In doing so,
their ideas may be challenged or supported. The resulting interactions may lead students to
reject, modify, or strengthen an original argument. As learners cycle between representations
in building justifications for their ideas, new knowledge is constructed. “It is important that
students have opportunities not only to learn conventional forms of representations, but also
to construct, refine, and use their own representations as tools to support learning and doing
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mathematics” (NCTM, 2000, p. 68). In this manner, students develop understanding by
building upon their experience, rather than by being told by the teacher. The purpose of this
research is to investigate the following question: Within the context of problem-solving
situations that involve combinatorics, what is the nature and the role of students’
representations as they build solutions and justifications for their ideas?

Methods

Background, Setting, and Subjects
As part of an ongoing longitudinal study (1) involving the development of students’

mathematical ideas, initiated in 1989, students have been engaged in problem-solving
explorations, working together to find solutions to problems and to build justifications for
their ideas. Combinatorics activities were presented beginning in grade two, before formal
class instruction of algorithms. In grades three through five, they explored the tasks that are
the basis of this study, the Tower and Pizza Problems.

At the time of this component of the study, nine eleventh grade students, fifteen and
sixteen and years old, investigated combinatorics tasks in six eleventh grade after-school
sessions, which were not part of their regular school mathematics instruction. Five of these
students were a subset of the original group that had been involved in the longitudinal study
in grades one through eight.

The students worked together in pairs or in small groups, and each session lasted
approximately one and one-half hours. Students were invited to explore ideas, develop
representations, invent notations, make conjectures, devise strategies, test their methods,
discuss their ideas with their peers, and to justify their solutions. The teacher’s role was to
step back to give students freedom to pursue their ideas, to observe the students’ work, and to
listen carefully in order to decide when an appropriate intervention was necessary. An
appropriate intervention on the part of the teacher might be to ask a question or to pose a
modification of the task to encourage students to explain their ideas and reasoning. Problems,
or similar ones, would later be revisited, so students would have the opportunity to think
about their ideas over time.

Tasks
The tasks that provide the basis for this study are the Tower Problem, the Pizza Problem,

and extensions of these problems. In the Tower Problem, students are asked how many
towers of a certain height they could build from Unifix cubes (for example, 4 cubes tall)
when there are two colors to choose from. In the Pizza Problem, students are asked how
many pizza choices a customer has if there are a certain number of toppings to choose from.
Further, both tasks challenge students not only to enumerate all possible combinations, but
also to provide a convincing argument that all possibilities have been found. The demand for
justification, rather than simply for an “answer,” sets the stage for building representations
through which lines of reasoning can be proposed and then explored, argued, and modified.
The Tower and Pizza Problems have isomorphic mathematical structures, and their solution
can be represented by a generalization that may be justified by either a proof by cases or a
proof by induction.
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Data and Analysis
At least two cameras were used to videotape each session. One camera focused on the

actions of the students; the other camera focused on the students’ written work. The
videotapes, students’ written work, field notes, transcriptions, and analyses for each session
provide the data for this research.

A qualitative methodology for data analysis was employed (Powell, Francisco, & Maher,
2003). To manage the large amount of data that were analyzed, a visual representation of the
flow of students’ ideas and justifications was developed. Combinatorics ideas under
consideration, contributions made by each student or partnership, and teacher/researcher
interventions were charted with corresponding time codes. Students’ representations,
strategies, justifications, connections, and interactions, as well as the role of the
teacher/researcher were coded, and the codes were used to identify and trace the students’ use
of representations in their development of combinatorial reasoning and justification.

Results
When the students investigated the Tower and Pizza Problems in the elementary grades,

they began with concrete representations. They built towers with Unifix cubes and drew
pictures of pizzas. As the students continued to explore the problems, they modified their
representations, which became more symbolic. They drew grids to represent towers, labeled
with single letters to indicate the color of each cube, and used letter codes and lists of topping
combinations to indicate pizza choices, with varying degrees of organization. Space
limitations prohibit a detailed report on the students’ initial work on these combinatorics
tasks in the early grades. During the conference session, the students’ use of representations
to develop ideas in combinatorics in the early grades will be examined in greater detail.

This report focuses on the mathematical ideas of a group of four students, Robert,
Stephanie, Shelly, and Amy-Lynn, in an eleventh grade after-school session, during which
they revisited the Pizza Problem (given four toppings) that they had investigated six years
earlier in grade five. When presented with the Pizza Problem, Shelly, Stephanie, and Amy-
Lynn discussed the fact that they “just did this in school, combinatorics stuff,” and after using
their calculators to try to solve the problem, they said it was “so pathetic” that they couldn’t
remember the last section they did in math class. For approximately ten minutes, the students
tried to recall and apply an algorithm and then abandoned those attempts.

Shelly: I don’t know if it’s a factorial or combination. I don’t know if you would
just do, like, five factorial plus four factorial plus three factorial plus two
factorial plus one factorial, ‘cause, okay. So far, do you have five? Ah, this
is so confusing. I don’t know how to explain it. I don’t want to do it [this
way].

Solving the Problem and Justification Using Proof by Cases
Stephanie suggested that they “plot out the pizzas” like Shirts and Pants or Towers

[referring to problems that they had explored in the study several years earlier], and Shelly
recalled that they had used a “tree-diagram type thing.” Stephanie and Shelly then drew tree
diagrams to represent topping combinations. After doing so, Stephanie said that she didn’t
“know how to organize it [her tree diagram],” because she had duplicated topping
combinations. A pepperoni-mushrooms-sausage pizza is the same as a sausage-pepperoni-
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mushrooms pizza, so “we’re just going to have to go back and, like, cross things [duplicated
combinations] out, when we’re done.”

As the students continued working, they revised their representations. They used
symbols—letter codes—instead of full names to represent the toppings. In addition, since
they had recognized the need to “organize” their pizzas in order to avoid duplicating topping
combinations, they revised their tree diagram. They decided that “plain” is not a topping
“because a pepperoni is [the same as] a plain with pepperoni,” and they controlled variables
when determining topping combinations in the rows of their tree diagram. In their revised
representation, the pizzas were organized by cases according to the number of toppings --0, 1,
2, 3, 4 toppings-- for 1, 4, 6, 4, 1 topping combinations, a total of sixteen pizzas.

                   

Figure 1. Revised tree diagram with pizzas organized by cases

Stephanie and Shelly used their revised representation to find the solution to the problem
and then to justify their solution with a proof by cases. Further, they recognized these
numbers as a row in Pascal’s Triangle.

Shelly:        One, four, wait a minute. One, four, six, four, one, so the next one will be
one. This is the

Stephanie:    The Triangle.
Shelly:       The Triangle.
Stephanie:    Yeah. So the next one is one, five, ten, ten, five, one.
Stephanie and Shelly connected the pizzas to Pascal’s Triangle. Now, to find a solution

for the last part of the task, they did not draw a tree diagram; they drew Pascal’s Triangle and
used the next row to determine the number of possible pizza choices if an additional topping,
anchovies, were available. The researcher asked for an explanation.

Stephanie:   Those are the anchovy pizzas [pointing to the 1 5 10 10 5 1 row on her
drawing of Pascal’s Triangle].

Researcher:  So tell me what these numbers mean [pointing to that row].
Stephanie:  [pointing to each number in turn] One plain pizza, five pizzas with one

topping, ten pizzas with two toppings, ten pizzas with three toppings, five
pizzas with four toppings, one pizza with all five.

Stephanie pointed to their drawing of Pascal’s Triangle and said, “Well, now, that was pretty
easy. Because look, now we know what all the pizzas [for any number of available toppings]
are.”

Explaining Addition on Pascal’s Triangle Using Pizzas
The researcher asked the students how they drew Pascal’s Triangle so quickly, and

Stephanie explained how to add numbers in a row to produce the numbers in the next row.
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Now, the researcher posed an extension to the original problem and asked the students to
explain the addition on Pascal’s Triangle in terms of pizzas.

Researcher: You know the kinds of pizzas they are [points to the 4 on Pascal’s Triangle].
And you know the kinds of pizzas they are [points to the 6]. And you know
the kinds of pizzas they are [points to the 10].

Stephanie:   Uh-huh.
Researcher: I’d like you to explore why that [addition] works with the pizzas, and we’re

going to leave you alone. Do you understand my question?
Shelly:         Uh-huh
Stephanie:   Uh-huh.
Researcher.  Okay. [Researcher leaves].
The students suggested strategies: making another tree diagram or using Pascal’s Triangle

to consider addition on other rows and looking for a pattern. They then discussed the idea of
addition with actual pizzas.

Stephanie:    It’s like you’re materializing a topping, ya’ know? Like I can’t add plain to
pepperoni and make sausage all of a sudden, and that’s how one and three
make four, ya’ know? I don’t understand. I just can’t get past the fact that
you can’t make a pizza out of other pizzas.

The students then considered another strategy to solve the problem.
Stephanie:   I think maybe if it was applied to something else I could look at it differently.

Be, like, oh right.”
Robert: Apply it to towers.
Stephanie: I knew someone was gonna say that. I figured it would be them [the

researchers], though. All right, so let’s apply it to towers then.
The students discussed drawing or building towers, but dismissed the idea because “we’re

gonna get done, and we’re gonna be, like, oh well, now I understand it with towers, but I
have no idea how to do it still [with pizzas].”

The students retrieved their drawing of Pascal’s Triangle and again linked the numbers on
the Triangle to the corresponding topping combinations. They then agreed that a pizza in the
next row can be “just the pizza…with the [new] topping thrown on it.” Now the students
were able to use pizzas to explain the addition rule for Pascal’s Triangle. Stephanie explained
the addition of 3 [pizzas with one topping] + 3 [pizzas with two toppings] on the third row =
6 [pizzas with two toppings] on the fourth row.

Stephanie: So then here, um, you have 6 pizzas with two toppings. Now you already
have 3 pizzas with two toppings. So these 3 pizzas with one topping get an
extra topping added on.

Researcher:  Okay.
Stephanie: So these become 3 pizzas with two toppings. And then 3 pizzas with two

toppings plus 3 pizzas with two toppings equal 6 pizzas.

Generalization and Justification Using Inductive Reasoning
Robert generalized the solution for the number of topping combinations as 2n, for n

available toppings, but he did not justify his generalization. He explained that it was based on
a doubling pattern that he observed when he summed the numbers in the rows of Pascal’s
Triangle, and he “just remembered something with towers that we did: to find total



593

________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

combinations was two to the something.” Later, when Stephanie explained how pizzas could
be moved to two different places on the Triangle—in one move they stay the same and in the
other move they get a new topping added on—Amy-Lynn connected this two with Robert’s
2n, to provide a justification for his generalization.

Figure 2. The students’ generalized solution and justification

Connecting Pascal’s Triangle, Towers, and Pizzas
The researcher asked the students if they remembered the towers. All four students said

that they did.
Researcher:  Can you imagine what these might mean, what these numbers might mean,

with respect to towers then [pointing to the 1 3 3 1 row on the students’
drawing of Pascal’s Triangle]?

Stephanie:    Like if we have blue and red, this is 1 tower with all blue. I don’t know how
high it would have to be. And this is 3 with

Robert:         Two blue one red.
Stephanie:    Thank you, two blue one red. And then this is 3 with two red one blue. Oh,

and then this is 1 all red. So, that would, I guess they are three high.

The students then explained the addition—1 + 3 = 4— on Pascal’s Triangle using towers.

Figure 3. Using towers to explain addition on Pascal’s Triangle

Stephanie:    You have the 1 three high with all blue. And then you have the 3 with one
red, so you have: red blue blue, blue red blue, blue blue red. And then these
two [pointing to 1 and 3] make, this 1 is four blues. Okay, and these two
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together [pointing to 1 and 3] make, um, the one with four, the 4 with one
red. So this 1 gets a red added on because it’s already got three blues. So it
can’t have any more blues. And then these 3 all get

Shelly:          A blue added on.
Stephanie:    A blue added on to it.
The researcher asked the students if the Pizza and Tower Problems were the same or if

they coincidentally had the same answer. Shelly replied that it’s easier to explain the “two
thing [2n] with this [towers] ‘cause there’s only two colors…’cause with all those toppings, it
throws you off…you expect like eight hundred pizzas.” The researcher continued to question
the students.

Researcher: Is there a way of thinking about the pizzas another way so the toppings don’t
Robert: Yeah.
Researcher:  Robert.
Robert: Toppings is the height. Like four toppings would be a tower four high.
Shelly: Uh huh.
Robert: And then the two colors would be with or without toppings.

  Conclusions
The pizzas and towers became metaphors for thinking about important combinatorial

ideas. As the students explored the tasks, they retrieved, built, refined, and linked
representations. They developed a progression of representations that became increasingly
symbolic and abstract, and they moved back and forth between their representations as they
developed their ideas. This ultimately aided them in finding a solution to the Pizza Problem
together with a justification; they organized their pizzas by cases according to the number of
toppings and used a proof by cases to justify their solution. They then connected their cases
to the numbers on Pascal’s Triangle and explained the addition on Pascal’s Triangle using
pizzas. They also noted the doubling pattern as the number of available toppings increased
and generalized the solution to the problem as 2n for n toppings, which they justified by
linking their representations and using inductive reasoning. Finally, they used their
representations to connect the Tower and Pizza Problems, the combinatorial idea of (m
choose n), and Pascal’s Triangle. In this manner, the students developed important ideas and
connections in combinatorics and justification for their ideas.

For these students, the properties of combinations grew from very concrete images, such
as pizzas and towers. Once these properties emerged in Pascal’s Triangle, they linked these
images intro a larger framework. The students’ use of their representations was critical for
their development of an understanding of combinatorics. This suggests that ideas of
combinatorial notation should not be imposed on students, but rather students should be given
time to develop these ideas in environments that encourage them to recall, produce, refine,
and connect representations. By examining the nature and role of the students’ changing
representations, educators may better understand students’ use of representations to develop
and justify their ideas. It is suggested that this has important implications for educators who
wish to incorporate combinatorial reasoning and justification into the curriculum in a
meaningful manner.
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This study investigated prospective mathematics teachers’ views of proof in a course utilizing
problem-based instruction. A Mathematical Proof Survey (MPS) was developed and used to
assess whether a problem-based instructional approach affected the perspectives of proof and
pedagogical views held by undergraduate mathematics majors, including secondary teacher
candidates, enrolled in lecture-based and proof-based mathematics courses. The results showed
that the treatment was effective in enhancing the undergraduates’ views of mathematical proof,
although not to a degree that was significantly more effective than the lecture-based instruction.
However, the students in the problem-based sections developed significantly more process-
oriented pedagogical views of mathematical proof than did students in traditional lecture-based
sections.

Background and Objectives
The purpose of the research presented in this paper is to investigate undergraduate

mathematics majors’ views of mathematical proof in a course taught using the modified Moore
method (MMM), a teaching style that promotes a problem-based approach. In the MMM, the
emphasis in teaching proof shifts from presenting a series of formal proofs to encouraging
students to go though the proving process (Cohen, 1982). Researchers and mathematics teacher
educators have reported that prospective teachers’ views of mathematics and their mental models
of teaching are developed by their learning experiences as mathematics students (Ernest, 1989).
It is well-documented that incomplete conceptions of mathematical proof are held by both
secondary mathematics teachers and undergraduate mathematics majors, who are usually
educated through traditional lecture-based instruction during their undergraduate studies (Jones,
2000; Knuth 2002).

Methodology
The following research question frames this study: Are the views of proof of undergraduate

mathematics majors who experience MMM in an undergraduate mathematics course different
from those who experience traditional lecture-based instruction in the same course? In order to
answer this question, we adopted a pretest-posttest control-group design. The study was
conducted with 61 undergraduates enrolled in four MMM sections (treatment group) and two
lecture-based sections (control group) of number theory courses in a large state university.

The Mathematical Proof Survey (MPS) was developed for this study to assess participants’
perspectives and pedagogical views of mathematical proof. It was modeled after the Views
About Science Survey (VASS) (Halloun, 1997) and the Views About Mathematics Survey
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(VAMS) (Carlson, 1997). It consists of 15 items related to perceptions of mathematics and proof
(Dimension 1) and pedagogical views of proof (Dimension 2). Each item consists of two
contrasting alternative views of proof. Respondents weight the views using an eight-point
Contrasting Alternative Design (CAD) instrument. Mathematicians’ responses to MPS were used
to calibrate the experts’ perspectives and pedagogical views of mathematics and proof.  Students’
responses were classified into three categories: humanistic/process view; mixed view; and
absolute/product view. Students’ responses to each item were quantitatively analyzed by
assigning a score as follows: humanistic/process view = 2; mixed view = 1; absolute/product
view = 0. Possible maximum total score for 15 questions in the survey was 30 points.

Results
Table 1 presents means, standard deviations and t tests between pre and post scores on MPS

within each of the MMM and control groups. As shown in Table 1, overall undergraduate
students’ scores on MPS increased in both MMM sections and control group sections after taking
the proof-based course, which implies that undergraduate students benefit from a proof-based
course with respect to their views of mathematical proof. The paired-samples t test analysis
showed that a significant change in scores from pre-test to post-test occurred in MMM sections
while no significant change was found in the control group sections.

Table 1. Means, standard deviations, and t tests between pre and post scores within groups

Pretest Posttest
Group N Mean

(SD)
Mean
(SD)

t

MMM 33 19.00
(4.93)

21.15
(5.26)

3.25*

Control 28 19.07
(4.52)

19.57
(5.65)

0.53

*p < .01.

Table 2 presents means, standard deviations, adjusted means, and the Analysis of Covariance
(ANCOVA) F test results for the overall posttest scores in the Perception and Pedagogy scales.
No significant differences appeared between the groups at the end of the semester. When
examining students’ scores by scale, the ANCOVA test analysis showed that no significant
difference was found in Perception scale between posttest means of MMM sections and posttest
means of control group sections. However, the ANCOVA results showed that MMM students’
scores changed significantly in Pedagogy scale, indicating that MMM students’ pedagogical
views were significantly more process-oriented after the course than were those of the control
group.

Table 2. Means, standard deviations, adjusted means, and ANCOVA F test results for Perception,
Pedagogy scale and total

MMM Control
Scale Maximum

Possible
F (1, 58)



598

______________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Possible M SD M SD
(Adjusted M) (Adjusted M)

Perception 12 8.39
(8.45)

2.22 8.75
(8.68)

2.32 .18

Pedagogy 18 12.77
(12.69)

3.94 10.82
(10.92)

4.33 5.33*

Overall 30 21.15
(21.18)

5.26 19.57
(19.54)

5.65 2.25

*p < .05.

These results suggest that experience with proof and instruction in such a problem-based
courses may provide opportunities for undergraduates to develop more humanistic and process-
oriented views of proof.
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We explore the way that students handle proving statements that have the overall structure of
a conditional implies a conditional, i.e. (p _ q) ⇒ (r _ s). Students recruited a proving frame
from their experience, which was insufficient for the complexities of the statement. This led
them to start with the totality of (p→ q) in ways that were problematic.

The purpose of this paper is to explore the ways in which students prove statements that
have the overall structure of a conditional implies a conditional, i.e. (p _ q) ⇒ (r _ s). This
logical structure occurs often in statements to be proven at the university level.  For example,
since the definition of A is a subset of B (A⊆B) is a conditional statement (x∈A implies
x∈B), then a simple set theory statement such as “If A⊆B, then A∪B⊆B.” has this logical
form. Another instance of this logical structure occurs when proving the induction step in a
proof by induction, i.e. If a conditional statement is true for k terms, the same conditional
statement is true for k+1 terms. We will examine the situation of students working to prove
one direction of the equivalence of two forms of the parallel postulate of Euclidean geometry.

The research literature indicates that undergraduate students struggle with proof writing
(e.g. Weber, 2001), understanding the logical structure of the mathematical statements
(Selden & Selden 1995; Dubinsky & Yiparaki, 2000), and completing induction proofs
(Brown, 2003; Harel, 2001). This paper adds to that literature by describing students’ proving
using a logical structure that is common in mathematical problems at this level, but which has
not been directly addressed in previous work.

Methods
The data for this study was collected as part of a semester long teaching experiment

(Cobb, 2000) in an upper division geometry course. Data consisted of videotape recordings of
each class session, and copies of students’ written work. During small group discussion there
were two cameras each focused on a different small group.  The first group of students’ was
Alice, Emily and Valerie. The second consisted of Andrea, Nate, Paul and Stacey. The
curriculum consisted of a series of activities in which students would need to defined,
conjectured and proved results in geometry on the plane and the sphere (Henderson, 2001).
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This study focuses on one day late in the semester in which students were asked to prove
one direction of the bidirectional statement Euclid's Fifth Postulate (EFP) implies Playfair's
Parallel Postulate (PPP). Henderson (2001) states EFP as, “If a straight line crossing two
straight lines makes the interior angles on the same side less than two right angles, the two
straight lines, if extended indefinitely, meet on that side on which are the angles less than the
two right angles,” and PPP as, “For every line and every point not on the line there is a
unique line through the point that does not intersect the original line.” The instructor told the
students that the two postulates are equivalent and gave them the option to “use” EFP in order
to prove PPP or vice versa. In her introduction of the task the instructor drew the two figures
shown while explaining each of the theorems. The teacher’s initial drawing showed only the
part of the statement that was given. For example for the PPP picture initially she just drew
the bottom line, l, and a point P not on that line. However, when she explained the conclusion
of each statement she completed the picture (as denoted by the dashed line) and these
completed pictures were left on the board for students to reference. In addition, the two
pictures in the book for these two statements were completed pictures similar to what the
teacher had drawn.

Results and Discussion
Since EFP and PPP are both conditional statements, "EFP ⇒PPP" has the overall

structure of (p → q) ⇒ (r → s). Note that for some types of statements of this form it may be
possible to start with the initial statement p → q and formulate a series of equivalent
statements to turn this into r → s. More often, for proofs of statements with this logical
structure the most efficient strategy is to begin with the givens of the second conditional, the
“r,” and work through what is known using p → q in the middle of the proof to reach the
conclusion of the second conditional, the “s.”  In this paper we give illustrative examples
demonstrating ways of proving evoked for students by this logical structure.

The two groups began their discussion with the intent to prove EFP ⇒ PPP. Students
recruited a proving frame from their experience. By frame we mean a conventional and
schematic organization of knowledge (Fauconnier & Turner, 2002). In this case, we believe
the students are functioning from a frame in which something (EFP) implies something else
(PPP) similar to familiar problems of the type, given p prove q. As noted above, this could be
effective if they treated EFP and PPP as conditional statements. Instead, both groups of
students appear to treat EFP as a chunk of knowledge where the implication involved in EFP
is ignored. In the first group, Alice laid out her frame early in the discussion.

Alice:  So Okay, so.  So when it says, prove EFP implies PPP or PPP implies EFP that means
whichever, like if we’re doing from this one to this one, we get to say this is true so we
have to prove this.  […]

Emily: How do you get from one to the other? [inaudible] run into problems.
Valerie: I don’t know --
Emily: ‘Cause basically if you prove one to prove the other, you have to get from one to the other.
There are two main struggles that students have in trying to apply their traditional proving

frame to the special situation of the conditional implies a conditional. In one scenario, as seen
with Stacey below, the student believes since EFP is given that both parts of EFP are given.
In other words, as researchers we note that Stacey’s assumption is logically equivalent to p
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and q instead of p implies q. An example of this occurred near the beginning of the second
group’s discussion.

Paul: Well, if you assume the first one [EFP] would there be three cases that _ + _ < ! , _ + _
= !, or _ + _ > ! and then the uniqueness part of it would be proved by the _ + _ = !
and in that case they wouldn’t meet.  Well, that wouldn’t be unique either because _ + _
> ! wouldn’t meet either.

Andrea: Well, if _ + _ > !, then they would intersect on the other side .
Nate: Then you can look on the other side .
Paul: The other side, yeah.
Stacey:  But if we are assuming the whole thing though, we are assuming they are less than !.
Paul: Okay, well I’m confused.

Stacey’s statement seemed to suggest that she was assuming both the premise and the
conclusion of EFP, further evidenced by her statement a few minutes after this exchange,
"Cause it’s all assumed. This whole thing is. We are assuming α + β < !.  We don’t care if
it’s equal to !." At this point, the group was unsure of how to interpret Stacey’s assumptions.

In the second scenario, the students looked at the completed picture for EFP (see Figure)
and tried to work from it, to the picture for PPP (see Figure). Each of the two groups spent
some time considering a sketch like the EFP Figure and considering what would happen if
the top line were to be in different positions. They envisioned three cases as stated by Paul in
the previous transcript. In the first group we see Emily make this explicit.

Emily: Cause basically, say you’re given this picture [indicates EFP picture].  [Alice:
M’hmm.] and you choose a side and you add it up and it is greater than 180.  Okay, fine.
Valerie: So that means they don’t intersect on that side.

They continued by discussing the other two cases including the case where α + β = 180 and
thought that this line parallel to the bottom line would be the unique case that was indicated
in the picture for PPP. So in this way they tried to start with the picture of EFP and turn it into
the picture for PPP.

The second group also worked from the EFP picture instead of the setup for PPP. During
the proving process the group became confused as to which direction they were in fact
proving. While clarifying the direction of the proof, Nate started working from the premise of
PPP. Paul finally realized that the group had been working from the complete EFP picture.

Nate:  Cause here, we start out, we start out with something that looks like this, right?  L
and P.  […]

Paul:  Yeah, I think we were starting with this drawing [EFP] instead of starting with
that drawing [premise of PPP] in our head.  That’s what I was doing anyways.

Nate:  Right and that’s what had me confused over here when she was pointing out how
to do it and I couldn’t tell you guys why we couldn’t just do it that way…

The complexity of a conditional implies conditional statement requires that students have
a robust proving frame. In our data both groups assumed EFP as a whole. This took the form
of assuming p and q of EFP or assuming that the completed EFP picture was given. These
two problematic scenarios hampered their efforts to prove PPP, given that they did not start
with the premise of PPP. Since the conditional implies conditional logical structure is
inherent in many proving tasks, particularly induction, it is valuable to examine the
difficulties encountered by students related to this structure.
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This case study present an analysis that (a) assesses how students interpret the number line
representation and (b) considers instruction involving non-normative treatments of a
representation as an opportunity for students to learn. In this paper, I present data documenting
student response to non-normative treatments of the number line that problematize the function
of intervals and tickmarks. This case study is an analysis of one student’s understanding of
representational features and a shift in this understanding. Results of this interview study
confirmed that students often inaccurately interpret the function of intervals and tickmarks when
attempting to identify unknown points on the number line.

Objective
The number line appears throughout elementary schools and serves as a public display of the

continuous nature of the number system. The tickmarks and intervals of the representation often
adorn walls of the classroom, and curricula incorporate number lines into a variety of
mathematical topics at different grades. Yet despite its omnipresence, students often lack
appropriate opportunities to consider the full mathematical meaning in the representation. The
relative sizes of intervals are rarely problematized for students, the result of which is that
students are not confronted with what is relevant or irrelevant in determining the location of
points on the number line. The objective of this paper is to explicate an effective method for
assessing elementary school students’ understanding of the mathematics represented through the
number line. An assumption underlying this study is that non-normative treatments of the
representation yield generative ideas for students (for an application with fractions, see Gearhart
et al., 1999). The efforts reported here reflect an attempt first to accurately assess how students
interpret intervals and tickmarks and their functions, and then create opportunities for students to
learn the mathematics underlying the number line. In this paper, I present data documenting
student response to non-normative treatments of the number line that problematize the function
of intervals and tickmarks.

Theoretical Framework
The design and analysis presented here make use of a sociocultural perspective on education.

This follows an educational philosophy that individual understandings are situated and co-
constructed within some instructional context in which particular social practices constrain and
qualify what information is displayed and valued, and individuals use previous understandings in
order to engage with ideas (Vygotsky, 1986). A robust analysis of learning must include the
greater context in which a student is situated. This view of learning, based in sociocultural
theories of cognitive development, framed the design and the subsequent analysis of data
described below. For the analysis presented here, I argue that explicating and understanding any
assessment and learning that is taking place must consider evidence of the student’s thinking in
conjunction with prompts designed to elicit particular kinds of information at specific times.
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This study builds on previous contributions by using a form-function framework (Saxe,
2004) to analyze cognitive development. This framework considers the relationship of forms,
which may be a word form or a written representation, to functions that these forms serve both
individually and collectively; these functions may vary across individuals, while at the same time
there may be a culturally normative function associated with a given form. In instructional
settings, the relationship of forms to mathematical functions provides an assessment of students’
understandings of a representation. In this case study, I consider two forms, tickmarks and
intervals, and how one student does or does not make use of them in order to perform the
function of naming a point on the number line.

Research has demonstrated that the number line is a particularly useful tool for exploring the
topics of rational numbers (Saxe et al., 2007) and algebraic reasoning (Carraher, Schliemann,
Brizuela & Earnest, 2006; Moses & Cobb, 2001), and is considered to be a powerful context for
teaching and learning (Wu, 2002). Nevertheless, students have varied understandings of which
features of the number line are relevant or irrelevant in order to interpret the location of rational
numbers, or that, for example, points on the number line mark a relative magnitude from zero
rather than marking discrete values. For a student learning how to engage with the number line,
what informs the relative salience of particular representational forms over others? The premise
of this study posits that forms such as tickmarks or intervals may have varying functions for
different students, just as a function, such as locating a point on the number line, can be
interpreted using different forms.

Methods
The case study here comes from a series of interviews involving a sequence of eight number

line problems. Video data and written work presented here document a Grade 5 student working
with two of the eight problems in the sequence. The case comes from a larger study involving
one-on-one interviews with fourteen Grade 5 students in an urban public school in the San
Francisco Bay Area. The premise underlying the problem sequence is that if any two points are
marked on the number line and assigned a value, one can determine the numerical value of any
point on the line (for example, see Figure 1).

With each problem in the sequence, students were provided with either (a) counter
suggestions, or (b) unequal intervals problems and counter suggestions. Group A students
received prompts that pose a different response that another student gave for the same problem
(e.g., could Q ever be 3?). This type of prompt attempts to elicit further information on how a
student is using tickmarks and intervals, and also whether a student would continue to provide
their initial response or shift to a different value or multiple values for a point such as Q based on
the counter suggestion. Group B received prompts involving a redrawn number line, such as that
in Figure 2, which presented the same problem again with unequal intervals. Students receiving
this prompt also received counter suggestions to first establish whether an unknown point, such



605

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

as Q, can stand for a value or values other than 4 on this new number line. The case study
presented here involves a student in Group B that received problems involving both unequal
intervals and counter suggestions. In addition to this case, I present data across students in order
to evaluate the utility of the unequal intervals group as compared to the counter suggestions
group.

 Analysis and Results
The case study here involves one Group B student, Linette, working on the second and sixth

problems in the eight problem sequence. Each of these problems demonstrates the potential of
the number line representation. The analysis of the Q number line, the second problem in the
sequence and shown above in Figures 1 and 2, demonstrates a method for using the number line
as a tool for assessment. In Linette’s work on the P number line, shown later in Figures 5 and 6,
the analysis demonstrates how engagement with this non-normative treatment of the
representation provided her with an opportunity to shift to a more normative understanding of the
mathematics implicit in the representation.

Method for Assessment: The Q Number Line
With the problem of identifying the value of Q (Figure 1), Linette responded immediately

that Q was 4 on this number line, as did all 14 students in the study. In fact, one might expect a
typical fifth grade student to easily identify the value for Q in such a problem. Based on her
response, however, her method for determining the solution remained unclear. In order to better
understand how Linette perceived the function of the various representational forms, the
interviewer first probed further by providing a counter suggestion of 3. In doing this, the
interviewer already knew he would employ the unequal intervals prompt by redrawing a similar
number line that omits a tickmark between 2 and Q; he wished to assess before this whether
Linette would entertain the notion that Q can be 3 on the original number line. Linette, given the
number line in Figure 1, indicated that Q cannot be 3.

I: And can you go 0, 1, 2, 3? <I indicates where the Q is when he says 3, skipping over the
unnamed tickmark.>

L: Um. I don’t think that could be, skipping a number. And it would be out of order.
Linette accurately rejected the idea that Q could be 3. Both of her responses thus far—that Q

can be 4 and refuting the counter suggestion that Q can be 3—were correct; nevertheless, it was
unclear how Linette interpreted the function of naming points on the number line. Is the location
of a point determined by the number of tickmarks or by the spacing of those tickmarks? The
interviewer drew a new number line that looked quite similar to the original. This time, however,
there was a tickmark omitted between 2 and Q (Figure 2), which was an effort to have Linette
explicate the function she saw these various forms as showing. Her response to the value of Q on
this new number line would shed light on how she completed the function of naming a point on
the number line and using which forms.

I: What if the number line looked like that? Could Q be 3 on that one?
L: Yeah!
I: Why could Q be 3? Why on this one, and why not on this one?
L: Well, these things …
I: The tickmarks?
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L: Yeah. They show that there’s a number there, I think. So there’s no number here. So it
could be 1, 2, 3 <L indicates individual tickmarks as she counts>.

While Linette immediately responded correctly when presented with the initial number line
in Figure 1, she shifted her answer for the non-normative number line with unequal intervals. For
her, the tickmarks were clearly more salient in order to name a point: “They show that there’s a
number there.” Across the 14 interviews, she was not alone. All students initially answered
correctly (open response) to this problem that Q was 4 before receiving further prompts. A
striking finding in the data emerged
from differences between groups A
and B.

Figure 3 is a diagram depicting
responses on this problem over the 14
students interviewed. All students
correctly answered that Q was 4
(question type 1), and then were
divided into Groups A and B. Group
A, counter suggestions, had 6
students total. Four students
continued to respond correctly while
two students changed to an incorrect
response. Group B, unequal intervals
and counter suggestions, had 8
students total, including Linette. Of
these students, only 2 continued to
respond that Q was 4, while 6
students, Linette included, changed to
an incorrect response.

As shown in the bottom row of
Figure 3, 4 students from Group A
and 2 students from Group B
continued to respond correctly that Q
was 4. However, the four correct responses from Group A may have been false positives; a
student answering correctly in Group A may or may not have been using interval size in a
normative way, whereas a student in Group B answering correctly must have been.

What emerges from a closer look at the data, as in the case of Linette, is that a comparison of
correct and incorrect solutions is problematic across the two prompts. The four students with
correct answers in Group A were never confronted with unequal intervals; it is therefore unclear
just how they evaluated the function of the tickmark. The two students from Group B answering
correctly showed a normative understanding of the function of the interval; the omission of the
tickmark was irrelevant in the function of naming a point on the number line. Group B’s six
incorrect responses show that students used the tickmark with a counting function without regard
to the distance between tickmarks. The unequal intervals prompt elicited this non-normative
understanding.



607

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

These findings for the Q number line are presented as percentages in Figure 4. The shaded
portions of the bars indicate frequency of students shifting after the initial response of 4. As
Figure 4 illustrates, students in Group B were much more likely to shift their response than
students in Group A. This shouldn’t be viewed as a misleading prompt, but rather as a more
telling indication of how a student understands the number line. Students shifted their answers
based on how they understood the representation. Group A students that continued to answer
correctly may or may not have had a normative understanding of the function of intervals. The
prompt they received was unable to elucidate this.

The number line with unequal intervals provided a more explicit view on the function of
these forms. As Linette talked through her thinking during the interview, she used her fingers to
indicate two tickmarks at a time, as if she were isolating each interval. The interviewer pointed
this out to her and asked her what she was doing. In response to the interviewer’s probe, Linette
brought up the idea of adding an additional tickmark between 2 and Q.

I: It looked like you were measuring.
L: Oh. <Looking at the number line> And then it gets really big <indicating the interval

between 2 and Q>. So you might need to add another one <tickmark, indicating between
2 and Q>. I don’t know.

Linette had responded to the new number line that Q could be 3, but then seemed to be
confronted with what she was saying when the interviewer points out her use of fingers to
measure. She suggested adding an additional tickmark to the new number line, the result of
which would be the original number line with equal intervals. Sensing that Linette seemed
unsure if Q could be 3 on this number line or not, the interviewer asked Linette for two different
arguments to illuminate how she viewed the representational forms.

I: Here’s what I want you to do. I want you to make an argument why it [Q] could be 3, and
then I want you to make an argument for why it couldn’t be 3.

L: Okay. So it could be 3 because these stand for a number. And so if there’s no number
there. I mean, if there’s no tickmark right there [between 2 and Q], so then that could
stand, that would stand for 3 because it, it wouldn’t stand for 3 if that, if there was a
tickmark was right there.

I: Okay. And now make a case for why Q could not be 3.
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L: Okay. Q could not be 3 because the number line maybe is about, like, how, like, even.
Well, like, it has to be even in between, otherwise it could be like one, two, threeee
<drawing out the way she says ‘three’> and it would go really long for 3. So they’d have
to make one [tickmark] in between these [2 and Q] two. Otherwise it would be a really
weird number line because I’ve never really seen one that goes like that.

Both tickmarks and intervals play a role in making the final case for why Q cannot be 3.
Whereas unit intervals were irrelevant to Linette when the problem was first posed, students like
Linette ideally move towards a normative understanding that the unit intervals are necessary to
identify any point and, once the unit interval is determined, the addition or omission of a
tickmark does not in fact inform the naming of a point.

Had the interval form on the number line not been called into question with the unequal
intervals prompt, Linette would have had no reason to assign to it any particular functional
meaning. Her case provokes the question of how to consider the role of instruction. A part of the
utility of the number line is in the manner in which mathematical information is communicated, a
part of the reason it has been proliferated in classroom practice. Assuming that Linette’s
construction of the number line forms is not uncommon, instruction must consider how to utilize
various representational forms and functions in a way that moves students towards a normative
mathematical understanding of the representation that aligns with accepted conventions.

Opportunities for Learning: The P Number Line
I again use the case of Linette to illuminate the potential of non-normative treatments of

representations in providing opportunities to learn. The case here involves the sixth problem in
the sequence. In this problem, students once again identify an unknown value on the number
line, though the process to determine this unknown is more difficult than in Figure 1. In this
problem, students must first determine what the unit interval is before determining the value of
the unknown, which in this case is P, as depicted in Figure 5.

The approach that each of the students in the interview study chose (though not the only
approach for determining the value of P) was to first determine the value of the first unnamed
tickmark before solving for P. In the case of Linette, she quickly answered that P was 75.

L: Um, 75.
I: And tell me how you thought about that.
L: Because there’s nothing right there <points to the unlabeled tickmark>, and I saw the 50

right there. So I remembered what half of 50 was, and that’s 25. So I just added another 25
to 50, and that’s 75.

As in the case of the Q number line, Linette provided a correct initial response. Once again,
the interviewer attempted to assess how Linette was using forms on the number line to serve
particular functions. The interviewer first asked, given the number line in Figure 5, whether P
could ever be 100. Linette responded that P could not be 100 in that case.
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While she has responded accurately, the interviewer added a tickmark (hand drawn during
the interview) to see if Linette would change her response. Figure 6 shows an image of the
number line with the additional tickmark drawn between 50 and P. The additional tickmark is
hand-drawn to be somewhere in between 50 and P so that the newly created smaller intervals are
juxtaposed next to the larger intervals from 0 to 25 and 25 to 50.

I: On this number line, could P be 100?
L: Um. Could P. Let’s see. Okay. <whispering>  25. 50. 75. 100. Yeah.
I: So would that work?
L: Yeah.

Similar to her response on the Q number line, Linette seemed to continue with an adding on
strategy, this time by 25s. With the addition of an extra tickmark, she clearly used these
tickmarks as counting markers without regard to the intervals between tickmarks. On this
problem, however, Linette’s reaction then became distinctly different from her response on the Q
number line. Right after responding that P would be 100 with an additional tickmark, she
rejected this response and revised it back to 75, providing a justification for it.

L: Wait!  No. Because those [spaces] aren’t even. This [space] is the same as that <referring
to the spaces between 0 and 25 and then 25 and 50>, that’s fine. But then these are half of
that <referring to the two intervals between 50 and P and comparing them to the first two
intervals>. So if you wanted to make that, you’d have to be even. I mean, fair.

Unlike her response for the Q number line, Linette began to think anew about the function of
particular forms in the representation. The sequence of similar problems provided an opportunity
for Linette to restructure and reorganize how she used particular forms on the number line to
mediate her response to a given task.

Conclusion
In order to explicate the utility of non-normative representations, I focus on the use of

unequal intervals in particular because of the dual role served in assessment and learning. In this,
the role of instruction is key; it is through instruction that the non-normative treatment of a
representation yields a juxtaposition among representational features. In the case of Linette, this
representational juxtaposition became explicit when she counted on the number line: “One, two,
threeeee.”  By having spaces that are clearly unequal, the juxtaposition more easily became a
focus of discussion and reflection (Figure 7).

L: Well, like, it has to be even in between, otherwise it could be like one, two, threeee and it
would go really long for 3.

In the case of Linette, her elongated “threeee” is a result of the smaller intervals juxtaposed
next to the larger intervals, as shown in Figure 7. When engaging students with non-normative
representations, these juxtapositions can arise from interviewer or instructor prompts, or from
students’ own reflecting on representations that have been manipulated to be non-normative.
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Whereas the use of the number line pervades elementary curricula and foreshadows work in
secondary and tertiary mathematics, students rarely have opportunities to consider the generative
mathematical ideas. With instruction involving non-normative treatments of the number line,
students have opportunities to grapple with and eventually make explicit mathematical meanings.
In turn, student response provides education theorists and practitioners structured apertures onto
student understanding of such representations. To an adult discerning the mathematics involved
in the Q number line, the question of what is a correct or incorrect value for Q, or what is
relevant or irrelevant in answering this, is trivial. However, as Linette’s case study demonstrates,
understanding the mathematics involved in finding the value for Q is far from trivial. The result
of these non-normative treatments of the number line holds both methodological and pedagogical
potential in research and in classrooms.
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There has been a resurgence of interest regarding the role of neuroscience in informing
education and mathematics education in particular. This latter interest has been cultivated in
part by research in cognitive psychology and cognitive neuroscience research in
mathematical cognition and learning. There have also been cognitive psychologists and
cognitive neuroscientists, and some educational researchers who are applying methods of
cognitive neuroscience to mathematics education research. This paper demonstrates some
preliminary results from one such effort, capturing a bona fide "aha" moment.

There has been a resurgence of interest regarding the role of neuroscience in informing
education (e.g., Blakemore & Frith, 2005; Byrnes, 2001), and in mathematics education (e.g.,
Campbell, 2006a, 2006b; Iannece, Mellone, & Tortora, 2006). This latter interest has been
cultivated in part by research in cognitive psychology (e.g., Campbell, 2004), and cognitive
neuroscience research in mathematical cognition and learning (Dehaene, 1997; Butterworth,
1999). Cognitive psychologists and cognitive neuroscientists (e.g., Ansari & Dhital, 2006;
Szücs & Csépe, 2004), and some education researchers (e.g., Campbell with the ENL Group,
2007; van Nes & Gebuis, 2006) have now begun applying methods of psychophysiology and
cognitive neuroscience to matters that should be of genuine interest and abiding concern to
mathematics education. This paper presents data and results from one such initiative.

Theoretical Framework and Methodology
Our theoretical framework is predicated on the embodied view of cognition, as articulated

by Varela, Thompson, & Rosch (1991) and others. A fundamental entailment of embodied
cognition is that changes in lived experience will manifest through changes in bodily state in
various ways that may be more or less obvious. Accordingly, a major task of mathematics
educational neuroscience is to establish such connections, and thereby provide more
evidence-based ground to our study of mathematical cognition and learning.

It follows that augmenting mathematics education research with endocentric data sets
such as electroencephalography, electrocardiography, respiration rates, etc., along with eye-
tracking, pupillary responses, and so on, will provide deeper and better understandings of the
psychological aspects of teaching and learning mathematics and the implications thereof. At a
very basic, coarse-grained level, it will prove a significant advance for mathematics education
research to have more evidence-based measures that can better distinguish amongst, let's say,
perception, concept formation, and reasoning — augmenting traditional exocentric data, and
thereby lessening the need for speculation in the interpretation of traditionally relied upon
audiovisual data sets toward the formulation and substantiation of cognitive models.

Data Acquisition, Analysis, and Discussion
Using a paradigm from Dehaene, Izard, Pica, & Spelke (2006), this paper presents data

from one such effort that demonstrates our theoretical framework and methodology. Figure 1
is an image from a video clip capturing an "aha" moment. Data are integrated, synchronized,
and coding proceeds in accord with analysis of these data in a simultaneous, or triangulated,
manner.  Our aim in this particular study is to identify and distinguish between pattern
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recognition and image based reasoning punctuated by moments of insight, through
observations of brain behavior and other embodied modalities.

Figure 1. An integrated and time synchronized data set capturing an "aha" moment
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New audio/visual technologies coupled with new computing and network technologies for
data collection and management have potential to support education researchers in their
work. In the context of a design experiment involving an eighth grade class, this paper
compares the benefits and drawbacks of traditional videography for data collection with a
new system we call Embedded Information and Communication Technology. The use of such
new systems may affect the types of research questions that researchers might formulate.

In formulating a study, researchers consider theoretical frameworks and methodologies
that are amenable to their research questions. Data collection capabilities constrain these
choices, often implicitly. For instance, when investigating student learning in the context of a
classroom, design experiment methodology may use video as a main source of data on
student learning (Roschelle, 2000). Traditionally, audio/visual data is captured with a camera
and, possibly, with an external microphone. While effective, this method, as with all others,
influences what information is collected and how it is analyzed. Emerging audio/visual (A/V)
technologies, coupled with new computing and network technologies may provide
alternatives for how educational researchers can conduct their research. For our design
experiment with an eighth grade class, we were able to capture the classroom data in a new
university research facility, adjacent to a middle school. The specially designed classroom
provides the research team with the ability to record both whole class and small group work
at optimal resolution with a high degree of flexibility, and little intrusion into the
teaching/learning context.  It integrates 12 digital cameras in the ceiling and 12 hanging
microphones with a control room adjoining a large classroom that can be divided in half by a
motorized wall. Thus,
two different
instructional settings
can be recorded at the
same time. From the
control room, camera
angles are adjusted to
capture data that are
deemed critical to
document the learning
and teaching of the
design experiment.
These data may be
student groups, white
board and smart board
artifacts, and teacher’s
instructional actions
(Mojica, Lambertus,
Wilson, & Berenson, 2007). Up to 6 separate audio/video streams are mixed and recorded
simultaneously. After completion of the recording session, digital video and audio input are

Cameras

Figure 1. Embedded Information and Communication
Technology (ICT) Classroom for Teaching Experiments.

Microphone
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integrated and connected to a computer server for data transfer. We call this strategy
Embedded Information and Communication Technology (ICT). There is tremendous
potential for these technologies in educational research. For example, one of our research
goals was to store all of our data in a virtual data library where eight researchers in the group
had access to a very large amount of data via password. The ease of data storage with ICT
helped us realize this goal. Careful consideration needs to be made both in terms of the use of
the equipment and recognition of its influence on research methodology. In the context of a
teaching experiment (c.f., Berenson, Mojica, Wilson, Lambertus, & Smith, 2007), this paper
offers a comparison of traditional A/V data collection strategies with an Embedded ICT
strategy and reports on different considerations that should be taken by researchers when
deciding to employ these alternatives based on our experiences with ICT.

Traditional Videography
One of the benefits of traditional A/V data collection is the observer-participant status of

the videographer. Since the collector is a part of the context of the classroom, he or she has an
awareness of student and teacher actions and may anticipate and respond according to their
own understanding of the research study and their status as a participant in the classroom
(Powell, Francisco, & Maher, 2003). Further, he or she can take multiple perspectives of the
students and teacher and adjust their recording accordingly. However, there are drawbacks
associated with this collection strategy. By being a part of the context, the videographer
inherently alters the context that he or she is seeking to observe. A single camera is limited to
one focus at a time. Increasing the number of cameras in the room to increase the number of
views concurrently increases the number of operators and the level of intrusion into the
classroom. Because the camera is operated by an individual—either hand-held or on a
tripod—points of view are typically limited from two to six feet off the ground. This provides
a natural point of view but sometimes can limit the capture of activity happening on tables
encircled by students. In raw form, data is available only on tape and a significant amount of
processing time is required for digitization on computers to expand accessibility to all
members of a research team.

Embedded ICT
Embedded ICT can address some of the constraints of traditional video data collection.

The absence of videographers and cameras at eye level in the classroom may help researchers
maintain ecological validity. Whereas traditional strategies tended to have one focus, the
embedded ICT strategy affords multiple foci with minimal cost in terms of labor or intrusion
into the classroom. Student interactions, student/teacher interactions, teacher actions, and
individual students’ work can all be captured in multiple, simultaneous streams. A single ICT
operator can simultaneously view and record all of the recorded streams, because camera
control is managed through an internet-based web interface. Another alternative is to use
additional camera controllers to manage subsets of cameras on laptops in the control room or
in the classroom.  The classroom control of cameras is accomplished with almost no intrusion
into the students’ space.

While the increased number of data streams can greatly increase the amount of data being
collected, it is crucial that one individual acts as primary “director” of the recording process
to make sure that, collectively, the recorded streams stay focused on the research questions of
interest. For this teaching experiment, we used our least experienced researchers as those
directing the cameras and our most experienced researchers took field notes. In fact, the
decisions concerning what data to capture are more crucial to the success of the experiment



616

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

than the skill required to take the field notes. The sophistication and the multiple data streams
require a much higher level of research skill than we anticipated.

The ceiling mounted cameras and microphones have both strengths and weaknesses. The
ceiling location is minimally intrusive and provides superior points of view for whole class
and small group work at tables. However, it is not a particularly natural angle of view and
sometimes loses facial expressions of those working at tables. In addition, the hanging
microphones cannot be quickly “pointed” at an emerging event the way a camera mounted
microphone or boom mike can capture sound.

Because the audio/video streams are being stored on hard disks in digital form, the
transfer to other computers on the network is relatively straightforward. However, as with all
digital video, conversion to other formats (e.g., burning MPEG2 DVDs) can be time
intensive. Similarly, the increase in the number streams being recorded can be both a blessing
and a curse. With the possibility of six simultaneous streams being recorded, the research
team can quickly be buried in analysis work. A clear set of goals as to how the audio/video
data are going to be used to answer the research questions is important when it is one
operator with one camera in the classroom. It is that much more crucial when choosing how
many video streams are going to be used with the Embedded ICT system.

Conclusion
With much of educational research, the questions one would like to ask are in tension

with the technology available to capture the data needed to address them. Embedded ICT
opens doors as to what kinds of research questions can be asked in a classroom teaching
experiment. The system outlined in paper and in use by the research team has demonstrated a
number of ways in which a shift in A/V and ICT technology deployment can expand the
ways in which educational researchers can conduct their work. There are interesting
challenges associated with this new system, as well.
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In order to explore the potential of Wenger’s theoretical framework for the regular
mathematics classroom and refine it, a situation in mathematics was conceptualized through
collaboration between a graduate student and an in-service teacher. We analyze the process
of elaboration as taking place in different contexts from the theoretically-based conception
up to the experimentation in class. This invited us to consider unforeseen ways for
understanding how part of the network in which research, teaching, and students’
experimenting in the classroom comes together in mathematics education.

Two years ago, a student came to graduate studies in mathematics education (Maheux, in
preparation) with the purpose of investigating Wenger’s framework for the design of
communities of practice (Wenger, 1998). Wenger’s framework already inspired many
researchers (see Boylan, 2004; Boaler, 2002) and was used here to conceptualize
mathematics classroom situations. Nevertheless, we have found that, up to its
experimentation with students, a situation goes through multiples re-inventions. In this paper,
we focus on these inventions in order to understand what was involved in the whole process
of conceptualization.

A Qualitative/Interpretative Standpoint Taking Account of Teachers’ Perspectives
Ethnology of education (Woods, 1990) suggested working from a grounded perspective

(Strauss and Corbin, 1990) from which meaningful elements or interpretative structures can
emerge and be interpreted in order to constitute or enlighten a theoretical framework useful in
a broader context. Being deeply rooted in context, ethnography requires taking into account
of the role of every participant in action (Denzin, 1997). In that way, teachers’ perspectives,
which have shown to be a central component to consider for research related to practice
(Schön, 1987; Bednarz et al.,2001), clearly need to be regarded.

This research took place between May 2005 and January 2007. At the beginning of the
process, a few mathematics classroom situations were conceptualized during monthly
meetings, gathering the graduate student and his two research directors. These situations were
presented as ‘ideas’ to three public high school teachers who discussed them together as to
the relevance of the situations for their own classrooms. A teacher volunteered to design and
experiment, together with the graduate student as the researcher, one of the situations. All
five classrooms sessions were recorded on video, while the researcher, acting as observer,
took notes. A few students were interviewed before and during the study in order to
understand the experiment from their point of view. From the very first idea to its
experimentation with students, we reconstruct the whole development of the
conceptualization of our situation in a richly descriptive narrative way (see Jaworski, 1994),
and that reconstitution was afterward inductively analyzed.

Conceptual Framework Underlying the Analysis
The Webster dictionary defines the word context as “the interrelated conditions in which

something exists or occurs”. From a situated perspective, Lave (1988) has argued that a
context can be defined in terms of the structuring resources that frame the ongoing activities
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of persons acting. These resources, that may support activity or interfere as constraints, are
associated to the tasks and to the environment in which they take place, as much as to the
individuals that experience them. That is why Lave talk about a mutual constitution between
a “constitutive order” (form by a dialectical relation between culture and a given political
economy and social structure) and the “experienced lived-in world” (as a person reconstruct
for herself any ongoing activity regarding to her feelings, values, knowledge, etc. and in
relation to her own activity in the actual setting in which they occur) (Lave, 1988). These
structuring resources can be associated with various sources: knowledge, motivation, body,
social relations, time, space, artifacts and so on (Jonnaert et al., 2005). These concepts of
context and structuring resources were used to analyze our data.

Results
Seeking for structuring resources during the process of conceptualization of a situation in

mathematics education leads us to divide it into episodes associated to different contexts in
which intervene various structuring resources. “For the research context” occurs while the
situation was mainly thought of ‘by the researchers’ and ‘for research’: while the ‘world of
research in mathematics education’ was at the core, nevertheless, influences from classroom
perspectives were already perceptible. “For teachers’ context” appears when a very different
version of the situation was built to prepare its presentation and discussion with teachers,
conducting us to carefully choose what was proposed. “With a teacher context” happens to be
the one of the close collaboration between the in-service teacher and the graduate student
who worked together in order to conceptualize the situation that the teacher would
experiment in one of her classrooms. “In classroom context” gives great importance to the
students, now intervening directly in the situation, prompting the teacher to reinvent it in the
very course of action. Finally, a “While implementing context” has been identified, since,
after each class, the teacher and the researcher kept working on the situation to decide what
would be done in the upcoming one.

The analysis of the process of invention taking place in these five contexts tends to
characterize the contributions from what we called three communities of practice (Lave and
Wenger, 1991): the world of research, the teacher’s community and the students’ community,
each engaging in structuring resources in its own way. It also casts light on the richness of the
structuring resources involved in this process of invention of a situation: Intentions (the
project that motivates, what is to be realized), Principles (values, conceptions, what is cared
about), Ways of doing things (strategies, action-knowledge), Constraints (obstacles or limits,
what frames are imposed), Roles (what is expected from each other, social positions) and
Facilities (what is available for action or understanding). These families of resources clearly
informed us from a contextualized perspective on this process itself, all along the continuous
re-invention of the situation. It also evokes and extends what we can see in recent research on
teachers’ professional knowledge (engaged in such a process). In addition, it gives us an
interesting viewpoint on students’ experiments in the mathematics classroom. Moreover, an
analysis in terms of affordances and/or tensions between these families of resources and
communities of practices might provide unforeseen ways of understanding, despite its
complexity, how a part of the network in which research, teaching, and students’
experimenting in the classroom comes together in mathematics education.

References
Bednarz, N. et al. (2001). Conception de séquences d’enseignement en mathématiques. In

Mercier, Lemoyen and Rouchier (Eds), Le genie didactique. Bruxelles: de Boeck.



619

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

Boylan, M. (2004) Questioning (in) school mathematics: Lifeworlds and ecologies of
practice. PhD Thesis. Sheffield Hallam University.

Boaler, J. (2002). The development of disciplinary relationships: Knowledge, practice and
identity in mathematics classrooms. For the Learning of Mathematics, 22(1), 42–47.

Denzin, N. K. (1997) Interpretive ethnography. Ethnographic Practices for the 21st Century.
Thousand Oaks, London: Sage.

Jaworski, B. (1994). Investigating mathematics teaching: A constructivist enquiry. London:
Falmer.

Jonnaert, P., Barrette, J., Boufrahi, S. and Masciotra, D., (2005). Contribution critique au
développement des programmes d’études, Revue des sciences de l’éducation, 3:667-696.

Lave, J. (1988). Cognition in practice. Cambridge: Cambridge University Press
Lave, J. and Wenger, E. (1991). Situated learning. Cambridge: Cambridge University Press
Maheux, J.F. (in preparation). Wenger’s framework and the ordinary context of a teacher’s

work at secondary level: the analysis of a conceptualization of a mathematics classroom
situation. Masters thesis. UQAM.

Schön, D. (1987). The reflexive practitioner: How professionals think in action. New York:
Basic Books.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research. Sage.
Wenger, E. (1998). Community of practice. Cambridge: Cambridge University Press.
Woods, P. (1986) Inside schools: Ethnography in educational research. London: Routledge.



620

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

FOSTERING MORE COMPLEX WAYS OF KNOWING IN
COMMUNITY COLLEGE PRECALCULUS STUDENTS

Jacqueline Coomes
Eastern Washington University

jcoomes@mail.ewu.edu

Amy Roth McDuffie
Washington State University, Tri-Cities

mcduffie@tricity.wsu.edu

This case study of two community college precalculus classes examined relationships
between classroom community, communication, and students’ personal epistemologies (their
ways of knowing and ways of learning). Within each class, we analysed classroom social
norms, roles of instructors and students, instructors’ portrayal of mathematics, and levels of
communication. One instructor fostered a discussion-based class; however, he maintained
authority for learning. Students in this class evidenced some change in their ways of learning
but little changed in their absolute ways of knowing. The second instructor lead a didactic
class that included efforts to challenge students’ absolute ways of knowing. Students in the
second class demonstrated some change in their ways of knowing but little change in their
received ways of learning.

Mathematics education researchers have recently increased their focus on students’
personal epistemologies (their ways of knowing and ways of learning) and how personal
epistemologies may be influenced by the classroom as a community of practice (Boaler &
Greeno, 2000; Solomon, 2006; Speiser, Walter & Glaze, 2005; Zohar, 2006). This case study
of two community college precalculus classes examined relationships between characteristics
of classroom community, communication, and students’ personal epistemologies.

Theoretical Framework
The roles and social norms afforded to students in mathematics classrooms affect student

learning. To understand the diverse range of forms of classroom communities, we begin by
contrasting didactic and discussion-based classrooms. Within didactic classroom
communities, students experience mathematics as a set of procedures, disjointed from real
life (Boaler & Greeno, 2000). Received knowers believe knowledge to be certain and
therefore accept knowledge from authorities (Belencky, Clinchy, Goldberger, & Tarule,
1986/1997). In didactic classes, students are not expected to discover or connect
mathematical concepts on their own because mathematical authority resides with the
instructor and textbook. In contrast to didactic classrooms, discussion-based classrooms are
often characterized by small group and whole class discussions of open-ended problems and
relationships become central to learning (Boaler & Greeno). Student roles consist of
contributing to shared understanding and mathematical authority resides in students’ own
sense-making.

One of the most salient differences between didactic and discussion-based classes is the
nature of communication that occurs. To examine communication within the two classes, we
used a framework developed by Brendefur and Frykholm (2000) which describes four levels
of communication. The least interactive level, uni-directional communication, is
characterized by instructor lectures and closed questions; student answers do not provide
information about student thinking. At the next level, contributive communication defines
discussion that occurs when the instructor or students assist other students, or when students
present their solutions, but classroom social norms do not oblige students to listen to each
other. Reflective communication refers to discussions in which the instructor and students
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reflect on ideas offered by students who use these as opportunities for deeper explorations.
This may happen as students attempt to justify or refute conjectures and is supported by
sociomathematical norms in which students are expected to listen to each other and respond
thoughtfully. Finally, instructive communication occurs when instructors provide situations
that stimulate students to reconsider their current understanding of the concepts. The resulting
communication informs the instructor of students’ current conceptions and affects their
instructional decisions.

Students’ ways of knowing affect their beliefs about instructor and student roles and
social norms (Baxter Magolda, 1992; Yackel & Rasmussen, 2002, Solomon, 2006).
Conversely, social norms related to mathematical interaction (sociomathematical norms)
affect student beliefs about their roles and classroom social norms (Cobb and Yackel, 1995;
Solomon) and characterize their ways of knowing. The present study employed a framework
of college students’ ways of knowing developed by Baxter Magolda (1992). The lowest level
of knowing in this framework, absolute knowing, includes receivers and masters who believe
knowledge is certain and gained from authorities, while higher levels of knowing, such as
independent and contextual knowing are consistent with current recommendations that
students listen to their peers, explore, and become validators of mathematical ideas (National
Council of Teachers of Mathematics, 2000). In order to develop more complex ways of
knowing, students’ current ways of knowing must be confirmed and challenged (Baxter
Magolda). In this article we consider how characteristics of discussion-based and didactic
classroom communities either confirmed or challenged students’ ways of knowing.

Research Design
The emergent perspective guided the research design, data collection, and analysis. This

perspective coordinates sociocultural and constructivist theories of learning by examining the
social interaction in classroom communities, the mathematical development of the
community, and students’ individual mathematical constructions (Cobb & Yackel, 1995).

The present cases included two community college precalculus classes in the northwest
United States studied during the summer quarter of 2005. We selected instructors, Mr. Reilly
and Mr. Anderson (pseudonyms), based on their efforts to establish community and
relationships with students, levels of classroom interaction, and reputation for strong
mathematical knowledge and standards. Their classes had 14 students and 13 students,
respectively. Questions guiding the inquiry included (1) What is the nature of the classroom
community and how does it develop? (2) What is the nature of instructor and student
interactions related to mathematical activity?

Data sources included a student questionnaire containing questions that elicited student
preferences for their roles, their instructors’ roles, and their peers’ roles during class, in
addition to questions about how students best learned mathematics. Other data came from
student and instructor interviews, fieldnotes, and classroom observations. Each class was
observed and videotaped 19 of their 31 meeting days. Researcher fieldnotes and classroom
observation forms were completed for each observation. The first ten video-taped lessons
from each class were transcribed, and information from fieldnotes and classroom observation
forms were used to determine segments of other observations to transcribe.

Preliminary data analysis began when the first data were collected and continued
systematically throughout the study; this analysis informed the selection of interviewees,
interview questions, and interactions to examine (Tobin, 2000). After the questionnaire and
after each observation or interview, data were coded into categories (e.g., participants’
expectations for community and roles, the nature of social and sociomathematical norms and
how they developed, participants’ roles as they developed during the course and the



622

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

relationship between roles and ways of knowing). Sub-categories were developed from the
above-described research-based frameworks. For a fine-grain analysis of patterns,
differences, and changes across the semester, we continued to create and modify categories to
code and index references to various aspects of community and norms. We used data
matrices and concept maps to understand the data within the categories (Miles & Huberman,
1994) and qualitative software to organize and reduce data in text form (N6, QSR, 2002).

Findings

Students’ Initial Expectations

Students responded to the questionnaire on the first day of class. The majority of students
in both classes responded that their mathematics instructor’s role was to show them
procedures while explaining clearly. This idea threaded through responses to several of the
questions. To the question, How do you best learn mathematics? the majority indicated they
learned mathematics best when someone showed them how or explained. When asked
specifically about things the instructor could do during class to help them learn, 20 of the 27
students indicated that the instructor should do examples or explain clearly or in detail.
Daniel’s response, “Make sure they’ve answered my question so that I understand it”
displayed the common idea that students’ understanding was a result of the instructor’s
explanations.

Students also had specific ideas about their roles and the roles of their peers. In response
to what types of input they usually offered during class discussions, 15 of the 27 students
wrote they would ask questions, while only five responded they would offer other types of
responses. Responses to whether listening to other students’ questions or explanations helped
them learn also indicated that students believed their peers’ roles were to ask questions, but it
was the instructor’s role was to explain; 22 of the 27 responses specifically indicated students
liked to hear other students’ questions. Kathy explained, “Listening to their questions and
hearing the teacher’s explanation helps.” Although students appreciated the ideas introduced
by other students’ questions, they wanted clear explanations from the instructor.

Student responses to the questionnaire indicated they expected passive roles in
mathematics classrooms. While most students liked class discussions, fewer were willing to
participate, and those who were willing perceived their roles as providing correct answers or
asking questions, rather than offering ideas to be explored by their peers. Twenty-four of the
27 students indicated stances of absolute knowing in at least half of their responses.

Maintaining Absolute Knowing in a Discussion-based Class: Mr. Anderson’s Class
Mr. Anderson established a discussion-based classroom environment, providing

opportunities for group work during 14 of the 19 observations. He valued students’
interaction with each other and believed discussing mathematics would promote learning.

I’ll put a problem on the board, or say, “Work on this problem, work together if you want
or bounce ideas off each other; or check your answers; convince each other that you’re
right or wrong,” sometimes I use that phrase. But sometimes they still want to get stuck in
their little world; they interact with me, as a class, but … they’re nervous about sharing
with their fellow students. (Mr. Anderson Interview, July 5)

In spite of these values and providing opportunities for students to work together, he did not
require students to work together. Throughout the term the same three students always
worked alone while the other ten students often worked with peers. Mr. Anderson explained
how to find answers, asked questions, and pointed out mistakes as he walked around.
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Students who worked alone or in groups received his individual attention so they did not need
to work with others. The following example reveals the nature of support Mr. Anderson
offered during group work:

Mr. Anderson: First thing, I see sum, you did product. [Thomas erases something on his
paper]. So, sum is going to mean add. … Now did we square the second number? There
you go, now we have the sum of the squares. [Mr. Anderson continues walking around
the room.]
Carol [to Mr. Anderson]: Does that look right?
Mr. Anderson: Yeah, that looks great, keep going.
Carol: So now I just [inaudible]?
Mr. Anderson: Yeah, now you can either factor it, or use the quadratic formula, or
complete the square. [He continued to walk around]…Oh, oh not just two. Yeah, x plus
two…Square, not square root. (Observation, June 28)

We observed variations on Carol’s question, “Am I doing this right?” throughout each group
work. Thus, while the environment provided opportunities for students to become relational
agents, Mr. Anderson’s responsiveness to student preferences as absolute knowers allowed
students to depend on him rather than build mutual accountability with their peers.

The other major activity besides group work was whole-class discussion. Mr. Anderson
rarely lectured without encouraging student participation by asking questions, providing
opportunities for students to ask questions, and providing long wait times. He further
encouraged student participation by using their ideas to determine the direction of discussion,
explaining and providing new examples until students indicated they understood. But, his
responses did not challenge students’ beliefs that it was the instructor’s role to understand and
explain.

The affordances of this discussion-based classroom affected some students’ ways of
participating in class. Three students who responded on the questionnaire that they preferred
to work alone regularly worked with others. Two who said they liked to work with others
worked alone, most likely because they were physically isolated from others in the large
room and were not required to work with others. Students who worked with others were more
likely to speak up during whole-class discussion even if they responded on their
questionnaires that they would not participate, while those who worked alone did not
participate even though they responded on their questionnaires they would. Thus, group work
seemed to support students’ willingness to participate in whole group discussions.

Social norms and roles affected the levels of communication in this class. The average
number of lines coded at each level of communication in days 2-5 of the term were 52% uni-
directional and 48% contributive. No reflective or instructive communication was observed
during the term. While Mr. Anderson used student ideas and questions to introduce new
problems and examples, a component of instructive communication, these were not coded
instructive communication because students continued to rely on instructor explanations and
did not necessarily modify their current understanding but accepted explanations without
reconsidering their old conceptions.

Evidence of this type of learning arose in an interview with Sarah. The class had graphed
circles written in the form( ) ( ) 222 rkyhx =−+−  earlier in the week, then discussed
transformations of graphs. Finally, on the day of this interview they discussed the graph of
quadratic functions written in the form ( ) khxay +−= 2 .

When we were doing the vertex, how it's the negative, [pointing to ( ) 432 2 −−= xy  in
her notes] well the three and the negative four. Well, I just assumed from circles, doing h,
k, that it would be the opposite, so [the vertex would be at] three, four. So that's what I
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was thinking, and so when he first wrote that down I was like, well that doesn't make
sense, but then after we wrote down what we needed to do to the parabola [shift right
three and down four] then I was like, of course, if you're starting at zero, zero as your
starting point and you move, you know, to the right three and then down four, and if I
graph that, then that's where the vertex would be, so I had to write this down, yeah, cuz
when he first said that I was like, well wait a second that's kind of opposite from what we
were doing with circles, cuz circles you do the opposite signs as the center. (Sarah
Interview, July 13)

Sarah initially compared the form of the quadratic function to a rule for locating the center of
a circle from its equation, apparently connecting the use of the letters h and k. However,
when the rule did not work and Mr. Anderson justified the location for the vertex using
transformations, she said it made sense. That is, Sarah said it “made sense” when she knew
which rule to choose based on Mr. Anderson’s explanation; she did not pursue her initial idea
by questioning why the rule for equations of circles seemed different from the rule for
transformations. Thus, “making sense” takes on different meanings for different ways of
knowing. In Sarah’s case, it meant knowing which rule to choose based on a single
explanation from an authority whereas to contextual knowers, it means resolving
perturbations in their own ideas while taking into consideration others’ ideas.

Fostering More Complex Ways of Knowing in a Didactic Class: Mr. Reilly’s Class
Mr. Reilly maintained a didactic form of teaching throughout the course. Mr. Reilly

stayed at the chalkboard coordinating all communication and did not provide opportunities
for students to work together in class. Mr. Reilly planned and executed each lecture carefully,
developing concepts by connecting to previously discussed ideas. However, students did not
work together and did not respond to each other during whole-class discussions. In contrast to
students’ expectations, he rarely worked examples, but modelled and discussed a disposition
to do mathematics by solving problems in more than one way, discussing strategies, using
multiple representations, and emphasizing the need to explore. He explicitly discussed
metacognitive practices, reflecting on or asking students to reflect on both processes and
results. For example, throughout verifying an identity, he asked students to give reasons why
they selected certain procedures and emphasized they should have mathematical reasons.
After verifying the identity, he asked “Could we have done it better? Let's do it again and see
if we can do it better.” The next day, after verifying another identity using students’
suggestions, he said, "Look at and think about what you did," and pointed out where they had
reversed a step on the first verification (Observation, July 13).

Mr. Reilly also portrayed mathematics as uncertain and developed by humans throughout
history while trying to solve problems. In particular he described his perspective of
mathematics as different from the authors’ of the textbook, and concluded, “Don’t think of
math as this eternal unchanging entity completely divorced from opinion.” Throughout the
term, he incorporated stories about the history of the mathematics and real life applications
into the lessons. Students clearly valued these elements and suggested it helped them connect
to the mathematics:

I had no clue of all those things in math; you can actually teach the background of where
it came from. There’s books you can even read. Well nobody’s ever done that in any math
class I’ve ever had in my life. It’s just, this is math, this is what we do... I think it’s
wonderful. (Natalie Interview, August 10)

Portraying mathematical knowledge as uncertain and created by people challenges students’
absolute ways of knowing: “Clarifying that the information presented comes from a particular
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perspective and is generated by other human beings is essential for students to begin to see
themselves as capable of forming their own perspectives” (Baxter Magolda, 1992, p. 278).

Because of learner and instructor roles, communication in this class remained uni-
directional and contributive. In days 2-5: 64% of communication was coded uni-directional
and 36% contributive; no instances of reflective or instructive communication were observed.
Uni-directional communication included short-answer questions and once a student answered
correctly, Mr. Reilly accepted the answer as if the whole class understood. For instance,
throughout one whole-class discussion focused on solving a problem, Mr. Reilly emphasized
problem-solving techniques of understanding the problem, having a plan, and reflecting on
the answer. His questions at the beginning of the episode encouraged contributive
communication, however he did not pursue suggestions that would be unproductive. While
students offered several suggestions of sides and angles he could find, he said they needed to
have a plan. As he used some of their suggestions to write a plan, he labeled the sides or
angles without calculating, and pointed out that while they could find certain lengths and
angles, many of the results would not get them any closer to finding a solution to the
problem. After finding an answer, he reflected on the process and whether or not the answer
was reasonable. The goal of this activity was to explicitly discuss processes of mathematical
problem-solving. But, students did not have the opportunity to discuss and work on problems
during class without Mr. Reilly’s authority guiding the process. It was apparent that students
realized the necessity of changing the way they approached learning mathematics, but that
they did not know how. During our interview I asked Steve what he was going to do to get
ready for the next test:

[Laughed] All the things that have been taught to me in my previous math classes, which
are probably all the things that I shouldn't be doing, because I've been kind of bred to do
things a certain way. And I think he's trying to break that mold that I've been put in and I
see that in him. But I'm not sure how to at this point unless I took the teacher home with
me. (Steve Interview, July 21)
While Steve recognized and appreciated that Mr. Reilly expected him to learn differently

in this class, he did not develop strategies for learning in new ways.

Discussion
The two cases indicate that in order to understand relationships between classroom

characteristics and students’ personal epistemologies, it is important to examine finer-grained
characteristics beyond the broad strokes of either discussion-based or didactic. Some of the
domains we sought to better understand included learner, peer, and instructor roles; the
certainty by which mathematics is portrayed; and types of communication.

Student and instructor roles during whole-class discussion were more alike in the two
classes than different. In both classes, students gave short answers and almost no
explanations, and most students usually only answered if they thought they knew the right
answer. The instructors supported these roles since they made very few attempts to encourage
students to explain or to influence the nature of student explanations. Instructors answered all
questions with thorough explanations rather than shift the responsibility for thinking back to
the students, and also interpreted and expanded on students’ short answers rather than ask the
students what they meant. Learner, peer, and instructor roles were consistent with the
preferences students indicated on their questionnaires. Because the social norms and roles
maintained authority with the instructors, communication during whole class discussion in
both classes remained unidirectional and contributive.

Student roles differed in some ways in the two classes. In Mr. Anderson’s class, students
asked more questions and provided more answers and ideas than in Mr. Reilly’s class.
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However, not all students chose to work together and Mr. Anderson aided this choice by
answering their individual questions and not requiring peer interaction. In addition, students
who worked together still asked Mr. Anderson if they were correct and relied on him to
explain the mathematics. Thus, while discussion-based classes offer opportunities for
students to become relational agents, helping each other understand mathematical concepts
(Boaler & Greeno, 2000), such environments do not necessarily foster this type of
relationships since students and instructors may not change their beliefs about their roles and
the source of knowledge.

Mr. Reilly’s portrayal of mathematics challenged student beliefs about the certainty of
mathematical knowledge while his emphasis on understanding concepts, attention to problem
solving strategies and metacognition, and his use of real life applications challenged absolute
ways of knowing. Yet, students were largely observers of Mr. Reilly’s engagement with the
mathematics rather than members of the community whose ideas were elicited and valued,
and contributed to their peers’ understanding. Mr. Reilly’s case illustrates how students can
begin to change their beliefs about ways of knowing mathematics without changing their
received ways of learning.

This study indicates that to foster more complex ways of knowing, instructors need to
create discussion-based environments and challenge students’ belief in the certainty of
mathematical knowledge. However, these elements are not sufficient. Instructors must also
challenge student beliefs about learner, peer, and instructor roles, and support students’ own
construction of mathematics and ways they interact with their peers and instructors. More
research is needed to understand how these elements can be incorporated into mathematics
classes and how they influence learning and ways of knowing.
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“JUST DON’T”: SUPPRESSING AND INVITING DIALOGUE
IN THE MATHEMATICS CLASSROOM

David Wagner Beth Herbel-Eisenmann
University of New Brunswick, Canada Iowa State University, USA

Responding to concerns raised by grade 11 mathematics students, we examined a broad set
of mathematics classroom transcripts from multiple teachers to examine how the word ‘just’
was and could be used to suppress and invite dialogue. We used corpus linguistics tools to
process and quantify the large body of text, not to describe the nature of the discourse, but
rather, in the tradition of critical discourse analysis, to prompt reflection on a range of
possibilities for directing classroom discourse. Drawing on Bakhtin’s distinction between
monoglossic and heteroglossic utterances, we found that the word ‘just’ acted as a
monoglossic tool, closing down dialogue. However, we propose that ‘just’ can also be used
as a heteroglossic tool as it can focus attention and thus invite dialogue.

Just is OK for students to use. Teachers shouldn’t use just. Teachers JUST
shouldn’t do it.

[W]hen [teachers] use ‘just’ it’s kind of an aggressive word. It’s kind of like
they just use ‘just’ because they don’t want to explain why it is. They just
say, ‘It’s just that.’

These two utterances come from grade 11 mathematics students who were conversing
with their classmates about their language practice. In their animated discussion about the
word ‘just’, some expressed concern that ‘just’ implies simplicity and might frustrate students
who may not find the process so simple – e.g., “And you just change it to two square root
five.” These students’ exploration of the word revealed how they felt about it and the
classroom dynamics it represents. (For more detail on this conversation with students, see
Wagner, 2004.) Taking their perspectives seriously, we looked for evidence of their concerns
in a large body (corpus) of mathematics classroom discourse collected in 2005-06. The word
‘just’ was the 27th most common word used in this body of classroom interaction (4672
unique words): nine times more common than ‘multiply’, four times more common than
‘why’, twice as common as ‘because’. We asked:

 How is the word ‘just’ used in mathematics classroom discourse?
 What can we learn about the way students and teachers relate to each other by

looking at its use in practice?
It may seem somewhat frivolous for educators to obsess about one word to initiate

reflective practice, but the vehemence with which the students in the above-described
situation asserted the significance of their concerns surrounding the word and their tenacity to
sustain conversation about it over two months justifies serious consideration of the word.
Perhaps research questions too often arise out of the experiences of educators and thus ignore
the questions raised by mathematics students or assume the questions are the same.

Interpretive Frame
Following traditions of critical discourse analysis (CDA), our approach “includes

linguistic description of the language text, interpretation of the relationship between the […]
discursive processes and the text, and explanation of [their] relationship” (Fairclough, 1995,
p. 97). Consideration of possible meanings of language can raise awareness of interpersonal
dynamics. Quantification can help us recognize common discourse patterns that may help us
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notice such dynamics in our own practice. We promote change in practices by making
common practices seem strange and not innocent. Our synthesis of corpus linguistics and
CDA methodologies (traditions that criticize each other, e.g. Stubbs, 1996 vs. Chouliaraki &
Fairclough, 1999) sees the value of corpus linguistic tools to draw attention to particular
instances of language for denaturalization and consideration of alternative practice.

As noted by Chouliaraki and Fairclough (1999), CDA researchers need to be aware of the
social ‘problem’ that drives and informs their interpretation. Our concern (sense of a
‘problem’) is for mathematics students’ positioning in their classroom discourse, especially
the aspects noted by students in Wagner’s (2004) conversations mentioned at the beginning
of this article—the students’ concern for implications of simplicity and their opportunity for
agency. The word ‘positioning’, as described by Harré and van Lagenhove (1999), refers to
the way people use action and speech to arrange social structures. For example, there are
language forms that a teacher can use to structure a social arrangement that resembles the
physical arrangement common to many classrooms—students sitting apart from each other
beneath the teacher who stands front and centre.

Though the traditions of mathematics classroom discourse already position students and
teachers in certain ways relative to each other, discursive moves within particular instances of
the discourse substantiate, and have the potential to alter, these structures. With our interest in
positioning, we find significance in a distinction made by White (2003) in his “appraisal
linguistics,” which draws on Bakhtin’s (1975/1981) notion of heteroglossic interaction as
opposed to monoglossic utterances. White suggests that linguistic resources can be “broadly
divided into those which entertain or open up the space for dialogic alternatives and,
alternatively, those which suppress or close down the space for such alternation” (White,
2004, p. 259). The content of speech can invite or suppress expressions of agency, but this
can also be done with the form of the speech, the medium through which content is indexed.

White’s (2003) interpretive frame has not been applied to studies of the word just in
general or in specific contexts, but it relates to other linguists’ studies of the word. Aijmer
(2002), for example, noted the restrictive nature of just when it is used as an adverb. It closes
off aspects of potential dialogue. More significant to our analysis, she and others note the
power of the word in persuasion. Weltman’s (2003) study of political discourse demonstrated
how just was used to ‘justify’ the refusal to give explanation. Such refusal defies a strong
social expectation identified by Grice (1975): his maxim of quality describes the expectation
for adequate evidence. Linguists and others also note less overt ways in which just represents
closed dialogue. Weltman showed how it represents repression, “nudging the conversation
away from certain sensitive matters” (p. 351), and Spruiell’s (1993) consideration of the word
in psychoanalysis reminds us that such repression may not always be conscious. Whether the
repression is rhetorical or subconscious, there are consequences—dialogue is suppressed.
Most significantly for mathematics teaching, explanations are suppressed.

Data Sources and Analysis
The larger data set from which we draw includes 148 classroom observations (1) from

eight mathematics classrooms (grades 6 through 10) in seven schools.  The teachers in these
classrooms were purposefully selected to vary gender, context of teaching situation,
certification level, years of teaching experience, and so on.

For this paper, we draw on the classroom observations from January because the
discourse patterns were fairly stable by then.  We analysed 184,695 words including 931 uses
of the word ‘just’. Our description of language practice used corpus analysis—the
quantification of utterances from a large corpus (body of discourse). Our corpus is
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reasonably-sized for oral text, It is larger than the oral corpus analyzed by Tagliamonte’s
(2005) investigation of just and other ‘discourse particles’ in general speech.

Wordsmith Tools 4.0, a corpus linguistics software, generates concordances, in which all
the uses of a particular word are listed, as shown in this sample excerpt.

uestions on it? € FS: No. € T: Okay, so I’m just gonna go around and around as best as I can,
we’ll talk about surface area and volume in just a second. Okay? Alright, ahm, now, if we thi
he slant height. Okay? So it’s got two parts, just like that had two parts, they are the base plus

 Area of a rectangle? € FS: I’ll think about it. Just tell me the surface area. € T: I’m working on
are you looking at? € FS: For any of them. I just don’t know what the formula is. € T: Well, w
A research assistant and one of the authors used a spreadsheet for independent coding and

then discussed and achieved consensus on discrepancies. We began by looking at possible
meanings of ‘just’ in the range of its uses by attempting to replace ‘just’ with other text to
understand the position it occupies. This form of representation supports our interest in
encouraging the consideration of alternative practice. Wordsmith also calculates collocations
– words that are commonly located together (co-location) – a tool useful later in the analysis.

Findings
Shades of Meaning

In the presentation we will address all the shades of meaning we found; in this paper we
focus on the three most prevalent forms, which include the two most relevant to the students’
concerns. In the corpus’ most common usage of ‘just’ (28% of occurrences), it is an adverb
relatively synonymous with ‘simply’. For example, in the teacher utterance, “After we’ve
changed it to an improper fraction we just plug straight through,” listeners may hear “we
simply plug straight through” – it is simple. Significantly, this most common shade of
meaning is the one that dominated student concerns about being positioned as powerless
(Wagner, 2004).

Another common usage (21% of instances) is relatively synonymous with ‘only’, as in “I
want to go over just one type of each problem.”  This usage was not discussed by the students
who were concerned about ‘just’ and seems relatively innocuous in terms of personal
positioning in the classroom. However, many of the instances we coded with this shade of
meaning were relatively ambiguous: whether we replace ‘just’ with ‘simply’ or with ‘only’
the utterance makes sense but means something considerably different. For example, “we just
do 11 through 29” could mean that it will be simple and unproblematic to complete these
problems for homework, or it could suggest recognition of the (perhaps considerable) amount
of work in the entire problem set by restricting it to 11 through 29. For this instance,
contextual clues led us to code this with the second interpretation, but it is important to be
aware that the first interpretation and others were possible for students in this classroom.

A powerful usage of ‘just’ includes situations that represented varying degrees of
frustration (22%). A strong degree of frustration can be seen in “Well, you just don’t want to
have two that are […] exactly the same lengths.” Here ‘just’ could be replaced with an
expletive or an expression with similar meaning: “You really, really don’t want to …”.  In a
usage that expressed more mild exasperation, “Don’t look, just put your name down,” ‘just’
might well be replaced with the aside: “do it without asking why.” This usage can also
represent gentle encouragement as in “Hit, just hit enter,” which was a teacher’s reply to a
student wondering how to do something with his calculator. This utterance is similar to
“Trust me. Hit enter and don’t worry about why yet,” but students may read greater
exasperation than the teacher intended. These instances are often ambiguous. The teacher
telling his student to hit enter could be pleading that this is a simple thing to do, representing
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the most common shade of meaning. To distinguish among these levels of frustration,
interlocutors depend on paralinguistic cues, which may also be read in various ways.

23% of the instances confounded our coding. Often this ambiguity seemed to be a result
of the speaker’s frustration, as in “Oh, I know … It’s just, as we started this …” These cases
of extreme ambiguity, in addition to the kinds of instances of ambiguity we have described
above, in which we coded a particular meaning based on contextual clues, prompt us to ask,
What is the experience of the listener? Listeners typically judge intentions and meanings
quickly and subconsciously. All these shades of meaning relate to each other in some way
and all the meanings ought to be taken as activated to some extent every time the word ‘just’
is used. In the next section, we draw on linguistic literature to interpret some of these shades
of meanings that we think are especially important to mathematics teaching and learning.
These interpretations led us to further investigate the corpus, paying particular attention to
some of the differences between teachers’ use and students’ use of the word ‘just’.

Suppression and Invitation
When ‘just’ implies simplicity it is a monoglossic tool. It suggests that thought is not

necessary, and thus there is no call for others to respond. Such implications are qualitatively
different when they are made in imperatives or in statements. When it is in the imperative, it
calls for performance not reflection (e.g., “Just solve the equation”), and it directs others to
follow only an authorized path. When it has a personal subject (e.g., “and then I just solve the
equation”), it is less directive, but still significant. In such statements, it is reflecting, instead
of directing, a monoglossic relationship structure. Such uses suggest that there is nothing to
discuss: equation-solving is unremarkable. In this case, the simplicity-suggesting sense of the
word relates to the meaning synonymous with ‘only’: don’t think, only act (or watch/listen).
In addition to making reflection seem redundant, ‘just’ positions a reflective listener as
incapable: “just/simply solve” suggests that a person who has to think about how to solve the
equation is no expert.

When ‘just’ replaces ‘only’ it limits, but not necessarily as a tool for the monoglossic.
The speaker refers to distinctions being made, opening up the possibility for others to make a
different kind of distinction.

In our view, the strongest monoglossic shade of meaning of ‘just’ is the directive: “Do it
without asking why,” which is suggested in most of the instances in which ‘just’ marked a
sense of frustration. As stated above, even the simplicity-suggesting form discourages
reflection and personal agency, but ‘do it without asking why’ is explicit.

Suppressing dialogue is an act of power. Thus we think educators should ask: Am I
suppressing dialogue in my mathematics classrooms and, if I am, for what purposes? To
begin to address this question using other educators’ practice, we will turn to distinctions in
the form of the text in our corpus. However, it is important to acknowledge that tools for the
monoglossic need not suppress dialogue. Any of these tools can be ‘retrospectively dialogic’
(using White’s term) because fighting against alternative positions can, in fact, draw attention
to alternative positions and thus open up reflection and its potential to underpin acts of
personal agency. For example, when a teacher said, “Okay, that’s just kind of a personal
preference. Some people like to solve them vertically…,” he was pleading with his students
to accept multiple approaches to solving this kind of equation. In cases such as these, the
speaker uses ‘just’ to say how important an idea or approach is to him, he is begging for
complicity, and thus positions himself as a supplicant and his listeners with power.

Furthermore, we would not argue that all uses of monoglossic tools are wrong. As we will
discuss below, we are not hoping that educators simply eradicate ‘just’ from their
vocabularies. Rather, we want to consider how the word can be used thoughtfully.
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Participants’ Agency in Suppression and Invitation
In the analysed corpus, students and teachers used ‘just’ with fairly equal frequency

(1:195 words for students and 1:196 for teachers). Though there is much the same about the
teacher and student uses of ‘just’, it is important to remember that student language choices
are socialized by their teachers’ constructions: as explained by Bakhtin (1953/1986),
participants use each other’s words in any discourse. Nevertheless, we begin to see
distinctions when we look at the words connected to ‘just’ using collocation charts. The most
frequent L1 collocates (words appearing one position to the left of ‘just’) for both teachers
and students were the personal pronouns, ‘I’, ‘you’ and ‘we’, as shown in this excerpt from
the top of the collocation chart (at right).

‘You just’ and ‘I just’ are the most common
pairing, with 83 instances each. These numbers
increase as we include derivatives (e.g. I’m) and
L2 collocates which allow forms such as “I am
just.”

The frequency of these personal pronouns
prompted us to distinguish between teachers and
students because these words draw attention to
distinctions in role. Limiting to L1 personal
pronouns, 35% of teachers’ subjects were second
person (you, you’re, you’ll), 41% were first
person singular (I, I’ll, I’d, I’m) and 25% first person plural (we, we’re, we’ll). For students
the percentages were 40%, 44%, and 17% respectively. In half of the classrooms considered,
students did not use the first person plural with ‘just’ at all.

The proportional similarity between ‘I just’ and ‘you just’ for teachers and students may
indicate complicity. We assume that the teacher has more power, and that students
(positioned as novice) mimic the form (and content) of their teachers’ utterances, but students
do carry some power in structuring discourse norms. The strong difference between teachers’
and students’ use of ‘we just’ may support the assumption that teachers carry more authority
in the structural formation of the discourse. Teachers feel justified speaking on behalf of the
local classroom community, but students do not share this sense of authority. Pimm (1987)
and Rowland (1992; 1999; 2000) have noted that teachers use ‘we’ to represent the voice of
the mathematical community. Our corpus shows mathematics teachers using ‘we’ in this way
when it precedes ‘just’, and does not show students using it in this way.

Positioning the Classroom Participants
The frequency of personal pronouns preceding ‘just’ also prompted us to consider the

verbs modified by just. In mathematics, processes have significance. The most common verbs
to follow ‘just’ in the R1 position were ‘go’ (12%), ‘do’ (8%), ‘say’ (7%), ‘have’ (7%),
‘want’ (6%), ‘make’ (5%), ‘write’ (4%), ‘put’ (4%), ‘take’ (4%) and ‘think’ (4%).

The most common of these are extremely vague. What did it mean when the teacher said,
“Just do it one step at a time”? The verb ‘do’ describes action but it could describe any
action. The teacher implies that there is no need to explain. ‘Go’ and ‘have’ are similar. Many
‘just’ + verb combinations include a condensation of meaning that makes assumptions about
the listeners. We concentrated on instances of ‘just’ in the context of talk about mathematics
rather than other, nonmathematical topics (e.g., “just wait [for the bell]”). Schleppegrell
(2004) listed ‘density’ as a distinction of the academic register. We ask whether ‘just’ along
with the verbs it modifies is an example of this condensation of meaning.  A simple vague
expression – “just go” – carries with it many meanings, but such vagueness seems to be a

Word L5 L4 L3 L2 L1 Total Left

YOU 17 13 16 41 83 170

I 8 7 16 16 83 130

WE 6 3 2 14 46 71

IT’S 2 7 3 2 36 50

I’M 1 2 2 1 23 29
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special kind of condensation that is different from conciseness. We suggest that further
research address the vagueness inherent in ‘concise’ condensation. Nevertheless, Rowland
(2000) makes clear the value vagueness can have in mathematics classrooms. Vagueness can
invite reflection. And it can close it down.

The less vague common R1 collocates of ‘just’ can be considered in terms of Rotman’s
(1988) classification of imperatives used in mathematics discourse. He distinguishes between
‘exclusive’ verbs, which describe action that can be done independent from others (e.g.,
write, calculate), and ‘inclusive’ ones, which require dialogue (e.g., explain, prove). We
would expect the actions ‘just’ modifies to be exclusive rather than inclusive, because
inclusivity opens up space for dialogue and ‘just’ tends to close down such space. Most of the
verbs commonly modified by ‘just’ were exclusive and monoglossic. Because a student can
‘want’, ‘make’, ‘write’, ‘put’ or ‘take’ something independent from relationship, these verbs
are categorized as exclusive. It is more complex to consider the remaining common verbs,
‘say’ and ‘think’. What does it mean to just think? We have suggested that ‘just’ implies a
rejection of reflective thought. Though we might categorize thought as exclusive action
because it can be done alone, prompting students to think is certainly not monoglossic.

Significance for Reflection
This data raises many questions. We see that the more questions we pursue in the corpus,

the more questions are raised leading us to look more and more at individual utterances in
their contexts, which makes for increasingly complicated calculations and decreasingly
statistical significance.

This draws attention to our intentions. Statistical significance is less important for us than
it is for linguists whose work is to document discourse practices. Our aim is to describe the
state of mathematical discourse only to the extent necessary to prompt reflective awareness.
We encourage our readers to note the questions our data and interpretation raise, to ask these
questions of their own practice and to apply them to classroom research contexts. We do not
want to say, “This is how mathematics discourse is.” Rather, we want mathematics educators
to ask, “What is my discourse like?” and “How might I change it to reflect my intentions?”

It is probably evident that we lean toward promoting heteroglossic discourse as opposed
to monoglossic discourse. However, we recognize that particular discourse moves that can be
characterized as monoglossic have their place. As we have noted, utterances can be
retrospectively heteroglossic, opening up a possibility for dialogue by suggesting that there is
only one way of doing or seeing something. Furthermore, one of the teacher’s primary roles
is to direct attention appropriately. Closing down dialogue in one area opens the possibility
for focused dialogue in another. Gattegno (1984) noted that such stressing and ignoring is
commonplace and he often asserted and demonstrated that these processes are especially
important in mathematics. He claimed that stressing and ignoring is in fact the process of
abstraction.

There are various alternatives available to a teacher who wants to direct attention to a
certain area and away from other concerns. One can say explicitly, “Don’t think about [some
thing],” rendering it quite impossible to avoid thinking about the thing. Alternatively, one can
employ subtle tools of the monoglossic, like the word ‘just’, to direct attention away from
some processes and thus invite attention to other processes. This kind of subtlety is powerful,
as it invites general dialogue focused in a particular way and also because of its potential for
structuring a monologic environment in which student agency is suppressed. The power is in
the subtlety.

Tools for the monoglossic are especially powerful in environments structured with
significant positioning distinctions. Mathematics classrooms are just such places.
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Endnote
1. This data was collected as part of an NSF grant (Grant No. 0347906, Herbel-Eisenmann,
PI) focusing on mathematics classroom discourse. Any opinions, findings, and conclusions or
recommendations expressed in this article are those of the authors and do not necessarily
reflect the views of NSF.
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Although many talented students leave the disciplines of mathematics and science, women do
so at a higher rate than men. In mathematics, the under-representation of women is most
significant at the graduate level and in the workforce. The purpose of this study was to
investigate why women mathematics majors choose to study mathematics at the
undergraduate level and what factors influence their decision whether or not to continue with
a career in this field. We found that many of the participants desired a career in which they
felt like they were helping others and making a positive impact on society. Therefore,
teaching mathematics in the context of social justice and educating students on mathematical
careers that have a direct positive impact on society may be useful means for attracting and
retaining women in the field of mathematics.

Many researchers have noted the under-enrollment of talented students in the Science,
Technology, Engineering, and Mathematics (STEM) fields. Many students who demonstrate
potential success in these fields choose majors in non-STEM fields and a higher percentage
of students switch from STEM fields to non-STEM fields than the other direction (Seymour
& Hewitt, 1997). It has also been noted that women are less likely to enroll in a STEM major
(Clewell & Campbell, 2002) and those who do, tend to change their majors to non-STEM
disciplines more frequently than men do (Seymour & Hewitt, 1997). The low percentage of
women earning STEM degrees at the university level then transfers into low participation in
the workforce.

Although the number of women in STEM fields is low in general, in the field of
mathematics, the under-representation of women is most significant at the graduate level and
in the workforce. Over the past decade, women have consistently earned approximately 47%
of the bachelor’s degrees in mathematics; however, women only earned 41% of the master’s
degrees and 25% of the doctorial degrees in mathematics during that same timeframe (NCES,
1995-2005). Furthermore, the proportion of women recent-PhDs currently being hired as
faculty in mathematics departments is lower than the proportion of women receiving
doctorial degrees in mathematics (Gordon & Keyfitz, 2004). This trend of low participation
exists in other mathematics-based careers as well.

Some possible reasons suggested in the literature as to why women are less likely than
men to pursue the field of mathematics include: lack of confidence (Davenport, 1997;
Seegers & Boekaerts, 1996), social and cultural influences (Fox & Soller, 2001; Sadker &
Sadker, 1994), and mathematics curriculum (Becker, 1995; Boaler, 2002). Most of this
research, however, has been conducted with the purpose of exploring why women do not
choose to study mathematics. Considering the statistics given above, however, a substantial
number of women currently do choose to study mathematics at the undergraduate level.
These women simply are not choosing careers in mathematics. Therefore, it is also important
to consider these women’s experiences with mathematics.

The purpose of this study was to investigate why women mathematics majors choose to
study mathematics at the undergraduate level and what factors influence their decision of
whether or not to continue with a career in this field.
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Method
The participants in this study were eight undergraduate women mathematics majors at a

large public university in the Midwest. Five of the participants were planning to become high
school mathematics teachers; three of them were not. (We initially intended to have five
participants from each category, but due to certain restrictions outside the control of the
investigator, we were only able to secure three participants from the second category.) Each
of the participants had either junior or senior class standing.

The main data source for this project was a series of three 90-minute interviews
conducted with each of the participants. We utilized the interview technique known as in-
depth, phenomenologically based interviewing. “In this approach interviewers use, primarily,
open-ended questions. Their major task is to build upon and explore their participants’
responses to those questions” (Seidman, 1998, p. 9). We followed the Three-Interview Series
protocol as suggested by Seidman (1998). During the first interview, we collected
information about each participant’s mathematical life history. The second interview focused
on each participant’s experiences thus far as a mathematics student at the undergraduate
level. During the third interview the participant was asked to reflect on the meaning of their
experiences and to discuss their future career and life goals. Each interview was audio and
video-recorded.

After the interviews were transcribed, we began analyzing the transcripts looking for
dominant themes. The video-recordings of the interviews were watched while reading the
transcripts in order to capture any non-verbal communication that might be relevant to
interpreting meaning within the participants’ stories. Due to the qualitative nature of the data,
we did not approach the data with pre-determined categories developed in another context.
Rather, we allowed the categories to emerge from and be grounded in the data itself (Strauss
& Corbin, 1998).  Once tentative categories were formulated, the interviews were reread and
recoded with respect to these categories. After the interviews were coded and the categories
were refined as necessary, we utilized the coded data to draw conclusions with respect to the
research questions.

Results
Most of the women in this study developed their interest in mathematics as a young child.

Family members (fathers, in particular) played a large role in these women’s interest in
mathematics. All of the participants considered themselves to be good at mathematics and
had been in advanced mathematics classes since middle school. Many of these women,
however, excelled in a variety of disciplines; some of them graduating toward the top of their
high school class.

There were a variety of reasons that these women chose mathematics as a major. Many of
the participants spoke of always liking mathematics and because they were good at it, it
seemed to be the logical choice of major. Some chose mathematics because, as future
teachers, they felt it would be marketable. Others talked about the benefit of not having to
write as many papers in mathematics as they would in other disciplines. Two of the
participants originally had chosen majors in the sciences, but found their college mathematics
classes more enjoyable, so they switched their major to mathematics. While none of the
participants had switched from a non-STEM major to mathematics, two of them were double-
majoring in mathematics and Spanish.

All of the participants talked about the strange reactions they frequently get when they tell
people they are majoring in mathematics. These reactions often suggested that these women
must be unusually smart or that they must be “geeks” (i.e. have no social life). Many of the
participants, however, both like and dislike these reactions. They often spoke about how they
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enjoy the prestige of earning a degree in mathematics. Many of them claimed that one reason
they chose to pursue mathematics is because it is considered to be a challenging subject.
Furthermore, they also like not fitting “the image.” For many of these women, both those
going into teaching and those who were not, majoring in mathematics meant to them that they
were breaking the gender boundaries.

Despite choosing mathematics as a major, none of the participants in this study knew of
many careers available to them with a degree in mathematics. Several of the participants
actually spoke of how limiting their degree was and claimed that this would be an obstacle to
someone wanting to earn a degree in mathematics. One student claimed:

If you’re not going to be a teacher, that’s just an obstacle in itself. I mean, how many
jobs are really out there for people who get math degrees? Like, there’s some, but it’s
not like. You know, like it’s very specific things you can do… You can’t just get any
job and use what you learned with your math degree.

All five participants who were earning a degree to become secondary school teachers
stated that they had chosen the profession of teaching first, and then decided they wanted to
teach mathematics. Two of them even claimed they had made their decision to become
teachers as early as third grade. One participant suggested a variety of reasons for choosing
this profession, yet the other four mentioned only one reason. They chose teaching because
they want to help people and want to make an impact on society. One future mathematics
teacher stated:

[My parents] were good role models in trying to decide what to do and knowing to
help people and stuff like that. So that’s why I kind of think of teaching as my method
of, uh, helping people I guess.

Another claimed:
[Teaching is] contributing to that experience for other people. I think that’s like a way
you could have a good impact. Like that could be done with my life. I could be like,
“Hmm, I helped all these people!”

One participant discussed how while growing up she had always wanted to become an
engineer and design airplanes or sports cars, however, after learning of one of her best
friend’s life-stories during her junior year of high school, she changed her future career
aspirations:

S5: I really wanted to be an Aerospace Engineer. Cuz I love, I just. Okay, there’s
just really cool shapes that you can make using like math. And like planes,
you know, the Stealth Bomber. And like I just; that stuff is so interesting to
me. I would love to be able to like design or to just make a design plausible.
Like, take someone’s cool design that looks the most sleek and awesome, like
a Viper or something… And figure out how to make it plausible, by using
math.

I: Right.
S5: That’s what I wanted to do for a long, long time.
….
S5: At that point in my life I had talked to a friend. Like this is totally separate.

But I had talked to a friend who, umm, who was, umm, a Korean adoptee, and.
Cuz she was adopted from Korea. She, I think she only lived there for like
three months. She was very, very young when she was adopted…  Umm, but
she told me, you know, her story and what happened and I just thought, you
know, there are so many people out there that have this amazing potential.
Like [she] is an amazing Clarinetist… I think she might have been student
president for a little while. Umm, she’s absolutely gorgeous. Stunning.
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Stunning. Like one of the most beautiful people I’ve ever met. And, umm,
she’s a great actress and she was band, she was the drum major. Yeah. She’s
really, really an amazing person, and if she hadn’t been adopted. You know
what I mean? Like if she hadn’t had all the opportunities. And I just feel like
everybody has that potential. It’s just that people need to cap the opportunities.
And so, I wanted to become a teacher.

I: Okay. And so, your friend’s story is what ultimately influenced that?
S5: Yeah.
I: Wow!
S5: And I, I kept the math thing, cuz I, you know, cuz I love math and because it’s

marketable. (laughs)
At a later point during the same interview, this student expanded further on her decision to
leave her dream of becoming an engineer in order to become a teacher:

S5: I guess it’s more of a moral thing. Like I went to the auto show, the Detroit
auto show, last July or January when it was, but um. I love those cars. That’s
what I wanted to be a part of. I wanted to be a part of making that car. But,
then I see like, what about. I see all the kids that are there and I’m like, “What
about the kids’ education?” You know? I mean I care about that more. That’s
so much. I don’t want to promote something like owning a nice car. I mean,
I’d rather teach people how to get a good education and make good decisions
for themselves and inspire them, you know. And to like, you know, challenge
themselves. That is so much more important to me than a car, you know. So
um, that’s what changed my mind.

Although this student had a real passion for engineering, when it came to making future
career decisions, she found that her passion for helping others took precedence.

Those participants who were not interested in becoming secondary school teachers, in
general, were less certain about their future careers. One of these participants, however, had
already decided to leave the field of mathematics in order to pursue a career in non-profit
work. She explained her decision as follows:

If I were to [become a mathematician], it wouldn’t be satisfying to me… It doesn’t
seem very rewarding or fulfilling. If you spend your whole life like trying to come up
with some new equation, you know, it’s cool because you’re still doing something,
but I don’t know. I need more of a reward than that… I guess knowing that you’ve
helped like one person is like enough for me… Going into the non-profit is like - for
me it's like doing social activism. Like, trying to change the system, the standards.
Trying to like bring some sort of justice to people that deserve it.

Furthermore, this student claimed that she did not believe that her knowledge in mathematics
would play a role in her future career in non-profit work, other than if she became an
accountant for a non-profit organization.

Although the other two participants not planning to become secondary school teachers did
not speak directly about desires to have a career involving public service, both demonstrated
subtle inclinations towards this effort. One of the two has decided that after graduation, she
will spend two years in the Peace Corps. Following that experience, she hopes to move to
Washington D.C. to pursue work with the government to “help find terrorists.”  Although she
never directly spoke about wanting to make a positive impact on society, involvement in the
Peace Corps and working to help strengthen national security could both be considered
careers that entail public service.

The final participant not intending to become a secondary school teacher is an extremely
motivated mathematics student who had begun taking graduate level mathematics courses
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during her junior year in college. As such, she has decided to complete a program offered by
her university that will allow her to earn both a bachelor’s and a master’s degree in
mathematics in a five year time period. After that, she plans to enter a Ph.D. program either
in mathematics or in mathematics education. Upon completing her Ph.D., she intends to work
either at the NSA, a large business, or a college. Although this student has conducted
undergraduate research in mathematics and is interested in continuing with mathematics
research, she explained that her interests really vary:

M3: Um, my interests kinda go into very different directions. Um, I’m very
interested in the education; why students reject math type thing and what you
can do to get them interested again, at like the elementary school level. But I
could never work with kids. Then again I’m also interested a lot in
[mathematics] research… I’m actually kind of interested in [education] at the
high school level too but I couldn’t work with them either… I don’t have the,
the patience. I mean I’m sure I could and it’d be fine and eventually I’d get
over myself and suck it up but I’d just rather not.

I: Okay. Where do you think that interest stemmed from?
M3: I don’t know. It’s just something I’ve always been pondering in the back of

my mind. When I hear people talking about it I get interested and listen to
what they have to say.

Although this participant is quite interested in doing research in mathematics, she also
expressed interests in helping keep young children interested in mathematics, and is
considering earning a Ph.D. in mathematics education as a result. Furthermore, this
participant hypothesizes that women are advancing in some of the sciences faster than
mathematics, because the ability to help people is more evident in these fields:

I think a lot more women are becoming doctors, instead of nurses. Which is going to help
significantly. That’s probably the easiest field for them to advance in. Because they are
still helping people. So that’s the easiest one to see. Um, and a lot of women that get
encouraged in mathematics immediately go into teaching. Which is fine… There are a lot
more women math teachers now [than 30 years ago].

Discussion
The results of this study suggest that many women want careers where they can help

people and positively influence society as a whole. Considering national statistics on the
employment of women in specific fields can further support this theory. In the year 2004,
although women constituted 46.5% of the U.S. workforce, 61.1% of those employed in
“community and social services occupations” were women. Furthermore, when removing the
category of “clergy” from this classification, the percentage of women increases to 71.6%.
The numbers are similar for the classification of “education, training, and library
occupations” in which women constitute 73.4% of those employed in these occupations, with
the subcategory of “postsecondary teacher” demonstrating the least amount of female
involvement at 46.0% (BLS, 2005). Therefore, women constitute a substantial number of
those employed in these service-oriented careers.

During that same year, however, only 29.4% of all “physicians and surgeons” and 29.4%
of all “lawyers” were women. While it appears that women are not entering these service-
based careers in very high numbers, these statistics do not tell the complete story. For
example, during the years 2000-2004, women earned 44.4% of the M.D.’s and 48.0% of the
law degrees (LL.B. or J.D.) granted within the United States (NCES, 2005). Therefore,
although historically women did not choose these careers at very high rates, women today are
entering these fields at nearly the same rate as men.
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There is a growing national concern, however, that not enough U.S. citizens are entering
mathematics-based careers (Kuenzi, Matthews, & Mangan, 2006). The results of the current
study suggest that one factor that may influence women’s career choices is their desire to
have a career that involves public service. Therefore, it is possible that by teaching
mathematics in the context of social justice, as described by Gutstein  (2003), we may be able
to interest more women in the field of mathematics. Furthermore, when promoting
mathematics-based careers to undergraduates, it is important to emphasize careers that
involve public service.

Further Comments
It is also interesting to note that, despite the fact that national statistics published by the

NSF and NCES do not consider mathematics teachers as having mathematical careers, none
of the participants in this study entering the field of teaching considered themselves to be
leaving the field of mathematics. To the contrary, they saw themselves as choosing a non-
traditional field and “breaking gender boundaries.”   This disparity solicits discussion as to
what constitutes a career in mathematics and whether the current definition utilized by
national statistical agencies is appropriate.

It is recommended by the Committee on the Undergraduate Program in Mathematics
(CUPM) of the MAA that, in addition to fulfilling the standard requirements for a
mathematics major, majors preparing to be secondary school teachers must also “learn to
make appropriate connections between the advanced mathematics they are learning and the
secondary mathematics they will be teaching,” know about the history of mathematics, and
be able to use technology in order to conduct mathematical modeling (CUPM, 2004, p. 52).
Such a program would provide prospective secondary school teachers with a stronger
mathematical base than standard mathematics majors. If the degree that one must earn in
order to enter a specific career is at all indicative of the field with which the career belongs,
the profession of being a secondary education mathematics teacher ought to be considered a
career in mathematics.

Future Research
Although we find the patterns identified in this study to be fairly compelling, it is

important to note that this is a small study based on the responses of eight participants, all
attending the same university. Furthermore, this university is known throughout its state as
having a strong teacher education program. Students within the state who are passionate
about becoming teachers often choose to earn their degree from this university.
Consequently, it is important for us to determine if our result that women entering the field of
teaching mathematics at the secondary school level often choose teaching prior to choosing
mathematics can be generalized to students at other universities. Hence, we are beginning to
interview women at other universities within and outside of the Midwest in order to
determine whether the results we have found can be generalized. We also intend to make this
study longitudinal by interviewing all participants three to five years after their initial
interviews to determine the career paths these women ultimately choose.
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This paper explores the idea that intertwining significant mathematical relationships with
classroom social structures might support the development of shared understanding,
particularly by using the social as both a scaffold for drawing attention to, and a resource for
building on, the mathematical. In the case described here, students’ affiliations with different
representations in the context of their respective contributions to collective classroom
discourse helped to resolve a mathematical debate, and to build a shared insight into the
relationships among multiple representations of a function.

Students’ mathematical activity in classrooms is certainly always tied to social
relationships; with luck, a reasonable share of their classroom social interactions will involve
the joint exploration of mathematical relationships. This paper seeks to explore intersections
between social and mathematical structures in classroom activity, with a particular eye
toward the ways those intersections might constitute resources for supporting student
learning. Following a brief treatment of relevant theoretical perspectives, I describe a study
conducted in a classroom where the social and the mathematical were provocatively and
productively intertwined, and present a detailed analysis of one exemplary lesson.

Theoretical Framework
The perspective developed in this paper draws heavily on two other accounts of the

relations between social and mathematical practice. Yackel and Cobb’s (1996) notion of
sociomathematical norms provides a powerful framework for characterizing the points of
intersection between students’ participation in classroom interactions, and in mathematical
activity. On this account, classroom communities develop and maintain collective, local
guidelines regarding appropriate ways to contribute to mathematical discussions. Students’
understandings of these sociomathematical norms serve as resources through which they
come to participate with increasing autonomy in classroom inquiry. In a related way, Stroup,
Ares and Hurford’s (2005) work on networked devices explores the ways mathematical ideas
can structure classroom social activity. They argue that the individual and group-level
mathematical objects that students can create in a device network support new forms of
classroom participation and collective mathematical activity. The dialectic between these new
mathematical and social spaces opened up by generative designs for networked activity
provides a resource for re-imagining and transforming mathematics teaching and learning.

Each of these perspectives relies on similar insights into the potentially productive links
between the social structures of classroom interaction and the normative and conceptual
dimensions of classroom mathematical activity. The premise of this paper is that in certain
cases, those links can also serve as resources not only for organizing or reshaping
mathematics pedagogy, but also for making important mathematical relationships and
structures salient in ways that might support rich opportunities for learning. In particular, I
take up the notion of multiple linked function representations (Kaput, 1989) as a set of
conceptual objects to be distributed among multiple learners in classroom mathematics
activity in order to foster both collaborative mathematical discourse and meta-
representational insight. Put more succinctly, I explore the conceptual consequences and the
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instructional potential of linking different students with different representations of a
collectively engaged mathematical function. Importantly, Yackel and Cobb’s account of
sociomathematical norms and Kaput’s work on multiple representations reflect different
theoretical perspectives on learning. While the former draws on a sociocultural framework, in
which learning is characterized by students’ changing participation in relation to the
mathematical practices of a classroom community, the latter emphasizes students’ developing
understanding of mathematical concepts. Greeno (1997) has proposed an approach to
integrating these sociocultural and cognitive accounts of learning; Sfard (1998) likewise
argues that these perspectives are more productively viewed as complementary metaphors
than incommensurable theories. In a similar spirit, this paper attempts to integrate these
perspectives by examining the ways social and mathematical relationships overlapped in one
classroom.

Methods
This paper draws on a detailed examination of a single episode in a high school

mathematics classroom. Students were 11th and 12th graders participating in the fourth year
of a reform mathematics curriculum. As part of a larger study, this classroom was videotaped
daily for an entire year of instruction. Observation of classroom sessions, review of the daily
videos, and formal and informal interviews with the teacher and students all contributed to
the development of an account of learning and teaching practices and classroom norms in this
setting. The episode presented in this paper was selected as particularly illustrative of a
classroom sociomathematical norm related to the linking of participation and representation
during student contributions to discussion, and for a novel moment of collective classroom
discovery emerging from that linkage. This episode took the form of a whole-class debate,
lasting nearly 30 minutes, about the relationship between the functions y=x2 and y=x2+1. All
audible student and teacher contributions to this discussion were transcribed, and all
mathematical work either written on the board or projected on an overhead display from a
graphing calculator was likewise captured from the video record. Together, these data were
analyzed to examine the ways each instance of student participation in this episode involved
the use of one or more representations (symbolic, tabular, graphical) of a relevant function in
order to contribute to resolving the mathematical problem under discussion. This analysis
included coding each such student contribution with regard to the representation on which it
relied most heavily, along with more detailed examinations of the mathematical features of
those contributions as they built on or refuted those of other students, and of the gradual
process through which the class moved from a mathematical dispute to a collective
interpretation.

Analysis
A key feature of this teacher’s instructional approach involved regularly asking students

to demonstrate solutions, pose conjectures, explore ideas or advance arguments through brief
and impromptu presentations from the front of the room, usually through the use of either
dry-erase markers on a white board or a projected graphing calculator display. One
sociomathematical norm governing these student contributions to collective problem-solving
discourse involved the use of different representations as resources. Students were
encouraged to draw from an array of representations, and some even came to identify
themselves in relation to a particular representation—so that a student might even explain for
their choice of representational mode by saying things like: “I’m a graphing person.”

Linking individual participation with representation in this way appeared to serve as a
classroom resource both for resolving mathematical debate, and for developing collective
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understanding of the links among multiple representations. In the episode examined in detail
for this paper, 11 students made a total of 13 successive presentations from the front of the
room regarding the problem under discussion. Of these contributions, summarized in Table 1,
7 were coded as relying primarily on graphical representations, 3 on tables, and 3 on
symbolic expressions. The prominence of graphical representations reflected the nature of the
debate; some students thought that the graph of y=x2+1 had a “different shape” from y=x2,
while others asserted that the two functions were identical but for a vertical shift. The use of a
public graphing calculator display in some students’ presentations only strengthened the
support for the incorrect interpretation, and resolving the debate involved a careful weaving
among the symbolic, graphical and tabular perspectives by several students in order to
reconcile the correct interpretation of the vertical translation with a confusing graphical
display.

Student Contribution Representation
1 Added one to values in Table, “makes it steeper” Table
2 y=x2+1 can’t touch x-axis because 02+1=1 Symbolic
3 f(0)=0+1 so graph through origin incorrect Symbolic
4 Erases graph that looks least like x2—too skinny Graph
5 “22+1…doesn’t change the shape, it just changes the height.” Symbolic
6 Graphs both functions on calculator, argues they’re different Graph
7 Graphs x2+10 Graph
1 “it's almost the same shape, but it's…compressed some” Graph
8 “it's the same exact graph” “all the y-coordinates are up one” Table
9 “it only looks squinched on the calculator” Graph
10 Compares differences in table Table
11 “If you just draw it by hand… they stay just one apart.” Graph
7 Traces projected curve, moves projector Graph

Table 1. Student Presentations and Representations

In the analysis that follows, excerpts from four of these student presentations will be
examined in greater detail—one each from the symbolic, graphical and tabular modes,
followed by an argument that attempts to make connections between multiple representations.

Symbolic
Students used symbolic representations to make two key points. The first was that unlike

y=x2, the graph of y=x2+1 could not touch the x-axis. The second point was that because the
two functions differed only by a constant, their respective graphs had identical shapes.
Student 5 elaborates the latter argument in this excerpt:

Student 5: The thing that makes it this shape, is,
um, would be the x squared [indicates
expression]. It's the x-squared part. Because
when you do, like, if this was two [touches x-
axis at x=2], it’s four here [draws the point
(2,4)], and negative two is negative four here
[draws the point (-2,4)]. So it's the same shape,
and then if you have a negative, er, two squared
plus one [indicates expression again], it doesn't
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change the shape. It just changes the [moves hand up and down to show vertical
translation]...the height.

Figure 1. Symbolic representation
Importantly, this student illustrates her argument through repeated references to a graph,

including drawing two points on the board. But I have coded that argument as symbolic
because she relies on references to the algebraic expression as the evidence for her assertions
about that graph. In particular, she stresses that “it’s the x squared part” of that expression
that “makes it this shape,” so that adding one “doesn’t change this shape.”

Graphical
The next student to come up disagreed with that conclusion, and illustrated his

counterargument by plotting several points associated with the two functions, sketching the
graphs, and then asserting that this work “shows that it's different”. The sketches failed to
provide clear support for or against his claim, so the teacher suggested that he graph both
functions on a calculator projected onto the board. This prompted an extended class
discussion about the appropriate window dimensions in which to view and compare the
graphs. After adding the function y=x2+10 in order to provide a clearer contrast, they
eventually settled on the display shown in Figure XX. The following excerpt illustrates the
way several students interpreted this graphical display:

Student 1: I think it's like, it's almost the same shape, but it's kind of like, compressed some,
so like, even if it's way, like if you have another one way up here, like x squared plus like
20, it's gonna go out to the same
thing.

Student 7: Right, but the…
Student 1: Like the same lines.

Like, all three will go up
eventually, looking like really
close.

Teacher: So you're saying, now,
I'm going to rephrase what he's
saying, and you tell me whether
this is correct. You said that
eventually it's going to look like
that, but at the bottom, it's
scrunched differently.

Student 7: Yeah.
Figure 2. Graphical representation

These students agreed that while these parabolas have “almost the same shape,” and share
similar end behavior—they “go out to the same thing,” they were “compressed” or
“scrunched” differently at the bottom. This misunderstanding of the relationship between the
functions appears to be a consequence of a sort of optical illusion produced by comparing the
vertical spacing between the curves near the respective vertices with the horizontal spacing at
other points.

Tabular
The next student to come up used tabular representations to challenge this interpretation

of the two graphs as having different shapes. This presentation opened with an exchange
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between the teacher and student about the latter’s choices of representational medium and
mode:

Teacher: Ok. So [Student 8] wants to go up.
Student 8: Oh, not on the

calculator, but on the…
Teacher: Ok, you want to talk.

Go ahead.
Student 8: Yeah, just on the t-

table.
Teacher: Fine.
Student 8: Ok, so for this one,

this is…[draws a table of
values for y=x2]. And for
this one, it's  just…[draws a
table of values for y=x2+1].

Seated Student: I am a
graphing person.

Student 8: And, it's like, it's the
same exact graph, it's just
that all the y-coordinates are up one…this two is just up one from one, and this four is
just up to five, it's just the whole thing is just up one.

This student expresses her preference for the table rather than the graphing calculator as a
resource for making her argument. In apparent response, a student seated near the camera
asserted aloud that he was “a graphing person”—a moment illustrative of the classroom
sociomathematical norms regarding multiple representations. Meanwhile, Student 8 used the
tables she had drawn to demonstrate that the second function was indeed just a vertical
translation of the first—“the whole thing is just up one.”

Linking Representations
Presented with these symbolic and tabular cases for the two functions having the same

shape, and the apparently clear graphical demonstration of their difference, the class
remained divided about the correct interpretation. The next excerpt proved pivotal in
resolving that division, and I will argue that it achieved that resolution precisely because it
involved drawing connections among multiple representations:

Student 11: If you just draw it by hand, you see
that it's the same, like, from the little table,
because, like, if you just do it yourself, you just
go, like, one, two, three, four [counts off as he
scales and labels x-axis]…And then up one,
two, three, four, five, six, seven, whatever
[scales y-axis]. And then you just, like, here it's,
so you know it starts here, and then like, on the
first one you're here [makes a mark on the graph
at (1,1)], and then you're at four [marks the
point (2,4)]…up here. And on the second one
you'd, so you move up here [marks (1,2)], and

Figure 3. Tabular representation
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then you're at five [marks 2,5]. And you just
keep going and they're, they stay just one apart
[holds his index finger and forefinger a unit
apart].

 Figure 4. Vertical shift
This student began by emphasizing the connections between the graphical—“if you just

draw it by hand”—and the tabular—“it’s the same [as] the little table.” To illustrate these
connections, he plotted the same points Student 8 had identified as ordered pairs in her t-
tables for the two functions. Just as Student 8 had stressed that “two is just up one from one,
and this four is just up to five,” and that “just the whole thing is just up one,” Student 11
emphasized that the points from the respective functions “stay just one apart.” He then
carefully sketched the two curves and again emphasized that there was “just one [vertical]
difference all the way up.” In doing so, he effectively linked the one-unit difference that his
classmates had identified in the symbolic expressions and tables of the two functions to their
respective graphs. As student 11 concluded his explanation, the remaining students who had
thought the shapes of the two graphs were different acknowledged that they had now been
convinced otherwise.

Discussion
This debate was both fueled and eventually resolved by the distinct affordances and

limitations of these different representations. Students who drew on the symbolic and tabular
modes were able to clearly explain and illustrate the one-unit vertical translation from y=x2 to
y=x2+1, but that vertical shift was more difficult to observe in the graphical displays provided
by hand-drawn sketches and the graphing calculator. Student 7, in fact, went to the front of
the room to add the graph of y=x2+10 to the calculator display because she thought it would
help student 6 to see that the curves had the same shape, but concluded after seeing the graph
by agreeing with students 1 and 6 that the parabolas were “scrunched differently” at the
bottom.

These apparently contradictory interpretations of these different representations of the
same functions posed two conceptual problems for the class. First, the class could not, prior
to Student 11’s presentation, come to agreement about which interpretation of the
relationship between the shapes was correct. And second, they could not resolve the apparent
discrepancy between what they expected to be equivalent representations. Student 11’s
linking of arguments from the table and graph provided a way to solve both these problems
simultaneously. He gave a convincing answer to the question of whether the two functions
had the same shape, and he demonstrated that that answer was indeed supported by both
representational modes.

My point here is not to overemphasize the significance of Student 11’s presentation
relative to those made by other students. In fact, the presentation’s effectiveness appeared to
be supported less by the clarity of the speaker or the depth of the insight than by the
progression of other student contributions on which it built. In other words, the link between
the graphical and tabular modes was less a consequence of Student 11’s unique perspective
than it was an emergent feature of several successive presentations from distinct
representational perspectives. While Student 11 made reference to the tables drawn by
Student 8, his presentation was clearly focused on the graphical mode—as in every other
student presentation, a single representational mode predominated. But by highlighting a
connection between his graph and Student 8’s table, and by finding a way to interpret the
graph that aligned with other students’ interpretations of the tables and symbolic
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expressions—as demonstrating the identical shapes of the two curves—he helped to complete
the class’s gradual weaving together of these multiple representational threads.

Ultimately, the episode supported a view of the links among multiple representations
precisely because each student—in keeping with a classroom sociomathematical
norm—stayed in a single representational mode, as agreement among representations
emerged as a necessary corollary to agreement among students who had been on opposite
sides of a debate. In terms of the dialectic proposed by Stroup et al., the social space defined
by this succession of student presentations with the support of representational tools helped to
delineate a corresponding mathematical space. As students brought their respective views of
the two functions into alignment, they drew attention to the ways the different representations
underlying those views were likewise aligned: the links among multiple function
representations were made visible through transactions among multiple social actors. At the
same time, the mathematical links among the different representational artifacts invoked by
students provided resources for negotiating those transactions.

Conclusion
I conclude by suggesting that this classroom episode may point toward some valuable

implications for the design of mathematical learning environments. Work such as Kaput’s
attests to the promise of multiple linked representations in computer-based learning
environments for supporting student understanding of complex mathematical concepts like
function. But that promise may be much more likely to be fulfilled if the links among those
representations are socially as well as technologically mediated. To that end, my own design-
based research efforts are currently devoted to investigating the potential of linking
mathematical and social structures as a principle for designing collaborative problem-solving
activities that utilize classroom computer networks (White, 2006; 2007). These designs
connect the relationships among a set of mathematical objects, including but not limited to
multiple representations, with the pedagogical organization of relationships among multiple
students. I hope that these designs will not only make rich classroom conversations like the
one reported here more common, but also contribute to broader theorizing about the
relationship between the social and mathematical dimensions of classroom activity.
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We study affect and its associated social and cognitive aspects in an urban classroom, as
students working in small groups express themselves as they solve mathematical problems.
We focus on several students and their interactions with their peers, the teacher, and the
influence of the environment in which they live. We propose several “archetypal affective
structures” for which we describe evidence from the analysis of classroom videotapes.

This report is based on one component of a larger study presently under way (1),
investigating the occurrence and growth of urban students’ powerful affect in relation to the
learning of conceptually challenging mathematics. By powerful affect, we mean affective
structures that contribute to mathematical engagement, persistence, problem-solving success,
and achievement (McLeod, 1992, 1994; Goldin, 2000, 2007). These structures include certain
patterns of emotions, attitudes, beliefs, and values (DeBellis and Goldin, 2006). In the
broader study (see Alston, Goldin, Jones, McCulloch, Rossman, & Schmeelk, 2007, for
additional description), we approach the challenging and significant problem of
characterizing affect, together with its associated social and cognitive aspects, in the context
of several mathematics classrooms as students are working in groups and expressing
themselves spontaneously as they work. In this research report, we focus on one group of
urban students, and their interactions with their peers, the teacher, and the environment in
which they live. As a result of our preliminary analysis, we propose and describe several
``archetypal affective structures’’ for which we see evidence.

Theoretical Background and Framework
We draw on ideas from several disciplines, including sociocultural and situated learning
theories (e.g., Wertsch, 1985; Brown, Collins, & Duguid, 1989), cognitive science (e.g.,
Greeno, Collins, & Resnick, 1995), and mathematics education (e.g. Schoenfeld, 1992; Lesh,
Hamilton, & Kaput, 2007). We extend this literature by attending to specific challenges faced
by students in inner-city middle schools (Dance, 2002, Anderson, 1999) as they work on
mathematics problems.

In addition, we refer to a model of attention proposed by Cohen (1978), wherein attention
is a limited commodity that needs to be allocated among tasks. One adaptive strategy is to
give tasks deemed to be instrumental to attaining high-priority goals greater attention than
tasks associated with lower priority goals. When people anticipate that an adaptive response
is needed, they will “activate a monitoring process that evaluates the significance of the
stimulus and/or decides on appropriate coping responses” (Cohen, 1978 p.3). For instance, a
stimulus occurring for many youngsters living in urban environments is danger that can arise
from an insult (tacit or explicit) by another youngster, or from an act that makes one look
wrong or foolish, so that one loses “face.” We propose that this is true for most or all human
beings, regardless of the environments in which they live; however, our particular focus here
is on urban youth. According to Anderson, “life in public often features an intense
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competition for scarce social goods in which ‘winners’ totally dominate ‘losers’ and in which
losing can be a fate worse than death.” (p.37). Anderson notes that an important aspect of the
“code of the street” is to not appear weak and/or perceived as a “loser”. Hyper-vigilance for
unpredictably-occurring incidents in which students’ honor or “face” will be challenged
during group discussions may then draw students’ attention away from the mathematical
ideas behind the task under discussion. McLaughlin (1993) quotes an inner city youth worker
who describes his objectives for his peers this way: “I want these youngsters to ‘duck the
bullet’ – not just the bullets that come from the gun but from the verbiage of peers” (p.38).

Regardless of the conditions in which students live, we know that urban students do
become invested in doing mathematics, and some achieve great success (e.g., Schorr, Warner,
Samuels, & Gearhart, 2007; Silver & Stein, 1996). We therefore believe that it is important to
understand the circumstances that surround this achievement, so that many more students can
have similar opportunities. In our work, we explicitly reject a “deficit model” of urban
education. A main purpose of the present study is to better understand the constellation of
affective/social/cognitive structures that surround the development of mathematical success
in urban mathematics classrooms.

Research Questions and Methods
The research questions of the overall study include: How do teachers contribute qualitatively
to creating an emotionally safe classroom environment for urban students to explore
conceptually challenging mathematics? What are the affective and cognitive consequences
for urban children learning mathematics, including students’ social interactions, emotional
states, and mathematical learning?

Subjects: The 8th-grade classroom that is the focus of this research report is one of three
that comprise the broader study. It is located in a school in one of the largest NJ cities. The
school is classified as “low income”, with 100% of the students being members of minority
groups – 93% “African American” and 7% “Hispanic”. Students in the observed classroom
worked in small groups varying in size from three to five students. The composition of the
groups sometimes changed from session to session, affording us an opportunity to observe
selected “focus students” interacting with different students and in different groups.

Procedures: Classroom interactions of the entire class and of the focus students were
videotaped using 3 separate cameras. Classes were observed in 4 “cycles” over the course of
the school year, with each cycle spanning two consecutive days. Prior to the start of each
cycle, an interview was conducted with the classroom teacher to ascertain her plans for the
lesson and her ideas about what she expected to happen when she taught the lesson. A
follow-up interview with the teacher took place after each cycle. After each cycle, focus
students were interviewed using a visually stimulated recall protocol. Clips containing what
the researchers believed were key affective events were selected from the videotapes and
shown to the interviewee, to evoke the student’s perspective on what had transpired and the
emotional responses the student recalled having had. All videotapes were transcribed, and
students’ written work on the problem was scanned. Data were coded and interpreted using
four analytical “lenses,” including: the flow of mathematical ideas, the occurrence of key
affective events, social interactions among the students, and teacher interventions.

Results and Some Illustrative Data
We have formulated, based on our preliminary analysis of data, the concept of an “archetypal
affective structure.” This refers to a recurring pattern, inferred from observing the classroom
and interview tapes, that is a kind of behavioral/affective/social constellation. Included are
characteristic patterns of behavior (speech, gesture, movement, posture, and emotional
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expression) indicative of affective pathways (sequences of emotional states), accompanying
internal “self-talk,” and characteristic social interactions. These have important cognitive
implications, and can entail important day-by-day choices, with powerful consequences –
positive or negative – for mathematical education.

The term “archetypal” is intended here to suggest the idealized and, we believe, universal
nature of these patterns, abstracted from the observed instances of their occurrence. In this
sense, it is quite the opposite of “stereotypical” behaviors or characteristics, which so often
characterize the deficit models that we have rejected.

Our preliminary analysis has led to the identification of several such structures in the
context of conceptually challenging mathematics. Three examples are described here; for
each, we describe (idealized) behavior and associated self-talk, with an illustration.
(I) “Don’t Disrespect Me”; (II) “Check This Out”; (III)  “Stay Out of Trouble”

I: “Don’t Disrespect Me”: The essential ingredient in this archetype is the experience of a
challenge that poses a threat to one’s actual or perceived safety or well being, and therefore
must be resisted. The process of resisting elevates the struggle above the task, which serves
as the arena for the struggle. The need to maintain face is paramount.

Behavior: Someone disagrees with my idea. I interpret that as a social challenge (self-
talk: “He thinks my idea is wrong,” together possibly with, “He wants to make me look bad
and make himself look good”; note this is different than just disagreeing with my idea) 
(self-talk: “I may be seen as weak or a loser”) therefore feeling threatened  (self-talk:
“People seen as weak get picked on or harassed by others”) therefore experiencing fear  
(self-talk: “How dare he disrespect my ideas”) therefore feeling anger   (self-talk: “I can’t
let him get away with that”) therefore aggression (fighting or arguing with the other person)
 (self-talk: “What does he know about math anyway”) therefore feeling contempt (for the
other person and his ideas) and unwillingness to consider the ideas.

The following excerpt describes a highly impassioned discussion of mathematics and how
it develops. The students are working on a problem that asks them to find the maximum area
for a cow pen given a fixed perimeter (they are told that the farmer purchased 100 feet of
fencing). Dana [all names are fictitious] has been working productively with her group, often
engaging the others in mathematical exchanges about the solution process. After working on
the problem for about one period, the teacher asks the students to prepare a poster
documenting their solution strategies. The students are then encouraged to walk around the
room to observe and comment, in writing and verbally, on other groups’ work.

It turns out that Dana and her group have been calculating the area incorrectly (instead of
multiplying length by width, they multiply lengths [side a + side c] by widths [side b +side
d]). This process is displayed on their poster. Another group notices this as they walk over to
the table where Dana’s group’s work is displayed. The excerpt below occurs when Dana
learns that members of the observing group think that the work her group did was wrong. She
engages in a conversation with three young men, Shay, Ghee and Larry, about her group’s
solution. She vehemently defends the work of her group (which she later admits may have
been incorrect). Both Dana’s and Shay’s facial expressions and bodily movements become
increasingly combative as the conversation goes on

[Dana]: … where it is wrong? [Shay]: Cause you put, when you finding, um, the area,
you timesed the width times the (inaudible) [Dana]: All right, but we timesed all that up.
[Shay] But you're not supposed to. [Dana]: Alright, but we did it though, so … [Shay]: But
you're not supposed to, so it's wrong. [Dana]: No, it's not wrong. Actually, no it's not. [Shay]:
It's wrong, it's wrong, IT’S WRONG! [Dana]: No, it's not. [Ghee]: How is it wrong? [Shay]:
Look at that (showing on calculator), that's what y'all got, 1600? [Dana]: Yes. [Shay]: That's
what y'all got? [Dana]: Yes. [Shay]: So the width times the 40. [Dana]: Well, we didn't do
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that, it equals 400, but we didn't do it. [Shay]: 40, yes, that's how you do it. 40 times 10, that's
how you get that. [Dana]: Well, we didn't do it that, so, oh well. [Shay]: That's the right
answer.

Shay continues to try to convince Dana that her method is incorrect, using 40 as the
length and 10 as the width. Ghee, another student who had been working with Dana also
engages in the conversation. [Dana]: Oh well … [Dana]: We already know 40 times 10
equals … [Shay]: That's what your area is. Ok, that's what your area is. [Ghee]: 40 times 10
… You said 40 times 10? 40 times 10, 40 and 10 … none of that add up to 100. [Larry]:
Yeah, so … [Shay]: You add … you add this, that's 40. That's 80 right there [referring to 40 +
40]. And that's 100 [adding 10 + 10 to the 80 feet]. Yeah, so you don't know what you're
talking about. That's the perimeter, that's the perimeter. [almost shouting, and moving closer
to Ghee’s face as he points to the work] And area is 400. [Ghee]: No, 80…that's exactly what
we did. [Shay]: And that was wrong. [Dana]: 80 times 20 is not wrong from 100. [raising her
voice and speaking with conviction to Shay] (unknown) 80 plus 20 is 100. [Dana]: Thank
you! Thank you, 80 times … I mean, 80 plus 10 … I mean, 20, is 100. [Ghee]: So now who
got ripped? Shut up, man! [Dana]: So wait … 80 … [Shay]: Exactly, tell 'em you gotta
multiply length times width. [shouting at Dana] Not what y'all did. [Dana]: That's what we
did! ! [shouting at Shay] That's what we diiiid!  [Ghee]: That's exactly what we did (makes
angry motion)

When Dana was asked to watch a video of the above interaction and reflect on it, she
notes that being wrong makes her uncomfortable, especially when other students are trying to
prove her wrong, but acknowledges the possibility she was wrong.

[Interviewer] So what do you think? [Dana] That was a funny clip. [Int] How were you
feeling during that? [Dana] Mad angry. Everything. [Int] Well, why? [Dana] Because, Shay
was proving me wrong. [Int]  So how did he prove you wrong? [Dana] He was trying to
prove me wrong. Maybe he was right, and then maybe I wasn’t right. Or maybe I was right,
and then he wasn’t right. I don’t know. Cause he multiplied the length and the width, but I
multiplied both of the lengths and both of the widths. So … [Int] So what do you think?
[Dana] That … maybe his answer is wrong. Maybe he multiplied the length and the width,
because on the paper it said multiply the length, and not the width. [Int] So what do you
think? What did you understand from that day? [Dana] That, maybe I was wrong. I don’t
know whether I was wrong or right. I was just, that day. He was, I couldn’t say nothing to
him cause he, I was mad at him. [Int] Were you feeling comfortable that day? [Dana] No [Int]
Why? [Dana] Cause he was trying to prove me wrong. [Int] Do you feel that way often? Does
this happen often? [Dana] Yes. [Int] So you’re uncomfortable often? [Dana] Not all the time.
But when I’m right, I’m not uncomfortable. But when I’m wrong, when they try to prove me
wrong, I’m uncomfortable. [Int] That’s interesting. So when it is that, when are the moments
when you get mad? When what’s happening? [Dana] When they, when people in my group
really aren’t doing nothing at all, that makes me mad. [Int] Is there anything else that makes
you mad? [Dana] Uh.. yeah, when people try to prove me wrong too.

In this interview, Dana said that she was uncomfortable “…when people try to prove me
wrong.”  Notice that she chose to use the word “me” rather than saying “when people try to
prove my idea wrong”. We infer that she took it personally, which supports our contention
that her primary focus was a need to save face. The motivation to maintain face seems to
become stronger than the motivation to engage in mathematical inquiry.

II. “Check This Out.” The essential ingredient in this archetype is the occurrence of a
realization that solving a problem is related to learning something that can have a
payoff—now or in the future. This motivation to engage with the task can lead to intrinsic
interest in the intellectual aspects of the task and/or extrinsic interest in the potential payoff of
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doing the task now or at some later time. Initial task compliance (self-talk: “I will do the math
problem that teacher has assigned”)  (self-talk: “This looks like it might be interesting”
therefore reflection (thinking about the task)  (self-talk: “Maybe knowing this can help me
in some way” therefore curiosity  (self-talk: “Let me see what I can do with this problem”
therefore engagement with task (start to work diligently at the task)  (self-talk: “This is
actually interesting”) therefore heightened interest  (self-talk: “I am good at this”) therefore
pride, and changed self-concept.

To illustrate this archetype, we report an instance (during another class session) where we
infer that Shay has set in motion a "Check This Out" affective structure for himself as well as
for several other students working with him in his group. The task asks which of several “DJ
Packages” is the best value, in terms of cost per hour of DJ time. In contrast to the “cow pen”
task above, Shay sees its relevance to a task he may someday encounter. He has become
engaged with the task, and open to new information that may help him arrive at a more
accurate solution. In one instance, he expresses an idea that a girl in his group believes is
incorrect. As he listens to her idea, there are no external signs indicating any defensiveness
on his part or hers. Rather, he is willing to consider her views, and adjust his ideas
accordingly. His willingness to consider her views and change his mind encourages her to
become even more engaged with the problem as they engage in a productive mathematical
dialogue. As they do this, another student who heretofore had not been engaged becomes
curious and starts to look at what Shay is doing with his solution. Shay’s interest in the
problem appears to stimulate his classmate to also become involved.

The following dialogue involves Shay, Gina, a girl in his discussion group, and the
Teacher (Ms. B.). [Teacher]: The Y represents what?  [Gina]: The number of hours
[Teacher]: (to Gina) So can you label X and Y for me? [Shay]: (engaged in the task, points
out what he thinks are X and Y) [Gina]: I think it’s supposed to be the other way around.
[Shay]: Yah, Yah, Yah (acknowledging that Gina was correct).

Here is a potential “branch point,” where Shay could either remain engaged, or could
have become defensive and attempted to save face, as in the Don’t Disrespect Me archetype.
A non-defensive presentation on his part in turn enabled Gina to comment on his mistake in a
non-threatening way. Shay then continues to participate enthusiastically, writing information
on his paper. He seems engaged in the process, willing to listen to feedback from groupmates
and willing to change his answer based on this information. We conjecture this engagement
was set in motion by his desire to Check This Out. His openness encourages Gina to become
even more engaged, and the two of them get involved in a productive mathematical dialogue.
As they do so, Tyrone, another student in the group who heretofore had not been engaged,
becomes curious and starts looking at what Shay is doing with his solution.

The retrospective interview then suggests Shay’s developing self-confidence:
[Interviewer] ok, all right, umm so how are you feeling when … when you are explaining
your work and (inaudible)? [Shay] Like I could do it, but I don’t know how to explain it.

III. “Stay Out of Trouble” The essential ingredient in this archetype is the need to take
care of oneself and avoid entanglements that will lead to trouble. Argument (between 2 other
people – the conversation is getting heated, and could end in a confrontation)  (self-talk:
“This situation has become dangerous and someone may end up in trouble”) therefore fear 
(self-talk: “If I get in trouble in school it will jeopardize my security, or present or future
chances for getting ahead”) therefore feeling threatened about the future  (Self talk: “If I
don’t get involved and don’t say anything, they will ignore me and I won’t have any problem
with them” therefore withdrawal (an attempt to hide and not be noticed, so as not to attract
the anger of one of the protagonists) (self-talk: “If I get too involved, and my answer is
different, it may threaten someone else and they will get angry at me leading to trouble”)



654

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

therefore affective numbness  (self-talk: “I don’t care about what’s happening in this
argument anyway”) therefore disinvestment in the mathematical task.
Will, a member of Dana’s group, short in stature, recently immigrated to the United States
from Guyana. He was often quiet during the discussions that took place in the group, and at
times, was actually admonished by his peers in the group for not participating. One group
member told the teacher that Will was unwilling to share his ideas, that he wrote his ideas on
a paper but later crumpled it up and threw it away. When the teacher asked Will to share his
ideas, he did so very quietly.

Interviews and careful examination of the classroom video revealed that Will had a good
understanding of the mathematics involved in the problem. Further, in his interview, he stated
that he liked being in the United States because it gave him an opportunity to get a good
education. In the retrospective interview, it appeared that Will believed his solution and the
solution chosen by the group were equally likely to be correct. However, he was reluctant for
the group to choose his solution, for fear of backlash. [Will]: I won’t get mad because they
didn’t choose mine because mine could have been wrong, and theirs could have just been
right. So, if they had chosen my wrong one, and the right one they tossed it away, they
might’d get mad at me. So I just left it like that, so we didn’t know which one was right, so
we just basically chose one.

Will also expressed concern about arguments. When the interviewer asked Will how he
was feeling when he crumpled his paper, he said that his “level of happiness went down.”
The interviewer asked him why he crumpled up the paper. [Will]: I didn’t like, saying
anything. [Int]: Why not? [Will]: Because, it might just cause an argument in the first place.
[Int]: And how do you feel when there’s an argument? [Will]: I don’t like arguing with
people, because mostly, they become more like a fight. [Int]: Interesting. [Will]: And, if it
comes to a fight, you just get suspended. And maybe, they just kick you out of school.

Based upon our analysis, we suggest that Will felt that the situation could be dangerous
and potentially lead to a fight. Consequently, Will hung back and only shared his ideas
quietly and unassertively, ideas which had he been willing to defend might have changed the
direction of the group’s solution to a more productive path.

Discussion
These are just a few of a larger set of archetypal affective structures that we identified.

We hypothesize that much of the strongly expressed affect seen here is connected with the
need for maintaining “face,” which is a key element in the street culture of the inner city. At
times, it engulfs and overwhelms all else during mathematical group discourse, focusing
students’ attention on “looking good” as a higher priority than discovering mathematical
patterns or achieving success.

A longer-range goal of this type of analysis is to provide a framework to describe some
possible teacher interventions that produce movement toward mathematically powerful
affect. For example, in a group situation where some students are not participating, we
observe teacher interventions that contribute to the students becoming involved. The
atmosphere changes from latent resentment at an unfair distribution of work, with consequent
disinvestment from the task, to a feeling of justice and fairness, with consequent ability to
pay attention to intellectual and practical aspects of the task. By identifying archetypal
affective structures, and becoming able to recognize them in classroom discussions of
mathematics, we hope to better help teachers create affective/social contexts in which
difficult situations occur with decreased frequency, and productive situations are maximized.



655

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

Endnote
1. This research is supported by the U.S. National Science Foundation (NSF), grants no.

ESI-0333753 (MetroMath: The Center for Mathematics in America’s Cities), and 0138806
(The Newark Public Schools Systemic Initiative in Mathematics). Any opinions, findings,
and conclusions or recommendations are those of the authors and do not necessarily reflect
the views of the NSF.

References
Alston, A., Goldin, G. A., Jones, J., McCulloch, A., Rossman, C., & Schmeelk, S. (2007).

The complexity of affect in an urban mathematics classroom. Proceedings of the 29th

Annual Conference of PME-NA (these proceedings).
Anderson, E. (1999). Code of the Street. New York: W. W. Norton & Company.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning.

Educational Researcher, 18, 32-42.
Cohen, S. (1978) Environmental Load and the Allocation of Attention in A. Baum, J. E.

Singer, and S. Valins (eds.)  Advances in Environmental Psychology Volume 1: The
Urban Environment. Hillsdale, NJ: Lawrence Erlbaum Assoc. pp. 1-29

Dance, L. J. (2002). Tough Fronts: The Impact of Street Culture on Schooling. New York:
Routledge-Falmer.

DeBellis, V., & Goldin, G.A. (2006) Affect and meta-affect in mathematical problem
solving: A representational perspective. Educational Studies in Mathematics 63, 131-147.

Goldin, G. A. (2000). Affective pathways and representation in mathematical problem
solving. Mathematical Thinking and Learning, 2, 209-219.

Goldin, G. A. (2007). Aspects of affect and mathematical modeling processes. In R.A. Lesh,
E. Hamilton, and J. J. Kaput, (Eds.) Foundations for the Future in Mathematics
Education. Mahwah, New Jersey: Lawrence Erlbaum Associates, 281-296.

Greeno, J. G., Collins, A. M., Resnick, L. B. (1995). Cognition and learning. In D. C.
Berliner, R. C. Calfee (eds.), Handbook of Educational Psychology (pp. 15-45). New
York: Macmillan.

Lesh, R.A., Hamilton, E., and Kaput, J.J. (Eds.) (2007) Foundations for the Future in
Mathematics Education. Mahwah, New Jersey: Lawrence Erlbaum Associates

McLeod, D.B. (1992). Research on affect in mathematics education: A reconceptualization.
In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp.
575-596). New York: Macmillan.

McLeod, D.B. (1994). Research on affect and mathematics learning. Journal for Research in
Mathematics Education, 25, 637-647.

McLaughlin, M (1993) Embedded Identities: Enabling Balance in Urban Contexts. In S.B.
Heath and M.W. McLaughlin (eds.) Identity and Inner City Youth: Beyond Ethnicity and
Gender. New York: Teachers College Press, page 37.

Schoenfeld (1992). Learning to think mathematically: Problem solving, metacognition, and
sense making in mathematics. In G. A. Grouws (ed.), Handbook of research on
mathematics teaching and learning, (pp. 334-360). NY: MacMillan.

Schorr, R.Y., Warner, L.B., Samuels, M.L., Gearhart, D.L.. (2007)  Teacher development in a
large urban district: The impact on students.. In  R.A. Lesh, E. Hamilton, J.J. and Kaput,
(Eds.) Foundations for the Future in Mathematics Education. Mahwah, New Jersey:
Lawrence Erlbaum Associates, 431-447.

Silver, E.A., and Stein, M.K. (1996) The QUASAR project: The ‘Revolution of the Possible”
in mathematics instructional reform in urban middle schools. Urban Education, 30 (4),
476-521.



656

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Cambridge, MA: Harvard
University. Chapters 1–3 (pp. 1-76).



657

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

THE IMPACT OF MOMENT-TO-MOMENT DISCOURSE MOVES
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Different opportunities to learn mathematics are created by habitualized, moment-to-
moment choices teachers make in scaffolding mathematical conversations. This study
uses discourse analysis to identify and analyze the patterns of discursive moves in two
seventh-grade math classrooms. Differences in norms for participation and the kinds of
intellectual work teachers required in their classrooms were reflected in the patterns of
follow-up moves the teachers employed.

As learners construct meaning, their participation in activities and within
communities mediates their ways of thinking and learning (Lave & Wenger, 1991;
Wertsch, 1991). From this point of view the kind of classroom interaction between
students and teachers is critical to how and what children learn. Because the primary
mode of interaction in schools is discourse, it is an important factor in the teaching and
learning of mathematics. It is both essential and unavoidable in classrooms. However,
many studies of classroom interaction take the larger class organization as the unit of
analysis and investigate the impact of various activity structures, tasks, curricula, and
differing classroom norms on student learning and reasoning (Hiebert & Wearne, 1993;
Saxe, Gearhart & Seltzer, 1999; Yackel & Cobb, 1996). Though important, these macro-
level factors tell only part of the story. They fail to identify the discursive mechanisms in
real-time interaction that constitute learning.

This research posits that different opportunities to learn mathematics are created by
habitualized, moment-to-moment choices teachers make in scaffolding everyday
conversations in math classes. Over time, ways of responding “in the moment” are
internalized and eventually become recognized and accepted ways of doing things in the
classroom community. Thus, variation in the normative routines and kinds of talk in
classrooms is likely to affect learning. It is these differences in discursive moves that I
will identify and analyze in this paper.

Conceptual Framework
The theoretical foundation of this line of inquiry includes the situated nature of

learning (Brown, Collins & Duguid, 1989; Lave & Wenger, 1991), the relationship
between thinking and speech (Vygotsky, 1986), and the role of discourse and
dialogicality in learning (Bakhtin, 1981). As the hallmark of interaction, language held
particular interest for Vygotsky because of its mediational potential to transform future
thought and action. The act of organizing vague, disconnected ideas through discourse
can help produce meaning for oneself and others by making utterances objects of
reflection. Ideas become public and concrete providing opportunities for reflection,
analysis, and joint consideration. Mercer explains, “We acquire ways of using language
that can shape our thoughts. These ways of using language provide us with frames of
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reference with which we can ‘recontextualize’ our experiences” (1995, p.75). The process
of schooling is one of the means by which we acquire these “ways of using language.”

Because classroom discourse is broad and complex, I will focus on one aspect of
discourse and its relationship to students’ opportunities to learn: teacher follow-up of
student responses. This is based on Mehan (1979), Sinclair & Coulthard (1975) and
Wells’ (1996; 1999) description of the widespread IRE/IRF (Initiation-Response-
Evaluation/Follow-up) patterns found in schools. Teacher follow-up is also one of the
primary means by which teachers scaffold learning. Choices made in the follow-up slot
can constrain and enable the kinds of classroom discussions and learning that occur. My
question, then, is do differences in follow-up impact students’ opportunities to learn?

The pervasive tendency in American classrooms is for participants (primarily
teachers) to use the follow-up slot exclusively for evaluative purposes; hence the E in
IRE patterns (Mehan, 1979). When following-up to evaluate, the evaluative move signals
the end of the discussion; there is no space for a productive exchange to develop. What
happens when the purpose of follow-up is to elaborate, or, better yet, have students do the
elaborating? Does this affect student learning?

Previous research suggests it does (Haneda, 2004; Hiebert & Wearne, 1993; Nassaji
& Wells, 2000; Nystrand et al, 1997). By encouraging students to verbalize thinking,
follow-up moves can support coherence and clarity in thinking, help students organize
and restructure new information into prior experiences, create opportunities for
participation and engagement, and increase metacognitive awareness (Haneda, 2004;
vanZee & Minstrel, 1997; Webb, 1991, Wells, 1999).

Methods
This study was conducted as part of a larger program of research, Scaling Up

SimCalc™(Shechtman et al, 2005). The Scaling Up study implemented a new,
technology-rich curricular unit on rate and proportionality in seventh-grade classrooms
across the state of Texas. It used realistic problem contexts and simulations of motion to
teach the foundational concepts of variation and covariation. Approximately 100
classrooms were involved in the larger experimental study, half of which were using the
SimCalc™ curriculum and the other half using their normal curriculum to teach a three-
week unit on proportional reasoning. Video data of the implementation of the SimCalc™
unit was collected in multiple classrooms during the 2005-2006 academic year. The data
for this paper comes from video footage of the same lesson from two teachers who were
teaching the SimCalc™ unit for the first time.

Both teachers in this study taught seventh-grade mathematics in small cities in Texas
and had been teaching for over twenty years. Additionally, both teachers had relatively
large gains in student learning as measured by a pre-and post-test on rate and
proportionality. Teacher M had an average gain score of 10.83 points, and Teacher N had
an average gain score of 6.92 points (out of 30 possible points). The mean and standard
deviation of the gain scores for all teachers implementing SimCalc™ (n=48) were 5.77
( x) and 1.85 (s). These teachers were selected primarily because their students were
successful learners (as measured by the assessment), and I wanted to investigate the kinds
of classroom discourse that supported this kind of learning.
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I used a microanalytic approach to analyze the moment-to-moment differences in the
implementation of the same lesson in these two classrooms. Drawing on the qualitative
techniques of discourse analysis (Mehan, 1979; Schiffrin, 1994; Sinclair & Coulthard,
1975; Wells, 1999), I used transcripts of whole-class discussion to identify normative
interaction patterns and categorize follow-up moves. Specifically, my research question
was: What are the patterns of teacher follow-up and how do they impact students’
opportunities to learn mathematics?

Coding Scheme
In order to systematically investigate patterns of discourse, I relied on Gordon Wells’

(1999) analytic framework of the co-construction of dialogue. I define a move as the
smallest building block of an interaction. It can be a statement, a question, or an answer;
others might define this as an utterance or a turn. Every move can be categorized as an
initiation (I), a response (R), or a follow-up (F), and a series of reciprocally-bound moves
is called an exchange. At minimum, an exchange consists of an initiation and a response.
As an example, consider the following excerpt of a classroom discussion in Table 1.

Line # Discourse Coding Prospectiveness

1
2

Sequence 1
Teacher – How can you figure out the speed
guys?

Exchange 1 Initiation D

3 Student 1 – Uh. Response G
4 Student 2 – Distance divided by time. Response G
5
6
7

Teacher – Ok.
So let’s take a look at table (c.), 25 meters
divided by 5, Suzy, gives me what?

Exchange 2
Follow-up
Initiation

A
D

8 Suzy – Five. Response G
9
10
11

Teacher – Five.
So that means he is running 5 meters per
second right?

Exchange 3
Follow-up
Initiation

A
D

Table 1. Excerpt of classroom discourse

The first exchange, in lines 1-5, consists of an initiation, two responses, and a follow-up
move. The second exchange, in lines 6-9, also follows the typical IRF pattern common in
classroom discourse. Above the level of exchange is a sequence, the unit containing a
series of topically related exchanges. The sequence captured in Table 1 is a discussion of
how to calculate the rate of a runner in a simulation.

In addition, each move can be further categorized with respect to its prospectiveness,
or the degree to which a response is expected. Following Wells, the three levels of
prospectiveness I use are Demand (D), Give (G), and Acknowledge (A). The initiating
question in sequence one is a Demand (D) since the teacher is requesting information and
the probability of a response is high. The student responses (on lines 3, 4 and 8) are Gives
(G) since they provide information. The prospectiveness of Give moves is less than
Demand moves since they may or may not evoke a further response. And the “Ok” (line
5) along with the revoicing of “Five” on line 9 are Acknowledge moves (A). By
themselves they have low prospectiveness along with all other moves falling into the
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Acknowledge category (yes/no responses, evaluations, expressions of thanks, etc.)
because a subsequent response is unlikely.

In my coding of the transcripts, I first grouped turns of talk into sequences and
categorized each move as an initiation, response or follow-up. Then I classified each
move according to its prospectiveness (D, G or A). After coding all of the content-related
episodes in the transcripts, I did a frequency count of the total instances of teacher
follow-up for each classroom. As subcategories of follow-up, I also counted the number
of Demands, Gives and Acknowledges that occurred in the follow-up slots. Because a
follow-up move can fulfill more than one function, teachers often gave an Acknowledge
move in combination with a Demand or Give move. As an example see lines 5-7 in Table
1. I counted this as a single instance of follow-up and as both an Acknowledge and a
Demand (where the Demand move served to extend the sequence with an initiation).

Findings
Prospectiveness is a useful construct because it helps to identify both who is doing the

intellectual work in the classroom and the kind of work being done. For example,
classrooms with a large proportion of follow-up moves in the Acknowledge category
create environments where answers are given priority over reasoning. Further, relying
primarily on Acknowledge moves perpetuates the teacher’s status as the authority for
determining what is mathematically correct. In contrast, Give and Demand moves shift
some of this responsibility back to students by suspending judgment and leaving concepts
under construction. Here either the teacher (Give category) or the student (Demand
category) makes connections, provides examples or counterexamples, supplies missing
information, or reformulates a previous response.

The following chart displays the variation in the prospectiveness of follow-up moves
for the two teachers in this study.

Proportion of Occurrence
Prospectiveness Teacher M Teacher N

Demand .559 (80/143) .588 (60/102)
      Demand w/ Uptake .45 (36/80) .317 (19/60)
Give .462 (66/143) .353 (36/102)
      Give w/ Uptake .515 (34/66) .222 (8/36)
Acknowledge .545 (78/143) .706 (72/102)

Table 2. Prospectiveness of Teacher Follow-up

Both teachers followed-up by requesting information (D) from their students about 60%
of the time. However, there were differences between the proportions of follow-up
involving Give and Acknowledge moves. To tease out this difference, the categories of
Demand, Give and Acknowledge were further separated into subcategories and compared
across teachers. One contrast that emerged was within the subcategory of Demand and
Give moves that involved uptake. Of the 80 Demand moves Teacher M used, 36 (45%)
involved uptake. Contrast that with 19 out of 60 for Teacher N (32%). This same trend is
seen in Give moves: Teacher M used uptake in 52% of follow-ups that “gave
information” whereas this occurred in only 22% of Teacher N’s Give moves.



661

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

What does this mean? An additional clue might lie in the proportion of times
Teachers M and N used a rebroadcasting move in their follow-up (note that
rebroadcasting is an echo or exact repetition of what was just said, which, in essence,
functions as a positive evaluation of a previous response placing it in the Acknowledge
category). One potential reason Teacher N used Give moves less frequently is because
her preferred mode of interaction was to instead rebroadcast the student’s response (she
did this in 51% of all of her follow-ups and Teacher M 33%) and either end the sequence
or continue on by asking another question in a recitation-script (Tharp & Gallimore,
1988) kind of fashion. Because moves in the Acknowledge category are usually
evaluative and end discussion, it is not surprising that Teacher N has a smaller mean
sequence length (the average number of moves in a given sequence). She averaged 7.5
moves (I, R, or F) per sequence whereas Teacher M averaged 13.5 moves per sequence.

Differences in uptake, rebroadcasting, average sequence lengths, and the
prospectiveness of follow-up moves between the two classes influenced students’
opportunities to learn mathematics in the following ways: 1.) expected student roles and
modes of participation, 2.) the teachers’ willingness to listen to students and take their
ideas seriously, and 3.) the teachers’ approaches to whole-class discussion.

Teacher M framed discussions using core mathematical concepts to organize the
lesson trajectory. Discussions had a sense of cohesion, and procedures and formulas were
introduced as a natural part of answering central questions related to the big ideas of
speed and rate. Teacher M allowed her students to play an active role in discussion and
knowledge-generation through uptake of their ideas. She probed their thinking and
allowed their observations and conjectures to be the impetus for further class discussion.
She also encouraged students to test their thinking, reasoning, and problem solving with
one another. For example, in the discussion of a position-time graph, one student thought
two piecewise linear functions depicted different routes for two vehicles instead of
different speeds. Instead of correcting her, Teacher M let the class struggle with this
interpretation (the sequence was 54 moves long) asking the student first to explain her
reasoning and then providing her classmates the opportunity to share their thinking.

Teacher N was more task-oriented and preferred to present mathematics as a series of
small, manageable tasks and calculations. This preference was reflected in a higher
proportion of Acknowledge moves and less use of uptake which resulted in a smaller
mean sequence length. As an example, consider the following excerpt (see Table 3) from
a whole-class discussion of speed in Teacher N’s class. The class had been viewing a
simulation and its corresponding position-time graph of a trip from Abilene to Dallas that
both a van and a bus had made.

Turn Speaker Text Move Prosp

150 Teacher
Sequence 34
Can you see when you replay the simulation when the bus
started to slow down? I D

151 Student Yes. R G
152 Teacher Right before it got to the end, correct? F G

Ok at what? I D
153 Student 140. R G

154 Teacher
Sequence 35
Ok. So now let me ask you some questions. What, how long did
it take them for this trip? Raise your hand. How long did it take
em for this trip? Chris.

I D
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it take them for this trip? Raise your hand. How long did it take
em for this trip? Chris.

155 Chris Three hours. R G
156 Teacher How do you know it went three hours? I D
157 Chris Cuz it ends, the line ends at three. R G
158 Teacher Very good, F A

cuz the line for the bus or the van? I D
159 Mult S’s Both. R G
160 Teacher Both end at what? I D
161 Mult S’s Three hours. R G
162 Teacher Three hours. So you know it took them three hours. F A

163 Teacher
Sequence 36
Was the speed of the two vehicles the same? I D

164 Mult S’s No. R G
165 Teacher No. F A

You know that by how? I D
166 Student They’re not the same. R G
167 Teacher Because of the (pause) graph right? And because of also running

the simulation. They didn't stay right beside each other, did
they?

F G

168 Teacher
Sequence 37
Ok, umm, how far did they go in 3 hours? Raise your hand. How
far did they go in three hours? Charles?

I D

169 Charles ** (unintelligible) R G
170 Teacher How’d you know that? I D
171 Charles ** R G
172 Teacher 180 miles where? (pause - no student response). I D

On the graph, right? R G

173
Sequence 38
Ok. And let's see if you can calculate the speed. Go through, run
your simulation and see if you can calculate the speed for the
van and then calculate the speed for the bus and then also
calculate the speed for the bus when it started to slow down
since you guys have told me it started to slow down.

I D

Table 3. Discourse Excerpt from Teacher N’s Class

Sequences 34-38 were orchestrated to accomplish the teacher’s goal of calculating the
speeds for the van and bus. Notice that this larger goal was not mentioned to the students
until the last sequence. Instead, it remained hidden in a series of loosely-related questions
(from the students’ perspective) that ultimately identified the necessary components for
calculating speed. Additionally, as seen in this excerpt, little control or responsibility is
given to the students as the teacher generated and controlled the topics for discussion.
Conversation was tightly scripted with little room for student ideas to shape the
discussion. It is as if she had a predetermined path that she was leading her students
down: she may have heard their responses but did not incorporate them substantially into
the flow of the lesson. In fact, there was very little of substance for her to incorporate
since students’ roles were limited to paying attention, performing basic calculations,
recalling formulas, and answering yes/no or short-answer questions.

Through subtle differences in discursive patterns, students in the two classrooms were
socialized to interact, think, and respond in different ways. Variation in uptake and
organization of discussions (i.e., mean sequence length and the frequency of rebroadcast
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moves) created different expectations for participation and opportunities to learn.
Consistent follow-up patterns in Teacher M’s classroom helped create a community that
was more closely aligned with practices and beliefs valued by mathematicians and math
educators. These included the beliefs that knowledge is co-constructed, learning is
participatory, and mathematics is created through a process of argumentation and
negotiation. Because they were significantly involved in doing substantive mathematics,
Teacher M’s students were more agentic and empowered learners, successful at posing
and answering mathematics questions and critically analyzing their own and others’
thinking.
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Research suggests that it is important to leverage the home and local discourse practices of non-dominant students to
create more equitable and meaningful mathematics classrooms. Gee's (1990) notion of Discourse and its relation to
power suggests that this may be difficult to do without first restructuring the predominant Discourse of mathematics,
which takes as central the practices of mathematicians and successful mathematical test-takers to the learning of
mathematics. Our research indicates that by perpetuating culturally based distinctions between math and non-
mathematical activity and reasoning based in the dominant mathematical Discourse, teachers (and students) necessarily
marginalize alternative discourses that may support broad-based mathematics learning.

Students' discourse practices vary widely in mathematics classrooms with diverse populations of
learners (R. Gutiérrez, 2002a; Moschkovich, 2002). Research suggests that it is important for the
discourse practices that students bring from other contexts such as home and local communities be
leveraged to support their participation in classroom mathematical activity (Cobb & Hodge, 2002;
Hand, 2003). However, it is unclear what this entails for the development of equitable teaching
practices. One interpretation rests upon the assumption that teachers often miss important
mathematics in the linguistic practices of ELL students, and suggests that teachers provide
opportunities for students to negotiate how they participate in mathematics (Moschkovich, 2002).
Another interpretation is that teachers need to honor students' non-dominant discourse practices by
constructing a hybrid discourse structure for classroom mathematical discourses (K. D. Gutiérrez,
Baquedano-López, & Tejada, 1999). In this paper, we draw on Gee's (1990) notion of Discourse to
argue that it is difficult for teachers to engage in either practice without first becoming aware of how
the dominant Discourse of school mathematics plays out in their classrooms. Our research indicates
that by perpetuating culturally based distinctions between math and non-mathematical activity, the
Discourse of mathematics makes it challenging for teachers to recognize alternative discourses of
mathematics learning embedded in students' sociocultural practices.

R. Gutiérrez (2002b) argues that as an increasing number of non-dominant individuals enter the
field of mathematics the field itself will begin to change. This claim is consistent with a situative view
of learning that holds that knowledge is interwoven in the practices of communities, which comprise
particular values, beliefs and ways of participating in activity. As newcomers to a community
successfully negotiate participation by drawing on their repertoires of practice (K. D. Gutiérrez &
Rogoff, 2003) from outside communities, the community necessarily adapts and changes to reflect
these new practices. We propose that this argument can be applied to the mathematics classroom as
well. As students from diverse backgrounds introduce different forms of participation into the
mathematics classroom, the norms for what it means to do mathematics in the classroom may shift
as well. However, this shift can only occur when the existing power structures are disrupted to allow
new hybrid practices to form (Engeström, 2001; K. D. Gutiérrez, Baquedano-López, & Tejada,
1999).

Mathematics has a significant amount of power in K-12 education, as a 'gatekeeper' to higher
education, as a perceived proxy for 'general intelligence', as a marker of international dominance, and
as one of the most salient aspects of the achievement gap. As such, the Discourse of mathematics
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carries tremendous weight in society, and perpetuates itself by virtue of this power. Gee (1990)
argues that "each Discourse protects itself by demanding from its adherents performances which act
as though its ways of being, thinking, acting, talking, writing, reading, and valuing are 'right', 'natural',
'obvious', the way 'good' and 'intelligent' and 'normal' people behave" (p. 191). The following studies
reveal aspects of how the Discourse of mathematics is perpetuated in local classrooms, and
constrains teachers (and students) from building on alternative forms of mathematical practices,
reasoning, and communities.

The first study examined how teachers in two reform-based mathematics classrooms treated
different forms of student participation. Historically, analyses of student participation in reform
mathematics classrooms have tended to focus on students' participation in classroom mathematical
practices. Less is known about how students come to be engaged in these practices, and whether the
practices themselves shift as students negotiate diverse forms of participation in taking them up.
This paper argues that one reason for this is that teachers (and mathematics education researchers)
tend to view classroom learning through the lens of a particular Discourse of mathematics, which
often leaves unexamined broader sociocultural processes that permeate the learning environment.
This study illustrates how the teachers differently negotiated the Discourse of mathematics in their
classrooms, with the aim of engaging traditionally underserved students.

The study was part of a broader one that investigated the implementation of reform
mathematical practices in three ninth-grade mathematics classrooms in an urban public high school
(Hand, 2003). The school and teachers were selected for their success in producing strong
mathematics learners from diverse cultural and ethnic backgrounds (Boaler, 2006; Horn, 2002). The
teachers in this mathematics department also utilized a common set of pedagogical practices and an
in-house mathematics curriculum that drew on reform mathematics principles. The significant
overlap in instructional practices among the classrooms afforded an opportunity to tease out
differences in the classroom discourse structures.

The study drew on methodological tools from an ethnographic perspective on classroom
discourse to capture both classroom mathematical activity in situ (Gee & Green, 1998), and the
meanings made of this discourse by local participants over the course of a school year. Research
methods included documenting over one hundred hours of classroom activity across the three
classrooms through electronic and video records, student and teacher interviews and surveys, and six
days of intensive student shadowing. A multi-level interaction analysis was conducted to identify the
norms and practices that were functioning to shape mathematical activity in each of the classrooms,
and the nature of students' mathematical engagement, which were then triangulated by coded
interview and student shadowing transcripts. One aspect of the analysis focused on how student
activity was framed within classroom discourse structures, and the implications this had on the type
and level of student engagement.

The classrooms were significantly different in this regard. In one of the classrooms, students'
activities were treated as being either mathematical or social -- the latter positioned as being
detrimental to the students' progress. As the teacher stated, "nothing should get in the way of the
mathematics" (class observation, 2002), suggesting that mathematics learning is predicated on a
distraction-free environment. While a number of the students in this classroom engaged deeply in
classroom mathematical discussions, a number were also positioned and positioned themselves as
resistant to them.

In contrast, the second classroom was highly dynamic and supported broad-based participation
by a range of learners. The students' activities were continually re-negotiated and re-framed by the
students and teacher as a part of what it meant to do mathematics. When one student argued that
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her test grades indicated that she was poor at mathematics, the teacher asked if tests measured what
she knew and could do mathematically. When another student got frustrated trying to explain the
meaning of x3 to his group and started to give up, the teacher used the context of baseball to remind
him that persistence pays off. In words of the teacher, it was important to support students in
"whatever is needed to get to math" (interview, 2002).

These findings reveal how each classroom negotiated the Discourse of mathematics learning,
linked to the values and practices of individuals who are successful in mathematics (e.g.,
mathematicians) and on achievement tests (e.g., college students). The discourse practices in the first
classroom reflected this broader Discourse in emphasizing that concentration and focus lead to
progress in mathematics learning. The discourse practices in the second classroom often challenged
(and rejected) the Discourse of mathematics. Instead, priority was given to helping students who
struggled in mathematics build stronger relationships both with each other and with mathematics.

Teachers' discourse practices are examined again in a study that addresses the perceived
disconnect between reasoning inside and outside of the mathematics classroom (1). The study was
designed to elicit the teachers’ perceptions regarding the logic and mathematical reasoning of their
students in three environments: mathematics classrooms; non-mathematics classrooms; and outside
of school. It was hypothesized that if mathematics teachers believe student strengths in other
settings can be utilized as points of access to mathematics content, what they consider an acceptable
contribution to the classroom mathematics discourse could change in ways that allow more students
to participate in constructing meaningful mathematics.

Ten teachers with experience teaching middle-school mathematics as well as other middle-
school subjects (3 to 19 years) were audio-taped as they participated in one-on-one semi-structured
interviews (Wengraf, 2001) (2). The interviews consisted of examples of informal mathematics
reasoning as well as problems appropriate in content to a middle-school mathematics classroom.
Participants were asked to explain the strategies used by a child street vendor (Saxe, 1988) and a
fisherman (Nunes, Schliemann, & Carraher, 1993) in their everyday mathematical activities, as well
as solve two problems (one created by the participant) in multiple ways: an informal strategy
modeled from the Saxe and Nunes, Schliemann and Carraher research, a strategy they would expect
to see and a strategy they would prefer to see their students use in their mathematics classroom.
Analysis of the interview data focused on which aspects of mathematical strategies teachers’ value, as
evidenced by their explicit and implicit judgments.

First, the teachers recognized all strategies as being valuable, but tended to favor traditional
algorithms for the purposes of speed and success on standardized measures of mathematical
achievement and future mathematics classes. This is not necessarily surprising since the teachers’
schools use mathematics reform curriculum, but teachers continue to be responsible for preparing
students for future algebra curriculum that is perceived to be more traditional, as well as remain
accountable to state and national tests.

Nearly all participants, despite their stated willingness to accept alternative strategies within their
classrooms (although sometimes only as an access point to teaching students a more formal
algorithm), struggled with interpreting the informal reasoning within the Saxe (1988) and Nunes,
Schliemann, and Carraher (1993) scenarios. They tended to pull the numbers straight from the
problem and ignore context, immediately explaining the basic operations that were taking place
rather than discussing the situation or tools that were available or unavailable. However, once
participants deciphered the strategies being used in the scenarios, they felt that the street vendor and
the fisherman showed good “number sense” in a way that a traditional algorithm would not
necessarily show.
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One way to interpret these findings is of conflict between two Discourses -- the traditional
mathematics Discourse and what is characterized here as the sense-making mathematical Discourse.
The traditional Discourse values speed, accuracy, and conciseness within the mathematics
classroom; the fulfillment of these constituting sufficient understandingThe sense-making Discourse
is conceptualized as primarily valuing student understanding and supporting student-created
strategies that increase such understanding, with the conciseness of the strategies being a secondary
concern.

The traditional Discourse is represented in a quote from Karen, one of the teachers, who
explained why she wouldn’t accept the “chunking” strategy in her classroom,

Because of the speed…I think they understand it, and I think that’s great, but…standardized
tests are—not that I’m basing it off that, but they’re timed…so it’s good that you understand it,
but you gotta… you have to know more than that.

Note the references to speed as in opposition to understanding.
In the sense-making Discourse, understanding and accuracy go hand-in-hand. Student-

developed reasoning strategies are prized first and foremost, with accuracy and efficiency being
valued as another step in the process. In her interview, Lindsey described the interplay between
student understanding, efficiency, and accuracy within her classroom:

So, we’ll present different strategies, and um, we’ll talk about efficient ways and accurate
ways, and we’ll have the kids choose whichever way makes the most sense to them….
There’s no one way to do math—kids need to realize that.
Student understanding is valued as the first step, with students being considered as responsible

for determining which strategy is personally best for them.
The participants moved in and out of the two Discourses throughout the interviews. To

illustrate the layering of these two Discourses the concept of lamination is adopted from Goffman
(1981; cf. Jurow, 2005): the simultaneous presence and salience of both for the teachers in their
conceptualization of student mathematical reasoning. The key contribution of lamination to this
analysis is the tension created by the dominant mathematical Discourse as teachers reflect upon
student understanding, efficiency, and accuracy: the participants, regardless of which Discourse they
most identify with, must frame their own values within the traditional values of the dominant
Discourse. Most participants spoke of preferring the values ascribed to the sense-making
mathematical Discourse, and yet struggled to negotiate this discourse within the dominant
mathematical Discourse.

The third study illuminates the natural hybridity of classroom discourse by attending to student
talk around mathematical activity. The paper draws on the results of a semester long study in a pre-
calculus/calculus undergraduate discussion section. The section was created to support the
development of relationships and a sense of belonging among students typically underrepresented in
STEM fields. The aim of the study was to understand the intersection of students’ social and
academic discourses as they unfolded in the mathematics classroom. This paper reports on one
aspect of the analysis: What are students’ perceptions of the form and function of non task-related
talk during mathematics small group?  Findings from this study broaden existing conceptions of
what is mathematics discourse.

In attempting to merge students' social and academic lives, the site served as a key setting to
explore the complex and multifaceted nature of students' talk as they engaged in group work around
the mathematics tasks. Research methods included field notes from over thirty classroom
observations, three student surveys, video and audio recordings of both whole class and small group
discussions, and student and instructor interviews. Open-ended survey instruments asked 16
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students about their perceptions of non task-related talk during group work and their academic and
social relationships with their peers both inside and outside of the classroom. In-depth interviews
allowed six participants (two groups) to elaborate on their survey responses and discuss their
perceptions of the purposes and effects of task (and non task) related talk. These students were also
asked to comment on two video recordings taken earlier in the week that captured their group
interactions and talk with peers and the instructor during mathematics class.

The extensive use of group work in this class both promoted and underscored students’ social
and academic relationships with their classmates (Lotan, 1997). Hence, looking at how students
negotiated social and academic talk in group work guided the analysis of this study. Two specific
aspects of the analysis included: (1) fluency in the social discourse of the group and/or classroom,
and (2) the relation between fluency in the social discourse and participation in mathematical
activity.

At the beginning of analysis, open coding was used to code field notes, survey responses, and
video content logs and transcripts. The identification of categories of talk as social and academic was
coupled with analysis of the purposes of talk. The coding of talk quickly moved beyond a
dichotomous categorization, as distinctions between on task (academic) and off task (social) talk (as
have been traditionally regarded) were rarely well defined by participants or my observations. In
thinking of mathematics as a collection of practices, to say that talking about the weather was a non-
mathematical practice seemed to go against what students’ responses to survey items, interview
questions, and classroom interactions suggested. Hence, students talking about the weather could be
considered non task-related, but as a discourse practice it at times was encompassed in what it meant
to do mathematics.

The findings of this study are threefold: a) developing a sense of comfort with group members
was often a precursor to progressing on mathematics activity, b) students’ perceived non task-related
talk to have multiple purposes during group work, and c) students perceived a threshold whereby
non task-related talk during group work became problematic.

The students reported that feeling comfortable with group members was important for
mathematics discussions, since it facilitated the acts of challenging each others’ ideas, engaging in
deeper mathematics discussion, and helping, listening, and seeking help from peers. A bi-directional
relationship between comfort and non task-related talk emerged from the data; students perceived
non task-related talk as both a means to and a product of group comfort.

Non task-related talk served a multitude of purposes in the groups' work. Some of the
affordances described by students included: better quality work, better understanding (for everyone),
it makes math fun, leads to comfort in discussing math, serves as a break from math, facilitates
discussion, and helps keep the group working at the same pace. One student went so far as to say,
“If you don’t have anything in common or anything to talk about SOCIALLY, then you sure as hell
aren’t going to be able to communicate mathematically.” To this student and to his peers, engaging
in non task talk and building comfort was important (or even essential) to making progress
mathematically.

Despite the perceived benefits and purposes of non task-related talk to students, many indicated
that there is a vaguely defined point when social talk can distract a group from progressing on the
mathematics task. For some students, the determining factor had to do with the duration of non
task-related talk; for others topic and/or composition of group was a determining factor. The study
showed that students were not always successful at negotiating task and non task-related talk within
their groups; successful ways of negotiating different forms of talk deserves further attention.
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Findings show that students perceived non task related (social) talk as important (and even
necessary) to advancing on the mathematics activity. Students' talk and their perspectives on the
nature and function of different forms of talk blur the lines between what has traditionally been
deemed acceptable as part of the mathematics and school Discourses.

Combined, three studies provide insight into the perpetuation of the Discourse of mathematics
in the local contexts of mathematics classrooms and the categories for mathematical activity,
reasoning, and talk that organize mathematical activity within them. These categories necessarily
limit what some teachers recognized as significant and productive to students' motivation and
success in learning math. Alternatively, teachers and students who implicitly or explicitly disregarded,
contested, or even re-framed the distinctions that were handed-down to them (e.g.,
social/mathematical, efficient/sensible) created space for more inventive and meaningful ways to
learn mathematics. By revealing how the Discourse of mathematics operates in both K-12 and
undergraduate mathematics classrooms to constrain the non-dominant discourse practices that
support students' mathematics learning, this study contributes to an understanding of the complex
issues surrounding mathematics reform and equitable mathematics learning.

Endnotes
1. The research reported here was funded in part by a grant to Amy Ellis, Charles Kalish, and

Eric Knuth at the University of Wisconsin-Madison.
2. The first three participants were considered pilots as interview protocol constantly

evolved. The remaining seven were interviewed using flexible but finalized protocol, and their
data was the subject of analysis.
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Gender inequity has long been an issue in mathematics education. Advancing females’
education and opportunities for careers in science, technology, engineering and mathematical
(STEM) fields historically has been overlooked. In the past two decades, mathematics education
has made great strides in decreasing gender inequities (National Center for Education Statistics,
2005; Tate, 1997). Initially, research centered on the differences in mathematics achievement
between females and males (Fennema & Sherman, 1976; Fennema & Sherman, 1977). Current
research indicates changes in females’ access to higher level mathematics and an increase in
societal acceptance of females in STEM fields has diminished the earlier differences in
mathematics achievement between males and females. Moreover, no differences are found in
complex problem solving or conceptual understanding (Hyde & Linn, 2006). Considering this
information, research is needed to examine the reasons why females are still not persisting in
mathematics and related fields.

This study is currently being conducted in a mid-Western high school algebra I classroom,
focusing on the self-efficacy beliefs of females and their participation in cooperative group work.
In this short research report, I will present preliminary results of the study of the self-efficacy
beliefs of females and how these beliefs are related to participation within cooperative groups.
The question guiding this study is: How are high school females’ self-efficacy beliefs affected by
their participation in cooperative group work in mathematics class?

The framework for this study is a combination of the situative perspective (Lave & Wenger,
1991) and Bandura’s social cognitive theory (Bandura, 1989). The situative perspective allows
for the examination of females changing participation within their cooperative groups. Social
cognitive theory compliments the situative perspective in that it allows for the individual
examination of self-efficacy beliefs, a person’s perception about their ability to perform a given
task (Bandura, 1989). The merging of these two perspectives will allow for the examination of
the social environment of cooperative mathematics while honing in on the individuals’
perceptions about their ability.

Preliminary results will be obtained through the following modes of inquiry (1) videotaped
sessions of cooperative work, and (2) surveys pertaining to self-efficacy beliefs of females.
Video data will be coded using a coding system derived from Barnes (Barnes, 2003). Barnes’
coding system was modified to focus on algebra classrooms as opposed to calculus lessons.
Survey data will be analyzed to identify females holding high and low efficacy beliefs. The two
sources of data will later be cross-analyzed to identify potential trends in the data which may
reveal the relation of self-efficacy beliefs and participation in mathematics.

This short research report fulfills the goals of PME-NA in the following ways: (1) The study
examines the relationship between motivational aspects of education in conjunction with
cognitive aspects of mathematics, and connects the classroom experiences with the psychological
experiences of group work, and (2) the study will glean information on the failure of females to
persist in mathematics and related fields as related to psychological variables such as self-
efficacy.
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Today mathematics reform efforts face the challenge of raising the performance levels of
students and are forced to examine how to accomplish this within growing culturally and
linguistically diverse populations (Grant & Lei, 2002; Gebhard, 2002). Analysis of the National
Assessment of Educational Progress (NAEP) indicated that English language learners (ELLs) do
not achieve at the same level as their English speaking counterparts (Rampey, Lutkus, & Dion,
2006). In 2005, 71% of the non-ELL eighth-grade students were at the basic level or above
compared to only 29% of the ELL eighth-grade students who were at the basic level or above.
The report documents that both ELL and non-ELL student mathematics achievement has slowly
increased since 1996 and the achievement gap between ELLs and non-ELLs was slightly
reduced. But, with only 6% of the ELL eighth-grade students reaching proficiency, inequities are
significant.

Cocking and Mestre (1988) suggested that the language used to describe mathematical ideas
in English has specific interpretations and is problematic for students with limited understanding
of English. Thus, achievement gap may not be due solely to difficulties with math concepts or to
second language acquisition but to a complex interaction of the two. Students interpret math
related words and symbols based on previously constructed understanding. When students are
also learning English, the process of acquiring new mathematical understanding is mediated
through two sets of meanings developed in their native tongue and English. Translation alone,
without attention to prior knowledge of math concepts is not effective. Helping students who are
ELLs develop a rich understanding of mathematics is challenging because everyday and abstract
ideas may have been internalized in one or the other language, based on individual experiences.
Therefore it is extremely difficult for teachers to identify the prior knowledge upon which they
should build.

This research report is part of a longitudinal study that examines the how ELLs assimilate
mathematical understanding while acquiring English language skills. The purpose of this report
is to describe the mathematical ideas that fourth- and fifth-grade ELLs understood after using
Investigations in Number, Data, and Space (Akers et al., 1997).

Theoretical Framework
Theorists (e.g., Cobb, Wood, & Yackel, 1970; Kumpulainen & Mutanen, 2000) suggests that

social activities influence the learning of mathematics as individuals negotiate meaning through
interactions. From the perspective of symbolic interactionism (Blumer, 1969), an individual
interprets another person’s words and gestures to create meaning. Shared meanings are
constructed through a dynamic process of creating and re-creating meanings as individuals
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interact with each other. People attach particular meanings to words, symbols, and gestures
through these social interactions (Voigt, 1996). As the individual interacts with others (e.g.,
teachers, peers, parents) words may acquire a single meaning or multiple meanings. Attention to
the meanings that words and symbols acquire is particularly important in mathematics because
many mathematical words also have a common usage that is quite different from their
mathematical meaning.

Methods
This study relies on qualitative methods to investigate fourth and fifth grade English

language learners’ (ELLs) mathematical reasoning. The authors used the Colorado state
assessment framework to select released questions from national tests to create an assessment
with ten multiple choice and constructed response questions. This assessment met the state’s
achievement expectations for the fourth and fifth grade students, which included the following
topics: patterns with whole numbers, fractional models, measurement, geometry, interpretation
from graphs and tables, and algebraic reasoning. The authors created a scoring rubric by
considering likely student responses and assigning a level-of-understanding score of “0” (no
grasp of the concept), or “1/2” (some grasp), or “1” (a sound understanding) for each test
question.

The assessment was administered during the spring of 2006 to all student in one fourth- and
two fifth-grade classrooms. Twelve fourth-grade ELLs and 29 fifth-grade ELLs were
individually interviewed during the following week. Students reflected about their mathematical
thinking for all of the questions, regardless of whether or not they correctly answered these
questions. Detailed field notes recorded students’ mathematical thinking during the interview.
The performance of the students was statistically analyzed using ANOVA to determine whether
there were achievement differences between the two groups of students. Qualitative analysis is in
progress to describe the mathematical reasoning utilized by these students. This analysis will be
further collapsed using a conceptually-ordered cross-case matrix (Miles & Huberman, 1994).

Findings and Discussion
Findings from this study are preliminary. The ANOVA test indicated no significant

differences between the fourth- and fifth-grade ELLs. With sixty percent of the students in the
elementary school classified as ELLs, the elementary school staff was concerned about the
complexities of increasing student achievement when students have limited proficiency in
English. Adler (2001) described some of the challenges that teachers and students face when
students are learning mathematics in a language different from their home language but offered
no instructional practices to help teachers meet these challenges. In a review of bilingual
literature, Moschkovich (2002) found that Latino students’ with low mathematics achievement in
mathematics may involve the comprehension of English vocabulary or the translation of English
words into mathematical symbols. This suggests that like the teachers in the elementary school in
this study, indeed, many classroom teachers struggle to discern whether ELLs become low
performers as a result of limited English proficiency, as a result of instruction practices, or both.
The qualitative analysis of students’ responses which this study will report is of interest to
researchers interested in untangling this very complex web of learning English and mathematics
simultaneously.
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This study explores Latino students’ thinking when solving NAEP measurement problems via
task-based interviews. Our study is grounded on a combination of sociocultural and cognitive
perspectives in which multiple resources were considered when students represented their
mathematical ideas. We discuss themes that emerged from the data, some challenges that
students experienced, and the richness in their thinking across three items.

This exploratory study seeks to complement large scale studies that have been done on the
NAEP (e.g. Abedi & Lang, 2001, Lubienski, 2003) to shed light on Latino students’ thinking as
they solve measurement problems from NAEP. Lubienski (2003) reported that in the 2000
NAEP, the greatest gap between white and black students and between white and Hispanic
students occurred in the measurement strand. Our effort was to gain a better understanding of
how working-class Latino students thought about some of these NAEP measurement items. The
goals of this study were (a) to uncover challenges that selected NAEP measurement items raise
for a small group of Latino students (b) to document their interpretations of the problems; (c) to
understand their reasoning and communication of their solutions; and (d) to investigate the role
that language plays in their thinking process of procedures and concepts, especially if the
students’ first language is not English.

Theoretical Perspectives
This study is part of a larger research agenda that looks at the interplay of mathematics,

language and culture among Latino students. Our perspective is essentially a combination of a
sociocultural perspective and a cognitive perspective (Brenner, 1998; Civil, 2006; Cobb &
Yackel, 1996). On one hand, we used task-based interviews, which are typical of cognitively-
based studies; on the other hand, our analysis of these interviews is guided by a “situated-
sociocultural view of mathematics cognition, language, and bilingual learners” (Moschkovich,
2002, p. 196). Further, the work of Bielenberg and Fillmore (2005) has informed us of critical
language features needed for discourse development, such as academic English vocabulary,
common academic English structures, and such language functions as explaining, defending, and
discussing.

By utilizing task-based interviews, researchers are able to describe and assess mathematical
thinking as well as the interplay of contextual and social factors, observed behaviors, and
inferred cognitions. The use of language is central to our study in that we are interested in the
students’ use of language, both everyday and academic language, as they interpret the tasks and
explain their thinking; in some cases, our students are bilingual, but more proficient in one of
their two languages. Because language structure of assessment items can present added cognitive
demands for the students, especially ELL students (Campbell, Adams, & Davis, 2007), it is
pertinent to take into consideration the students’ multiple resources for their communication of
their reasoning in solving the problems. Moschkovich (2002) points out that communication is
multifaceted involving gestures, expressions, and objects as resources to simultaneously
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communicate mathematical ideas, and they are especially crucial for students who are less
proficient in English. Thus, in our approach for this study we focus on the students’ use of
various resources, including non-verbal and linguistic resources.

Modes of Inquiry
We conducted and videotaped task-based interviews with twenty-eight Latino students in

grades 4 through 8. The students were attending elementary and middle schools in predominantly
working class / low income neighborhoods. The first phase included 11 students working on
various measurement items taken from the NAEP; the second phase had 17 students working on
these three problems: (1) “if both the square and the triangle above have the same perimeter,
what is the length of each side of the square?” (Lengths of the triangle are given as 4, 7 and 9);
(2) a problem in which the student is given cutouts of a triangle and a square and is asked to
compare their areas; and (3) a problem asking students to find the area of a trapezoid ABCD
(made of a rectangle and a right triangle). The area of rectangle BCDE is given; and the lengths
ED and AE are given.

The students first solved the problems independently and then they were asked to explain
their thinking in their solutions. After they finished their explanations, we asked probing
questions based on their responses. In some cases, the students’ interactions with the researcher
prompted them to revise their initial solution. The video tapes of the students were first analyzed
by problem. We paid attention to the students’ thinking that was observable as they worked on
the problems independently. We then looked across the different problems for common themes.
In the next section we address three of the themes: (1) linguistic demands; (2) reliance on visual
cues; and (3) area and perimeter confusion.

Results

Linguistic Demands
Linguistic complexity can stem from the written form of the problem, especially for English

learners. For example, in the perimeter problem (1), the problem reads, “If both the square and
the triangle above have the same perimeter, what is the length of each side of the square?”  One
of the fourth grade students interpreted the “if” statement as “they do not have the same
perimeter.” When probed, she said “but they do not because it says IF (emphasis added).” This
child was interpreting the “if” statement as a negation statement, therefore, the square and the
triangle could not possibly have the same perimeter. Her facial expression indicated that she was
faced with conflict. By the student’s interpretation of the written language used in this problem,
it is impossible to assess her mathematical understanding of two shapes having the same
perimeter.

We found that the students who were successful in solving these problems were able to work
at a more abstract level with the measurements given and had moved beyond the concrete level
of counting. For example, a successful 6th grade student simultaneously represented his
manipulations of the concrete shapes in problem (2) with rectangles and with the equation
2P=2N (“P” represented the triangle and “N” represented the square). He reasoned that if
2P=2N, then half of each rectangle is the triangle P and the square N, therefore, P=N and the
areas were equal. Successful students were able to explain their reasoning with more linguistic
precision than those who struggled, who tended to use lots of pronouns with no clear referents.
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Reliance on Visual Cues
Some students relied on the drawings as their key source of information, yet these were not

drawn to scale. A few students requested a ruler for finding the lengths of the sides for some of
the figures. Regarding the first problem (finding the length of one side of a square with the same
perimeter as a triangle), most students were able to arrive at the correct solution, but those that
did not arrive at the correct solution relied on approximating the side of the square visually to be
4 since it looked like one of the sides of the triangle that was labeled 4. In this same problem on
perimeter, some students who were incorrect relied on the use of grids to find the perimeter, and
understandably, this strategy can be tied to reform curriculum that emphasizes meaning making,
but in this example, we found that such drawings by the students interfered with their reasoning.
In fact, this reliance on the grid deserves further attention, as we found it to be not always helpful
and part of the confusion with area and perimeter that we address next (also, see Kamii & Kysh,
2006, for their insights on counting squares on a grid to find area of shapes).

Confusion of Area and Perimeter
We consistently found that when the problem presented both square units for area and linear

units for lengths of sides of a figure, that students confused the concepts and procedures for
finding the area or perimeter. In the first problem on perimeter, most students had no trouble
with finding the solution since the measurements were given in linear units. But multi-step
problem (3), involving both linear and square units, was more challenging. The 8th and 6th grade
students who were able to solve it, effectively combined their knowledge of the formulas with
the given information to solve the problem.

Closing Thoughts
We found that some of the challenges that students faced were related to their interpretation

of the problem due to the linguistic demands, their confusion of area and perimeter, the lack of
problem-solving strategies used, their reliance on concrete and visual approaches, and their
representations of the mathematics. However, we found that some students were resourceful in
their use of tools and problem-solving strategies and in drawing on previous knowledge, but
could not always clearly express their thinking about the problems. Our findings show that most
students were able to participate meaningfully in mathematical discourse at some level about
their solutions and convey their thinking through various resources.
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This study explores student interactions in a yearlong cooperative learning Algebra class.
Preliminary results of the on-going qualitative study identify patterns of participation that
impact individual and group engagement in math. The paper argues for a deeper understanding
of specific behaviors in groups that delineate opportunities and challenges to learning math in a
collaborative setting.

The case study described in this paper explores how peer collaboration shapes student
participation and learning in math. The study builds on prior research that suggests cooperative
learning (small group learning) is considerably more effective in advancing student achievement
than interpersonal competition or individual effort (Johnson et al., 1981). Students also report
increased social and academic support in cooperative settings (Angier & Povey, 1999; Leikin &
Zaslavsky, 1997), greater intellectual and social autonomy, and greater responsibility for their
learning (Yackel et al., 1991). And yet more recent studies of student interactions during
collaboration show greater variation in outcome than prior research would suggest (e.g., Barron,
2003; Sfard & Kieran, 2001). This case study extends this latter work and closely examines the
inner-workings of groups in a first year Algebra class designed for cooperative learning. The
study asks: How does peer collaboration shape individual participation and learning in math?
The study finds collaboration to be a support and challenge to individual learning, especially for
adolescents who feel academically and socially judged by their peers. This paper describes
preliminary patterns in peer interactions that impact individual participation. The paper argues
for a deeper understanding of specific behaviors in groups that delineate opportunities and
challenges to learning math in a collaborative setting.

Theoretical Framework
In focusing on student interactions and outcomes of participation, this project draws on two

main theoretical positions: 1) feminist social science, and 2) symbolic interactionism. This stance
shifts what might otherwise be an analysis of individual student characteristics to the analysis of
student interactions, and what meaning is attributed them.

Feminist social science argues status and difference are made relevant by individuals in
interaction and in institutions. As West & Zimmerman argue in the case of gender, “While it is
individuals who do gender, the enterprise is fundamentally interactional and institutional in
character, for accountability is a feature of social relationships and its idiom is drawn from the
institutional arena in which those relationships are enacted” (1987, pp136-7). In this case study,
this means students define difference within the larger cultural institution of schooling.
Adolescents mark the margins and mainstream of acceptance through dress (e.g., baggy pants or
skinny jeans), affiliation (e.g., jock or mathlete), speech (e.g., native English speaker or English
language learner), and so on. Thus an understanding of how these culturally laden status markers
are invoked and enacted in student interactions, how students describe and locate themselves in
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relation to these status markers, and what consequence they have during collaborations, frames
this research.

The second theoretical stance of this case study is the sociological paradigm of symbolic
interactionism. Symbolic interactionism suggests that human interactions express a natural and
rational connection of individuals to their peer communities. Two theoretical underpinnings of
symbolic interactionism are intersubjectivity and reflectivity. Intersubjectivity refers to the way
“humans derive their (social) essences from the communities in which they are located…there
can be no self without the (community) other” (Prus, 1996, p.10). Reflectivity suggests people
become objects of their own awareness through interaction with others, which then informs their
own behavior (Ibid). In this project, these codependent processes of being and reflecting capture
the watchful ways students collaborate. Moreover it suggests students express through language
and behavior, a vigilant appraisal of themselves in relation to others that matters for their
participation and learning. For example, when a student asserts herself in one cooperative
learning group and suppresses herself in another, these behaviors are not easily dismissed as
inconsistency in participation. Rather, they may be reexamined as an intelligible jockeying for
position among different sets of peers.

Methods and Data
This case study takes place in a multi-ethnic public suburban high school in the Western

United States. The focus class of 21 students represents the lowest track in math offered at the
school. The students are all ethnic minorities, two-thirds of who are female. The teacher is
trained in cooperative learning as an instructional method in math, and has also trained teachers
in its use, across the United States. Students in the focus class were observed for 26 weeks over
the 2006-7 academic year. Students were randomly assigned to groups every two weeks to
complete academic tasks; one group was selected for observation during each cycle. This design
allowed for an examination of patterns in student participation as the group composition changed
each cycle, over time. The full corpus of data includes observational field notes, accompanying
audio recordings of groups, student interviews, in-class surveys, student journals, student work
on tasks and assessments, weekly progress sheets, individual state and national test scores, and
student demographic information.

Results and Discussion
This paper presents three preliminary constructs that emerged in the analysis of observational

field notes, interviews, and student surveys. As such, this paper does not analyze student learning
outcomes, though that is the aim of future work. The forthcoming examples illustrate how
collaborating with peers serves as an opportunity and challenge to individual participation.

Anointing occurs when a group develops the tacit understanding that one student is most
expert. Anointing is indicated by several participatory changes: group members consult one
student exclusively, communication among the un-anointed breaks down, and the anointed
becomes sole arbiter of mathematical methods and solutions, whether right or not. Becoming the
“anointed” is an enduring status marker within a group but not across group compositions.
Anointing is a detriment to individual learning and participation as peer scrutiny weighs heavily
on the anointed, while opportunities to demonstrate competence is limited for the un-anointed.
Anointing endorses a view of math as the singular practice of a special few.
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Lone Ranger-ing occurs when a student circumvents the group norm of ‘stay together’ or
‘help & ask for help’ by attempting to complete group tasks alone. The term lone ranger is taken
from the popular 1940s-50s TV show about a masked ranger pursuing criminals through the
Wild West. The term is meant to provoke an image of the individual maverick – one who
purposely defies convention in order to achieve a desirable end. While lone ranger-ing serves as
an opportunity for students to demonstrate and develop individual competence, it also serves to
truncate the learning and opportunities for participation of others. Operating as a lone-ranger
without sanction confirms a view of math learning as a solely individual accomplishment.

Aligning occurs when students take up another’s idea or position in opposition to others in
the group. Aligning often occurs when students disagree on a method or solution. However,
aligning also occurs as a gesture of protection, sympathy, or solidarity, as when a student feels
another is being unduly scrutinized by the teacher or a peer. Aligning also serves to regulate
action in the group, as when two students tell a third to slow down. Alliances are not typically
enduring; they shift over time, within a task, by individual need, or by group configuration.
Aligning generally serves to promote individual learning and participation as students experience
having their ideas supported by others in the group. Aligning, especially around content, offers a
view of math as a social practice where justifying, negotiating meaning and reasoning are a
group accomplishment.

Revealing occurs when a student makes evident an aspect of their social network, personal
life, or cultural heritage to better their position in the group. Revealing occurs in multiple ways:
through obvious display (e.g., dress, eye make-up, etc.), in response to direct questioning, or as
an indirect response to others. Revealing often occurs when students have either never worked
with one another before, or are in a new group configuration. Revealing is most often coupled
with evaluations by peers that subsequently shape that student’s participation. When revealing
occurs spontaneously, it often serves a specific interactional function: forming common ground,
establishing reputation, locating oneself in a specific context, staving off criticism, mitigating
known differences, repairing a misunderstanding, and so on. Students “reveal” in a variety of
ways and with different effects on their participation that indicate their positioning among peers.

In summary, these preliminary themes suggest student behaviors and interactions are an
important site for evaluating the opportunities and challenges of working collaboratively with
peers. Identifying and describing these and other participatory patterns helps make visible how
peer collaboration shapes student participation and the possibilities for learning in math. This
then offers teachers a way to identify, evaluate, and problem-solve student experiences of
cooperative learning by identifying how (and which) students are most vulnerable or empowered
by its use.

Implications
Bringing to bear the theoretical traditions of feminist social science and symbolic

interactionism offers a fresh perspective to the understanding of individual participation in a
cooperative learning math environment. By focusing on student interactions, and by identifying
patterns of participation, this work suggests how teachers and students might similarly examine
and problem-solve peer collaborations to promote academic success for all.
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Significant emphasis has been placed on the importance of collaborative learning in
mathematics amongst peers (National Council of Teachers of Mathematics/NCTM, 2000).
Barnes and Todd’s (1978) seminal research on peer collaborations suggests that students are
more likely to achieve fruitful discourse (i.e., open, collaborative discussion, and argumentation)
when they are able to take independent ownership of their learning and this occurs outside of the
immediate range of the teacher. Sfard, Nesher, Streefland, Cobb, and Mason (1998), however,
point out that students need to be in the “presence of a more highly structured awareness” (p.
49), which is described as “carefully constructed tasks, exposition, and people [italics added]” (p.
49). Adler (1998) concluded from her study of small group settings that the inner dynamics of
the group often reflected a small class setting where one student takes on the role of the teacher.
Yet Mercer (1996) contends that peer discourse is reflective of symmetrical relationships; thus,
the role of “teacher” may only be illusionary. This work examines peer as “expert other” during
collaborative inquiry in mathematics.

Theoretical framework
This research draws from the theoretical assertions of Vygotsky (1962; 1978). Vygotsky

proposes that knowledge is a reconstruction emerging externally from interactions with people,
activities, and cultural artefacts (i.e., either tools assisting the external to be internalized or signs
supporting internal activity aimed at self-understanding and mastery). With respect to
knowledge, Vygotsky states that “the path from object to child and from child to object passes
through another person” (p. 30) or a more ‘expert other’ through scaffolding. Scaffolding occurs
within a symbolic space (Lerman, 2001, p. 103) conceptualized by Vygotsky (1978) as the zone
of proximal development (ZPD), which is “the distance between the actual development level as
determined by independent problem solving and the level of potential development as
determined through problem solving under adult guidance or in collaboration with more capable
peers” (p. 86).

Methodology
Peer collaborations were analyzed using video study methodology (Kotsopoulos, 2007). Data

collection occurred during the 2005-2006 school years, in an eighth grade classroom (34
students). Data sources included: in-class observational field notes taken during non-
collaborative learning and teaching; student interviews; one teacher interview; 38 hours of video
and audio taped peer collaborations, over three different mathematical tasks, emerging
authentically from the teacher’s own programming; student artifacts; sociometric questionnaires;
focus group session transcriptions. Video and audio data were transcribed and analyzed.

Results
Predominantly, students were not observed helping one another understand the mathematics

in any of the observed tasks despite requests for assistance from students within the group. There
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was extremely limited evidence of an “expert-other” emerging from within the various groups to
support another’s learning even when students who where experiencing difficulties made their
challenges explicit to others. Students’ conceptual challenges were made evident within the
groups in three ways: (1) the student did not construct the assigned model, (2) the student’s
calculations were incorrect, and/or (3) the student talked aloud in attempts to elicit support. On
most occasions when students had incorrect calculations or answers, it was observed that
remediation primarily consisted of dictating the correct answer to the student – a form of
directive – object level discourse. On very few occasions, students asked leading questions like,
“Did you divide?” “Did you multiply?” or “did you forget the cash reserve?” Despite this type of
questioning, the answer was immediately dictated aloud to the student. There were no
subsequent checks following the oral dictation to determine if the solution was correctly
recorded. Students did not take it upon themselves to question each other’s understanding when
incorrect answers were provided. Some students did not notice other students’ struggles.

In the present research, an obvious “expert other” does not actually emerge in the student
groups to provide scaffolding for other group members. Thus, this research calls into question
the potential of a peer to act in the capacity of “expert other” in a group setting. This finding also
calls into question the ways in which “expert other” is defined. Loose definitions of “expert
other” as simply the most capable individual in a setting are questionable. I contend that “expert
other” has particular and specific skills and knowledge in relation to a discipline, topic, or field.
This does not suggest that in education all teachers have the necessary skills and knowledge to
function as an “expert other” in all areas of curriculum. A teacher may, however, be a more
probable candidate as an “expert other” than simply the most capable student in a given set of
students.
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This research report examines communication patterns between parents and children
working on three different mathematical tasks.  Among ideas being investigated is the extent
to which there are gender differences in use of cognitively demanding language among
parent-child dyads.  The report briefly discusses theoretical foundations of the project,
validation of survey instruments, and differences in communication patterns.

This paper presents preliminary analysis of data collected as part of a three-year project
The Role of Gender in Language Used by Children and Parents Working on Mathematical
Tasks funded by the National Science Foundation to investigate the following research
questions: 1) To what extent are there differences in the use of cognitively demanding
language among four types of child-parent dyads (daughter-mother, son-mother, daughter-
father, son-father) working together on mathematical tasks in number, algebra, and
geometry? 2) To what extent are there gender-related differences in children’s self-efficacy in
mathematics and parents’ competence beliefs for their children’s success in mathematics?
and 3) What are the relationships among (a) parents’ competence beliefs for their children’s
success in mathematics, (b) children’s self-efficacy and interest in mathematics, and (c)
cognitively demanding language used by children and parents when working together on
mathematical tasks?

The research questions are based on theories of the role of gender on children’s self-
efficacy (Bandura, 1997; Pajares, 2002; Zimmerman, 2000), parents’ competence beliefs for
children (Eccles, Frome, Yoon, Freedman-Doan, & Jacobs, 2000) and how these affect
cognitively demanding language (Tenenbaum & Leaper, 2003).

Theoretical Framework
Crowley, Callanan, Tenenbaum, & Allen (2001) found that in parent-child conversations

involving interactive science museum exhibits, girls were one-third as likely to hear
explanations from parents. Furthermore, 22% of the explanations given boys were causal,
versus only 4% for girls.  Boys and girls were not significantly different in whether they
initiated engagement. Tenenbaum and Leaper (2003) investigated parents’ teaching language
during science and non-science tasks among middle class families. Their findings indicated
fathers used more cognitively demanding speech with sons than daughters when working on
a physics task, but not on a biology task. Extending into mathematics, this project is studying
language used by children and parents as they work on tasks in three content areas: 1) number
and operations, 2) reasoning and algebraic thinking and 3) spatial sense and geometry. Based
on prior research that reported gender differences in geometry (Baenninger & Newcombe,
1995; Casey, Nuttall, & Pezaris, 2001) and on the reasoning (Fennema, Carpenter, Jacobs,
Franke, & Levi, 1998) it is hypothesized that the types of mathematical tasks will produce
gender differences in the cognitively demanding language used by children and parents.
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Methods
The project involves one hundred third and fourth grade students and their parents from

public schools in Hawai‘i that serve ethnically diverse populations with 50% to 80% low
socio-economic status. Each parent-child dyad is videotaped while working on three ten-
minute mathematical tasks. Each task has multiple methods of solution and was designed to
provide for a high level of interaction between the parent and child. Prior to working the
mathematical tasks, both parents and children completed surveys to gather data on
competency beliefs, self-efficacy, and value/usefulness of mathematics as well as
demographic information.

Instrument Development
Parent and child surveys were developed using data from the Childhood and Beyond

Study (GARP, 2006 by Jacqueline Eccles and others. Reliability (Cronbach’s Alpha) tests
were employed on surveys collected from 66 students and 44 parents from three elementary
schools to examine internal consistency. Initially, a nineteen-item survey with six constructs
(ability, values, usefulness, interest, parent involvement and effort) was proposed.  However,
reliability results indicated that only two of the six constructs were reliable (α > 0.70). After
reducing the number and regrouping the items, the reliability of the remaining constructs, 1)
self-efficacy; 2) value/usefulness and 3) competency beliefs, improved (α > 0.84).

Transcribed video data are coded with a project-developed instrument consisting of three
main categories:  1) getting started, 2) discussion mode, and 3) vocabulary usage. Getting
started focuses on reading and discussing the task and the discussion mode involves
questioning, directing, and correcting by the parents along with follow-up questions and
statements. Also coded is the child’s reasoning as prompted by parent’s statements or
questions and reasoning initiated without parent’s prompting along with the level of
mathematical vocabulary used by the parents and children.

Data Collection and Analysis
The data collected include 1) parents’ belief in children’s competence and

value/usefulness of mathematics, 2) children’s self-efficacy for and value/usefulness of
mathematics, and 3) cognitively demanding language used by children and parent and
interactions within child-parent dyads. Results from the parent and child surveys are analyzed
to determine relationships between the parent and child responses. The use of cognitively
demanding language is coded and analyzed using the qualitative data analysis software
ATLAS.ti. Analysis includes examining relationships between parents’ competence beliefs,
children’s self-efficacy and cognitively demanding language used by children and parents.

Results and Discussion
Two transcribed segments of videotaped sessions between a daughter-father dyad and a

son-mother dyad illustrate the type of gender-related differences found. The dyad is
responding to the following questions on the algebra task cards that focus on patterning:
1. Tell each other the pattern you notice.
2. Describe what Train 4 would look like. Build Train 4 on your work area.
3. In this pattern, if a train has 6 triangles, which train number would that be? How many
squares are in this train? Talk about how you know.
Father (F) – Daughter (D) Mother (M) – Son (S)
F: Oh, cool, ok, so, we have to look at the
different patterns we see and then we have to
make what we think train 4 would look like.  Do
you see a pattern? Do you see anything between
train 1 and train 2 that looks kinda similar? Or…

M: What pattern do you notice?
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you see a pattern? Do you see anything between
train 1 and train 2 that looks kinda similar? Or…
D: Yep. S: The…..I only notice it has, each

train has 2 squares and 1 triangle and
it multiplies 1 by 1, 1, 2, 3.

F: What? M: OK Mmm
D: How you make this. They are all the same and
how you make train 4 is like…

M: Let’s do the task number two.

F: But, before you make train 4, try and explain to
me what is the pattern that you see? Right?
What’s the difference between train 1 and train 2?

M: OK and task number 3.

D: This is just going the same way, it’s the same
pattern but it has one extra.

M: So what would the train number
be?

F: Right. Ok, and then train 3… S: It would be six and.
D: Has… M: How many squares would be in

that train?
F: how is it different from train 2?

The two transcript excerpts contrast examples of conceptual questioning and perceptual
questioning by parents. The father (F) working with his daughter (D) asks conceptual
questions focusing on relationships and more abstract ideas while the mother (M) working
with her son (S) asks perceptual questions which primarily require one word answers.
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This study is grounded on a sociocultural perspective and focuses on the role of Latino
families in their children’s mathematical learning. Through parents’ voices we explore
possible ways of inclusion that may allow for Latino families to overcome social and
educational exclusion. Latino mothers explain strategies to counteract this exclusion using
resources they find in their communities.

This study focuses on Latino families’ involvement in their children’s mathematics
teaching and learning. Our goal in this paper is to try to understand the nature of this
involvement from a sociocultural point of view. Through parents’ voices we explore possible
ways of inclusion that may allow Latino families to overcome social and educational
exclusion. We examine the kinds of strategies that Latino mothers in our study used to
overcome some of the barriers that affect their children’s learning of mathematics.

Theoretical Framework
Drawing from the sociocultural approach (Cobb & Yackel, 1996; Nasir & Hand, 2006),

we assume that learning is a social and cultural phenomenon that cannot be understood only
through the analysis of cognitive processes, but also it is a process in which contextual
aspects of the student intervene. We understand learning as a reality in which school,
teachers, students, families, and the social context in which they live in are intertwined
(Elboj, Puigdellívol, Soler, & Valls 2002). Whereas other studies have looked at educational
practices inside schools, hence focusing on interactions among students and teachers in the
classroom, our focus is on the parents’ perspectives of their children’s learning of
mathematics. This approach builds on prior work we have done in this area (Civil &
Andrade, 2003; Civil & Bernier, 2006; Civil, Planas, & Quintos, 2005).

Methods
Our research takes place in two elementary schools located in working-class, primarily

Latino neighborhoods in the Southwest of the U.S. We center on the voices of the mothers
that participated in our study so that they are the ones who explain the difficulties they faced
as they tried to help their children learn mathematics and what resources they drew from to
overcome these difficulties. This is consistent with the use of a critical communicative
framework (Gómez, Latorre, Sánchez, & Flecha, 2006). From this methodological point of
view we emphasize the interpretations that the people directly involved in the research, that is
the parents themselves, make of the dynamics that explain how Latino families take charge of
their children’s mathematics education. As Hidalgo (2005) writes, “I take the position that the
more one knows about the contexts of Latino/as lived experiences, the better one may
understand their processes of adaptation and change” (p. 378).
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We individually interviewed sixteen mothers from the two schools. We transcribed and
analyzed all the information collected by video and/or audio recording. In order to analyze
the information we used grounded theory (Glaser & Strauss, 1967) with the purpose of
inductively bringing up the themes the mothers considered to be relevant.

Results
In this paper we report on the three main barriers that the mothers mentioned and on the

kinds of strategies that they used to overcome them.

Differences between Schooling in Mexico and in the US
The participating mothers in this study pointed out that they encountered many barriers

when trying to help their children with mathematics homework. One of the difficulties relates
to the differences between Mexican and U.S. educational systems, as the quote below shows.
One of the mothers, Lucrecia, is reflecting on when her daughter first started attending school
in the U.S. upon her arrival from Mexico:

Lucrecia.- It seems like she gets a little upset, at the beginning when it was very easy
for her because she already knew it then it was like if, and the teacher used to say that
she got distracted since she had already studied that, so she knew it already,  that’s
why she didn’t  take it seriously, and so it seems like she got upset.

Tensions between Different Forms To Do Mathematics
This is in part related to the previous barrier. Several mothers commented on how they

learned mathematics when they went to school and that this was very different from how
their children are learning now. This mother, for instance, comments on the conflict with her
daughter when she tries to help her with her homework:

Laura: With my daughter Yahaira, they taught her one way and they taught me a
different way, but it’s the same answer. It’s what I tell Yahaira, I explain it to her one
way, and they explained it to her a different way. I tell her, “but look, it’s the same
answer.”

Issues of Language
Some mothers mentioned that their limited knowledge of English made it hard for them to

help their children with homework: “Every once in a while I cannot explain (it) to her
because I know almost no English” (Selena). Another side of this language issue is when the
children themselves do not know English well. In some cases this leads to resistance and
rejection towards the school, as this mother recalls when they first arrived to the U.S., “It was
all in English. And then I started being proactive and, I said, no, poor children, because they
were traumatized. They didn’t want to go to school anymore, they wanted to go back to
Mexico, and it was everyday that they cried…”

Strategies To Overcome These Barriers
The mothers in our study were resourceful at finding ways to help their children learn

mathematics. In general this desire to “help their children” is a source of motivation for the
mothers to look for resources in their communities. Some mothers we interviewed take
mathematics classes to get to know the local educational system. Other mothers study
English; they ask their own children to translate the homework questions for them, or they
look for help from the teachers or other people in the community, as we can see from the
following quotes:
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Jacinta. -  But on Thursday, I am going to take a math class because there are
problems that I don’t know how to solve. And the teacher invited me on Thursday
afternoon at five to teach me what they are teaching to him, so that I can help him.
Loli. - Now I know little bit more the procedures and what she is teaching, and I feel
more, like with more freedom to help her, because before… “You are not helping me.
You better move away, Mum. You better go away.” And yes, it is true; if I don’t help
her, why be a hindrance? But now I understand better than before… How did I do at
the beginning? I had spider webs because I couldn’t get anything in any way, now I
started to remember a little, all because [these classes].
Some mothers looked for support through their networks (family, friends, community),

for example by sending their children to other friends’ houses (or family’ houses), who
already know English well, to work together on the homework. Other mothers made use of
the local community centers (e.g., Boys and Girls club) to seek assistance with homework for
their children: “sometimes when she [her daughter] is not able to do it, she calls her cousin.
Or she also brings the homework to the club.” [Noelia]

Discussion
Our study adds to the work that highlights the resources, the knowledge, the caring, and

the resiliency present among Latino working-class parents (Delgado Gaitan 2001; Valdés
1996), but with a specific focus on mathematics education. We are therefore guided by a
theoretical approach that highlights the understandings these families have that allow them to
advocate for their children. Our analysis shows that cultural elements such as language and
the educational experience in another country are key aspects that affect how much mothers
can help their children. In the case of the Latino families in our study, we observe that not
knowing English or how to solve a specific mathematics homework problem may constitute
obstacles for the collaboration between parents and children. This makes the school-family
connection more difficult to attain and, according to other studies (Elboj et al, 2002), this
connection is one of the key components for academic success. Yet, our study also shows that
Latino mothers actively look for ways to fight against these difficulties that are of a more
structural nature. Through community resources (attending workshops, English classes,
mathematics classes, civic centers in the community, etc.) and their own families / friends
(asking other family members for help on English translations, sometimes even their own
children), those parents work towards overcoming these difficulties and try to look for ways
of inclusion.
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This practitioner research considers how real-world problem contexts can support
mathematics teaching and learning. Examining both a specific curriculum unit in depth and
the growth of the practitioner’s curriculum over time, this report articulates and applies
frameworks of relevance and mathematizability to problem contexts and centeredness,
individualization, re-presented complexity, and congruence to curriculum.

This short oral report summarizes the findings and understandings emerging from three
years of practitioner research on the role of real-world context in mathematics curriculum. As
a high school mathematics teacher, the researcher has engaged his students in a variety of
projects with real-world problem contexts. This report addresses the following research
question: "What features of problem contexts and classroom curricula engage students in
building deeper understanding of both mathematics and the real world?”

Theoretical Framework
Mathematical understanding is connecting mathematical ideas to each other and to other

knowledge (Hiebert et al., 1997). Depth of understanding correlates with the depth, number,
and type of connections students make with mathematics. Real-world problem contexts, such
as currency for place value, can help students to make connections. Many of these problem
contexts, however, can be “foreign” to students. In addition to failing to acknowledge cultural
resources, this mismatch also inhibits students’ mathematical learning. School mathematics
can instead “center” on students’ lived experiences (Tate, 2005). This centricity of curriculum
with students’ lives is consistent with culturally relevant pedagogy (Ladson-Billings, 1995).

The process by which real-world problems are analyzed and solved entails
mathematization. Mathematics can further serve as a tool for advocating for change when
contexts of social injustice are brought into the classroom (Gutstein, 2006).  Students may
still fail to connect procedural school mathematics with problems set in real-world contexts
(Boaler, 2002). In a different sense, mathematization could refer to the study and
formalization of everyday cultural practices using a mathematical lens, an ethnomathematical
perspective (Barton, 1996).

Classroom Setting
The data for this study come from the researcher’s classroom in a school that serves

recently immigrated English language learners in New York City. Students come from
twenty-two countries and speak twelve different languages; 71% of students qualify for free
or reduced lunch. The school is part of a growing network of schools dedicated to integrated
content and English language instruction, project-based instruction, experiential learning, and
support for students’ first languages.  Students take classes in blocked groups with an
interdisciplinary team of teachers. To encourage peer support for English language
development, students stay in the same “institute” for two years so that the classes in this
study consist of both ninth and tenth graders.

The researcher develops some of his classroom work with a collaborative group of
teachers and a university researcher. In Centering the Teaching of Mathematics on Urban
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Youth, participating secondary mathematics teachers meet monthly during the school year
and intensively during the summer to share their experiences as teachers as well as to learn
more about how to incorporate real-world social justice contexts into their classroom
teaching.

Methodology and Data Sources
This qualitative action research study begins out of intrinsic interest, but then moves into

a more instrumental view in the development of a set of dimensions with which to classify
curricula according to the relevance and mathematizability of the problem contexts (Sagor,
2004; Stake, 2000). Classroom curriculum and student work and reflections are coded using
open and focused coding (Emerson, Fretz, & Shaw, 1995). The objective of this coding is to
find instances of relevance and mathematizability and then to develop subcodes which
identify more specific features of curriculum.

The data for this study come from multiple sources:
 Curriculum: projects, handouts and other materials from instructional units.
 Teacher fieldnotes
 Students’ written reflections: daily, at the end of each unit, project, and semester.
 Student work: daily products collected in folders, drafts, and final products

The researcher also collaborates with a university researcher who visits the classes during
certain projects. The researcher engages in reflective discussion about his ongoing work with
the visiting researcher and with the other participating teachers.

Results
In the highlighted project, students constructed cartograms based upon current data on

their native countries to investigate proportionality. Through this project, students make
connections: within mathematics; between mathematics and the world; with each other, their
native countries, and the world; and between variables and questions within the world.

This in-depth analysis of a specific curriculum unit yields a description of features of
curriculum, which are the ways in which students are presented tasks and support for
exploring real-world problem contexts. As far as a problem context is relevant to students, the
curriculum may explore topics which are centered on students’ everyday lived experiences
and require them to produce individualized final products.  Insofar as a problem context is
mathematizable, the curriculum that implements it will need to re-present complexity in the
real world and employ mathematical methods which may vary in terms of congruence with
the practices in the real-world context. An elaboration of these four features, as outlined in
Table 1, is the main result of this study.

These features are further applied to other curriculum units, such as ones about taxation,
text-messaging systems, community mapping, the consumer price index, technical analysis of
stock prices, and structural package design. The researcher’s curriculum demonstrates a trend
toward greater prominence of these features over time. These features are further related to
students’ expressions of interest as measured by reflections and evaluations.

Feature Questions and Characteristics
Centeredness To what extent does the curriculum take students’ everyday lived

experiences and interests as a point of departure to pose tasks which
draw upon students’ cultural resources and knowledge?

Individualization To what extent are students tasked with creating products which are
unique and reflect their own individual perspectives and knowledge?

Re-presented
Complexity

How does the curriculum explicitly make assumptions, simplifications,
omissions, or other modifications in order to present students with a
problem to which mathematics can be more easily applied?
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Complexity omissions, or other modifications in order to present students with a
problem to which mathematics can be more easily applied?

Congruence How closely and authentically do the mathematical processes used in
the curriculum parallel how people in the real-world context approach
the problem or task?

Table 1. Elaboration of features of curriculum.

Discussion
If these curricular features are indeed central to using real-world contexts which are both

relevant to students and mathematically rich, then it is still unclear how teachers learn to
develop curriculum units with these features. What knowledge about students and
dispositions toward students’ cultural knowledge and resources facilitate the development of
curriculum with these features? From the point of view of developing curriculum, where is it
more useful to start—the mathematical content or the real-world contexts?

As a first attempt, these features have been introduced as questions which can be
answered descriptively for each project. A further step would be to use these categories to
develop a rubric for evaluating curriculum. How might these rubrics apply to commercial
curricula which claim to draw primarily upon real-world contexts in the teaching of
mathematics?
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This paper describes research that fosters, documents, and analyzes a collaborative project
between a university researcher and middle and high school mathematics teachers. An
operational framework of centering the teaching of mathematics is provided. The paper
provides a theoretical analysis of how mathematics teachers, as individuals and as a
professional community, learn to center their mathematics teaching on students in an urban
setting
.

Theoretical Framework
We begin with Ladson-Billings’s (1995) specific construct of culturally relevant

pedagogy (CRP) as a framework for equity pedagogy, with its three attributes: it i)
emphasizes students’ academic success, ii) encourages the development of cultural
competence, and iii) facilitates development of critical consciousness. We connect this
definition of CRP to the content area of mathematics, to arrive at a three-pronged framework
of centering the teaching of mathematics on urban youth, borrowing Tate’s (1995) notion of
centric instruction: 1) students’ academic success is emphasized through the advancement
toward understanding of and proficiency with mathematical concepts and skills, 2) cultural
competence is fostered through the inclusion of aspects of the lived experiences of students
and their communities as contexts for mathematization, and 3) critical consciousness is
developed through the use of mathematics to addresses relevant, sociopolitical themes. While
we recognize that the principles of centering teaching of mathematics could be applied to any
community of students, we include the term “urban” to specifically denote a diverse, densely
populated setting.

The inherent challenges of planning mathematical instruction centered on students
demand collaborative efforts between practitioners and researchers. This project utilizes a
model of teacher learning community (McLaughlin & Talbert, 2006).

Methodology
This paper focuses on the following two sets of research questions: 1) How do

teachers translate goals of centering the teaching of mathematics on urban youth into their
daily practice?  2) How does a structure of a professional community, organized around the
goal of learning to center their teaching of mathematics on urban youth, contribute to teacher
learning? Participants include ten middle or high school mathematics teachers, each with five
or fewer years of teaching experience who teach at middle and high schools in three of New
York City’s five boroughs. Data includes audiotapes of two 5-day summer workshops,
teacher written reflections, audiotapes of two years of monthly meetings, as well as field
notes from individual classroom visits and individual interviews by the researcher.

Results

Mathematics in Community
One of the goals of the summer workshops was to facilitate teacher learning about how to

develop contexts for mathematical learning that would be relevant to their own students.
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Accordingly, over the two summers, the teachers participated in two versions of a community
walk along nearby census tracts. In the first summer, teachers were given a map of a census
tract and directed to map a route and collect information about that tract according to
categories like housing patterns or businesses present in the tract, or according to teachers’
own interests, or, according to categories that might emerge from the walk itself. In the
second summer, teachers were again given maps of nearby census tracts, but were asked to
choose alternate, ethnographic ways of gathering information about that neighborhood.
Subsequent to the physical activity, in both summers, teachers were directed to various
electronic sources of data about that tract, supplied by national or local agencies. This
community-walk activity was posed as a potential mechanism for their own learning about
their students’ communities. However, the primary interpretation of this activity by
participants over two years has been to take the concrete notion of mapping as a basis for
curricular projects that connect mathematical ideas to local communities.

One important concern that quickly emerged among the teachers is the location and
identification of mathematical concepts that could be associated with the urban theme of
community. Critical questions related to local statistics immediately surfaced, such as the
racial or linguistic categories used by the US Census in contrast with the teachers’ knowledge
about the demographics of the local community. For instance, one teacher noted that the
Census reports a percentage of Black individuals in a tract, their walks and local knowledge
attested to the presence of a diversity of Black individuals, some African Americans, some
from the Caribbean, a diversity lost by the general Census category. Another teacher focused
on finding and analyzing the ratio of public play space to the number of residents in the tract,
and comparing that ratio with a more affluent neighborhood. Another teacher examined the
multiple perspectives of a neighborhood’s diversity, by creating a flip-book that used the
mathematical concepts of area and proportion to demonstrate different social or economic
characteristics.

Housing also emerged as a theme of interest, with questions about ratios of owners to
renters, changes in rent prices over time, development, and consequences of gentrification. A
third mathematical theme connects to the field of graph theory by examining the efficient
counting of paths or cycles on a map, the equitable location of important resources in a
community, or the strategic, competitive location of businesses or facilities. A fourth theme
related to geometric concepts of the location of the population mean or median of an area and
the possible significance of these locations. The next step in the teacher learning process
involved the actual implementation of these projects, and the next section describes two such
classroom projects.

Classroom Projects
One of the projects was titled the Community Mapping Project, done with 9th and 10th

graders, at a school for English Language Learning students. In this project, the students
conducted individual community walks and gathered data about their own neighborhoods
according to variables of their own interest. They constructed scale maps of their own
communities, and retrieved and analyzed local Census data. Each student also compared
some aspect of his or her neighborhood with that of a classmate and made predictions about
the future of their neighborhood.

A second year-long project was created around the theme of housing and construction in a
7th grade class at a K-12 independent school. The project began with a focus on the
destruction of housing by Hurricane Katrina and a class visit to a Habitat for Humanity
worksite. Students were later asked to describe the racial diversity of their neighborhoods and
were then directed to investigate the corresponding Census data. The students later
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researched property values in the local region as well as typical salaries to better understand
the economic meaning of a local home. They worked on the topic of percentages by studying
simple interest in the context of applying for fictitious mortgages to fund a proposed housing
project. Then students then embarked on an architecture design project which emphasized the
topics of rational numbers and measurements in designing scaled floor plans as well as scaled
styrofoam 3-D models of their floor plans, all according to designated budget.

Discussion
One point of tension that has emerged out of this study is the question for teachers of

what drives the project, the math goals or the urban theme itself. One can begin with a set of
mathematical concepts and develop a corresponding project, or one can start with an urban
theme and find ways to read that theme with the mathematics in one’s curriculum. A second
tension that has emerged in this process is a struggle over the issue of relevancy, as well as
the related, but slightly different, issue of authenticity. How can a teacher determine whether
a theme is relevant to her students, especially given that she does not belong to the students’
communities?

A third point of tension stems from the challenges of urban diversity when it comes to
identifying communities because of the way these communities are layered, even within a
single neighborhood. This, of course, extends to using mathematics to analyze relevant social
or political themes – relevant to whom?  Urban diversity also complicates notions of race. As
a teacher explained: “I’ve always thought as far as racism or prejudice is concerned it was
whites against everyone else.  But some of the things that are wedging between Blacks and
Dominicans and Dominicans and Puerto Ricans and Puerto Ricans and Blacks and Blacks
and - I’m amazed.  I’m like, “Wow!””

A fourth point of tension relates to the current climate of high stakes testing. The
teachers in the research group continue to feel challenged by the gatekeeping exams that
focus solely on students’ knowledge of classical mathematics. And so, while they agree in
spirit with the other two goals of culturally relevant pedagogy, cultural competence and
students’ critical consciousness, they express concern that the real social justice issue might
be  getting the students to pass those particular exams.

Finally, a fifth tension which has emerged from the data, is teachers’ fear of “double
oppression.” Since the participating teachers are outsiders to their students’ communities,  as
they try to develop students’ critical consciousness by using mathematics to analyze the
social or political conditions of their students’ lives, they fear that this could be experienced
by the students as further oppression. As one of the participating teachers asked, “If you
consistently point out injustice to kids, don’t they lose hope? Are your students, as
immigrants, more hopeful about changing this country than my students who have had family
in this country for generations and are still living in poverty?”

We do not interpret these tensions as an indication that centering the teaching of
mathematics on urban youth is intractable. Instead, we view this it as a multi-dimensional
challenging task, especially for new teachers. Our project is still underway, and we plan to
share further findings as we proceed.
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This theoretical essay examines the achievement gap as a construct made more real by continual
research about it and suggests genealogy as a possible way of working toward equity concerns.

Much of the equity-oriented work in mathematics education has been focused on the
achievement gap – explaining it, measuring it, and theorizing about ways to close it.

Postmodern philosopher Michel Foucault described this constant reiteration of a particular
idea as a will-to-truth. Using the phrase “the achievement gap” reiterates a certain set of power
relations, which inscribe certain truths, but not others, “in social institutions, in economic
inequalities, in language, in the bodies themselves of each and every one of us” (Foucault, 1980,
p. 90). The constant repetition of the phrase “the achievement gap” works to create a real
phenomenon. An ERIC search for documents with the phrase in the abstract turned up more than
500 texts; a Google search produced over a million hits. Measuring the achievement gap etches
this particular relation of power into our social institutions, our language, and our bodies more
deeply. What we measure (alienation, attitude and math test scores), how we measure (multiple
choice, surveys, short answer) and what we report (scores by race and gender) are technologies
that allow educators to exercise power relations. They remind some individuals of their
inferiority, and others of their superiority. NCTM (2005, p. 4) links the achievement gap to
“racial, ethnic, linguistic, or socio-economic status,” and because of the continual reiteration of
these relations of power, readers know -- without being told -- which groups are on the low and
high ends in each of the named categories.

These technologies – the methods of measurement, the content being measured, and the way
scores are (or are not) disaggregated – are not innocent, neutral or natural; they do not simply
measure what is true; they produce it. Typically, scores are not reported by income-level,
educational attainment of parents, hair color or height. We choose which categories to make
important.  In one study on stereotype threat, researchers told European American males that
Asian Americans typically outperform whites in mathematics. Then researchers then gave these
men a challenging math test. These participants performed significantly worse on the test than
men who had taken the test without having this stereotype invoked beforehand (Aronson et al,
1998). For minority students, the act of taking a standardized test may work to invoke
stereotypes about performance even without an explicit reminder because phenomena like the
achievement gap are so widely accepted as real. Thus, the achievement gap works in two ways in
these situations. First, its acceptance as a real phenomenon impacts student performance on tests,
and second, the tests then go on to produce evidence, in the form of test scores, that the
phenomenon is, in fact, real.

This relationship is also an example of what philosopher Ian Hacking called “the looping
effects of human kinds,” (Hacking, 1999). As social scientists, the categories we use to describe
those we study create kinds of people, and unlike species of plants or animals, human kinds
(minorities, females, urban children) can learn about their kind and can change their behavior as
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a result. In the mathematics education literature today, many human kinds exist. Researchers
discuss African-American students, Latinas/Latinos, girls, students with disabilities, English
language learners, urban students, and others. As intuitive as these categories may appear, they
were not always available. Early research in mathematics education tended to differentiate
students in far fewer ways than we do today. Edward Thorndike (1922) referred only to “the
pupil.” For instance, we should try to find problems “which not only stimulate the pupil to
reason, but also direct his reasoning to useful channels” (p. 20). Similarly, other writers who
discussed problem solving in the early part of the 20th century tended to see students in more
unitary ways than we do today. William Brownell (1938) did not discuss differences among
students, except in regard to ways that they had been taught.

Today, when individuals recognize and read about their kinds, they must find ways of living
in response to the categories. Stereotype threat isn’t possible without the stereotype, and research
explicitly focused on kinds of students who have trouble in mathematics can, without intending
to, force individuals to “fit or get away from the very classification that may be applied to them”
(Hacking, 1999, p. 34). To address these concerns, equity-focused researchers in mathematics
education may want to consider adopting new stances in their writing. One possible way of
framing such work would be to draw on the genealogical traditions developed by postmodern
theorists. In discussing the differences between ethnography and genealogy, Erica McWilliam
(2003) wrote that one of the greatest challenges of adopting a genealogical perspective is letting
go of the role of advocate. As an example, she noted that deciding to ask the genealogical
questions “Why bullying now?” and “How bullying now?” rather than the ethnographic
questions “What is bullying?” and “How do we stop it?” can be unsettling (McWilliam, 2003, p.
60). In similar ways, the genealogical questions of “How has it become possible to think about
home culture as different from school culture?” or “Why has it become common to explain
students’ schooling experiences in terms of race?” might seem like less compelling ways of
working toward an equity agenda than the ethnographic questions about why students with
certain demographic characteristics are succeeding or failing in mathematics. The object of
genealogical work is not to document the present through the mobilization of evidence, method
and theory, but to bracket the present through argument so that an object of study – such as the
achievement gap -- appears contingent, permeable and historically dependent. Rather than
reinscribing the importance of current social categories, the goal is to make it possible, however
briefly, to imagine the world otherwise.
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Teaching mathematics to foster students’ understanding of social justice issues is growing in
mathematics education. However, results from an initial analysis of our investigation reveal that
some teachers choose mathematics programs based on their social justice motives, their desire
to preserve students’ academic and social self-concept, and to foster students’ overall
developmental success.

Mathematics is utilized by a growing number of educators as a vehicle to help students
develop awareness and agency about social justice issues (Gutstein, 2007; Gutstein & Peterson,
2005). However, there are also social justice issues imbedded in the reasons teachers choose
certain mathematics programs, their practice of teaching mathematics, and teachers’
understanding of how mathematics attainment impacts students’ developmental trajectories.
During an Ontario Ministry of Education (OME) funded research project “Studying the
Approaches of Mathematics Instruction” (SAMI), analysis of teacher interviews revealed that
some teachers choose mathematics programs based on their personal social justice beliefs.

Theoretical Perspective
Social justice in education commonly focuses on reducing educational inequalities that arise

from factors that impede the educational and developmental success of students (Cook-Sather,
2007). Freirean pedagogy espouses the socio-political empowerment of students through
education (Freire, 2000), and empowering mathematics involves students’ gaining power
through the practice of mathematics (Stinson, 2004). However, these emancipatory pedagogies
assume a certain level of student engagement. One reality is that mathematics is a “gatekeeper”
subject that is used to academically track and socially stratify students (Stinson, 2004), and as
such there exists groups of students who may be prevented from reaping the full developmental
benefits of mathematics attainment. However, if teachers understand how mathematics impacts
students’ developmental trajectories, it may be that we will begin to positively impact the
mathematic attainment of students and foster their developmental success.

During the analysis of our data, we observed the emergence of four themes that related to
teachers’ motivation for selecting mathematics programs. These emergent themes include
teachers' beliefs about: (1) how innumeracy impacts students’ levels of participation in society;
(2) educators’ personal experiences with a pivotal teacher who influenced their learning of
mathematics; (3) desire to foster the learning of struggling mathematics students as they may be
the most vulnerable members of society; and (4) the intentional selection of mathematics
educational programs which provide incremental success and accessibility to mathematics
students of all ability levels. These distinct categories form the structure of this paper and will be
presented as manifestations of teachers’ larger social justice motives in teaching mathematics.
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Method
SAMI is a large, on-going OME research initiative evaluating the structured pedagogical

approaches enacted in elementary mathematics programs in Ontario, Canada. One of the goals of
the SAMI project is to compare pedagogical approaches that share a focus on explicit instruction.
This process was initiated with inquiry-based open-ended interviews of four grade 4 and grade 5
mathematics teachers. During the first phase of coding, we discovered a social justice theme that
emerged from four distinct, but related, categories. The initial exploratory phase of this study
was interview-based. We selected mathematics teachers from public and private schools who
held differing pedagogical approaches to instruction. Recruited participants were asked to
complete a questionnaire relating to teacher beliefs and instructional practices. The questionnaire
was then used during semi-structured interviews to guide researchers in probing teacher-
participants’ deep belief structures. The interviews were transcribed and coded using an
inductive coding process (Maxwell, 2005). Once coded, the data was organized by teacher cases,
and cases were analyzed for similarities and divergence. The cases were then categorized by
common themes.

Results
We selected two teachers, Sidney and Epstina, that best illustrate teacher-participants’ social

justice motives for selecting mathematics programs. Sidney is a teacher in a private school, while
Epstina teaches for a public school; both are grade 5 teachers. Throughout the interview process
both participants acknowledged that their personal experiences with innumeracy resulted in their
commitment to helping students who struggle with mathematics. “I was a struggling student
myself” revealed Epstina. As the interview progressed Epstina shared how she struggled with
mathematics as a child, and how her quest to learn mathematics as an adult led her to understand
that as a teacher of a gatekeeper subject, she plays a pivotal role in the developmental trajectories
of students who struggle with mathematics.

In a related theme, both teacher-participants identified having a pivotal mathematics teacher
who had succeeded in teaching them mathematics as adults. Sidney encountered this educator in
Teachers College, while Epstina befriended a mathematician and subsequently learned
mathematics as a result of this friendship. Both participants reported the belief that having
struggled as children, and having subsequently learned mathematics as adults helped them to
understand the incremental nature of mathematics, and that they both believed that this
experience provided them with metacognitive insight into the challenges that some children face
when learning mathematics. Further, both teachers believed that their personal experiences
fostered their ability to successfully teach students who struggle with mathematics.

It is important to note that Sidney’s and Epstina’s choice of mathematics programs were not
made independent of pedagogical considerations. Both teachers reported that the programs they
chose utilized a non-authoritative incremental approach to mathematics instruction. The teachers
identified that they chose a mathematics program based on the organizational structure of the
instructional materials as the mathematics program divided complex concepts into related,
incremental steps, and had a particular emphasis on single and double-step solutions, which
resulted in struggling students having increased opportunities to succeed in mathematics.

Both participants also offered that they believed that the materials they chose helped
struggling students develop foundational knowledge about mathematics through multiple
opportunities to practice skills as these mathematics programs reinforced effective strategies,
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which in turn impacted students' motivation to learn and engage in mathematics, and overall
contributed to students’ sense of self-competence in the domain of mathematics.

Another pedagogical feature that influenced mathematics program choice was the graphic
design of the materials. Sidney and Epstina both noted that while other mathematics materials
were filled with colourful graphics and visual representations, the program’s minimal use of
language and plain black-and-white graphics aided students in sustaining attention and “on-task”
behaviour. Sidney offered that teaching mathematics from programs and materials that are not
“language laden” “visibly lifts a burden from students who struggle with language” and allows
these students to experience success and become excited about and engaged in mathematics.

An unexpected psycho-social theme emerged when the participants independently noted that
the mathematics programs they chose possessed the feature of variable entry, and that this
feature fostered an equitable classroom learning environment as students of all ability levels
worked in the same work-book. Participants noted that this program feature has particular
relevance for struggling students as it allows these children to maintain their self-concept as an
equal member of the classroom, as their personal struggles in learning mathematics are not
“made visible” as they are when lower-ability students are required to work out of books that are
physically different from books used by other class-mates. Both participants noted multiple times
that choosing mathematics programs and materials that are inclusive to all ability levels fosters a
reduction in social exclusion among students and ensures that “no-one gets left behind”.

Discussion
Our initial purpose for conducting this phase of the SAMI study was to understand teachers’

perspectives of enacted instructional approaches. However, our analysis revealed an emerging
theme about the social justice motives that influence how teachers choose mathematics programs
and materials. Although we initially speculated that the teachers’ selection process of
mathematics programs was based on the instructional components inherent in the programs, we
have found that some teachers also base their decisions on how programs foster mathematics
success for students who are struggling, and how these programs increase learning motivation,
and positively preserve students’ academic and social self-concept. This is illustrated in the cases
of Sidney and Epstina, as both participants articulated that they choose mathematics programs to
help struggling students experience success in mathematics as they were concerned about the
developmental trajectories of their students. This social justice theme was an unexpected finding
in our study.

While we will proceed with our larger research questions, we have been made aware of this
unique, emergent theme, and are now considering conducting another smaller phased study
examining this particular aspect of mathematics. This smaller study may help us determine both
the enacted similarities or differences of instructional practices and the degree to which enacted
practice originates out of teachers’ developmental social justice motives.
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The importance of students building arguments to support their solutions to problems is
undisputed. However, there is a need for research into the process by which arguments are built
by middle school students, particularly from urban communities. This report provides insight
into student’s co-construction of arguments by urban, low income, sixth-grade students. Over
five sessions, there was a move from re-iterating ideas of others to expanding on ideas, and
finally to jointly co-constructing solutions.

Participating in mathematical discussions and reasoning about mathematics requires that
students be afforded the opportunity to share and to discuss their ideas with others (Lampert &
Cobb, 2003). In their Principles and Standards for School Mathematics, the National Council of
Teachers of Mathematics (2000) emphasizes the importance of communication for students to
develop mathematical understanding. They recommend that instruction be designed to enable
students not only to share their ideas in a mathematical community but also to analyze and evaluate
the thinking of other members.

The link between communication and mathematical understanding has been identified by others.
Skemp (1979) defines relational understanding as the ability to utilize general relationships to form
more explicit rules or procedures; he defines formal/logical understanding as the ability to combine
mathematical symbols and notation with mathematical ideas and indicates that this connection leads
to mathematical understanding. He suggests that formal/logical understanding occurs when students
use their relational understanding to convince others in a community. Mathematical discourse has a
central role in the building of mathematical understanding. Collective mathematical understanding,
according to Martin, Towers, and Pirie (2006), occurs when a group of learners are engaged in a
mathematical task. They assert that collective understanding emerges from the social context of the
learning environment. This implies that the growth of mathematical understanding can be
explained, at least in part, by the co-actions of group members, rather than individual
understandings. According to Martin, et al (2006), co-acting is a process in which an individual’s
mathematical ideas and actions are adopted, built upon, and internalized by others, thus becoming
shared understandings rather than being limited to the individual. Interest in studying the extent to
which mathematical discourse can lead to the co-construction of arguments and justifications in
problem solving by middle-school aged students resulted in a study designed to investigate the
following research question:

What evidence, if any, is there that students integrate the ideas of others into their
justifications?

Theoretical Framework
Guiding this study is the idea that in the activity of group problem solving, individual

students call upon and use certain representations to communicate their ideas (Davis & Maher,
1997). Through discourse about the representations that are used (e.g. words, model building,
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drawings, and symbolic representations), ideas are made public and subject to scrutiny by other
members of the community. Students in the process of explaining and justifying a solution to a
problem often revisit, review, and perhaps revise and/or extend their original ideas, and further
build their understanding. In making ideas public, different forms of justification emerge (Maher
& Davis, 1995). As members of the community have access to the ideas of others, there is
opportunity to act upon these ideas in such a way as to influence their development. This study is
based on the view that collective mathematical understanding is built as learners co-construct
ideas and problem solutions. The process involves reiterating, redefining, and expanding on
shared statements or ideas. It also involves questioning members of the community in order to
verify ideas and representations, gain information and facilitate the understanding of others; and
correcting each other as a means of leading to mathematical argumentation. While working in
the mathematical community in which this co-construction occurs, students advance their own
understanding and that of their group by the posing of their own challenges.

Methodology
This study is a component of a longitudinal study, conducted through an after-school

program partnership between a university and urban school district. The purpose was to explore
how mathematical reasoning develops in middle-school age students over time and under certain
conditions, such as, working on challenging tasks, interacting with peers, having time to explore,
and explain and discuss ideas. The focus is on the ideas that students bring in connection with
their communication with each other. Data come from video recordings of the first five sessions
(60-75 minutes), over a three-week period, in an after-school program. Data analysis follows
procedures consistent with qualitative and video-based methodologies (Powell, Francisco &
Maher, 2003). Twenty-four sixth graders, African Americans and Latinos, were participants.
They worked on open-ended mathematics tasks dealing with fractions. Four cameras videotaped
the students, three focusing on particular groups and the fourth roving or attending to overhead
presentations. Codes for the co-construction of ideas emerging from the analysis of the data were
organized into the following categories: building on other’s ideas, questioning others, and
correcting others. As the data were analyzed sub-codes emerged.

Results
The table below summarizes the co-construction of problem solutions across the five

sessions. Based on the initial ideas expressed, students’ building on the ideas of others was
relatively stable across sessions. However, there is an interesting trend of increase in students
questioning and correcting of ideas by the third week. In Session 1, the majority of the
interactions involved restating a student’s argument. There was one instance of a student
questioning another student and this was to seek verification. In Session 2, students continued to
expand upon, redefine, and reiterate their classmate’s ideas. The questions asked during this
session were mostly seeking verification, such as, asking classmates to repeat or clarify a
statement. There were two questions flagged as seeking information. In this session students
began to correct each other. During Session 3, mostly, questions involved verification; however,
there were three instances of questioning that involved students seeking information and two
instances in which students created and posed new challenges to the class. The number of
corrections that students made of others’ work was five. In Session 4, the majority of interactions
were flagged as building on and expanding ideas posed by others. The mode of questioning
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shifted from seeking verification to facilitating each other’s understanding through information
seeking questions. Four students posed challenges; one posed two challenges. Students corrected
each other 14 times. By the fifth session, students backed up their corrections with their own
models, warrants and explanations. Questions were geared toward understanding each other’s
models and reasoning. As the students built on each other’s ideas, questioned and corrected each
other they began to co-construct arguments. This was evident in the back and forth nature of the
dialogue; one student made an idea public, another added to it and soon it became a collective
argument.

Student Co-Construction of Problem Solutions

Date of
Session

No. of
Students

Initial Idea
Expressed

Student
Builds on
Ideas

Student
Questions
Idea

Student
Corrects Idea

11/12/03 7 5 17 1 0
11/13/03 11 5 22 8 2
11/19/03 9 4 16 19 5
11/20/03 13 7 21 24 14
12/03/03 9 11 30 28 19

Discussion/Implications
Over the five sessions, the frequency and nature of students’ co-constructions changed. There

was a move from re-iterating ideas of others to expanding on ideas, and finally to jointly co-
constructing solutions. Implications for this work suggest the importance of providing conditions
and context for students to work together in building solutions to problems in actual classroom
settings.
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UNDERSTANDING URBAN AND RURAL KENYAN STUDENTS’
OUT-OF-SCHOOL MATHEMATICS PRACTICE

Joanna O. Masingila
Syracuse University

Patrick M. Kimani
Syracuse University

This study examined 36 urban and rural Kenyan students in grades six and eight to understand
their perceptions of their out-of-school mathematics practice. We found that these students’
perceptions could be classified as one of the six fundamental mathematical activities (Bishop,
1988) and was also connected to their perception of whether they learned mathematics outside
school.

Purpose of the Study
Students gain mathematical power when their in-school mathematics experiences build on

and formalize their knowledge gained in out-of-school situations, and when their out-of-school
mathematical experiences apply and concretize their knowledge gained in the classroom.
Furthermore, an important part of mathematical experiences in school is the guidance and
structure that teachers provide to help students make connections among mathematical ideas. By
building on the mathematical knowledge that students bring to school from their everyday
experiences, teachers can encourage students to (a) make connections between in-school and out-
of-school mathematics practice in a manner that will help formalize the students’ informal
knowledge, and (b) learn mathematics in a more meaningful, relevant way. “Mathematics
teaching can be more effective and will yield more equal opportunities, provided it starts from
and feeds on the cultural knowledge or cognitive background” of the students (Pinxten, 1989, p.
28). In order to help students connect and learn from doing mathematics in school and doing
mathematics out of school, we need to know how students use and perceive how they use
mathematics in everyday situations. To that end, the research study discussed here was
conducted to gain some insight into how students perceive that they use mathematics in out-of-
school situations.

Perspectives and Guiding Frameworks
Our general aim in this study was to develop a better understanding of mathematics practice

in everyday situations. To this end, we focused our attention on standard six and standard eight
students’ mathematics practice in out-of-school situations. More specifically, our goal in this
study was to gain insight into how these students’ perceive that they use mathematics in out-of-
school situations.

Our analyses of these data are framed by hybridity theory (Bhabha, 1994), in the sense that
people in any given community draw on multiple resources or funds to make sense of the world
(Moje et al., 2004). We suggest that students, whether in school or out of school, draw on
everyday and academic mathematical knowledge as they attempt to make sense of things
happening around them in the world through their ways of knowing, reading, writing, and
talking—what Gee (1996) called Discourses. Moje et al. discussed the construction of “‘third
space’ that merges the ‘first space’ of people’s home, community, and peer networks with the
‘second space’ of the Discourses they encounter in more formalized institutions such as work,
school, or church” (p. 41, emphasis in original). We conjecture that it is in third space where
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students’ in-school and out-of-school mathematics practices may enable them to become more
powerful mathematically in both practices.

Methods and Data Sources
The research study reported here consisted of three phases. In the first phase, 18 standard six

and 18 standard eight students in Kenya were interviewed to determine their perceptions of their
everyday mathematics practice. Twelve of the students from each grade level lived in and
attended a primary school in an urban area, while the other six lived in and attended a primary
school in a rural area. The respondents were asked questions such as “How do you think you use
mathematics outside school?” “How do you see other people using mathematics outside school?”
“What do you think mathematics is?” and “Do you think you know any mathematics that you
didn’t learn in school?” The interviews were audiotaped and transcribed.

During the second phase, the 36 respondents kept a log for a week and recorded their use of
mathematics outside the classroom. The directions were simply to describe how and where they
used mathematics. Students were given a set of log sheets to record each day for five days. We
analyzed the interview responses and the logs for the purpose of classifying mathematics usage.
In the third phase, we interviewed the original 36 respondents again, asking them to (a) clarify
things they had written in their logs, (b) expand on earlier responses, and (c) discuss any insights
they gained while keeping the log. Again, the interviews were audiotaped and later transcribed.
The second interviews occurred approximately two weeks after the first interviews.

We analyzed the data through an inductive process (Strauss & Corbin, 1998), looking for
units and categories of mathematics usage in out-of-school situations, changes in the students’
perceptions after keeping a log, and any evidence of students making connections between their
in-school and out-of-school mathematics practice. After analyzing the students’ views of what
mathematics is, as well as whether the students stated that they knew mathematics that they did
not learn in school, we then compared these views to the students’ interview statements and log
entries and looked for patterns that emerged.

Findings

Perceptions of Mathematics Usage
In studying different cultures, Bishop (1988) argued that there are six fundamental activities

that “are both universal, in that they appear to be carried out by every cultural group ever
studied, and also necessary and sufficient for the development of mathematical knowledge” (p.
182). Mathematics, as cultural knowledge, “derives from humans engaging in these six universal
activities in a sustained, and conscious manner” (p. 183). Through the interviews and log sheets,
we found evidence that the mathematics students perceived they used outside school can be
classified as one of the six activities that Bishop (1988) has called the six fundamental
mathematical activities—counting, locating, measuring, designing, playing, and explaining.
Furthermore, we found some evidence of all six activities.

All of the 36 students (100%) reported examples of what we classified as counting.
Measuring was another activity that had the majority of students reporting examples (67%).
Fourteen percent of all students reported data that we classified as playing. However, this was
distributed unequally between urban and rural students with only 4% (1 student out of 24) of
urban students connecting playing with using mathematics outside school, while 33% (4 students
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out of 12) of the rural students noted that they used mathematics when playing. Using Pearson’s
chi-square significance test, we found that these differences are statistically significant with a
probability value of .02. Activities that we classified as designing were mentioned least often,
with only two students reporting these. Both of these students lived in an urban area. No rural
students mentioned activities that we classified as designing.

Perceptions of What Mathematics Is
As mentioned in the description of the methods, the students were asked what they think

mathematics is during the interviews. In an earlier study of grade six and grade eight students in
the United States, Masingila (2002) found that only students with what she classified as “broader
views of mathematics” (p. 37) perceived themselves as using mathematics in locating, playing,
or explaining activities.  Those students with narrower views of mathematics mentioned only
activities that Masingila classified as counting, measuring, and designing.  Masingila defined
students’ views of what mathematics is as narrower if they were more limited in scope; “they
either involved viewing mathematics as a subject to be learned in school …, as a set of rules or
principles …, or as numbers” (p. 36).  The students that Masingila classified as having broader
views of mathematics had views that included “the idea that mathematics involves of way of
thinking” (p. 36).

In analyzing the data for this study, we did not find the same relationship.  Out of the 36
students, we classified only 19% (7 students) as having a broader view of mathematics. In
general, we found students’ expressed views of what mathematics is to be closely tied to
arithmetic as used in school.

Perceptions of Learning Mathematics Outside of School
As part of the post-log interviews, we asked students “Do you think you know any

mathematics that you didn’t learn in school?  If so, how did you learn it?”  Forty-two percent of
all students (15 students out of 36) responded affirmatively. This was distributed unequally
between male and female students, as well as between urban and rural students.  While the
percentage of affirmative responses is distributed fairly equally when considering the data by
grade level (44% of standard six students responded affirmatively; 39% of standard eight
students responded affirmatively), the differences are quite a bit larger when considering the data
by gender (25% vs. 63% for females vs. males) or by location (33% vs. 58% for urban vs. rural).
Using Pearson’s chi-square significance test, we found that the differences by gender are
statistically significant with a probability value of .02.

Perhaps the most intriguing finding was that out of the 12 respondents reporting activities
that we classified as involving explaining, playing, locating, or designing, nine of these were
students who answered affirmatively to the question about whether they think they have learned
mathematics outside of school. Thus, 75% of the students reporting non-counting, non-
measuring activities were students who stated that they think they have learned mathematics in
out-of-school settings. We infer that although almost all of these students (10 students out of 12)
did not state a view of mathematics that we classified as a broader view, they were in fact
broader in their view of how they perceived themselves using mathematics outside school and
were open to seeing that they may have learned mathematical ideas outside of the classroom.
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Discussion
Many, if not most, children in Kenya are required to complete chores at home that involve

them in working with plants and animals, and other chores such as cooking and cleaning.  The
students’ comments from the interviews and logs reflect this engagement with their local
environment. However, this involvement with the local environment does not appear to influence
the students’ perceptions of their out-of-school mathematics practice, where two of the
mathematical activities (counting, measuring) were each reported by more than 65% of the
respondents but the other activities (explaining, playing, locating, designing) were each reported
by fewer than 20% of the students. Parallel to this, we classified the vast majority (81%) of
students’ views of mathematics as narrower.  We speculate that the second space of these
students—the Discourses they “encounter in more formalized institutions such as work, school,
or church” (Moje et al., 2004, p. 41)—situates mathematics as something that is done in school,
with certain procedures and rules. These students may very well be mathematically powerful in
their out-of-school mathematics practice but they may not count that as mathematics due to the
disconnect between the Discourses of everyday and school.

Moje et al. (2004) argued that “academic texts can limit some students’ learning as they
struggle to reconcile different ways of knowing, doing, reading, writing, and talking with those
that are privileged in their classrooms. School texts can act as colonizers, making only certain
foreign or outside knowledges and Discourses valid” (p. 43). Perhaps for these students, and for
many students learning mathematics in formal school settings, what they perceive as
mathematics is confined to academic mathematics (which is often perceived by elementary
students to be arithmetic) and does not include a broader view of mathematics such as a way of
thinking and making sense of data.  We believe it is important for researchers and teachers to
work to support students in the construction of third space where their in-school and out-of-
school mathematics practices may enable them to be more powerful in both practices.
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WEATHER AND RUSSIAN DOLLS:
STUDENTS NEGOTIATING WHAT IT MEANS TO DO MATH
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University of Wisconsin- Madison
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Distinctions have often been made between what constitutes social and mathematics talk. In
this study, undergraduate students' talk and their perspectives on the nature and function of
different forms of talk blurs the line between what is math and non-math talk. The construct
of lifeworld is used to illustrate how students came to negotiate what it meant to do
mathematics.

Theoretical Framework
Calculus has long been a gate-keeping course for students in college (Adelman, 2006).

More troubling yet is that certain student populations remain underrepresented in STEM
majors that require success in calculus. Hypotheses have been made about why non-dominant
students have been less successful in college mathematics; the achievement gap has been
explained from different perspectives. Some perspectives have viewed low achieving
students as having a deficit in their preparation, cultural background, and family support.
Other perspectives have seen the problem as being the setting of the mathematics classroom,
in which non-dominant students’ academic and social lives have been polarized (Fullilove &
Treisman, 1990). Still, other perspectives have located the problem in classroom Discourses
(Gee, 1990), where non-dominant students’ practices and knowledge  are positioned as
estranged from the classroom discourse (Cobb & Hodge, 2002; K. D. Gutiérrez & Rogoff,
2003) and what it means to do mathematics.

Lave and Wenger’s (1991) notion of communities of practice and legitimate peripheral
participation provide insight into the inequitable opportunities to meaningfully participate in
mathematics that students currently underrepresented in STEM have. Lave and Wenger and
the situative perspective view learning as contextual and knowledge as embedded in social
relationships and interactions within the social environment. Such a perspective is a useful
lens for understanding how students’ practices get positioned. Furthermore, focusing on
social interaction is fundamental to understanding how students come to participate in
communities of practice: “participation in an activity system about which participants share
understandings concerning what they are doing and what that means in their lives and for
their communities” (p. 98).

This study illuminates the natural hybridity of classroom discourse by attending to student
talk around mathematical activity. The paper draws on the results of a semester long study in
a pre-calculus/calculus undergraduate discussion section at a Midwestern university. The
section was created to support the development of relationships and a sense of belonging
among students typically underrepresented in STEM fields. The aim of the study was to
understand the intersection of students’ social and academic discourses as they unfolded in
the mathematics classroom. This paper reports on one aspect of my analysis: What implicit
and explicit assumptions and beliefs guide students’ expectations for effective group work?

In attempting to merge students' social and academic lives, this site served as a key
setting to explore the complex and multifaceted nature of students' talk as they engaged in
group work around mathematics. In this paper I draw on Habermas’ (1987) notion of
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lifeworld, to illustrate how students come to negotiate what it means to do mathematics
together when norms for productive group work are not made explicit.

Methods
Research methods included field notes from over thirty classroom observations, three

student surveys, video and audio recordings of both whole class and small group discussions,
and student and instructor interviews. Open-ended survey instruments asked 16 students
about their perceptions of non task-related talk during group work and their academic and
social relationships with their peers both inside and outside of the classroom. Interviews with
six participants (two groups of three) served as an opportunity for students to elaborate on
survey responses and discuss purposes and effects of task (and non task) related talk.
Additionally, students were asked to comment on two video recordings from earlier in the
week that captured their group interactions and talk with peers during mathematics activity.

At the beginning of analysis, open coding was used to code field notes, survey responses,
and video content logs and transcripts. The identification of categories of talk as social and
academic was coupled with analysis of the purposes of talk. The coding of talk quickly
moved beyond a dichotomous categorization, as distinctions between on task (academic) and
off task (social) talk (as have been traditionally regarded) were rarely well defined by
participants or my observations. In thinking of mathematics as a collection of practices, to say
that talking about the weather was a non-mathematical practice seemed to go against what
students’ responses to survey items, interview questions, and classroom interactions
suggested. Hence, students talking about the weather could be considered non task-related,
but as a discourse practice it was encompassed at times in what it meant to do mathematics.

Next, discourse analysis (Gee, 2005) was conducted on video clips used during student
interviews. Habermas’ lifeworld construct became useful in the analysis of video transcripts
in attempting to support the themes that emerged from other data sources. Interactions where
students could be described as talking, acting, and making claims in the lifeworld were
identified: the times people are acting, talking, and making claims as "everyday" people, not
experts or specialists. For example, instances of laughter or jokes were considered lifeworld
talk. In another instance, a group was trying to solve a trigonometric problem that required
multiple use of the half angle formula; one student told her peers that the equation was like
“Russian dolls” (referring to the nested nature the solution).

Results
Two main findings emerged from the study. First, developing a sense of comfort with

group members was often perceived by students as a precursor to progressing on mathematics
activity. Secondly, when expectations for group work were not made explicit by the
instructor, students negotiated norms that were guided by their social perceptions of peers.

Feeling comfortable with group members was important for mathematics discussion since
students said it facilitated the acts of challenging each others’ ideas, engaging in deeper
mathematics discussion, and helping, listening, and seeking help from peers. A bi-directional
relationship between comfort and non task-related talk emerged from the data; students
perceived non task-related talk as both a means to and a product of group comfort. When non
task-related talk was referred to as a product of comfort, the conceptualization of comfort was
vaguely defined. For some students, comfort was just a feeling that you either had or did not
have; a friend was defined by one student as someone who laughed at her comments. In video
tapes and hypothetically, students responded that they could identify comfort, but how it
developed was variably and vaguely defined.
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Guidelines from the instructor for group work did not extend beyond telling students that
they should work together in their groups on the specific tasks; further expectations for group
work (or even what working together looked like) were not made explicit. Hence, students
had ample space to make inferences about beneficial group practices. In addition, they
negotiated their own expectations for group work. Students often interacted with one another
as they would in the lifeworld. Students seemed to be using their lifeworld ways of knowing
and being to negotiate ways of working together on mathematics. For example, students
perceived the use of non task-related talk as an important group practice. A sub-analysis
question hence became: What are students’ perceptions of the form and function of non task-
related talk during mathematics small group? The findings were twofold: a) students’
perceived non task-related talk to have multiple purposes during group work and b) students’
perceived that there was a threshold to when non task-related talk during group work became
problematic. More details of these findings can be found in "What counts as mathematical
activity and who decides?": the Discourse of mathematics in mathematics education (PME
2007 Proceedings).

Discussion and Implications
This study supports research in the field of mathematics education that maintains that

students’ Discourses can be drawn on to provide more opportunities for students currently
underrepresented in mathematics to participate meaningfully in mathematics classrooms. In
this study, talking, acting, and making claims in the lifeworld were central for the groups to
be able to engage in mathematics activity; non task-related talk was seen as a tool to build
and foster group comfort. In the groups discussed here, the students’ use and value of non
task-related talk during mathematics activity created more opportunities for students to be
seen as competent group participants. By operating most of the time under lifeworld
expectations and norms, students were able to admit that they did not always have answers to
mathematics problems, and yet they could still contribute to the group's mathematical
progress in meaningful ways.  

Although not always encouraged by the instructor, the setting created a space for students
to negotiate their own ways of working together. In this space, social relations and ways of
being came to influence the ways students worked on math together in important ways; the
setting opened up a space for students to introduce new ways of participating in groups and
doing math together.
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One hallmark of a professional community is its shared discourse. The unique language
and discursive practices of a community provide a means by which members of that
profession communicate about objects and practices (Gunnarson, 1997; Wenger, 1998) and
(re)create a world view. Through language use, certain aspects of the environment are
highlighted and relationships among objects, practices and people are implicated (Clark,
1996). At the present time, the shared professional discourse of the mathematics education
community lacks the capacity to describe the core of its work— mathematics pedagogy. To
strengthen mathematics teaching and learning, we contend that it is critical to develop a
shared language of mathematics pedagogy (Hiebert, Morris & Glass, 2003; Siemon et al.,
2004). This shared language may facilitate discussions of practice, support teacher learning,
and afford conceptual tools that teachers can draw upon as they organize mathematically
rigorous lessons and reflect on their teaching.

Theoretical support for these assertions and this inquiry is rooted in sociocultural theories
of learning. Vygotsky (2002) and others recognize the importance of language: it mediates
thought, directs one’s attention, and guides one’s analysis on events. By naming objects or
practices, we gain the ability to hold them in our mind and deliberately reflect on the object
or practice itself. Similarly, Wenger’s (1998) work on communities of practice highlights the
importance of physical and conceptual tools, such as named practices, in mediating meaning
and opening opportunities to negotiate meaning for individuals within a community.

To explore the feasibility and impact on practice of a shared language of mathematics
pedagogy, the authors and five secondary mathematics teachers collaborated to a) identify a
set of deliberate pedagogic actions that teachers use to support students’ mathematical
thinking during whole-class inquiry, and b) develop a conceptual model that described the
role of the teacher in supporting such discussions. The set of pedagogic actions (purpose a)
included strategies such as promoting others’ perspectives, exploring incorrect solutions,
seeking new representations, and highlighting. The conceptual model (purpose b) comprised
five nested components of the teacher’s role that were necessary to support whole-class
discussion. Valuing was at the core, whereby the teacher had to value the student and
students’ thinking. Other components included publicizing student ideas, supporting broad-
based participation, assessing, and guiding the mathematics. This work was done primarily
by analyzing videotapes and transcripts of grades 7-10 math lessons during the summer, 2006
(25 hrs). During the academic year, there were three additional meetings and the first author
followed up with four of the teachers to examine the ways the conceptual tools resulting from
this collaborative experience were (and were not) taken up (Adler & Reed, 2000) in their
daily work. The following questions guided the inquiry:

1. What role do secondary mathematics teachers perceive for the shared language of
mathematics pedagogy (the specific strategies and conceptual model) in supporting
and enhancing their daily work?

2. What happens as this shared language of mathematics pedagogy meets up with the
demands of daily practice?

In this paper, we report primarily the findings related to the first research question.
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Data Sources and Analysis
Data for this study comprised teachers’ written reflections from the summer and academic

year meetings on the value of the shared language we had developed as well as the idea of a
shared language in general; fieldnotes from conversations with the teachers after lessons; and
a formal interview with each teacher. All interviews and meetings were audiotaped.
Interviews and portions of the meetings were transcribed. Data collected from each
participant were analyzed both individually and across cases (Miles & Huberman, 1994)
using standard techniques of qualitative analysis (Glaser & Strauss, 1967). Themes were
developed regarding the perceived value of the shared language and the purposes they saw
for the language, the specific pedagogical actions, and the conceptual model in their practice.

Results and Discussion
We briefly describe two of the cases and then discuss implications of the work.
Nancy and Ken, who had 25 and 7 years of teaching experience, respectively, taught at

different schools in the same regional district. Ken, a high school teacher, reported a very
positive influence of the shared language of mathematics pedagogy on his daily practice. He
reported a heightened awareness of what he was doing in the classroom and described how
the language had given him new tools to understand his teaching. Although he reported that
fundamentally it did not change his approach, he felt that he had reconceptualized portions of
his pedagogy and he came to understand certain strategies and aspects as more important than
he had in the past.

The increased awareness and tools for reflecting on his teaching Ken reported had led to
opportunities to learn about his practice and from his practice. He noted being able to better
discern patterns across classes, patterns that he would not have recognized previously. For
example, during the fall interview he said:

But now I think I’m more aware that I’m doing it, and I don’t know, … maybe I feel
like I do it more, but maybe I feel like I do it more because I know what it’s called. And
I now can label it, what I do. … Versus in the past, I’ve done it, but I don’t label it in
particular ways, so I don’t realize it. … [W]e want to connect past learning with our
students. I need to start connecting past teaching within what I do, and I think, doing
this allows me to. ‘Cause then I see that in one class I did something, and in another
class, I did something. It’s the same strategy, I’ve connected them together, which I
might not have seen before cause if I’m doing fractions here, and I’m doing law of
cosines here, and I’m factoring in another class, I can be doing the same strategy and
not seeing the connection, but now I do.

Like Ken, Nancy, a middle school teacher, reported increased awareness of her actions
during class discussions. Although Nancy stated that the named pedagogic moves were not
new to her practice, she now understood them in a new way and ascribed a new role for them
in her teaching. One specific example she noted was exploring incorrect solutions. She had
done this in previous years, but now she used this strategy more frequently and deliberately,
and felt she had a new appreciation for how it supported students’ learning. Nancy also
described how she had reconceptualized her practice and ascribed a new role to various
strategies.

There’s a whole new role for it. It really and truly is a whole new role for it. ..  And
really, you know, like bringing something to the forefront that somebody has come up
with. And really highlighting what’s going on there and …[y]eah, we talked about it
before, but it never was-, it’s more important for me to do this now. And it’s more
important to me to promote somebody else’s perspective. It’s…more important for me
to look for an alternative approach. I’m seeing a value for those; I’m finding it more
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important. It wasn’t that I didn’t do it before, I don’t think I did it enough. … There’s a
new meaning…. It’s not brand new, but, there is something new about it.

Discussion and Implications
From this preliminary study, we conclude that a shared language of mathematics

pedagogy can be productive in supporting teachers in engaging students in mathematically
focused discussions and in helping them think about (and potentially change) their own
practice. All teachers reported thinking about their teaching in new ways, and three of the
four teachers reported significant shifts in their practice along some dimensions. Although
not included above, two of the four reported specifically learning more about student thinking
as a result as well.

The results presented here echo Siemons et al.’s (2004) work with elementary teachers.
The teachers reported that the development of a shared language of numeracy strategies,
generated by watching colleagues teach small groups, was powerful because it supported
conversations about practice in ways that had not occurred previously.

It is important to note that the powerful shifts the teachers described were primarily
linked to how they conceptualized and reflected on their practice. Our data revealed
conceptual shifts more than the development of new strategies. These teachers reported using
most of these pedagogical strategies in practice previously, but now had a new understanding
of the role they played and how they fit together in their practice. It seems that the availability
of this language afforded them the opportunity to reconceptualize aspects of their practice as
well as develop a heightened awareness or level of metacognition as they were teaching.

Given the exploratory nature of this study, many questions remain. We hypothesize that
the analysis of the videos involved conversations among the teachers that uncovered teachers’
“inner speech” (Vygotsky, 2002), resulting in a shared language of practice that seemed to
influenced cognitive shifts. Further research is required to determine whether a shared
language of mathematics pedagogy is more valuable for those already at a particular level of
sophistication in their practice.
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COFLECTION IN PROFESSIONAL DEVELOPMENT: COLLECTIVE
INQUIRY INTO EQUITY IN MATHEMATICS EDUCATION

Lecretia A. Buckley Michele D. Crockett
 Purdue University University of Illinois
lbuckley@purdue.edu              mcrocket@uiuc.edu

Underrepresented students’ performance is significantly poorer than their White counterparts
in mathematics and professional development is seen as the key mechanism for addressing the
achievement gap. The contemporary model establishes effective professional development as
school-based, collaborative, inquiry-oriented, teacher-directed, subject matter specific, ongoing
and sustained, and focused on student learning and performance goals (Hawley & Valli, 1999).
This model, however, does not provide a way for teachers to directly address equity issues. We
build on the contemporary model for professional development by proposing a theoretical
construct, coflection, as a process or mechanism that can facilitate the substantive treatment of
equity issues in teaching and learning mathematics. In elaborating this construct, we aim to
bridge two bodies of literature – equity in mathematics education and professional development.

Coflection (Skovsmose and Valero, 2001), a knowledge generating process, comprises
features we have identified as (a) collective, (b) deliberate, and (c) critical. Equity issues become
the core of professional development experiences which are located in epistemic processes.
Through coflection teachers generate local knowledge about students’ socio-economic
backgrounds, the cultural knowledge they bring to school, curricular/instructional policies and
practices and the like. We use the assessment of students’ mathematical thinking as the site for
explicating the features of coflection. Assessment is a rich site for coflection because teachers’
ongoing examination of student thinking and its role in teaching and learning holds great
potential for improving the quality of students’ mathematics teaching and learning experiences
(Steinberg, Empson & Carpenter, 2004). The poster provides guiding questions and strategies for
coflective processes as teachers critically examine student work.
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ETHNOMATHEMATICS OF DANCE
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The proposed poster will contribute innovative research methodology and present
mathematical information about dance. Both pieces will be of immediate use to educators
viewing the poster as well as contributing to long-term positive trends in the field. Mathematical
structures characterizing dance traditions will be displayed, resulting from the author's in-depth
interviews of dance exponents from two or more of the following groups: Alaskan Native,
Native American, African, African Diasporan, urban youth subcultures, and Latin American
cultures*.  The interviews are part of a larger curricular development project in which Culturally
Situated Design Tools (Eglash et. al, 2006) have been developed in collaboration with experts in
numerous areas of cultural knowledge; the interview data will be used in development of new
Tools involving dance.

Two questions underlie the interview project:
1) What kinds of mathematics inhabit the specialized forms of movement of a dance

tradition?
2) How can one research this question without repeating the mistakes historically plaguing

other forays into mathematical interpretation of areas outside the dominant domains of
mathematical knowledge?
In some studies of the mathematics of cultural activities, the researcher holds to a preconceived
notion of what mathematics might be found therein, causing two major problems. First, the
activity can become merely a context on to which to project the researchers' own mathematical
perspective. Much of multicultural mathematics as taught in classrooms today has been critiqued
as being resultant of this process. Second, when researchers have a narrow view of what
mathematics might be found, they often conclude that the culture exhibits no mathematics at all.
This type of oversight has been described extensively by Eglash in the case of European
interpretations of sub-Saharan African cultures (e.g. Eglash,1999).

Research methods characterized by greater collaboration between the researcher and research
participant, in which research is considered an iterative process of coming to accurately represent
the reality of the participant in the terms of the study, characterize advancements in qualitative
research methods (Merriam, 1998). This project brings into the dialog on educational reform the
method, not just of teaching, but of gathering information to be taught. When the knowledge
which is brought into schools is gathered in a collaborative process, one which honors the
knowledge of the community, it can be expected that this positive, respectful dynamic will
influence the nature of classroom learning as well.

A protocol to guide the interviews has been developed and successfully piloted with an
exponent of African Diasporan dance, being found to elicit extensive relevant mathematical
information. To learn (of) the knowledge found in a particular community, it is essential to ask
questions in the language of that community (Solano-Flores and Nelson-Barber, 2001).
Therefore, questions on the interview protocol have been worded in appropriate dance language,
making use of the author's perspective as an exponent of one dance tradition and student of
several others. An iterative process is followed wherein the researcher periodically shows her
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diagrammatic notes to the interviewee to confirm whether she has correctly captured the dance
movements in the process of translation into mathematical framing, revising as necessary.
Analysis of the evolution of the protocol and interview process to meet the needs of use in a
variety of dance cultures will be an important component of the project's findings.

Endnote
*The project is ongoing and will eventually incorporate each of these categories and possibly

others; as the author is currently in the process of soliciting interview candidates, it is unknown
which sub-sample will be completed during the time frame covered by this presentation.
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INVESTIGATING AFRICAN AMERICAN STUDENTS’ IDENTITY AND
AGENCY IN A MATHEMATICS AND GRAPHING CALCULATOR

ENVIRONMENT AT A LOW-SES SCHOOL

Francis Nzuki
Syracuse University
fmnzuki@syr.edu

Joanna Masingila
Syracuse University
jomasing@syr.edu

Race and socioeconomic status (SES) are equity factors that have long been associated with
the disparities and achievement gap amongst students in mathematics. Although there has been a
multiplicity of meanings of the term equity in relation to mathematics learning, the general
consensus has been the acknowledgement of the existence of this achievement gap. Moreover,
technology has been one of the tools recommended for achieving equity in the mathematics
classroom (NCTM, 2000). The integration of technology in the mathematical learning of
students has, however, added an important aspect to the issue of mathematics equity pertaining to
access and use of technology. This research study focuses specifically on graphing calculator
technology because it is more accessible to students.

 To ensure that access to and use of graphing calculators in the mathematical learning of
students does not result in another dimension of inequity, it is important to explore the mutual
interaction between the students, their teacher, peers, and the technology, within specific
contexts. It is through this interaction that students position themselves within the classroom and
use the technology to shape their identities and agencies as learners and doers of mathematics.
This focus on social relations and interactions views as important the complexities of race,
racism, culture and class in influencing students’ mathematical experiences. Indeed, while there
is a great deal of research on equity in mathematics education that has been conducted to
highlight disparities and limited persistence along racial lines, there has been a general lack of
theorizing about race and racism and their relationships to mathematics learning and
participation (Martin, 2006a, 2006b).

  This study investigates issues of African American students’ identity construction (racial,
mathematical, and otherwise), how these identities shape each other, and the sense of agency
exhibited in the process within a mathematics and graphing calculator environment. This is
reflected by the kinds of roles and interactions that these students assumed and the ways in which
they used the graphing calculators as tools for mathematical learning. Further, this study is
influenced by a sociocultural perspective and Holland, Lachicotte, Skinner and Cain’s (1998)
framework of figured worlds, positioning and authoring.

This study is being conducted at a low–SES school with two different 11th grade classes of
students taught by the same mathematics teacher. Data, that are currently being collected
through both qualitative and quantitative means, will be reported in this poster. The quantitative
part comprises of a Likert-scale survey instrument, while the qualitative part comprises of
classroom observations and semi-structured interviews. The survey instrument will first be
administered to all students in each classroom community. This will be followed by ten
classroom observations and three interviews with a representative sample of four African
American students from each classroom.

 To construct an understanding of the modes of graphing calculator use, I will use both
deductive and inductive coding scheme by initially coding the data according to Doerr and
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Zangor’s (2000) modes of graphing calculator use as a tool, and then looking for data that do not
fit into these codes. The classroom observations will give insights into the interactions of
students amongst themselves, the teacher, and with graphing calculators, issues of power and
positionings manifested in those interactions, and the classroom norms negotiated by the students
and the teachers. In analyzing students’ interaction with the graphing calculator, I will draw upon
Goos, Galbraith, Renshaw and Geiger’s (2003) metaphors of technology as master, technology
as servant, technology as partner, and technology as extension of self, that describe the varying
degrees of sophistication with which students and teachers interact with technology.
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LINKING DATA, VALUES AND CONTEXT IN
AN ALGEBRA WRITING ASSIGNMENT

Susan Staats
University of Minnesota
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University of Minnesota

Contextualized mathematics pedagogies seek to make mathematics meaningful to
students. We take the position that a strong presentation of contextualized mathematics
lessons will articulate both mathematical and interdisciplinary, contextual knowledge in
significant ways (Staats, 2007). Still, fundamental questions remain: when students respond
to a contextualized mathematics lesson, how do we know when it is meaningful to them, and
how do we know when they have done a good job of coordinating values or personal
meanings and mathematical understandings?

As part of a class exam, undergraduates in a developmental algebra class wrote a
values-based response to an article in which Jeffrey Sachs (2005) argues that a donation of $3
per year from each of the 1 billion people living in high-income countries would be sufficient
to control malaria in Africa. Students were directed to support their opinion with relevant
data and computations. The primary data source was Sachs’ article, but students were also
encouraged to use the United Nations Development Programme’s Human Development
Indicators (2005), a fact sheet on infectious diseases distributed in class, and any other source
for which they could provide a citation. Two raters coded the written responses of 41 students
for nine categories involving argument type, use of evidence and presentation of context
(e.g., detailing public health issues in particular countries, relationships among nations or
foreign aid as an economic investment) (Marshall & Rossman, 2006). The initial level of
agreement was 0.70 using Cohen’s kappa coefficient. We found several notable results.
Nearly all students’ arguments could be described by four categories, each associated with
types of data provided in class. Students structured their arguments around the type of data
available to them. Chi-squared tests of independence indicated a significant relationship
between students’ written portrayal of an detailed context and students’ use of data from
sources outside of the assigned article. There was also a significant relationship between the
use of an detailed context and the use of mathematics to support the argument effectively.

Contextualization in students’ mathematically-oriented writing is not directly an
expression of mathematical knowledge, and so it is somewhat unexpected that it is associated
with the use of mathematical evidence and with effective argumentation. Discursive
coherence may be a contributing factor. Contextualization in writing may help students
produce a coherent answer as they weave together multiple data sources or try to intentionally
link values to mathematical calculation. Attending to students’ use of contextual details in
mathematical writing may help teachers assess the degree to which socially-engaged
mathematics is meaningful to students.

References
Marshall, C., & Rossman, G. (2006). Designing qualitative research, Thousand Oaks, CA:

Sage.
United Nations Development Programme. (2005). Human development indicators. Retrieved

on 2/15/07 from http://hdr.undp.org/reports/global/2005/pdf/HDR05_HDI.pdf
Sachs, J. (2005). Achieving the millennium development goals: The case of malaria. New

England Journal of Medicine, 352, 115-117.



727

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

Staats, S. (2007). Dynamic contexts and imagined worlds: An interdisciplinary approach to
mathematics applications. For the Learning of Mathematics, 27(1), 2-9.



728

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

MATHEMATICS SELF-EFFICACY AND MOTIVATION
OF HIGH SCHOOL STUDENTS

Caroline Ramirez
UC Davis

The purpose of this study is to investigate the attitudes and motivation of high school
students toward mathematics course-taking. Two high school math teachers have noticed that
more girls are taking higher level math courses, and are outperforming boys in achievement tests.
Their observation has led to the following research questions: Is there a trend towards more girls
taking more math classes? Are there gender differences in confidence of doing mathematics,
intrinsic value, and perceived usefulness of doing mathematics? Thus, the study was designed to
better understand the course taking pattern of high school students with more female
participation.

A survey was conducted at two high schools in suburban towns located within 50 miles of a
large research university. The survey instrument consisted of 51 questions that are mostly in a 5-
point Likert Scale format, similar to the questions developed by Wigfield and Eccles (2000).
They have tried to explain students’ choice of tasks and persistence in those tasks through
expectancy-value theory and ability beliefs. Similar to ability beliefs is self-efficacy, which is
another construct that is included in the survey due to its influence on how students choose their
activities and courses. Bandura defined self-efficacy beliefs as “people’s judgments of their
capabilities to organize and execute courses of action required to attain designated types of
performances” (1986, p.391).

In this study, self-efficacy beliefs are further organized into the students’ level of confidence,
the degree to which they value mathematics, and perceived usefulness of mathematics. The
confidence construct measured how well they are doing in their math courses (_=0.883; 7 items).
The construct for intrinsic value included questions on the importance of getting good grades in
math classes and in being good at problem solving (_=0.814; 6 items).  The utility construct
measured how they thought about the usefulness of math in everyday life (_=0.698; 3 items).

Based on the students’ previous and present math courses, two ability categories were
formed: high ability and normal/low ability. Similarly, the students’ self report of the math
course that they would like to take next year indicated their persistence, or lack of motivation to
persist. From the factor analysis, the factor scores were obtained and then used as the response
variables for the generalized linear model with two fixed effects: gender and the ability-
persistence category. MANOVA revealed a significant multivariate effect for the ability-
persistence category. Regardless of ability, there is a significant gender difference in the
confidence variable for the group of non-persisters.

This study can be helpful in studying gender equity in the classroom, since attitudes,
persistence and motivation for taking mathematics courses are related to ability group, not just
gender. In the case of high ability girls who are not persisting to take more math classes, it is
important for teachers to pay attention to them because these girls fail to realize the value and
usefulness of the course. As for boys who have normal to low ability in math, teachers should
encourage them to persist in taking more math courses.
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‘SHOW ME YOUR MATH’: INVITING CHILDREN
TO DO ETHNOMATHEMATICS
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University of New Brunswick, Canada Saint Francis Xavier University, Canada
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From ethnomathematical conversations with Aboriginal elders in Eastern Canada, we
concluded that community children could do more authentic ethnomathematics than we
could. This inspired a regional fair using the internet – school children from all levels would
display the mathematics they see around them. The students’ displays can be used as a
teaching resource and have further benefits for researchers.

As part of a large-scale project investigating mathematics and science learning in
informal contexts in Atlantic Canada, we have been interviewing Aboriginal elders to
identify some of their everyday practices (both traditional and current) that could be deemed
mathematical. This typical approach to ethnomathematics research (c.f. Powell &
Frankenstein, 1997) relies on Bishop’s (1988) definition of mathematical activity (practices
that involves counting, measuring, locating, playing, designing or explaining) and on the
assumption that any mathematics is an artifact of a particular culture.

In reflection on this research, we saw ourselves as mediators, interfering to some extent
with the intended process – the elders’ knowledge and experience being communicated to the
community children. We realized that the conversations would be more authentic if the
children themselves talked with elders and others to find mathematics in traditional and
modern community practices.

Aboriginal communities across Canada connect via the internet for various purposes. This
infrastructure is often used for ‘contests’ in which people share their stories and knowledge
with the people in other communities. We are using this medium and this emerging tradition
to draw school children into ethnomathematics. The results of the students’ work become
available to all – an excellent resource for any teacher who wants students to see how
mathematics is used to address real issues.

Our original intent was to go beyond typical ethnomathematical practice to consider
differences between school mathematics and community values and intentions. The ‘Show
me your math’ contest provides an excellent setting for the expression of values and
intentions. We record conversations amongst teachers planning local events related to the
contest, and amongst community members deciding criteria for judging the contest entries.
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STUDENT RESPONSE TO A “SOCIOCULTURAL ISSUES
IN MATHEMATICS EDUCATION” GRADUATE COURSE
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Teacher education, both undergraduate and graduate, provides vital opportunity for preparing
teachers to teach today’s diverse student body more effectively. Many educators and researchers
contend, however, that teacher education devotes insufficient (and sometimes inappropriate)
attention to issues of equity and diversity in teaching and learning (e.g., Grant & Gillette, 2006;
Sanders, 2002), This may be particularly so in mathematics education (e.g., Brewley-Kennedy,
2005), problematizing application of the National Council of Teachers of Mathematics’ (2000)
Equity Principle.

This purpose of this research was to investigate the impact of a new “Sociocultural Issues in
Mathematics Education” graduate course conducted in Spring 2007 at a major public university
in the West. The course addressed issues related to gender, race/ethnicity, social class, language
background, and exceptionality with some attention to a variety of relevant topics such as ability
grouping/tracking, test bias, and social justice. The 11 students enrolled in the course were a
fairly even mix of master’s and doctoral students and U.S. and international students. Course
participants completed entry and exit surveys regarding the course topic. The surveys consisted
of open-ended questions, such as what students considered to be the main equity/diversity issues
in mathematics education today and how we can address them (entrance survey) and how student
thinking had changed as a result of having taken the course and what students suggested as the
most positive course aspects and ideas for improvement (exit survey). Through multiple readings
and adjustments, conceptual categories were constructed within the written comments to address
the research question.

The data from this study show that students had had very little prior preparation in
equity/diversity issues in mathematics education and that their minimal background tended to be
superficial and relate mainly to social identities most commonly discussed in relation to
mathematics (in particular, gender). Students indicated that the course had made substantial
positive changes in their knowledge base, in both depth and breadth, and that this had impacted
the classroom practice of those who were currently teaching. Students continued to see gender as
an important equity concern in mathematics education, but the greatly expanded repertoire of
topics/issues they identified as important clearly reflected the course material. Course aspects
deemed most effective were those that facilitated in-depth understanding of current research
(e.g., weekly readings, writing responses, and in-class and online discussions). Because students
expressed a strongly positive response to the course, they had little suggestions for improvement.
The most substantive of these were to incorporate field trips (e.g., to the campus Disability
Resource Center and a local “diverse classroom”) and to include more diversity among guest
speakers (e.g., someone for whom English is a second language to discuss his/her experiences
learning mathematics). The research findings may imply, as one participant stated, the need for
all math teachers and math teacher educators to take such a course.
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SUPPORTING GIRLS’ PARTICIPATION AND EFFICACY
IN A DISCUSSION-INTENSIVE MATH CLASSROOM

Allison Hintz
University of Washington
abh2@u.washington.edu

In a discussion-intensive math classroom students often engage in challenges and
disagreements with classmates (Wood, Williams, & McNeal, 2006). Lampert et al. express
concern that female students may avoid the social discomfort of disagreement in order to
preserve relationships with peers, rather than pursuing discussion and promoting mathematical
understanding (Lampert, Rittenhouse, & Crumbaugh, 1996). Boaler (1997, 1998) provides
further insight into girls’ experiences as participants in mathematical discourse, describing how
girls value experiences that offer an “open, reflective, and discursive approach” to learning
mathematics. These studies suggest that, while mathematical discussion can and should entail
disagreement, disagreement can create social discomfort for some students. Considering these
findings, there is a need to understand more about how discursive approaches are experienced in
different ways for different girls. Boaler (1997) found very few researchers consult girls, she
argues for “the importance of giving voice to girls’ concerns” (p. 303). Her research opens an
avenue of inquiry into girls’ experiences in mathematics through listening to the voices of
students.

Building on prior research in sociocultural theory and affect in mathematics this study
explores girls’ underlying feelings about participation in a discussion-intensive math classroom.
Using qualitative data from individual interviews with 15 middle school girls, this study analyzes
the range of girls’ feelings about mathematics through the students’ own words. This poster
displays a thematic content analysis of three representative students’ reports that revealed how
students’ feelings about functioning in a discursive classroom and working with classmates are
varied and quite complex. This complexity illuminates the ways in which public display of help
seeking, understanding, and making mistakes impacts students. These girls’ differing feelings
about interacting in the classroom when they needed help understanding impacted their beliefs
about what it means to work with classmates and the teacher.

These girls’ thoughts suggest (a) teachers look closely at interactional messages students give
and receive about accuracy, understanding, and help-worthy problems; (b) certain kinds of math
have higher status than others, as constructed by students in the classroom; (c) some girls’
feelings about collaboration are tied to feelings of efficacy; and (d) getting help, getting an
answer wrong, and not understanding are all experiences in collaboration which create specific
and noteworthy vulnerabilities for students.
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THE NON-MATHEMATICAL ASPECTS OF MATHEMATICAL
PROBLEM SOLVING IN URBAN CLASSROOMS

Larry Ramkissoon
Rutgers University

Lisa B. Warner
Rutgers University

Roberta Y. Schorr
Rutgers University

“Being hard like a “gangsta” is viewed by several youths…as inextricably linked to being
Black or Latino, male, low-income, and from a tough urban neighborhood." (Dance, 2002 pps. 4-
5). Closely related, Anderson (2000) notes that certain types of behaviors, or “codes” often
govern the actions of the youngsters—both in and out of school.  “At the heart of the code is the
issue of respect – loosely defined as … being granted one’s ‘props’ (or proper due) or the
deference one deserves,” (Anderson, 2000 pps 33-34).  These “codes” include mannerisms,
gestures, and facial expressions indicative of street cultures (Dance, 2002). The main question
that we address is: when and how do students’ enact, through gesture or argument, these types of
street “codes” in the context of solving mathematical problems?  This research is part of a larger
study that seeks to identify how certain aspects of the urban environment influence the
mathematical problem solving behavior of children (see Epstein, et al. in press).

Methods
The study takes place over a one-month period, which involved one visit a week (for 60

minute sessions) in a diverse, low performing, eighth grade inner-city classroom.  The visits are
part of a professional development project in which the classroom teacher & district teacher
leader participated in professional development sessions with researchers, both at the University
and within the context of their own classrooms. At least two video cameras captured different
views of the teacher interventions, students’ group work, students’ presentations, etc. All student
work was collected and descriptive field notes were compiled by at least two researchers. After
each lesson, the participants would “debrief” to discuss key ideas relating to affective issues,
mathematical ideas, and other relevant issues.

Preliminary Results
Below, for brevity’s sake, we report on one episode in which the students were given a task

involving maximizing area, given a fixed perimeter.  They were asked to work in groups, and
then share ideas at the overhead projector. Several students argued about the meaning of area and
perimeter. The mathematical discussions that arose from these varied perspectives were at times
heated, and appeared to be confrontational in nature. The following is one such example:

[J]:  Calm down! [T]: It didn’t say the area! [J]:  I know…You just said…Remember you just
said…I know… (Clapping hands) [T]: But you just said…You just said it’s not the area
(gestures with hands and looks at E). [E]: We’re looking for the area (hits hands together).
[Teacher]: Okay class! Let’s be civilized. [E]: I say 64 is not the area… [N]: We is (sic)
civilized. We is (sic) having a debate with numbers. [E]: 64 is not the area!!
Throughout the exchange, the students appeared to use hand gestures and facial expressions that
emphasized their commitment to an idea.  The teacher’s comments indicate that she felt that they
were acting “uncivilized”. These behaviors, while benign in nature in the context of this lesson,
could easily be misconstrued by an outside observer, or a teacher, unfamiliar with, as Anderson
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describes, ‘the code of the street’.  We speculate that by better understanding such behaviors, we
may gain deeper insight into how to create and maintain a productive classroom culture.
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REIFYING TEACHERS' TACIT KNOWLEDGE ABOUT TEACHING:
CLOSING THE GAP BETWEEN THEORY AND PRACTICE

Peter Liljedahl
Simon Fraser University

liljedahl@sfu.ca

Teachers learn about teaching from their teaching experiences and their level of teaching
expertise is considered a function of these experiences. This learning takes place within the
iterative practice of teaching and results in the development of teacher knowledge which, in
turn, influences the practice of teaching. But what is the nature of this knowledge – how does
it develop and how does it change? In this paper I first argue for, and then provide evidence
of, a mechanism through which teachers' knowledge develops and changes. I argue that
through the mechanism of reification teachers' knowledge and belief about teaching and
learning can rapidly undergo substantial revision leading to equally rapid revisioning of
practice.

Consider the case of John:
Anyone who knew John when he first became a mathematics teacher eight years ago
would say that he has come a long way. He is no longer the idealistic, naïve, teacher
he was at the beginning of his career. John is now savvier in the ways of teaching.
Although not a specialist in mathematics, over the last eight years John has managed
to acquire a large repertoire of ideas and practices that he relies heavily on in his
daily teaching of mathematics. These ideas and practices have been gleaned from
textbooks, teachers' guides, colleagues, workshops, but mostly from his experiences in
the classroom. But there is an incongruity within John. John identifies himself as
being a bit of a traditionalist when it comes to teaching mathematics – he espouses
the virtues of drills, skills-based assessment, believes in the transmission model of
teaching and learning, and bemoans the problems of the 'new new math' movement.
Despite these dispositions, however, many of John's favourite lessons and
instructional strategies can best be described as being steeped in the traditions of the
reform movement.
How is it possible that such an experienced teacher can embody such contradictions

between his knowledge and his practice? What is the condition of John's knowledge that
allows for such contradictions? How has this contradiction developed, or perhaps more
relevant, how has an agreement between knowledge and practice failed to develop? In this
paper I look more deeply at John, and other teachers not too dissimilar from him, whose
teacher knowledge has not fully developed through their experience as teachers, but whose
knowledge does develop more fully when put in a situation wherein they were required to
reify (1) their knowledge, and then act (and enact) that knowledge. My thesis is that through
this process teachers' knowledge and practice can develop.

Theoretical Framework
Teachers learn about teaching from their teaching experiences (cf. McClain & Cobb,

2004; Kennedy, 2002; Ma, 1999; Mason, 1998; Shulman, 1986) and their level of teaching
expertise is considered a function of these experiences (cf. Berliner, 1987). This learning
takes place within the iterative practice of teaching and results in the development of teacher
knowledge. Leikin (2006) identified three dimensions of this teachers' knowledge: kinds of
teachers' knowledge, sources of teachers' knowledge, and conditions of teachers' knowledge.
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KINDS OF TEACHERS’ KNOWLEDGE – is based on Shulman’s (1986) classification
of teacher knowledge and consists of subject-matter knowledge (SMK), pedagogical
content knowledge (PCK), and curricular content knowledge (CCK). Subject matter
knowledge is teachers' knowledge of mathematics, pedagogical content knowledge is
knowledge of how mathematical content is received by students, and curricular content
knowledge is knowledge of curricula and approaches to teaching mathematics.
SOURCES OF TEACHERS’ KNOWLEDGE – is based on Kennedy’s (2002)
classification and consists of systematic knowledge, prescriptive knowledge, and craft
knowledge. Systematic knowledge is developed through studies of mathematics and
pedagogy, prescriptive knowledge is developed through institutional policies, and craft
knowledge is developed through classroom experiences.
FORMS OF KNOWLEDGE – is based on the differentiation between teachers’ formal
knowledge (Atkinson & Claxton, 2000), their intuitive knowledge (Fischbein, 1984), and
their beliefs (Scheffler, 1965). Formal knowledge is knowledge that consciously guides
practice, intuitive knowledge is knowledge that subconsciously guides practice, and
beliefs is subjective knowledge that consciously and/or subconsciously guides practice.

These three dimensions can be represented along three dimensions of a Cartesian coordinate
system (see Figure 1).

Fiscbein (1987 )
Schefler (1965 )

SMK PCK CCK

Craft

Prescriptive

Systematic

Kennedy (2002)

Formal 
Knowledge

Beliefs

Intuitions

Types of 
knowledge

Conditions and Forms  
of Knowledge

Shulman (1986 )

Sources of 
knowledge

Figure 1: Three dimensions of teachers' knowledge (from Leikin, 2006)

The thesis of this paper is situated within the third dimension – the conditions of teachers'
knowledge in general, and the transformation in the conditions of teachers' knowledge in
particular. The conception of this dimension, as described above, is not without challenges,
however. The simultaneous partitioning of the conditions of knowledge across the
knowledge/beliefs divide and the conscious/subconscious divide is somewhat problematic.

To begin with, at the level of teachers' action the distinction between knowledge and
beliefs is not so clear. In general, knowledge is seen as an "essentially a social construct" (Op
'T Eynde, De Corte, & Verschaffel, 2002). That is, the division between knowledge and
belief is the evaluations of these notions against some socially shared criteria. If the truth
criterion is satisfied then the conception is deemed to be knowledge. But when teachers
operate on their knowledge the distinction between what is true and what they believe to be
true is not made. Leatham (2006) articulates this argument nicely:
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Of all the things we believe, there are some things that we "just believe" and other things
we "more than believe – we know." Those things we "more than believe" we refer to as
knowledge and those things we "just believe" we refer to as beliefs. Thus beliefs and
knowledge can profitably be viewed as complementary subsets of the things we believe.
(p .92)
Thus, for the purposes of examining teachers' practice I do not make the distinction

between beliefs and knowledge. I do, however, make the distinction between what teachers
know/believe at the conscious level, and what they know/believe at the subconscious level. In
part, this difference can be summarized by Green's (1971) distinction between evidential and
non-evidential beliefs. Evidential beliefs are formed, and held, either on the basis of evidence
or logic. Non-evidential beliefs are grounded neither in evidence nor logic but reside at a
deeper, tacit level. So, I reinterpret Leikin's (2006) description of the conditions of teachers'
knowledge as being comprised of the conscious knowledge/beliefs that guide their practice,
and the subconscious knowledge/beliefs that guides their practice. This reinterpretation can
be used to describe the discordance between John's practice and his espoused stance on
teaching (presented in the introduction). What John espouses is informed by his conscious
knowledge/beliefs whereas what he does is informed by his subconscious knowledge/beliefs.
In John's case, what is needed is better articulation between the subconscious and the
conscious.

Wenger (1998) provides us with the language of reification to articulate the movement of
knowledge/beliefs from the subconscious to the conscious. For Wenger (1998) reification is
"the process of giving form to our experiences by producing objects that congeal this
experience into thingness" (p. 58). This congealing of experience can be the movement from
tacit knowledge/beliefs to explicit (conscious) knowledge/beliefs, the transformation of
abstract thoughts into concrete ideas, or the articulation of fleeting notions into tangible
statements.

Methodology
Participants for the portion of the study presented here are 18 inservice teachers working

in two teams (Team A – 10 teachers, Team B – 8 teachers) in two different school districts.
Although working in different districts, both teams were formed for the same purpose – to
collaboratively design numeracy tasks to be used district wide to assess the level of numeracy
of grade 5's and grade 8's. The teachers involved in this project ranged in age from 25 to 63
(average was 36.4 years), and ranged in teaching experience from 1 year to 36 years (average
was 8.2 years). What did not range, however, was their expertise in mathematics. Like John,
none of the 18 teachers in this project has a specialization in mathematics – they are all
generalist teachers. And like John, there exists some incongruity within each teacher between
their espoused views of teaching and learning and their practice. In fact, John is an
amalgamation of these 18 teachers, constructed to exemplify the participants as a whole
(Leron & Hazzan, 1997).

The research was conducted over the course of the four, four hour long, planning and
implementation meetings allocated for the task design project. The nature of the meetings is
summarized below (2):

Meeting 1 – co-construct a shared understanding of numeracy and begin to design tasks
for immediate pilot testing.
Meeting 2 – debrief the pilot testing of tasks, refine tasks, begin to discuss the logistics of
scripting/administrating (3) tasks, and prepare to re-pilot test the tasks.
Meeting 3 – refine tasks, finalize scripting/administration of tasks, and prepare to
administer the task as an assessment.
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Meeting 4 – mark the tasks and do a post-mortem on the process.
Each of these meetings was facilitated by the author.

The data for this project consists of field notes collected during the meetings,
transcriptions of audio recordings made at select times, and artifacts produced in the
meetings. In each of the four meetings the participants were engaged either in discussion
(small group and large group) or in creating artifacts (definitions, tasks, scripts, layout, etc.).
The data for this paper come from the first of theses meetings.

Results and Discussion
The first meeting with each team began with a prompt for them to think about what

numeracy is. In both cases the teams responded with the ideas that numeracy must include the
rapid recall of arithmetic facts, fluency with arithmetic algorithms, and good number sense.
Although not explicitly stated, there was a sense that this list of characteristics of numeracy
was not only necessary, but also sufficient.

When prompted to think about the qualities of a successful (numerate) student (4),
however, the nature of the responses changed. Now, the list of characteristics included
notions such as: perseverance of effort, a willingness to engage, an ability to transfer
knowledge to new contexts and novel problem solving situations, a broader awareness of
mathematics around us, creativity and flexibility in thinking, and an ability to explain their
thinking. When asked to synthesize these ideas into a definition the two groups produced the
following:

Numeracy is the willingness and ability to apply and communicate mathematical
knowledge and procedures in novel and meaningful problem solving situations.
Numeracy is not only an awareness that mathematical knowledge and understandings
can be used to interpret, communicate, analyze, and solve a variety of novel problem
solving situations, but also a willingness and ability to do so.
These definitions are a long way from their initial musings about what numeracy is.

Initially dominant in the conversations were their conscious (traditional) ideas about what it
means to 'know' mathematics. I argue that the emergent ideas were not new
knowledge/beliefs, but rather the explications of previously tacit knowledge/beliefs that had
built up from their experiences with teaching. The act of first verbalizing and then
synthesizing these tacit ideas reified their good experiences with teaching and with students
and moved them into their consciousness. In so doing, they "projected their knowledge/
beliefs into the world" (Wenger, 1998, p. 58).

When asked to begin to think about designing a task that could assess students' numeracy
abilities the conversations were dominated by the content of the newly created definition. In
particular, comments regarding the need for creating a task that presented a novel and
meaningful problem solving situation. This can be seen in a comment by Joanne (taken from
the field notes):

… the problem has to be new to them. It has to be something they have never seen
before otherwise we won't know if they are numerate. … are they figuring it out or
are they just going through some steps they have learned before?

Joanne is not only referencing to the definition ('new to them') but she is talking about
numeracy ('if they are numerate') as if it has "a reality of its own" (Wenger, 1998, p. 58).

The initial attempts to produce such tasks (although somewhat unrefined) were far
removed from the traditional 'skills' view of numeracy that the participants presented at the
beginning of the meeting. There were tasks built around planning for a party, designing a set
of stairs, designing an enclosure for a pet, organizing a rock-paper-scissors tournament, and
selling cell phones (see table 1 for the initial crafting of these tasks). These tasks all had the
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characteristic that they would be new to the students. They also had the characteristic that
they were projects more so than single lesson tasks for assessment. When asked about the
scale of the tasks the teams were generally not clear on how long each task would take, nor
were they overly concerned about it (5). This can be seen in the comments of Phil
(transcribed from a conversation):

We know it's big. But what are we going to do? It needs to be a bit of a challenge for
them, so we have to give them time to think. We want to make sure there is something
for them write about the problem at the end, something for them to explain to us, so it
needs to prompt that. And it needs to work well with groups.
This last point about group work was an interesting development in the task design phase

that appeared among groups working in both teams. When asked about the need for group
work the general reply was that numeracy included an ability to communicate, so a person to
communicate with was requisite. This can be seen in the comments of Jacki working on the
cell phone task (transcribed from a conversation):

It just makes sense to us. I mean, numeracy is not just about doing, its about being
able to communicate what you are doing. So, we just figured that the best way to help
this along is to get them talking.
This comment by Jacki brings to the fore another emergent theme – the theme of process.

The participants began thinking about the process of solving these problems more so than the
final answers that the students would eventually arrive at. This theme along with the others
became even more prominent in the second meeting when they began discussing how to
script the administration of the tasks for other teachers.

Again, I argue that the emergent knowledge/beliefs exemplified above is the result of the
explication of tacit notions and desires about teaching and learning mathematics that have
accumulated from their experiences (both positive and negative) in teaching mathematics.

Table 1: Initial numeracy task ideas
Plan a Party
You are planning a class party. There are 24 students in the class and you have been given a budget of
$70 to spend on pop, chips, and pizza.

2 litres of pop @ $1.79
1 large bag of chips @ $3.45
1 large pizza (10 slices) @ $8.50

How would you spend the money?

The party will be held in the activity room which needs to be furnished with chairs and tables. The
school has a whole bunch of card tables (20 of them), which are square tables that can seat four
people (one on each side). These tables can be used separately or be put together to form larger tables.
Using as many tables as you would like:

a) come up with as many different configurations as you can to seat all 24 students at one
large table

b) come up with several different configurations to seat all 24 students at two or more
different tables (as long as the tables are the same size)

c) come up with one interesting configuration of your choice to seat all 24 students
Designing Stairs
You have been asked by your father to design a set of stairs that will go from your deck down to the
grass in your back yard. The deck is 243 cm high and there is a window 310 cm from the deck that
you do not want to block with the stairs. This means that the stairs can touch down at any point before
reaching the window. Your father also informs you that there are some building guidelines that you
must adhere to:

• Each tread must be at least 22 cm deep.
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• Each riser must be between 16 cm and 20 cm tall.
• Each step must be exactly the same size.

Design a set of stairs keeping the above-mentioned constraints in mind.
Pet Pen
You are the proud owner of a pet __________. You need to design a pen for your pet such that the
perimeter of the pen is exactly 6 meters. Decide which pen is best for your pet and why.
Rock, Paper, Scissors

1. You are going to play a variation of the game Rock, Paper, Scissors. The variation allows you
to play it with three people. Decide among yourselves how score will be kept so that the game
is fair.

Table 2: An example of a refined numeracy task

Conclusions
Teachers learn from teaching. What they learn, however, is not always made explicit to

them. Teaching experiences may accumulate in disjunctive ways at a very tacit level. The
catalyst for unifying and explicating these disjoint and implicit experiences is not always
clear. Certainly the culture existing within the school setting has been shown to galvanize
some of these experiences into concrete notions (Goos, 2006; Karaagac & Threlfall, 2004). In
this paper I offer a different mechanism for galvanizing teachers' experiences. First, teachers'
knowledge/beliefs are moved from the subconscious to the conscious through the act of
reification (Wenger, 1998). But reification is more than just an explication of tacit
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knowledge/beliefs. It is also putting that knowledge/beliefs out into the world as if they have
a reality of their own. Acting, and then enacting, this knowledge/beliefs through task design
and then delivery of these tasks serves to further galvanizes this knowledge/beliefs. Although
not comprehensive, and far from conclusive, I have introduced the idea of reification and
enactment into the discourse of Learning Through Teaching in general, and into the area of
conditions of teachers' knowledge in particular.

Endnotes
1. In this paper reify and reification is used in the tradition of Wenger (1998) rather than

in the tradition of Sfard (1994). McClain & Cobb (2004) make a similar notification of
distinction.

2. This is really just a summary. There are contextual details about this process, and
subtle differences between the two groups that, although relevant, space constraints do not
allow for.

3. This included discussions around time allocation, the role of group work, the provision
of graphic organizers, and the use of writing prompts.

4. This prompt is considered a critical question. Research into critical questions is part of
the larger project within which this paper is situated.

5. After pilot testing, refining, and re-pilot testing the tasks became much more
manageable in scale. See table 2 for an example of a refined task that was used for large scale
assessment.
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Intermediate students at risk in mathematics were studied using an intensive case study
approach to examine the range of issues. As well, teachers drawn from three Northern Ontario
school districts were surveyed to assess their beliefs and practices regarding students at risk.
Findings consistently showed that these teachers tended to fall back on traditional practices
when working with students at risk in mathematics, and seemed particularly reluctant to adopt
reform-based teaching methodologies with such students.

Rationale and Context
Mathematics reform is often viewed as particularly crucial for students at risk, and best

practices for working with such students in mathematics are well-defined (for example, NCTM,
2000). Research on the level of implementation of reform based programs in schools with a large
high risk population does exist from other areas (e.g., Balfanz, MacLiver & Byrnes, 2006) but
research relating to the special needs of Canadian students particularly in Northwestern Ontario
is limited. The current project attempted to probe the needs of intermediate students at risk in
mathematics in the Northwestern region of the Canadian province of Ontario by observing their
daily classroom experiences over a full (four month) semester. Observations of teacher practice
were also recorded, which were extended via a written survey to a larger sample of teachers.

Framework
Achievement in mathematics may be influenced by the developmental process of learning

itself (Geary 1994, 2000). Other factors may include motivation, attitude and confidence related
to mathematical ability (Hannula, 2006; Phillips, 2005). The teacher may also influence the level
of success a student may attain with respect to mathematics (Balfanz et al., 2006). The exact
needs of students at-risk are not clearly defined (McFeetors & Mason, 2005), but the success of
students at-risk can be linked to their motivation which may in turn have the potential to direct
behavior (Hannula, 2006). Hence it is beneficial for the teacher to understand a student’s motives
if they are to fully understand their actions (Hannula, 2006). Many students at-risk appear
unmotivated and do not have the drive to persist. Their often lacking levels of participation may
be related to their needs (Sullivan, Tobias, & McDonough, 2006).

Students have the need for identity, independence and social acceptance (Sullivan et al.,
2006). For example, if the teaching methodology is one in which much routine and rote learning
takes place, the need for independence cannot be met, and in classrooms which do not foster
communication and group activities, students cannot fulfill a need for socialization or develop a
sense of acceptance (Hannula, 2006). As well, students are more likely to practice incorrect
methods with this type of rote learning especially if they are working individually (Woodward &
Brown, 2006). Thus, more practice and volume alone does not necessitate success in
mathematics (Woodward & Brown, 2006).

Students who are placed at-risk for developing mathematically have most likely been
subjected to previous negative schooling experiences, and such experiences are likely to affect
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their present and future learning of mathematics (McFeetors & Mason, 2005). The negative
experience has the potential to begin a cycle which is difficult to break (Marchesi, 1998). Hence,
student confidence and self esteem appear to significantly contribute to potential lack of success.

The behavior expressed by students as a result of the perception that school does not meet
their needs is often the refusal to participate in the learning that the curriculum offers (Daniels &
Arapostathis, 2005). Many of these students figure out very early on in their schooling that they
are uninterested, and decide to reject what they are being taught for various reasons (Marks,
2000, cited in Daniels & Arapostathis, 2005).

When students’ needs are being met, they will be more engaged and motivated, which will
better enable goal attainment (Sullivan et al., 2006; Daniels & Arapostathis, 2005; Hannula,
2006). Consequently, behavior and negative attitudes should improve and better mathematics
learning will be possible (Sullivan & McDonough, 2006; Daniels & Arapostathis, 2005;
Hannula, 2006).

Many of the recent curriculum changes in Ontario were inspired by the National Council of
Teachers of Mathematics’ Principles and Standards for School Mathematics document (NCTM,
2000). The vision described by the NCTM is one in which all students have access to learning
mathematics no matter what skills they possess (NCTM, 2000). Teachers are to provide rich
learning experiences for students, helping students work through mathematical problems with
multiple perspectives (NCTM, 2000).

Acceptable ways of interaction and means to support or refute mathematical arguments must
be developed and supported. To achieve effective learning in a group environment, students need
to have some common ground to refer to and must be able to relate to one another socially
(Wood et al., 2006). In  reform-based classroom environments, students are typically required to
support their answers with an oral presentation defending the strategy they chose, which
underscores the importance of being able to effectively interact in a social setting (Wood et al.,
2006). Students are not able to switch back and forth between a student centered and teacher
centered classroom; the transition to a student centered learning environment must be gradual
and consistent (Huhn, Huhn & Lamb, 2006).

Unlike the traditional perception, much research indicates that students at-risk will not profit
from rote learning or procedure practice alone (Fleener et. al, 1995, Huhn et al, 2006,
VandeWalle & Folk, 2005). Instead, their successful learning is dependant upon manipulating
concrete objects, exploration and active problem solving (Fleener et. al, 1995; NCTM, 2000).
Intermediate students in particular need to be actively involved in their learning, and be provided
with many hands-on, relevant and engaging learning experiences to better support the
development and retention of knowledge (NCTM, 2000; The Ontario Curriculum, Grades 1-8
Mathematics, 2005). Hence it would be fair to conclude that traditional practices are particularly
damaging for students at risk, while reform-based practices might be particularly beneficial.

Methodology
The study involved teachers and students from three school boards. A mixed methods design

was used to probe individual students as well as examine teachers’ perceptions across a broader
spectrum. Fifteen students in grade seven to nine were initially chosen for study based on the
recommendations of their teachers. Three of these students are described here, chosen to
exemplify the range of observed issues. As well 66 teachers answered a written survey related to
their perceptions and teaching practices for students at risk (2).
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The case study students were observed during their mathematics classes in entirety two to
three times each weekly during the fall 2006 school term. As well as watching and documenting
the actual lesson, the research assistant worked individually with the students each day.

Classroom Case Study Observations
The following case studies describe three teachers and three students. Space limits our

discussion, but further details and more examples are available in the full report (3). All names
used are pseudonyms.

Classroom A - Grade 7 Mrs. Adams
Mrs. Adams was a very experienced, confident teacher who has been teaching for over 30

years. Each of Mrs. Adams’s math lessons tended to follow a similar format. First, the students
began by “reflecting”. For example, on one particular day, the students were to write down as
many strategies as possible to find the area of irregular figures. After the reflection any
homework questions were typically taken up with the class. Errors did not appear to be used as
opportunities for learning, and correct answers were emphasized. It was also observed that the
time allowed for student answers was very short in general. Rarely did she wait for more than
one student to raise their hand before selecting a student to answer.

In the majority of the lessons observed, the students were asked to copy a short note from the
board which was followed by examples and homework questions. The students primarily worked
independently and were told that if they needed assistance they could ask the teacher one
question and they were allowed to ask a friend for help, but again, only once.

Brian had been struggling with the material at the grade 7 level and receiving failing grades.
Mrs. Adams placed him in a “foundations” curriculum in which he worked independently in a 60
page workbook at a grade 5/6 level. Her explanation was that he had too many gaps in his
learning and that this would benefit him by filling in these gaps. An Educational Assistant was
occasionally present but she admitted that she struggled with the material herself. Mrs. Adams
was never observed to ask Brian how he was progressing or to offer him help. However, she did
collect and grade the workbook periodically.

Brian appeared to be a Caucasian boy who spoke English as his first language, and was a
very well behaved student in the classroom environment. He regularly attended school although
he seemed unmotivated during math class. Brian did not seem to possess a great deal of self
confidence and frequently suggested that he equated getting the right answer with being ‘smart’.
For example, when working independently on a question, the researcher often heard him
muttering under his breath, “Is that right? Am I smart?”

It appeared to us that one of the greatest factors inhibiting Brian’s success in mathematics
was his difficulty with reading. For example, a question which began with, “A patio will be
made with square stones …” was read by Brian as, “A potato will be made with square
stones…”. The researcher was able to point out the reading error by saying the mispronounced
word out loud and having Brian repeat the question. In the patio example, after meaning was
made, the problem was discussed and the researcher helped to create a visual image for him,
Brian was able to complete the problem with very few prompts. On another day, once a question
he couldn’t answer initially was read to him and he discussed what it was really saying with the
researcher, he drew a picture on his own and said, “This question is easy!”  When asked why he
could not complete it in the first place he said it was because he “…did not understand it”. It may
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well have been that it was the written text (rather than the mathematical ideas) which he did not
understand. It is possible that remediation in reading might have been sufficient to support higher
achievement in math as well, as much evidence exists in our field notes that indicate Brian was
able to negotiate the mathematics in both the workbooks and even in the regular class once he
understood the written text.

Classroom B – Grade 8 Mr. Brown
Mr. Brown had been teaching for seven years. He often started his lessons by welcoming the

students and telling a math related anecdote. He attempted to use examples connected to student
interest, such as the salary of a baseball player. This introduction was followed by a short,
concise black board note with relevant examples and then time for the students to practice their
work was provided. As well, Mr. Brown used manipulatives such as integer chips and snap
cubes. However, his lessons also remained relatively teacher directed.

Mr. Brown was dealing with a classroom with a significant number of extreme behaviour
issues. In fact he seemed to be in a constant battle with student behaviour and had many students
who appeared highly disinterested with the subject matter, and who were very reluctant to ask
questions or to speak when given the chance. Students frequently interrupted and disrupted the
class. Eventually, misuse of manipulatives resulted in some being withheld. It was very difficult
for the teacher to have the students actively involved in the lessons.

Early in the fall Mr. Brown appeared to have every intension of using currently
recommended teaching strategies and reform-based learning. However, Mr. Brown appeared
unable to implement these methodologies and stated that they were unrealistic in his current
classroom, even though he appeared aware of the needs of students at-risk in terms of hands-on
learning and manipulative use. We felt that this example illustrated a classroom environment
which was seen to not only have a potentially debilitating effect on other students, but in fact on
the teacher himself.

A number of students in this class freely self-identified themselves to the researcher as being
of Aboriginal descent. Diane (a pseudonym) attended school on a reserve about 300 kms away
from her present school, from kindergarten to grade 3. She missed a lot of grade 3 because she
was “visiting her sister”. A new school was attended for grades 3 and 4, followed by a move to
another reserve for grades 4 to 6. She cannot recall why but knows that she “missed a few
months of school” in grade 6. During grade 6 her family moved again and she has attended this
school since. This means that Diane attended four different schools in less than nine years. As
well, she was absent from school nearly 30% of the fall term, and she was not the only student in
the class for whom this was the case.

The classroom included a number of troubled students, including one who admitted to the
researcher that she used drugs and alcohol on a weekly basis. This student, for example,
regularly called out in class or pounded her fists on the desk, adding to the extreme number of
distractions. As well, the classroom was in an open concept school and was next to another grade
8 class separated only by two small blackboards. Diane often seemed distracted by the noise
levels around her.

Diane said math made her feel “stupid, frustrated and dumb”. She could recall experiences
only in primary level math where she enjoyed the use of concrete materials as well as having
positive experiences with teachers. Currently, Diane was easily frustrated and would often just
stop doing a question and would not ask for help. Diane felt she would not succeed before she
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even attempted particular mathematics problems. Even when Diane had completed a question
correctly, she thought that it was wrong. Extremely low self-concept and unwillingness to ask for
help seemed to be her greatest challenges.

Classroom C – Mrs. Chase Grade 9 Applied
Mrs. Chase had been teaching for three years at this particular high school. Typically, Mrs.

Chase’s lessons involved well organized but extremely lengthy formal lessons (up to 45 or 50
minutes of a 75 minute period). When the students had the opportunity to give answers and
contribute to the lesson, the response time given was generally only as long as it took for the first
student to raise their hand and participate. Mrs. Chase gave many step-wise procedures to the
students. Homework practice also tended to be mostly procedural practice, and few contexts of
any sort were evident.

The students were often not attentive throughout the lengthy lesson and were observed
talking to other students and not copying the note as they were instructed. Following the formal
lesson homework was assigned. The students usually had an ample amount of class time to
complete it, although they did not always use this time to do so. It seemed as though many were
just waiting for the lesson to be over so they could ask to leave to use the washroom.

Mrs. Chase attempted once during the research to try a reform style group task. She did not
lead up to notions of group work, manipulative use, or problem solving in any way before the
lesson so it was an abrupt change of style, which is difficult for students (Huhn et al, 2006). She
was very dissatisfied with the lesson as many students were off task, did not complete it, and
misused the manipulatives. This was the first time she had used manipulatives with the class.
After that experience, she did not use any form of manipulative again.

Mrs. Chase attempted to use a real world context once when explaining the concepts of area
and perimeter. She related perimeter to home improvements, like measuring baseboards, and
area concepts were used for discussing painting walls and knowing how much carpet to buy. On
this particular day, the classroom behavior was observed to be much better than any others.
Perhaps this is not coincidental and that there was a link between the relevance in the lesson and
at least somewhat improved behavior.

Susan was chosen as a case study student and a typical day with Susan was as follows [from
researcher field notes]:

Susan is in the hallway as soon as class begins, just minutes after the bell has rung at 1:00
pm, and is apparently going to the washroom. The lesson continues and Susan comes back to
class at 1:25 pm. She leaves again for whatever reason and returns about 10 minutes later.
Upon her third arrival to the class, she is not paying attention as the lesson goes on and
continues to make conversation with the students around her.
Susan described a troubled childhood with many moves. Susan said that she did not see the

point of math and did not understand why the students needed to go through all of this “stuff”.
She said that you should just learn what you needed for a particular job and that would be
sufficient. However, Susan wanted to collect unemployment insurance instead.

Yet there were many instances in which Susan demonstrated ability as well as potential. For
example, instead of using the formula sheet, she intuitively re-created the formula for the area of
a triangle. Susan managed to pass the course, but Mrs. Chase felt that this would not have been
possible without the individual support of the researcher for such a substantial period.
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Teacher Survey and Discussion
The teachers surveyed were consistently able to identify the common issues for students at

risk as found in the literature and evident in the case studies. These included behaviour issues,
poor motivation, poor problem solving skills, reading issues and gaps in previous knowledge.
However, teachers did not generally describe teaching in a manner consistent with best practices
as described in the literature. They identified using personal teaching practices consistent with
what we observed in the case studies, which were generally highly traditional, procedural, and
teacher directed, particularly in Classrooms A and C, in which students were mostly expected to
work on decontextualized tasks without social interaction or other motivating aspects.

Descriptive statistics, ANOVA, and independent t-tests were used to examine the survey
data. A more extensive analysis is available in the full report as cited previously. The grade
seven to 10 teacher sample [N=66] was relatively balanced in terms of grades taught and
experience levels. Teachers in the sample generally described using traditional practices more to
help students at risk. Teacher directed instruction was the most favored approach for teaching a
student at-risk. More than 50% of teachers reported using teacher directed instruction more for
students at risk, and less than 5% used it less for these students. Extra help during seatwork was
selected by 82% of the respondents as “usually” used to as a technique to help a student at-risk in
mathematics, and the low variance found for giving at risk students extra help during seatwork
indicated general agreement on this strategy.

Teachers generally reported that they used rich tasks and projects either less than or to the
same degree as they would for a student who is not at-risk. The vast majority - over 70% -
reported using tasks less. Only 4.5% reported using a rich task or project more frequently for a
student at-risk. The use of projects or tasks had the lowest mean and the least amount of variance
of the teaching approaches suggested on the survey. This suggests that these teachers
consistently responded by saying they do not favor projects or tasks for these students.

These findings point to the crux of our work, already glimpsed in the case studies, and
solidified with the quantitative data. Even though best practices for students at risk as described
in the framework indicate the importance of active, hands-on, engaging, interactive and involved
learning rather than traditional and teacher directed instruction, more than half of teachers
surveyed reported using teacher directed instruction more than with other students, and most
used tasks less.

Consistent in the case studies, these results indicate an area of significant concern which also
points to the crucial need for increased in-service training and support. Even though teachers
surveyed identified weak problem solving skills as an area for concern, they report doing less
problem solving with such students. Even though the students we observed typically could not
focus for long periods, they were being subjected to more teacher directed instruction. These
environments potentially continue to perpetuate the cycle of disinterest, boredom and frustration,
eventually manifested in significant classroom misbehavior which we also observed.

Conclusions
Although many issues consistent with the literature were observed with the students in the

case studies, none of the students demonstrated ‘only’ mathematical issues in isolation from
behavior, motivation, or other issues such as home life, attendance or reading difficulties. While
it is unclear which issues came first, there is an indication in many of the cases that a lack of
satisfaction with mathematical learning may exacerbate inappropriate behavior in class.
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Both the case studies and the survey indicate that the teachers studied were coping with
students at risk by falling back on those practices they knew best – teacher directed instructional
periods of varying lengths accompanied by extra help on individual homework. They were
reluctant to use investigations, tasks and other student-centered or reform-based techniques.
Needs for social acceptance and independence were generally not priorities. Mathematical
topics, particularly in the grade 9 classes, were decontextualised, formal, and not engaging.
Students responded by off task behavior and mis-behavior, and little engagement was evident.
Most students were very reticent to ask questions or seek assistance. The data gathered and
presented in this paper consistently points to a significant disconnect between best practices for
students at-risk as described in the literature, and what was observed and reported by teachers to
be happening in actual classrooms in the study. We believe this is an area of grave and
significant concern which warrants further study and points to a crucial need for training and
support.

Endnotes
1. We acknowledge gratefully the funding for this project from the Northern Ontario

Educational Leaders (NOEL) through the Ontario Ministry of Education, as well as the support
of the University of Manitoba CRYSTAL project funded by the Natural Science and Engineering
Research Council of Canada (NSERC).

2. This survey can be found at
http://noelonline.ca/depo/fdfiles/KajanderNOEL%20FINAL%20report%20APRIL%2030%2020
07.pdf

3. More detailed examples and transcripts of interactions can be found in the full research
report available at the site listed in endnote 2.
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Seven novice mathematics teacher educators (MTEs) collaboratively explored their beliefs
about mathematics teacher education. Although we shared and valued many of our peers’
beliefs, we found differences in central beliefs systems. We discuss similarities and
differences as well as implications of these findings for the preparation and continued
professional development of MTEs.

A transition from K-12 teacher to teacher educator is complex and is a relatively unexplored
area of research (Cochran-Smith, 2003); however literature is emerging regarding the
development of mathematics teacher educators (MTEs) (e.g., Tzur, 2001; Van Zoest, Moore &
Stockero, 2006; Zaslavsky & Leikin, 2004). There is abundant research about mathematics
teachers’ beliefs and how such beliefs influence practice within K-12 mathematics classrooms; it
is a natural extension to investigate MTEs’ beliefs and their impact on teaching practice. This
study is a collaborative effort of a team of seven novice MTEs at six different institutions who
conducted self-study research that entailed reflecting upon and explicating their beliefs about
mathematics teacher education to one another. The purpose was to bring forward such beliefs,
identify commonalities and differences, and develop a “collective wisdom” of beliefs of MTEs.

Theoretical Perspective
We acknowledge the “messiness” of defining what we mean by belief and any

distinctions from what might be meant by knowledge (Parajes, 1992). We adopt a “belief is
in the eye of the beholder” stance; any definition of belief or what is meant by knowledge is a
belief and each participant has defined these constructs as a part of the study. However, we
have agreed upon key assumptions about beliefs. For example, as novice MTEs, we see
ourselves as constructing a personal pedagogy of teacher education (Tillema & Kremer-
Hayon, 2005) within mathematics education and recognize that our beliefs in several areas
influence our instructional decisions. We assume that beliefs are “predispositions to act”
(Rokeach, 1968); thus we used our instructional practices as starting points for examining our
beliefs. Beliefs can be held implicitly and are organized as a system in a way that is
meaningful to the individual (Green, 1971; Leatham, 2006). Beliefs are inferred and cannot
be directly observed (Green, 1971; Parajes, 1992); our goal is to make our individual beliefs
explicit to ourselves and then to others for examination.

Methodology
We are a group of 7 MTEs who are either tenured, or in tenure-track faculty positions at

six U.S. universities. All of us completed our PhDs at the University of Georgia in the year
2000 or later. Our subsequent interactions have brought forth conversations highlighting the
successes and struggles in our new roles as MTEs and researchers. These conversations, our
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desires to collaborate and our experiences of studying the beliefs of mathematics teachers
motivated this study.

Our work began by each of us engaging in self-reflective analysis activities to develop a
concept map as a pictorial representation of his or her beliefs. Accompanying this map, we
wrote a narrative that provided illustrative examples from practice. Guiding this process were
the questions: What are my beliefs and what examples can I provide to support my claims?
How do my beliefs relate to one another? Furthermore, we contend that attending to
professional dilemmas and solutions helped us to connect our beliefs to our teaching
(Lunenberg, & Willemse, 2006; Tillema & Kremer-Hayon, 2005). Consequently, we also
reflected on our struggles and how we have worked to resolve them. Examples of data
sources included syllabi, materials that were generated for the promotion and tenure process,
and lesson plans from our teaching.

We then exchanged our concept maps and narratives in groups of two or three. Each
group engaged in dialogue to understand the perspective of the other, and wrote notes to
document our conversations. All seven then participated in a conference call wherein we
discussed and documented commonalities and differences of our beliefs and experiences.
This conversation continued via email during subsequent days.

Results and Implications
We found that we valued each other’s beliefs about mathematics teacher education, and

that the process of engaging in these discussions prompted each of us to then re-assess our
beliefs and practices. As we sought to explicate our beliefs and to compare and contrast them
with those of our peers, we saw areas of strength and weakness; perhaps most important, we
saw in others’ systems of beliefs many connections with our own.

For example, Andy and Signe’s discussions about Signe’s focus of creating a safe
environment for her pre-service teachers (PSTs) so that meaningful interactions could occur
challenged both Andy and Jennifer to consider how and why similar notions were or were not
in their respective belief maps. As we engaged in our discussions we realized that that some
of these beliefs, while shared, were not necessarily core beliefs that explicitly informed each
MTE’s instructional practices. This result has implications for mathematics teacher education
in that although MTEs are frequently in agreement with one another about important ideas,
the degree to which we emphasize these ideas varies significantly because of differences in
core beliefs. The questions arise: Does this matter? Do we need a “common core” across the
work of MTEs in order to truly impact K-12 mathematics learning?

Another important idea that emerged from our discussions initiated from Keith and
Jennifer’s dialogue about their maps and narratives. Both maps emphasized PSTs (rather than
K-12 students) as learners. Jennifer explained that after her doctoral program, when she
began as a teacher educator, she centered on teaching PSTs about the child as learner rather
than recognizing the PST as the learner, despite the fact that her dissertation was about PST
learning. Keith noted that he always saw the teacher as the learner, and in fact began his
doctoral program with the intent of learning about teaching teachers.

In contrast, Wendy, Nickey, and LouAnn identified formative assessment of K-12
children as a prevalent theme across their maps. They used the concept of formative
assessment as a vehicle for teaching PSTs relational understandings of mathematics as well
as about mathematics teaching and learning. Andy’s notion of the importance of PSTs
creating models of students’ mathematics also served this purpose. Engaging in formative
assessment is also central to Signe’s instruction, as she strives to learn from her students
(PSTs). The point here is that Signe’s formative assessment is OF the PSTs, whereas the
others seemed focused on formative assessment of K-12 students.
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This is not to say that Wendy, Nickey, LouAnn , and Andy are not thinking about PSTs as
learners. They all focused on how PSTs should learn mathematics via the process standards
during their PST education programs. Andy discussed the need to problematize teaching too,
including problem solving related to modeling students’ mathematics. Wendy, Nickey and
LouAnn seek to prepare their PSTs to listen to their students and to assess students' thinking
in order to inform their own instruction. But to what extent is Andy making models of his
PST’s thinking about mathematics teaching, and to what extent are Wendy, Nickey, and
LouAnn listening to their PSTs and assessing the PSTs thinking about mathematics teaching
in order to inform their own instruction? This focus on PSTs as learners of teaching
mathematics, and not only learners of mathematics stood out to us as a significant distinction.
Tzur (2001), Van Zoest et al. (2006) and Zaslavsky & Leikin, R. (2004) also bring forward
this distinction when considering mathematics teacher educator development.

A corresponding implication for mathematics teacher education is that much initial and
continuing development of mathematics teachers is explicitly based in research –research
about how children learn mathematics. To what extent are our teacher preparation programs
based on research on how teachers learn to teach mathematics? In what ways do we make this
foundation explicit?  And, in what ways can we make this explicit when considering
mathematics teacher educator development?

Another significant implication for MTE development which arises from this work is the
importance of personal reflection and dialogue of examining what drives our practices. Just
as mathematics teachers need safe environments in which to reflect on beliefs and practices,
MTEs need to be afforded the same opportunities. Perhaps this should be a major component
of doctoral programs in mathematics education. Furthermore, MTEs are a diverse group of
professionals from a number of arenas including district leaders and mathematics department
chairs within school districts, staff developers within education centers, and instructors within
alternate certification programs. Our field must consider ways to support reflective
instructional practices of MTEs in all such settings.
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Sixty-three Algebra I teachers in 27 school districts in a southern US state were surveyed to
determine their perceptions of teaching students with learning disabilities (LD) and factors that
might affect these perceptions. The results indicated that Algebra I teachers do not have
favorable perceptions of teaching students with LD.  Gender, collaboration with a special
education teacher, and number of students with LD in the general education classroom were
found to significantly affect teachers’ perceptions of teaching students with LD.

The Individuals with Disabilities Education Act (1997) guarantees students with disabilities a
free and appropriate education and requires that all students receive instruction in the least
restrictive environment, which in many cases is the general education classroom. Concurrent
with IDEA, the No Child Left Behind Act (2001) has significantly raised standards for all
students, including those with LD. This challenge is perhaps greatest in states where students are
required to pass Algebra I and a high school graduation exam in order to receive a high school
diploma.  Algebra poses a significant challenge to students with LD (Gagnon & Maccini, 2001);
as a result, students with LD often have high failure rates in Algebra I (Carnine, 1997). However,
research on teachers’ perceptions of teaching students with LD has been conducted, for the most
part, without regard to content areas. This study was designed to examine Algebra I teachers’
perceptions of students with LD and factors that might contribute to these perceptions.

Method
One hundred seventy Algebra I teachers from 74 public high schools in 27 school districts

within a southern U.S. state were surveyed.  The survey included demographic questions and a
16-item Likert scale on teachers’ perceptions of teaching students with LD.  Many of the survey
items were adapted from the Regular Education Initiative Teacher Survey (Semmel, Abernathy,
Butera, & Lesar, 1991). The scale ranged from 4 to 1 (4 = strongly agree, 3 = agree, 2 = disagree,
1 = strongly disagree, N = no basis for opinion).  Validity was established via a formal review by
several outside experts in both mathematics education and special education.  To establish
reliability, a pilot study of 46 participants was conducted with Algebra I teachers in several
school districts not within the survey population.  The Cronbach’s alpha coefficient for the pilot
study was .8708.  Sixty-three of the 170 Algebra I teachers returned their survey resulting in a
37% response rate.

Data Analysis and Results

Teachers’ Perceptions of Teaching Students with LD
To analyze Algebra I teachers’ perceptions of teaching students with LD, descriptive

statistics were used.  A majority of the algebra teachers had favorable perceptions (i.e., mean
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greater than 2.6) on 5 of the 16 survey items.  Ninety percent of the teachers agreed that they
were comfortable collaborating with the special education teacher, and that they had the primary
responsibility for the achievement of all students (with and without LD) in their classrooms.
Seventy-five percent agreed that students with LD had a basic right to receive their education in
the general education classroom.  Sixty percent of the teachers were comfortable implementing
IEPs, and agreed that students with LD did not cause behavior management problems.  Algebra I
teachers were evenly split (mean between 2.4 – 2.6) on two of the survey items:  (a) that special
education teachers provided adequate support and (b) that students with LD having a sense of
belonging when placed in the general education classroom.

Algebra I teachers indicated non-favorable perceptions on 9 of the 16 survey items (i.e.,
mean less than 2.4).  Eighty-three percent of teachers disagreed that their initial teacher training
program adequately prepared them for teaching students with LD.  Seventy-five percent of
teachers reported that the stigma many students with LD experience of being “dumb,”
“different,” or a “failure” was not reduced by inclusion and disagreed they had enough planning
time to meet the needs of students with LD.  In addition, approximately 60% of the teachers
indicated that in inclusive classrooms, (a) they did not have time to meet the state curriculum
goals for all students, (b) that adequate resources for students with LD did not exist, (c) the self-
esteem and academic achievement of students with LD did not improve in general education
classrooms, (d) they do not have the knowledge and skills necessary to teach students with LD,
and (e) the achievement of students without LD decreased in inclusive classrooms.  

Relationship between Perceptions and Factors
Chi-Square was used to analyze the data to determine the relationship between algebra

teachers’ perceptions of students with LD and demographic factors.  Significant relationships
occurred between the Algebra I teachers’ perceptions of students with LD and (a) gender, (b)
number of students with LD in the classroom, and (c) collaboration with the special education
teacher.  No relationships were found between perception and (i) teacher experience, (ii) highest
degree earned, (iii) number of college courses taken or (iv) number of workshops attended that
addressed teaching students with LD.

Gender

The chi-square analysis indicated a significant difference (_
2

= 5.91, p = .015) between males
and females concerning the item stating students with LD have the right to receive their
education in the general education classroom. Eighty-nine percent of females agreed with this
item whereas only 63% of males agreed.  In general, females had more favorable mean scores
than males on 14 of the 16 items.

Number of Students with LD
Significant differences were found between the number of students with LD in the classroom

and four items on the survey. Algebra teachers with more than six students with LD agreed that

(a) inclusion improves the self-esteem of students with LD (_
2

= 4.35, p = .037) (52% compared
to 26% for teachers with less than 6 students), (b) adequate resources exist to meet the needs of

students with LD (_
2

= 6.61, p = .010)  (52% vs. 20%), (c) inclusion does not take time away
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from state curriculum goals (_
2

= 4.35, p = .037) (52% vs. 26%), and (d) students with LD lose
the stigma of being “dumb, different, or failure” when place in the general education classroom

(_
2

= 4.77, p = .029) (32% vs. 10%).

Collaboration with Special Education Teacher
There were significant differences between collaboration with special education teachers and

five items on the survey.  Algebra I teachers who collaborated at least once every 2 weeks with a
special education teacher agreed that (a) inclusion improves self-esteem of students with LD

(_
2

= 5.74, p = .017) (48% vs. 16% of teachers with less collaboration), (b) adequate resources

exist to meet the needs of students with LD (_
2

= 9.31, p = .002) (48% vs. 6%), (c) adequate

support exists from the special education teacher (_
2

= 7.02, p = .008) (63% vs. 26%), (d)

students with LD experience more academic success in general education (_
2

= 5.97, p = .015)

(46% vs. 12%), and (e) they are comfortable implementing IEPs (_
2

= 6.27, p = .012) (73%
compared to 39%).

Discussion
Unlike most studies of general education teachers perceptions of inclusion, Algebra I

teachers expressed more negative perceptions of inclusion (Bender, Vail, & Scott, 1995; Scruggs
& Mastropieri, 1996). In this study, females had more favorable perceptions of teaching students
with LD than males.  Previous studies relating gender and inclusion have been mixed; males tend
to be more confident in their abilities to meet the needs of students with LD (Boyer & Bandy,
1997), but other studies have shown males with less favorable perceptions of inclusion
(Avramidis, Bayliss, & Burden, 2000). Algebra teachers who collaborate more frequently had
more favorable perceptions of students than teachers who collaborated less frequently.
Collaboration is important since research indicates that students with disabilities can make
significant academic gains when the general and special education teacher collaborate effectively
(Klingner, Vaughn, Hughes, Schumm, & Elbaum, 1998). Finally, algebra teachers with six or
more students with LD had more favorable perceptions of teaching students with LD than
teachers with less than six students with LD.  More research needs to be conducted to explain
these findings.  A limitation of this research is that generalizations of findings may be weak
given the small population size and low response rate.
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In my dissertation project I explored, with college statistics students, the hypothesis that affective
problems, found to figure significantly in achievement, are not causes of mathematics distress
but rather symptoms of students’ mathematics relationality. My study, piloting a relational
counseling approach integrated with constructivist tutoring, provided support for my hypothesis
and effective ways to help students repair and develop their mathematics selves.

The research described here grew out of a troublesome sense that the cognitive and affective
expressions that we, in the learning center context, see in struggling college mathematics
students may be symptoms rather than causes of a student’s real difficulties. Predominant in
practice in my field, I saw a disjointed or narrowly focused approach to mathematics affect (e.g.,
on learned helplessness or locus of control or anxiety or …) and treatments often only tenuously
linked to students’ mathematics competence development. I became certain that this was not
adequate to understand how college students undertake to learn mathematics nor to help them
recover in time to succeed in their current course.  When a student like Jamie, who reported
extreme mathematics anxiety, “hid” in class and avoided accessing help despite the fact that she
was repeating the class, how should I interpret such an emotional and counterproductive
behavioral response? Surely I needed a fuller understanding of her history and its effects on her
present mathematics experience in order to understand what I, as a mathematics learning
specialist, could do to help her and what she needed to change in order to succeed this time.

Could it be that students with otherwise adequate mathematics skills and aptitudes are limited
by unconscious forces linked to earlier mathematics learning experiences that cause them to
repeat counterproductive practices? How might poor preparation interact with a student’s
developing mathematics self to affect her approach in the current course? I was driven to look
beyond mathematics anxiety and learned helplessness research, into the realm of psychotherapy.

Theoretical Framework
The central hypothesis that emerged was that affective problems—beliefs, attitudes and

emotions, found to figure significantly in mathematics achievement (cf. Ma, 1999), are not
causes of mathematics distress, but rather, symptomatic of student’s mathematics relationality.

In recognizing the need to address root causes of mathematics affective problems, I had
returned to theorists of mathematics affect such as McLeod (1992) and looked more closely at
their endorsement of classical Freudian-type analysis and counseling approaches albeit for cases
of extreme mathematics emotionality (see McLeod, 1992, citing Tahta, 1993). Weyl-Kailey
(1985) uses Freudian psychoanalytic techniques in a clinical setting to probe and remediate
puzzling mathematical behaviors as she uncovers and treats related psychological disturbances.
Weyl-Kailey and others found that attention to students’ unconscious motivations gives insights
that other approaches do not. Because my interest was in the mathematics mental health1 of
ordinary students, not just those with extreme difficulties, I had earlier rejected psychoanalytic
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theory. But I now saw the promise of psychoanalysis in its attention to the unconscious and the
present effects of the past on everyone. Indeed McLeod (1997) noted with interest Buxton’s
(1991) suggestion that some struggles of ordinary students with mathematics might well be
understood in terms of Freud’s concept of the superego. I resolved to explore Freud’s theory and
the theories that evolved from it.

 The work of Stephen A. Mitchell (1988, 2000) emerged as highly relevant to my research
because it used a form of relational conflict psychotherapy derived from Freudian psychoanalysis
to help ordinary adults who had goals that were not being fulfilled because they were embedded
in conflicting relational patterns with themselves and their significant others (both internal and
external). In 1988 Mitchell integrated the three major relational strands of psychotherapy that
emerged from Freud’s classical psychoanalysis. Each of these strands emphasized one dimension
of what Mitchell termed as a person’s relationality or her current behavior that is the outcome of
the development of her self, her external and internalized objects, and her interpersonal
attachments (Mitchell, 2000). When I considered these dimensions in the context of a student’s
mathematics learning experience, I interpreted them as follows:

1. Mathematics self or selves (cf. Kohut, 1977);
2. Internalized mathematics presences or objects (cf. Fairbairn, 1952); and
3. Interpersonal mathematics relational or attachment patterns (cf. Bowlby, 1973).

Understanding a student’s mathematics relational dimensions and how they interact with one
another to express her relationality might provide the insight into the origin and development of
her puzzling behaviors, affect, and conflicts that I was seeking.

Methods
To investigate my hypothesis, I piloted a brief relational mathematics counseling approach

with students taking a summer introductory-level statistics course taught at a small, urban,
commuter state university in the Northeast. I was embedded in the class as a participant observer.
Ten of the original 13 students signed up for individual mathematics counseling. I identified,
adapted, and developed instruments and approaches to explore students’ mathematics learning;
their history, beliefs, attitudes, and emotions about mathematics learning; and their relational
patterns as they participated in course. Some of these instruments (e.g., My Mathematics
Feelings) I administered pre and post to the whole class; others (e.g., the College Learning
Metaphor, JMK Mathematics Affect Scales) I administered during counseling sessions. Each
session was audiotaped and two classes were videotaped. I analyzed the transference-
countertransference interactions between the participant and me, classroom observations,
mathematical products, assessment and survey data, and transcripts of sessions using an
integrated cognitive-relational analysis approach that included mathematics educational analysis
(e.g., of class tests, the Algebra Test, Sokolowski’s  (1997) adaptation of  Brown, Hart, &
Kuchemann’s  (1985) Chelsea Diagnostic Algebra Tests, my Arithmetic for Statistics
Assessment), and relational episodes analysis (Luborsky & Luborsky, 1995). Using these
approaches I developed a case study of the class as a whole, in-depth case studies of three of the
10 participants, and shorter case analyses of the other 7 participants.

Results and Discussion
I found that, indeed, when I looked only at student responses to Feelings and Beliefs surveys,

and observed and asked participants about them, the picture was confusing. For Jamie
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mathematics anxiety seemed to be a central affective issue but it did not debilitate her during
exams and was not central to her vulnerability to failing the course. It became clear to me,
looking through a relational framework, analyzing her metaphor (“storm” during which she
would hide) and the transference and countertransference in our relationship, that Jamie was an
adequately prepared mathematics student with an undermined mathematics self. She had “bad”
teacher internalized presences, and damaged teacher and mathematics attachments; Jamie was a
Category II student who avoided one-on-one contact with tutor and instructor and did not get the
help she needed when she needed it. Her social/public mathematics anxiety was a symptom of
these relational problems; the resolution required mathematical and relational attachment
repair—I helped Jamie become conscious of her adequate mathematics competence and the
relational roots of her anxieties (including a 5th grade teacher who “yelled’) and avoidant
behavior and gave her relational assignments. She accessed help, reattached to mathematics and
mathematics teachers, her metaphor changed to “partly sunny day...I can go out in it…” her
anxieties abated and she earned a B+ in the course.

Each participants’ cluster of mathematical and affective symptoms differed from the others
but there were three distinct groupings of student, each needing different types and intensity of
support, relatively easily discerned from their relational patterns linked to mathematics
competence (preparation with respect to the current course). Category I students with sound
mathematics selves were well-prepared with sound self esteem; Category II students with
undermined mathematics selves had adequate preparation but compromised self esteem cf.
Jamie); Category III students had underdeveloped mathematics selves characterized by
underpreparation and related low self esteem.  I found a further useful sub-categorization of
Category II and III students into those with malleable versus inflexible relating patterns.

This study does indeed provide support for my hypothesis that mathematics affect might
more usefully be regarded as symptomatic of students’ underlying mathematics relationality,
than as a cause of their mathematical distress.  Further, the framework of mathematics
relationality provides a way to understand and prioritize support for students to repair and
develop their mathematics selves and succeed in their course.

Endnote
1. The term Sheila Tobias (1993) uses in Overcoming math anxiety (Revised ed.). New York:

W. W. Norton & Company to describe a person’s  “willingness to learn the mathematics [she]
needs when [she] needs it” (p. 12), which I expand to include her mathematics cognitive
functioning.
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This pilot study investigates the use of a challenge-based module as a support for changing
pre-service teachers beliefs about mathematics teaching and learning. The module focuses on
an instructional sequence that was taught in a first grade classroom over a five-week period
and includes video-recordings of classroom episodes and of pre- and post-interviews
conducted with the students.

Most pre-service teachers, through their own K-12 and university mathematical
experiences, have developed the belief that mathematics is merely a set of rules for
manipulating symbols (Thompson, Philipp, Thompson, & Boyd, 1994). This “classroom
mathematics tradition” has shaped pre-service teachers’ “construction of scientific or
mathematical knowledge by constraining what can count as a problem, a solution, an
explanation, and a justification” (Cobb, Wood, Yackel, & McNeal, 1992, p. 575). Thus,
mathematics educators should do more than try to inform pre-service teachers about content
and pedagogy. In addition, they must guide pre-service teachers toward beliefs and practices
consistent with current reform efforts, where teaching mathematics is a complex process in
which teachers are required to assimilate knowledge from a variety of disciplines (National
Council of Teachers of Mathematics, 2000).

The technological tool we have developed to support the pre-service teachers’ learning
consists of an authentic challenge-based case (Bransford, Brown, & Cocking, 1999; Brophy,
2000; Schwartz, Lin, Brophy, & Bransford, 1999) in which they can investigate the process
of supporting students’ learning of significant mathematical ideas. The Patterning and
Partitioning module comprises a series of challenges for pre-service teachers to explore. The
module focuses on an instructional sequence that was taught in a first grade classroom over a
five-week period and includes video-recordings of classroom episodes and of pre- and post-
interviews conducted with the students. The goal of instruction in these lessons was to enable
the students to develop a relatively deep understanding of elementary number concepts, with
an emphasis on relationships between numbers up to 20. In the course, we coordinated the
use of this module with message board discussions (Bringelson & Carey, 2000). The use of
the message board allowed the pre-service teachers to continue discussions initiated in class
sessions as well as to debate new ideas that emerged.

This paper reports findings from a pilot study conducted during our summer elementary
mathematics methods course. The study investigates the viability of using the Patterning and
Partitioning module as a support in developing shifts in pre-service teachers’ beliefs about
mathematics teaching and learning. “For the purposes of investigation, [beliefs] must be
inferred” (Pajares, 1992, p. 315). Although past studies (cf. Collier, 1972; Fennema,
Carpenter, & Loef, 1990) have implemented Likert-type scales to collect quantitative data
about beliefs, there are many limitations in using such an instrument to collect belief data
since participants are limited in their response possibilities. “For example, each participant
might interpret the wording of items in different ways or think about different situations when
responding. Likert items typically are generic and not context specific. The items are often
leading in nature so that participants might agree strongly to an item, but might not have
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considered it important otherwise” (Wilson, 2006). To overcome some of these difficulties,
we used the case-based survey instrument developed by the Integrating Mathematics and
Pedagogy (IMAP) research group at San Diego State University
(http://www.sci.sdsu.edu/CRMSE/IMAP/pubs.html). The survey solicits participants to “use
their own words to react to, or answer questions about, learning situations. Although this
format does not remove the need to draw inferences, it reduces it” (Ambrose, Philipp,
Chauvot, & Clement, 2003, p. 2). The IMAP survey instrument measures seven specific
beliefs relating to three different categories of mathematics instruction: “Beliefs about
mathematics”, “Beliefs about learning or knowing mathematics”, and “Beliefs about
children’s (students’) learning and doing mathematics” (see IMAP website given above).

The participants of this study were the pre-service teachers taking the Elementary
Mathematics Methods course during the first summer session of 2006. Data were collected
before and after the implementation of the web-based module. The case-based survey
instrument was administered to seven female pre-service teachers during the class period
prior to introduction of the first web-based module as a pretest and the class period after
completion of the module as a posttest. Naturally, the pre-service teachers were asked not to
collaborate on their responses. The survey responses were blinded so that coders were not
able to determine whether the responses were from pre or posttests. The data consist of
responses for seventeen rubrics (see the IMAP web address given above) for each of the pre
and posttests for the pre-service teachers. Prior to coding any of this data, the researchers
completed the practice tests provided on the IMAP website to ensure proper coding
techniques. Each of the seventeen rubrics were then coded by the researchers and compared
to increase interater reliability. If a difference in scores arose, the researchers revisited and
discussed the response and came to an agreement on the score. After each individual rubric
was coded, the researchers used the Rubric of Rubrics found in the IMAP scoring manual to
find the overall scores for each of the seven beliefs.

Data from pre and post surveys were analyzed to identify trends. Researchers tested the
total scores in each section for reliability and for significant changes in pre-service teacher
beliefs. Results indicate that the items on this survey were reliable as shown through a
Cronbach’s Alpha of .903. Pre and post group’s scores were analyzed with an ANOVA.
Items such as effect size and observed power were considered to determine the significance
of each shift in scores. Participants displayed a shift in beliefs for all survey sections. The
most significant shifts occurred in results for beliefs three and four. Belief three had a level of
significance of .02 as determined through Levene’s test of equality of error variances.
Sections three and four measure beliefs about knowing and learning mathematics. More
specifically, belief three measures the priority a participant places on understanding content
rather than procedures. Belief four had a level of significance of .016. This section also
measures beliefs regarding the use of procedures in the mathematics classroom. Participants
responded to this section in the pre-test with an emphasis on utilizing procedures during
lessons. The post-test results indicate that participants now place more of an emphasis on
developing conceptual knowledge rather than procedural knowledge during mathematics
instruction. When identifying correlations between beliefs from the post results, beliefs three
and four were found to have a Pearson correlation of .944 with a level of significance of .001,
which would indicate that when a participant scored high on belief three, they would also
score high on belief four. These results indicate that the Patterning and Partitioning module
could play a significant role in changing pre-service teacher beliefs about learning and doing
mathematics in the elementary classroom.

Given the variation in the pretests and posttest scores, it is evident that pre-service
teachers’ beliefs changed over the course of interacting with the modular media case. These
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promising results call for a more in-depth study on the use of this and other modular cases to
support pre-service teacher beliefs about mathematics teaching and learning. However, it is
important to note that many other variables might have played a role in changing pre-service
teachers’ beliefs. For example, since the same survey was used for both the pre-test and
posttest, testing effects may well account for a portion of the results of this study, even
though three weeks separated each administration. There is also a limitation to the types of
data analysis techniques that were appropriate to use for the number of participants in this
study.
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Studying teachers’ beliefs is important for understanding mathematics teachers’ behaviors in
the classroom. (Cooney, Shealy, & Arvold, 1998; Ernest, 1989; Raymond, 1997; Thompson,
1992).

One cannot research beliefs without first defining or characterizing what one means by the
word “beliefs”. I have adopted the characterization of knowledge and beliefs suggested by
Furinghetti and Pehkonen (2002) that consider two types of knowledge: objective and subjective.
Objective knowledge has to be true whether proved by experiment and/or socially accepted;
subjective knowledge is knowledge constructed by an individual. Therefore, belief is taken as
subjective knowledge.

Charalambous, Philippou, and Kyriakides (2002), Ernest (1989), Raymond (1997), and
Thompson (1992) researched teachers’ beliefs about the nature of mathematics. All of these
studies were investigating global beliefs about mathematics. Törner (2002) proposed the term
“domain-specific beliefs” when referring to beliefs about different mathematical domains such as
geometry.

Charalambous et al. (2002) analyzed data from 229 questionnaires which resulted in a five-
factor model of teachers’ viewpoints of mathematics. Ernest (1989) distinguished three
philosophies of mathematics that occur in the teaching of mathematics: the instrumentalist view,
Platonist view and the problem solving view.

 I used a questionnaire to investigate high school mathematics teachers’ beliefs about the
nature of geometry and its teaching and learning. The sample included 520 high school
mathematics teachers from four countries-The United States, Canada, Australia, and The United
Kingdom. I used factor analysis to enhance my understanding of the part of my data set that was
composed of 48 Likert type statements. Through principal components analysis with varimax
rotation I was able to extract a three factors model which I have identified as:

Factor 1 -- A disposition towards activities
Factor 2 – An appreciation of geometry and its applications
Factor 3 – A disposition towards abstraction
I was able to divide the respondents into eight groups depending on whether the respondents’

had a positive or negative score on each factor.
In this presentation I will share the results of the factor analysis and how I used the results to

initiate an intervention in the classroom of one of the respondents from Group II: positive,
positive, negative. This means the teacher had a positive disposition towards activities, a positive
appreciation of geometry and its applications and a negative disposition towards abstraction. The
teacher was uncomfortable about teaching proof in her classroom. After the intervention the
teacher was more willing and even happy about teaching proof.
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Many state and national accreditation agencies, such as NCATE require assessment of
dispositions of teacher candidates. Mathematics education has a history of related research on
teacher beliefs. In this synthesis of literature on dispositions, teacher beliefs, and emotional
intelligence, connections will be drawn between the various areas of research. Research on
emotional intelligence from the fields of medicine and business will also be examined to provide
other perspectives.

Many state and national accreditation agencies require institutions to assess teacher candidate
dispositions. According to the National Council for Accreditation of Teacher Education (2006),
dispositions are “the values, commitments, and professional ethics that influence behaviors.” As
a result, most teacher preparation programs must identify instruments to use to assess
dispositions, even though several researchers (e.g., Damon, 2005; Maylon, 2002) have warned of
possible dangers of using dispositions to screen teacher candidates. Although a variety of
assessment methods exist for dispositions and for beliefs, methods vary widely, and none is
commonly accepted.

Mathematics education has a history of related research (Thompson, 1992; Philipp, 2007),
including the impact of beliefs on teaching and the characteristics of effective teaching (e.g.,
Evertson, Emmer, & Brophy, 1980). Another strand of research attempts to identify effective
teaching practice through contrasting novice with expert teachers (e.g., Livingston & Borko,
1990). Several other influential case studies have focused on teacher beliefs (e.g., Cooney,
1985). Much of this work is based on more general research on beliefs (e.g., Green, 1971).

In this synthesis of literature on dispositions, teacher beliefs, and emotional intelligence,
connections are drawn between these various areas of research. Research from the fields of
medicine and business are also examined to provide other perspectives on the challenge of
measuring and influencing beliefs, dispositions, and emotional intelligence.
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The National Council of Teacher of Mathematics (NCTM, 2000) states, “students must learn
mathematics with understanding, actively building new knowledge from experience and prior
knowledge” (p. 20). As suggested by Hiebert et al. (1997) there are different tools that teachers
can use to help students develop mathematical understanding, and one of those tools is physical
materials, such as base-ten blocks or fraction tiles. Although the use of manipulatives has been
found to help students’ understanding of mathematics (Clements, 2007), teachers have been
found to differentially use manipulatives in their instruction. Some of the factors affecting
manipulative use discussed in the literature are grade level (Weiss, 1994), teachers’ background
characteristics (Opdenakker & Van Damme, 2006) and teachers’ beliefs (Moyer, 2001).

This study investigated the relationships between teachers’ grade level, background
characteristics, and beliefs about manipulatives, and the frequency with which teachers use
manipulatives as a part of their instructional strategies. We analyzed data collected from 530 in-
service elementary school teachers. Regression analyses were used to model teachers’ use of
manipulatives. Overall, teachers’ grade level and beliefs were found to be the most important
predictors of how often elementary school teachers use manipulatives in their mathematics
instruction.

The findings form this study have important implications for both pre-service teacher
education as well as in-service teacher professional development. Mathematics teacher education
programs should provide opportunities for teachers to reflect on their instructional beliefs
through first-hand work with activities involving manipulatives. Through these experiences,
teachers may come to recognize the value of using appropriate manipulatives for all grade levels
of students and ultimately incorporate them more frequently into their mathematics instruction to
help their students reach mathematical understanding.

References
Clements, D. H., & Samara, J. (2007). Effects of a preschool mathematics curriculum: Summary

research on the Building Blocks project. Journal for Research in Mathematics Education
38(2), 136-163.

Hiebert, J, Carpenter, T.P., Fennema, E., Fuson K.C., Wearne D., Murray, H., Olivier, A., &
Human, P. (1997). Making sense: Teaching and learning mathematics with understanding.
Portsmouth, NH: Heinemann.

Moyer, P. (2001) Are we having fun yet? How teachers use manipulatives to teach mathematics.
Educational studies in mathematics, 47, 175-197.

National Council of Teachers of Mathematics (2000). Principles and standards for school
mathematics.  Reston, VA: Author.

Opdenakker, M. C., & Van Damme, J. (2006). Teacher characteristics and teaching styles as
effectiveness enhancing factors of classroom practice. Teaching and Teacher Education,
22(1), 1-21.



771

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

Weiss, I. (1994). A profile of science and mathematics education in the United States, 1993.
Retrieved April 13, 2006 from http://www.horizon-research.com/reports/1994/profile.php.



772

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno

MATH CONTENT COURSES FOCUSED ON CHILDREN’S
THINKING: ADDRESSING PRESERVICE TEACHERS’

EFFICACY AND BELIEFS ABOUT MATHEMATICS

David Pratt
Purdue University North Central

dpratt@pnc.edu

Dave Feikes
Purdue University North Central

dfeikes@pnc.edu

Sarah Hough
University of California, Santa Barbara

sarahh@education.ucsb.edu

Keith Schwingendorf
Purdue University North Central

kschwingendorf@pnc.edu

This study examines how the children’s thinking approach used in mathematics content courses
is connected to the self-efficacy and beliefs preservice teachers have about mathematics. Surveys
completed by control and experimental groups from a large mid-west university indicate that
preservice teachers’ beliefs and efficacy can be altered using such an approach and that efficacy
and beliefs about mathematics are related.
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This case study examines the evolution of a partnership between a middle school
mathematics teacher and a university researcher as we discussed content and teaching.
Resolutions of content-teaching tensions moved the partnership through three stages, from a
focus on the content, to discussions of lesson design as the teacher gradually adopted the
Connected Mathematics curriculum. Our goals changed from individualistic to a more
shared vision derived through implementation of activities/problems and focusing on student
thinking. The shift in the partnership can be attributed to the adoption of the Connected
Mathematics curriculum by the teacher and the effective management of the dialectic
tensions of acceptance/judgment, dependence/independence, affection/instrumentality and
expressiveness/protectiveness by both partners.

The current push for reform mathematics seeks to break away from the traditional
“banking” concept of education (Freire, 1970) where the students are viewed as receptacles
that need to be “filled” by the teacher via showing and telling, and instead move towards an
approach informed by constructivism (von Glasersfeld, 1995). There is a call for students to
actively construct their knowledge as part of a classroom community by engaging in
challenging problems, inventing procedures, justifying the validity of these procedures and
communicating these ideas to peers (NCTM, 2000; Simon, 1997).

Teaching with the reform vision outlined above is a challenge for teachers and calls for a
deep and flexible knowledge of mathematics which goes beyond what teachers learn in their
pre-service teacher education (NCTM, 2000). There is a need for ongoing professional
development that might include a number of models that focus on various aspects such as,
teacher knowledge (e.g. Developing Mathematical Ideas seminars [Cohen, 2004]),
instruction, (e.g. Japanese Lesson Study [Fernandez, 2002]), student thinking (e.g.
Cognitively Guided Instruction [Fennema et al., 1996]), and a combination of instruction and
student thinking (e.g. Purdue Problem-Centered Mathematics Project [Cobb, Wood, &
Yackel 1990]). All these examples of professional development involved prolonged
interactions between teachers and researcher(s), but there is a lack of an in-depth examination
of the collaboration between the researcher(s) and teachers and the evolution of this
collaboration over time. This exploratory qualitative case study (Merriam, 1988) examines
the simplest case (one-on-one) of collaboration between a middle school mathematics teacher
and a university researcher as we come together for the ongoing professional development of
the teacher. The study examines how the partnership evolves over time and its influence on
the teacher’s planning and teaching.

Theoretical Framework
Collaborations between schools and universities have evolved in various ways and two

major divisions, cited in the literature, are based on the organizational structure of the
collaborations like Professional Development Schools (Handler & Ravid, 2001) and others
that focus on the relationships in the collaborations such as symbiotic partnerships and
organic partnerships (Whitford, Schlechty, & Shelor, 1987). Symbiotic partnerships
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(Goodlad, 1988; Whitford et al., 1987) involved unlike partners who came together for the
mutual satisfaction of their goals. Further, each partner displayed enough selflessness to
ensure the satisfaction of the others goals. Schools and universities, like all institutions,
deteriorate when things are left unattended, and Goodlad (1988) suggested symbiotic
partnerships between these institutions as a way for renewal through varied expertise and a
continuous flow of new ideas.

Organic partnerships involved partners who performed unique functions but had common
goals. The common goals were made explicit and neither partner ‘owned’ the goals. This
differed from symbiotic partnerships, where the goals were owned by one of the partners.
Whitford et al. (1987) pointed to professionalization of teaching as an example of an issue
that was ‘boundary spanning’ and could foster organic partnerships. Here the two institutions
could be jointly responsible for the development of teachers from the recruitment, selection,
preparation to the ongoing professional development.

Collaborations between members of the university and schools are a challenge to build
and sustain as learning relationships have been traditionally hierarchical rather than
collaborative (Olson, 1987). To face this challenge, Cole and Knowles (1993) assumed that
the teacher and researcher should negotiate all stages of the research work to reflect true
collaboration. However, others (Clark et al., 1996) feel that by involving the teachers, with
their busy schedules, in all aspects of the research, benefited the researcher more than the
teacher since publications are viewed more favorably in the university than in the school.
Instead Clark et al. (1996) argued that true collaboration arose out of dialogue between the
partners that led to understanding of each others roles. They argue that there should be a push
for shared understanding rather than shared work.

Tensions are a common theme in collaborations between unlike partners and resolving
these tensions can be critical in moving the partnership forward. Some studies (Freedman &
Salmon, 2001) have examined the evolution of partnership through the lens of dialectical
tensions of acceptance/judgment, dependence/independence, affection/instrumentality and
expressiveness/protectiveness (Rawlins, 1992). The dialectic of acceptance/judgment referred
to the tension between evaluating and holding the other partner to standards or accepting
them with their strengths and weaknesses. The freedom to be independent but also to be there
in times of need for the other partner is the dialectic of dependence/independence.
Affection/instrumentality referred to the rendering of help for the other partner as opposed to
expecting the favor returned. The efforts that the partners make to balance restraint and
candor, so that it furthers trust, is captured by the dialectic of expressiveness/protectiveness.
Day (1991) cited attributes like a caring nature contribute to resolving tensions and sustaining
longer ethical collaborations where concerns of the teacher are addressed.

Methods
A qualitative case study (Merriam, 1988) approach was used to work, over a period of

three months, with a mathematics teacher (Linda) in a middle school in the south west of the
country. Linda was part of a middle school cohort in a large National Science Foundation
funded project at the university. She was introduced to me (the researcher) by one of the
Principal Investigators of this research project.

Meetings with Linda involved classroom observations in her mathematics class (her 7th

grade class for two months and her 6th grade class for another month). Immediately after the
classroom observation, Linda and I met, during her planning period, to have our discussions.
I collected data for a total of 35 classroom observations and 32 planning period discussions
respectively. Linda’s instructional moves in the classroom and the group interactions of the
students at my table were the major focus of my classroom observations. Three major content
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areas namely, probability, functions, and statistics were discussed in the planning period
discussions, prior to the implementation of these topics in the classroom. The planning period
generally started with posing a problem or activity for Linda and then discussions took place
around issues that came up. The problems were chosen from the Connected Mathematics
Project (CMP) curriculum and other resources (e.g. Mathematics for Elementary School
Teachers [Bassarear, 2005]). Lesson planning was also done at appropriate times and
discussions of the students thinking also entered into the conversations. Field notes were
taken of all classroom observations and discussions in the planning period were audio or
video recorded or both. All our discussions in the planning period (a total of 32) were
transcribed and data analysis was done in NVivo7 (QSR International, 2006) by isolating
themes that reflected engagement and interactions of Linda and myself. The content-teaching
tensions (discussed below) were identified as a key component in describing the stages of the
partnership.

Results
Based on our interactions, the partnership evolved in three stages. The first stage was

characterized by our discussions around the mathematics content. I introduced Linda to
probability, which was a topic she would be teaching in the coming weeks. We discussed
problems from the seventh-grade Connected Mathematics Project (CMP) curriculum and
Mathematics for Elementary School Teachers (Bassarear, 2005) that emphasized problem
solving and conceptual connections. Linda would attempt a problem and then we would have
a discussion based on her work. The level of difficulty of the problems was such that they
could be adjusted to the level of the students, if Linda chose to do the activity/problem in the
class. For example, the Tile problem involved finding the fraction of tiles of a color in a
bucket, given that there were tiles of three colors. Linda first did this activity as part of our
discussion in the planning period and later chose this activity to introduce her students to the
concepts of experimental and theoretical probabilities and their connection. In the first stage I
controlled the agenda of our discussions and Linda participated in the activities/problems.
She would share her thinking, answer questions I posed, and inquire about mathematics that
was unclear. I dominated the first lesson that Linda planned at this stage (Tile problem) by
reminding Linda of the important aspects of the problem that she should ensure her students
understood. Linda did not have ownership over the activity and relied on remembering the
important aspects as she attempted to transfer these to her students. After debriefing this
lesson, I suggested that Linda do another activity with her students to ensure that they
grappled with the concepts of experimental and theoretical probability. Linda’s lessons at this
stage were typically outlined based on the Performance Objectives (POs) of the State
Standards as directed by the school district; student thinking was not a prominent focus
although we would discuss the performance of the students on an activity.

The second stage was characterized by the appearance of content-teaching tensions in our
discourse. This tension represented a sudden change in our conversation, initiated by Linda,
from a discussion about the mathematics to her immediate planning needs. For example, in
the following conversation about word problems, I emphasized the need for procedures in the
promotion of algebraic thinking and Linda suddenly changed the topic of discussion to her
planning needs.

Anthony : … just doing the word problems and knowing how to represent them won’t get
you to the solution because you still have to solve, you have to manipulate the
[expressions](Linda interrupts)

Linda:       Now going back to…the lollipop problem. If I were to do that on Monday, just
give them some fun before I leave…I mean it’s basically what we have done.
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But how can I set it so that it is adding something else to it?
The above discussion is representative of the sudden change in our discourse from a

discussion of mathematics content towards the specific planning of a lesson that Linda
wanted to teach. This interaction contrasted with similar interactions in the first stage where
Linda would not interrupt our discussions with planning needs.  With the appearance of
tensions the discourse moved towards teaching and sometimes there was a tendency to dwell
on logistical issues of implementation. In these instances, I tried to ensure that we refocused
on the mathematics content. I did this by discussing the mathematics that arose in an
activity/problem that Linda wanted to discuss. In general, the mathematical issues were
intertwined with discussions of planning and this was also a characteristic that was present in
the next stage of our partnership. At this stage Linda anticipated me to provide guidance in
teaching issues that arose in the class. This would be different in the next stage as Linda took
a more proactive role in thinking and resolving teaching issues that arose in her class.

The third stage was characterized by a move towards resolution of the content-teaching
tensions as Linda assumed a proactive role in controlling the agenda. She adapted problems
for her class and reflected on the difficulties that arose in the class discussions. I assumed the
role of being a resource for Linda by suggesting activities, supporting her decisions, giving
feedback for her ideas, and answering her questions. For example, in our discussion on
Statistics, Linda expressed a desire to do an activity with the students that would build on
their previous lessons on various data representations. We decided to brainstorm and came up
with a number of activities that Linda evaluated by considering ‘what if’ moves (The ‘what
if’ move involved Linda reflecting on the activity from the students’ point of view and
conjecturing about possible difficulties the students would encounter). Finally, Linda adapted
the Hat problem to the Shoe problem. The Hat problem involved a person starting a hat shop
who had to determine the number of hats he should purchase, given that hats came in lots of a
thousand. The Shoe problem was similar, but involved shoe sizes of middle school students.

The planning of the Shoe lesson contrasted to the role that Linda assumed in the planning
of a lesson in the first stage where she accepted my suggestions without a lot of discussion.
Further, in this stage the activities were not adopted directly from the curriculum but were
adapted to suit Linda’s and the students’ needs.

The activities that Linda assigned from the CMP differed from the textbook problems that
the students were doing before the study, as a result there were student difficulties that had to
be resolved. In the previous stages Linda would seek my guidance in resolving these issues
but in the third stage Linda attempted to resolve these issues on her own. Reflecting on some
of the challenges of the Shoe problem, Linda related the following:

L:  Then I’m thinking to myself, how much of it do I do as a whole group because then
they [the students] are just going to emulate what I’m doing and not going to think
about it themselves. So I kind of just played with it all day long. Some classes I went
as far as making a frequency chart.

This episode was typical at this stage in the partnership when Linda was actively reflecting
on the students’ thinking and the amount of guidance that she was providing them. This
differed to her reaction in the second stage when she anticipated me to provide guidance in
resolving teaching issues that arose in the class. Tasks were just not selected if they just
satisfied the POs, like the first stage; instead the tasks were also analyzed more closely from
the students’ point of view and implementation in the classroom.

Discussion
The evolution of the partnership in this study through the three stages, reflects an

evolution from a symbiotic partnership to an organic one (Goodlad, 1988; Whitford et al.,
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1987). The partnership began as a symbiotic one with Linda’s goals being to further her
understanding in the mathematics that she taught and my goal was to expose Linda to the
important mathematical ideas and examine the evolution of our partnership as we had these
content discussions. These goals are reflected in our interactions at the first stage where the
mathematics content was at the core of our discussions. We both made efforts to ensure that
the other person achieved their goals. Gradually, as Linda chose to adopt the CMP curriculum
(even though this was not the original goal of my study), she had more pressing questions
about the activities and implementing them in the classroom. This can be seen in the content-
teaching tensions that arose in the second stage of the partnership. Our content discussions
were interrupted by Linda who wanted to discuss a specific activity she wanted to implement
in her classroom. In the third stage, Linda and I both focused on the CMP curriculum and the
issues that arose in the classroom during implementation. Thus we moved to an organic
partnership with the common goal being the implementation of the curriculum and reflecting
on the related classroom issues that arose as a result. In the process, Linda focused a lot more
on the student thinking and chose to implement activity/problems could further their thinking.

Key Elements for the Movement
The first stage of this study was important in setting the pace for the rest of the study.

Linda was introduced to the mathematics content through various resources that included the
CMP curriculum. As Linda grappled with the mathematical ideas, she realized the potential
of the curriculum for her students. Linda saw how multiple POs were addressed,
simultaneously the conceptual understanding of the students could be developed, and
connections could be made between and within topics. Thus she felt that her students would
have the opportunity of understanding by building and strengthening their internal networks
(Hiebert & Carpenter, 1992). Linda also saw the value of these activities in preparing the
students for the assessments and addressing the time pressures that she faced in covering the
content. She felt the problem solving activities would be more engaging to the students than
their regular textbook exercises. The first stage went a long way in establishing the credibility
of the CMP as a valid curriculum in her class. Further, I was also there to help her with the
initial start up and address problems that arose. The first stage was crucial in Linda choosing
the CMP curriculum and as a result determined the path that our partnership took over time.

Another important factor for the progress in our partnership was the collegiality in our
relationship facilitated by effective management of the dialectic tensions (Rawlins, 1992).
Tensions of acceptance/judgment arose in our discussions of the mathematics content may
have been perceived by Linda as an evaluation of her mathematical knowledge and there was
potential for our partnership to stall. Later in the study Linda mentioned that she was
reluctant to talk too much in the classroom as she was afraid of making an error in the
mathematics in front of me as she perceived me as the ‘expert’. In our interactions around the
content, I made an effort not to appear to be judging Linda’s mathematics knowledge. As a
result, I would provide a lot of guidance if Linda expressed difficulty with the content. In the
last stage, with our improved understanding of each other, I waited longer for Linda to come
up with solutions independently. As our discussions shifted to teaching and the student
thinking, Linda gained more confidence as she could contribute a lot to the discussions. Two
factors that could have contributed to building trust and acceptance in Linda were (a)
acknowledging errors that I made in the mathematics content; and (b) recognizing that she
knew more about her classroom and students. I encouraged her to share her knowledge of the
classroom and students as part of the discussions and explicitly recognized her contribution.

Linda and I entered into the partnership by choice and there was freedom of independence
but also a commitment to some level of dependence on each other. Linda felt free to cancel
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our session if she had other work that needed attention and I accepted these instances as part
of the study. This went a long way in establishing a trusting relationship and managing the
dependence/independence tensions. I was there to support Linda when she wanted
suggestions or asked me to comment on activities/problems that she chose for the class. I
could also depend on Linda for allowing me to work with her and she was also open to
implementing our discussed ideas in the classroom. Thus we could both express our
dependence and independence in this partnership.

The dialectical tension of affection/instrumentality features prominently in general in the
work between teachers and researchers, as there is a tendency to view the teacher as being
useful in getting the research done. In our partnership, Linda asked me to outline the benefits
that she would get in working with me and I gave two namely, learning more mathematics
and supporting her in classroom. These were the conditions on which the study started and
trust was built by adhering to these conditions during the course of the study. In thinking
about this dialectic, I questioned myself after the appearance of the content-teaching tensions
in the second stage and decided to deviate from my research agenda in an attempt to resolve
these tensions. Thus Linda took control in the final stage and our collaboration grew.
Although it was difficult to initially resolve stresses about this particular research model; this
partnership allowed me to take risks and support our relationship professionally.

The dialectic of expressiveness/protectiveness played out with more protectiveness in the
first stage and more expressiveness in the last stage as we established trust. In the first stage it
was better to exercise restraint with respect to Linda’s mathematical knowledge so that there
was a degree of trust established before I could be expressive about errors that she made. The
wait time, that I allowed for Linda to solve a problem independently in the after class
discussions, increased as the study progressed. Later in the partnership I could be more
candid in my suggestions about the mathematical issues and her teaching in the classroom.
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Conclusions
The partnership highlights the importance that a reform curriculum or new innovation

could play in mediating the relationship between a teacher and researcher. Balancing the
dialectic tensions (Rawlins, 1992) contributes to relationship building and provides the
language for expanding the construct of collegiality in collaborative research.  In this study
the teacher chose to adopt the reform curriculum over the traditional curriculum and was the
only teacher to do so in the school. This has potential for further study as she influences the
other teachers and could provide the blue print for ongoing professional development.
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AUTHENTIC CONTEXTS FOR MATHEMATICS LEARNING (1)
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In this work we examined the ecology of classroom interactions in the presence of case based
tasks between two cohorts of prospective secondary mathematics teachers enrolled in a
college geometry course. Using a teaching experiment methodology, and two case based
tasks as research instruments, we traced the typology of the teachers’ discourse in two
different courses and at two different academic semesters.  Our data suggests that cognitive
modeling by the facilitator is a crucial ingredient in focusing teachers’ analysis of
mathematics.

The idea of grounding the education of teachers in the study of contexts from classroom
events as a means to engage them in subject matter and learning has become a popular trend
in mathematics teacher preparation (Merseth, 2003). Despite widespread endorsement of this
approach by educators, there is little knowledge about what educators might expect in the
way of prospective teacher learning or conditions that the use of case based tasks might
impose on classroom interactions and instruction. In this work we examined the relationship
between case based tasks and mathematical activities of two cohorts of prospective secondary
mathematics teachers. Our data collection and analysis focused on one broad question:

What impact do the case based tasks have on classroom interactions when used as
instructional tools in a content course required for prospective secondary mathematics
teachers?

Theoretical Considerations
Our work is grounded in a situated cognition approach to learning (Lave & Wenger,

1999), which assumes knowing, understanding, and thinking happens in socio-cultural
contexts and as individuals work on real problems that provide an intellectual space for
learning and inquiry (Rogoff, 1990). To situate learning about teaching means creating
environments in which the teachers will experience the complexities of teaching by analyzing
vignettes from real classroom events (Merseth 2003), or examining teaching actions and
decision making in the presence of learners’ cognition and thinking (Lampert, 2001). In
doing so, teachers create knowledge out of the raw materials of practice (Ball & Bass, 2003)
while reflecting on teaching actions. Such experiences enable the teachers to move beyond
book knowledge to develop the more sophisticated practical knowledge that plays such an
important role in the teaching process. Kirshner and Whitson (1997) highlighted the value of
situating the learning of teachers in the world of the classroom as a means of creating a rich
environment for professional discourse. The authors asserted that case based learning
provides specific benefits: the opportunity to step back from the crush of the classroom
experience; the ability to provide a group of teachers with one common experience which can
be explored from multiple perspectives; and the ability to provide a robust learning
environment that can be explored in nonlinear ways. In this endeavor the tasks used play a
major and crucial role in the environment as they provide the medium for development of
learning. Scholars have argued that considering the host of issues that might be addressed in
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case based tasks their utility in mathematics teacher education need to be explored (Merseth,
2003).

Methodology
Using a teaching experiment methodology (Cobb & Steffe, 1983), data were collected

over the course of two academic semesters in two different sections of a course titled Modern
Geometry, an advanced mathematics course. Each teaching experiment lasted 4 weeks of
instruction (6, 75 minutes long sessions). Two case studies were used in each of the teaching
experiments.  Discussion of each case took three class periods. The order in which the cases
were used was deliberately changed to trace any changes in the participants’ behaviors or
their interactions with one another that could be attributed to the particular mathematical
concepts embedded in the task. In each class, two video cameras were set to capture both
large group interactions as well as two targeted small groups. The small groups were selected
randomly and the same groups were videotaped throughout the teaching experiment.

In examining the participants’ activities and interactions, we considered three specific
aspects of classroom life. These included: (1) Group interactions-- Ways in which the
participants interacted with each other; (2) Participants’ interactions with the task--Issues that
the participants raised about and/or extracted from the activity; (3) Facilitator’s (Teacher-
researcher’s) interactions with the participants—modes of intervention and participation
required for facilitating group learning. At the first cycle of analysis we looked for patterns
and themes that emerged from each of the teaching experiments first. We then combined the
themes and coded the videotapes again to identify the frequency of occurrence of each target
behavior, activity, and mode of interaction on the part of teachers and the facilitator.

Results
Analysis of data revealed significant changes in the participants’ foci of analysis, modes of

peer interactions, and depth and extent of their mathematical inquiry as they moved from the
first case analysis episode to the second during each teaching experiment. Changes also
occurred in the nature of the facilitator’s interventions in class and the roles she had to adopt
as she interacted with individuals in both small and large groups. Tables IA and IB summarize
the typology of the participants’ comments during the case study analysis sessions.
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Table IA: Typology of Teachers’ Comments
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Table IB: Typology of Teachers’ Comments

During the first case analysis experience, the participants tended to show less interest in
mathematical problem solving. They made quick suggestions about what a teacher might do in
class without referencing mathematics or the mathematical work of the children. Initiatives to
justify their suggestions regarding pedagogy or to debate opposing viewpoints offered by
different group members were rare. The activities of the facilitator during this episode
consisted of confronting participants’ ideas, and setting a social context for peer deliberations
and mathematical inquiry. In doing so, she challenged the participants’ assessment of
children’s work, and asked that they must justify their suggested pedagogical moves by
grounding their ideas in mathematics. The need for modeling effective modes of analyzing a
case became vital. Hence, the facilitator spent approximately one class period modeling ways
in which children’ solutions could be unpacked, linked to one another and connected to a
mathematical structure. She supported her conjectures about ways in which a teacher could
organize her instruction with a rationale grounded in theory as well as the data illustrated in
the case.

During the second case analysis session, the participants attempted to use the thinking
process modeled by the facilitator in the first case study session. They explained their
reasoning, tried to reach consensus on their analysis and asked probing questions from each
other and the facilitator regarding relevant mathematical structures and pedagogical theories.
The participants demonstrated the tendency to focus on making sense of children’s solutions
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and to construct justifications for their decisions. They exchanged ideas about how a solution
might be interpreted, what experiences could have contributed to the constitution of the
solution method, and what additional questions the teacher could ask to guide the thinking of
individuals. The facilitators’ comments during the second case analysis episode were of an
instructive nature. She shared mathematical information, explained connections among the
children’s ideas and provided mathematical detail, per participants’ request. Additionally, she
offered suggestions for how different ideas could be used to generate additional problems for
children’s inquiry.

Case I
During the first case analysis, the participants’ interactions with the task followed three

cycles: (1) Pedagogical theorizing; (2) structured problem solving, (3) reflecting.  At the first
cycle, the participants entered the discussions focused on sharing ideas about how a teacher
might proceed with the lesson in each respective case without referencing mathematics.
Motivated by the facilitator’s request, in the second cycle the participants began to unpack
the mathematical content of the case. In Cycle 3 the participants’ primary focus was on
articulating concerns about their own mathematical knowledge and ways in which their own
knowledge could impact their work in the classroom.

Interactions with the Task and Peers
In both sections, during the first case analysis session the participants entered the

discussions with a focus on pedagogical theorizing. They shared ideas about what the teacher
must do in class independent of a deep analysis of the solutions children had presented. While
we had anticipated that the participants might argue that there was insufficient data on
children to make a reasonable recommendation for teaching; they only demanded background
information on the textbook the teacher used, and the mathematical topics she would have to
cover in class next. Indeed, during this phase the participants seemed reluctant to engage in
discussions about mathematics. They made brief and trivial references to children’s solutions
and characterized them as right or wrong. Their assessment of the merit of children’s work
was grounded in the mathematics they recognized or could easily make sense of. This
appeared to be an acceptable practice since none of the participants publicly objected to what
was shared in each group. While the participants made suggestions about how the teacher
might proceed with her lesson, their suggestions were not responsive to children’s work or
draw from them. In hypothesizing about how a teacher might proceed with a lesson,
participants rarely made any references to mathematics. Plans for highlighting the links among
different solutions and/or connecting various solutions that children had offered were also
absent. Neither one of the teachers tried to formalize or justify their assessment beyond stating
their personal preferences regarding the classroom environment they felt were conducive to
building children’s confidence.

The participants also showed the tendency to be non-critical in their interactions with
one another. Public attempts at challenging peers’ assessments or pedagogical solutions
they offered were infrequent. While during the small group work the participants spent
time sharing stories about teaching, and multiple challenges they anticipated in
accommodating the diverse backgrounds that the students might bring to a learning
environment, their dialogue did not reflect a desire to seek solutions to such problems. The
facilitators’ comments during this phase were aimed at structuring both mathematical
activities and the group interactions by confronting the participants’ assessment of
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children’s work and the suggestions they offered. In doing so, she attempted to channel
individual and group interactions.

Adopting the role of a modeler, and choosing one of the methods which the
participants had labeled as “incorrect” as an example, the facilitator spent approximately
40 minutes of the second class session outlining her interpretation of one child’s method,
and ways in which it connected to different mathematical concepts. She identified the
utility of the same method when solving specific types of mathematical problems, and
commented on additional questions the teacher could ask the child to advance his thinking.
As such, she structured group interactions and coached the group towards a deeper level of
analysis.

Following the modeling episode the participants examined the case again in small
collaborative groups with an attempt to find connections among different ideas that children
had posed. A structure for group deliberation was also set to reach consensus on their
assessment of children’s work as well as approaches to pedagogy. Group deliberations
became more visible during this cycle of the participants’ interactions with the task and as
they were faced with the challenge of justifying their choice of pedagogical solution. The
participants’ interactions with the facilitator became paramount at this phase as group
members requested her to validate accuracy of their ideas and to provide explanation on
children’s work.

During the large group discussion the participants shared their ideas, while the facilitator
helped formalize and synthesize both mathematical and pedagogical aspects of the task. A
major component of the participants’ discourse in this phase included articulation of concerns
about their own knowledge of mathematics. Comments reflecting self concerns and doubts
about ability to teach, including, “How can I teach this stuff to kids, when I have so much
trouble doing it myself?” and “I am not sure I could do this without help,” were expressed in
each class.

Case II
During the second case analysis, the participants’ interactions with the task followed three

cycles: (1) mathematical problem solving; (2) mathematical problem posing and problem
defining, (3) pedagogical inquiry. At the first cycle of interaction, the participants entered the
discussions focused on mathematical sense making. They shared their interpretation of what
each child had suggested in each respective case and asked for alternative ways in which a
solution could be assessed. The second cycle included an extended problem posing session,
during which the participants posed and examined mathematical extensions that could be
used based on each child’s strategy. During the third Cycle the participants seemed focused
on learning about school curriculum and learning theories that accounted for how individuals
learned mathematics. They eliciting information on ways to enhance their own teaching
knowledge and expressed an interest in learning the subject matter in ways more compatible
with methods they had experienced during the teaching experiment.

Interactions with the Task and Peers
During the second case analysis, the participants entered the classroom discussions

focused on trying to understand children’s mathematical work. The group activities included
scaffolding what each child had suggested, what each solution meant mathematically and
revealed about the child’s knowledge and what he knew. This discussion took the entire class
session. The second class session in each teaching experiment was devoted to an extended
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discussion about connections among various solutions children had posed. The participants
articulated ways in which the teacher could extend children’s thinking by her choice of
extensions and through problem posing. Participants’ debates focused on defining the major
instructional dilemmas the teacher faced and appropriateness of extensions different
individuals presented. Questions and discussions at this phase concerned how the curriculum
could be sequenced so to optimize learning of all children. During this phase the participants
frequently asked questions that manifested their tentative status of knowing and desire to
learn, including: “Is this going to work?”  “Would it be better to tell them or to let them
explore first?” The participants asked that the facilitator must comment on their analysis and
to offer guidance on the accuracy of their analysis. They elicited information on whether
questions they had suggested were developmentally appropriate.

During the second case analysis episode the participants objected to arguments,
considered more cases, and made and requested more references to mathematical theory as
they debated connections among various solutions depicted in the case. They also elicited
alternative interpretations of the of children’s work they had examined. These episodes not
only evidenced a deeper mathematical analysis on their part but also their desire to engage in
problem solving. The facilitator’s prominent role during the second case study analysis
session was one of an information provider and explainer. The participants requested that she
provided insight solutions they had difficulty understanding. Questions concerning ways in
which growth in mathematical thinking of children could be measured were also asked.

Discussion
In this work we had set out to study the utility of case based tasks for mathematical

learning of secondary teachers when used in a content course designed for teachers. Our data
indicate that the prospective teachers’ desire to engage in mathematical problem solving was
motivated by the participants’ concern for learning about teaching and improving their own
ability to accommodate the mathematical needs of the children. Indeed, the intensity of peer
interactions, collaborative decision making, and joint problem solving increased as the
participants became familiar with both the instructional expectations and the parameters of
the tasks.  Both the quality and quantity of peer interactions enriched the participants’
mathematical work, inquiry, and pedagogical problem solving. This development permitted
the facilitator to focus her attention on modeling and guiding group inquiry as opposed to
motivating participation and building group structure.

Our findings suggest that case based tasks can enhance content preparation of
mathematics teachers given adequate modeling is provided for them in instruction. This is a
particularly important issue since despite wide endorsement of the use of case based tasks in
mathematics teacher preparation little is shared relative to ways in which cognitive
apprenticeship might be utilized in instruction when implementing such task. There is
tremendous need to deepen understanding of the role of facilitator in such as setting so to
assure the integrity of both mathematics and pedagogical inquiry is maintained in the process.

Endnotes
1. The research reported here was supported by a grant from National Science Foundation

(NSF#0455797). Opinions expressed in this paper are those of the authors.
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The analysis of a two-year collaborative research project involving elementary and high
school teachers and mathematics consultants is presented. We analyzed data from the
regular meetings between researcher and practitioners, group interviews and individual
self–reports in order to characterize the collaborative research process supporting
professional development of practitioners. Such a process, strongly context based, sheds light
on a new way of approaching continuing education for mathematics teachers.

This project is part of a research program focusing on professional development of
teachers involved in participatory research studies. Data collected at two different sites for
collaborative and action research projects involving school personnel have been analyzed
with regard to various components of professional development, including learning taking
place, changes made to professional practices and development of collective competencies
promoted by the research (Savoie-Zajc & Bednarz, in press). In this paper, we will focus on
the analysis of the process supporting the professional development of practitioners at the
collaborative research site. The emerging analysis of the underlying approach developed
together with practitioners helps to define a certain concept of context-based professional
development for teachers.

Professional Development Issues in Mathematics Education
Many studies in mathematics education show the limits of top-down models for

continuing education (Bentley, 1998; Bednarz, 2000; Bauersfeld, 1994)) and point out the
necessity of developing different approaches. Such alternative approaches have to focus more
on teachers’practice, so as to explore and better understand mathematics teaching and
learning in context (Lave, 1996, Ball & Cohen; 1999, Ball, 2000, 2002, Ball & Bass, 2003)
and to take account of the complexity of mathematics education practice (Bednarz, 2000;
Bednarz, Perrin, &Glorian, 2005). From that point of view, continuing education approaches
are strongly grounded in context, focusing on professional knowledge developed by
practitioners in a situated practice (Lave, 1988). It is from such practice-related knowledge
that new knowledge in mathematics teaching, embodied in action, could emerge. Among
these alternative approaches, collaborative research opens the way by taking teachers’
professional practice into consideration in the professional development process and in
building new knowledge linked to this practice. Indeed, collaborative research addresses the
issue of the relationship between professional practice (in this case, the practice of teachers
who teach mathematics) and the research in a specific area (in this case, research on
mathematics teaching), referring to the reciprocal enlightenment that each is able to provide
the other (Schön, 1983, 1987; Curry & Wergin, 1993). This new way to approach research
provides the basis for our collaborative model (Desgagné et al., 2001).
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Theoretical Framework: Our Model of Collaborative Research and Its Foundations
For researchers working in collaborative research, the construction of teaching situations

(developing problems, activities, classroom interventions, etc.) inevitably proceeds through
an understanding of the practice within which it develops. Since such understanding is
considered as shaping the construction of these situations, collaborative research is founded
on the idea that the practitioners are essential to the process of producing knowledge. This
perspective on the role of practitioners brings into play a teaching actor who is assumed to be
reflective and knowledgeable, as well as a competent, situated social actor (Giddens, 1987),
that is, a source of professional ingenuity (Dubet, 1994). So the idea of collaborative research
is based on the idea of knowledge to be constructed, related to practice, taking into account
not only researchers but also teachers’ experiences and knowledge. The reflexive activity at
the heart of the model has a dual function. It is an opportunity for professional development
through reflection, with the objectives of clarifying, making explicit, improving and
understanding practice, and ultimately contributing to its restructuring. It is also a research
opportunity as the zone of interaction between researchers and practitioners provides data
helping to analyze a specific object of interest regarding practice-related knowledge. This
reflexive activity entails a process of co-construction. In the reciprocal negotiation between
teachers and researchers, Davidson, Wasser, & Bresler (1996) speak of creating a shared
interpretive zone), a series of arguments are developed regarding the ways the various parties
ascribe meaning to an object of common interest. Collaborative research also entails bringing
together what Lave and Wenger (1991) call communities of practice, within which these
researchers and practitioners operate. To be a researcher or a practitioner is to belong to a
group engaged in shared practices whose members (in the ethnomethodological sense)
construct between themselves ways of acting and thinking about their everyday affairs
according to their own constraints and resources. As such, collaborative research advocates
the bringing together of two worlds and a cross-fertilization between them, in order to
construct knowledge resulting in an informed, even enlightened practice and perhaps the
emergence of a new community.

The Collaborative Research Context
As researchers in mathematics education, we were interested in the very challenging gap

that occurs between elementary to high school, in relation to the specific subject matter
content taught at the two levels, and the ways it is approached at each level. A group of ten
participants from the same school board were invited to join a collaborative research project
focusing on the transition from elementary to high school mathematics. The group was
composed of eight teachers (three from high school and five elementary teachers), and two
mathematics consultants (one for each school level). The research project ran from August
2004 to June 2006. Building on their practice, their observations and their concerns about
students' math difficulties, the participants focused on topics they wanted to work on to better
understand these difficulties and uncover possible strategies to make the transition from
elementary to secondary math easier for students. At this exploratory stage, participants
defined an object of investigation occurring at the point where a research question, such as
the teaching issues surrounding the elementary-secondary transition in mathematics,
intersects with a practice-based question originating in practitioners’ observations and
concerns related to their practice. This co-situation was the basis for a research project
focusing on two specific issues at the heart of this transition: arithmetic skills and problem
solving.
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Methods of Data Collection and the Framework for Analysis
Practically speaking, the research was shaped through regular meetings between the

researcher and practitioners, meetings that enable the creation of an interpretive zone around
the practice being investigated (arithmetic skills and problem solving approaches in the
transition from elementary to high school). The joint process took place for two years and
entailed a one-day reflection every month, conducted so as to encourage continuous dialogue
between classroom experience (on problem solving or arithmetic skills) and a review of
participants’ experiences. Teamwork revolved around the participants’ accounts at each level
of their in-class activities, the questions they asked, their observations and records of
statements from the students etc. This review of experimentations served as a starting point
for reflection. All these meetings were recorded and transcribed. We conducted a qualitative
analysis of the interactions between the researcher and the teachers during these regular
meetings in order to characterize the process of collaborative research in which the
professional development of teachers took place. Group interviews and written self-reports,
conducted on two occasions (at the end of the first and second years), where teachers and
mathematics consultants reflected on the meaning they gave to their experience, were also
used, for a cross analysis of the process (a triangulation with different data sources).

The collaborative research approach is framed by what we could name an “explicit
contract” which in this case consists in working together with practitioners on an issue related
to the transition from elementary to high school mathematics, particularly on problem solving
and arithmetic skills. Nevertheless, the way in which this issue is investigated in situ falls
within the implicit. Our analysis aims at grasping that implicit in order to better understand
and eventually characterize the teachers’ professional development approach set up in the
collaborative research.. The theoretical concept of “collaborative contract,” inspired by the
concepts of “didactical contract” (Brousseau, 1988; Schubauer-Leoni, 1988),
“communicational contract” (Giglione, 1987) and “pedagogical contract” (Filloux, 1974) was
used in this perspective to shed light on the way interactions are implicitly regulated during
the process..

Results: The Reflexive Contract at the Heart of the Collaborative Research Approach
A qualitative analysis by inductive coding (Strauss and Corbin, 1990) of meetings’

transcripts led us to identify a number of themes that actually characterize the regulation that
took place in the collaboration group. In what follows we present in detail one of the theme
which resulted from the analysis so as to help understand how we proceeded.

An Example of Group Regulation: “Justifying One’s Point of View” Theme
This vignette is extracted from the transcript of the forth meeting (which occurred in

January 2005). In it, practitioners and researcher have a discussion on students’ strategies
when solving the problems proposed to them at both levels. We start with L. (a high school
teacher) who comments the strategies used by some of his students on the following problem:
“At the end of the hunting season, we ask Nemrod how many hares and pheasants he has
shot. Teasing us, he answers that he got 19 heads and 54 legs. Can you tell how many hares
and pheasants he has killed?”. Since one student choose, as a strategy, to draw legs and heads
and connect the whole in order to find the answer, the interactions goes as this:

 L: Drawing, you know, is a strategy that may lead to a good answer, but it is not
the one we will favor in high school…
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the one we will favor in high school…
 R (researcher): That is why I’ve asked you about it, what will you be doing with

such strategies?
 L: In an exam, I would be inclined to, yes, I mean he has a correct answer, but

the strategy… (implying that it might not be the best one)
 J (an elementary teacher): His strategy wouldn’t be the good one?
 L (obviously embarrassed): If I… For myself, I do not like drawings. I’d prefer

that they use a mathematical calculation.
 R: Why don’t you like it?
 L: Well… When we have… now that there are 19 heads and 54 legs… But if we

had  250 legs… you can’t do it anymore.
 S (another elementary teacher): That is the question I wanted to ask all of you. At

high school level, you do expect students to use calculation, that ‘s what I was
telling to my students, I gave them examples like yours: if you have a thousand,
what will you do? A time comes when you have to depart from drawings.

 R: I agree with you [to S. and L.] that when you have big numbers, you need to
drop the drawings. But in order to understand the problem, I have noticed that
when I tried that problem with students, they had more control over it when they
used drawings than when they just work with calculations. They have more
control over the structure of the problem, on how it works. I understand that you
want to move to calculations, but for the understanding of the problem, the
drawing is interesting.

 S: As for me, when they use drawings, I always ask them to also do a calculation,
because I find that when they explore the problem by means of drawings, most of
them can solve it successfully… but a time comes, I do agree with L., you are in
grade 9, 10, 11, they are about to quit school and get a job, you are no longer
making drawings.

 J: Unless it is a problem of that kind [showing another complex problem].
 R: When it is a complex problem, yes, I do draw to understand what it is about.

[and further in the transcript]
L (referring to another problem, based on logic): There you needed to draw. If
you did not draw, you could not find the answer.

In this discussion, participants address one of the key issues of elementary to high school
transition in problem solving: the legitimacy of strategies used by children at elementary
school and accepted as such by teachers, and which are no longer valid at high school level.
In that respect, arises some sort of break between the two levels in the way of approaching
problem solving in classroom. The use of drawings, not favored at high school (according to
L.), almost leads to a clash in the group during the interactions, when J.’s reaction (“His
strategy wouldn’t be the good one?”) clearly embarrassed L.

In this case, the way in which the researcher and the group thereafter regulate the
interactions do inform us about an implicit contract. In order to allow a construction around
that issue, the researcher encourages from start  the expression of L.’divergent perspective
(“That is why I’ve asked you about it”). By so doing, she then allows the discussion to go on,
asking participants to justify their points of view (“Why don’t you like it?”) with the purpose
of opening up the dialogue rather than closing it in letting participants only state cut-and-
dried opinions. The conversation then leads to an analysis that permits the co-construction on
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that issue: the limits of the drawing strategy (when the size of numbers varies), its interests
(as far as understanding the problem is concerned) and relative character according to the
problem to be solved  (for some problems drawing is essential, and for complex problems
drawing may be helpful).

A first theme comes out then of the analysis of that episode (that theme will be afterwards
confirmed by the analysis of other episodes extracted from other meetings’ transcripts). We
labeled it “Justifying one’s point of view, while interacting, about the validity of a certain
way of approaching mathematics teaching” (number 2 in Figure 1). By this, we see that in
collaborative research (that’s what came out of a posteriori analysis of meetings’ transcripts),
one can’t lay on opinion to construct knowledge: one has to refrain from expressing
unwarranted statements, even when only reporting one’s way of doing in the classroom. Cut-
and-dried opinions, unwarranted judgments, especially over someone else’s practice, must be
avoided. Participants are invited to adopt an analytic posture, trying to explain, analyze,
comprehend and give meaning to what is contributed in the group. Participating in this
collaborating research thus means to go deep into  the understanding of what is been put
forward  in interactions, of the rationality that underlies it. Constitutive elements of the
reflexive contract associated with that theme can be designated as “Argue on what is
proposed to the group” and “Try to explain and understand what underlies.” A similar
analysis of other vignettes led us to throw light on the implicit contract that characterizes the
collaborative research approach involving a researcher, teachers and school advisor.

Eleven Themes That Characterize Our Collaborative Contract
Eleven themes (see Figure 1) emerged from this qualitative analysis of the meetings

transcripts, illustrated by different vignettes. These themes, and their components (not
specified in the schema, space being reduced), allow us to characterize the reflexive contract,
according to two dimensions: contributing to the development of action-knowledge in
mathematics teaching around a common issue (the development of arithmetic skills and
problem solving in the transition between elementary and high school in mathematics); and
maintaining a dialectic between action and reflection in this process.

The reflexive contract which emerged from this analysis can be explained in terms of the
process of co-construction of a certain action knowledge in mathematics teaching, a co-
construction approached in a manner we describe as “complexification”.

Co-construction, a central idea in collaborative research, implies the existence of common
achievements  ( the development of teaching situations related to problem solving or
arithmetic skills so as to support for students a better transition from elementary to high
school mathematics), but these common achievements are rooted in participants’ individual
experiences, as shown by the analysis of the contract (see for example themes 3, 6, 5, 1, 2).
Thus, the idea of co-construction highlights individual and collective dimensions of the
undertaking. One can thus think that the participants develop, in a contextualized way,,
competences  related to the functioning of a co-construction group.

The knowledge co-constructed refers to an action-knowledge in mathematics teaching, the
development of situations, interventions strategies, ways of acting in classroom, of
approaching problem solving, of developing arithmetic skills, of looking at students’
productions. Finally, this way of approaching the co-construction is characterized in terms of
complexification of this teaching knowledge in mathematics throughout the collaboration
process  (see for example themes 7, 9, 11, 8, 4). From inside the reflexive contract,
complexification thus implies to reflect on mathematics teaching and learning by adopting an
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analytic viewpoint, try to understand underlying assumptions, foresee various possible
choices, open up to other possibilities, moderate, refine, restructure building upon one’s own
practice, and not an entrenchment on unique and fixed choices.

Figure 1. Reflexive contract in the collaborative research approach

Conclusion
The analysis of the interactions shows that teachers and mathematics consultants involved

in this process develop professional competencies related to the functioning of a co-
construction group and to a certain way of approaching this co-construction, enlightened by
the different components of the implicit contract. This process of complexification was
confirmed by the analysis of group interviews and self reports (when the participants spoke of
the approach, the way they lived it, the role of the researcher or their role). The use of
metaphors by which practitioners illustrate how they view their participation in the group is
in that respect meaningful. For example, a participant talked about a trip over different
countries (a focus on an opening up to contributions from various points of view) while
another suggested the metaphor of waves in a swimming pool (to point out the complexity of
teaching which can’t be”solidified” but require to be constantly questioned, revisited). As our
analysis of  those late data as well as the continuation thereafter of our research project show,
that complexification leads to a broadening of the practitioners’ “world of possible” in their
interventions at different levels, in their class, in their vision of the other level, but also in
their broader intervention in the educative community.
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This research report discusses the work guiding Researching Mathematics Leader Learning
(RMLL) (1), a 5-year research project intended to investigate mathematics PD leaders’
understandings and practices associated with developing mathematically rich learning
environments. In this report, we will focus on how we are elaborating the construct of
sociomathematical norms with leaders as a way to understand the workings of a mathematically
rich environment. Distinguishing social norms from SM norms is an important dimension of our
work with leaders. We have learned to attend to the language that we use carefully and to pay
attention to how the leaders themselves engage in mathematics in order to understand how they
make sense of the construct of SM norms.

Few take issue with the fact that high quality teachers make a difference in children’s
learning, so it stands to reason that having high quality professional educators (i.e., leaders) is
important for teachers’ learning. How we engage in mathematical work with teachers in
professional development (PD) provides significant models for teachers for what it means to
engage in mathematical reasoning. The PD context is one place where teachers have
opportunities to learn what it’s like to develop mathematical habits of mind such as generalizing,
proving, engaging in argumentation, and connecting representations to their symbolic
equivalents. Yet there is a dearth of research on how we structure and lead mathematical work
with teachers (Even et al., 2003; Stein et al, 1999).  And we have much to learn about how
engagement with mathematical reasoning in PD helps teachers learn how to create such
environments for their students and to think about the mathematical work that gets accomplished
in the classroom. Cohen & Ball (1999) note that, “ironically, while the role of the teacher
educator is critical to any effort to change the landscape of professional development… there is
little professional development for professional developers” (p. 26). In a study of the California
Mathematics Projects, Wilson and Berne’s (1999) review suggested that the mathematics often
gets negotiated away in professional development. This may be a direct result of the lack of PD
for leaders.

This research report discusses the work guiding Researching Mathematics Leader Learning
(RMLL) (1), a 5-year research project intended to investigate mathematics PD leaders’
understandings and practices associated with developing mathematically rich learning
environments. In this report, we will focus on how we are elaborating the construct of
sociomathematical norms with leaders as a way to understand the workings of a mathematically
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rich environment. (In the context of our work, we use the term PD leaders because they are often
teachers who also do professional development work rather than district level professional
developers or university personnel.)

Sociomathematical Norms in Professional Development
Sociomathematical (SM) norms are the specific ways students (translated to PD—teacher

participants) engage in mathematical work in the classroom (or PD). These norms govern the
ways people engage with mathematics (Yackel & Cobb, 1996). SM norms include things like
what counts as an acceptable mathematical explanation or what constitutes a mathematical
justification. These norms are negotiated either explicitly or implicitly by teachers and students
(in PD, leaders and participants) through social interactions. To build SM norms more likely to
promote mathematical understanding, researchers suggest that teachers need to pay attention to
the mathematical work of their students (Kazemi & Franke, 2003; Sherin, 2001). Similarly, our
focus is on how leaders learn to pay attention to participants’ mathematical thinking and how
their learning connects to fostering productive SM norms in mathematics PD.

Exploring mathematics with groups of people is inherently a cultural practice. As
communities of people work together over time, normative behaviors and practices are
developed. Several factors shape these practices—the students, the specific contexts, the
mathematical content, as well as what is valued and defined as competent participation in
mathematics class (Lampert, 2001). The same must also be true for PD practices. Wilson and
Berne (1999) and Lord (1994) suggest that what is typically defined as competent participation
in PD is engaging colleagues in social pleasantries and avoiding dialogue that may prove
uncomfortable for participants. Moreover, Remillard and Rickard (2001) suggested that teachers
inquiring into practice and digging into mathematical ideas were not typical norms in the PD
seminars they facilitated unless teachers were provided support and scaffolding. While social
norms, such as being polite and considerate of colleagues, are often the focus of teachers and PD
facilitators, they do not expressly support the deepening of mathematical knowledge.

The negotiation of SM norms is part of enculturating participants into particular ways of
reasoning in mathematics. These ways of doing mathematics may, or may not, be compatible
with participants’ ways of knowing and being in the world. As a result, facilitators must be
cognizant of the tensions that may exist between the cultural ways of engaging in the world that
participants bring to learning opportunities and the practices practitioners and researchers believe
are important for fostering deep understandings of mathematics (Forman, 2004; Ladson-Billings,
1995). An additional issue at play here is that leaders’ capacity to cultivate deep understanding
has everything to do with their ability to know what and how to press for mathematical
understanding. Moreover, as leaders work with colleagues in PD, tension is likely to arise as they
focus on teachers’ mathematical understandings and uncover teachers’ mathematical confusion.
Leaders are also likely to grapple with navigating the use of errors, negotiating participants’
social and intellectual status and connecting mathematical work done in the PD context to work
that teachers do with their students.
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Method

Seminars for Leaders
To provide some context for our research, we briefly summarize the PD for leaders. They

participated in a series of seminars to focus their attention on SM norms and the cultivation of
mathematically rich environments. The seminars were organized around a set of videocases
showing facilitators leading mathematical activities with teachers. Each seminar included the
following set of activities:

 Working on mathematical tasks with consideration of the mathematics in the task and
how teachers might approach it

 Viewing videos of professional development involving teacher discussion of the
mathematical task

 Discussing the videos to consider what mathematical explanations teachers are
offering to one another and how the group engages in mathematical reasoning

 Engaging in a series of “Connecting to Practice” activities designed to help leaders
apply some of the ideas in designing and facilitating mathematics professional
development and to consider implications for their own work

 Reflecting through journal writing
 Doing homework activities involving examining the ideas from the seminars in

leaders’ own work or in their observations of other leaders.
Through these experiences, we attempted to make explicit both the mathematical content and

the way teachers engage in doing mathematics. The mathematical content of the seminars
emphasized algebraic ideas, particularly how to create arguments for the generalized case of a
solution.

For this research report, we focus on one particular session in which leaders viewed and
discussed a video from a professional development session called Janice’s Method. In the video,
Janice shares her way of solving 92-56. She solves the problem by subtracting 60 from 90 to get
30 and then adding 6 back on to get 36. As she explains how she knew to add 6 back on, she
explains, “so 90 is two away from 92. So I needed to recover that two. And 56 is four away from
60, so I needed to recover my four.” The facilitator in the video case presses Janice to explain
what she means by “recovery” and a discussion unfolds in the group to discuss why Janice’s
method works and how it can be generalized to other subtraction situations as well as discussions
about what subtraction means as an operation. This videocase is used because it is an opportunity
to discuss the facilitator’s role in opening up discussion to develop conceptual explanations.

Participants
Data from this report come from two different groups of participants. The first group was a

highly experienced group of teacher leaders (n=11) with whom we piloted our materials (will be
referred to as the pilot group). The pilot group was most experienced participating in and
facilitating the Developing Mathematical Ideas (Schifter, Bastable, Russell, 1999) materials,
typically with seven to nine years of experience. The second group was a less experienced group
of teacher leaders (n=13) working in a district in the southwestern United States, typically with
one to three years of experience facilitating PD (will be referred to as the SW group). The SW
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group had also participated in professional development often tied to the district math
curriculum, assessment, and a range of other activities such as mathematics study groups and
lesson study. The vast majority of leaders in both groups had experience teaching elementary
school. A few had experience in middle or high school. The pilot group worked with the Janice’s
Method once (as the third in a sequence of four videocases over 2 months) while the SW group
worked with it twice, once at the beginning and once at the end of their participation (in a
sequence of eight videocases over the course of an academic year).

Data Sources and Analysis
We documented the leaders’ experiences in the seminars by videotaping and transcribing

each session with two video cameras, which enabled us to capture both whole group discussion
and at least two small group discussions for each activity. All work generated by participants
were kept in a journal and used for analysis. Participants also completed on-line surveys before
and after the seminars to provide us with both demographic information and to reflect on their
experiences. For the purposes of this report, we focused our analyses on one session, Janice’s
Method, common to both the pilot group and the SW group. Qualitative data analytic techniques
were used to compare the perspectives and engagement of the two groups.

Findings
Our elaboration of SM norms in the PD context has led us to focus, as initial entry into these

ideas, on the nature of explanations. Our deliberations about how to focus on adults’ ways of
engaging with mathematics have led us to a two-tiered approach. First, we pose questions that
focus leaders on describing in detail (1) what mathematical explanations were offered in the
group regardless of how and who did the explaining.  With that discussion as a foundation, we
look again at the case materials to deliberate (2) how the group being observed engaged in
mathematical explanation. This second question then allows us to press leaders to pay attention
to the nature of questioning, the treatment of errors and confusion, the locus and distribution of
kinds of mathematical questioning, and the consequences of presenting particular explanations or
raising particular questions to the groups’ mathematical work (in other words, what
mathematical work did the group accomplish). Our focus on the nature of explanations has led us
to unpack four relevant practices: (1) sharing, (2) justifying, (3) responding to confusion and
errors, and (4) questioning (see Table 1).

Distinguishing social norms from SM norms is an important dimension of our work with
leaders. We have learned to attend to the language that we use carefully and to pay attention to
how the leaders themselves engage in mathematics in order to understand how they make sense
of the construct of SM norms.  Our analyses thus far have led to the following two assertions.
1. The pilot group’s greater experience participating in and facilitating PD focused on

mathematical reasoning and students’ thinking was reflected in the way they engaged in the
mathematical tasks themselves and how they analyzed the videocase with respect to SM
norms.
There were important differences between the way the pilot group and the SW group
engaged in the mathematical task itself during the leader seminar. In preparation for viewing
the videocase of Janice’s Method, both groups did the mental math task, 92-56 themselves.



800

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

After generating various methods for solving the problem, the leaders were asked to think
about how the solutions worked and what connections they could see between them. Two
things happened among the pilot group. One small group felt that they were so familiar or
“saturated” with this math task that they could not engage in discussing and comparing the
mathematical solutions. This seemed a potential hazard of doing mathematics that is quite
familiar to leaders. Others, however, in the pilot group engaged with the mathematics for its
own sake. They used the solutions generated by the group as a springboard for further
mathematical inquiry. For example, they investigated how to model subtraction as an
operation (as removal versus difference) on the number line and whether their approaches
would work with decimals. In contrast, the SW group used their small group time to connect
the solutions they shared as a group back to the work of classroom teachers or what students
might do or struggle with. We considered why we might be seeing this difference between
the pilot and SW group and conjecture that it might have to do with how leaders interpreted
the intellectual work of doing mathematics in PD. To press for explanation and justification
among colleagues may involve issues of risk (not wanting to convey any confusion or
misunderstanding) or an expectation that everyone can naturally deduce the mathematical
significance of solutions. As one participant explained to her small group, “When Cathy
(Carroll) asked me how I did it, I wasn’t expecting to explain how. I thought that once I
explained what I did, I had already done it. I wasn’t thinking like I would think [about] it
when I was teaching. If I was teaching, I would have prepared for my explanation in some
way.”  This same participant reflected later in the session noted that she has been tentative to
push mathematical ideas when facilitating PD. We found that our explicit attention to how
teachers engaged in mathematical reasoning collectively in the video allowed leaders to think
about the mathematical purpose of highlighting, selecting, and sequencing particular
solutions in a group discussion (Stein et al., 2006).

2. There was growth in the SW leader group’s attention to how participants’ in the videocases
engaged in mathematical discussions. However, learning to elaborate the ideas behind
sociomathematical norms is not a trivial endeavor.
We engaged in lengthy discussions in our research team about when and how to introduce
the idea of SM norms. Although Cobb, Yackel and colleagues draw attention to things such
as what counts as an acceptable or sufficient explanation, we discovered that even
experienced leaders react to these terms in ways that might obscure their intent. For example,
as we discovered in piloting, the words acceptable and sufficient led some leaders to focus on
the absolute correctness or validity of solutions rather than on what becomes negotiated in a
particular context. This may be due to the everyday understandings of the terms acceptable
and sufficient.

The term “norm” turned leaders’ attention to social norms that are general to any group
that is trying to work together. The SW group for example generated the following list of
group norms they thought were established in the Janice’s Method videocase: not
interrupting, valuing process, no cellphones, no sidebars, open to hearing ideas.  One
participant began her small group’s discussion of what group norms may have been in play in
the videocase by stating, “When we set our norms, we draw a picture of Norm. Is that what
you guys do?” to which others nodded. Social norms, are of course, important in
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understanding how a group functions, but they do not necessarily give much purchase in
thinking about what mathematics gets accomplished and how that was achieved. However,
we did not think that we could introduce the term sociomathematical norm without a set of
meanings and activities to link it to. We also used the phrase “norms for mathematical
reasoning” interchangeably with SM norms, thinking that the latter may be excessive jargon
for a non-academic group. For this reason, after much deliberation within our own research
team and discussions with the pilot group, we settled on experimenting with an initial
question, “How is the group engaging in mathematical explanation?”  When prompted with
this question, the SW group did focus more on the mathematical work being done in the
videocase. The discourse in the SW group shifted over the course of the seminar series from
a more heightened focus on the ideas of individuals in the videocase (and whether they did or
did not understanding something) to more concern with how teachers in the videocase
engaged with one another’s mathematical thinking. We then attempted to link their
discussions about how the group engaged in mathematical thinking with questions about how
those discussions provided evidence for the norms for mathematical reasoning (or SM
norms) that were established or being negotiated in the videocase. We are now in the process
of analyzing how the groups made sense of the idea of SM norms, how they connected their
ideas to their discussions about how teachers engage in mathematical reasoning, and what
impact their thinking about SM norms had on their planning for and facilitation of PD.

Table 1: Norms for Explanation That Support Teacher Learning in Professional
Development

Productive Social Norms Productive Sociomathematical Norms
Sharing • Teachers and the PD leader listen

respectfully to one another
• Teacher share solutions or strategies
• Teachers work together to find solutions

to problems
• Multiple solutions may be explored

• Sharing has a purpose of extending and
deepening mathematical thinking

• Sharing consists of explanations that
emphasize the meaning of mathematical
ideas

• Mathematical connections among
solutions, approaches, or representations
are explored

Justifying • Teachers describe and give reasons for
their thinking

• Justifications consist of a mathematical
argument

• Justifications emphasize why and how
methods work

Questioning • Both teachers and the PD leader pose
questions

• Questions support multiple voices and
ideas

• Questions push on deepening
understanding of mathematical ideas

Confusion/
Error

• Confusion and error are accepted as part
of the learning process

• Teachers are not put “on the spot” over
incorrect answers

• PD leader encourages teachers to clarify
their explanations

• Confusion and error are embraced as
opportunities to deepen mathematical
understanding—comparing ideas, re-
conceptualizing problems, explore
contradictions, pursue alternative
strategies
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Conclusion
For both the pilot group and the SW group, introducing and making sense of

sociomathematical norms allowed them to think explicitly about how teachers engaged in
mathematics during PD. How leaders engage with and take up the idea of SM norms is naturally
tied to their understandings of the purpose of doing mathematics in PD (see also Elliott &
Kazemi, 2007). We have reported here the beginning of our analyses of how leaders made sense
of collective mathematical activity. How leaders take these ideas up as they facilitate PD is a
major concern of our research project and will be the focus of future analyses connecting their
participation in these leader seminars to their own work as PD facilitators.

Endnote
1. This research project is funded by support from the National Science Foundation

(#0554186) and does not reflect the views of the National Science Foundation.
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At the University of Helsinki, we decided to put together a book “How Finns Learn
Mathematics and Science?” in order to give a commonly acceptable explanation to our
students’ success in the international PISA evaluations. The book tries to explain the Finnish
teacher education and school system and Finnish children’s learning environment at the level
of the comprehensive school, and thus give explanations for the Finnish PISA success. The
book is a joint enterprise of Finnish teacher educators: there are altogether 40 authors. The
explanations for success given by the authors can be classified into three groups: Teacher
and teacher education, school and curriculum, and other factors, like the use of ICT and a
developmental project LUMA (1). The main result is that there is not one clear explanation,
although research-based teacher education seems to have some influence. But the true
explanation may be a combination of several factors.

The Finnish students’ success in the first PISA 2000 evaluation was a surprise to most of
the Finns, and even people working in teacher education and educational administration had
difficulties to believe that this situation would continue. Finland’s second success in the next
PISA 2003 comparison has been very pleasing for teachers and teacher educators, and for
education policymakers. The good results on the second time waked us to think seriously on
possible reasons for the success. Several international journalists and expert delegations from
different countries have asked these reasons while visiting in Finland. Since we had no
commonly acceptable explanation to students’ success, we decided at the University of
Helsinki to find it out in the form of a book in which Finnish teacher educators and
researchers present their views on essential features of Finnish mathematics and science
education, and implementation of the education policy. So far no such critical and analytic
overview has been published.

Theoretical Framework
There is very little rigid research done on what really happens in mathematics and science

classrooms in Finland. Therefore, the chapters of the book at hand present to a certain extent
only the views of Finnish teacher educators and researchers in mathematics and science
education. Research done is more generally on school teaching (e.g. Komulainen &
Kansanen, 1981; Syrjäläinen, 1990; Patrikainen, 1997). Up today there are only very few
descriptions on teaching and learning mathematics and science in Finnish classrooms (e.g.,
Norris & al., 1996, Maijala, 2007). Of course, there are more research done on teachers’ and
pupils’ beliefs and views on teaching and learning (e.g., Perkkilä, 2002) or on special
teaching and learning interventions (e.g., Viiri, 2000).

PISA Evaluation
The PISA programme aims at assessing young people's skills, knowledge and

competencies from the perspective of future learning demands. PISA assesses 15-year-olds'
performance in three main domains: reading literacy, mathematical literacy and scientific
literacy. The PISA programme involves surveys to be conducted every three years with
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alternating prime domains. In 2003 the prime domain was mathematics, in 2000 reading
literacy, and in 2006 science. In the first two evaluations, Finnish pupils were ranked at the
top (cf. Lie & al., 2003; Mejding & Roe, 2006). The results of the third evaluation will be
published in December 2007.

Development of Finnish Education Policy
There are three leading principles in the educational policy of Finland: One is the

commitment to a vision of a knowledge-based-society. This vision can be found also in the
national documents published in the 70s, where implementation of common comprehensive
school (Committee Report, 1970) and university level teacher education (KATU Project,
1978) were presented. Another long-term objective of Finnish education policy has been to
raise the general standard of education and to promote educational equality. Basic decisions
towards this direction were made during the 1970’s with the other Nordic countries when a
change to a comprehensive obligatory school system was decided (Committee Report, 1970).
In Finland, local authorities have strong autonomy, a lot of freedom, power and
responsibility. This movement was strengthened in 1994 curriculum (NBE, 1994).
Consequently, the third general education policy principle in Finland is the devolution of
decision power and responsibility at the local level.

The Book “How Finns Learn Mathematics and Science?”
After the Finnish success in the PISA evaluations, several international journalists and

expert delegations from different countries have asked the reasons for our success while
visiting in Finland. Since we had no commonly acceptable explanation to our pupils’ success,
we decided at the University of Helsinki to find it out in the form of a book “How Finns
Learn Mathematics and Science?” (Pehkonen & al., 2007).

The Structure of the Book
The chapters are organized into three sections: General aspects, Mathematics, and

Science. Each section consists of 5–6 chapters written by the teacher education specialists
around Finland. After each section, there is a synthesis written by an international or national
specialist who has not been involved in writing of the chapters.

The first section “General aspects” contains six chapters. In chapter 1 the researchers who
have participated in the PISA and TIMSS studies discuss the reasons for Finnish students’
high achievement in mathematics and science in the recent international assessment studies
PISA 2000, PISA 2003 and TIMSS 1999. In chapter 2 the Finnish comprehensive school
system is described in general and the educational tasks of mathematics and natural sciences
in detail. In chapter 3 an overview of planning, organising and evaluating of mathematics and
science teacher education in Finland is given. In chapter 4 the Finnish learning environments
in mathematic and science are described; the authors refer to social, psychological, and
pedagogical contexts in which learning occurs and which affect students’ achievement,
attitudes, and beliefs. Chapter 5 focuses on gender differences: Although in the Finnish
society equity between genders is relatively good, there are gender differences in students’
attitudes towards these subjects; different career choices in mathematics and science are no
longer compulsory. In chapter 6 the authors consider the additional factors that influence
school teaching and learning in a more restrictive way like INSET training for mathematics
and science teachers and the extensive science and mathematics program (LUMA) (1)
launched by the Finnish Ministry of Education in 1996.
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The second section “Teaching and learning mathematics” includes five chapters. Chapter
7 introduces what is meant with problem solving in mathematics education and how it is
manifested in the Finnish curricula, textbooks, lessons and assessment. In chapter 8 the
authors tell about the special characters of Finnish primary teacher education and also about
its development during last decades. Some alternative teaching methods that have been
delivered for more than twenty years for mathematics teachers of the comprehensive school
are introduced in chapter 9. In chapter 10 some essential features of the mathematics teaching
and assessment in Finnish primary classrooms are outlined. Chapter 11 gives an overview of
technology-based activities in the Finnish mathematics education based on official documents
that illustrate measures that have been trigged by more or less administrative projects, and
research articles made in the university within mathematics teacher education.

Section three “Teaching and learning science” contains also five chapters. Chapter 12
concentrates mainly in analysing the teaching methods of chemistry and physics and discuss
on what has actually been going on in the science classrooms. Chapter 13 focuses on how to
meet the challenge of making science and technology more attractive by introducing them in
context-based educational settings. Chapter 14 concentrates on modelling and practical work
as instructional approaches at lower secondary level. Chapter 15 focuses on the science
teaching at primary level and on the class teacher as teaching science. In chapter 16 the
national ICT strategies from 1986 to 2000 and their implementation are analysed and related
to core curriculum development, development of software and learning environment, teacher
education, as well as research activities in the field of ICT use in Finland.

The Focus of the Paper
In the paper we try to single out reasons for Finnish PISA success in mathematics and

science as a common understanding of Finnish teacher educators – here the third strand of
PISA literacy is not at all dealt with. The research question could be formulated, as follows:
What reasons do Finnish teacher educators give for the Finnish pupils’ success in
international PISA comparisons?

Methods
When planning the book “How Finns Learn Mathematics and Science?”, we (the editors)

sketched a title for each chapter and discussed together who might be proper persons to write
them. The idea was that in each chapter there are at least two authors, in order to increase
discussions and reflections when writing and thus result better papers. Half a dozen of first
contacted persons did not accept the invitation, and they were substituted with other ones.
The first idea was to have a doctoral degree mainly as a demand for the authors. The first
contacts with the authors happened in spring 2005, and the writing began in autumn 2005.

When the authors were asked to write a paper of about 20 pages with the given title, they
were explained the purpose of the book with the following sentences: “The book “How Finns
Learn Mathematics and Science?” has two aims. It tries to explain the Finnish school system
and Finnish children’s learning environment at the level of the comprehensive school.
Therefore, it describes the development of 30 years of the school system, teaching methods in
mathematics and science, teacher education system, and factors that might influence teachers
and thus teaching. Research can influence school teaching with a long delay, and therefore it
is not here in a main focus.” In connection of the first reading of the manuscripts, the authors
were asked to summarize at the end their views on the reasons of the Finnish PISA success.
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The book is a joint enterprise of 40 Finnish teacher educators. As we focused on finding
warranted reasons, we looked for persons who had experience both in teacher education and
research. Thus, we asked all Finnish teacher educators in mathematics and science to co-
operate. The authors represent all Finnish universities, especially their teacher education
faculties. Almost all professors and docents working in mathematics and science education in
Finland are involved in the writing process. The authors have also peer reviewed each others’
chapters and, therefore, the book presents a “national view” on mathematics and science
education and their teacher education.

There are three sections (General aspects, Mathematics, and Science) in the book. We
decided to have a synthesis of the chapters in the section. The original idea was to find two
authors who were not involved in writing, one from Finland and one from abroad. We
expected that such an international specialist has visited Finland several times and therefore,
had some understanding on our system. Only in section Mathematics one case our idea
completely succeeded, in two other cases the persons asked refused, and we had difficulties
to find a substituting person.

From each chapter, we have selected the conclusion part, and from the conclusion part the
sentences that describe the authors’ understanding on the reasons of the Finnish PISA
success. When having all these sentences, we grouped similar explanations together, and
discussed our results as long as we could agree one common solution.

Results
Here we have gathered the success explanations given by the different authors of the

book. These are grouped into three sets according to their explaining factor: teachers and
teacher education, school and curriculum, other factors (especially ICT and LUMA). Each of
these sets is discussed briefly.

Teachers and Teacher Education
The Finnish citizens value education, school and teachers in general. According to our

educational policy both primary and secondary school teachers are educated to master level
programmes in universities. Teachers at lower secondary schools are typically specialized in
two subjects. A feature of Finnish teacher education is a research-based approach that has
been adopted in teacher education as a main organising theme, emphasizing teachers’
pedagogical thinking, i.e. reflecting on their own teaching in school. One example of the use
of research in teacher education is to develop teachers’ pedagogical subject knowledge.
Through in-service training, teachers might get new ideas how to teach in an innovative way.

This high level education allows teachers to have a lot of freedom and responsibility.
Freedom and responsibility means that teachers are, for example, responsible for developing
the curriculum for their courses, choosing the teaching and evaluation methods based on the
national guidelines and also selecting the learning materials. There are no inspectors, no
national evaluation of learning materials, nor national assessment. In other words, Finnish
teachers are educated to be autonomous and reflective academic experts. Most Finnish
teachers are devoted to their work.

School and Curriculum
The authors involved in PISA research conclude that the good results of Finnish pupils

should be taken as recognition of the high quality of Finnish schools. One factor behind the
good PISA results seem to be the Finnish curriculum planners’ scenario of the future of
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mathematics and science teaching and learning that were given already before the beginning of
the 1990s; these have been coherent with the PISA framework. The Finnish curricula (NBE
1985, 1994) contained many novel aspects. PISA studies asked for pupils’ abilities to use their
knowledge in different situations, interpret tables, graphs and other kind of scientific
presentations, use the scientific language, not only quantitative knowledge e.g. equations.
Application of knowledge and problem solving skills has been an essential part of Finnish
comprehensive school education. In Finland we don’t have a common science, but separate
physics, chemistry and biology from grade 7.

The alternative teaching methods like Models from everyday life, Activity tasks,
Mathematical modelling, Learning games, Problem solving, Investigations, and Project work
will surely develop pupils’ skills to solve such tasks as in the PISA tests. In teaching science,
the approach is subject-oriented both in primary and lower secondary level; therefore, teachers
may transmit more the nature of science. Also experimentation in science is an essential part of
the Finnish comprehensive school curriculum. Modelling is appreciated in Finnish science
classrooms, it can be considered as an important step for understanding the nature of scientific
processes and knowledge that were in turn among the main objectives of PISA 2003
assessment criteria. Thus, the national curricula have strongly affected teaching methods in
schools.

Other Factors (ICT and LUMA)
One of such factors is the development of the whole country into an information society, i.e.

improving all citizens’ possibilities to use information and communication technology (ICT).
Therefore, the use of ICT in school has an impact on pupils’ general ability to deal with
information. About ten years ago, the Finnish government launched the joint national program in
mathematics and science teaching (LUMA, Heinonen 1996). The LUMA program created
substantial and exhilarating climate for science and mathematics education.

Discussion
Already before this book, there have been papers that have tried to describe and explain

the Finnish results in the PISA tests. One has to mention first of all the publications given by
the Finnish PISA researchers after the first PISA testing (e.g. Välijärvi & al. 2002). They
explain our success “with comprehensive pedagogy, students’ own interests and leisure
activities, the structure of the education system, teacher education, school practices, and
Finnish culture”. These are coherent with the explanations given by the authors of the book in
question. After the second PISA results that were published at the end of the year 2004, the
explanations were similar (Kupari & Välijärvi 2005).

Simola (2005) has developed an explanation for the PISA success through analyzing
teaching and teacher education in a historical and sociological framework, and he gives
several general historical and political reasons for the success, such as a homogeneous society
(lack of minorities), consensus developed during the Winter War (1939-40), and rapid
development from a poor agrarian state to a modern welfare democracy. Some earlier officers
of the National Board of Education have also published their views on the PISA reasons (Aho
& al. 2006). They ended up with four broad conclusions: (1) Comprehensive school that
offers all children the same top quality, publicly financed education. (2) Education reform has
been evolutionary rather than revolutionary. (3) Success of the education system is
politically, culturally and economically intertwined with other sectors. (4) In a stable political
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environment education reforms have based on long-term vision, hard work, good will and
consensus.

In an international conference on mathematics education Björkqvist (2006) has described
his understanding on the reasons for the Finnish PISA success. He raised an important
component that is not discussed in the book at hand. Special education is in Finland strongly
involved with the ordinary education, and thus it offers learning opportunities also for low-
attainers – only two per cent of Finnish pupils are in special teaching institutes. Those who
take part ordinary education in the comprehensive school have carefully-tailored support that
correspond pupils’ needs (cf. also Vauras 2006). The relatively small deviation of Finnish
PISA results can be understood on these supports of lower-attaining pupils.

In a science education conference Lavonen (2006) has listed the following reasons:
information society, equality in education, devolution of decision power and responsibility
changing to local level. Furthermore, there exists a paper on factors influencing mathematics
teaching during the last 30 years (Pehkonen 2007, Pehkonen & Seppälä 2007) that offers a
holistic view on the development of mathematics teaching from the beginning of the
comprehensive school to nowadays.

Concluding Note
Summarizing, we may state that there is no clear single explanation, but the true

explanation might be a combination of several factors. Nevertheless, the idea of research-
based teacher education seems to be in the core of explanations (cf. Jakku-Sihvonen & Niemi
2006). Additionally, we would like to emphasize the importance of the Finnish pupils’
success in literacy, since many PISA problems are such that good understanding in reading is
important.

Endnote
1. The acronym LUMA comes from Finnish language terms: Luonnontieteet [Natural

Sciences] and Matematiikka [Mathematics])
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This paper presents analyses of data collected during two multi-year collaborations with middle-
grades mathematics teachers. Although our primary goal at each site was to support the
teachers’ reconceptualization of their practice, analysis of our work revealed significant
differences across the two sites. Working to understand these differences led us to delineate the
characteristics of the institutional settings.

In this paper, we present analyses based on data collected during two multi-year
collaborations (e.g. 7 years and 5 years) with middle-grades mathematics teachers in the
Washington Park school district and Jefferson Heights school district2. Washington Park is a
small district located in the southwest that serves a K-8 population. There are seven schools in
the district, three of which house grades six through eight. Jefferson Heights is a county-wide
district in the southeast and has eleven middle schools. Both were ranked in the top ten on the
Princeton Review’s high stakes accountability rankings.

Our primary goal for the collaborations was to support the teachers’ reconceptualization of
their instructional practice so that their students’ ways of reasoning became resources for
planning. However, the ongoing analysis of our work at the two sites differed significantly in
spite of common goals. We found marked differences in the teachers’ trajectories for learning
that necessitated ongoing revisions to our conjectures for supporting the learning at each site.
Activities, tasks and/or discussions that were useful at one site did not necessarily prove to be
useful at the other site. This caused a dilemma within the research group3 as our initial
conjectures were based on the success of the mathematical instructional sequence that was the
basis of our collaborations at both sites. Working to understand the differences across the two
sites led us to focus on delineating the characteristics of the respective institutional settings in
order to clarify the impact of institutional context on teachers’ instructional practice. This
understanding allowed us to situate our work at each site within the context of the teachers’
work. For this reason, a primary product of our collaborations was a framework for analyzing the
institutional setting of teachers’ work (see Cobb, McClain, Lamberg, &Dean, 2003; Cobb &
McClain, 2004).

Theoretical Framework
As a result of our understanding of the importance of institutional context, we treat

instructional leadership and teaching as distributed activities. We also adhere to the stance that
teaching is a social activity and draws on both human and material resources. In addition, as
design researchers (cf. Brown, 1992; Cobb, Confrey, diSessa, Lehrer, & Schauble, 2000), we
treat our collaborations as design spaces in which we work to establish environments that support
the emergence of student-centered teaching practices. This is a highly interventionist endeavor.
Much like Brown (1992), we engineer learning environments to support our collaborative efforts.
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Although we began with a conjectured learning trajectory for supporting the learning of the
teachers, we were constantly modifying and revising the initial conjectures in light of our
ongoing analysis of our work with the teachers. Much like Simon’s (2000) Mathematics
Teaching Cycle, we informed our interactions by our ongoing work as shown in Figure 1.

Figure 1. Cycles of intervention and revision.

This process allowed us to proceed in a logical manner while taking the teachers’ current ways of
reasoning as a basis for planning.

We also take the theoretical stance that teachers’ learning is socially situated within the
activities of a professional teaching community (cf. Franke & Kazemi, in press; Grossman,
Wineburg, & Woolworth, 2000; Lehrer & Schauble, 1998; Rosebery & Warren, 1998; Stein,
Silver, & Smith, 1998; Warren & Rosebery, 1995). This is consistent with Rogoff’s (1994) claim
that “learning and development occur as people participate in the sociocultural activities of their
community” (p. 209). Visnovska (2007) notes “[t]his orientation conceptualizes learning as a
process that is inherently related to the social and cultural contexts in which it occurs (p. 54). For
this reason, we view teaching as lying in the intersection of networks of communities. Therefore,
understanding these communities is critical to understanding what constitutes teaching in a
particular school or school district.

Methods and Results
Initially, the research team could not account for the extreme differences in the development

of both (1) the mathematical understandings of the teachers and (2) the development of
professional teaching communities across the two sites. Given the use of the same research-based
instructional sequence, the careful collaborative planning of the research team across the two
sites and our perceived similarities in the groups of teachers, we were perplexed. Building from
Simon et al. (2000), we took the stance that the teachers at both sites were acting rationally in the
context of their setting. Therefore, in order to understand the differences across the two sites, we
determined that we had to understand the institutional settings of the teachers.

As a result, we began gathering the data necessary to help us identify the network of
communities within each district. In particular, we were able to identify school leadership
communities, mathematics leadership communities and the two professional teaching
communities.

In order to understand the network of communities within each school district, we used what
Spillane (2000) refers to as a snowballing strategy and Talbert and McLaughlin (1999) term a
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bottom-up strategy to gather data in order to delineate the communities of practice within the two
districts whose missions or enterprises were concerned with the teaching and learning of
mathematics. To this end, we conducted audio-recorded semi-structured interviews with the
collaborating teachers at each site to document the institutional settings of their work as they
perceived and understood them. (Elsewhere we have described this as the teachers’ instructional
reality.) The issues addressed in these interviews included the professional development
activities in which the teachers had participated, their understanding of the district’s policies for
mathematics instruction, the people to whom they were accountable, their informal professional
networks, and the official sources of assistance on which they drew. We corroborated these
interview data by including questions that address the same issues on a survey that we
administered as part of our pilot work to all the mathematics teachers in the schools in which the
collaborating teachers work. As a second step in the snowballing process, we interviewed the
individuals identified by analyzing the teacher interviews and surveys to understand both their
agendas as they relate to mathematics instruction and the means by which they attempt to
achieve those agendas.

Our focus when analyzing these data was to identify the communities of practice within the
districts whose missions or enterprises were concerned with the teaching and learning of
mathematics. We also documented the evolving interconnection between these communities by
identifying:

• Boundary encounters in which members of two or more communities jointly engaged in
activities that focused on the learning and teaching of mathematics. This first type of
interconnection arises when routine participation in the practices of one community
involves boundary encounters in which teachers engage in activities with members of
another community.

• People who were members of two or more communities and who could thus act as
brokers. Brokers can bridge between the activities of different communities by
facilitating the translation, coordination, and alignment of perspectives and meanings
(Wenger, 1998). Their role can therefore be important in developing alignment between
the enterprises of different communities of practice.

• Boundary objects that were used by members of different communities as they organized
for mathematics teaching and learning, and made mathematical teaching and learning
visible. This practice involves the use of a common boundary object by members of two
or more communities as a routine part of their activities.

Following the first round of analysis, we used a modification of the constant comparative
method to further analyze the data. In this process, we focused on both the leadership practices of
school and district leaders, and on teachers’ instructional practices. This process then delineated
the affordances and constraints of the communities on each other. It is in this sense that we speak
of the practices of each community being partially constituted by the institutional setting in
which its members act and interact.

We have also documented changes in the collaborating teachers’ instructional practices by
collecting modified teaching sets (Simon & Tzur, 1999) twice each year for each teacher since
the commencement of the project. A modified teaching set consists of an audio-recorded pre-
interview that focuses on the teachers’ instructional planning, a video-recorded classroom
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observation followed by an audio-recorded post-interview that focuses on the teachers’
instructional planning and on reflections of lessons. The issues that we addressed in these semi-
structured interviews included:

• What does the teacher view as the most important ideas or skills in the area of
mathematics addressed in the lesson?

• How does the teacher take account of students’ reasoning when planning for instruction?
• How does the teacher use and adapt textbooks and other resources?
• What aspects of student reasoning are visible to the teacher during the observed lesson

and what artifacts does the teacher use to make them visible?
• How does the teacher adjust instruction based on observations of students’ reasoning?
To ground the analysis of these teaching sets, a survey that addressed these same issues was

administered to all the mathematics teachers in the schools in which the collaborating teachers
work. This data in addition to the teaching sets was used to establish regularities of practice
among the teachers at the two sites. Our focus when analyzing these data has therefore been to
document shifts in the ways in which the teachers plan, conduct lessons, and analyze lessons.

Our analysis revealed differences in the regularities of practice across the two sites that could
be directly related to our analysis of the institutional context. As an example, our analyses of the
teaching sets (i.e., video-recorded classroom observations and follow-up interviews) revealed
that the teachers at both sites revised their classroom instructional practices significantly in the
course of our collaboration with them. In doing so, they increasingly came to view curriculum
materials as resources that they could adapt to achieve their instructional agenda rather than as
blueprints for instruction. As an example, the teachers in Washington Park originally held a
fidelity approach to instruction. The district’s professional development efforts had focused on
training teachers to enact the NSF-funded curriculum with fidelity. Administrators assumed that
this fidelity to the curriculum would lead to increased student achievement. This conception of
professional development gives agency to text resources and places fidelity to the curriculum as
the endpoint of professional development engagements. This approach contrasts sharply with the
overall goal of professional development work with the teachers at both sites, namely that the
teachers would place students’ current ways of reasoning at the forefront of instructional
planning and decision making. When the emphasis of instruction is on building on students’
current understandings, teachers require professional development that supports them in
developing the knowledge to adjust instruction to their students' needs and understandings. In the
case of the teachers in Washington Park, the analysis of their teaching practices revealed that
there was a significant shift in how they viewed text resources. The analyses documents the
following sequence of changes:

1. Giving agency to text resources - a fidelity to the curriculum approach.
2. Teacher professional decision making with text resources as basis.
3. Instructional planning that places a premium on students’ current understandings

This sequence of shifts is one indicator of the ways in which the teachers at this site have
reorganized their instructional practices.

A significant difference between the sites was traced to the lack of brokers at Jefferson Park.
The shift to using texts as a resource instead of a blueprint occurred within the Washington Park
professional teaching community within the first year of the collaboration. The brokers were able
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to facilitate this process through their boundary encounters with administrators.  The constant
flow of information between the professional teaching community and the school leadership
community supported the teachers’ ability to shift from a fidelity approach to using the text as a
resource.

This transition was much more labor intensive in Jefferson Heights since the professional
teaching community and the school leadership community were disjoint entities with very little
communication between the two. As a result, a goal for the Jefferson Heights professional
teaching community became that of bridging the communication gap between the two
communities. A series of activities was designed to allow the teachers to communicate with the
school leadership community about their activities within the professional teaching community.
This was a process that required its own conjectured trajectory.

Discussion
A number of scholars have documented that teachers’ instructional practices are profoundly

influenced by the institutional constraints that they attempt to satisfy, the formal and informal
sources of assistance on which they draw, and the materials and resources that they use in their
classroom practice (Ball, 1996; Brown, Stein, & Forman, 1996; Feiman-Nemser & Remillard,
1996; Nelson, 1999; Senger, 1999; Stein & Brown, 1997). The findings of these studies indicate
the need to take account of the institutional setting in which the collaborating teachers develop
and refine their instructional practices.

For this reason, we argue that up-scaling an innovation from a high-capacity district to other
urban districts cannot be accomplished merely by attempting to develop more efficient ways to
reify the innovation. As Carpenter and colleagues note (Carpenter, Blanton, Cobb, Kaput, &
McClain, 2002), innovations cannot simply be codified and handed over to others. This is the
case even if new information technologies are used (Brown & Duguid, 2000). To be successful,
the dissemination process has to involve the restructuring of the target districts such that the
communities of practice that comprise them might become as effective as the corresponding
communities of the high-capacity district. This required restructuring process is both profound
and daunting in that it penetrates the inconspicuous, recurrent, and taken-for-granted aspects of
teaching and leadership. However, in the absence of such a restructuring, it is highly probable
that even if objects that reify the innovation are seen as relevant, they will be used in very
different ways and come to have different and quite possibly conflicting meanings when they are
incorporated into the practices of communities in the target districts. These boundary objects are
not carriers of meaning and will not be constituted in practice in the same manner. For this
reason, unless the structure of the communities within a school district are such that they support
innovation, the boundary objects will likely be used in a manner not intended by the designer.
One might argue that we are claiming that professional development can only be effective in
high-capacity settings. We are not. What we are arguing is that unless the institutional setting of
teaches is taken into account during the course of collaboration, it is probable that the innovation
will not sustain past the intervention. Given the high cost of human and material resources
needed to conduct such professional development collaborations, it then becomes incumbent on
those of us who work with teachers to take the time to analyze and understand the setting of
teachers’ practice so that collaborative efforts have the possibility of both transforming practice
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and sustaining new practice. It is for this reason that we focus on the importance of
understanding the institutional setting of teachers’ practice.

Endnotes
1. The first two authors were members of the research team. They worked at different sites.

The third author was a member of the professional teaching community at one site.
2. The school district names are pseudonyms.
3. The research team was comprised of Paul Cobb, Kay McClain, Chrystal Dean, Teruni

Lamberg, Jose Cortina, Qing Zhao, Jana Visnovska and Lori Tyler.
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This research report examines the resources leaders access as they engage in collective
mathematical activity. By examining resources we explore how leaders’ participation in the
collective work looks and sounds different across groups. Furthermore, through our mixed-
method research design we investigate possible linkages between leaders’ resources and a
group’s mathematical knowledge for teaching. This novel use of MKT is central in our
exploratory study to raise questions and hypotheses about what leaders need to know to lead.

Background
The data for this paper were drawn from a larger study, Researching Mathematics Leader

Learning (RMLL) (2) investigating how leaders learn to cultivate mathematically rich learning
environments for teachers. Two key assumptions under gird our work. First, to improve
children’s mathematical learning, teachers need to develop deep understandings of mathematics
(Ball & Bass, 2000; Hill et al., 2005; Ma, 1999). Second, leaders of mathematics PD need to
learn to create and nurture PD climates where teachers have rich opportunities to grapple with
and understand mathematics more deeply (Wilson & Bern, 1999).

There is widespread agreement that improving teaching and learning requires that teachers
participate in high-quality PD (Darling-Hammond & McLaughlin, 1999; Loucks-Horsley et al.,
2003). However, what leaders need to know in order to construct high quality PD is under-
defined (Even, 2004; Stein et al., 1999). We have chosen, with sound theoretical support, to
focus on developing leaders’ understandings of norms for mathematical reasoning or
sociomathematical (SM) norms. These are the norms that guide the ways people interact
mathematically (Yackel & Cobb, 1996). Our work is informed by the classroom research on SM
norms where norms are established and cultivated in students’ mathematical activity (Kazemi &
Stipek, 2001; Yackel & Cobb, 1996). We extend this work, focusing on how leaders may engage
teachers in mathematically rich environments where productive SM norms are essential in
supporting mathematical discussion and debate (3).

This paper examines the mathematical resources leaders bring to mathematical activity to
understand what might be entailed in leaders developing an understanding of productive SM
norms and putting these norms into practice in mathematics PD. We recognize that leaders’
collective mathematical activity is not the same as leaders working with teachers on
mathematics. We conjecture that if we know what resources leaders have access to, and how the
resources are taken up by leaders when collectively engaged in productive mathematical activity,
then we may better understand what resources are available to leaders and perhaps needed to
cultivate mathematically rich PD environments.
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Theoretical Framework
Recent research examining students’ learning of mathematics and science has advanced our

understandings of the social and cultural context in which learning takes place. In particular,
researchers focus on the role of discourse in learners’ development and ways of cultivating
productive discipline specific engagement (Cornelius & Herrenkohl, 2004; Engle & Conant,
2002; Lampert, 1990; Wertsch & Toma, 1995). Discourse within much of this research is a
cultural tool mediating development (Wertsch, 1991). Moreover, discourse is guided by patterns
or regularities (Bahktin, 1986). These patterns or regularities are the normative ways of engaging
and thus guide participation.

Researchers examining teachers’ normative participation in mathematics PD suggest that
discourse typically engages colleagues in social pleasantries and avoids dialogue that may prove
uncomfortable for participants (Lord, 1994; Wilson & Berne, 1999). Recent research in math PD
shows that efforts are being made to shift this norm, yet it is a difficult pursuit (Elliott, Mumme,
& Carrol, 2006). Our research investigates how to cultivate productive mathematical discourse
and understand what might be entailed in engaging in such discourse. To do so, we look to the
science education literature where Engle and Conant (2002) advance four principles necessary
for productive disciplinary engagement in classrooms.

The researchers’ four principles for productive disciplinary engagement are, “(a)
problematizing subject matter, (b) giving [learners] authority to address such problems, (c)
holding [learners] accountable to others and to shared disciplinary norms, and (d) providing
[learners] with relevant resources” (p. 399). These principles highlight the nature of disciplinary
discussions in classrooms. Our work extends this research from learning opportunities with
students to learning opportunities in math PD.

The principles, extended to PD, suggest that facilitators and learners must problematize the
mathematical work in which they are engaged. Supporting taking on authority to engage in
problems means that learners are contributors to learning with the potential of shaped what is
learned. Holding learners accountable to others and the discipline requires that the facilitator and
learners seek to understand contributions. In addition, learners are accountable to the discipline
of mathematics meaning that they engage in making meaning, using evidence, pursuing
mathematically important ideas, and constructing justifications for mathematical ideas (NCTM,
2000). The fourth principle is the provision of relevant resources. Provision of resources are not
only necessary for productive disciplinary engagement, but may interact with the other
principles. Resources may or may not be tangible objects such as time and text materials. They
also are the resources that support: (i) the discourse practices of problematizing content, (ii)
accessing discipline specific ways of engaging, and (iii) fostering learners’ authority.

We found these principles insightful for framing what we saw unfold during the collective
engagements of leaders solving mathematics tasks and discussing solution methods. Because the
research on facilitation of math PD is under-theorized, we find ourselves extending the literature
from classroom research to inform our work, in particular research investigating discourse and
sociocultural views of development, to inform the project’s research questions. Engle and
Conant’s (2002) principles guide us in making sense of what we observed and the variety of
resources leaders used during their collective mathematical activity. This research report
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investigates these resources to better understand the factors that are at play as leaders engage in
the work of learning about the facilitation of productive mathematics PD.

Leaders’ capacity to engage in productive discussions of mathematical work draws on a
number of fields of knowledge or resources. In the past, this knowledge was conceptualized as
the professional knowledge needed for teaching including content knowledge (CK), pedagogical
content knowledge (PCK), general pedagogical knowledge (PK) and knowledge of context (CN)
(Grossman, 1990; Shulman, 1986). As leaders engage in collective mathematical activity it seem
likely that they may try to make meaning of the mathematics by sharing different methods for
solving tasks, connecting methods or examining the utility of various methods for different types
of numbers. Leaders’ meaning making accesses resources associated with the knowledge of
mathematics and knowledge about how mathematics works (Ball, 1990). PK and PCK resources
may take the form of sharing particular instructional strategies or insights on students’ ways of
solving particular mathematical problems. PCK also includes knowledge of curriculum and
mathematical ideas that tend to be difficult for students.

The recent work by researchers in the Learning Mathematics for Teaching (LMT) group,
have advanced that this knowledge is specialized mathematical knowledge needed for teaching
(MKT) (Ball & Bass, 2000; Hill et al., 2005). MKT connects CK and PCK – drawing from
across the domains. The LMT researchers claim that MKT is knowledge, not pedagogy, needed
for the work of teaching (Hill et al., 2005). Our analysis explores how MKT is potentially
activated and shared as leaders collectively solve mathematics problems and engage in
productive disciplinary discourse.

Research Methods
Leaders for this study (n = 36) were volunteers from preexisting leader groups located in

geographically distinct regions, NW and SW. These leader groups were charged with leading
math PD in various contexts with teachers. The NW site was comprised of more leaders than the
SW site (24 v. 12). The NW leaders on the whole had greater experience and worked with
teachers spanning the k-12 continuum. The SW site had fewer leaders and these leaders were
mostly elementary focused with less experience facilitating than the NW site. A few leaders were
full time PD staff, however a majority of leaders, across both sites, were responsible for working
with students in some capacity during the day.

The RMLL staff constructed a six-day seminar series focused on facilitation of math PD. For
this report, we qualitatively examined the collective work of leaders in one whole group and the
subsequent small group discussion from the first seminar, titled Janice’s Method. Four small
groups’ engagements were captured on video and audio tape. In Janice’s Method, leaders
mentally solved the task 92-56, engaged in a whole group discussion where various solution
methods were scribed onto a poster at the front of the room. Small groups were invited to discuss
how the methods were similar and different, which methods worked for addition or subtraction,
and which methods worked for any numbers.

Fieldnotes were constructed during the seminar and video data were transcribed after the
seminar to accurately capture the leaders’ discourse. The data examined for this paper were
fieldnotes from the whole group and four small group discussions and the leaders’ journals,
where notes and mathematical work were recorded.
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Before coding the fieldnotes, data were segmented into episodes based on what was being
discussed and who was involved in speaking (Tharp & Gallimore, 1988). Episodes could include
only one or many speakers. Episodes’ boundaries were determined by shifts in topic when a
speaker offered a different idea that took the discussion onto another topic. Some episodes
consisted of one speaker because an idea would be shared, but no discussion was pursued. An
episode potentially accessed a number of resources. Each leader’s utterance was coded as it
related to a resource. Coding associated with each episode was compiled into a table calculating
the frequency of different codes, the number of speakers, and number of utterances.

The analytic framework guiding the examination of the qualitative data was developed from
our literature review. Our coding scheme focused on four major resources.  Resources aimed at
developing mathematical meaning (MM), sharing pedagogical content knowledge (PCK),
eliciting pedagogical knowledge (PK) and contributing contextual knowledge (CN). The MM
code was used when leaders shared methods for solving the task and generalized the method to a
mathematical model or for any numbers. Secondary codes were developed to document
regularities in leaders mathematical discourse resulting in codes for exploring how a solution
was developed, why a solution worked, categorizing the types of solutions, and generalizing if
the method always works. Further analyses were completed on the mathematical meaning
making of these groups. Illustrative episodes of the MM code were selected from each group by
identifying the episode with the greatest number of different MM codes.

The Learning Mathematics for Teaching (LMT) survey was administered with leaders during
the first seminar. RMLL staff constructed the survey, guided by LMT research faculty, drawing
on the content domains of number, algebra, and geometry. These content areas were cross-
referenced with items that focused on generalization and mathematical explanations as a part of
the problem context. The survey consisted of 32 items. A one-parameter response theory (IRT)
model (Hambleton, Swaminathan, & Rogers, 1991), using the software BILOG (Mislevy &
Bock, 1997), was used to calculate leaders’ scores and explore item and score properties. Using a
Rasch-IRT model, the reliability index was (>.9). The same reliability was determined using
Cronbach’s alpha. The Rasch-IRT scores ranged from -1.7 to a + 1.9. Rasch score intervals were
determined by identifying by finding natural breaks in the raw data and coordinating raw scores
with Rasch scores. The low interval was -1.7 to -0.8, mid interval -0.9 to + 0.5, and high interval
was + 0.6 to 1.9.

The use of LMT in this study was not meant to distinguish individual score gains, but serves
as a proxy for estimating the potential mathematical knowledge for teaching resources available
for leaders. Our primary analysis focuses on the resources that are accessed in collective
mathematical discourse. After sharing the results of the analysis of these data we will coordinate
group’s average LMT scores to explore potential connections and implications. This novel use of
LMT is explored here to raise questions and hypotheses about using MKT in this way.

Results
Each seminar began with solving and discussing a mathematical task. At the center of the

seminar was a videocase of a mathematics PD facilitator engaging teachers in the same task.
During the seminar, leaders’ pursued what were the mathematical explanations shared in the
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videocase and how where these explanations shared. Leaders collective mathematical work and
sharing insights on their mathematical methods set the stage for the videocase.

During the first seminar, the facilitator posed the mental math task of 92 - 56.  Individually
leaders solved the task. Afterward, the facilitator requested responses and posed questions asking
leaders how they solved the task or probing why a particular method worked. The facilitator
problematized the situation to launch small group engagement. In addition during whole group
discussion the facilitator’s questioning held leaders accountable to each other and norms for
mathematical reasoning.  The facilitator probed solution methods, asked others to explain a
leader’s thinking, and pressed to know why something worked rather than the steps or
procedures comprising a solution. The facilitator positioned leaders in roles of authority
acknowledging leaders’ capacity to pursue questions and ideas. Engle and Conant (2002) suggest
giving students authority “ is a matter of [learners] having an active role … in defining …and
resolving…problems” (p. 404). A number of times during a seminar, the facilitator or other
leaders would raise a problem resulting in small group and whole group discussion.

After the task 92-56 was problematized, small groups were prompted to discuss how the
methods compared and which method worked for any number. We examined how four groups
collectively engaged in pursuing these questions and what resources they accessed during their
discussion. From our analysis we saw that each of the four groups, in general, accessed the same
types of mathematical meaning (MM) resources during discussion. Group’s reviewed methods
that were shared with the whole group and categorized the various methods by the mathematical
strategy employed. For example, all groups suggested solutions were using ‘benchmark” or
“friendly” numbers when leaders rounded the minuend or subtrahend. Other leaders suggested
solutions were constructed by moving the minuend and/or subtrahend to numbers that could
easily be subtracted and the result would need to be “adjusted” to “compensate” for the change.
A number of leaders connected this compensation method to a distance model for subtraction
(Fosnot & Dolk, 2001). Leaders also connected across methods and three of four groups made
statements suggesting they were considering general cases, or generalizing from arithmetic. Two
groups related multiple representations of the task. Leaders not only accessed knowledge of the
mathematics they accessed knowledge of important processes and big ideas within school
mathematics. Leaders coordination of representations and connection across methods are
important mathematical processes that can provide deeper insights (NCTM, 2000).

Groups’ engagement appeared different when we looked beyond the resource of
mathematical meaning making. All four groups accessed PK and PCK resources while they were
engaged in discussions.  However, the frequency of the PCK code for the two SW groups (15
and 24 utterances) was higher than the frequency found with the two NW groups (3 and 7
utterances). A third code, CN, was frequent in the SW groups. CN was used to signify leaders
talking about a variety of contextual issues that the group was invested in discussing. For
example, leaders in one SW group discussed how they had learned mathematics procedurally and
its implications for their teaching. The other SW group shared their understandings of how
individual’s life experience played into the nature of solution methods. For the two SW groups,
most of their discourse on CN-type topics was intertwined with PCK and PK resources.

Our analysis of illustrative episodes of discourse with the greatest variety of MM codes
revealed further differences among the groups. Although every group was engaged in productive
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disciplinary activity, the degree to which they were able to consistently enact all of Engle and
Conant’s principles ranged from still developing to a more complete embodiment of the four
principles. The two SW groups seemed to struggle staying focused on the mathematics to
develop their own understandings. This suggests that leaders were still developing how to hold
each other accountable and press for accountability to the norms of the discipline. This was
illustrated when examining one of the SW group’s discussion. During the small group
discussion, leaders shared their concern that they only understood mathematics procedurally, yet
their mathematical discussion primarily focused on providing a rationale for one member’s
method and not an in depth analysis of the task. When one member asked if the member’s
method would always work, another member simply answered, “yes, because they [addition and
subtraction] are inverse operations.” Leaders chuckled in response, saying that they did not
remember this. The leader providing the information suggested that the leaders were not
expected to know this since their curriculum did not cover that terminology. The leaders did not
hold each other accountable to a deeper understanding of the mathematics after they had
disclosed that they knew they needed to build their knowledge.

The four groups engaged in collective mathematical work were able to garner a number of
resources as evidenced in their discussions. Our examination of resources showed that each
group had access to a number of mathematically relevant resources. However, it seems that the
nature of the resources varied across groups. One possible explanation for the varying
discussions was that the collective work of leaders is highly situated and discussions accessed
resources most intellectually pressing for these leaders.  Certainly understanding students’
mathematical reasoning is important and for a number of leaders this information was something
that they were currently sharing with teachers during mathematics PD. In the SW, leaders were
working with their staffs on implementing curriculum k-6. It seemed reasonable that leaders
would share how different curricula approach subtraction as a resource that might provide
insights for their collective work in the seminar. Further investigation is necessary to substantiate
this explanation. Further analyses of subsequent seminar data will inform our conjectures.

Another possible way of understanding the differences we saw in the four groups focuses
more on the differences in the nature of the mathematical resources they accessed. We examined
leaders LMT scores after collecting our initial data from these small groups and noting that the
discussions seemed to unfold differently across the sites. These data revealed that leaders in the
groups who spent more time digging into the mathematics had a higher average Rasch-IRT score
than the two SW groups who focused discussions on other resources and seemed to still be
developing mathematical resources relevant to the mathematical work. In addition, the NW
leaders’ scores represented the full range of score bands, low, mid and high.  The SW leaders’
scores were from the low and mid range intervals. One possible explanation for why we saw the
differences across groups was that the nature of the mathematics resources access by leaders was
quantitatively different. LMT may serve as a means of capturing leaders’ mathematical
resources. Here too, further analysis is needed to uncover patterns in leaders engagement.

Conclusions
Our work is exploring factors that may be at play for leaders to understand how to cultivate

mathematically rich PD environments. Questions arise, such as was the nature of these leaders’
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engagement typical of the remainder of their engagements in the seminars? Do different types of
mathematical tasks press for different mathematical resources, thus leaders may engage in
subsequent discussion much differently. Patterns will need to be uncovered across seminars to
gain a better understand of the role that LMT might play in our analysis. However, this work
uncovers some potentially interesting trends and conjectures about the nature of leaders learning
about productive mathematics PD. The work advances the field by considering how we might
coordinate qualitative data on resources available to leaders of mathematics PD with quantitative
measures meant to capture the mathematical knowledge needed for teaching.
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This paper examines the various compromises teachers make between district mandates and
meeting student needs. Using classroom observations analyzed with the QUASAR framework
(Stein, Grover, & Henningsen, 1996) we found that, even in a high-accountability climate,
teachers in the same school made strikingly different mathematics instructional decisions.
We found none of the teachers using the mandated text to teach for understanding.

The work of teaching always involves balancing pressures and making compromises
among competing demands. In the current post-NCLB climate, teachers in low-performing
schools in particular are experiencing pressure from state and district policy-makers to raise
student performance on state tests. In California, teachers are expected to teach numerous and
specific content standards and use fairly traditional state-adopted textbooks. Many district
officials have attempted to standardize instruction by dictating the parts of the text teachers
are to use at a given point in time. Teachers must also interpret and attend to the needs of
their students, and ideally will teach their students for understanding of mathematical
concepts and processes, as opposed to narrow mastery of procedural skills. It may not always
be possible to follow the district mandates and meet student needs, and teachers may have to
make a compromise between these two objectives. We believe that the exploration of this set
of tensions and the inevitable compromises teachers must make is both timely and important
in the current environment so that we can support teachers in negotiating these tensions.

Theoretical framework
To frame our understanding of the topic, we draw on the work of Remillard on the

importance of attending to the teacher/curriculum relationship (Remillard 1999, 2005). We
take the position that teachers are active developers of their classroom curricula, and we
operate under the assumption that individual teachers create a curriculum that they believe is
adapted to their circumstances, drawing on and adapting their textbook as one source of
guidance among other influences. Researchers have long documented differing styles of
textbook use among teachers and related differences in the content to which students are
exposed (Freeman et al, 1983; Freeman and Porter, 1989). These differences have been
attributed to various teacher factors including their view of the textbook as a content
authority, their convictions about what should be taught, and their knowledge of the subject
matter. Although the effects of high-stakes testing environments on teaching have been
examined the existing literature is not clear about how individual teachers who are pressured
to both raise student test scores and use a particular textbook may respond with curricular
choices. We find especially interesting and under-documented the tensions inherent in
attempting to use a relatively traditional (non-reform-oriented) text to meet students needs in
a high-stakes-testing environment, especially how different teachers in the same circumstance
respond to this tension.
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Methods
This report uses classroom observations of four second-grade teachers from a single high-

poverty elementary school in California with low performance on state tests. The school’s
district had been designated as “in need of improvement” and district officials had responded
by distributing a pacing guide mandating which chapter of the text teachers were to cover
each month. The district also produced periodic benchmark tests, coordinated with the pacing
guide, which all teachers districtwide were expected to administer.

The teachers in this study were all participants in a university-affiliated professional
development project which focused on students’ mathematical thinking. Each teacher was
observed five times during the 2006-07 school year, once in early winter and four times in
January. Observations focused on the materials used, the tasks for students, and the teacher’s
actions and utterances. The lessons were analyzed using the framework developed by the
QUASAR project (Stein, Grover, & Henningsen,1996) to characterize features of the tasks
and the levels of cognitive demand of lessons as they were enacted. Each teacher also
participated in two one-hour interviews focusing on their classroom practice, their goals for
their students, and their interpretation of district instructional mandates.

Context
The four participants in this study were all experienced second grade teachers. Mrs. M

had taught for 23 years, and was in her seventh year at Maxwell school. Mrs. T., an 18-year
teaching veteran, was in her fourth year at Maxwell. Mrs. P. had taught for fifteen years, ten
of which were at Maxwell. Mrs. C, the newest teacher, had spent all six years of her career at
Maxwell. The school provided some time during weekly grade-level meetings during which
teachers could discuss curricular issues. The teachers also had the opportunity to discuss their
curricular choices during some of the activities of the professional development program.

The district-mandated mathematics text, produced by a major publisher, is organized in a
traditional way. Each of the 12 chapters covers a single broad topic such as Place Value or
Addition with Regrouping, and most lessons are two-page spreads on a single concept,
beginning with an introduction of the concept, followed by several guided practice questions
and then a section of independent practice problems which usually focus on computation.
Most lessons have a few word problems or review items at the end. Teachers reported during
interviews that they were expected to use the text as their primary instructional materials, but
felt that the district did not discourage them from supplementing the text with other materials.
The pacing guide distributed by the district lists one or two chapters from the book per
month, but does not specify which pages teachers are to cover each day or week. The pacing
guide reorders some of the chapters in the book, but otherwise mainly follows its structure.
The guide divides the school year into three benchmark periods, indicating testing windows
after each. The district benchmark test observed during this study was a twenty-six-item,
machine-scored multiple choice assessment that focused heavily on procedural skills.

Results
Our analysis of the observational and interview data revealed that, even in a high-

accountability climate, four teachers in the same school made strikingly different
instructional decisions about mathematics. We found wide variation in the topics the teachers
addressed, the materials they drew on, and the expectations for student engagement in
mathematics as the lessons were enacted. Overall, we found none of the teachers using the
text to teach for understanding. We organized our findings into two time scales: the lesson-
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level decisions that teachers made about how and whether to use the text, and their broader
long-term planning decisions.

Lesson-Scale Teaching Decisions
 Figure 1 offers a look at the observation results.
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Figure 1. Lesson features by teacher.
Teacher Lesson Sources Task Features Level of Cognitive Demand
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Mrs. T. 4 =
80%

0 5 =
100%

2 =
40%

0 1 =
20%

5 =
100%

0 0 0

Mrs. C. 3 =
60%

1 =
20%

2 =
40%

2 =
40%

1 =
20%

0 3 =
60 %

1 =
20%

1 =
20%

0

Mrs. P. 2 =
40%

2 =
40%

4 =
80%

2 =
40%

0 0 5  =
100%

0 0 0

Mrs.
M.

0 5 =
100%

2 =
40%

5 =
100%

5 =
100%

4 =
80%

0 3 =
60%

2 =
40%

1 =
20 %

Figure 1 summarizes the initial analysis of the twenty lessons observed (five per teacher).
The first block of the table, Lesson Sources, indicates whether the teacher drew on the
district-adopted text, an activity of the teacher’s own invention, or some other source (old text
series, a published book of worksheets problems from the professional development program
or released state test items). The task features and levels of cognitive demand were drawn
from the QUASAR analysis (Stein, Grover, & Henningsen, 1996). We needed to adapt the
QUASAR framework to include the category of “other” to accommodate a lesson whose task
was potentially rich in mathematics but was only partially completed during the time allotted,
resulting in an awkward fit in any of the existing analysis categories.

Examination of Figure 1 reveals some striking differences among teachers. There is wide
variation among the teachers in the materials they used. (Materials use figures add to more
than 100% because teachers often drew on more than one material source during a single
math lesson.) Mrs. T. used the text in 80% of the observed lessons, while Mrs. M. did not use
the text at all. Mrs. T. and Mrs. P. both drew heavily on other commercial materials to
supplement their text use, while Mrs. M. was much more likely to invent her own materials.

Task features varied from teacher to teacher as well. Mrs. M.’s instruction was much
more likely than that of other teachers to require students to use multiple strategies, justify
their answers, and make use of multiple representations. 60% of the remaining three teachers’
lessons used only a single representation, usually symbolic, for the mathematical content
being studied, and their lessons usually did not require students to use multiple strategies or
explain their answers with mathematical justification. The levels of cognitive demand of the
lessons tended strongly toward procedures without connections to underlying mathematical
ideas, with the exception of Mrs. M, who was never observed teaching procedures without
connections. Mrs. C. offered a wider range of demands in her instruction than did Mrs. T. or
Mrs. P., both of whose lessons without exception either focused entirely on procedures
without connection or devolved during the lesson to that level. The one lesson observed in
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which Mrs. C’s students engaged in rich mathematical thinking used problem tasks from the
professional development program and did not draw on the text.

Some brief description of the teachers’ instruction around a particular topic, addition with
regrouping, may help illuminate their different approaches. The textbook addresses addition
with and without regrouping in separate chapters, and further places three-digit addition
seven chapters after students’ introduction to two-digit addition. Subtraction with regrouping
is treated separately from addition, and place-value understanding is separated from
operations work entirely. The district pacing guide unites two-and three-digit work within
each operation, but otherwise adheres to the textbook’s ordering of the topics. This
organization is at odds with a perspective of teaching centered on students’ thinking, such as
that offered by Cognitively Guided Instruction (Carpenter, Fennema, Peterson, Chiang, and
Loef, 1989). Adherents to this latter perspective would advocate linking instruction of
addition and subtraction within a problem-solving context, while simultaneously developing
and building on students’ place-value understanding. Rather than teaching students to follow
a standard algorithm, cognitively guided teachers would present students with problems to
solve and encourage them to develop their own strategies to solve them, helping students to
develop their mathematical understanding through discussion and other techniques which
build on students’ thinking. Teachers wishing to try this approach would have to depart from
the district’s pacing guide, and perhaps its mandated text, to do so.

All four teachers were observed teaching a lesson involving addition of two-digit
numbers with regrouping. Mrs. C.’s students had had some previous introduction to the topic
and she gave a brief procedural review, completing two examples with the students before
they practiced independently on a text workbook page without the aid of base-ten blocks. She
insisted that a student who was experimenting with adding the tens before the ones follow the
standard algorithm and begin with the ones instead. Mrs. P. gave a similarly brief
introduction to the topic, telling students that there was room in the ones column only for one
digit and so if the sum “on the right” was more than 9, they had to put the 1 in the sum over
above the “other side”. After she demonstrated a few examples, her students practiced
problems on the board that Mrs. P. copied from a commercial worksheet. In her lesson, Mrs.
T. used a text page. Students were supposed to use base-10 blocks to model two-digit
addition problems and then record their work symbolically. Students worked in pairs, but
Mrs. T. directed students through each step of the problems, and the blocks were used more
as a computational tool than as a model of the underlying structure of the number system.
Mrs. M. did not dedicate a lesson explicitly to addition with regrouping, but over the course
of several lessons had students make, use, and discuss various representations of two-digit
numbers and work on and discuss word problems with two-digit numbers which could be
solved using addition. The approaches the teachers used varied widely, both in their use of
materials and their expectations for what students could and should do.

During the interviews, the teachers elaborated on their differing goals for their students in
mathematics, based on their interpretations of their students’ needs. These goals then affected
the teachers’ choices of lesson materials. Mrs. P. hoped to help her students perform well on
the state testing, and believed they needed frequent, uncluttered practice on basic skills to do
so. She found that the textbook often did not fill this need. “You know, it all revolves around
the STAR test, and getting their good grades for the STAR test, so we’re practicing…Usually
the textbook is way over their head. And I want something that is basic, that doesn’t have all
this other stuff in it….because they’re just second graders, you know, a lot of them can’t even
read the directions…I’ll say, what’s more friendly, the textbook or the papers I have? If the
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papers I have are lower and slower and come across easier, then I’ll use that, if the textbook’s
too confusing.” Mrs. M also often passed up the textbook, but for very different reasons. She
explained that she felt the textbook focused too much on procedural skills and not enough on
students’ conceptual understanding and reasoning skills. With respect to addition with
regrouping, she explained, “I think you can teach them the pattern of the algorithm, which is
what I’ve been told to do by my boss, but I think that unless they start understanding what the
numbers mean, that it’s a crapshoot, they’re going to forget it…. So I won’t use any of those
pages…because I’m convinced that that just confuses them… [T]hat is not a teaching tool,
that is a conundrum for too many of my children, and I just can’t, in good conscience,
[laughs] do that to a child who doesn’t get place value.” Mrs. M often created her own
lessons instead which she felt better addressed her students’ needs to grapple with concepts
and engage in problem solving at a deeper level than the textbook offered. Mrs. C and Mrs. T
both expressed views of their students’ needs which seemed to fall somewhere in between
those of Mrs. M and Mrs. P. Their descriptions included seemingly competing goals: the
desire to have students think and reason for themselves and the belief that students needed to
be clearly shown how to complete procedures and then practice them frequently. Both tended
to use the textbook regularly in deference to the district’s mandates, but supplemented it
sometimes to provide more problem solving or conceptual development, and at other times to
provide additional practice in procedural skills. There thus was a spectrum of beliefs among
the teachers about the text in relation to student needs, ranging from the perspective that the
procedural focus of the text was appropriate but the presentation and amount of practice
provided was inadequate, to the belief that the text’s procedural focus was problematic and
the conceptual and problem-solving materials so minimal that they were hardly worth using
and should be replaced with other materials. The various ways in which the teachers
supplemented the text reflected their differing goals.

Longer-Term Planning
The teachers all mentioned the district’s pacing guide as having some effect on their long-

range planning, but due to its loose structure and minimal enforcement, they did not find it
particularly burdensome. The teachers all reported addressing the topics in the guide, but with
varying materials, rather than relying only on the text. Mrs. M, who appeared to weigh her
students’ needs much more heavily than the district mandates in her instructional decisions,
was aware of the topics required by the district, and was willing to address them with
students, but not by using the textbook as the district expected. As she explained, “[W]e have
a pacing guide and we are dictated that… I believe we are supposed to be covering the money
unit and we’re supposed to be introducing regrouping. So I am covering the money unit and
introducing regrouping. In my own, interesting way [laughs].” The teachers did express
concern over the fact that the pacing guide seemed to delay topics students typically found
more difficult, such as multiplication and subtraction with regrouping, until late in the year.
They reported feeling tempted to start these topics early so that they could continually revisit
them over the year, something the pacing guide did not provide for. Mrs. C described her
conflict: “I want to go into doing regrouping subtraction, because that’s where they’re going
to need more help, and I don’t think according to the pacing guide we’re going to have as
much time as we wanted. So I wonder if I can skip to that. I’m hesitant, though, because they
told us that we have to give the benchmark test… and once the benchmark test is coming
along, we say, OK, let’s see what we have to do. Review what we have to, or go over what
we have to. I know I’m not really following the pacing guide as they’re suggesting, but it
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depends. By now my group doesn’t need it, doesn’t need the time they suggest.” This quote
reveals Mrs. C’s ambivalence about following the district’s plan to hold off on these topics
versus her own professional instinct. She was aware of her students’ needs, but was reluctant
to gainsay the district in order to address them. Mrs. P, Mrs. C, and Mrs. T all reported
adhering more or less to the pacing guide, although they did reorder topics when they felt it
made sense to do so. This data suggests that the teachers viewed the pacing guide as a
document which was open to interpretation. Everyone subscribed to it in some form, with
some understanding it to mean that they should use the text to address the topics in the order
and on the timeline suggested, while others felt that as long as they were addressing the
suggested topics within the benchmark periods, they were paying the pacing guide its due
respect.

Discussion
These findings support Remillard’s (1999) characterization of teachers as curricular

interpreters and shows that four teachers dealing with the compromise between following
district mandates and meeting student needs did so in different ways. The teachers had
different perceptions of what it means to meet student needs, necessitating this difference.
These perceptions of needs spanned a range, from a focus on direct instruction and repetitive
practice of computational skills to a focus on problem solving and conceptual development.
No matter their beliefs about what their students needed, however, all the teachers found the
need to ignore, adapt, or at least loosely interpret the district’s mandated documents- the
textbook and pacing guide- in order to adequately meet those needs. The teachers all reported
being affected by these documents, but in differing ways and to different degrees.

Lesson-Level Decisions
Two teachers chose to mostly ignore the district’s mandated textbook, for differing

reasons. The two teachers who tried to use the text as their main instructional resource had
trouble using it to address students’ conceptual and problem solving needs, even when they
used manipulatives alongside the text pages. The lesson observations showed that when these
teachers used the text, the focus tended to be on procedures and the cognitive demands of the
activities remained low. While lessons which did not involve the text could also have low
cognitive demands, it is notable that only those lessons in which the teacher did not use the
text incorporated high cognitive demand, multiple problem-solving strategies, and student
explanations. The text as a document seemed to lend itself to a teacher interpretation that
focused on procedures. If the instructional goal of the teacher or the district is to promote
procedural competence and nothing else, the text may be an appropriate primary instructional
material. But if goals for students include developing conceptual understanding, the text
proved difficult for teachers to use in that way.

Longer-Term Planning Decisions
The teachers generally accepted the district’s pacing guide, mainly because they found it

open to interpretation. Some felt that the listing of chapters and dates meant “use your text to
teach these topics in this order at these times”, while others read it to mean “address these
topics in your own way by these dates”. The lack of specificity allowed them each to feel like
they were adhering to the pacing guide, even without consistent use of the textbook. The data
show that, the pacing guide notwithstanding, teachers continued to have their own priorities
about what to cover and how much time to devote to it. For this group, subtraction with
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regrouping represented one topic they wanted to give plenty of time for, and they were
largely willing to diverge from the pacing guide to ensure their students learned this topic.
The teachers perceived that students needed to develop the concept/procedure slowly over a
long period of time, and were uncomfortable with the pacing guide’s short, encapsulated
focus. The structures of the text and the pacing guide did not allow for the long period of time
needed to master the algorithm and/or develop the concepts, and teachers thus had to choose
between following these documents and employing a more developmental perspective of
student learning. In this instance, these teachers chose their students over the district
mandates.

Conclusion
It can be assumed that all interested parties, including the state, district officials, teachers,

and advocates of mathematics education reform share some goals for students. Procedural
competence backed by conceptual understanding and reasoning and problem solving ability
would likely be agreed upon by all as worthy goals. However, ideas of the appropriate
vehicles to use to achieve these goals differ. The state and district administrations appear to
believe that a mandated text and pacing guide are levers to change teachers’ practice to
ensure that all students have access to certain skills and materials. However, this study
indicates that at least in some cases, these efforts do not have the intended effect of
standardized curricula. In concurrence with earlier research (Freeman and Porter 1989), we
found that teachers continue to prioritize their students’ needs as they interpret district-
mandated documents, even in the current climate of pressure towards standardized
instruction.
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In this paper we share our professional development effort within one urban high school.
Throughout intervention teachers’ on-going needs and practical problems impeded efforts to
facilitate change in mathematical understandings and practices. Results revealed that the
complex relationship between teachers’ mathematical anxiety and professional identity,
including fear of public recognition of a lack of content knowledge, was crucial to learning.

Introduction and Theoretical Framework
In this paper we share our collaborative efforts within one urban secondary school. For this

project we worked with three high school mathematics teachers to improve their understandings
of mathematics and instructional design and assessment, while concurrently assisting them in
becoming Highly Qualified (U.S. Dept. of Education, 2000). What is clear in the research on
mathematics teacher education is that without on-going professional development that addresses
teachers' understandings of mathematics and supports their efforts to improve practice within
their own classrooms, no gains can be made in students' mathematics achievement (Ball, 2000).
We thus created an on-site professional development program that involved us collaboratively
teaching two courses (Algebra and Functions for Secondary Mathematics Teachers, Instructional
Design and Assessment) that we integrated to meet the cognitive and professional development
needs of these teachers. This effort was situated within a large (1,500) charter school located in a
large, financially challenged city.

Early in this work we recognized that these teachers were faced with daily struggles that
prevented them from arriving ready to participate in the goals of our professional development
community. Throughout this experience we grappled with how to address their on-going non-
academic needs and practical problems, while maintaining an effort that would facilitate change
in mathematical understandings and practices. We became acutely conscious that it was essential
to listen to these teachers and integrate their dilemmas into what was explored within the
sessions. We therefore initiated the study out of a desire to better comprehend why this effort
was not functioning as we had originally intended; namely, how do we bridge the learning to
mathematics? Our original research goal for the project thus moved from, “How can we structure
teacher learning within an authentic community that addresses the complex realities of inner-city
practice?,” to our new research questions: “Had teachers generated defensive facades to prevent
others from realizing their lack of content knowledge?” and “Why were the project goals related
to participants’ mathematical content knowledge not being achieved?”

Professional Development Design
For this professional development experience we (researchers/instructors) worked with three

practicing high school mathematics teachers to improve their understandings of mathematics,
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and instructional design and assessment, while concurrently assisting them in becoming Highly
Qualified. Based on current research recommendations (e.g., Wilson & Berne, 1999), we created
and co-taught an on-site professional development program that involved collaboratively
teaching two courses (Algebra and Functions for Secondary Mathematics Teachers, Instructional
Design and Assessment) that we integrated to meet the cognitive and professional development
needs of these teachers, and allowed them to earn graduate course credit toward state-level
certification. Specifically, we designed these courses based on participants’ pre-assessments,
classes they were currently teaching, district curriculum, and content embedded within state-
mandated standardized assessments (e.g., functions). Courses met weekly over the course of one
school year in a collaborative forum where the participants could share ideas about teaching in
conversations that were grounded in the their actual practice.

We aligned the goals in these courses to reflect our common orientation toward teaching and
teacher education. These goals include active knowledge construction, opportunities for on-going
reflection, a focus on enduring mathematical understandings, alignment of course goals with
authentic activities (e.g., Stein, Smith, Henningsen, & Silver, 2000), as well as modeling
teaching practices that support these tenants. Recognizing that current reforms and federal
mandates expect teachers to understand both content and innovative pedagogical practice, we
concentrated on primary foundational structures that supported teachers’ learning of both content
and pedagogy.

Research Design and Methodology
We conducted case studies (Merriam, 1998), with final analysis looking at a comparison

across cases. Participants were high school math teachers (3), who were dedicated to their
profession and school and held undergraduate degrees in mathematics. They taught at a large,
urban school (grades 6-12), that overall had concerned and dedicated faculty (based on
observations from a previous grant project). The student body was 99.8% African-American.
Although the student/teacher ratio was low (22:1), teacher turnover exceeded 60% each year and
a high percentage (72%) of teachers did not yet possess state-level certification. Additionally, in
2005 over 75% of the students were unable to pass the standardized state mathematical
assessments; scores had declined annually since 1999.

Data was collected throughout the 2004-2005 school year (August–June). Primary data
sources included: transcripts of audio-taped instructional sessions (30) and informal community
meetings (10), researcher fieldnotes of all sessions and meetings, transcribed interviews with
participants, participant journal entries and course assignments (e.g., content exams, problem
sets, narrative reflections, lesson design), initial surveys and end of program evaluations,
observation field notes of participants’ practice (5 per participant), e-mail correspondences
between participants and researcher-instructors, and researcher journals. A large emphasis was
place on analysis of teachers’ written and verbal dialogue, classroom interactions, and
researchers’ systematic reflection through journals. Observing teacher dialogue and interactions
has become an effective way to promote teacher learning in professional development contexts
(e.g., Lloyd & Frykholm, 2004; Sherin & Han, 2004). Recognizing that current reforms and
federal mandates expect teachers to understand both content and innovative pedagogical practice,
we concentrated on primary foundational structures that support teachers’ learning of both
content and pedagogy.
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We conducted formal, semi-structured interviews (30-45 minutes) with each participant at
the beginning, middle, and end of the professional development experience. Initial interviews
centered on participants’ responses on open-ended initial surveys. Survey questions asked
participants about their educational and teaching backgrounds, role within the school, beliefs
about students, mathematics, and teaching, expectations for the professional development
experience, and why they had chosen to currently teach secondary mathematics and in an inner-
city setting. Middle of program interview questions asked participants to reflect on their learning
and continued expectations of the pd experience. End of program interview questions were
similar in nature to those in the middle of program interviews, however more questions asked
participants to reflect on their experiences, as well as garnered information related to
participants’ perceptions of the impact of the professional development program on their learning
and practice.

To understand participants’ practices we observed each participant five times over the course
of the year. For each participant, we chose to spread observations across different courses to
determine if practice differed by content/students, with the final observation occurring in the
same classroom as the initial visit to determine possible subtle change in practice. Observations
also provided a shared understanding between participants and researchers that grounded
conversations centered on participants’ practice.

Analysis Approach (Three Phases)
Phase 1: Data were analyzed using direct interpretation (Stake, 1995) to garner emergent

themes within individuals to understand the substantive changes in participants’ content
knowledge and practice, and the role that the experience and context played in those changes.
Coding illustrated effectiveness of program through an analysis of focus and duration of course
meetings, content of course assignments and participant dialogue, and researcher reflections on
programmatic decisions.

Phase 2: Data were aggregated (Stake, 1995) across individuals to understand participants’
perceptions of the role the professional development effort played in their growth.

Phase 3: We did a final analysis across the entire year of professional development to
determine impact on long-term growth, as well as an articulation of how this program evolved
over the course of the research project.

Validity issues were addressed by triangulating data, coding independently by two
researchers (allowing for cross-validation of results), and externally validating coding by the
long-term nature of the project. Reliability was enhanced by researchers keeping separate
journals throughout the course of the project and its planning, in which they recorded personal
reactions to the pd experience, emergent ideas, possible related literature, ethical considerations
and dilemmas, and general perceptions of participants and the impact of program. These journals
also served as an additional source of data, the comparison of which helped to triangulate and
validate findings.

An Overview of Findings
Data revealed the following: (1) Teachers suffered from mathematical anxiety, (2) Depth of

the anxiety went beyond what we expected based on documented gaps in content understandings,
(3) Anxiety stemmed from two primary sources: public recognition of content deficits and self
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efficacy related to professional identity, (4) School context played a strong role in fostering these
teachers’ mathematical anxieties, and (5) Moving forward with the professional development
effort was contingent upon immediately and openly addressing the teachers’ content knowledge
and anxieties.

For example, all three of these teachers diverted conversation more during mathematical
lessons within the professional development program than in discussions that centered on how to
best design a lesson or assessment. This finding caused us to originally suspect that the teachers
had generated defensive facades to prevent others from realizing their lack of conceptual content
knowledge (mathematics). Although we knew from pretests that the teachers had gaps in their
understanding of secondary mathematics, it was only through systematic study that we truly
recognized the depth of their anxiety over their lack of content understandings and fear of public
recognition of this deficit. Research reveals that math anxiety exists among preservice and
inservice teachers and influences practice; however, this finding is primarily documented at the
elementary level (e.g., Cohen & Leung, 2004; Hembree, 1990). Arem (1993) defines math
anxiety as “a clear-cut, negative, mental, emotional, and/or physical reaction to mathematical
thought processes and problem solving” (p. 1). We found that the construct of math anxiety,
although rarely noted in secondary mathematics education, best described the reactions we
witnessed with these teachers. For example, we were taken aback when these practicing high
school teachers exhibited what appeared to be symptoms of math anxiety (e.g., unwillingness to
complete math homework assignments, avoidance of participating in collaborative problem
solving) to the level that prevented engagement in mathematical lessons. Hence, our frustration
over not immediately getting to the “mathematics” represented a real concern, particularly given
that we had designed our effort to address all research recommendations for mathematics teacher
education.

Further analysis revealed the strong role that their school context was playing in this process.
Within this building these teachers were deemed as master teachers; in particular, one of the
teachers, even without state certification, was placed in the role of Department Chair and another
was put on the School Improvement Team. So, on the one hand, these teachers were publicly
recognized by administration as being strong teachers. On the other hand, they were also
encouraged to engage in our professional development program to achieve state-level
certification and told daily that students’ standardized mathematics assessment scores must
improve. This dual message resulted in the teachers forming a professional identity that stemmed
from competing forces of maintaining the perception of public mastery, while simultaneously
trying to figure out how to engage and learn. How content knowledge manifested through the
teachers’ professional identities became imperative to moving forward with their professional
development in mathematics.

Discussion
Findings from this research study suggest that teacher educators can better facilitate

professional development by providing teachers a vehicle through which they can feel
empowered to voice and make change. Teachers want to feel as though their opinions are heard
and valued. In a study of professional development with secondary mathematics teachers, also in
an urban context, Lachance and Confrey (2003) provided such a vehicle for teachers by
developing an interactive community that encouraged collegiality and sharing. They found that
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grounding discussions in mathematical activities allowed for the generation of community,
which could then provide teachers with a foundation for instructional change. While we agree
that both components (content and community) are needed to facilitate change in practice, our
work suggests that the establishment of a community based on a trusting relationship might be a
necessary requirement to fully engage teachers in learning mathematics. As Lachance and
Confrey (2003) note, “there is very little in the literature discussing the development or existence
of teacher communities that addresses the notion of using mathematical content (or other subject
content) as the “issue” around which teachers can interact and professional communities can
develop,” (p. 132). The experiences conveyed in this study will ideally move teacher educators
forward in their thinking about development of teacher communities.

Within this professional development effort what we found genuinely surprising was the
level of anxiety the teachers had over their own insufficient knowledge of mathematics, as well
as how intricately it was bound with both their personal and professional identities. While these
findings may be anticipated in an elementary context, it is not often discussed in high school
situations and therefore must be further investigated. In future professional development
situations we will not hold assumptions related to any teacher’s content knowledge, beliefs about
content knowledge, and how these aspects (in addition to context) define and shape the
development of a teacher’s view of good teaching.

This study aims to contribute to what is understood about the impact of mathematical anxiety
and professional identity on teacher learning within urban, secondary contexts. Future work
should explicitly explore the following questions: What assumptions do we hold about high
school mathematics teachers’ views about mathematics? What role does math anxiety play in a
teacher’s professional identity? How should professional development be structured to help
teachers recognize and overcome their own math anxiety?
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This report describes the construct of decentering and its influence on the discourse of a
professional learning community (PLC) of secondary mathematics teachers. We used
decentering as a construct to describe a behavior in which one attempts to understand the
mathematical thinking and/or perspective of someone else. Analysis of data from four PLCs over
two semesters revealed that a PLC facilitator’s ability to decenter influenced the quality of
mathematical discourse in the PLC. As a facilitator’s ability to decenter increased, the discourse
among members of the PLC became more meaningful. In addition, the degree to which a
facilitator decentered when interacting with other PLC members appeared to be influenced by
the facilitator’s understanding of the topic under discussion. This research is informing the
instructional design for PLCs and PLC facilitator training. The findings also have the potential
to contribute to the theoretical construct of decentering.

This study investigated the mathematical discourse among members of four different
professional learning communities (PLCs) of secondary mathematics teachers. In this report we
focus on PLC facilitators’ roles in promoting meaningful mathematical discourse among the
learning community’s participants. By “meaningful mathematical discourse” we mean
substantive conversations about understanding, learning, and teaching mathematics. We took a
design research approach in which a strategy to support PLC facilitators was continually refined
as we investigated its impact on the quality of the PLC’s mathematical discourse. Our findings
revealed that facilitators who made efforts to understand the thinking and perspectives of other
PLC members (we call this decentering) were better able to engage the members of the
community in meaningful discourse. This paper describes five manifestations of decentering and
their effect on the mathematical discourse among the PLC’s teachers. It also illustrates the ways
in which four PLC facilitators, over time, decentered, some with increasing flexibility and
increasing effect on the PLC’s discourse. Findings also revealed that a facilitator’s level of
understanding of the concept that was central to the lesson influenced the quality of the PLC
discourse. This was revealed in her/his questions, choice of tasks, and discussions with members
of the PLC.

Theoretical Framing of the Study
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To facilitate teachers in a professional learning community requires that the facilitator place
himself in the teachers’ shoes. “Placing oneself in another’s shoes” is a classic instance of what
Piaget (1955) identified as decentering, or the attempt to adopt a perspective that is not one’s
own. Steffe and Thompson (2000) extended Piaget’s idea of decentering to the case of
interactions between teacher and student (or mentor and mentee) by distinguishing between ways
in which one person attempts to systematically influence another. In their telling, decentering
involves the ways a person adjusts his or her behavior in order to influence another in specific
ways. In that process, each person acts as an observer of the other, creating models of the other’s
ways of thinking. Steffe and Thompson distinguish between two primary ways in which persons
interact with each other and two kinds of models that people make of others in the course of
interacting. As an interactor, a person can be a first- or second-order observer of the other. They
can also create first- or second-order models of the other. A first-order observer is one who
interacts with another in a non-decentered mode, taking non-reflectively the assumption that the
other’s thinking is identical with the observer’s. As a second-order observer, the observer
assumes that the other person’s behavior entails a rationality of its own and attempts to discern
that rationality. That is, a second-order observer creates models of the other’s thinking and is
aware that it is a model. It is necessary to clarify that a person can be a first-order observer if the
observer realizes another’s thinking is different than his or her own but does not attempt to build
a model of this thinking. Also, if an interactor is speaking such that he or she believes the other
person understands the utterances (of the interactor) just as intended, the interactor is acting in a
non-decentered way.

Methods
The data for this study was collected from PLC members who were concurrently enrolled in

a three-hour graduate mathematics education course and an accompanying one hour, school-
based PLC for secondary mathematics and science teachers. The size of the PLCs ranged from
three to seven members, with each PLC composed of teachers from the same school. The goal of
the course was to deepen teachers' understanding of rate-of-change and function through a
covariational approach to teaching function (Carlson, Jacobs, Coe, Larsen, Hsu, 2002;
Thompson, 1994). The PLC model in this project drew from past research on “records of
practice” in which communities of teachers study student work and classroom video (Ball &
Bass, 2002). The PLC activities included a lesson study component, in which a lesson was
developed, implemented and observed, while the researchers assisted the teachers in collecting
and analyzing data (Ma, 1999, Shimizu, 2002). Following the lesson implementation and
observation, the teachers use the data collected to make revisions to the lesson.

The content focus of the PLC followed that of the course. The PLC sessions and agendas
were designed to improve teachers’ ability to i) engage in conceptual conversations about
knowing and learning central ideas of the course; ii) discuss and assess student thinking; iii)
develop inquiry based, conceptually focused lessons; and v) engage in meaningful reflection on
the effectiveness of their instruction.

Each PLC had one member, selected because of her/his potential to emerge as a teacher
leader, who acted as facilitator. The facilitator received 18 hours of summer training and met
weekly with university faculty to plan for each PLC session. PLC facilitators were responsible
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for managing the discourse during their PLC sessions. They were expected to follow a general
agenda that was developed by project faculty, although they were encouraged to deviate from the
agenda as needed to allow meaningful discussions to continue. Facilitators received coaching
between meetings from a project leader who had reviewed video recordings of recent PLC
meetings. The coach met for 30 minutes with all four facilitators once per week to offer general
suggestions for improving their facilitation abilities. During the meeting the coach also asked
specific questions aimed at promoting reflection about the facilitators’ interactions with other
PLC members in their PLCs (e.g., “Sharon, why don’t you allow Mary to answer questions?”
and “Dan, why are you doing most of the talking?”). These specific questions were gleaned from
the data that was reviewed the previous week.

Each course and PLC meeting was videotaped. The videos were coded by two researchers
who worked as a team to code all videos for a designated PLC between PLC meetings. Selected
videos were discussed among the research team each week, with video excerpts related to
decentering also shared with the PLC coach. During these meetings the research team identified
emerging theoretical constructs in a manner consistent with a grounded theory approach.

Results
Analysis of the PLC video data revealed five observable manifestations of decentering. We

have characterized these Facilitator Decentering Moves (FDM) as follows.

FDM1: The facilitator shows no interest in understanding the thinking or perspective of a
PLC member with which he/she is interacting.

FDM2: The facilitator appears to build a partial model of a PLC member’s thinking, but
does not use that model in communication with the PLC member. The facilitator
appears to listen and/or ask questions that suggest interest in the PLC member’s
thinking; however, the facilitator does not use this knowledge in communication.

FDM3: The facilitator builds a model of a PLC member’s thinking and recognizes that it
is different from her/his own. The facilitator then acts in ways to move the PLC
member to her/his way of thinking.

FDM4: The facilitator builds a model of a PLC member’s thinking and acts in ways that
respect and build on the rationality of this member’s thinking for the purpose of
advancing the PLC member’s thinking and/or understanding.

FDM 5: The facilitator builds a model of a PLC member’s thinking and respects that it
has a rationality of its own. Through interaction the facilitator also build’s a
model of how he/she is being interpreted by the PLC member. He/she then
adjusts her/his actions (questions, drawings, statements) to take into account both
the PLC member’s thinking and how the facilitator might be interpreted by that
PLC member.

Tracking the facilitation abilities of the four PLC facilitators over one year revealed that two
of the four facilitators made observable shifts in their ability to decenter over the year. A third
facilitator was effective in promoting meaningful exchanges between the other PLC members,
although he did not show noticeable improvements in his ability to decenter when interacting
with his colleagues. The fourth facilitator made no efforts to decenter, nor did she make moves to



844

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

promote meaningful mathematical discourse in her PLC. In this section we describe and contrast
ways in which the facilitators engaged with and used decentering in their interactions. We also
discuss PLC facilitator shifts that we observed.

In Jason’s early weeks as a facilitator he was observed asking general questions and made
various moves (e.g., probed a PLC member to draw a picture, prompted a PLC member to
explain her thinking) to promote discussions among members of his PLC. As the semester
progressed his ability to promote meaningful discussions between the PLC members improved,
although he was rarely observed decentering when interacting with his colleagues. Analysis of
the video and other written data revealed that Jason’s weak understanding of the concept under
discussion was an obstacle to his decentering. At strategic moments during discourse he
regularly missed opportunities to inquire about the thinking of a PLC member, although his
awareness of his mathematical limitations combined with his desire to facilitate rich discussions
resulted in him regularly involving other members of the PLC to facilitate meaningful
exchanges, i.e., exchanges in which the interactors built and used models of each others
mathematical understandings. This pattern of interaction is illustrated in the following exchange
in which PLC members were discussing their solutions to a photo enlargement problem.

In this problem, a 6” by 8” photo was to be enlarged. The enlarged width dimension was
given and the PLC members were asked to find the enlarged length dimension and provide a
rationale for their approach. The PLC agenda also prompted the facilitator to manage the
conversation so that the PLC members emerged with an understanding of the connections and
usefulness of expressing a proportion as both a constant ratio and a functional relationship in
which one quantity is expressed as a constant multiple of the other. (This had been the focus of
the course activities just a few days earlier.) In the following except Jason posed general
questions to Richard about his thinking after he had constructed a written response to the
question.

Jason: What would you want your students to see if you know that there is a … there
are two quantities that are in a constant ratio?  What would you want your
students to say or see?

Richard: That … what I think is maybe that even though the uh difference in numbers six
to fifteen and eight to twenty and like the amount … the total amount that they
want is different … the uh I was gonna say percentage wise they went up it’s
the same. Like they like … what I got was uh … six was increased or … yeah
six is forty percent of fifteen and eight is forty percent of twenty. So they both
… so the … so what I got was the photo enlarged forty percent like even though
they are different numbers forty percent of a bigger is gonna be a bigger number
and forty percent of a smaller number is gonna be a smaller number. So that
even though the difference between the numbers … that the overall way they
are changing I guess is staying the same. So if I were to go even bigger than …
if I were to go from the twenty to the fifteen I still all I did … the twenty and the
fifteen and enlarge it even more its still going to be just that forty percent
different … difference.

Jason: Mm k. Now you two (points the other two members) he’s your student and he
just explained that to you and remember we’re just talk… we’re just trying to
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find out what he knows about constant ratio. We are given two quantities … k?
What are ya … how do you want to interview him?  What would you say?

First, we noticed that Jason showed interest in Richard’s thinking but he did not act on the
thinking expressed by Richard (FDM2). Instead, he involved other members of the PLC in
questioning Richard. In doing so, Beth, the mathematically strongest member of the PLC, began
questioning Richard. Her questions revealed that she believed Richard was unable to see how the
fixed ratio between the two proportional quantities could be used to construct a functional
relationship.

Beth: Could you also come up with a statement that would show the relationship
between the height and the width that would work in any situation?

Richard: Betwe … a relationship between the height. … (looks at Beth)
Beth: (Interjecting) Between the length and width of this photo that would work in

any situation?  That you could always.
Richard: Ya. Ya …and actually when I was … just thinking about that … ya know the

six is … if I were reducing it that the forty percent works what I would need to
do is take uh … six and divide that into fifteen to find out what the … to find
out what the real change in percentage was cause I was enlarging and not
shrinking it what I … what I said was if I was shrinking if I were shrinking it
going from fifteen to six then I just shrunk the fifteen forty percent but I didn’t
necessarily enlarge the six forty percent.

As this interchange unfolded, Beth continued to make requests for responses and
constructions to advance Richard’s thinking toward a more connected and flexible understanding
of proportionality. In other excerpts she also appeared to understand and appreciate the value of
expressing the relationship between the two quantities as both a constant ratio and a functional
relationship with a constant multiple. Her subsequent questioning revealed that she was relying
on her understanding of proportionality and the model she built of Richard’s thinking to decenter
in her interactions with Richard (FDM4).

Our third facilitator, Sharon, initially did not decenter when interacting with other members
in the PLC. She did not show interest in understanding their thinking. Instead, she dominated the
conversations by providing explanations that were based on her understanding of the content
under discussion (FDM1). Her explanations did not initially build on the thinking of other PLC
members, although she did make an attempt to provide correct explanations when she believed
that a PLC member was having difficulty. After only a few PLC sessions, over which time she
received specific suggestions from the PLC coach, did she began to decenter when interacting
with members of her PLC. She was observed listening and questioning her colleagues and
appeared to develop models of their thinking, although her questions and interactions were
focused more on moving them to her way of thinking (FDM3). She was acting as a first-order
observer of her colleagues.

In an early PLC session, Sharon led her PLC in a discussion of the covariation of height and
volume of water in a cylinder. As seen in the following excerpt, she showed no interest in
understanding the thinking of her colleagues and her focus was on explaining the “correct” way
to think about the problem (FDM1).
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Sharon: Well, we’re not necessarily comparing volume to height, but we’re looking at
relationship between…

Lisa: wide and narrow cylinders
Sharon: … two variables, and in this case it sounds like wide and narrow cylinders is

more appropriate than saying height and volume like we did in the box because,
um, if I remember correctly, that liquids take the shape of their container, but a
liter is a liter is a liter, no matter where it is. So if we take the same amount of
water, aren’t we taking the same volume of water and just giving it a different
shape?

Lisa: Mmm Hmm. OK… So we’re varying?
Sharon: So what are we varying? We’re varying the height with the…
Lisa: with the size of the cylinder
Sharon: …based on the size of the cylinder. So the height versus probably the radius…

In a later session, the PLC members discussed the photo enlargement problem described
above. The PLC members had previously discussed ideas of constant ratio, scale factor, and
constant multiplier in the context of proportional relationships. Subsequently, we observed
Sharon probing the PLC members to help them express a proportional relationship described in
terms of a common ratio as a function that relates length and width by a constant multiple. In
discussions with her colleagues, she stated, “we should be able to write base as a function of
height, or height as a function of base. So Anne (gesturing to one PLC member) pick one
quantity, and Sally (gesturing to a different PLC member) take the other, and try to write a
function.” It is noteworthy that her questioning did not appear to be based on the PLC members’
current thinking. Rather, her questions appeared to be for the purpose of guiding the other PLC
members to her way of thinking (FDM3).

In Dan’s early weeks as a facilitator he did not decenter when interacting with other PLC
members. Our data revealed that although he appeared to listen to other PLC members when they
spoke, he did not make an effort to understand their thinking. During the weekly coaching
sessions the PLC coach pointed this out to him, and soon thereafter we noticed shifts in Dan’s
interactions with members of his PLC. He shifted from doing most of the talking and explaining,
and very little listening, to making regular attempts to understand the thinking of other members
of the PLC. He was also observed drawing on his understanding of individual PLC members’
thinking and understandings to guide his questions and actions (FDM4). As one example, Dan
had asked Bill to provide an explanation of his reasoning when working through a proportional
situation involving scaling. At one point in his questioning, Dan (the facilitator) turned to Larry
(another member of the PLC) and asked, “Are you going to let Bill (another member of the PLC)
get away with all that algebra stuff without explaining what he’s doing?” Dan then got distracted
by his attention to Bill’s solution and began to ask Bill another question. In mid sentence he
realized that he had not listened to Larry’s response. It was at this point that he caught himself,
turned back to Larry, and invited Larry to ask Bill for clarification of aspects of his solution
process. As he listened to Larry’s questions and discussions with Bill, Dan made utterances that
suggested he was trying to understand Larry’s thinking. Dan subsequently engaged in a
conversation with Larry in which he asked numerous questions that were directed at
understanding Larry’s thinking. His questioning demonstrated that he was aware that Larry had
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his own way of thinking about this problem and that Larry’s way of thinking was different from
his own. The remaining utterances of this exchange revealed that Dan leveraged his model of
Larry’s thinking to engage in a meaningful and satisfying exchange that led to the advancement
of Larry’s understanding (FDM4). Dan was acting as a second-order observer in this exchange.

Karen, our fourth facilitator, exhibited extreme discomfort with the content and regularly
made utterances that suggested she had not adopted the philosophies of the project (e.g., she did
not value examining student thinking and expressed discomfort in exploring multiple approaches
to solving a problem). She was not receptive to suggestions made by the PLC coach. The video
data also revealed that she made no effort to listen to other PLC members, and on occasions
when she did ask a question, it was not based on her understanding of how her colleagues were
thinking. Karen was the only facilitator who showed no discernable shifts during her
participation in the project. There were no instances when Karen decentered during her
interactions with her colleagues. She was focused on obtaining answers to problems and
expressed that she believed the goal was for each person in the PLC to get an answer. In fact, at
one point during the second semester when the PLC coach encouraged her to explore the
thinking of her colleagues, she questioned why one would be interested in understanding the
thinking of others. As an example of Karen’s approach to facilitating, we provide excerpts from
an interchange that took place fairly late in the semester, in which Thomas, one of the PLC
members, was discussing his understanding of an acceleration, rate, and time problem.

Thomas: Kind of like the y equals “a” t-squared plus “b” t plus “c”, and you multiply a
times t squared, you have to end up with something in meters, so here you’re
multiplying these two things together, or dividing them, whatever, and you need
to be ending up with meters per second.

Karen: See, I didn’t, I didn’t read it as that at all. I did it another way. (Karen then
moved the discussion to a different topic.)

In this excerpt, we see Thomas presenting a procedural description for working a problem.
He revealed very little understanding about the quantities or relationships in the situation. Karen
did not appear to be interested in Thomas’ thinking. Instead, she made a comment that focused
on her approach to the problem. As was typical of Karen’s actions as a facilitator, she did not
seem to be interested in understanding the thinking of the other PLC members (FDM1). As such,
she had no basis on which to decenter when interacting with her colleagues.

Discussion
Sharon and Dan improved their ability to decenter over the course of the year. As their ability

to decenter increased, the discourse among members of the PLC became more meaningful. In
particular, efforts to model other PLC members’ thinking resulted in more meaningful
discussions about ideas of knowing, learning and teaching mathematics in their PLCs.

The mathematical discussions in Jason’s PLC also became more meaningful over the year,
although these improvements did not result from Jason decentering during interactions with his
colleagues. His weak mathematical understandings appeared to limit his ability to decenter in the
context of discussions about mathematical ideas. As a result we found the high level of discourse
in Jason’s PLC to be surprising. We had previously conjectured that meaningful mathematical
discourse relied on the facilitator’s understanding of the content being discussed as a coherent
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system of ideas to be learned. Although we continue to believe that Jason’s weak knowledge of
the content limited his effectiveness as a facilitator, we now realize that a facilitator’s
effectiveness can be enhanced by making strategic moves. In the case of Jason, he asked
questions that promoted reflection and decentering by other members of the PLC, as they were
encouraged to interact with each other. The quality of the exchanges that followed Jason’s moves
to facilitate discussions among the PLC members appeared to be affected by the decentering
abilities and depth of mathematical understanding of other members of the PLC.

Implications
This research adds to the knowledge of the attributes of an effective PLC facilitator. The five

manifestations of PLC Facilitator Decentering Moves (FDMs) should be useful for building a
theory of PLC facilitator behaviors and discourse. They will also be useful in developing
facilitator training tools and workshops. We anticipate that teachers’ participation in PLCs that
have a focus on decentering and meaningful communication will impact teachers’ interactions
with students. It is likely that as a PLC facilitator improves her/his ability to decenter when
interacting with colleagues about mathematics teaching, learning and knowing, he/she will be
better able to decenter when interacting with students. After participating in PLCs for a year,
multiple teachers described how her/his efforts to understand other PLC members’ thinking has
positively impacted the nature and quality of their interactions with students. We will be video
taping these teachers’ classrooms during the upcoming year and will continue to investigate their
decentering during PLC sessions and teaching.
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“TWEAKING” TASKS FROM A MIDDLE SCHOOL MATHEMATICS
REFORM CURRICULUM: LONGITUDINAL DESIGN PROCESSES

AND THE ROLE OF THE INSTRUCTIONAL CONTEXT
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This study explores how teachers revise tasks from a middle school mathematics reform
curriculum over time, with consideration of how the instructional context influences the process
of revision. The study takes place in three districts that are long-term implementers of the CMP
curriculum. Thirty-one participants were interviewed regarding their district’s implementation
of CMP, with three of those participants selected for a collective case study that focused
intensively on specific episodes of revision. The results suggest that the process of revision, and
the resources teachers draw from in the process, changes over time. As teachers successively
enact CMP tasks, they draw more from their experiences and from each other. The stability of
the instructional context was important in teachers’ feelings of competency in using CMP
effectively. The results also implicate a form of teacher knowledge important to reform efforts.

One of the major outcomes of the current mathematics education reform is the development,
release, and widespread implementation of a dozen comprehensive curricula based on the 1989
Standards document published by the National Council of Teachers of Mathematics (The K-12
Mathematics Curriculum Center, 2005). A number of school districts have adopted these
curricula as a means to transform mathematics instruction (Remillard, 2005), a phenomenon that
invites a focus on the ways that teachers use these materials to design instruction. Research that
investigates teachers’ use of NSF-funded curricula suggests that teachers’ processes are, to
follow Eisner’s (1988) characterization, idiosyncratic, personalistic, and experiential (Herbel-
Eisenmann, Lubienski, & Id-deen, 2006; Lloyd, 1999; Remillard & Bryans, 2004; Sherin &
Drake, accepted).

The situated, idiosyncratic, and experiential nature of teachers’ use of curricular materials
connects to the notion of teaching as design. In the design perspective, a teacher takes the
resources and tools that are present in a given context (available designs), uses them to design
instruction (designing), the result of which is a unique set of instructional conditions and
activities (the redesigned) (New London Group, 1996). The notion of design implies the
involvement of “complex systems of people, environments, technology, beliefs, and texts” (New
London Group, p. 73). Thus, design implies that planning and enacting instructional tasks are
activities embedded in particular contexts.

Kennedy’s (2005) study of nearly 500 teaching episodes describes the complexity that
teachers encounter as they design and enact instructional tasks. Kennedy elaborates the myriad
and often competing purposes teachers ascribe to their instruction, purposes that may undermine
the intentions of reformers. An important implication of Kennedy’s work is that researchers need
to consider the ways in which the ideals of a reform vie with the demands, both intellectual and
managerial, placed on teachers in U.S. schools. Consequently, researchers need to interpret
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teachers’ use of curriculum materials not in terms of fidelity to the ideals of a reform, but rather
in terms of a process that takes into account the affordances and constraints in a given context.

Much of the research on teachers’ use of curriculum materials focuses on the interaction
between teachers, curriculum, and context at a given point in time. An important extension of
this work is to consider the ways in which the design process functions over time, a
consideration that raises two related questions that form the focus of this study. First, how do
teachers’ iterative revisions of tasks reflect the affordances and constraints of their instructional
context? Second, how do teachers’ design processes function in relation to the goals set forth by
the teacher, the district, and the curriculum designers? Looking at the design process over time
provides insights into the long-term impact of reform efforts, in terms of both curriculum and
instruction. This is especially relevant in the context of mathematics education, which has seen
the development of comprehensive curricula and the expenditure of considerable resources to
implement these curricula as a means of transforming practices related to teaching and learning.

Context for Study
The study is situated in three districts that are long-term implementers of the Connected

Mathematics Project (CMP) curriculum (Lappan et al., 1998). The three districts have
participated in several large federal grants at the local research university aimed at middle school
mathematics reform and have further expended substantial material resources to implement
CMP. The districts were selected because they had used CMP for more than five years, had
committed substantial resources to supporting the implementation, and had consistent access to
outside expertise related to the use of the curriculum.

CMP is an NSF-funded middle school curriculum. NSF-funded curricula are comprehensive
and coherent, develop mathematical ideas in depth, promote sense-making, and engage students
through the use of meaningful contexts and applications (Trafton, Reys, and Wasman, 2001); as
such, they represent a substantive departure from commercially-developed curricula. CMP is the
most widely adopted middle school NSF-funded curriculum and was rated as “exemplary” in
terms of its content (US Department of Education, 1999). CMP is a 3-year curriculum for grades
6-8, designed to provide students with multiple opportunities to explore and formalize their
understanding of key mathematical ideas within five major “strands” (numbers and operations,
geometry, measurement, data analysis and probability, and algebra). The curriculum is organized
into units, each comprising of 3-5 “investigations” where students explore a key mathematical
concept or process. Each investigation begins with the presentation of a meaningful real-life
problem/situation that embodies the mathematical concept/process under study (“launch”),
followed by a combination of whole class and small group guided explorations, and concluding
with a discussion in which the mathematical concept/process at the core of the investigation is
explicitly identified and its understanding reinforced

Study Design
The study draws from two data sets. The first data set consists of 31 interviews from a study

on the three districts’ implementations of CMP. The scope of these interviews addresses the
question about the affordances and constraints in the instructional context. Of the 31
interviewees, 22 were present or former middle school teachers, 6 were present or former
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district-level administrators, and three were current principals. Each district was represented by
at least five teachers and two administrators. The second data set includes more extensive data
collection in relation to the research questions identified above on three teachers. These three
teachers constitute a collective case study, a set of instrumental cases intended to provide insight
into an issue (Stake, 2000). I explore the ways in which these teachers adapt CMP over time and
the resources they draw upon to do so.

Teachers and Teaching Context
Each of the three case study teachers had at least four years teaching experience with CMP.

Two of the teachers taught in Denton, one of the highest scoring districts in the state, and one
taught in Belleview-Burney, both inner ring suburbs of a moderately sized Northern city. Denton
was one of the first districts to adopt CMP and several of its teachers have conducted CMP
workshops under the auspices of large professional development grants based at the local
research university. The implementation of CMP in Belleview-Burney encountered challenges
related to shifting district-level administrators and policies in the initial years, though the ten
teachers from this district interviewed for the implementation study report being well-supported
in their use of the curriculum. Belleview-Burney is in the lower half of districts in terms of test
scores in the county in which it and Denton are located, which has manifested itself in increased
sensitivity and focus in relation to preparing students for the state test.

Data Collection
The primary sources of data consist of semi-structured interviews, videotaped classroom

observations, and video-stimulated interviews. Each of the three focus teachers was interviewed
from two to five times, depending on their participation in a professional development project.
Additional data include semi-structured interviews of twenty teachers from the study on the
districts’ implementation of CMP.

Semi-Structured Interviews
For the implementation study, I interviewed the participants regarding: (1) their beliefs about

the learning and teaching of mathematics; (2) their beliefs about CMP; (3) their practices around
planning, pedagogy, and assessment; (4) contextual factors such as school demographics, district
curriculum guidelines, and the impact of state testing; and (5) the resources they draw on to plan
their mathematics lessons.

Observations of Class Sessions
For each of the three case study teachers, I videotaped five to eight consecutive classes from

the beginning of a particular unit. These observations allowed me to investigate the nature and
extent of adaptations of the tasks as they appeared in the CMP student materials. From these
observations, I selected ten brief classroom episodes so that they: (1) spanned a variety of tasks;
(2) included both launch and summary portions of lessons; and (3) represented key points in the
development of the main mathematical concept for the unit. I then used these ten episodes as the
basis of the video-stimulated interviews, discussed below.
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Video-Simulated Interviews
I used video clips to elicit in specific instances of curriculum use (1) the purposes and

processes of revision, including adaptations and revisions from the base curriculum and from
how they designed the task in previous years, (2) their reflections on how the task design
engaged students, (3) the experiences and resources they drew on to design the task, and (4) how
they might revise the task in the future, based on how students reacted to the design.

Data Analysis
The semi-structured and video-stimulated interviews were analyzed using both typological

and inductive coding (LeCompte & Preissle, 2003). The typological coding was used to develop
general categories according to the structure of the questions in the semi-structured interview
(e.g. beliefs about mathematics, pedagogical practices, general design of CMP), the categories of
resources teachers use for planning (e.g. student text, teacher resource materials, interactions
with colleagues), and comments specific to the use of the CMP student materials (e.g. purpose of
task, adaptations, future revisions). Within each category, codes inductively emerged as I made
passes through the data. For example, I noted differences in the ways teacher talked about the
first time they taught a particular unit from subsequent enactments, so I created a code marking
whether a comment referred to the first enactment of a task or unit.

Results
I initially present some themes from the results from the implementation study. These themes

include resources teachers drew on as they designed tasks, how the process of design changed
over the course of successive implementations of the same unit, and factors in the instructional
context that affected the design process. I then focus on the three case study teachers, with an
emphasis on how the teachers integrated reflections from prior implementations, goals they
identified for the task, the tasks as they appeared in the student materials, and their revisions of
CMP tasks. I explore (1) the extent to which the teachers appeared to be reaching stable designs
that served the purposes of being efficient and effective and (2) the coherency and efficiency of
the teachers design processes.

Implementation Study Results
The results from the 22 teachers, including the three case study teachers, suggest that

teachers drew on a variety of resources to design instruction but that these resources changed
over time as teachers successively implemented units. Furthermore, the stability of the
instructional context played a significant role in teachers’ developing knowledge of how
particular task designs functioned within their instructional context.

Resources Teachers Drew on To Design Tasks
Teachers drew on various resources in order to understand the sequence of tasks, key

mathematical points to emphasize, the ways that students would react to tasks as written in the
student materials, and any challenges or obstacles they might face in enacting a particular design.
The resources they drew on to develop this understanding changed over time as teachers
successively taught the same units. Initially, the teachers relied on the CMP teacher resources
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and unit-specific training to provide the information, but gradually they referred to their own
experiences and collaborative planning with colleagues as the most important resources.

Many of the teachers reported reading the teacher resources quite closely, especially the first
time or two teaching a unit. Ms. Kantor noted:

And, so I definitely always look at it, the first time, especially the first time I teach a unit I
look at it, and throughout certain points in the unit I am always going back to the summary
and seeing OK, what are the questions, or what are some ideas that kids might come up with
that the new ones have a lot more examples of what kids might say and different strategies
and explains that strategy. (Interview 120506)
Subsequently, teachers began to develop knowledge of how the curriculum functioned in

their instructional context and they relied heavily on that knowledge. Teachers who were able to
plan collaboratively with colleagues almost universally stated that this was valuable to
remembering past enactments and using those reflections to design the task in a way that
functioned more productively for their purposes.

The Design Process over Successive Implementations
Ten of the 22 teachers explicitly mentioned adhering very closely to the tasks as represented

in the student texts the first time they taught a unit. Ms. Karp, one of the case study teachers,
stated:

So usually, when I go through CMP the first time I'm pretty... I stay with the way the book
has its set up and then I find, once I've gone through a lesson, how I might have done it
differently. (VSR Interview 010107)

After the initial enactment, however, teachers began to revise and supplement the tasks
according to how CMP had functioned previously in the instructional context. Three of the
primary purposes for revision were to emphasize basic skill development, which was a big
concern in light of the state-mandated tests, to provide students with resources to study and
complete homework problems, which teachers stated also helped to appease parent concerns
about CMP, and to make the tasks more efficient in terms of achieving the stated learning goals.
The first two purposes usually required some form of supplementing with teacher-created
materials or worksheets from other sources. The third goal, to increase efficiency of the CMP
task while maintaining much of its features, is central to my research questions.

Five of the teachers used the work ‘tweaking’ to describe the iterative process of fine-tuning
the task design to make it more productive, which teachers mostly described as removing
unintended distractions to student engagement with the key idea for that task. This result, which
was echoed in most of the teachers’ comments, is consistent with Kennedy’s (2005) findings that
one of teachers’ main concerns in designing and enacting instruction is to reduce distractions,
though this often means removing some of the most intellectually engaging task features. The
case study teachers that I observed, all of whom discussed their efforts to fine tune tasks, did not
do so to remove the intellectual difficult parts of tasks, but rather to focus students on particular
concepts. The process of ‘tweaking’ was also indicative of teachers’ expanding knowledge of
how CMP functioned with their instructional context, knowledge that made them feel more
confident that they were engaging students intellectually while developing the knowledge for
which they were held accountable.
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Stability in Instructional Context
A number of teachers stated that it was difficult for them to develop competence with a

particular unit due to changes in the instructional context. There were multiple sources of
instability in instructional context, which can be classified into changes in curriculum and
changes in instructional priorities. The changes in curriculum were due to two main factors, one
being changes in the content of the state standards and tests and the other being a focus on
accelerating students in the middle school so that they would be ready to complete AP Calculus
in high school. Consequently, teachers at a given grade level were often asked to teach a number
of new units each year. One of the districts began an initiative to differentiate instruction that
proved cumbersome and impacted how teachers were able to teach CMP.

The result of this instability was that teachers were seldom given the opportunity to teach the
same units in the same instructional time with the same institutional policies from year to year.
In addition, the opportunities to interact consistently with the same colleagues were rare,
affecting the kinds of collaboration and support available to teachers. Given the challenges
associated with learning to teach a curriculum that differs substantively from most teachers’ own
experiences learning mathematics, the lack of opportunity to gain familiarity and comfort with
particular units made it seem to the teachers as if they were constantly on a steep learning
trajectory.

Case Study Teachers
The case study teachers provide further insight into the processes by which the teachers

revised the CMP tasks to suit their given purposes. There were noticeable differences between
the three teachers, particularly in terms of how well each was able to connect their prior
experiences in a given unit, their stated learning goals for a task, and their subsequent revisions.
Ms. Kantor, for example, made explicit connections between past implementations, the
mathematical goals of the task, and the subsequent revisions she made. The analysis of her
interviews suggests that the revisions she made were appropriate given the challenges she
identified in earlier enactments and the lesson observations indicated that the revisions were
effective in getting students to engage with the goals that she identified. Ms. Cassini, on the other
hand, made revisions that did not seem to directly address difficulties she cited from past
enactments, especially in terms of student engagement with ideas. Rather, Ms. Cassini’s
revisions were intended to help students organize their thinking more generally and were more
focused on logistical task features. As a result, in the observations of her lessons, it was unclear
how her revisions served to focus student thinking on the mathematical goals she identified. Ms.
Karp had the least coherent process. She relied on experiences using other curricula and was
prone to making revisions on the fly, during a task enactment rather than in the planning process.
In terms of using past enactments to inform subsequent enactments, as a measure of teacher
learning of how to use CMP in a given context, Karp exhibited the least specific evidence of this.
She employed general heuristics to describe her process of task design, while Cassini and Kantor
spoke in very specific terms regarding the ways in which they revised CMP tasks.
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Discussion and Implications
The results from this study have implications for efforts to use an NSF-funded curriculum as

a catalyst and for reform. The first implication is that over time, teachers draw on different
resources as they design instruction. Initially, they draw from the teacher resources materials and
from curriculum-specific professional development, but over time they draw more from their
own experiences and, when available, collaborative planning. Districts who are interested in the
long-term effectiveness of the use of an NSF-funded curriculum should facilitate collaborative
planning and initiate collegial discussion around the curriculum as much as possible.

A second implication is that the development of teachers’ knowledge and competence is
enhanced by stability in the instructional context. Given the widely documented challenges
teachers encounter when enacting a curriculum for the first time, instability in the instructional
context creates a perpetually steep learning curve that leaves teachers exhausted, a phenomenon
noted by Tyack and Cuban (1995) and by Kennedy (2005). Teachers in the district with the most
stable context were the most satisfied with CMP and with their district’s efforts to implement it.

The third implication is that the idiosyncratic and personalistic nature of teachers’ curriculum
processes suggests that teachers will develop at different rates the knowledge of how to use CMP
effectively in a given context. This form of knowledge, which I term curriculum-context
knowledge (CCK), is vital to the effective use of a curriculum. The most effective of the three
case-study teachers had an intricate knowledge of how CMP tasks functioned in terms of
engaging her students with specific ideas, a knowledge she was able to articulate in detail and
utilize in her revisions of tasks. Developing CCK is a form of teacher learning that is relevant to
mathematics reform due to the emphasis placed on curriculum as a mechanism to reform
instruction and needs to be an explicit focus of professional development. This study, with its
focus on revisions over time, provides some preliminary insights into the nature and importance
of CCK.
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This investigation studied secondary mathematics teachers’ understanding of performance-
based tasks with respect to the contextual design of tasks that promote urban students
engagement in and pursuit of learning mathematics. The findings showed after engagement
in a one-week institute, teacher-designed tasks remained inconsistent with characteristics of
tasks that are culturally relevant and require high cognitive demand for urban learners.

Consistently, literature addressing urban education states urban learners look for
challenging situations that connects to real-world contexts. Urban learners want to see the
“big picture” and understand how the curriculum will relate to their future endeavors.
Teaching for conceptual understanding provides a means of increasing the learners’ critical
thinking skills, connects concepts to real-world contexts, and creates a learning environment
in which  the connections within mathematics are developed as opposed to the teaching of
mathematics topics as segmented and discreet (Gay, 2002; Howard, 2003).  With the move
toward standards-based teaching, whereby students engage in performance-based
mathematical tasks, students have access and more opportunities to approach learning
mathematics conceptually and within real-world contexts.

The move toward standards-based teaching aligns with the expectations of a culturally
relevant classroom in which mathematics lessons are developed and taught in ways to
promote high levels of cognitive demand in student learning. In this learning environment
students are engaged in performance-based mathematical tasks, have access and more
opportunities to approach learning mathematics in ways to develop a deep understanding of
mathematics and an appreciation of the beauty of mathematics.

While this movement toward standards-based instruction has been in existence for almost
two decades (National Council of Teachers of Mathematics, 2000), the need for research
addressing the challenges of and pathways to implementing standards-based
instruction—especially in urban classrooms—is crucial.  Thus this research study was
designed to examine urban secondary mathematics teachers’ understanding of performance-
based mathematical tasks.  The research question for this study is: how do teachers of urban
learners define performance-based tasks and how do their definitions manifest into their
design of tasks?

Methodology
The participants of this study were 30 secondary mathematics teachers who were selected

by their respective principals to participate in a week-long, summer institute with sustained
follow up during the academic year. During the weeklong intensive workshop, the
participants were immersed in activities to strengthen their knowledge of performance-based
mathematical instruction. Also the teachers were introduced to the Mathematical Task
Framework (Stein, Smith, Henningsen, & Silver, 2000), as a process in for analyzing and
creating performance-based tasks with respect to the elements of culturally relevant
pedagogy. While engaged in the workshop, the participants reflected on their teaching
practices, as well, as their personal meanings of performance-based tasks. Data collection
included a survey and teacher-constructed tasks. The survey provided baseline data on the
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participants’ knowledge of performance-based tasks.  Constructed tasks refer to the process
of tasks creation, analysis, and revision. An analysis of three participants provides a snapshot
of the data results. Analysis Framework

To analyze the cognitive demand of each task the Mathematical Task Framework set
forth by Stein et al. (2000) was utilized. The framework categorizes the cognitive effort
employed to complete a task into four areas: doing mathematics, procedures with
connections, procedures without connections, and memorization. If a task has the
characteristics of the latter two categories a low level of cognitive effort is exhibited. The
other two categories require a high level of cognitive demand. The higher domains require
tasks to have multiple pathways towards a solution. The process of reaching a solution is
valued more than the solution itself and the process of finding a solution most likely will not
have an algorithm that can be readily applied. In this domain the task is also connected to
real-world phenomenon. Within memorization and procedures without connections, tasks
have an explicit and implicit pathway toward a solution and in many cases the task is neither
connected to related mathematical topics nor real-world scenarios. A scale of one to four was
used to determine if the task had a connection to real-world occurrences and clear pathways
towards a solution.

To determine the level of the participants’ understandings of an exemplary task, Suzuki
and Harnisch’s (1995), criteria for performance tasks was applied. This criteria include (a)
replicating real-world events, (b) having various pathways to reach a solution, (c)
demonstrating the continuity of mathematics instead of discrete segments, (d) providing a
space for students to communicate understanding of the concepts, and (e) having a rubric for
clear explanation of expectations. These guidelines were used to assist the teachers in
creating tasks that are high in cognitive demand as well as challenging and meaningful for
students.

   According to Gay (2002) through the application of varied instructional techniques,
culturally relevant pedagogy uses students’ prior knowledge and cultural positioning to make
connections between the students’ community and home as well as validate their cultural
stance. To determine the cultural relevance of the task, each task was reviewed for
components that allowed for culturally relevant connections and use of prior knowledge.
Questions were asked in the analysis process were: (a) How are the students’ interests
incorporated, (b) In what ways are students allowed to express their individuality, and (c)
What are the connections to the students’ community?

Discussion and Results
Each of the three participants was considered as a separate case for analysis. In Table 1

we display a sample of the participants’ initial definition of a task and their constructed tasks.
The developed tasks of these three participants are in alignment with their personal definition
of a performance task. However, Kyle’s and Catherine’s tasks contained most of the criteria
for a performance-based task that Suzuki and Harnisch (1995), set forth. Participants’ ability
to design tasks that meet the criteria of standards-based instruction that simultaneously serves
as an approach to engage urban learners in mathematical tasks was minimal. Most of the
tasks created did not have a connection to culturally relevant instruction. Culturally relevant
instruction poses questions that stimulate critical reflections on the mathematics in
connection with the students’ environment. The tasks were connected to real-world
phenomena, but not specially connected to occurrences that students could relate to in their
situations with respect to their cultural identities and backgrounds. Thus this study shows
teacher engagement in professional development designed to foster instructional practices for
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performance-based instruction will require an extended period of professional development
beyond an intensive one-week institute. This project will continue over a two-year period as
we further investigate the length of time required for secondary mathematics teachers of
urban learners to develop culturally relevant classrooms that are grounded in standards-based
practices.

Table 1. Participants Responses
Participant Definition of a Task Constructed Task
Kyle A task is something

to do, quite literally.
It requires an active
participation from
those performing the
task

You have been working in acting for several years and now
your payday had come. You are about to be signed by a big
production studio and are promised a third tier contract.
The studio gives you three options from which to choose.
The first gives you a handsome signing bonus of
$1,000,000.00 and $150,000.00 per film. On the second
plan, you would get $250,000 per film but a signing bonus
of only $100,000. The first two options promise you 3
films a year for 4 years. The third plan offers neither a
signing bonus nor per-film pay, but will pay you one-half
of one percent of all the profits from each film. You will
have to research the studio’s track record of profits from
their films over the last 5 years. Make your decision based
on the data.

Catherine Open ending,
standards-based
assignments. Usually
hands-on, real-world
application/ problem

Cameras, telescopes, and surveying equipment all have
tripods as stands. A tripod has 3 legs. The length of the
legs can be adjusted. Do you think three legged stands are
better than four legged stands? Why or Why not?

Cevia A detailed objective
stating what you
would like the
students to learn/
obtain from the
lesson/ unit

Solving a three variable equation – Choose two equations
and eliminate a variable. Choose two more equations and
eliminate the same variable. Using the two new equations
from steps one and two, eliminate another variable and
solve for the last variable. After solving for a variable,
substitute the value back into equations one or two from
steps one or two and solve for the remaining variable in
that equation. By this step, you should know the values of
two of the three variables. Substitute the values of the two
variables into your original equations and solve for the last
variable. Write the answer as an ordered triple.
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The purpose of this study is to determine how professional development affects teachers’
perspectives on and analysis of student work. To achieve this purpose, this study examines,
analyzes, and scores responses from four groups of teachers with varying levels of professional
development experience. The results suggest that sustained professional development positively
influence teachers’ interpretation, understanding, and assessment of student work.

Recent research suggests that U.S. teachers lack the specific content knowledge necessary for
teaching mathematics (Ball, 2005). This study examines if involvement in sustained professional
development affects teachers’ specific content knowledge required for teaching mathematics at
the elementary school level. This study is a small part of the much larger project S.T.E.P.,
Studying Teacher’s Evolving Perspectives, headed by Randy Philipp and Vicki Jacobs. Randy
Philipp, Bonnie Schappelle, and the authors of this paper analyzed two tasks from the Content
Assessment Test of this project. The teacher participants complete the Content Assessment Tests
along with other tests, assessments, and interviews. The teacher participants included four
groups: prospective teachers (PST), initial participants (IP), advancing participants (AP), and
teacher leaders (TL). Providing the control group, the prospective teachers are college students
enrolled in a teacher program at a large university located in southern California. The initial
participants are elementary school teachers currently enrolled but not yet attending the
professional development program, Cognitively Guided Instruction (CGI). The advancing
participants are elementary school teachers with at least two years of CGI. The teacher leaders
are elementary school teachers with at least four years of CGI. All current teacher participants
teach in an elementary school located in southern California. The overall goal of S.T.E.P. is to
improve professional development on a national level. S.T.E.P. attempts to reveal the gains from
professional development by studying four groups with varied experience in professional
development.

Therefore, stemming from the goals of S.T.E.P., the purpose of this study is to understand
and analyze the mathematical views and specific content knowledge of teachers. More
specifically, this study investigates how participation in sustained professional development
influences teachers’ perspectives on and analysis of student work. Recent research suggests that
good teachers not only need mathematics content knowledge and pedagogical knowledge, but
that teachers also need specific content knowledge for the teaching of mathematics. For example,
teachers need these special skills to design lessons, evaluate student work, and create lesson
plans (Ball, 2004). Hill, Rowan, and Ball (2005) even use assessment materials to examine the
correlation between student achievement and teachers’ specific mathematical content knowledge.
These researchers report that mathematical content knowledge positively affects student
achievement. Thus, in particular, this study examines the relationship between elementary school
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teachers’ mathematical content knowledge and participation in professional development
programs.

Mathematics education has always been a major concern in the United States, especially with
the release of each new national report assessing students’ mathematical achievement. This
growing concern causes changes in policies at the national level, requiring more specialized
classes, certificates, and degrees for teachers. For example, educational reform policies, like No
Child Left Behind, require that teachers attain more advanced degrees or take more advanced
mathematics classes in an effort to improve students’ mathematical achievement and
understanding (Ball, 2005). However, teachers may not need more advanced mathematics
courses, especially with Begle’s (1979) alarming research that suggests a negative or
insubstantial correlation exists between teachers with post-calculus courses or credits and higher
student achievement (as cited in Ball, 2005). Therefore, attention now turns towards professional
development. Perhaps increased professional development will improve student achievement and
understanding in mathematics and will change current teaching practices. Thus, this study is
significant, even on a national level, because it attempts to address these concerns. This study
examines how involvement in professional development affects teachers’ perspectives on and
analysis of student work.

Theoretical Framework
This study intends to find a correlation, if any, between the years of professional

development a teacher has in cognitively-guided instruction (CGI) and the teacher’s
understanding of grade-appropriate mathematical concepts. In particular, the study chose to look
at mathematical proficiency and the issue of transparency. The issue of transparency was brought
up in the article Divisibility and Transparency of Number Representation by Rina Zazkis (in
press) and was the initial impetus for this study. Zazkis defines a property of a representation to
be transparent “if this property ‘can be seen’ considering the representation” (in press, p. 89). In
other words, if a person attends to the property that a given representation was supposed to bring
forth, then the representation would be considered transparent to that person in respect to the
given property. In this case, the study hoped to find what properties the participants found
transparent in the standard and non-standard addition and subtraction algorithms. Furthermore,
the study wanted to probe if professional development had an effect on the transparency of
different mathematical properties.

In order to study these transparency issues, however, one must first define what constitutes
mathematical proficiency. To match with the S.T.E.P. program, this study chose to use the five
strands of proficiency from Adding It Up: Helping Children Learn Mathematics by the National
Research Council [NRC] (2001). In chapter four of the book, the five strands are listed as
follows: adaptive reasoning, conceptual understanding, procedural fluency, productive
disposition, and strategic competence. Conceptual understanding includes knowledge of
mathematical concepts and ideas. Procedural fluency includes ability to use, manipulate, and
apply mathematical algorithms. Strategic competence includes the ability to solve and reason
through mathematical problems. Adaptive reasoning includes the ability to reason logically about
mathematical relationships and concepts. Productive disposition includes one’s attitude or
perception of mathematics as a logical, rational, and worthwhile subject. It is important to
consider all of these aspects when discussing mathematical proficiency. The authors stress that
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“the five strands are interwoven and interdependent in the development of proficiency in
mathematics” (NRC, 2001, p. 116). In particular, when the rubrics for this study were built, these
five issues were continually discussed to make sure that all five were being addressed.

Methods
The subjects for this study were practicing K-3 elementary school teachers from a single

elementary school in the southern California. The teachers varied in their levels of experience,
and were divided up into three categories: those with no professional development in
cognitively-guided instruction (CGI), those with two to three years of professional development
in CGI, and those with four or more years of CGI. These groups were called initial participants,
advancing participants, and teacher leaders respectively. Since these teachers varied in the
number of years of experience in the classroom, a fourth category was added as a baseline. This
group consisted of prospective elementary school teachers who were just about to start a course
focused on children’s mathematical thinking. The participants were asked individually to look at
written student work and to explain what mathematical issues the students may have been trying
to address. This study looked at two of those tasks, namely Andrew’s task (figure 1) and Terry’s
task (figure 2). Fifty responses were randomly chosen and blinded. The responses were fairly
evenly distributed across the four categories.

Figure 1 Figure 2

Data analysis took place in two phases. The first consisted of the building of a rubric to score
the participants’ responses to the task. This was accomplished by taking five of the participants’
responses at random and organizing them from least to most sophisticated. Five more random
responses were then analyzed and from these ten responses a rubric was formed. Another ten
responses were then used to check the viability of the rubric. The rubric was then used to score
the remaining thirty responses. These categories were used to see what effect, if any,
professional development in CGI has on teachers’ understandings. The second part of the data
analysis consisted of matching up a respondent’s score with their category.
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The rubrics were finalized into the following set of scores:
Terry’s Task

Score Characteristics
0 No effort, or explanation verifies an incorrect view
1 Only talks about the algorithm, but knows the difference between the 1’s
2 Views the 1’s as “the same” but explanation deals with place value issues
3 Talks about issues of regrouping; talks about place value only in a rudimentary way
4 Understands issues of place value; implies understanding but does not state it clearly
5 Exhibits a complete understanding of place value issues

Figure 3

Andrew’s Task
Score Characteristics

0 Failure to explain Andrew’s approach on top and failure to apply it on the bottom
1 (a) correct explanation of Andrew on top without attention to place value and

incorrect application on bottom; or (b) generally following explanation on top with
attention to place value but something missing and incorrect application of Andrew
on bottom; or (c) correct application on bottom with no or incorrect explanation of
Andrew on top

2 (a) correct explanation of Andrew on top but without attention to place value and
correct application on bottom; or (b) correct explanation of Andrew on top and
correct application on the bottom but something mathematically incorrect

3 Score of 4 but either (a) inconsistently talks about the negative 2 vs. subtracting 2, or
(b) general sense that the respondent understands the algorithm with attention to
place value but either something missing or unclear explanation

4 Clear explanation of Andrew’s approach on top, correct application on the bottom, no
reference to place value as place holders, and consistently approaching the 2 as
subtracting 2, adding negative 2, or explicitly making connections between these two
ways of thinking

Figure 4

Results
Terry’s task was designed to probe the participants’ understandings about the standard

addition and subtraction algorithms. The goal was not to see if the participants knew how to use
the standard algorithms (the assumption was made that they did), but rather to see what their
understandings were about the number issues occurring in the algorithm. In particular, the
purpose was to determine if the participants saw the difference between the carried and the
borrowed one, which brings up issues of place value. In problem A, the 1 represents ten ones
which have been regrouped into one group of ten. Thus, the one group of ten is added to the five
groups of ten and the three groups of ten giving a total of nine groups of ten. The 9 in the sum of
297 represents this. In problem B, the 1 represents one group of a hundred that was borrowed
and regrouped into ten groups of ten. This is why the two, symbolizing two groups of ten, is
added to ten and not to one. In other words, four hundreds and two tens is the same as three
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hundreds and twelve tens. Thus, the three groups of ten are taken away from the twelve groups
of ten giving nine groups of ten. The 9 in the resulting difference 395 represents this.

From the graph below (figure 5), it is clear that the majority of pre-service teachers (PST)
scored a one, which means they knew that the ones were different, but were unable to articulate
why they were different, apart from perhaps talking about the nature of the addition and
subtraction algorithms in broad terms. Unlike the PST, the initial participants (IP) do not have
one predominant peak. However, there was a higher percentage of IP than PST who said that the
ones were the same. This difference may be due to the fact that the PST are still attending
college and think about the algorithms differently than the practicing teachers. A clearer trend
can be seen with the advancing participants (AP). In their case, only four people scored a two or
lower. The vast majority scored a four or a five, which seems to indicate that professional
development does have an impact on teachers’ understandings. Lastly, the teacher leaders (TL)
present an interesting story. The majority of them got a score of three, four, or five, which seems
to indicate that professional development has a positive impact on the teachers. However, there is
a small peak of TL who scored a zero. While this may seem to be contradictory to the previous
conclusion, it may not be. Perhaps, instead, this shows that when TL believe that they have
knowledge about a mathematical task, they do. On the other hand, if they do not feel they have
this knowledge, they are willing to admit it. This would match the data, for an answer of “I don’t
know” would score a zero.

Figure 5          Figure 6

The results for Andrew’s task (figure 6) are pretty evenly distributed among all five scores,
illustrating that the scoring was fair and unbiased. Andrew’s alternative algorithm, for the most
part, causes the PST confusion, since there is a large peak at score 0. PST probably have
procedural fluency with the traditional method, but these low-scoring PST lack the flexibility to
apply the traditional methods and the justifications for the traditional method to Andrew’s
strategy. However, there is a surprising peak at score 4 for the PST.  PST might be more familiar
with the concept of negative numbers when compared to IP’s or AP’s knowledge of negative
numbers. This familiarity with negative numbers from recently taking high school or college
level math courses might account for the slight peak at score 4. IP either received a score of 0, 1,
or 2. Moreover, out of 9 responses from IP, 3 received a score of 0, 3 received a score of 1, and 3
received a score of 2—a very even distribution. Most AP received a score of 1, 2, or 3. The
results for the TL are in complete contrast with the results for the PST. The results suggest that
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most TL are able to make sense and successfully reason about Andrew’s strategy, illustrating
adaptive reasoning, conceptual understanding, and procedural fluency. Overall, there seems to be
a correlation between the years of professional development and the higher scores for this task.

When the data from the two tasks were compared, several trends seemed to match up. On
both tasks, the PST and IP scored relatively low, whereas the AP and TL scored relatively high.
Also, the TL scored higher than the AP on average. The tasks were relatively similar in difficulty
for the four groups with a similar distribution of scores.

Conclusion
The results of this study indicate that sustained professional development does affect

teachers’ analysis of and perspectives on student work. Exemplifying the need for specific
content knowledge for mathematics, Ball, Hill, and Bass (2005) state, “Every day in mathematics
classrooms across the country, students get answers mystifyingly wrong, obtain right answers
using unconventional approaches, and ask questions…teachers are in the unique position of
having to professionally scrutinize, interpret, correct, and extend this knowledge” (p. 17). This
study examined how teachers interpret and respond to a mathematically correct answer obtained
by using an unconventional algorithm as evidenced by Andrew’s task. Furthermore, in Terry’s
task, this study examined how teachers interpret the meaning of the procedures used in standard
algorithms. This study investigated whether sustained professional development plays a part in
teachers’ responses. The results from this study suggest that professional development can
improve teachers’ understanding of students’ standard and alternative algorithms.

For both tasks, the results are evenly distributed among all the scores, illustrating that the
tasks and the scoring were fair and unbiased. The extra years of professional development seem
to allow the participants to explicitly and consistently discuss Andrew’s strategy by making
connections and using the correct mathematical language, which are characteristics of flexible
and complete conceptual understanding. Similarly, for Terry’s task the extra years of
professional development cultivated a better understanding of place value issues, which
otherwise may have been lost in the use of the standard algorithms. The results of this study
indicate that sustained professional development positively affects teachers’ analysis of and
perspectives on student work. With recent national concern for improved mathematics education,
this study, in a small way, illustrates how professional development can improve and contribute
to student achievement.
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Introduction and Theoretical Framework
Licensure for middle school content teachers has varied across states as most states

do not have a licensure or certification program specially designed for middle school
teachers. Thus, many middle school teachers were found to be teaching out of field or did
not have proper licensure to teach science or mathematics (NCLB; P.L. 107 – 110, 2002).
In response to this finding, the No Child Left Behind legislation required middle school
teachers to become highly qualified in terms of their content area. Highly qualified status
requires each teacher to have at least 24 credit hours of college level content courses or
successful completion of the Praxis exam (NCLB; P.L. 107 – 110, 2002) in the discipline.
This has led to close examination of the effects of content courses on knowledge,
pedagogical practices, disposition, and self-efficacy. This paper reports the impact of
content courses on middle school teacher’s self-efficacy.

Self-efficacy is defined as individuals’ judgments of their own capabilities to
accomplish particular levels of performance and is believed to impact individuals early in
the context of new learning (Bandura, 1993). Most researchers believe that self-efficacy
is two-dimensional in terms of personal teacher efficacy (PTE) and teaching outcome
expectancy (TOE) (Swars, 2005). In other words, PTE is a teacher’s belief in his or her
skills and abilities to be an effective teacher. Whereas TOE is a teacher’s belief that
effective teaching brings about student learning regardless of external factors. Studies
have shown that teachers with high self-efficacy tend to embrace student-centered
teaching methods, use more innovative teaching strategies, and are more likely to use
more difficult teaching approaches than teachers with lower self-efficacy (Swars, 2005).

The theoretical framework driving this research involves the knowledge that a teacher
with high self-efficacy demonstrates the attributes of a highly qualified teacher.
Therefore, this paper explores the following research questions: 1) what external factors
influence teachers’ self-efficacy scores as reported on the self-efficacy survey form? 2) Is
there a significant difference between teachers’ personal teacher efficacy and their
teaching outcome expectancy?
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Method

Context and Participants
The Rocky Mountain-Middle School Math and Science Partnership is a National

Science Foundation-funded, 5-year project that targets middle school teachers and
students in seven Denver-area school districts. The project links these school districts
with faculty from University of Colorado at Denver and Health Sciences Center’s
College of Liberal Arts and Sciences and School of Education and Human Development
as well as faculty from four other university partners to increase the subject-matter
content and pedagogical content knowledge of middle school teachers. In No Child Left
Behind language, the project is trying to increase the numbers of “highly qualified”
middle school teachers. The project’s primary component is to provide math and science
content courses to middle level teachers. Since the project’s inception in 2004, fifteen
content-based math and science courses have been developed and co-taught by faculty
from the College of Liberal Arts and Sciences, School of Education and Human
Development, and our K-12 partners. Ninety teachers participating in the MSP grant
courses responded to the self efficacy survey.

Survey Instrument
The survey instrument selected to measure teachers’ self-efficacy was the STEBI-B.

This instrument was developed by Riggs and Enochs (1990) and was based upon the
Teacher Efficacy Scale (TES) developed by Gibson and Dembo (1984). The TES is a 30
item instrument that measures teacher efficacy on two scales – PTE (Personal teaching
efficacy) and GTE (general teaching efficacy). The STEBI-B was developed to better
analyze science teachers self-efficacy it consists of 23 items and is also broken down into
two scales – Personal Science Teaching Efficacy Belief (PSTE) and Science Teaching
Outcome Expectancy (STOE).

The actual survey instrument used was based upon the STEBI-B’s 23-question
survey, but was modified to include math and science. The research team chose not to
administer the MTEBI (Enochs, Smith, & Huinker, 2000), the instrument that focuses on
mathematics teachers self efficacy, as teachers participating in grant courses took both
math and science courses. In addition, they felt this allowed consistency in data analysis.
Six additional questions were added to the survey in order to measure whether low
motivation in students can affect self-efficacy, and whether working with English as
Second Language (ESL) students affects self-efficacy.

Analysis
Using the Statistical Package for the Social Sciences (SPSS), a principle factor

analysis with varimax rotation was conducted on the data to assess the underlying
structure for eighteen of the items on the original STEBI-B. The six added questions were
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eliminated from the analysis, as the reliability is still being examined. We also eliminated
questions 3, 11, 13, 14, and 20 due to wording and multicollinearity issues. Two factors
were requested, and after rotation, the first factor accounted for 21.8% of the variance,
and the second factor accounted for 37.4% of the variance. The results compare favorably
with the two previously conducted STEBI-B reliability studies (Riggs & Enochs, 1990;
Bleicher, 2004).  Reliability scales tests were also conducted to determine the Cronbach
alpha for the two sub-scales. Paired samples t-tests were conducted to detect if
statistically significant differences occurred between the two sub-scales and the total self-
efficacy score. Multiple regression and bivariate correlations were conducted on the
background variables (district employed, teaching area, type of endorsement, type of
degree, and number of MSP courses taken) to determine if predictor variables exist and if
there were statistically significant differences between group means.

Results
Factor analysis results indicated the presence of the two factors PSTE and STOE,

suggesting the results are reliable for determining the teachers’ efficacy scores in the two
categories. To assess whether the items included in the two factors formed a reliable
scale, Cronbach’s alpha was computed. The alpha for the PSTE items was .84 and the
alpha for the STOE items was .81, which indicates that the items form a scale that has
good internal consistency reliability. Paired samples t-tests were conducted to determine
if group mean scores on total self-efficacy, PSTE efficacy, and STOE efficacy had
statistically significant differences. Assumptions were checked and met. The total self-
efficacy mean was significantly lower (t(89) = -7.998, p < .001, d = -.84) than the PSTE
mean, the total self-efficacy mean was significantly higher (t(89) = 7.556, p < .001, d =
.80) than the STOE mean, and the PSTE mean was significantly higher (t(89) = 8.133, p
< .001, d =  .86) than the STOE mean. The effect sizes are considered large for the area
of study. The assumptions for multiple regression were markedly violated, thus bivariate
correlations were conducted and a statistically significant positive correlation (r(89) =
.213, p = .045) did exist between the STOE average and the number of MSP courses
taken.

Discussion
This study reveals that teachers’ outcome efficacy is positively impacted by the

number of content courses taken in science and math. Generally speaking, most teachers
have a strong personal efficacy yet their outcome efficacy is significantly lower.
However, when the number of content courses that a teacher participates in increases we
have found a positive correlation with their level of outcome efficacy. Self efficacy is
critical in teaching, and research has shown that student achievement is higher when
teachers have higher self efficacy both personal and outcome based. However, research
has shown that teacher self efficacy is most malleable during teachers’ induction years.



871

________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

To this end, an important finding that this study adds to our literature base on teacher
education is that self-efficacy can be changed in experienced teachers. Further qualitative
analysis of these data is being conducted to better understand how mathematics and
science courses further enhanced teachers’ self-efficacy.
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The purpose of this paper is to describe the sociomathematical norm of speaking with meaning.
Speaking with meaning reflects the type of mathematical communication expected when a group
of individuals are engaged in problem solving. We observed the emergence of this norm in
professional learning communities comprised of mathematics and science teachers and use this
data to illustrate its usefulness.

Introduction and Background
This paper describes the sociomathematical norm of speaking with meaning and its

emergence in a Professional Learning Community (PLC). After studying the interaction patterns
of four PLC’s over one year, we observed that the quality of mathematical discourse was not
very high. Based on these findings we introduced the term speaking with meaning as a way of
making the nature of the discourse that we wanted to emerge among the members of the PLC
more explicit.

The PLC’s are defined as a collection of math and science teachers from the same school
(ideally) with one teacher designated as a peer facilitator. The PLC design draws heavily from
investigations of lesson study. The participants in the PLC’s for this study were taking a graduate
course that was focused on developing their understanding of the function concept. The purpose
of the PLC’s was to engage teachers in meaningful discourse about issues of learning and
teaching mathematics content related to what they were learning in the course. For the purpose of
this research we describe “meaningful discourse” as communication about knowing, learning and
teaching that draws on coherent understanding of the content and the process of learning the
content.

Each PLC has an assigned peer facilitator who manages the discourse for the PLC. The
facilitator is initially trained and supported through weekly coaching sessions. Facilitators are
also provided a PLC agenda that specifies points of discussion, questions and social norms for
PLC interactions. Facilitators are encouraged to monitor PLC interactions so that the PLC
members listen to and try to make sense of each other’s solutions and offer justifications for their
solutions. In this setting, the facilitator is trained to ask questions that promote speaking with
meaning. They probe PLC members for clear articulation of their thinking and press PLC
members to offer meaningful justifications for claims and statements. Within this environment,
the PLC members’ actions reveal what they believe are acceptable forms and patterns of
communication.

Theoretical Perspective
Thompson, Philipp, and Thompson (1994) denote distinct differences between calculational

and conceptual orientations. A calculational conception implies that a correct solution need only
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be justified using calculational sequences which are judged by criteria which may not be explicit
to the whole audience. People who have a calculational conception have a tendency to give
responses that consist primarily of numbers or numerical operations and procedures for arriving
at an answer. In contrast, an individual who has a conceptual orientation is more concerned with
the overall context within which a problem lies. He or she is also more focused on a broader
system of ideas and ways of thinking and speaks about quantities and relationships when
describing approaches or solutions. His or her explanations are typically grounded in the context
and conceptions of the problem. The concept of speaking with meaning draws heavily upon the
notion of a conceptual orientation. It is used to describe the type of “meaningful discourse” that
is expected when individuals are involved in problem solving. Speaking with meaning implies
that responses are conceptually based, conclusions are supported by a mathematical argument,
and explanations are given using the quantities involved. Our viewing speaking with meaning as
a norm reflects our observation that it has emerged as normative behavior within some PLC’s.

Sociomathematical norms refer to normative behaviors that are specific to mathematics, such
as understanding what constitutes an acceptable mathematical solution, and emerge from what
counts as acceptable mathematical behavior in the classroom (Yackel & Cobb, 1996). The
sociomathematical norm of speaking with meaning is used to illustrate the type of mathematical
behavior expected of the teachers as they participate in their PLC’s. In fostering the emergence
of the sociomathematical norm for what constitutes a sufficient explanation or justification, the
teachers established criteria for what it means to speak with meaning. These justifications need to
be conceptual and embedded in the context of the problem. For example, explanations regarding
rate would need to include language that describes how the amount of distance covered changes
when considering changes in time. It is important to note that this lens for viewing our data did
not emerge until after observing the discourse of the PLC’s. It was in watching videos of the
PLC’s that we observed speaking with meaning emerging as normative behavior of the PLC.

Discussion and Implications
In order to establish PLC’s that engage in meaningful discourse with regards to teaching and

learning mathematics, it is important to be aware of some interaction patterns that are more
typical in low functioning PLC’s. During the first year of studying PLC interactions we observed
teachers who spoke using partial phrases. Also, their solution explanations were often incoherent
and did not connect to the context of the original problem. Based on these observations we
created interventions aimed at improving the quality of discourse in the PLC’S. In the first class
of the semester, the instructor managed a discussion with the class in which she negotiated
productive patterns of communication for the class and PLC. From their negotiation emerged the
term speaking with meaning. Teachers appeared to agree that they should attempt to speak
meaningfully when discussing ideas and solutions.

Based on analysis of our data we found that it is difficult for inservice teachers to speak with
meaning. It is important that the facilitator ensure that PLC members not only justify their own
comments, but also probe each other when utterances are offered that are vague, incoherent or
lacking meaning. We found that facilitators who were coached on specific actions to promote
speaking with meaning were more effective in moving the PLC toward speaking with meaning as
a norm that was spontaneously enacted in discourse within the PLC. The facilitators benefited by
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hearing specific suggestions that were based on observed shortcomings in the facilitators’ actions
during his or her PLC.

This research has applications to both theory and practice. This study intends to add to the
theoretical constructs sociomathematical norms. Specifically, speaking with meaning refers to
the kind of normative behavior we would like to observe in a PLC of secondary mathematics and
science teachers. Within that scope we use the phrase speaking with meaning to encompass the
ways in which PLC members should communicate with one another regarding mathematics.

What counts as speaking with meaning is negotiated in a PLC and can differ from PLC to
PLC.

The term speaking with meaning emerged from negotiations during the first day of class. The
term carries with it the ability to operationalize what is a sufficient explanation; it also describes
the attributes of meaningful mathematical communication. It has brought clarity to how to make
a sufficient justification and is now an intervention that the teachers can use in their classrooms.

Speaking with meaning has the dual nature of being both a theoretical construct and an
intervention.  Researchers will be able to use this construct to gauge the quality of mathematical
discourse in the teachers’ classrooms. It was also used to help train facilitators so they could
better manage the discourse of their PLCs. Further, speaking with meaning provides both
teachers and researchers a lens with which they can judge the effectiveness of their attempts to
enact and promote speaking with meaning.

By observing the emergence of speaking with meaning within a PLC we are becoming more
aware of interventions and actions that may lead to speaking with meaning becoming normative
within a PLC. This can help inform training of facilitators so that they can better engage the
other members of their PLC. As these facilitators are peers of the other group members, they do
not have extensive formal training necessary to bring about these normative behaviors.
Therefore, appropriate training methods and interventions are very important in preparing the
facilitators to manage the discourse within their PLC’s. Becoming more aware of actions that
produce speaking with meaning as a spontaneous behavior among all members of the PLC will
help improve interventions designed to support speaking with meaning as a norm. Research
reported in this manuscript was support by National Science Foundation grant number HER-
0412537
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This case study reports on changes in the practices of one sixth-grade mathematics teacher
over four years of professional development and implementation of new curriculum
materials. Analysis of data points to an unexpectedly dramatic change in her knowledge,
perspectives, and classroom practices. This study attempts to identify factors critical in
producing such a dramatic and lasting impact.

The journey of Celia, from professional development participant to doctoral candidate, is
both dramatic and inspiring. With 7 years of teaching experience, Celia lacked confidence
and depth of knowledge of mathematics. She embarked on what turned out to be a four-year
odyssey of professional development activities that resulted in lasting changes in her
knowledge, perspectives, and practices. The question arises, “What factors were critical in
producing such a dramatic and lasting impact on this teacher?”  This paper will attempt to
answer this question.

Background
Analyzing and describing the impact of professional development activities has the

potential to significantly improve the design of such activities (Becker & Pence, 2003;
Farmer, Gerretson, & Lassak, 2003; Murata & Takahashi, 2002). However, a report by
RAND (2003) suggests that professional development practices have not been studied
extensively and there remains a great need for well-developed descriptions of successful
professional development practices

In this study, we address three questions. First, what changes in Celia’s classroom
practices, perspectives, and knowledge emerged and remained over the four-year period?
Second, what professional development activities were critical to effecting lasting change on
her knowledge, perspectives, and practices?  Third, what factors external to the professional
development activities appear to have impacted their effectiveness?

Perspectives and Framework
Our perspectives on the nature of mathematics, learning, and teaching guide our design of

professional development activities. We believe that understanding of mathematics involves
(1) the ability to solve problems, (2) the ability to connect mathematical ideas to one another
and to real-life contexts, and (3) the ability to communicate mathematics to peers. We believe
that learning of mathematics is best achieved by active engagement in activities that call on
and develop the abilities involved in understanding of mathematics. Thus, the teaching of
mathematics should be designed to provide such opportunities to students and professional
development should help teachers develop, implement, reflect on, and revise such learning
opportunities.
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Research Methods
This research employed a qualitative, case-study design. To establish descriptors of this

teacher’s lasting changes in her knowledge, perspectives, and practices, we conducted an
interactive interview at the end of year 2, solicited responses to structured journal prompts at
the end of year 3, and took structured notes during observations of implementation of new
curriculum materials in years 1-4. To investigate possible causes for lasting changes, we also
retrospectively analyzed data collected at an earlier point in our study (Roddick & Bergthold,
2004). At that point in the study, we followed an “account of practice” strategy developed by
Tzur, Simon, Heinz, & Kinzel (2001), gathering data from teachers’ written responses to
structured journal prompts, oral comments made during interviews, and actions exhibited
during classroom observations.

Case Study Subject
The teacher in this case study, Celia, was purposefully selected. Over one year of content-

based professional development institutes, taught by the authors, she demonstrated initiative
to improve her teaching, a desire to learn new content, a willingness to try new practices, and
engagement in ongoing reflections. Celia, with 7 years of teaching experience, had taken the
required 6 hours of mathematics coursework for future elementary school teachers while in
college. However, she lacked confidence in her mathematical knowledge and abilities and
demonstrated little breadth or depth in her knowledge of mathematics.

Celia participated in an intensive 20-hour, one-week workshop in summer 2003, where
she collaborated to develop and adapt mathematics learning activities for sixth-grade
mathematics courses. These activities were designed to address more than one concept and
sought to make connections among concepts. Throughout the following academic year these
activities were pilot tested, reflected upon, and refined. In the two years after this, the refined
activities were implemented again with additional reflection and new activities were designed
and pilot tested.

Celia’s Journey (Results)
Over the four years Celia exhibited dramatic, lasting changes in her knowledge,

perspectives, and practices, relative to where she began. With 7 years of teaching experience,
Celia lacked confidence in her mathematical knowledge and abilities and demonstrated little
breadth or depth in her knowledge of mathematics. She had many of the same frustrations felt
by other mathematics teachers, yet her interest in professional development was evident.
Over the course of the study her motivation to change was fueled by the support from her
principal, belief in her need to improve her teaching, and the enthusiasm of her students as
changes were implemented in her classroom.

Celia’s knowledge of mathematics shifted from relatively limited knowledge of basic
algebra techniques to a much broader array of conceptual knowledge and procedural abilities,
dramatically increasing her confidence. She came to view mathematics as a connected body
of knowledge, inspiring a desire for her students to experience mathematics in the same way.

For Celia, the intensive summer workshop to develop new learning activities was a
catalyst for complete revision of her perspective on teaching. She began to rethink how, what,
and why she was teaching, and decided to make major changes. Instead of reviewing at the
beginning, she believed that a unit on problem solving would point her students in the
direction she wanted to go for the rest of the year. She began to view patterns as a central
theme throughout the sixth grade mathematics curriculum. By the end of the project, she
believed that learning activities were important elements in successful teaching.



877

                                                                                                                                                 
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education. Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Over the course of the project, Celia’s teaching focused more and more on problem
solving, exploration, and activity-based lessons. She sought ways to implement activity-
based, inquiry-based lessons rather than traditional lecture-and-homework practices. Over the
course of a school year, she incorporated approximately fifty activity-based lessons into her
teaching. Ongoing development of new activities in the following two years formed the basis
for further inquiry, leading to completion of a master’s degree and enrollment in a doctoral
program in education.

We also observed Celia become a voice for change in her school’s mathematics
department. As her students’ enthusiasm grew, word began to spread throughout the school
that her students were excited about mathematics. Administrators encouraged other teachers
to observe Celia’s class, thus promoting important discussions among the mathematics
teachers in her school.

Discussion and Implications
Celia’s newfound knowledge of mathematics opened up a whole new world for her. The

more she learned, the more she wanted to learn, and the more she wanted to convey this kind
of understanding to her students. The forced development, implementation, observation,
discussion, and revision of learning activities during the formal professional development
part of the project had a dramatic impact on her confidence and willingness to continue with
this kind of teaching practice.

There appeared to be two critical external factors to Celia’s success. First, with only 7
years of teaching experience, Celia did not have a career’s worth of experience to overcome
in developing new understandings, perspectives, and practices. Second, she was sufficiently
unhappy with her own teaching that she was ready to adopt something completely different
than what she had been doing all along.

Over the course of this project, we found there were both professional development
activities and external factors that were critical in effecting significant change for Celia.
Although the journey of this middle-school teacher could neither be considered
commonplace, nor strictly the result of the professional development program, it does
demonstrate what is possible for a dedicated and motivated teacher, given sufficient support
through her school and appropriate professional development activities.
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This report examines innovation scale-up within the ‘train-the-trainer’ model of professional
development. We investigate how ideas central to the mathematics, technological
environment, and pedagogical practices, are envisioned, interpreted and enacted as the
professional development proceeds from researchers to teacher-educators to teachers.
Preliminary analysis reveals variation in perceived benefits of SimCalc Mathworlds™, which
manifests itself in teachers ‘privileging’ certain aspects of the project.

While there is sound evidence of technology’s potential to help students deepen their
mathematical understanding, few tools have crossed the gap from research prototype to wide-
scale implementation (Roschelle & Jackiw, 2000). The SimCalc Scale-up project (1) was
designed to focus specifically on issues of scale: Can innovative technology-based
mathematics scale up to be useful for a wide variety of teachers in a wide variety of settings?

Our research, a sub-study of this larger project, examines innovation scale-up within the
‘train-the-trainer’ model of professional development. In essence, we investigate how ideas
central to the mathematics, technological environment, and pedagogical practices, are
envisioned, interpreted and enacted as the professional development proceeds from
researcher to teacher-educators and ultimately to teachers.

Context
SimCalc Mathworlds™ is innovative software which supports the creation and

modification of functions as well as providing the means to simulate motion based on these
functions. The SimCalc Mathworlds™ environment links graphical, tabular and algebraic
representations, through simulations, which students can algebraically or graphically edit,
thus  providing the student opportunity to investigate how changes in one representation
impact other representations (Kaput & Schorr, in press).

Much of the current research on teacher professional development projects focuses on an
individual program at a single site or at closely related sites. While it is beneficial to engage
in comprehensive professional development over extended periods of time, many projects
lack the resources to do so. Consequently, PD often involves focusing on several people who
then share their knowledge with a wider audience (often referred to as a “train-the-trainer”
model). In this study we investigate what Borko refers to as Phase 2 research: studying a
single PD program enacted by more than one facilitator at more than one site (Borko, 2004).
The central goal of such research is to determine if the program can be enacted with integrity
especially as it becomes more and more removed from the original PD providers.

This research examines a portion of the SimCalc scale-up project in which the SimCalc
Mathworlds™ software was used in combination with a 3-week replacement curriculum unit
for 8th graders. For this intervention, responsibility for teacher training was passed from the
research team to the conventional professional development model in place in Texas, in
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which the Dana Center (housed at the University of Texas) trains teacher-educators through a
Training-of-Trainers (TOT) workshop, who then train teachers in their region. In  this case,
teachers then implemented the SimCalc unit within their normal classroom practice.

This situation provided the opportunity to investigate all levels of the 3-stage ‘train-the-
trainer’ (TOT) model of professional development, specifically within the context of a
technology-rich innovation.  In particular, our research question is: How did the participant
researchers, teacher-educators, and teachers perceive:

1. The mathematical goals of the intervention, and
2. The role of SimCalc Mathworlds™ in accomplishing these goals.

In the course of videotape analysis, we highlight what Kendal and Stacey define as
privileging (Kendal & Stacey, 2001). For our purposes, privileging will refer to a facilitator
or teacher highlighting or giving priority to certain aspects of the intervention over others.

Methods
Both TOT and teacher-training workshops were observed and videotaped, and all

workshop facilitators were interviewed. At least two teachers from each ESC region were
then selected, based upon availability, for classroom observation by the first author. Each
classroom observation took place over the course of 2-3 days. In general, videotaping focused
on the facilitator (during workshops) and the teacher (in the classroom). Teachers were
interviewed after each session. Interviews were transcribed, noting in particular the teachers’
(tacitly or explicitly) expressed mathematical and SimCalc-related goals. Videotapes were
analyzed based on several criteria including emphasis made on certain types of
representations, solution strategies, use of the technology and overall teaching strategies.

 Results
Within the interview data, we have noted variation in the way participants perceive the

benefits of the software. The TOT facilitators emphasized how the software allows an
inversion from the usual order of student learning: instead of going from equations to graphs
to motion, SimCalc allows the student to go from motion to graph to equation, leading to
potentially deeper understanding “because they don’t have to mediate it all through the
symbols, they can use the graphs and the simulations to understand the symbols.” The
teacher-educators tended to focus on the benefit of linked multiple representations. Variation
was somewhat more pronounced among the teachers. Some used terms such as “visual”,
“hands-on”, and “manipulative” to describe the main affordances of the software, while
others focused on the fact that students could change something and immediately see how
this effected a change elsewhere.

Preliminary analysis appears to indicate that these are more than just superficial
differences in language, and may be indicative of deeper differences in the ways in which the
software and associated curriculum materials were used by the various teachers. Further, it
appears that these differences exist within ESC regions, despite the fact that all teachers
within a region took the same training course. Finally, the types of differences found appear
to be similar to those found across other regions.

The following example describes differences in perceived benefits of the software and
observed privileging of different mathematical goals. Teachers 01 and 03 attended the same
training course, but expressed somewhat dissimilar views on the software. Teacher 03 states
“It helps them [low achievers] most definitely because by the time they would take an
equation, generate a table and then plot those points, they will have forgotten why we were
doing all of that …. And they would go oh I don’t know it’s just a graph. Where as now, it’s
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there for them. They have to interpret that graph [emphasis added].” Teacher 01 was positive
in many ways, but also expressed concern that the students “lost the actual experience of
collecting the data. And plotting the points … it’s already plotted for them, so they don’t have
to actually have to use the x and y axis …”

 In a lesson occurring midway through the curriculum unit, both classes were given the
task: “Our goal for next year is to end the year with $110,000 in our bank account [current
balance is $50,000]. We would like to put the same amount of money in the bank each
month. Complete the graph below to show this.” In Teacher 01’s class, students sketched the
straight-line graph as the teacher read the following question: “How much money do we need
to put in the bank each month to reach our goal?”  One student immediately responded
“$5000”. His explanation was as follows: “We’re at $50,000, and I counted $5000 for each
one.” This explanation, in combination with the video data, suggests that he may have
remembered the dynamic simulation of a similar problem (see figure 1), and was visualizing
the growth over the time period—a positive result of the software.

    In a subsequent interview, Teacher 01
reflected: “He didn’t necessarily know how to
verbalize, well I take the sum of the increase
that was put in the account, and divided it by
12 months, to get an equal deposit each month.
So, some of them can do the mental math, but
some of them don’t know how to verbalize it
and show it. I think that’s something that we
need to focus more on tomorrow.” We note
that she appeared to “privilege” the calculation
method of solution, and the curricular goal to
have students verbalize their answers.
    In contrast, when Teacher 03 reflected on
her experiences with this problem, she stated:
“When they drew it … some of them said, oh
that’s 5,000 … well, they know to read this

graph to get their answer, so.”  In this case, it would appear the teacher felt comfortable with
graphical representations even in the absence of calculation-based solution methods.

Continued analysis will allow us to further describe the perceptions held by participants,
and how these may be similar or different across training sites. This research holds the
possibility of contributing to the existing knowledge base regarding future scale-up projects,
especially those with an emphasis on technology, using this professional development format
(minimal research team influence beyond the “train-the-trainer” sessions).

Endnote
1. This material is based on work supported by the National Science Foundation under

Grants No. 0437861 and ESI-0333753. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
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PROFESSIONAL DEVELOPMENT COLLABORATIVE:
SHIFTING PROSPECTIVE TEACHERS’ GEOMETRY CONTENT

EXPERIENCES TO FIRST GRADE CLASSROOMS
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This study focuses on professional development of first grade teachers by immersing
prospective teachers, taking a geometry content course, into their classrooms to carry out
mathematics instruction by way of a teaching experiment. A case study methodology was
embraced and data collected to establish factors of importance in identifying needs for
changing teachers’ classroom instruction.

Although the Professional Standards for School Mathematics (NCTM, 1991) has been
around for 15+ years, progress in embracing what this document supports has been slow in
coming into classrooms. The standards identified four key areas for teachers to adhere to:

 Setting goals and selecting or creating mathematical tasks to help students achieve
these goals;

 Stimulating and managing classroom discourse so that both the students and the
teacher are clearer about what is being learned;

 Creating a classroom environment to support teacher and learning mathematics;
 Analyzing student learning, the mathematical tasks, and the environment in order to

make ongoing instructional decisions (p. 5).
Mathematics educators certainly agree that these areas are critical, but how to help teachers
transform their classrooms into such learning environments does not happen overnight and
certainly does not happen in isolation.

Professional development has been a growing area of research in all areas of education
and has continued to receive widespread attention with the NCLB Act implemented in 2002.
One problem that educators continue to deal with is that professional development, as a
whole, remains unfocused (Cwikla 2004) and at times misdirected. Thus, depending on local
and state guidelines, professional development has no uniformity for teachers from one
district to another. While this may pose some inconsistencies in how professional
development is organized and carried out, one area that researchers are focusing greater
attention on is use of classrooms as professional learning experiments. The professional
community is collecting evidence that indicates the best environments to study mathematics
learning and teaching are today’s classrooms (Ball and Cohen 1999; Clark 2001).

One strategy of professional development that the mathematics education community
really has not studied in any depth is the use of field-based experiences of prospective
teachers to promote professional development for inservice teachers. By providing
prospective teachers opportunities to plan, work with children in real elementary classrooms,
and dialogue with teachers about the instruction, inservice teachers have the potential to gain
new insights and interpretations of presenting material for young learners in their classrooms.
While targeting both groups is important, the focal point of this study is on the inservice
teacher since little attention has been given to researching this group in such a manner.

The purpose of this study is to highlight factors that support teacher change when
conducting professional development programs or institutes. Changing or adjusting
mathematics instructional practices to be “more in line with” documents like the Standards
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(NCTM, 1991, 1995, 2000) is a complex and oftentimes slow process and the mathematics
education community recognizes that teachers need help. This study also has the potential to
impact not only inservice teachers’ practices, but also prospective teachers’ future practices.

The Setting
The study took place in an elementary school in a southeastern state with diverse

demographics. More than _ of the school population received free or reduced lunch.
Although this particular school district is considered to be in a rural to suburban geographic
location, this particular school has a large number of minority students and is known to have
low parental involvement and participation in school functions. While the school was
considered one of the “lower-end” schools in this particular district, teachers and staff held
high expectations of the students and their performance in the classroom.

The participants in the study were four first grade teachers – one male and three female.
The number of years teaching elementary school ranged from one to 18 years, where one
teacher had been in the school her entire teaching career and the other three were new to the
school that year. One teacher, Ms. Jones, will be presented.

Methodology: Data Collection, Analysis, and Results
The research reported in this study employs a classroom teaching experiment design

where prospective teachers’ planned and carried out instruction, first grade students’ were
receivers of the instruction, and inservice teachers’ were involved directly and indirectly in
the teaching and learning experiment. A case study methodology was embraced and data
from this experiment was collected by use of teacher observations and interviews.

Themes from the observations were generated and coded as well as data collected from
teacher interviews. Glaser & Strauss’s technique of constantly comparing the data to generate
new categories as necessary was also implemented (1967). The themes or categories were
used to identify factors or patterns of importance in adjusting teachers’ own instruction in
light of the mathematics reform movement. Lastly, the themes were used to make an attempt
to generate a model for carrying out professional development that promotes teacher change.

McClain and Cobb’s work (2001) was used as a framework to guide this particular study.
Their research analyzed the development of sociomathematical norms in a first-grade
classroom to determine what teachers might do to support the types of experiences advocated
in the reform documents. While this particular study is not searching for answers to the same
problems, it certainly lends itself to aspects of this particular study.

While there were numerous benefits for the prospective teachers in carrying out this
teaching experiment, Ms. Jones gained a great deal from the collaborative. She was an
experienced teacher with 18 years in the classroom at the same school. Her strength in
teaching was in language arts – particularly in reading and creative writing. When it came to
mathematics, Ms. Jones was quite traditional in her use of worksheets with very few activities
involving “hands-on” materials or development of concepts. Although she was open to new
ideas, she often expressed difficulty in keeping her students “on task” when she allowed for
more open instructional experiences. She addressed concerns early on about the level of
difficulty of some of the situations the university students organized to present to the children
but was open to them “trying them out.” What she came to find out was that her first graders
could handle the explorations and were totally immersed in making sense of the material.
After students had completed the activities, she shared a number of comments:

 I will be certain to use that story and tie it to the math lesson for the week. I love
books and reading and hadn’t thought much about connecting math and literature.
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 I hope to find additional ideas to build off what your students did in my class.
 I could not believe the types of responses my students gave the teachers. I didn’t think

some of them could think that deeply.
After compiling data, four main professional development categories emerged:
 Support to develop new activities/situations that are in-line with State standards;
 Collaboration with others – in this case it was the prospective teachers in the

mathematics content course;
 Learning content, how children think, and how different children are in their

interpretations; and
 Stimulation of the learner to engage in something that is exciting to him/her.

While these factors have appeared in other research related to professional development and
teacher change, there were some minor variations in what Ms. Jones professed. One of the
major factors for her was changing her mindset to accept that prospective teachers had
“worthy” ideas to implement into classroom instruction. She indicated that she often found
student teachers lacking in solid instructional ideas – it ended up being more “glitz and
glamour.” This experience encouraged her to look at the novice a little bit differently.

Ms. Jones also expressed a positive reaction to the notion of never having to leave her
own classroom to look at her own teaching practices and the impact they have on her
students. She saw and heard things from learners that she had never seen or heard before and
reflected on how she could incorporate more valuable mathematical experiences – geometry
and other areas – into her classroom instruction. This was crucial for her in looking at this
experiment as a professional development opportunity.

Discussion
While there is growing concern about the mathematical preparation of teachers (NCTM,

AMS, MAA), educators continue to grapple with how to support teacher change for those
who are presently in the classroom. This is especially true of elementary teachers who are
responsible for teaching mathematics. Although this study did not tread on new territory, the
design of it was somewhat unique in looking at how to offer teachers professional
development opportunities without leaving the confines of their classroom. Implementing
teaching experiments for professional development is one that many teachers may “buy into”
since they will actually have some “payback” in their own classroom.
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The NSF-funded Rice University Mathematics Leadership Institute immersed high school lead
teachers in collaborative, combinatorics problem-solving experiences during an intensive four-
week summer institute. The program challenged participants’ pedagogical content knowledge
and their views about collaborative problem solving as evidenced by statistically significant
gains in test scores, their self-reported ratings on content and problem-solving abilities, and
excerpts from journal writings.

According to Freudenthal (1991), only a small minority learns when mathematics is taught as
a ready-made subject in which students are given definitions, rules and algorithms from which
they are expected to proceed. Instead, learners should be given opportunities to reinvent
mathematics in the manner that mathematicians create mathematics. Within professional
development settings, in order for teachers to reinvent mathematics in this way and experience
disequilibrium as their students do, the content should be in a domain which teachers typically do
not know deeply.

Through a combinatorics domain problem-solving approach, the NSF-funded Rice
University Mathematics Leadership Institute (MLI) (1) provided teachers opportunities to
reinvent their mathematics pedagogy and knowledge. This allowed teachers to experience
firsthand the instructional approaches they were expected to use with their own students (NSDC,
2002). We used challenging mathematics content with deliberately modeled learner-centered
pedagogical approaches to develop teachers’ pedagogical content knowledge (Shulman, 1986).

Program Methodology and Analysis
Thirty-two high school mathematics lead teachers, participating in their second of two

intensive one-month summer institutes, were immersed in mathematical experiences for which
they earned graduate credit. This experience served as the catalyst for reinventing teachers’
views on the learning of mathematics. We adapted problem sets in the combinatorics domain
from Park City Mathematics Institute materials (Kerins, Sinwell & Matsuura, 2004). We
introduced teachers to this experience using the Simplex Lock problem, which they were invited
to solve by the end of the program—once they had acquired a deeper understanding of the
concepts through their experiences with collaborative problem solving. Each day, teachers
solved problem sets consisting of Essential Problems (for everyone to solve), Neat Problems
(similar to the essential problems but reaching toward the next topic) and Challenging Problems
(for those who were ready for an intellectual stretch). Teachers were not expected to complete all
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problems and could solve them in any order. On the last day of the program, some teachers
shared their solutions to the Simplex Lock problem. Those who had not solved it followed
various solutions competently because they had acquired sufficient conceptual knowledge during
the program. Table 1 shows representative problems from the first and third weeks of the
program.

Table 1
 Sample Problems from the 2006 MLI Summer Leadership Institute Combinatorics Strand

Essential Problems Neat Problems Challenging Problems
Week 1
A “train of length 5” is a row of rods
whose combined length is 5.
1. How many trains of length 4 are

there?
3. Find a formula for the number of

trains of length n. Come up with a
convincing reason that your rule is
correct.

7. If there are three flavors of ice
cream, how many different three-
scoop cones can you make using
each flavor exactly once?

12. If you can make 220 different
three-scoop bowls of ice cream,
how many different three-scoop
cones can you make?

17. What’s the mean length of car
used when you make all the
trains of length 5? Is there a
general rule at work here? Can
you justify it?

18. How many three-scoop bowls
could you make at Ben & Jerry’s
if you were allowed to duplicate
flavors? Is there a general rule?

Week 3
1. {{C}, {V}} means a bowl with

one scoop of chocolate and a bowl
with one scoop of vanilla. Here
are some possible combinations:
•{ } • {{C, V}} • {{C, V, S}} •
{{S, V}, {C}} • {{S}} • {{V},
{S}}. How many different
desserts are possible?

3. Without a calculator, expand
(h + t )5.

5. Spend at least 15 minutes thinking
about the lock problem.

9. In a box of 12 batteries, it is
known that 5 are dead. Four
batteries are selected at random.
Find the probability that

(a) exactly one dead battery is
selected.

(b) all four of the selected batteries
are dead.

(c) at most two of the selected
batteries are dead.

12. In row 7 of Pascal’s Triangle,
the numbers 7, 21, and 35 appear
consecutively. Interestingly,
these three numbers form an
arithmetic sequence. Does this
ever happen again? If so, find the
next three times it happens. If
not, prove it can’t happen again.

We administered pre- and post-tests based on items similar to the Essential Problems. Test
scores of teachers were used to conduct a paired samples t-test to measure the change in their
combinatorics content knowledge as a result of participating in the summer institute. The highest
score possible was 40. Teachers’ mean score on the pre-test was 10.4 (median = 11). The post-
test mean score on the same measure was 33.9 (median = 36.5). The change in score was
statistically significant, t (df = 31) = –20.79, p < .0001 (2) and suggests that teachers’
combinatorics content knowledge increased significantly as a result of participating in the
summer institute.

Individuals can be transformed by critically reflecting on situations that are not consistent
with their preconceived notions. Such situations or dilemmas often prompt new interpretations of
experiences. Facilitating such transformative learning experiences are most effective when
instructors assist learners by encouraging them to examine or question assumptions that underlie
their beliefs, feelings, and actions; assess the consequences of their assumptions; identify and
explore alternative assumptions; and test the validity of their assumptions through reflective
dialogue (Mezirow, 2000). Providing opportunities for teachers to reflect on experiences that do
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not fit their preconceived ideas about or understanding of mathematics and how it is taught is a
major component of the MLI’s approach to teacher development.

Collaborative settings in which participants can engage in discourse and reflection to
consolidate their knowledge assists learners adapt prior knowledge to new challenges
(Freudenthal, 1991) particularly in. During the MLI’s combinatorics instruction, answers or
solutions to problems were not provided. Instructional staff deliberately refrained from affirming
answers but prompted teachers to discuss their results with their peers. Teachers’ journal entries
revealed their early frustrations. For example,

 What I hate is that I have people monitoring me and cannot answer if my solution is
correct.

Later, their acceptance and excitement about the learning experience emerged:
 The combinatorics problems are finally starting to make sense. From day one, as a group

we generated answers and answers only. I had an answer but could not explain my
thought process.  They are more challenging every day and it challenges my
understanding to not just get an answer but explain my process and thought.

 I worked with a new group today. It is wonderful to see how different people work on a
problem.

 I wish I could get across to my students the satisfaction of the challenge of an advanced
math problem. I want them to enjoy the struggle the way I am.

At the conclusion of the 2006 summer institute, based on a post-program survey, over ninety
percent of teachers agreed that they had increased their knowledge and understanding of how to
solve combinatorics problems as well as their ability to solve mathematics problems.

Endnotes
1. This research was supported by the National Science Foundation (NSF) under grant

0412072. The views expressed do not necessarily reflect official positions of the NSF.
2. Preprogram N = 31; Postprogram N = 32—the larger postprogram N was due to the

delayed arrival of one teacher during the summer institute.
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This study documents one kindergarten teacher’s journey as a reflective practioner as she
implements research-based practices that facilitate students’ voicing of mathematical
thinking and reasoning in discussions. The process through which the teacher established the
norms of verbalizing and justifying one’s ideas was replete with challenges, successes, and
pedagogical transformation.

Educational research promotes mathematical discussion as a necessary component of
mathematics learning. However, facilitating student discussion of mathematical concepts and
procedures and encouraging students to explain their thinking can be difficult (Smith, 1996).
This study describes one kindergarten teacher’s journey as a reflective practitioner as she
implements research-based discourse practices that scaffold her students’ ability to give voice
to their mathematical thinking and reasoning.

Background and Theoretical Framework
Drawing from situated theories of learning (Lave & Wenger, 1991), we posit a dynamic

view of mathematics wherein learning is a process of negotiating meaning within a
community of practice and learning to participate in the larger discourse of mathematics
(Goos, 2004). In order to participate in the mathematics community, it is essential students
are “making conjectures, abstracting mathematical properties, explaining their reasoning,
validating their assertions, and discussing and questioning their own thinking and the
thinking of others” (Lampert, 1990, p.32). Scaffolding this kind of mathematical discourse
presents unique challenges in lower elementary grades where students may be unfamiliar
with collaborative learning, relatively inexperienced with listening to one another, and
unaccustomed to verbalizing and justifying their mathematical ideas. In this study we seek to
better understand the teacher’s role in supporting students’ emergent and varying abilities to
“talk mathematics” and participate in the discourse of a mathematics community.

Methodology
This is an ethnographic case study examining how one kindergarten teacher (Ms. P)

modified her teaching to support and elicit student explanation, reasoning and justification.
We use methodologies informed by action research in which the classroom teacher plays a
collaborative role in determining the goals and agendas for personal and classroom
transformation. Changes in the classroom teacher’s practices along with her challenges and
insights were documented and described through an analysis of classroom transcripts,
stimulated recall of video excerpts, student interviews, and the teacher’s journal.

Analysis and Findings
The data revealed that Ms. P engaged in the following discourse practices: increasing wait

time, following-up both incorrect and correct responses, allowing students to contribute to the
flow of class discussion, asking students to revoice and comment on one another’s ideas, and
asking authentic, probing questions. Transcripts of classroom video revealed that Ms. P
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consistently used these discourse practices throughout the year to encourage her students to
“talk mathematics.” Her initial goal was to move beyond an emphasis on correct answers and
help students uncover and articulate the reasoning behind the answers. As an example
consider the following transcript which occurred during the last month of the school year.

Speaker Text
Teacher Can anyone else explain to me how did you know what numbers you were supposed to use? Veronica?
Veronica Um I was counting in my mind and I know that it was five.
Teacher Ok and so how did you get to five when you were counting?
Veronica Um I was like counting in my head.
Teacher Can you say out loud what you were doing in your head?
Veronica 1,2,3,4,5.
Teacher Ok and why did you stop at 5?
Veronica ‘Cause I think it was five.
Teacher Ok can anyone else explain to me what you were thinking? It sounds like Ali and Veronica, both of

them, they knew how to do this and they were able to get the answer in their head. But I want someone
to really explain to me. Let’s listen to the problem again … Martin what did you do to get your answer?

Martin Um I did math. Like um I did three plus two, that equals five.
Teacher Ok and how did you know, what made you know you should use the numbers three and two? Why

didn't you use 7 and 8?
Martin Um I heard it in the story like three boys were playing in the housekeeping and two girls joined it.
Teacher And then how did you know that 3 and 2 made 5? How did you know that?
Martin Because here's three right now (holds up 3 fingers), two join in (adds 2 more so all 5 are held up).

Table 1. Transcript from an Introduction to Addition Lesson

In this excerpt, Ms. P asked a series of authentic, probing questions designed to
encourage both Veronica and Martin to explain their thinking. Despite Ms. P’s repeated
efforts to draw out Veronica’s thinking, she was unable to give a clear and precise
explanation. This is the reality of the classroom. Simply implementing new discourse
practices did not always facilitate the students’ abilities to verbalize their thinking. In fact,
students often struggled, giving confusing or incomplete explanations. The process through
which Ms. P established the norms of verbalizing and justifying one’s ideas was replete with
challenges like this. Other challenges included deciding which students to call on, handling
unexpected and unrelated student ideas, knowing how hard to press a student, and balancing
time constraints. Despite these challenges, Ms. P continued to value “really asking and really
listening”: in her journal she stated, “It surprised me how many right answers I might miss if
I don’t take time to listen and try to understand what a child is thinking. When I might jump
in and redirect, it’s better to wait first and see where the child is going. Their minds might
surprise me” (9/2/06). As reflected in this journal entry, not only was she scaffolding her
students’ ability to verbalize their thinking, but Ms. P herself also gained a clearer picture of
their mathematical understanding. Transformation of her practice led to better information
about her student’s capabilities. This, in turn, led her to reflect on and question the teacher’s
role in a mathematics classroom, what it means for students to understand math, how a
teacher assesses this, and the role of curriculum and task selection.
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This study examined the impact on middle school teachers’ conceptions of mathematics
learning and teaching through reflections on their mathematical learning experiences within
a content-based professional development course. In their reflections, the teachers noted
learning and teaching processes aligned with standards-based recommendations. The
teachers’ reflections were more reform-oriented when they thought about their learning
experiences in the role of a student before jumping to thoughts about teaching.

This study examined the impact on middle school teachers’ conceptions of mathematics
learning and teaching through reflections on their mathematical learning experiences within a
content-based professional development course. Content-based professional development
programs in mathematics focus on mathematics relevant to the K-12 curriculum but do so at a
level appropriate for the teachers as adult learners (Basista & Mathews, 2002; Campbell &
White, 1997; Hill, Rowan, & Ball, 2005; Saxe, Gearhart, & Suad Nasir, 2001; Schifter, 1998;
Swafford, Jones, & Thornton, 1997). The facilitators of the professional development
implement the mathematics in a student-centered or reform fashion, providing a model for the
teachers of how such instruction might look in a classroom. In such programs, reflecting on
mathematical content is often a prominent aspect, and various programs have reported on the
impact of such reflections. For example, Burk and Littleton (1995) found that such reflections
support teachers in increasing their knowledge of mathematics content. However, it appears
to occur less often and is less often reported what happens when teachers are asked to go
beyond the mathematics and to revisit and think about their learning experiences and
implications of those experiences for how their students learn best and how to facilitate such
experiences in their own classrooms. In the aforementioned professional development model,
this additional component was incorporated. These reflections encouraged teachers to
consider learning and teaching implications in the context of their own learning. Specifically,
it allowed the teachers to personally experience and then explicitly consider the fruits of
student-centered, reform-oriented instruction.

The intent of this study was to investigate what teachers were noticing in their reflections
on their mathematical learning experiences. The associated research questions were:

• What do teachers express about how they best learned mathematics through these
learning experiences? and

• How do teachers extend these ideas to considerations of how their students may learn
best and how to teach accordingly?

The theoretical perspective was phenomenology due to the interest in the teachers’
perspective of the mathematical learning experiences. A phenomenological study focuses on
“descriptions of what people experience and how it is that they experience what they
experience” (Patton, 1990, p. 71). Sixteen grade 4-9 teachers participated in the study; 8 of
them were not highly qualified in mathematics. The professional development course
consisted of a 2-week summer institute and the content focus was Number and Operations.
The data included copies of the teachers’ written reflections and field notes. The teachers
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completed sixteen written reflections throughout the professional development responding to
questions such as “What was it like to learn math this way? What was it like to be in the
student role?” and “How might these learning experiences impact your future teaching?”  The
field notes were used to capture the context of the mathematical learning experiences so that
the teachers’ reflections could be analyzed within their respective occurrences in the
professional development. Data analysis utilized the processes of Grounded Theory (open
coding, axial coding, and selective coding) (Strauss & Corbin, 1998) to identify the impact of
the mathematical learning experiences on the teachers’ conceptions of learning and teaching
mathematics.

Upon reflecting on their mathematical learning experiences, the teachers noted several
supportive learning processes, which as expected aligned with standards-based
recommendations: working collaboratively with peers, using visual and written
representations, hearing multiple ways to approach a problem, developing mathematical
models and testing them on successive examples, and writing about their mathematical ideas.
They also found multiple instructor actions helpful: asking thought-provoking questions,
capturing in writing mathematical ideas as they were expressed, providing feedback,
allocating adequate time to explore ideas, allowing learners to make sense of the
mathematical ideas, and creating a safe environment. Finally, they noticed beneficial aspects
of the various tasks: open-ended and challenging (not too difficult or easy).

The teachers echoed many of these aspects when they considered how their students
might learn best and how to provide better instruction. For example, many of the teachers
reported that they hoped to use visuals, manipulatives, written representations, and models in
their classrooms; to slow down instruction, revisit mathematical topics as needed, and
provide multiple opportunities and examples to ensure that all students mastered the material;
to ask questions that probed students’ thinking about mathematics; to utilize group work; and
to have students explore the mathematics themselves rather than telling the students how to
complete mathematical tasks. With respect to selecting and using specific mathematical tasks,
the teachers mentioned that they would attend to the mathematical concepts elicited by the
activity, the cognitive challenges associated with the activity, and how to adapt or extend the
activity as needed for their students. Finally, many of the teachers commented on their
increased confidence in teaching mathematics as a result of the professional development.

These results mirror many of the results of other content-based professional development
programs (Basista & Mathews, 2002; Campbell & White, 1997; Hill, Rowan, & Ball, 2005;
Saxe, Gearhart, & Suad Nasir, 2001; Schifter, 1998; Swafford, Jones, & Thornton, 1997). For
example, other programs have found increases in teachers’ content knowledge, teachers
recognizing mathematics as a sense-making domain, teachers viewing themselves as
initiators of mathematical thought, and changes in classroom practice. In the classroom,
teachers have been observed making students’ thinking more central, using less drill and
practice, actively engaging students in the mathematics, and demonstrating confidence and
beliefs aligned with teaching in a reformed fashion. However, this study offers new ideas for
teacher development by also sharing lessons learned about engaging teachers in more
substantive reflections about learning and teaching mathematics.

As part of the analysis process, teachers’ reflections were classified according to the level
of insight about learning and teaching. Insights about processes that supported one’s
mathematical learning were classified as low if they expressed a view of mathematics as a
collection of rules and procedures or if they appeared to rely on others (such as authority
figures) to make sense of the mathematics. Other insights about learning were classified as
high if they provided details and specific descriptions of processes that supported their
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learning. Insights were classified as medium if they provided general (more cliché like)
descriptions. Insights about implications for teaching were classified as low if they expressed
a transmission model of teaching or if they discussed removing the exploration or reducing
the cognitive load for the students. Teaching insights were classified as high if they described
specific or detailed pedagogical strategies that supported students’ making sense of the
material or of a reform-oriented approach to instruction. Teaching insights were classified as
medium if they described in more general terms student-centered implications for teaching.

Classifying the teachers insights as such allowed the following theme to emerge:
Teachers’ reflections were more insightful when they thought about their learning experience
in the role of a student before jumping to thoughts about teaching. When teachers took on at
least a student hat (meaning considering their own learning experiences) in a reflection, their
associated insights about teaching and learning were approximately 20% more likely to be
classified as medium or high. This theme verifies the importance of teachers reflecting on
their own learning experiences as a way to possibly impact their conceptions on learning and
teaching. Teacher educators, upon asking teachers to reflect on their mathematical learning
experiences, may want to use reflection prompts that ask teachers to take on a student hat
prior to taking on a teacher hat. In conclusion, asking teachers to consider implications for
learning and teaching in the context of their own professional development experiences
appears to serve as a productive forum for fostering insights about learning and teaching
mathematics.
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The purpose of this paper is to investigate how teachers’ membership in different figured worlds
shape the identities for teaching that are constructed both within and across these figured
worlds. Specifically, we analyze how these different figured worlds shape the ways in which
teachers envision what is involved in planning and orchestrating mathematics instruction. As we
will discuss, this clarification gives us grounds on which to problematize the notion of
implementation of new instructional materials to teachers’ classrooms via a short-term
professional development workshops organized for that purpose.

This paper considers the ways that teachers’ identities for teaching—that is, their
understanding and enactment of what it meant to be a teacher, shape the ways that they engage
with and plan to implement new curricula in the context of sustained professional development.
We consider the development of multiple identities for teaching as they are constituted through
teachers’ participation in diverse  figured worlds (Holland, Skinner, Lachicotte, & Cain, 1998).
Understanding the identities that teachers develop is an important aspect of supporting teachers
to change their practice (Kazemi & Franke, 2004), as changing one’s practice is not solely a
matter of learning new content (Schifter, 2001), but also requires reconceptualizing what it
means to teach new mathematics content (Cobb, McClain, Lamberg, & Dean, 2003; Franke,
Carpenter, Levi, & Fennema, 2001).  In so doing, teachers may come to see new demands as
sensible and even valuable, resulting in a new vision of what it means to know and teach.  We
propose that teachers’ understandings of what it means to teach are not individually-held ideas
and beliefs that a teacher applies uniformly across contexts. Instead, findings from a five-year
long intensive professional development suggest that teachers’ identities are constructed through
their engagement in particular figured worlds, and more importantly, that their experiences
within these figured worlds come to shape the ways they think about specific aspects of their
teaching. The contributions of this paper are twofold. Pragmatically, this paper contributes to our
understanding of how to support teachers to change their practice through professional
development by examining how teachers plan for their own teaching as they work with new
curricula. Theoretically, this paper contributes to our understanding of the teacher identity by
considering how teaching is constituted in the communities in which teachers are members, and
how that membership shapes teachers’ active decision-making.

Teacher Identities in Figured Worlds
According to Holland et al. (1998), a figured world is: “a socially and culturally constructed

realm of interpretation in which particular characters and actors are recognized, significance is
assigned to certain acts, and particular outcomes are valued over others” (p. 52). It is through our
engagement in these different figured worlds, Holland et al. state, that our positional identities
develop. Just as one can be a member of multiple communities, so too is one often participating
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in multiple figured worlds which shape and give meaning to both the creation and interpretation
of activity. Although most often figured worlds are separate (for example, the figured world of
the office is marked by many differences from the figured world of an aerobics class), it is also
possible for multiple figured worlds to exist at the same time (for example, if you bring a friend
from work to your aerobics class). Thus figured worlds are often overlapping and can at times be
in conflict with each other.

For teachers who are engaged in sustained professional development, there are (at least) two
different figured worlds that are being enacted at the same time. One involves how the activity of
teaching is defined and made meaningful in professional development sessions, and the other
involves the ways those same activities are made meaningful in teachers’ classrooms.  In both
spaces, what it means to teach is constituted through the practices and engagement of the
members of the figured world. For some teachers, these worlds might be so similar as to be
seamless; for others, these two worlds can be markedly different. The teachers who are
considered in this paper were in the latter position, with the figured world for teaching that was
constructed in the professional development sessions being markedly different from the figured
world for teaching that was constituted in schools (c.f. Cobb et al, 2003).

Methods of Analysis
The data considered for this paper come from the last year of a 5-year professional

development effort that focused on supporting teachers’ development of instructional practices
that put students’ reasoning at the center of their practice. In the final year of our collaboration,
the sessions primarily focused on supporting teachers to adapt instructional materials for use in
their own classrooms. The teachers drew on statistics units from two different curricula, both of
which would be considered to be aligned with  “reform” principles: 1) a NSF funded curriculum
that was in its first year of use in the school district in which the teachers worked (NSF); and 2) a
statistics instructional sequence that was previously developed during a NSF-funded classroom
teaching experiments (cf. McClain & Cobb, 2001) (Minitools). The teachers were familiar with
this instructional sequence as it was used in professional development sessions.

Data for this paper come from videotapes of six day-long sessions from the 2005-2006
school year, during which the teachers were reviewing two different curricula.  As the teachers
engaged in critiquing the two sets of curricula, it became apparent that they took strikingly
different orientations when envisioning using them in their classrooms. This difference was
intriguing and emerged as an important research question to be pursued. In order to examine
these differences more closely, videotapes of the sessions were reviewed systematically by
attending to the conversations that unfolded around the two curricula.  This process involved
three steps: (1) delineating times in the conversation when either curriculum was the explicit
focus of conversation; (2) analyzing those sections broadly for differences in the ways that
teachers spoke about content, implementation, and the nature of learning, and (3) closer analyses
of turn-by-turn utterances to determine how conversations unfolded and how teachers were
positioned (Harre & Langenhove, 1999) relative to each other and to the practice of teaching.

Results and Discussion
Findings from this analysis revealed that there were notable differences in the ways that

teachers discussed the two curricula. Rather than conceptualizing the classroom in one consistent
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way, teachers focused on very different aspects of “implementation” when working with
different curricula—despite the fact that both curricula focused on the same mathematical
topics—statistics.  When teachers critiqued the NSF curriculum, they focused on the feasibility
of covering the content within a desired time frame. In other words, the teachers focused on
process, with relatively little emphasis on the nature of the mathematical reasoning intended by
particular activities. In contrast, when critiquing the minitools curriculum, the teachers focused
primarily on the mathematical intent of the lessons, and the specific properties of the
instructional activities that would support or hinder the realization of the mathematical intent.

The fact that two different visions of teaching emerged when discussing what, on the
surface, appeared to be similar curricula raises interesting theoretical and pragmatic issues about
the ways that knowledge is situated in practice. Although it was clear that the teachers had
developed a vision of teaching that was aligned with the goals of the professional development
sessions (i.e., to focus on student thinking with respect to a trajectory of learning statistical
ideas), this vision was not enacted when a different curriculum was under discussion. This points
to an important challenge in professional development design; how to systematically support
teachers in connecting the values and meanings constituted by these different figured worlds.  In
addition, this finding relates to an important theoretical point that teachers’ experience of what it
means to be a teacher is not a static system of beliefs, but is rather constructed in particularly
meaningful figured worlds which give meaning to the practice of being a teacher. In one case,
when the teachers were reviewing the NSF curriculum, it appeared that they were positioned in
the figured world of the school system, as evidenced by their reference to concerns that were
shaped and reinforced through the institutional context of their schools (c.f. Cobb et al., 2003).
In contrast, when the teachers were discussing the minitools curriculum, it appeared that their
instructional decisions were situated in the figured world of the professional development
sessions, in that they were making decisions and justifications that were normative for that group
and were aligned with their histories of participation with those curricula.
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This article examines the interaction between a constructivist teaching approach and Mary
Boole’s construct of teacher lust within a content course for middle grades mathematics
teachers. Examples of teacher lust and their antecedents are discussed.

The term teacher lust was first coined by Mary Boole. Her conception of the construct
described a teacher’s desire “to proselytize, convince, control, to arrest the spontaneous
action of other minds”(Boole, 1931, p. 1412). I submit there are actually two facets to
Boole’s construct of teacher lust – an internal impulse and an observable action. Experienced
teacher lust is the internal impulse or desire to act in the manner Boole describes. For
example, when seeing a student struggle with a given problem, a teacher may feel inclined to
interject and “help” the student to solve the problem by directing the student’s learning.
Should the teacher act upon this desire and attempt to impose their mathematics directly onto
the child, they will have engaged in enacted teacher lust. Actions associated with enacted
teacher lust may include defining a solution path, explaining the mathematics at hand, or
demonstrating how to solve the given problem. This article describes one teaching episode
which took place in a content course for preservice middle school teachers. I present
examples of enacted teacher lust and provide an explanation for the impetus of these actions.

Theoretical Perspective
My research focused on the interplay between teacher lust and constructivist teaching

approaches. My working hypothesis was that teachers who attempt to operate from a
constructivist paradigm are more likely to experience and become troubled by feelings of
teacher lust. As a result, I selected my participants based on their intent to work from a
constructivist paradigm. My definition of constructivist teaching was based upon the work of
Steffe & D’Ambrosio (1995) and of Simon (1995): teaching in which problem posing is the
primary method of instruction and whose intent is active interaction and engagement with
students’ mathematical constructions. When the goal of the teacher is to investigate and
scaffold students’ mathematical understanding, engaging in enacted teacher lust has the
consequence of impeding or removing students’ opportunities and ability to make sense of
mathematics.

Methods and Analysis
A data-collecting schedule was employed that allowed for observation for an extended

period of time on multiple occasions. For the equivalent of two weeks each class meeting was
videotaped. After the two weeks of observation, the classroom data was examined using
Mason’s (1998) six modes of interaction: Expounding, Explaining, Exploring, Examining,
Expressing, and Exercising; in order to identify examples of teacher lust to analyze and
discuss with the participants. From further analysis of these examples overarching themes
emerged. Seminal examples of these themes were selected and compiled into video segments
which were used as stimuli during the semi-structured interview conducted following the first
two weeks of videotaping. The participants were given the opportunity to discuss and debate
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my observations and impressions of their practice, to raise and discuss episodes they selected
as moments of teacher lust for themselves, and to discuss the potential antecedents for these
incidents of teacher lust. This cycle was repeated twice more during the semester.

Results
Samantha, the instructor for the course, spent the majority of time in class each day

posing problems to her students and allowing them time to work in small groups to solve,
discuss, and present their solutions. She acted as a facilitator in class and often responded to
student questions by redirecting or posing new questions for them to think about. The
marshmallow problem was a task designed to encourage students to develop a closed formula
for the sum of the first n square numbers. Students were shown an oblique pyramid, made of
marshmallows with a 5x5 array on the bottom level, a 4x4 array on top of it, followed by
layers of 3x3, 2x2 and 1x1 arrays of marshmallows. When asked to write an expression for
the number of cubes, a student first suggested that the structure was composed of 12 + 22 +
32+ 42 + 52 marshmallows. The students were asked if they could find another way of
representing the number of marshmallows. After an incorrect expression was suggested,
Samantha encouraged the students to think about the formula for the volume of a pyramid.
When the students had difficulty recalling the formula, Samantha stated it. As a way to
demonstrate that the volume of a pyramid with a given base area was 1/3 the volume of a
rectangular prism with the same base area, Samantha produced three oblique paper pyramids,
which could be placed together to form a cube. After one student tried to make a cube from
the paper pyramids, the instructor told him to abandon his approach and to try and “put the
tips together”. When he could not do so successfully, Samantha took the objects from him
and did it herself. Next, Samantha produced three oblique pyramid structures made of 1 + 4 +
9 blocks each, and demonstrated how to put the three structures together to form a rectangular
prism, albeit with some cubes missing. The prism formed was a 4 x 4 x 3 prism with one gap
on the second level, two gaps on the third level, and three gaps on the fourth level. Samantha
asked the students to write an expression for the total number of cubes in the structure, which
she described for them as “a 4 x 4 x 3 prism with a gap of one, a gap of two, and a gap of
three”. The students offered the expression 4 x 4 x 3 – (1 + 2 + 3). Samantha then asked them
to write an equation for just one of the pieces. John offered 1 + 4 + 9, which Samantha wrote
as 12 + 22 + 32, “just to be more general”. From this the students were able to write an
equation that described the number of cubes in one structure in two ways.

€ 

12 + 22 + 33 =
1
3
[4 • 4 • 3− (1+ 2 + 3)]

The next task posed was for the students to adapt this equation for the original marshmallow
structure. The students were confused as to whether the fraction on the right hand side of the
equation should be 1/3 or 1/5. In order to emphasize that it would always take three oblique
pyramids to make the prism Samantha produced three cube structures made of 1 + 4 blocks,
which she put together to make a 3 x 3 x 2 prism with a gap of one and a gap of two. Once
this was explained, the students were able to write a formula for the original structure.

€ 

12 + 22 + 32 + 42 + 52 =
1
3
[6•6•5 − (1+ 2 + 3+ 3+ 4 + 5)]

The students were still confused and some were not convinced that this equation was correct.
Samantha pressed on however and asked the students if they thought the formula would
generalize. With little wait time given for responses, she told them that it would. Samantha’s
wrap of the task began with, “This isn’t really a particularly important formula or anything,
it’s just kind of – I think it is a really neat connection because it is, you know, the volume of
pyramids and cones related to this situation”. When the students asked where they might
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teach this topic to their middle school students, Samantha explained that it was not a topic
that they were necessarily going to teach, but it could be used as an enrichment activity for
students to look for patterns and relationships.

Discussion
This task offers many opportunities for students to engage, explore, conjecture, and

reason within the field of mathematics. The implementation of this task however, removed
many of these opportunities. There were several moments of enacted teacher lust evident in
this teaching episode, and here I will present the antecedents for these actions. In the
beginning of the task, Samantha made a choice to show the key connection between the task
and the pyramid formula for the students. She justified this choice by explaining that she
didn’t expect them to “develop that from scratch…If I didn’t bring up that connection it
would not have been made”. The impetus for this decision was based upon time constraints,
and this issue often impacted Samantha's experiences with teacher lust. Throughout this task
she made pedagogical choices to move things along in the interest of time. Samantha directed
the actions of the students in order to curtail what she called "unproductive activity". She
wanted time spent on what she considered the important or interesting facets of the problem.
Because of this she did not allow the students to fully interact with what she considered
ancillary tasks. “This [putting together the cubes and pyramids] isn’t a key idea I am trying to
get them to build. I just want them to see a connection here. And so it’s definitely a conscious
choice to move things on and keep things going because I don’t want to waste time on this”.
Beyond time constraints, another main antecedent for these examples of teacher lust was
Samantha's desire for her students to see the beauty of mathematics. Prompted by her
comment that the formula the developed wasn't particularly important, I asked why she chose
to use this task. Her justification was that it was connected to the idea of finding sums of
series, and also, “it is just really cool. I mean this stuff is neat”.

The intent of this task was for her students to experience a “really cool” connection in
mathematics between the volume of a pyramid and the sum of consecutive square numbers;
two ideas that are not obviously related. But the students did not really experience these
connections for themselves; they were simply in the audience as the connection was
demonstrated. It was clear from our discussions that Samantha wanted students to see this
connection, but also realized that due to the limited time she had in the semester, she could
not devote the necessary time to have the students fully engage in this task. To reconcile
these conflicting issues, she made a conscious choice to present the problem more like a
demonstration. As a result the excitement Samantha wanted her students to experience
through her task choice was lessened and the task was completed with little or no real
understanding gained by her students. These actions, although justifiable for Samantha,
removed opportunities for the students directly engaging with the mathematics and as a
result, to make genuine mathematical connections.
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This study examines effects of the implementation of content specific and student-need
specific computer-based learning tasks with students struggling to learn about fractions. We
employed a three-phase mixed methods approach with 89 teachers of Grades 7, 8 and 9 to
test a model for increasing lower performing students’ understanding, confidence, and
achievement within the classroom context.

Concepts and skills related to fractions have typically been very challenging for Grade 7,
8 and 9 teachers to teach and for students to learn. We are interested in how to increase
student understanding in this area. Our research questions were: 1.Does the implementation
of content specific and student-need specific computer-based learning tasks (defined by
Fullan, Hill & Crévola, 2006, as CLIPs) contribute to higher achievement, specifically of
students with substantial learning needs related to fractions? 2. How are the CLIPs used by
teachers and students? 3. Are the effects of CLIPs on achievement influenced by student
grade, prior achievement, or motivation?

Theoretical Understandings and Orientation
Studies of low ability learners in classrooms implementing Standards-based mathematics

teaching show mixed results. Some researchers have reported null or weak effects (Baxter,
Woodward, & Olson, 2001; Kroesbergen Van Luit & Maas, 2004; Mayer, 1998) whereas
others (Bottge & Hasselbring, 1993; Riordan & Noyce, 2001; Ross, Xu, & Ford, 2006) have
found positive effects. The mixed results of these studies might explain why Mayer (1998)
found that low ability students were much less likely than their higher ability peers to have
access to Standard-based teaching. Maccini and Gagnon (2002) found that special education
teachers were less confident about their ability to teach the Standards and expressed a strong
preference for direct instruction over constructive techniques with lower achievers.

We attempted to improve achievement of lower ability students in a district that is
committed to Standards-based mathematics teaching for all students in mainstreamed settings
(i.e., with minimal use of withdrawal from regular classrooms). The key strategies we
employed were: (1) Identification of need using diagnostic tests of PRIME (Professional
Resources and Instruction for Mathematics Educators) to identify the Zone of Proximal
Development for particular at risk learners; (2) Focused instruction for moving students
through the developmental continuum of PRIME (Small 2005); and (3) Additional
scaffolding provided by interactive software.

A Mixed Methods Approach
Our research team implemented a mixed methods approach because it provides empirical

data on overall effectiveness of the intervention and context specific qualitative data on
implementation issues. (Yanchar & Williams, 2006).

Phase 1: Identification of problem areas
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In 2005-06 we collected data from underachieving grade 7 and 8 students (Ross, Ford, &
Xu, 2006). We identified 21 problem types for Number Sense and Numeration in which
student achievement was consistently low. All of these problems were related to the topic of
fractions. Moss and Case (1999) found that the domain of rational numbers is difficult for
middle school students to understand (conceptual knowledge) even though students may
demonstrate reasonable competency with the related algorithms (procedures). In our study, a
team of eight expert teachers generated two items for each of the 21 problem types. Then,
teachers ranked the problem types in terms of learning difficulty and disciplinary importance.
Further, students indicated how confident they were in being able to solve each type of
problem. These data were used to generate the blueprints for six learning tasks representing
fractions and equivalent fractions. The teacher team interacted with technical staff to produce
interactive software (hereafter we refer to these as the CLIPs).

Phase 2: Qualitative Study of CLIPs Implementation
In order to examine how the CLIPs function to support or hinder math learning in

practical contexts, we conducted case studies in three classrooms. Two classrooms were
observed during implementation of the initially developed CLIPs. One classroom was
reserved for observing implementation of revised CLIPs. Data collection methods included
formal and informal teacher interviews as well as detailed observations of pairs of students in
math class before, during and after the use of CLIPs. Our goals were to understand: (1) the
context of the lesson, (2) how the student’s mathematical thinking emerged through the
lesson and, (3) which aspects of the lesson (especially the CLIPs components) hindered
and/or facilitated student affect (e.g., self-efficacy, anxiety, effort, engagement, beliefs about
math and math learning).

Phase 3: Quantitative Testing of CLIPs
We are using a randomized field trial with a delayed treatment design as our method of

quantitative data collection. The sample consists of 89 grade 7-9 math teachers in one district
who volunteered for an in-service program on the use of CLIPs in combination with PRIME.
We are collecting achievement and motivational data on three occasions to examine the
effects of CLIPS on student learning and to determine whether the effects of CLIPs on
achievement is influenced by student grade, prior achievement, or motivation.

Results and Discussion
Phases 1 and 2 of the study (identification of learning needs and development of CLIPs &

qualitative analysis of CLIPs implementation) are now completed. Phase 3, the quantitative
data collection will be completed in the Fall. The full report of the study will be made
available in December 2007 at: http://www.oise.utoronto.ca/field-centres/tvc.htm. The
expected contribution of the study to academic knowledge is evidence of the effects of a
Standards-based mathematics treatment adapted to the needs of lower achievers. This study is
testing the claim that lower achievers can be successful if (1) the diagnosis enables teachers
to provide appropriate instructional tasks (2) instruction is targeted to specific student
learning needs, and (3) student mathematical talk is guided by high quality tasks delivered
through interactive software.

Endnote
1. This research was funded by the Ontario Ministry of Education and Training. The

views expressed in the article do not necessarily represent the views of the Ministry.
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In this paper, we document the contrasting ways in which professional development (PD)
activities around student work became constituted in two differing PD settings, yielding
different opportunities for supporting teachers’ learning. Our analysis illustrates the
importance of situating PD design in the institutional context in which teachers work, even
when the designed PD activities are intended to focus on supporting teachers’ mathematical
and pedagogical reasoning.

Using classroom artifacts has increased in popularity in mathematics teacher professional
development (PD) as a promising means of supporting teachers’ learning (Ball & Cohen,
1999; Smith, 2003). It reflects efforts to promote practice-based PD in which researchers
proactively seek to establish connections between classroom teaching and PD activities.
However, as Lampert and Ball (1998) have cautioned us, classroom artifacts do not “make a
curriculum for teachers’ learning. [They are] merely records of practice, with a promising
potential to be made into curriculum” (p. 109). Therefore, it is important that researchers and
teacher educators be more articulate about how classroom artifacts can be built into a
potential curriculum for supporting teachers’ learning or what are some key factors that can
deeply influence this process. Our goal is to contribute to the second question by illustrating
that the ways that teachers examine records of their classroom practice in PD are profoundly
influenced by their instructional practices in the classroom, which are in turn situated in their
institutional context of teaching (Cobb, McClain, Lamberg, & Dean, 2003).

We draw on a five-year PD collaboration with middle-school teachers in two urban
districts that focused on middle-school statistics. In each district, we conducted six one-day
work sessions and three-day summer institute per school year. The broader research question
concerned the process of supporting teachers’ development of instructional practices in which
they would come to focus on students’ reasoning in their instructional decision-making. To
this end, we used classroom artifacts (e.g., student work) as a means to help teachers
understand the diversity of students’ statistical reasoning and use it as a resource in
instructional planning. It surprised the research team that the activity of examining student
work was constituted differently at the two sites. In district one, the teachers were concerned
about being portrayed as ineffective when bringing unsatisfactory student work to PD
sessions. As a result, a number of them pre-taught their classes (Dean, 2006). When
analyzing student work, the teachers were focused on the correctness of students’ answers
whereas the process in which students arrived at these different answers seemed untraceable
and less important. Little connection did the teachers see between examining student work
and instructional planning. In contrast, in district two, the teachers tried to make sense of
various students’ solutions and to categorize them according to their level of mathematical
sophistication. In doing so, they explicitly talked about the PD activity as a valuable
opportunity to deepen their own mathematical understanding.

The contrasting ways in which teachers approached student work at the two sites indicate
the complexity that teacher educators may encounter when records of teachers’ classroom
practice are used to support learning in PD. To proceed productively in our work with the
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teachers, it became imperative that we attend to teachers’ classroom instructional practices
around the use of student work. Additionally, it proved beneficial to view these practices as
deeply situated in the broader institutional context of teaching. Although both school districts
had high-stakes accountability programs, they differed in several significant ways (Cobb et
al., 2003). In district one, school and district leaders viewed mathematics teaching as a
routine and predictable activity and coped with accountability pressures by attempting to
monitor and regulate teachers’ instructional practices. When we first began to work with the
teachers, their instructional practices were highly privatized, focusing primarily on covering
the curriculum with little attention paid to students’ mathematical understanding (as the
teachers were not equipped with resources to do so). In contrast, school and district leaders in
district two viewed mathematics teaching as a complex and demanding activity and coped
with accountability pressures by providing teachers with access to new tools and new forms
of knowledge. As a result, an active informal teacher network was in place before we entered
the site, focusing on helping each other to plan and teach mathematics lessons by capitalizing
on a variety of instructional tools.

It is through understanding the specific institutional contexts that the teachers’ orientation
towards student work in district one becomes understandable. The teachers were regularly
assessed based on the extent to which their students could produce the correct answer.
Teachers, therefore, used student work as an assessment tool of students’ achievement, seeing
it as an indicator of the conclusion of an instructional activity. Using it to plan for instruction
was alien to these teachers’ instructional experiences and therefore an unreasonable PD
activity from their perspective. In contrast, the teachers in district two saw student work as
records of students’ diverse ways of reasoning and linked it to the type of classroom
instruction that students received. The teachers valued meetings and conversations about how
their students solved the problems differently. They saw a PD activity built around student
work as aligned with this instructional orientation and thus useful not only in helping them
interpret students’ solutions but also in deepening their own statistical reasoning.

To summarize, we argue that when planning to use classroom artifacts (e.g., student
work) as a means of supporting teacher learning, it is critical to understand the role of these
artifacts in the context of teachers’ classroom practice. As we illustrated, in order to
understand that role, it is key to situate teachers’ classroom instruction in the institutional
context of their work.
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The purpose of this poster is to describe common Activity Structures (Lemke, 1990) of middle
grades’ classrooms to provide a more nuanced understanding of mathematics classroom
practices.  These findings reflect a first step in investigating these Activity Structures to
understand the complexities of the broader practices that occur in mathematics classrooms.

 “Traditional” mathematics classroom practices have been described as consisting of a very
specific sequence of activities: the teacher provides answers to the assignment from the previous
day; the teacher or the students work out the solutions to the more difficult questions; the teacher
provides a brief explanation of the new material; and students practice problems based on the
new concept (Welch 1978). While this generic description of traditional mathematics classrooms
provides a glimpse of what some mathematics instruction looks like, it does not provide a
broader landscape of mathematics classroom practices. We do not seek to categorize classrooms
within the “traditional” and “reform” dichotomy. Rather, the purpose of this poster is to describe
common Activity Structures (i.e., how people interact with each other using a mutually
constituted set of expectations about what can happen next (Lemke 1990)) of middle grades’
classrooms to provide a more nuanced understanding of mathematics classroom practices.

We draw from the larger data set of an NSF-funded study (Beth Herbel-Eisenmann, PI) on
mathematics classroom discourse in which eight classroom teachers (grades 6-10) from seven
schools in the Midwest participated. Following Lemke’s (1990) methodology developed for use
in science classrooms, we investigated the variety of and time spent on various classroom
Activity Structures in mathematics classrooms. The teachers were observed for one-week periods
in September, November, January, and March. We found a total of 37 different Activity
Structures in the mathematics classrooms. Across the 81 hours of classroom observations, we
found that 20 percent of class time was spent Going over Homework. About 21 percent of time
was spent doing either Seatwork, Groupwork, or Partnerwork. Another 7 percent of time was
spent “Setting up” activities such as Groupwork or Homework. By drawing on the work of
Lemke (1990) for this analysis, we were able to see that there are a range of Activity Structures
taking place in mathematics classrooms. The findings reported in this poster reflect a first step in
investigating these Activity Structures to understand the complexities of the broader practices
that occur in mathematics classrooms.
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Grossman, Wineburg and Woolworth’s (2001) described the essential tension of professional
development, noting the need for teachers to focus on the improvement of student learning,
“direct applicability” and to improve their own knowledge of the content they are teaching,
“intellectual renewal”. We describe a teaching community in which designing 3D geometry
lessons provided an opportunity for genuine mathematical inquiry as well as a forum for teachers
to discuss pedagogical issues from both a micro and macro perspective. We speculate that
characteristics of this particular domain have the potential to be a gateway to changing practice.

The teaching community consisted of the authors and a group of six elementary school
teachers at 3 different elementary schools in Northern California, two of which are low
performing. We met monthly to design and discuss geometry lessons. Field notes from meetings
were used for this study.

We engaged in a design cycle where we began by sharing general observations about lessons
which led the teachers to make specific observations about their students’ mathematical thinking.
Often these observations sparked a mathematical exploration in which one of the teachers
usually got stuck and elicited help from the group. We then brainstormed how we should help a
student in her position. We considered lesson possibilities and this often led to more
mathematical exploration. In this way we vacillated between discussing mathematics, students’
thinking about the mathematics, and pedagogy.

After conducting their first lesson one teacher reported that she was “surprised by what my
kids can do.” Another noted that one of her students who was typically disengaged from
schoolwork showed interest and persistence she had not seen in him before. Because the lessons
we designed required students to build and describe polyhedra of their own design, the teachers
had an opportunity to see their students engaged in independent thinking.  One of the teachers
noted that this made her “want to explore different ways to teach math so my kids can build it
and construct it for themselves.”  In essence she had an existence proof that student-centered
instruction was effective and now she was interested in trying it in other domains.

This group achieved professional community status, Grossman et al (2001) in a relatively
short time because of the nature of the topic we were exploring. 3D geometry is a topic that the
teachers had little experience with. Since it is relegated to a few pages at the end of the text, they
had not thought much about it or developed habits of teaching it, making them willing to try
alternative forms of instruction that they might not try in a more familiar domain.  They were
motivated to collaboratively plan lessons in this domain because they don’t have preconceived
ideas about how it should be taught. They also did not expect themselves or their colleagues to
have deep content knowledge in the domain so they readily engaged in mathematical
explorations and freely admitted when they were having difficulty.
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The latest version of National Council of Teachers of Mathematics [NCTM] standards (2000)
elevated the status of representation to one of five process strands. Considered indispensable to
communicating, organizing, and understanding mathematical concepts and relationships,
representation also allows students to recognize interdisciplinary connections as well as to real-
world contexts. For teachers, representations are crucial to providing insight into how their
students think and solve problems. However, education research has suggested that students
experience difficulties with such processes, and that teachers also struggle to make sense of these
processes when doing and teaching mathematics (Stylianou et al, 2007).

As NCTM standards become absorbed into state and local curricula, it is critical that teachers
gain the pedagogic content knowledge necessary to guide their students in utilizing
representation in the classroom. However, this transformation cannot happen overnight without
focused, practice-oriented professional development as well as a continued system to support
teachers throughout their practice (Smith, 2001; Ball and Cohen, 1999).

The purpose of our work is to understand how teachers and students understand and enact the
process of representation in their classrooms. In light of the need for professional development to
first strengthen teachers’ instructional strategies, we asked the following question: To what
extent do teachers’ conceptions and understanding of representation develop through intensive,
practice-oriented professional development?

Theoretical Framework
In this study we are following a theoretical framework based on two underlying themes: a)

the relationship between social and cognitive domains of learning and b) aspects of teacher
growth through professional development. First, we are considering the symbiotic relationship
between social and cognitive domains of learning and the interaction between the two  (e.g.,
Cobb & Yackel, 1995). Using the two domains, we use a synthesis of aspects of representation
identified in earlier studies as a lens to approach this topic. The four cognitive aspects of
representation in individual problem solving we draw from are its functions as a means to a)
understand the information provided; b) record ones problem solving activities; c) facilitate
exploration; and d)  monitor and evaluate progress. Along with the cognitive, we consider a
sociocultural perspective where learning is situated in everyday practice. We regard
representations as communication tools in the context of the classroom.

Next we consider Ball and Cohen’s (1999) approach to practice-based professional
development as a means to enhance teachers’ instructional practice. In light of this research that
suggests that professional development can be superficial, fragmented and disconnected to
classroom practice, we developed a “pedagogy of investigation” (Lampert & Ball, 1998). This
meant an emphasis on mathematical investigation and analysis of teacher’s own thinking and
representation, but also carefully chosen vignettes of K-12 classroom life. These “strategic
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documentations of practice” included samples of student work, and videotaped sessions of
classroom lessons.

Methods

Participants
Seven middle-school teachers were participants in the study. The teachers were selected on

the basis of their willingness to participate in the study and were chosen from two school sites,
both with a heterogeneous urban student population. Like their students, the teachers represent a
wide range in terms of their own formal mathematical education, confidence in their own ability
to “do” math, and successful experiences as students.

Procedures
Earlier work (Stylianou et al, 2007) suggests that teachers have a narrow conception of the

role of representation in their mathematical practice, and it therefore plays at best a peripheral
role in their classrooms. In order to address the need to develop a more complete understanding
of the role of representation, we developed an intensive, week-long, professional development
institute in which participants were immersed in practice-oriented problem solving focusing on
representation. This model situated the participants in the same types of practices that could be
implemented in their own classrooms. In particular the participants were given opportunities to
model situations mathematically, construct solutions and perhaps most importantly, justify their
thinking to their peers. By reflecting on themselves as learners of mathematics, they began to
consider new beliefs about their practice, sometimes even revising or even contradicting prior
beliefs (Fosnot & Dolk, 2002).

Though it was clear that representation was the central theme of the week, the facilitators
never provided a formal definition of representation. Instead, the community of learners
constructed their own conceptions of representation throughout the course of the institute. These
definitions were recorded publicly and deepened as the week unfolded.

Data and Analysis
Data from a variety of sources helped us to analyze the effects of the institute on teachers’

conceptions: semi-structured interviews at the beginning and end of the week, videotape
recordings of class discussions, posters of each problem solving investigation created by the
teachers, a survey of mathematical beliefs, and a audio recording of a discussion of their hopes
and fears in continuing the work throughout the year.

The primary source of the data was the semi-structured interview. The first stage focused on
teachers’ conceptions of representation in the discipline of mathematics (i.e., teachers’
conceptions as individuals who are knowledgeable about mathematics), whereas the second stage
focused primarily on their conceptions of representation in the context of secondary mathematics
(i.e., teachers’ conceptions as individuals who are teachers of mathematics).

Initial questions focused on teachers’ conceptions about the nature and role of representation
in mathematics. Additionally, during the interview, teachers were shown and asked to evaluate
different sets of researcher-constructed solutions to problems – solutions that varied with respect
to the types and extent of representation use. The solution sets provided a context for examining
the nature of what teachers find acceptable representations; in particular whether they find a
particular representation more appropriate, useful or generalizable than others, and if so why.
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The data analysis was grounded in an analytical-inductive method in which teacher responses
were coded using external and internal codes and then classified according to relevant themes.

Results
The growth of the participants’ conceptions of representation can be best described along

three dimensions:
Growth in defining representation and its role in problem solving: While teachers in their

own problem solving initially showed evidence that they utilize representation for multiple
purposes, they were not necessarily metacognitively aware of their actions. The majority of the
participants at the beginning of the week struggled to define representation by simply suggesting
types of representation such as graphs, tables, etc, rather than a coherent set of ideas. They had
not yet developed the vocabulary to extend their definition. This suggested an initial limited
understanding of the role of representation. However, by the end of the week, the participants
had developed more cohesive definitions that took into account notions of concreteness, tools for
problem solving, and as a form of communication, and had developed an understanding of its
role both as process and product.

Growth in teachers’ conceptions of representation as an instructional tool: The participants
initially chose formal, algorithmic representations as efficient models for problem solving. When
queried about the value of multiple representations, or of incorrect or incomplete representations,
teachers were reticent to acknowledge their place during instructional time. By the end of the
workshop, the participants had begun to understand the importance of representation as a form of
assessment in order to identify how their students think and attack problems, as well as
identifying where students may struggle with concepts. Finally, participants exhibited an
emerging self-critique of the limited use of multiple representations in classroom instruction,
especially with respect to algebra.

Development of a learning community: At the closing of the institute participants shared
their “Hopes and Fears” for the project. The teachers noted that they had “formed a learning
community,” and that they were excited to continue the work throughout the academic year. The
teachers were also eager to participate in another professional development institute in which
they would become teacher-leaders who would “turn-key” the workshop with a new cohort of
teachers the following summer.

Discussion
In this study, we examined whether purposeful professional development could enhance

teachers’ understanding of the role of representation in problem solving and instruction. Our
findings suggest that this type of experience provides teachers with an experiential referent from
which to evaluate their own teaching practice.

Additionally, we modeled strategies that could be implemented in teachers’ own
classrooms, and in several, critical moments were explicit about the modeling (allowing teachers
to see our own thinking as facilitators of others’ learning). This supported teachers in developing
more fully realized conceptions of representation. This study suggests how a practice-driven
model can effect positive change in pedagogic content knowledge, and ultimately, success for
students.
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This study compares the features and results of three professional development seminars
given in the same school district in a moderately sized Midwestern city. Participants in one of the
seminars (S1: Critical Mathematics) were secondary school teachers, while in the other two (S2:
Inform Mathematics Teaching Practice with Student's Lived Experiences); and S3: (Developing
Conceptions of Everyday Practices for Use in School Mathematics), were elementary school
teachers. In the S1 seminar, teachers worked to develop a mathematics lesson that incorporated
both mathematical and social justice goals in an attempt to support students in "reading and
writing the world with mathematics" (Gutstein, 2006). In the S2 seminar, teachers engaged in a
close examination of the in and out-of-school experiences of a single student from each of their
classrooms in an attempt to use knowledge of the student outside of the classroom to inform the
planning of instruction for that child. In the S3 seminar, teachers surveyed students to determine
their out-of-school practices and created lessons to incorporate those practices in the
mathematics class.

In looking across these seminars, several notable commonalities support a comparative
analysis of the results. In each seminar, (a) teachers were engaged in activities meant to support
their development as multicultural mathematics teachers, that is to connect mathematics teaching
to the greater socio-political context in which the students live; (b) the teachers all self-selected
into these seminars and as such were willingly engaged in attempting to link issues of
mathematics and issues of equity; (c) all the teachers in the studies were White and were
teaching in a community, like many in the United States, which was experiencing an increase in
ethnic and racial diversity among the student population .

The power of this comparative study is the similarity of the issues that emerge despite
differences in seminar design and grade level. Various seminar activities were used (lesson
study; meetings with parents; shadowing of children; home surveys to access home practices;
development of lessons built on student experiences). In spite of engaging in a variety of seminar
activities across the K-12 teaching spectrum, the results of comparing these studies points to the
difficulty of keeping a focus on both mathematical development and issues of equity.  Teachers
chose to participate in these seminars, and yet, with the best of intentions for attending to issues
of mathematics AND equity, it proved difficult in each of these instances to maintain this dual
focus. On a positive note, in each study, the teachers began to grapple with the issue of the social
distance between teachers and their students. This has implications for honoring and validating
the experiences that students bring to school, so that they can be taught mathematics more
effectively (Nieto, 2004). In that respect, these studies indicate that professional development
that informs the lens with which teachers look at and understand children who are unlike
themselves has the potential to change mathematics teaching practice.
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Our study’s aim is to examine a preservice secondary mathematics teacher’s conceptions of
educational equity, expectations for diverse students, and reactions to engaging in mathematical
tasks contextualized by social issues. Data reveal multiple dimensions of teachers’ equity-related
thinking and the tensions they may experience when confronting equity issues. Results suggest
ways in which teachers’ beliefs may inform their instruction.

A key concern of teacher education programs is preparing a relatively homogeneous
population of teachers to meet the needs of an increasingly diverse student body (Sleeter, 2001),
including poor and minority students who have been historically underserved in mathematics
education (Lubienski & Crockett, 2007). Many teachers hold beliefs about schooling and student
achievement that may interfere with educational equity (Sleeter, 2001). Furthermore, research in
mathematics education suggests a link between teacher expectations and student outcomes, as
mediated by pedagogical decisions (e.g. Silver & Stein, 1996; Zevenbergen, 2003). Teacher
educators must better understand the beliefs and expectations of prospective teachers in order to
provide experiences that challenge them. The aim of this case study (Patton, 2002) is to examine
one preservice secondary mathematics teacher’s (PSMT’s) (a) conceptions of educational equity,
(b) expectations for diverse students, and (c) reactions to engaging in mathematical tasks
contextualized by social issues. Studies of teachers’ equity-related beliefs are seldom situated in
the context of mathematics education, as teacher education programs frequently separate
constituents' content, methods, and multiculturalism coursework. The tasks designed for this
research provide an example of helping PSMTs engage equity issues while maintaining a
simultaneous focus on mathematics learning. They also provide the field of mathematics
education with a unique research tool for revealing teachers’ beliefs about issues of educational
equity. Our research contributes to the field by exploring the complexity involved in examining
teachers’ equity-related beliefs. Results inform teacher education with the larger aim of
improving mathematics instruction for all students.

Literature Review
We assert that mathematics teacher education must address (a) content knowledge and (b)

issues of equity in response to common weaknesses among preservice and practicing teachers
and in order to meet the goals of current reform efforts (NCTM, 2000). First, despite extensive
coursework in mathematics and the study of advanced topics, many PSMTs lack conceptual
understanding of content in the high school mathematics curriculum (Even & Tirosh, 1995).
Teachers’ deep understanding of mathematics content is crucial for ensuring high quality
mathematics education, as large-scale studies demonstrate a positive relationship between
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teachers’ mathematics knowledge and their students’ achievement (Hill, Rowan, & Ball, 2005;
Rowan, Chiang, & Miller, 1997).

Addressing equity in mathematics education necessitates an examination of students’ access
to, understanding of, and persistence in mathematics throughout schooling and beyond.  It also
involves considering the consequences of students’ participation in various curricula (Secada,
1989). In the US, White, middle-class students and their poor and minority counterparts incur
different rates of achievement (Lubienski & Crockett, 2007) and persistence (Hrabowski,
2002/03) in mathematics-oriented fields. Furthermore, preservice teachers—who are
overwhelmingly White, female, and lower-to-middle class (Sleeter, 2001)—report being
unprepared for and exhibit resistance to teaching diverse students (Dee & Henkin, 2002; Terrill
& Mark, 2000).

Teachers’ expectations for students and their conceptions of education are two promising
venues for impacting the achievement gap. Preservice and practicing teachers frequently hold
differentiated expectations for students of different race/ethnicities or class. They also tend to
explain academic differences by employing deficit models of poor and minority students’ home
culture rather than considering the contribution of classroom, school, or societal factors to the
achievement gap. This is of primary concern because research has established an association
between high teacher expectations and high mathematics achievement among underserved
students (Gutierrez, 1997; Silver & Stein, 1996). Teachers’ conceptions of education may also
interfere with goals for equity, as they commonly believe the primary purpose of schooling is to
indoctrinate students into American culture (Cockrell, Placier, Cockrell, & Middleton, 1999;
Davis, 1995). This runs counter to goals for educational equity, which require that decisions
about education take into account peoples’ socioeconomic conditions and their ability to
participate fully in democratic society (D’Ambrosio, 1990).

Theoretical Framework
Secada (1989) has said that an evaluation of educational equity necessitates going beyond

simple notions of equality of the inputs, processes, and outcomes of schooling. Instead, it
requires questioning the appropriateness of educational decision-making from multiple
perspectives and making “judgments about whether or not a given state of affairs is just” (p. 68).
Mathematics education research overwhelmingly ignores these issues as they relate to teachers.
We argue that teachers need to have a working definition of equity in order to gauge their own
classroom practices and the practices of their larger grade, school, or district community.

A major barrier to educational equity is the low expectations that teachers often have for poor
and minority students. Expectations often are manifested in teachers’ notions of ability and
effort, which in turn impact their pedagogy (Zevenbergen, 2003). Common conceptions of
ability—as innate, fixed, correlated with speed, easily assessed, and normally distributed—are at
odds with goals for equity in that they “are grounded in ideologies that maintain race and class
privilege through the structure as well as the content of schooling” (Oakes, Wells, Jones, &
Datnow, 1997, p. 484). Oakes and colleagues found that teachers often gave racial and cultural
explanations for the different levels of perceived ability and used this ideology to rationalize
schooling practices that disproportionately disadvantaged poor and minority students.
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Methodology
This qualitative inquiry was conducted in a secondary mathematics methods course taught by

the second author. All PSMTs completed three mathematical tasks assigned at near-equal
intervals throughout the semester as part of the required coursework. The first two tasks were
coupled with related research articles that the PSMTs read prior to their implementation. The
tasks are designed to allow PSMTs to use mathematics concepts they will be expected to teach,
and they are contextualized by equity related social issues and employ authentic data. Thus, they
respond to the aforementioned concerns regarding PSMTs’ weak content understanding and
unsophisticated notions of equity. They also serve as a research context for investigating
teachers’ beliefs and expectations for students.

For the first task, PSMTs used statistics concepts to explore state and national achievement
gap data. They considered the contribution of numerous factors to the achievement gap as they
used Microsoft Excel® to aggregate standardized test scores, identify trends in the data, and
represent findings in multiple ways. The second task involved the use of algebra to investigate
the practice of payday lending—using a borrower’s checking account information as collateral
for a short-term high-interest loan. Students retrieved loan procedure data from an internet source
and constructed linear graphs and equations to represent the costs of borrowing money for
different lengths of time. Considering the relative cost of various scenarios and the factors that
contribute to a lower-income person’s decisions provided insight into the seemingly-unwise
financial choices made by some borrowers. The third task required PSMTs to create their own
mathematical activity contextualized by an equity-related social issue of their choosing and
utilizing authentic data. This task provided an opportunity for PSMTs to create curricular
materials designed around an issue of personal interest.

The participant, Josh, is a White male senior-level mathematics major enrolled in the course.
He was selected for participation in this study as a result of his willingness to discuss equity
issues and his interest in our project. Data sources included a focus survey, three semi-structured
interviews, and Josh’s solutions and reflections related to the mathematical tasks. The survey
was administered at the beginning of the semester and primarily inquired into the participant’s
beliefs about teaching, schooling, student learning, equity, and the achievement gap. The first
interview immediately followed the survey and allowed for clarifications and extensions of
Josh’s beliefs. The second interview occurred a week after Josh’s completion of the first task and
further clarified his stance as well as capturing his initial reactions to the task. The third and final
interview occurred after all three tasks had been completed, and it probed Josh’s reactions to all
of the tasks. Our identification of Josh’s conceptions of equitable mathematics education and
expectations for students was informed by data collected in the survey and interviews. The
interviews and written assignments provided evidence for examining his responses to the
mathematical tasks. 

Data were transcribed and coded in order to determine emergent themes and they underwent
constant comparative analysis (Strauss, 1987). Initial codes for the thematic analysis were
informed by the research literature, and the list of codes was revised throughout data collection
and analysis as constant analysis dictates. In our discussion of the results, we analyze Josh’s
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conceptions of equitable mathematics education in relation to Secada’s definition of educational
equity. Our goal was to determine the extent to which Josh possessed a sophisticated and
nuanced conception of equity and the ways in which he believed various factors contributed to
the pursuit of equitable mathematics education. Oakes and colleagues’ (1997) discussion of
different social constructions of ability informed our analysis of the participant’s expectations for
students’ perceived ability and effort along lines of race and class. Beyond understanding what
our participant expected for diverse students, we also explored his stated reasons for these
expectations. To address Josh’s reactions to the tasks, we coded and analyzed items referring to
his response to the mathematical content, the equity issues, and his reasons for valuing or not
valuing certain aspects of the task. We searched for themes in the data and report our findings
below.

Results
In this section, we present Josh’s conception of equitable mathematics education, his

expectations for diverse students, and his reactions to the mathematical tasks. Josh is an
“information-rich case” (Patton, 2002) because while it initially appeared that his beliefs aligned
with goals for educational equity, subtleties in his views shed light on the complexity of
preparing teachers to contribute to equitable mathematics education.

Conception of Equitable Mathematics Education
In the survey, Josh stated that the goals of schooling and of mathematics education should be

to prepare students for a variety of employment opportunities, enhance everyday reasoning, and
promote values and citizenship. Josh believed that equity in mathematics education would be
realized if the percentage of students performing at different levels on standardized tests was
identical for each racial/ethnic and class group, thus demonstrating his focus on a primarily
outcome-oriented conception of equity. For instance, in response to an interview question asking
how to identify an equitable high school mathematics department, Josh declared, “I’d say the
best measure is just the statistics of like how students are doing.” He saw specific inputs (e.g. the
distribution of material resources) and processes (e.g. teachers’ efforts to establish norms of
respect and offer extra help to those in need) as contributing to achievement outcomes.

Josh frequently associated the achievement gap with funding, maintaining throughout the
data collection phase that “insufficient funding for poor neighborhoods” and the results of this
shortage were fundamental contributors. He expressed certainty that teachers should be held
partially responsible for mitigating the achievement gap, but he was vague about the ways that
they could address the problem. Josh described himself in the survey as wanting to be an
“activist” in getting money to the schools, but again was unclear with respect to specific actions
he could take. He was more confident in his recommendation that teachers work closely with
students that have individual difficulties.

Expectations for Diverse Students
Analysis of survey and interview data provided information about Josh’s expectations for

diverse students. Josh proposed that all high school students should be required to take four years
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of mathematics, yet he believed that courses below the level of algebra should be readily
available and allowed to count towards this total. He set Algebra I as the minimum requirement
for high school graduation.

Josh believed achievement was measured by course grades, and saw it as a consequence of
both effort and ability. Effort, to Josh, was the leading contributor to mathematics success and
was reflected in students’ homework completion score. Josh maintained that ability—the factor
he listed as third-most influential in students’ success—could best be measured through
standardized tests and would be quite apparent to a classroom observer. Josh was convinced that
a teacher could easily differentiate between students of different abilities as well as students
exerting high or low effort, according to the speed at which they find correct answers in class and
their homework completion. He asserted that ability has no association with race, but was unsure
about its association with class, because of the possibility that ability may be hereditary. Josh
attributed the lack of effort he perceived among poor and minority students to society’s message
that they are inferior.

Reactions to the Mathematical Tasks
Josh valued the open-endedness of the tasks as well as the requirements to use written

communication and multiple representations, all which he saw as contributing to the
mathematical complexity of the tasks. He felt the use of real data enhanced the tasks’
authenticity and that this feature could increase students’ motivation. Josh valued the topics of
the tasks for his personal learning, reporting raised curiosity as a result of his study of the
achievement gap and his newfound understanding of the dilemmas facing low-income families
that choose to make use of payday lending. He seemed to be convinced by the tasks that
mathematics could coexist with an examination of social issues without becoming “watered-
down.” Despite these positive reactions, he also expressed that it was important to maintain a
focus on the mathematics and not delve too much into “social studies” issues. When asked what
aspects of the tasks he would include in his future teaching, Josh talked at length primarily about
the mathematical features. Pressed further about the equity content, he briefly entertained the
notion of incorporating explorations of social issues into a high school mathematics course, but
felt this would best be done in conjunction with a teacher in another subject. He also expressed
concern that students might find such issues discouraging.

Discussion
Josh’s conception of equity involved primarily the equality of achievement outcomes. He

stated that particular inputs were unequally distributed among different groups of students, and
asserted that these contribute to the disparity in achievement outcomes. He reached a restricted
consideration of equity as defined by Secada (1989), however, because he did not question the
appropriateness of educational activities and outcomes nor did he entertain qualitative notions of
fairness in schooling. For instance, Josh did not consider outcomes beyond K-12 education when
judging equity, such as persistence in mathematics-oriented fields or economic equality. He also
did not question the current mathematics curriculum or mathematics teaching. Data suggest that
Josh’s willingness to consider equity issues in mathematics instruction may be influenced by his
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views of the nature of mathematics, as he exhibits traditional beliefs about the content that
should be included in mathematics instruction. Other researchers have also proposed that
teachers’ beliefs about subject matter may impact their willingness to adapt curriculum and
instruction to the needs of diverse learners (Stodolsky & Grossman, 2000). While the importance
Josh placed on funding suggested an awareness of systemic problems in schooling and the
impact of the achievement gap on groups of students, a great deal of Josh’s notion of equity
involved having teachers address what he perceived as the learning difficulties of individuals. In
order to contend with the systemic factors contributing to achievement disparities, conceptions of
equity must attend to educational trends among subgroups of the population as opposed to
examining individual differences.

Josh’s view of ability may counter goals of educational equity, but his view of effort is more
closely aligned with these goals. He indicated that ability was innate, correlated with speed, and
could be easily identified—all qualities that Oakes and colleagues (1997) found to be associated
with resistance to educational reform. Although Josh sees effort as associated with race and
class, he recognizes the powerful role of societal expectations on shaping students’ efficacy and
in turn, their effort. This demonstrates his awareness of systemic problems—most notably the
relative privilege experienced by White upper- and middle-class students—and is aligned with
goals for equity. This awareness suggests that Josh may be sensitive to some of the additional
pressures faced by underrepresented students and may be likely to hold high expectations for
student effort and try to instill confidence.  His views on the role of teachers involved addressing
funding issues, reaching students of different abilities, and creating a positive atmosphere for
students, indicating that curricular content was not a significant feature of instruction to him. The
strength of his recommendation that high school students take four years of mathematics is
diminished by his belief in establishing Algebra I as a minimal graduation requirement. This idea
is consistent with the low expectations frequently held for underserved students, as it may lead to
lateral movement within mathematics course-taking rather than promote student access to
advanced mathematics (Buckley, in press).

Josh’s reactions to the tasks supply further evidence for our claim that his consideration of
educational equity is restricted, but they suggest ways to mitigate teachers’ resistance to
confronting equity issues. While the mathematical features of the tasks were most salient to Josh,
we speculate that the mathematical complexity may be crucial for helping establish the
legitimacy of equity issues in the minds of PSMTs. Josh’s seemingly contradictory reactions to
the possibility and appropriateness of integrating equity issues into a mathematics course expose
another critical tension that must be resolved before he can fully realize the goals of educational
equity in his own classroom.

Significance
Our study of a single information-rich case (Patton, 2002) reveals multiple dimensions of

teachers’ equity-related thinking and the tensions they experience when confronting equity
issues. It also provides insight into the manner in which teachers justify such beliefs and suggests
implications this may have for instruction. While previous studies have relied heavily on
straightforward measures and/or quantitative methodologies, our study highlights the necessity
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for a nuanced approach to understanding and challenging teachers’ views through both research
and practice. One such approach may involve situating teachers’ explorations of equity issues in
a subject-matter context. Another productive course of action may be to carefully address the
foundation of teachers’ beliefs in teacher education rather than simply the beliefs themselves.
Understanding more about PSMTs’ expectations of underserved students ultimately positions
mathematics teacher educators to empower the teaching constituency to teach in ways that are
more equitable and expands the research base for equity issues in mathematics education.
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We report on the results of a two-year study in which pre-service teachers (PSTs) used letter
writing as a medium for posing tasks to algebra students. We measured PSTs’ growth in terms of
elicited cognitive activities, as indicated by students’ responses. Results include demonstrated
progress in PST’s abilities to elicit and assess activities described by NCTM’s Process
Standards.

Recent reform efforts attempt to focus teachers’ attention on the processes of mathematics, as
well as the products. The challenge for teacher education programs is to engage preservice
teachers (PSTs) in designing and posing tasks that might elicit high levels of mathematical
activity from students. Silver et al (1996) conducted research on task posing in the context of
PSTs generating problems from problem stems. The researchers found that PSTs tend to design
tasks that are inadequately stated and unlikely to elicit high levels of cognitive activity. These
findings highlight two key motivations for the research reported here: the need for PSTs to
develop an ability to design better tasks and the need for methods courses to provide authentic
contexts in which this can occur.

We have built on the work of Sandra Crespo (2003) by using letter writing between PSTs and
students to provide opportunities for authentic, iterative exchanges of tasks and responses. We
conducted a two-year study of PSTs’ growth in eliciting high levels of cognitive activity from
students through task posing. In this paper, we restrict our attention to those cognitive activities
described by the Process Standards (NCTM, 2000).

In our first year of implementation, we paired PSTs with high school algebra students for
twelve weeks of letter writing with a task and a response exchanged each week for each pair. We
used the results of these exchanges to operationalize measures of cognitive activity, including the
Process Standards, as we assessed students’ responses. Our assessments were highly inferential,
but we (the authors/researchers) conducted them individually with solid reliability on most
measures (the exceptions were on measures of cognitive activity that were rarely assessed by
either author). Having operationalized the measures, we decided to engage a second cohort of
PSTs in performing similar assessments as part of their letter-writing activities during the
following year.

Just as students benefit in shifting mathematical authority from math texts and teachers to
themselves, we hoped that PSTs might benefit from an analogous shift in their methods courses.
PSTs’ engagement in authentic experiences of assessing students’ cognitive activity might have
the effect of shifting authority from instructors to PSTs and of increasing PSTs’ sense of teacher
efficacy. In implementing our approach with the second cohort, we envisioned the following
potential outcomes for PSTs:

• appreciation for mathematical processes as well as products
• better understanding of students’ cognitive activities
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• increased ability to individualize task design and elicit higher levels of cognitive activity,
based on thorough assessments of students’ previous responses

In this paper, we address the ways in which PSTs demonstrated growth in these areas. In
particular, how do PSTs understandings of students’ cognitive activity evolve over the course of
letter writing exchanges? In what ways do elicited responses from students indicate growth in
PSTs’ ability to assess such activity and design more effective tasks?

Theoretical Framework
A radical constructivist perspective (Glasersfeld, 1995) informs our assessment of cognitive

activities and supports our most basic theoretical assumption: PSTs’ letter-writing interactions
can engender evolving models of students’ mathematics, which will inform future tasks that
PSTs pose. These models should become more powerful in the sense that the PSTs will be able
to elicit higher levels of cognitive activity, and in the sense that PSTs will be able to abstract
pedagogical content knowledge from these experiences and use them to inform task design with
other students. Likewise, we view the ways in which students operate as becoming more
powerful when they can operate in greater generality. Our operationalization of the NCTM
Process Standards indicates generality in terms of students operating in new ways and in new
contexts. For instance, we operationalized Connections to describe instances in which we could
infer that a student had constructed new relationships between two or more previously
constructed concepts.

In agreement with other recent work (Lester & Kehle, 2003), we argue that we can better
judge tasks by making inferences from interactions between problem poser and problem solver
than by considering student-independent variables, such as attributes of the tasks themselves.
This argument is also supported by the Principles and Standards document, which states that
“mathematical tasks have been enacted without sufficient attention to students’ understanding of
mathematics content” (NCTM, 2000, p. 5). Thus, the researchers and PSTs alike engaged in
making inferences about students’ cognitive activities in response to the tasks that PSTs posed.

Methods
The seventeen PSTs participating in this study were enrolled in the first of two methods

blocks with a methods course taught by the first author. The methods course focused on
mathematical learning and included discussions of the NCTM Process Standards. Although the
block included 40 hours of field experience in secondary schools with valuable learning
opportunities for the PSTs, these experiences varied greatly depending on the placements, and
we could not count on them to provide opportunities for prolonged engagement with students.
We felt that we needed to provide such opportunities for PSTs in order for them to learn from
students by making inferences about the students’ mathematics.

Starting with the previous year’s cohort of PSTs (n=22), we decided to employ letter writing
as a medium for posing tasks and assessing responses. We paired each PST with an algebra
student from a local high school and transferred letters and responses back and forth via the
students’ classroom teacher. Data from the second cohort (the seventeen participants on whom
we report here) consisted of PSTs’ written tasks, students’ written responses, and PSTs’
assessments of tasks and responses. We focus on PSTs’ assessments, as well as our own, which
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span ten weeks (iterations) of letter writing. Because the high school began a new term in the
middle of the university’s semester, PSTs wrote their first five letters to one class of Algebra II
students and wrote their last five letters to a new class of Algebra II students. Both groups of
students had the same teacher and continued with the Algebra II curriculum where the previous
class had left off.

For each task, PSTs recorded which cognitive activities they expected their task to elicit from
their student partners. Students used about 20 minutes of class time to respond. Once PSTs had
received the students’ responses, they had two days to assess them. PSTs used students’ writing
to infer the kinds of cognitive activity in which students had engaged. For each inference, PSTs
provided supporting indicators from students’ writings. For each discrepancy between expected
and assessed activities, PSTs provided an explanation. Once PSTs had completed their
assessments and designed their new tasks, each researcher assessed students’ responses.

Results
Figures 1 through 5 illustrate summarized results for the ten weeks of letter writing, in terms

of the percentages of weekly tasks that were expected or assessed to elicit the NCTM Process
Standards. The blue and red bars (leftmost bars, labeled ‘E’ and ‘A’) represent the PSTs’
expected and assessed cognitive activities; the yellow and green bars (rightmost bars, labeled
‘R1’ and ‘R2’) represent the two researchers’ assessments. We used Cohen’s Kappa to measure
the reliability of the researchers’ assessments; such measures are especially important given the
inferential nature of our assessments. Sim and Wright (2005) cite Landis and Koch who suggest
the following delineations for interpreting Kappa: <=0=poor, .01-.20=slight, .21-.40=fair, .41-
.60=moderate, .61-.80=substantial, and .81-1=almost perfect. Our reliability results are as
follows: Communication 0.48, Connections -0.02, Representation 0.56, Reasoning & Proof 0.51,
Problem Solving 0.72. So we see moderate to substantial reliability for all of the researcher
assessments except for Connections.

What can we learn from Figure 1 about the evolution of PSTs’ understandings of students’
mathematical communication and their abilities to elicit such activity from students? First, we
note that the heights of the four bars appear to tighten over the ten weeks. Based on this
observation, we hypothesize that PSTs became better and better at eliciting Communication
when they made such an attempt. We also hypothesize that PSTs’ understandings of
Communication approached those of the researchers, who had achieved moderate reliability in
their independent assessments. We can test our hypotheses by applying additional reliability
statistics between PSTs and the researchers over the ten weeks.
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Figure 1. Communication
We also notice that, according to the researchers’ assessments, PSTs elicited Communication

more and more frequently over the first four weeks, and then the frequency dropped to a level
about that of Week 3. We saw a similar pattern in last year’s data (Norton & Rutledge, in
review), and we will see that elicited activity, in general, followed such a pattern this year.

The most notable aspect of Figure 2 is the infrequency with which we assessed Connections.
Two factors seemed to contribute to this. First, as defined by NCTM (2000), Connections can
refer to connections between mathematical concepts and various situations in which students
apply them, or Connections can refer to new connections that students make between existing
concepts. Because we also measured responses using Bloom’s taxonomy, which includes
Application, we reserved Connections for the latter interpretation. However, and despite efforts
in class to clarify the distinction we made in operationalizing Connections and Application, PSTs
often assessed Connections when students’ responses indicated Application. Second, we assessed
responses conservatively, assessing a particular cognitive activity only when we found strong
indications of it, and it is difficult to find indication from which to infer that a student had made a
new connection between existing concepts. We needed indication that the connection was indeed
new. Thus, we rarely assessed Connections with the first or second years’ cohorts. This fact
helps explain the unreliability of the researchers’ assessments; we have found that cognitive
activities that were least assessed were assessed least reliably (Norton & Rutledge, in review).
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Figure 2. Connections

Figure 3 illustrates general trends toward tightening assessments (A, R1, and R2), and toward
increased Problem Solving. We hypothesize that PSTs’ understandings of Problem Solving
became more and more compatible with our own. We further hypothesize that PSTs improved in
eliciting Problem Solving from students. Notice that aside from Week 4, PSTs elicited Problem
Solving most in the final four weeks and with increasing frequency across those weeks. The first
year’s data showed a similar trend.

As with Connections, PSTs rarely elicited Reasoning & Proof (Figure 4). Weeks 8 and 9
provide some indication that PSTs’ improved in eliciting this activity, but we cannot identify a
trend in Figure 3 to support this. Nor does it appear that PSTs’ understandings of Reasoning &
Proof approached our own.
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Figure 3. Problem Solving

Figure 4. Reasoning & Proof
Notice that the trends for Representation (Figure 5) closely resemble those of

Communication, except that PSTs’ assessments did not seem to approach our own. Moreover,
results of t-tests indicate that the second year’s PSTs performed significantly better in eliciting
both Communication and Representation: the mean for Communication was significantly higher
(at the .01 level) for the second five weeks when compared to last year’s mean; the means for
Representation were significantly higher (at the .01 level) for the first and second five weeks
when compared to the first year’s mean.
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Summary
The bars in Figures 1 and 3 illustrate trends that indicate PSTs’ understandings of

Communication and Problem Solving approached those of the researchers. We did not see such
indications for Connections, Reasoning & Proof, or Representation. It is interesting to note that
the researchers’ own agreement (as measured by Kappa scores) was lowest for Connections,
Reasoning & Proof, and Representation last year. Moreover, our Kappas improved the most for
Reasoning & Proof and Representation (by about .20 each) from last year to this year. This
indicates that those activities were also difficult for the researchers to assess. We need to focus
more on negotiating the meanings of those particular processes with PSTs, and explicitly discuss
student responses that might indicate such processes. For reasons noted above, we need to further
reconceptualize our operationalization of Connections.

PSTs demonstrated significant improvement over last year in eliciting Communication and
Representation. Although there are other differences to consider between last year’s cohort and
this year’s cohort, we attribute most of the improvement to PSTs’ assessments of students’
cognitive activity. PSTs also demonstrated improvement in eliciting cognitive activities in
general throughout the 10 weeks of letter-writing this year.

Figure 5. Representation

Figure 6 illustrates improvement by comparing weekly averages (per PST) of total elicited
cognitive activities. Note that ‘*’ indicates a significant improvement over Week 1 at the p=.05
level, and ‘**’ indicates such an improvement at the p=.01 level. As with Communication and
Representation (in fact, these measures carried most of the weight in Figure 6), and to a lesser
degree with Problem Solving, we see a trend of significant improvement by the fourth week,
with a slight drop and leveling off to follow. Still, elicited activities for Weeks 5, 7, 8, 9, and 10
remained significantly higher than Week 1 (the improvement of Week 6 over Week 1 showed
significance of p=0.12).
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Recall that Week 5 was the final letter for the first class of Algebra II students; Week 6 was
the first letter to the new class of Algebra II students. This partially explains the dip in Figure 6.
But why didn’t elicited activities in later weeks ever surpass those of Week 4? From last year’s
data (with corroboration from the classroom teacher’s observations) we hypothesized that the
novelty of letter writing had served as a motivator for students (and PSTs) in the first few weeks;
although PSTs demonstrated proficiency at eliciting most activities, by the fifth week the novelty
had worn off. Letter-writing pairs continued to work productively, but with no further significant
improvement.

Figure 6. Weekly averages of elicited cognitive activities per PST.

Our results do indicate improvement, both in terms of PSTs’ understandings of the NCTM
Process Standards and in terms of their abilities to elicit such processes within the interactions of
letter-writing pairs. Results also inform ways in which we could improve the letter-writing
assignment for future cohorts of PSTs. In addition to those improvements already mentioned in
this summary, we will also consider decreasing the number of letter-writing exchanges and
increasing the amount of time PSTs and students have to respond. This could provide more time
for classroom discussion and PSTs’ reflection between exchanges, while maintaining student and
PST engagement for the duration of the semester.

Discussions about Reasoning & Proof could support better understandings of that process.
Although PSTs seemed to understand Problem Solving better than Reasoning & Proof, PSTs
rarely elicited either process. Late signs of improvement in eliciting these processes indicate that
further support could lead to further improvement. If letter-writing exchanges occurred every
other week, PSTs could prepare drafts of tasks to share in class. They could also spend more
time in cooperative groups assessing responses, which would provide further opportunity for the
class to discuss task analysis in an authentic context.
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Do reform-based elementary mathematics methods courses change preservice teachers’
perceptions about what it means to know and to do mathematics solely for the purpose of
effective classroom teaching? Or, are we also influencing how preservice teachers approach,
and solve mathematical problems that occur in their daily non-teacher lives? Analyses of
preservice students’ reports of their out-of-classroom mathematical activity combined with their
reflections upon a scholarly essay depicting different learning paths from student to teacher
show that our methods course did influence preservice teachers’ attitudes toward and
competence with their day-to-day mathematical activity. Suggested implications focus on
empowering new teachers to understand, guide, and redirect students’ invented and intuitive
solution strategies for novel and routine mathematics problems.
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Objectives
To improve the efficacy of elementary mathematics teachers, methods courses have shifted

away from telling preservice teachers how to “transmit” mathematical knowledge to students, to
modeling and using constructivist pedagogies (e.g., Hiebert et al, 1997; Lampert, 2001; Schifter,
1996). This shift has allowed pre-service teachers to experience the conceptual objectives of
reform-based mathematics teaching, while enriching their content knowledge through shared
solution strategies and perspectives. Constructivism in general and research-based ideas such as
cooperative learning and Cognitively Guided Instruction (e.g., Carpenter, Fennema & Franke,
1996) in particular, open many students’ eyes to how much teaching and learning mathematics
have changed since they were elementary students. Consequently, many new teachers enter the
profession with the sort of pedagogical content knowledge (Shulman, 1986) that leads to rich,
engaging, and successful mathematics classrooms.

Our objectives for this study, however, go beyond the reported pedagogical content successes
of the modern methods classroom. We sought to determine if our methods course was changing
preservice teachers’ perceptions about what it means to know and to do mathematics solely for
the purpose of effective classroom teaching. Or, were we also influencing how preservice
teachers approached, and solved mathematical problems that occurred in their daily non-teacher
lives? Specifically, we examined whether or not a reform-driven mathematics methods course
that included weekly field experiences had any impact on how preservice teachers engaged with
their everyday life tasks that required mathematical thinking. And, if change did occur, what
were the personal contexts and motivations for those transformations?

Theoretical Framework
Instructors of methods courses are often faced with students who have deficits in their

content knowledge (e.g., Ball, 1990; Bischoff, Hatch, & Watford, 1999; Merseth, 1993);
negative associations with learning mathematics (Ball, 1990; Bischoff et al, 1990); and a
resistance to teaching mathematics differently from how they were taught (Ball, 1990; Brown,
Cooney & Jones, 1990; Ebby, 2000). Furthermore, many elementary-level preservice teachers
consider themselves poor at mathematics because they were unsuccessful with the subject in
school.

On the flip-side, some preservice teachers who were successful in school mathematics never
consider that teaching mathematics could be anything other than passing along mathematical
formulas and procedures for students to memorize and practice. These teacher candidates may
resist the idea of being ongoing learners of mathematics because they believe they can already do
what is on the elementary curriculum. These students never consider that many of their
procedures are devoid of conceptual understanding and that there is more than one way to solve
what seem like standard problems (Bere, 2006).

When looking to frame strategies for studying and accommodating the gamut of learners in
our methods classes, an article by Caroline Ebby (2000) influenced our inquiry. She followed
changes in preservice teachers’ attitudes and understandings about teaching and learning
elementary mathematics as they integrated reform-based methods coursework with
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complementary fieldwork. She identified three paths of learning and characterized these paths
using three common student profiles labeled “Julia,” “Amy,” and “Michelle.”

First, “Julia” began her course- and fieldwork from a position of confidence. She judged her
success with school mathematics based on “right answers” and completing context-appropriate
formulas. By the end of the course, Julia recognized that understanding concepts and reasoning
behind procedures was integral to learning both for herself and her students.

 “Amy,” was proficient in standard algorithms and procedures. She was also, however,
interested in her peers’ alternative strategies and explanations. This respect for different
perspectives led Amy to integrate easily into the reform-minded environment of her field
experience classroom and was excited by students’ enthusiasm for using and sharing their own
methods for solving problems.

Finally, “Michelle” described herself as bad at math, and her passive participation in the
methods course revealed her low self-esteem and unwillingness to take risks. Through
Michelle’s experiences in both the methods classroom and her fieldwork, she came to understand
that verbalizing her thinking about a problem did matter and could in fact facilitate a correct
solution. This understanding opened her eyes to the learning processes of young children and
turned her on to teaching mathematics in a way that would allow “children to discover on their
own how it works” (p.89).

We found Ebby’s students very familiar and compelling. Her categorization of students
resonated with us and thus, we wanted to preserve this established framework for our own
inquiry. We also, however, wanted to move beyond Ebby’s framework to investigate whether or
not students’ in vivo- and post-methods views of themselves influenced how they approached
and solved routine mathematical tasks that they, as adults, encountered everyday. Because we
did use Ebby’s profiles, we effectively adopted the assumption that methods students discussed
in this paper were already integrating their course- and fieldwork. Thus, we focused on the
impact of that integration on students’ out-of-classroom mathematics experiences.

Methods
Data was collected from 22 students enrolled in a 10-week graduate-level reform-based

methods course, which included 15 hours of fieldwork. The data came from two sources. The
first was a weekly assignment in which students were asked to submit a description of an
everyday situation that required some sort of mathematical analysis. Students were to describe
the problem situation and provide strategies for how they solved it at the time. Situations
included shopping, cooking, traveling, baseball statistics, and buying a home. The second data
source was a reflective essay about which preservice teacher in Ebby’s article students identified
with and why. This reflective essay was assigned in the ninth week of the quarter.

Analyses began by identifying and coding specific characteristics of Julia, Michelle, and
Amy. Specifically, each of Ebby’s prototype students demonstrated unique characteristics as a
learner and teacher of mathematics (see Figure 1 for a complete list of codes). Julia’s coded
characteristics included: a positive self-identity as a leaner of math (JPOS); “good” at math based
on external definitions such as tests (JEXT); and an active participant in the methods class
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(JPART). Amy’s coded characteristics included: a positive self-identification as a learner of
math (APOS); a strong background in math (ASTR); able to reason mathematically and without
using memorized rules (AREAS); and interested in seeing how others use informal approaches to
solve problems (AMULT). Michelle’s coded characteristics included: negative self-image as a
learner of mathematics (MNEG); an avoidance of mathematics whenever possible (MAVO); a
passive learner in her methods course (MPAS); and difficulty explaining and reasoning her
problem solving strategies (MREA).

Next, using the same codes, students’
reflective essays were analyzed for
identification with a specific profile and
for examples of that identification. Then,
the final stage of analysis was to
examine if identification with
Julie, Amy, or Michelle, transferred
to respective students’ day-to-day encounters
with mathematics and if any changes
occurred over the 10- week period. To do
this, weekly math assignments were
examined for instances of how
Ebby’s preservice teacher characteristics
were manifest. For example, one student
wrote a very simple math problem
concerning train fare and spent most of the
assignment reflecting on creative
suggestions for using train system maps in
the classroom. This example was
interpreted and recorded as MAVO,
“avoidance of math when possible.”

Results
Results show that trajectories of problem solving strategies evidenced in students’ weekly

math assignments were in keeping with students’ identification with one of Ebby’s profiles.
Below we describe this connection using an example of a “Julia”, an “Amy”, and a “Michelle.”

In her reflective essay, Kate described herself as a “Julia,” defining herself as “good at math”
based on external factors like tests and homework. Ultimately, Kate progressed from
demonstrating conventional mathematics skills to understanding and communicating how she
came to an answer. Kate noted that by the end of the quarter, she was interested and impressed to
hear how her peers solved math problems and remarked in her reflective essay, “I honestly had

Julia
JPOS- Positive self-view as learner of math
JEXT- “Good” at math based on external definitions of success-
test, etc.
JPART- Participated in class and shared often (as an adult student)
JPEER- Listened to peers to learn from others
JMULT- Looked for multiple ways to solve a problem
JCOMM- The importance of communication
JHPASS- Historically passive in math class, as a K-12 student
“used the rules”

Amy
APOS- Positive self view as a learner of math
ASTR- Strong background in math- i.e. math major
AREAS- Able to reason mathematical problems- did not have to
memorize the rules
AINS- Developing and insider view- interested in how others learn
rather than focusing on self-development
APART- Active participant in class as an adult/in teacher prep
courses
AMULT- Interested to see how others use informal approaches to
solve problems

Michelle
MNEG- No confidence as a learner of math, negative self-image
MAVO- Avoidance of math
MREFL- Reflective of own learning to come to a new
understanding of what it means to teach/learn math
MPASS- Passive learner of math as adult/in teacher prep course
MCON- “Concealed” resistance to doing math.
MREA- Difficulty explaining and reasoning problem solving
MMULT- Discovery of multiple ways to solve problems

Figure 1. Coded characteristics of Ebby’s profiles
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no idea there were so many ways to solve a math problem” and “[n]ow that I understand the
value in seeing how my peers solve problems, I can see how important it will be for my future
students to participate in this process.”

Kate’s growth as a mathematical thinker was reflected in her weekly assignments, which
were clear, detailed, and mathematically challenging. Her first assignment was about decreasing
a recipe for a dinner party. Kate set up her problem clearly and described the task as needing to
alter the measurements in the recipe to reduce the number of servings from 10 to 4. She gave
specific guidelines such as “[t]he new amounts need to be in amounts that can be measured using
conventional kitchen measurements i.e. _ cup and some amounts need to be converted to another
measurement, i.e. 1 tablespoon = 3 teaspoons”. While she clearly defined and conventionally set
up the problem, she did not solve it. In fact, for the first three weeks, Kate presented problems
with no solutions or reflections. Not until week 4 did she begin to show process and to
communicate her reasoning.

During weeks 4 and 5, she took her weekly math problems into her fieldwork classroom and
began to ask students to find at least two different ways to solve each problem. In week 4, Kate
once again composed a clear and challenging math problem. Her problem was for a 6th grade
class and was about seismic and tsunami wave travel and time. Her math problems began to
differ this week because she was not giving strict parameters within which students had to figure
out the problems. Rather, her directions became less stringent, which allowed multiple
interpretations of the problem. Her stated purpose for now approaching problems in this manner
was to encourage students to discover multiple solutions. Kate herself, however, still did not
solve the problems.

Another shift occurred in week 6 when Kate began to solve the math problems herself and to
demonstrate her thinking. Kate’s week 6 math problem was about figuring out the best cell
phone plan based on schedule and minutes used. This is the first week in which Kate actually
solved a problem and showed her work. This was the first step in an even more significant
change, which occurred in weeks 7-9.

 In weeks 7-9, Kate clearly communicated her problem solving through detailed answers. For
example, in week 7 Kate’s problem was a logic puzzle where students had to fill in a chart’s
missing information about the countries participating in the Winter Olympics, (which were going
on at the time), and medals awarded using data  provided and clues given. Kate both solved this
problem and detailed how she solved the problem. This final step relates back to her reflection
and self-identification as “Julia” and the significance of communication in mathematics. Kate
appears to have shifted her own math solving abilities. That is, she progressed from setting up
problems in standard algorithmic ways using conventional “rules” to actually processing her
thinking and communicating and explaining her thinking.

Nora was a self-described “Amy.” According to her reflection paper, she had a positive self-
view as a learner of mathematics (APOS), a background in college level math courses, and was
comfortable with the conceptual ideas of mathematics (ASTR and AREAS). Like “Amy”, Nora
was more interested in how others learn mathematics than in her own self-development (AINS
and AMULT). Nora stated in her reflection essay: “Working with children, often on homework



941

______________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

in an after-school program, I began having them explain to me what they were doing and how
they understood the problem. I used this approach because I was interested in their thinking
process and wanted to identify where they were confused and what they understood.”  Besides
student development, Nora, like “Amy”, was also interested in how children use multiple and
informal approaches to solve problems, “Instead of correcting [the children] and presenting math
the way I understood it, I would ask probing questions to help them discover their own
solutions.”

Nora’s weekly math assignments reflected her confidence in math and also her progressive
interest in how children learn math. In weeks 1-2, Nora presented standard math problems that
were based in her everyday life. For example, one of her problems was based on whether or not
to buy a new car. In keeping with Nora’s comfort with math, she presented the problem and
easily communicated her thinking processes using estimation. This problem illustrated how she
uses mathematical reasoning instead of relying on memorized rules (AREAS).

Nora’s weekly math assignments progressed steadily from weeks 2-6. Nora presented weekly
math problems that she encountered in her real life such as how she divided lesson plans by topic
and time in week 5 and used in-depth communication to discuss her reasoning. However, in
week 7 a shift in her work began to emerge. This shift aligned with “Amy’s” transformation.
Nora began to focus on how the learner learns math and she was interested in how learners use
informal approaches to solve problems. For example, in week 7, Nora detailed her work with
children aged 3-5. Knowing children this age have yet to learn the “rules” of math, she began to
probe in order to find what they understood conceptually. Her math problem was focused on
asking the children how many children from the class were present one day and how many
teachers there were. Nora then continued asking addition and subtraction questions such as: If
there are 7 kids and 2 teachers how many people altogether? Nora “studied” them and their
thinking processes as they solved these problems.

In weeks 8 and 9, Nora’s weekly math problems were based on questions from a
standardized test that the children in her fieldwork observations were solving. Nora presented the
questions and then explained the different ways the children solved the problems. For example,
in week 8 Nora wrote the problem: “A toy store sells bicycles and tricycles. Bicycles have two
wheels and tricycles have three wheels. If there are nineteen wheels all together, how many
bicycles are there and how many tricycles?”  Nora demonstrated through drawings and
explanations how children came to their solutions. Her emphasis in this weekly math assignment
was not the problem and how she solved it, but in the processes and variations children used to
solve the problems. This links Nora back to an “Amy” characteristic. That is, she was more
interested in how others learn than in focusing on her own self-development (AINS).

Annie described herself as a “Michelle,” with an initial negative self-image as a
mathematician (MNEG). Annie began her reflective essay by describing her painful struggles
with elementary school mathematics classes. She detailed how she was lost during math class
and when she asked for explanations, teachers just repeated what was in the textbook. Her
frustration as a math learner was summed up with her statement: “Math made me feel
inadequate.” Similar to “Michelle,” throughout the methods course Annie began a process of
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reflection on what it means to be a learner and teacher of mathematics, including the discovery
of multiple ways to solve a problem.

During week 1, Annie’s problem was based on figuring out her train fare for the week. Her
problem was as simple as how much more would taking the train cost per week if there were a
fare increase. Annie, an accomplished artist, spent a majority of the problem explaining how she
could connect this problem to other subjects doing creative art projects and using the internet to
research more information on public transportation. Annie did not solve the problem or explain
her reasoning. This avoidance of math (MAVO) is a clear characteristic of “Michelle.”

Week 2’s problem was very similar to week 1. Annie spent the majority of her weekly math
problem, which was a simple addition and subtraction bank account problem, detailing how she
would have a discussion about banking with children. The difference in week 2’s math problem
is that Annie did do the basic computation and solved the problem.

Problems for weeks 3-5 demonstrated a shift in that Annie moved from a basic problem that
she would teach in a class to how she used numbers in her everyday life. From therein, her math
problems began to increase in complexity. For example, in week 5 her math problem was about
how long it would take her to drive from Florida to Chicago and at what time she would arrive.
She incorporated information such as speed limits and time zones. Annie did not solve the
problem, but she did begin to explain her reasoning. She detailed her thinking processes with
respect to why she did what she did, and included the algorithms that she used. By week 5,
Annie was clearly becoming more reflective of her own skills and confident in her number sense.

By weeks 6 and 7, a dramatic change occurred in how Annie solved her weekly math
problems. Her computation skill level was basic, but the manner with which she solved the
problems progressed. Annie began to offer multiple solutions to her weekly math problem.  For
example, in week 6 Annie figured out how much a smoking habit was costing her per week,
month, and year. Annie solved the problem by multiplying the total cost by each period of time
(i.e. $2.54 x 7 days = $17.78 per week) and then as a second solution, she multiplied the average
price per pack by the number of packs in a period of time (i.e. .5 packs x 7 days = 3.5 packs per
week; 3.5 packs x $5.07 = $17.78 week). Annie demonstrated her “Michelle-like” characteristics
through her use of multiple ways to solve problems (MMULT). Overall, Annie’s weekly math
assignments were a clear documentation of her growth throughout the methods course.

Discussion
A recurrent and prominent concern voiced by our preservice teachers is that they will not

understand their students’ alternative or invented strategies for solving math problems. More
precisely, they are concerned that they will not be able to see beyond their own reliance on
standard algorithms or memorization to know if their students are indeed thinking in ways that
will move them toward a correct solution (Ball, 1990). Furthermore, it is unrealistic to believe
that any repertoire of how children or adults think about any given problem can ever be complete
and recorded in a teacher’s reference manual or textbook. Thus, in addition to sharing solution
strategies to problems posed in methods classes and seeing children and teachers in action in
constructivist settings, we believe it is important for preservice and practicing teachers to
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challenge themselves regularly outside the classroom in order to develop competence and
flexibility with for instance mental calculations for determining a tip versus pulling out the cell
phone calculator. If this outside-the-classroom dedication and practice does not develop, we
believe that preservice and practicing teachers will not develop the confidence necessary for
keeping up with, interpreting, guiding, and redirecting students’ thinking about both novel and
routine mathematical situations.

Just as classroom teachers are committed to educating students for success both in and out
the classroom, methods instructors should be looking for every opportunity for preservice
teachers to use the sort of flexible mathematical thinking skills and number sense outside of
teaching that they will be expecting of their young students. By analyzing the learning
trajectories of methods students both in and outside the classrooms, we were able to see the
developmental changes that students of varying abilities experienced. Further, whether an
“Amy,” “Michelle,” or “Julia,” most students worked with their prior knowledge, experiences,
and attitudes to become better mathematical thinkers as they learned about how important it is
for students to connect cognitively to problems, and to use personal perspectives to solve them.
Methods students, regardless of their identification, were inevitably surprised to learn of their
classmates’ alternative strategies and were motivated to explore others’ thinking as a means to
enrich their own. “Julia’s” were surprised to learn that their solutions were not the only correct
ones; and “Michelle’s” were surprised to learn that they had viable mathematical thoughts and in
fact could teach the “Julia’s” new strategies. In general, bringing a mathematics “past” to the
methods learning table and having opportunity to work with that past, leveled the “learning”
field and led to many students reconsidering their mathematical capabilities.

Relationship to PME Goals
Ultimately, our goal as methods instructors is to help students become good if not great

teachers. Sharing our successful strategies and hearing about others’ accomplishments can only
improve the overall quality of mathematics teachers everywhere. Furthermore, although in its
nascent stage, the present line of inquiry can be broadened to include research that will add to the
literature on teacher and preservice teacher beliefs; and on teacher change. Were the methods
students discussed in this paper changing their beliefs about mathematics as well as their
practices? Class discussions would suggest that yes, our methods students were changing their
ideas about what the most efficient ways of solving routine problems might be. Further inquiry,
however, into that question, and the impact that change has on elementary students’ learning is
necessary. We wonder: Can a teacher truly achieve optimum success using constructivist
pedagogies in the classroom while continuing to rely on standard algorithms and rote
methodologies in daily life? Authenticity is an important component of education if students are
going to see the out-of-the-classroom value of what they are learning. Teachers can easily bring
such authenticity to the classroom by discussing real problems solved in a variety of ways.
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This study reports on changes in prospective teachers’ knowledge of content, pedagogy, and
school cultures developed during field experiences in their mathematics courses. Analysis of
data points to positive outcomes and reactions. This paper will address the motivating
factors, design issues, and results of implementing field experiences for prospective K-8
teachers in the context of their mathematics coursework abstract goes here, and should not
exceed ten lines.

Factors Motivating Implementation of Field Experiences

The Content Knowledge Gap
A key characteristic of a highly qualified teacher is a strong base of subject matter

knowledge. According to Darling-Hammond (2000a, 2000b) the subject matter knowledge of
a teacher is a significant factor in student achievement. Ma (1999) suggests that this applies,
in particular, to mathematics. Others have posited that the successful mathematics teachers
need a strong base of pedagogical content knowledge (Wilson, Floden, & Ferrini-Mundy,
2002; Wilson, Shulman & Richert, 1987). Thus, it seems to be crucial to ensure that
prospective K-8 teachers gain a deep and lasting understanding of mathematics. Yet, at our
university, future K-8 teachers seldom seem to achieve the depth of content knowledge we
feel is necessary for their future success as teachers of mathematics. This ongoing problem
became the impetus behind our ultimate decision to implement field experiences in our
mathematics content courses.

Theoretical Framework
Our theoretical framework began as a speculative construct to explain why students in our

three-semester sequence of mathematics content courses for prospective K-8 teachers seem to
have difficulty achieving a deep understanding of mathematics. Many would attribute such
difficulties primarily to inadequate command of prerequisite material, which is a problem for
our students, but it seemed to us that there may be other issues as well. Specifically,
prospective teachers seem to persist in a belief that their mathematics coursework does not
connect in any meaningful way to their future careers. Everything appears to be a
philosophical exercise to them, simply a hurdle to cross, disconnected from reality. We
speculated that achievement of mathematical content knowledge for prospective teachers
depends on two factors, as illustrated in Figure 1.

Our working framework suggested that positive changes in students’ beliefs about the
meaningfulness of their mathematics coursework to their future careers might bring about
positive changes in their understanding of the mathematical content. In practice, no amount
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of class discussion of the realities of teaching in today’s public schools seemed to affect this
belief. What appeared to be necessary to bring about change in this belief was exposure to
real-world teachers, teaching mathematics in real-world classroom settings.

Figure 1. Theoretical framework

Field Experience
Our goals in implementing a field experience component in our mathematics content

courses for future teachers were four-fold. We hoped to enhance students’ (a) mastery of
course content, (b) appreciation of the realities of contemporary classrooms and of effective
teaching strategies, (c) sense of efficacy, as prospective teachers, and (d) desire to teach
mathematics and/or confirm the level at which they would like to teach.

We have offered the field experience in all three mathematics content courses for
undergraduate prospective teachers at various points since Spring 2004. In Spring 2004, the
field experience was an optional extra credit assignment to allow for comparison between
students who did and those who did not acquire this experience. Based on data collected in
Spring 2004, the field experience was henceforth required of all students in each section
taught by the authors. For this study, we restrict our attention to data collected during Spring
2004, Spring 2005, and Spring 2006 from the second course in our three-semester sequence
of mathematics content courses for undergraduate prospective teachers. (Field experience
data from the first course, Number Systems, and the third course, Intuitive Geometry, will
appear in future reports.) The content in the second course includes proportional reasoning,
algebra, probability, and statistics. The field experience assignment in this course required
students to observe a middle school mathematics class once per week for ten weeks and write
weekly reflections.

Research Questions
The present study sought to address four questions about the impact of infusing a field

experience into mathematics content coursework.
 Overall, did the field experience help students develop mastery of the course content?

In particular (for Spring 2004 students), did students completing the field experience

Command of prerequisite
mathematics

Belief that mathematics
coursework connects in a
meaningful way to future
careers as teachers

Achievement of deep
understanding of mathematics
that will translate into future
success as teachers of
mathematics

Provides foundation
to learn new content

Provides motivation
to learn new content
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perform better on course exams and the final exam than students not completing the
field experience? In addition, did students (Sp04, Sp05, Sp06) themselves feel that the
field experience helped them develop understanding of the course content?

 Overall, did the field experience help students to develop a greater sense of their own
potential efficacy as future teachers? Here, we define a prospective teacher’s
perceived potential efficacy as a future teacher to mean her perception of the extent to
which she will acquire confidence in her teaching ability and confidence about
meeting her future students’ needs.

 Overall, did the field experience alter students’ perceptions about teaching in diverse
middle school classrooms, and if so, how? That is, did they grow and mature in their
perceptions about current school cultures, diversity of student needs, teacher work
loads, expected mathematical content, and/or modern pedagogical strategies?

 Overall, did the field experience help students confirm their career goals? If so, to
what extent? If not, did the experience expand their horizons about what career might
be a better fit? What changes in career preparation, if any, did students adopt as a
result of this experience?

Methods

Participants
Participants in this study (Sp04: n = 24, Sp05: n = 57, Sp06: n = 55) ranged from

freshman to senior level undergraduates, most of whom had declared an intention to pursue
careers as elementary school teachers. Many were enrolled in teacher-preparation tracks of
one of six majors containing such tracks. Students in such a track are required to take a three-
semester sequence of content courses in mathematics: Number Systems; Concepts in
Mathematics, Probability, and Statistics; and Geometry. They can choose a concentration in
mathematics, which involves three additional courses in mathematics, but most students in
the second course of our required three-semester mathematics content sequence have not
even considered this option, let alone whether to pursue it.

Data and Data Collection
Students completed pre- and post-surveys, consisting of Likert-type and open-ended

items focusing on their goals and expectations. We developed the first survey, Field
Experience Expectations (FEE), to compare students’ expectations at the outset to
perspectives they acquired by the end of the experience. A second survey, Teacher Efficacy
(TE) was adapted from surveys originally developed by Kushner (2003) and Turner, Cruz,
and Papakonstantinou (2004), which itself is based on work by Gibson and Dembo (1984).
Gibson and Dembo’s survey is regarded as an industry standard for research on teacher
efficacy, although it does not focus on the teaching of mathematics per se, and it is intended
for use with teachers or teacher candidates who are further along in their professional
development than the students in our study.

Students provided demographic information and completed a variety of written
reflections, including (a) a starting points narrative completed prior to the first classroom
visit, in which they articulated their expectations and goals relating to their field experience;
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(b) observation reflections, consisting of structured weekly log entries completed within two
days of each classroom visit; and (c) a final field experience reflection, completed after their
final classroom visit, where they wrote about their experience over the course of the semester.

Analysis
Likert-type items from the pre- and post-surveys were analyzed quantitatively while

open-ended survey items and narrative reflections were analyzed qualitatively. To achieve a
more complete picture of students’ development toward each of the four goals, multiple
sources of evidence were analyzed.

Content Knowledge
For students in the Spring 2004 data set, three hour exam scores and final exam scores

were recorded, averaged within each group (field experience, no field experience), and
compared. To evaluate students’ (Sp04, Sp05, Sp06) perceptions of the impact of the field
experience on their understanding of the course content, we sought out comments to this end
on the FEE post-survey and final reflection.

Perceived Potential Efficacy as Future Teachers
We implemented our Teacher Efficacy (TE) survey beginning with the Spring 2006 students as a

way of operationalizing our definition of perceived potential efficacy as future teachers.
Students’ responses to multiple Likert-type statements (six-point scale) were scored to obtain
various measures of their confidence in their future teaching ability or about meeting the
needs of their future students. Students were measured in this way prior to starting the field
experience and upon completing it. Changes in students’ mean scores from the pre-TE-survey
to the post-TE-survey were analyzed for possible increases in each of these items.

Realities of Teaching Mathematics in Public Schools
To evaluate changes in students’ (Sp04, Sp05, Sp06) perceptions of the realities of

teaching mathematics in public schools, we evaluated their responses to the final reflection
item, “What, if anything, surprised you about your field experience?”  Responses were
initially simply coded as Y (yes) or N (no) to indicate whether anything surprised that
student. Then responses were inductively studied, categorized, and coded to enable
descriptions of commonalities. Additional evidence of these commonalities was sought in
other comments on the final reflections and students’ stated expectations prior to starting the
field experience.

Confirmation of Career Goals
To evaluate students’ (Sp04, Sp05, Sp06) career goals, we qualitatively evaluated their

responses to the final reflection open-response item, “How has participating in a middle
school mathematics class affected your desire to teach in a K-8 school?”  Responses were
coded as CT (confirmed my desire to teach), CnotT (confirmed my desire not to teach), CE
(confirmed my desire to teach elementary school), CM (confirmed my desire to teach middle
school), CnotM (confirmed my desire not to teach middle school), ConsM (made me consider
teaching middle school mathematics). Note that these categories are not mutually exclusive.
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A response was coded as CT if it was implicit from a student’s response. The remaining
categorizations were only attributed if the student’s language was quite explicit.

Results
Analysis of the data suggests that most students made positive gains toward all four our goals
for the field experience assignment. Details of results on each research question follow.

Content Knowledge

Spring 2004 Results
In the first year of implementation we compared exam scores of participants (n = 24)

versus non-participants (n = 31). In a comparison of grades from the first exam to the fourth
exam the results were the following: participants in the field experience scored 7.4% lower
on the first exam than non-participants, but their scores on the rest of the exams were nearly
identical (1.6%, 0.49%, and 0.95% lower, respectively). The apparent advantage by the field
experience students may have stemmed from their experience working with the middle
school students. In evidence from the QMT post-survey all participants agreed or strongly
agreed with the statement, “This field experience has helped me learn the material in this
course.” Full details of the Spring 2004 methods and results are given in Strage and Sliva
(2006). Since we had such an overwhelmingly positive response from the students who
participated in this initial semester, we made participation in the field experience mandatory
in subsequent courses taught by the same instructor.

Self-Perceptions of Impact
In their final reflections many students commented on the mathematical content presented

in the middle school classes they were observing, describing in various ways how it impacted
their own understanding of mathematics.

 “This semester was wonderful. A lot of things make more sense to me because I
actually see it. I learn to put in practice what I learn from the students to my class and
vice versa.”

 “From my field experience, I learned teaching strategies, discipline strategies, and
more ways to think about mathematical concepts. My knowledge was built on various
algebraic concepts during my visits to the classroom.”

 “I learned the material itself, because by observing I either got acquainted with the
concept before I encountered it in my class, or I had the concept reviewed and
reinforced.”

 “I really realized the importance of being able to present concepts from different
perspectives, since children learn in many different ways.”

 “I learned classroom management, and also was able to touch up on math skills I had
forgotten. I learned how to get students’ respect and how to keep them motivated.”

 “[I learned] the importance of explaining things in more ways than one. I learned that
math can be fun and how it relates to things we see and use in everyday life…. I
learned that doing homework is crucial to understanding math and doing well on
tests.”
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 “I learned that I have no desire to ever teach middle school math. Although I did
enjoy working with the students, they gave me an insight into what I look forward to
as a parent. I also was able to get another example of some of the material we went
over in class although most the time they were behind us in the material we were
doing. I really enjoyed the examples the teacher gave. They were very helpful in
understanding the materials.”

Perceived Potential Efficacy as Future Teachers
Descriptive analyses of changes in students’ responses to items on the TE pre- and post-

surveys suggest that they did, indeed, develop greater confidence in their potential as
mathematics teachers. More specifically, well over three quarters of respondents reported
equal or higher levels of confidence in their ability to teach math effectively on the post-
survey than on the pre-survey (88%). Similar positive trends emerged in their beliefs in their
ability to become an exemplary math teacher (79%), in their ability to improve their math
teaching ability (78%), in their ability to adjust or explain an assignment so that a student
could understand it (82%). Similar positive differences emerged in response to questions
about how quickly, in comparison to other people, they felt they could pick up effective math
teaching techniques (83%) and learn to teach math effectively to their students (76%).

Realities of Teaching Mathematics in Public Schools
Analysis of final reflections revealed that nearly all (94%) of the field experience

participants were surprised by at least one element of their experience. Among those
participants, the most common element of surprise (expressed by 31% of them) was the
behavior of middle school students, citing surprise at good behavior and poor behavior. Many
students indicated surprise at, how many different classroom management strategies teachers
used (or didn’t use) and how critical they are (15%), how unexpected the content and
curriculum were (10%), how diverse the students are (7%), how different schools and
mathematics classes are today than when they were middle school students (7%), how
difficult and challenging teaching appears to be (6%), how many different pedagogical
strategies teachers use every day (4%), and how technology was used (4 %). One student
wrote of an experience that encompassed many of these elements.

“The thing that surprised me the most about my field experience this semester is how
much the classroom teaching styles have changed and how the subjects are taught. Any of
the math classes that I observed were following the California standards and had them up
in the classroom and in the textbooks that the students used. There also seemed to be
more teachers showing the different steps of how to approach certain problems or
equations. This I thought was really helpful not only for myself to refresh my memory
about certain math concepts but also for the students to really try and grasp how to
approach equations. I also was surprised as to how much emphasis is put on teaching how
to approach equations. I also was surprised as to how much emphasis is put on ‘teaching
to the test’. In my child development classes it is discussed very much and how it might
hinder some students as well as teachers from really getting to know the full potential of
students.”
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Confirmation of Career Goals
When asked, “How has participating in a middle school mathematics class affected your

desire to teach in a K-8 school?” 80% of the respondents indicated that the field experience
helped them confirm a desire to teach. Out of those confirming a desire to teach, 3%
confirmed a desire to teach middle school mathematics and 26% indicated that they were
considering teaching middle school mathematics after completing the field experience at this
level. On the other hand, 49% of the respondents indicated that the field experience helped
them confirm that they did not want to teach at the middle school level and/or that they
definitely wanted to teach at the elementary school level. In fact, students whose confidence
in their ability to teach math effectively decreased over the course of the semester indicated
that the experience had enabled them to clarify that they did, indeed, still want to teach, but
that they wanted to teach at the elementary level. They cited characteristics of adolescents,
and the behavior management challenges they observed, as reasons for preferring the younger
grades.

To follow up on the apparent positive shift towards teaching mathematics at the middle
school level, we evaluated enrollments in our Math Minor for K-8 Teachers and found that
enrollments in this minor nearly doubled from about 13 per year prior to Fall 2004 to about
25 per year after that point. We don’t attribute this entirely to the field experience, as we have
taken great care to advertise the minor and strongly encourage our students to enroll.
However, we do see this increase as a sign that at least some of those students who expressed
in interest in teaching middle school mathematics decided to pursue the next step in making
that a real possibility.

Discussion
The field experience component has been included in each of the three courses with

positive reactions from students and progress towards each of the four goals. The experience
seems to be especially dramatic for participants in the second course, given that it occurs in a
middle school setting. This setting seems to include more extreme expectations and surprises
for participants than the elementary school settings required for the field experiences in the
other two courses. Written comments from students on weekly observations, the surveys, and
final reflections make it very clear that they perceive the experience to have a dramatic
impact on their thinking about mathematics as a topic and about teaching mathematics.

We would like to better understand those aspects of the experience that impact students’
content knowledge. Why do students seem to learn the content while observing the content
being taught to K-8 students? Our investigation thus far leads us to believe that our students
are less stressed when they are asked to merely observe what is being taught. Perhaps, the
lack of stress or anxiety enables learning to occur rather than being blocked. Conceivably,
there is also an importance in watching actual students learn the content. By seeing what they
will be expected to teach students in their future careers, it seems to be hitting home for them
that the mathematics content knowledge needed by effective teachers is significantly greater
than they expected, perhaps leading them to conclude that their college content courses are
more relevant than they assumed.
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In this paper, we examine theory and practice related to creating spaces for pre-service
teachers to learn about incorporating family and community resources into elementary
mathematics and literacy. Using interview data, as well as excerpts from pre-service
teachers’ reflections, we first define overlaps between mathematics and literacy, and between
family and community funds of knowledge and school-based content. We then describe how
pre-service teachers learned about, experienced, and enacted these overlaps in three distinct,
but intersecting spaces – the elementary classroom, the university methods class, and the
community.

In this paper, we examine theory and practice related to creating spaces for pre-service
teachers to learn about incorporating family and community resources into elementary
mathematics and literacy. Our framework for understanding pre-service teacher learning
related to families and communities as resources for mathematics and literacy instruction
locates this learning as happening concurrently in an elementary school, in the community in
which the elementary school is located, and in university classrooms (Figure 1). Furthermore,
we operationalize teacher learning as changes in:

 Personal narratives of self as a learner and teacher.
 Professional identities and practices as elementary teachers.
 Understandings of the mathematics and literacy practices and resources of

children, families, and communities.
We are especially interested in understanding the “third spaces” and overlaps that are

created and highlighted by this framework for investigating teacher learning. In particular, in
this paper, we are focusing on the overlaps inherent in the last element of pre-service teacher
learning – related to the literacy and mathematics practices and resources of children,
families, and communities – and the tensions, challenges, and benefits of exploring and
supporting pre-service teachers learning about these overlaps in three intersecting spaces –
elementary school, community, and university.

Research Question
With this framework as our guide, we posed the following research question:

What are the boundaries, key activities, tools, roles, and resources that define the
overlaps and third spaces among the communities and funds of knowledge involved in
an elementary school-university methods collaboration?

In this paper, we use pre-service teacher reflections and interviews to identify some of the
boundaries, overlaps, spaces that were particularly salient for their learning during the first
year of a school-university partnership. After a brief overview of our theoretical framework,
we present the results of our analyses along with implications for future research and practice
related to teacher learning in third spaces.
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Theoretical Framework
In recent years, researchers have provided evidence that helping in-service teachers

access and build on the mathematical “funds of knowledge” of students’ families and
communities can be a powerful mechanism for supporting the mathematical learning of
students, parents, and teachers (e.g., Civil, Andrade, & Anhalt, 2000; Civil & Bernier, 2006;
Gonzalez, Moll, & Amanti, 2005). Others have suggested that teachers can, and must, learn
to view the increasing diversity of their student populations as a resource, rather than a deficit
(Rodriguez and Kitchen, 2005), while still others have proposed “third space” as a theory for
understanding the learning and exchange of capital that can occur with individuals from
diverse communities and practices come together for the purpose of teaching and learning
(e.g., Moje et al., 2004).

While all of these theories hold great promise and have led to significant (though
typically small scale) successes with in-service teachers, very little research exists
documenting or theorizing how teacher educators might create the kinds of spaces needed for
pre-service teachers to learn to access and build on funds of knowledge, take advantage of
diversity as a resource, and build productive third spaces in their own classrooms (though
Gonzalez, Moll & Amanti, 2005, and Rodriguez & Kitchen, 2005, have each begun to
describe this process). Here, we build on the theoretical constructs of funds of knowledge and
third space to develop a framework for understanding the ways in which pre-service teachers
learn about families and communities as resources for instruction for both literacy and
mathematics.

Methods
Two cohorts (N=51) of elementary literacy and mathematics methods students have

participated in a new partnership between the university and a local elementary school. This
partnership is designed to help pre-service teachers learn about incorporating family and
community resources into literacy and mathematics instruction. The local elementary school
provides an interesting context for this work because its student body has undergone
significant transitions in recent years, due to school closures, redrawn district boundaries, and
increasing rates of immigration and poverty in the local community. For example, the
percentage of students receiving free and reduced lunch has more than tripled in the past
three years.

Data for the project include: 1) Interviews with pre-service teachers at the beginning and
end of the semester; 2) Interviews with in-service teachers and school principal at the end of
each semester; 3) Pre-service teachers’ work, including lesson plans, reflective essays, and
blogs; and 4) Field notes from Family Math and Literacy Nights (organized and run by pre-
service teachers). These data were analyzed using open and iterative coding in which codes
were initially assigned based on the research questions and then refined as findings emerged
from the data. In this paper, we focus in particular on the pre-service teachers’ interviews and
reflections from the second semester of the project.

Results and Discussion
Our data analyses led us to focus on understanding the boundaries, roles, artifacts, and

tensions related to two key overlaps: 1) between literacy and mathematics and 2) between
children’s families and communities funds of knowledge and school-based content
knowledge. We found that pre-service teacher learning about and within these overlaps was
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strongly influenced by the spaces – elementary classroom, university classroom, and
community – in which the learning occurred. Therefore, after sharing results related to both
of the overlaps identified above, we then discuss some of the learning and tensions pre-
service and in-service teachers experienced due to the spaces in which the overlaps were
explored and enacted.

Mathematics and Literacy
As part of this project, literacy methods and mathematics methods course activities were

coordinated and partially co-taught. One activity that was used to explicitly link literacy and
mathematics focused on using children’s literature to teach mathematics. Findings suggest
that, while pre-service teachers identified the overlap between literacy and mathematics as
one of their areas of greatest learning during the semester, tensions also arose over the
mathematical and literacy value of either of these activities. For example, what is the
mathematical value of mathematizing a piece of children’s literature? Is the mathematics
trivialized or inauthentic in these situations? Alternatively, does using children’s literature
allow teachers to connect mathematics to the lives, experiences, and interests of children and
families? These questions, along with a series of additional activities and tools, helped to
define the literacy-mathematics overlap for pre-service teachers.

At the end of the spring semester, pre-service teachers were asked, “What are important
connections between literacy and mathematics at the elementary level?” They responded to
this question in writing. Analysis of the students’ responses revealed three trends related to
the question. First, several pre-service teachers were clear that considering the connections
between mathematics and literacy was something they had not considered before the
semester. The statements below from two pre-service teachers are representative of the
reflections of many of the pre-service teachers:

I used to think that math and literacy weren’t really connected…. To group the two
together teaches students that it’s hard to use one without the other.

I loved that this class focused on the relationship between literacy and mathematics
and made me think about how the subjects don’t have to exist separately. In fact, I
have learned that math and literacy work well when paired together in a classroom.

Second, many pre-service teachers discussed the relationship between children’s literature
and Cognitively Guided Instruction (CGI) (Carpenter et al., 1989) as an important connection
that they observed, particularly in the lower grades. This points to an area in which the
overlap between what pre-service teachers were learning in their methods classes and what
K-2 in-service teachers were experiencing in professional development activities (related to
CGI) came together to enhance pre-service teachers’ learning. In the words of one pre-service
teacher:

Through this class I have learned that books can be a fun and interactive way to
introduce a math concept. … CGI problems can be used to help students remember
the main characters of a story.

Finally, pre-service teachers identified a wide range of connections between mathematics
and literacy that, in several instances, went beyond using children’s literature to introduce a
mathematics topic. While the most common connections were between children’s literature
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and CGI, or between children’s books and mathematics more generally, other pre-service
teachers described the connection as an important component of children’s understanding in
both content areas, as a more authentic reflection of the ways in which literacy and
mathematics are used outside of school or, as one pre-service teacher wrote, “… the most
important connection between literacy and mathematics is communication.” Therefore, for
these pre-service teachers, the boundaries between literacy and mathematics that had initially
seemed quite solid, became increasingly permeable as the semester went on.

Learning about Families and Communities
While learning about families and communities as resources for instruction was the initial

and primary focus of this project, it was also perhaps the most difficult overlap to create and
maintain. In part, interviews with the in-service teachers suggest that this was due to the
transitioning student population at the school with which the veteran teachers had yet to
establish a close bond. Several times, we found evidence of pre-service teachers “re-voicing”
in-service teachers’ impressions about children’s families and community, despite the fact
that the pre-service teachers did not have the same experiences with the community that the
in-service teachers did. In some ways, then, this overlap was dominated by competing,
though not necessarily conflicting, discourses – one provided by the in-service teachers and
one provided by the university faculty. At the same time, as each semester progressed, pre-
service teachers found ways to define this overlap for themselves. For instance, one pre-
service teacher volunteered at an evening family event at the school and observed:

It was a great night and I really enjoyed being able to observe the kids interact with
their family and friends. I saw several of the kids from my classroom and got a very
new picture of them. In one case it seemed as though I was seeing a completely
different student from the one I have conversed with on Wednesdays. I would highly
recommend this "outside" experience to everyone.

Pre-service teachers reflected frequently on the value of the diversity of cultures and
experiences represented by the elementary children. As one pre-teacher stated:

The diversity at [School Name] is a wonderful source of knowledge for this school.
They have students from all over the world…

Over the course of the semester, pre-service teachers described multiple instances of learning
from and about the varied experiences of children and families. However, pre-service
teachers were less successful in linking this diversity of experience and knowledge to
academic content and had few opportunities to build on these funds of knowledge during
instruction. For these pre-service teachers, the boundaries between funds of knowledge and
academic content proved to be quite rigid and very difficult to cross in the context of a one-
semester course. In the sections that follow, we describe how these boundaries were
experienced differently in the spaces of community, university, and elementary classroom –
even when these spaces were physically co-located in a single building.

Sharing Space
Our goal of helping pre-service teachers learn to incorporate family and community

resources into their instruction required us to, literally and physically, be in a space in which
pre-service teachers had access to children, families, and communities. In this project, that
meant spending one or two days per week at the local elementary school. Pre-service teachers
spent the morning in elementary classrooms and, in the afternoon, convened as a group in the
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school’s library. Establishing and defining this shared, or overlapping, physical space was
initially difficult, as the elementary school, like many schools, was constantly using all of its
available spaces. However, defining everyone’s roles within this overlapping space was even
more challenging, though also very important to establishing the theoretical “third space.”
For instance, was this a space in which pre-service teachers could critique what they observed
in in-service teachers’ classrooms? Could university faculty participate in this critique? Did
in-service teachers feel welcome to participate in the pre-service teachers’ classes and vice
versa? Posing and responding to these questions helped define the boundaries of this shared
space.

Overlaps and Spaces
In addition to the challenges of sharing space, we also noted two ways in which these

different spaces impacted how pre-service teachers experienced and enacted the overlaps
between literacy and mathematics and between family and community funds of knowledge
and academic content. The first example points to a particular challenge in implementing
school-university partnerships. While pre-service teachers were cautious about describing
what they noticed their elementary classrooms critically, they did repeatedly point to the lack
of instructional practices related to the overlaps between literacy and mathematics or between
community/family funds of knowledge and school content that we were emphasizing in the
methods classes. The two quotes below, from two different pre-service teachers, illustrate this
point:

I did not have the opportunity to see the students in my practicum classes use literacy
to learn/access mathematics much, or vice-versa, except for during the two lessons I
taught.

I have learned that schools often treat students’ experiences in school as isolated
experiences. In fact, I did not see either of my practicum classrooms take advantage or
recognize students’ experiences outside of the classroom. … From this class, I have
learned that many things happen outside of the classroom that deserve recognition.

It is important to note that these two pre-service teachers offered these critiques in the context
of overall very positive assessments of their experiences in the project and, in particular, of
their relationships with and learning from their cooperating teachers. It is also very interesting
to note that one of their cooperating teachers was the only in-service teacher (out of 12) who
described content-based interactions with parents (as opposed to interactions with parents
around student progress, field trips, volunteering, etc.) in her end of semester interview – she
described a practice of having parents lead book groups with her students. Therefore, while
these quotes certainly point to a tension that is inherent in this kind of project, they also
represent an opportunity, or challenge, to make the boundaries that define the spaces of in-
service and pre-service teacher learning more permeable, such that in-service teachers can
learn about these new spaces, or overlaps, along with the pre-service teachers and pre-service
teachers can gain a broader view into in-service teachers’ practices.

Our second example was more positive in terms of pre-service teacher learning. While the
goals of the project were explicitly to focus on linking mathematics and literacy and on
helping pre-service teachers learn to access and build on community and family funds of
knowledge, the connections between these two goals were less explicit during methods
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instruction. However, pre-service teachers were often struck by how clearly they saw the
overlap between literacy and mathematics when they experienced it in a community space,
suggesting that the boundaries between literacy and mathematics and between the university
and community spaces were, in fact, quite transparent, or easy to cross. This finding is
reflected in one pre-service teacher’s description of her learning after an assignment to
identify literacy and mathematics activities in a community setting:

I was amazed how easy it was to connect both literacy and mathematics in a real
setting and wondered why I never thought of it before… This is definitely something I
want to do when I get my own class, even if it is just outside on the playground!

Implications
The theme for PME-NA 2007 is “ Exploring Mathematics Education in Context.” The

findings described in this paper raise questions related to what it takes, both theoretically and
practically, to contextualize mathematics education for elementary pre-service teachers in a
local elementary school and community. In particular, as Figure 1 suggests, our framework
for investigating pre-service teacher learning suggests the possibility of multiple overlaps
being learned and experienced in multiple spaces. At each of the intersections and overlaps,
there are boundaries that must be crossed in order to create the kinds of “third spaces”
described in the literature. We have found that, while some of these boundaries are quite easy
to cross and quickly become permeable for the pre-service teachers, others, such as the
boundaries between funds of knowledge and school-based content, or even between
university and elementary school spaces, are much more difficult to cross. As researchers and
teacher educators, our challenge is to identify practices and activities that will support pre-
service teachers in more easily crossing these boundaries.
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Figure 1. Framework for Investigating Pre-Service Teacher Learning
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Relatively little research on the distributional thinking has been published, although there
has been research on constituent aspects of distributions such as averages and variation.
Using these constituent aspects as parts of an conceptual framework, this paper examines
how elementary preservice teachers (EPSTs) reason distributionally as they consider graphs
of two data sets having identical means but different spreads. Results show that the subjects
who reasoned distributionally by considering both averages as well as variability in the data
were likelier to see the data sets as fundamentally different despite the identical means used
in the task.

The purpose of this paper is to report on research describing the conceptions of
distribution held by elementary preservice teachers (EPSTs) in response to a task involving a
comparison of two data sets. Two data sets, in the form of stacked dot plots, were presented
to the EPSTs. Then two aspects of their statistical reasoning germane to the task were
examined: Reasoning about the average of each distribution and reasoning about the variation
of each distribution. While research has uncovered different ways that people think in regards
to measures of central tendency (Mokros & Russell, 1995; Watson & Moritz, 2000), fewer
studies has been done on how people coordinate averages and variation when comparing
distributions. Of particular interest was the role that variation, or variability in data, played in
the subjects’ conceptions of distribution. This interest stems from the primacy that variation
holds within the discipline of statistics (Wild & Pfannkuch; 1999).

Furthermore, although precollege students have been the focus for many researchers
interested in statistical reasoning, relatively less attention has been paid to the statistical
thinking of the teachers of those students. Even less prevalent has been published research on
how preservice teachers reason statistically (Makar & Canada, 2005). Therefore, this study
addresses the following research question: What are the informal conceptions of distribution
held by EPSTs as they compare two data sets? After describing some related research
concerning the aspects of distributional reasoning used in the analytic framework, the
methodology for the study will be explicated. Then, results to the research question will be
presented, followed by a discussion and implications for future research and teacher training
programs.

Conceptual Framework
The key elements comprising the conceptual framework for looking at distributional

reasoning are a consideration both aspects of center (average) and variation, which implies
taking an aggregate view of data as opposed to considering individual data elements (Konold
& Higgins, 2002). Coordinating these two aspects is what enables a richer picture of a
distribution to emerge (Mellissinos, 1999; Shaughnessy, Ciancetta, & Canada, 2004; Makar
& Canada, 2005).   



961

___________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

For example, Shaughnessy and Pfannkuch (2002) found that using data sets for the Old
Faithful geyser to predict wait-times between eruptions provided an excellent context for
highlighting the complementary roles of centers and variation in statistical analysis. The
question they posed to high school students was about how long one should expect to wait
between eruptions of Old Faithful. At first, many students made an initial prediction that
disregarded the variability in the distribution and were solely based on measures of central
tendency (such as the mean or median). Shaughnessy and Pfannkuch (2002) point out that
“students who attend to the variability in the data are much more likely to predict a range of
outcomes or an interval for the wait time for Old Faithful... rather than a single value” (p.
257).

Similarly, Shaughnessy, Ciancetta, Best, and Canada (2004) investigated how middle and
secondary school students compared distributions using a task very similar to the task used in
the current study reported by this paper. Given two data sets with identical means and
medians but with strikingly different variability, participants made comparisons of the
distributions based on their reasoning about the averages and variation, with higher levels of
distributional reasoning attributed to those responses that cohesively joined both components
of centers and spread. The researchers (Shaughnessy et. al., 2004) found that subjects’
conceptions included the notion of “variability as extremes or possible outliers; variability as
spread; variability in the heights of the columns in the stacked dot plots; variability in the
shape of the dispersion around center; and to a lesser extent, variability as distance or
difference from expectation” (p. 29).  Their findings and recommendations echoed that of
Mellissinos (1999), who stressed that although many educators promote the mean as
representative of a distribution “the concept of distribution relies heavily on the notion of
variability, or spread” (p. 1). Thus, recognizing the importance of getting students to attend to
the aspects of average as well as variation when investigating distributional reasoning helped
inform not only the task creation for this research but also the lens for analysis of the EPSTs’
responses.

Methodology
The task chosen to look at EPSTs’ thinking about distribution when comparing data sets

was called the Train Times task, and was motivated by a similar tasks initially used in
previous research (e.g. Shaughnessy et. al., 2004; Canada, 2006). The task scenario describes
two trains, the EastBound and WestBound, which run between the cities of Hillsboro and
Gresham along parallel tracks. For 15 different days (and at different times of day), data is
gathered for how long the trip takes on each of the trains. The times for each of these train
trips are rounded to the nearest 5 seconds and are presented in Figure 1.
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Figure 1: The graphs used in the Train Time task

The task was deliberately constructed so that the EastBound and WestBound train times
have the same means, yet different amounts of variation are apparent in the graphs. As a part
of the task scenario, subjects were told that the Transportation Department was deliberating
whether or not one train was more reliable than the other. Subjects were asked whether or not
they agreed with a hypothetical argument that there was “no real difference between the two
trains because the data have the same means”, and to explain their reasoning. This
methodology follows that of Watson (2000), where subjects are asked to react to a common
line of reasoning. A similar technique has been used in other research on statistical thinking
(e.g. Shaughnessy et. al., 2004; Canada, 2006). Would subjects be persuaded by the
hypothetical argument of “no real difference” in times because of the identical means? Would
they argue on the strength of the different modes, which are often a visual attractor for
statistical novices reasoning about data presented in stacked dot plots? Or would they attend
to the variability in the data, and if so, how would they articulate their arguments? 

The subjects were EPSTs who took a ten-week course at a university in the northwestern
United States designed to give prospective teachers a mathematics foundation in geometry
and probability and statistics. Virtually none of the EPSTs expressed a direct recall of ever
having had any prior formal instruction in probability and statistics, although their earlier
education at a precollege level may well have included these topics. Early in the course, and
prior to beginning instruction in probability and statistics, subjects were given the Train
Times task as a written-response item for completion in class. The task was not given as part
of a formal evaluation for the course, but rather as a way of having the subjects show their
informal sense of how they were initially thinking. Two sections of the course, taught by the
author, were used for gathering data, and a total of fifty-eight written responses were gathered
from the EPSTs. The task was then discussed in class, and the discussions were videotaped so
that further student comments could be recorded and transcribed.

The data, comprised of the written responses and transcriptions of the class discussions,
was then coded according to the components of conceptual framework which related to the
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distributional aspects of centers and spread. Responses could be coded according to whether
they included references to centers, or to informal notions of variation, or to both.

Results
Almost 35% (n = 20) of the EPSTs initially agreed with the hypothetical argument that

there was “no real difference between the two trains because the data have the same means”.
While it might be expected that subjects who were predisposed to think of the mean as the
sole or primary summary statistic for a set of data might support the hypothetical argument, a
careful analysis of the responses showed different degrees to which subjects relied on centers
and variation in their explanations. Thus, in addressing the primary research question (“What
are the informal conceptions of distribution held by EPSTs as they compare two data sets?”),
results are presented first according to responses that focused primarily on centers, then
primarily on variation. Finally, examples of those responses that integrated centers with an
informal notion of variation are presented as representing a form of distributional reasoning.

Centers
Out of all subjects, 24.1% (n = 14) had responses that included what were coded as

General references to centers, and the exemplars that follow show the initials of the subject
as well as an (A) or (D) to show whether they initially agreed or disagreed with the
hypothetical argument of “no real differences” presented in the task scenario:

SE: (A) Because the average is the same for both of them
DW: (A) Each train had the same average time

Although it can be presumed that the subjects equate “average” with the mean, the General
responses for center included no specific language.

In contrast, the 39.7% of subjects (n = 23) who had Specific references to centers were
more explicit as far as what they were attending to:

SG: (A) The “mean” means the average, so both trains do travel for the same length of
time
LT: (D) I would probably go with the mode, because it is the most common answer
RB: (D) I would go by the median on this one

Note how subjects LT and RB, in focusing on the mode or median, disagreed with the
hypothetical argument of “no real difference.” Indeed, although the means for the data sets in
Train Times task were identical, the medians and modes differed, and some subjects with
Specific center responses picked up on these differences:

CM: (D) The median and modes are not the same, meaning results varied
LN: (D) The median & mode are different. Because the data is very different in its
variation

Here we see CM and LN tying their observations of differences in measures of centers to an
informal notion of variation.

Variation
For the purposes of this research, variation need not be defined in formal terms such as a

standard deviation (for which these subjects had no working knowledge), but tied to the
informal descriptions such as those offered by Makar and Canada (2005). In particular, the
essence of variation is that there are differences in the observations of the phenomena of
interest. Of all subjects, 32.8% (n = 19) gave a more General reference to variation:
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CG: (D) Because the data for both are different in variation of time
TS: (D) The trains could all have different times sporadically
LR: (D) Because the time patterns are different between the two trains

Note that in these examples, the theme of differences among data comes out in the natural
language of the response. Clearly the sense of variation as differences is a naive and basic
idea, but one that is fundamental and a potentially useful springboard for a deeper
investigation as to how to describe those differences.

A slightly higher percentage of all subjects, 37.9% (n = 22) had more Specific references
to variation, and the main motivation for looking at specific constituent characteristics of
variation came from the related literature on thinking about variability in data (e.g.
Shaughnessy et. al., 2004; Canada, 2006). These characteristics include relative spread,
extreme values, and range. For example, consider these two exemplars of more Specific
reasoning about variation:

EK: (D) Because looking at the charts, the data is more spread out going EastBound than
it is going WestBound
AD: (D) Because the times for the EastBound trains are very spread out while the
WestBound trains’ times are clustered together.

Although EK and AD did not capture formal numerical descriptors of variation about a mean,
they did use informal language to convey an intuitive sense of the relative spread of data.
Other subjects included variability characteristics in their responses by paying attention to
extreme values:

AU: (D) No, because the EastBound has more outliers and is more scattered
AN: (D) One EastBound train took 59:40 while the longest WestBound train took only
59:15, and that is almost a 30 minute difference

Note how AU shows sensitivity to the presence of outliers, while AN includes references to
the maximal value in each data set. In addition to Specific characteristics of variation
captured by responses suggesting a focus on relative spread or extreme values, some
responses made explicit connection between both maximum and minimum values:

AU: (D) EastBound has a higher range, from 58”25 to 59:40, & WestBound’s smaller
range is from 58:45 to 59:15
DM: (A) The range is 1:15 seconds EastBound and 0:30 seconds WestBound.

It was interesting to note that even while acknowledging the different ranges, DM still chose
to agree with the hypothetical argument in the task.

Distributional Reasoning
As noted in the previous exemplars, some responses focused more on centers and others

on informal notions of variation. However, in line with the previous research (e.g.
Shaughnessy, Ciancetta, Best, & Canada, 2004), responses coded as distributional needed to
reflect an integration of both centers and variation. Of the total 58 subjects, 43.1% (n = 25)
such responses that reflected distributional reasoning:

HH: (D) Because the mean is an average, and to get an average you will most likely
use varying numbers. All the times for the most part on EastBound trains are different.
Just because the mean is the same doesn’t change that.
AJ: (D) The data is different, although the average is the same. We can see, for example,
the difference in consistency of the WestBound train, where the times are closer together,
and hold nearer to schedule
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AB: (A) The mean is the average of times. BUT, there is a greater spread of times on
EastBound vs. WestBound . And East mode is lower than West mode.

Note the richness in the exemplars provided above, as subjects integrate center and spread in
their consideration of the two data sets. We see, for example, how HH understands about
combining “varying numbers” to get an average. AJ actually lays the groundwork for making
an informal inference, in the way that the WestBound may be to more reliable train because it
holds “nearer to schedule”. Meanwhile, AB agrees with the hypothetical argument of the
task, despite apparently taking note of the means and commenting on the differences in mode
and spread of the data sets. When asked further for an explanation of his stance in agreeing,
he remarked to the effect that “Still, they are basically the same on average”. Such is the
power of the mean in many peoples’ minds as a way of summarizing data.

Discussion
Out of all 58 subjects, 20 (34.5%) initially agreed and 38 (65.5%) disagreed and with the

hypothetical argument of “no real differences” between the trains. But this research is about
how EPSTs reason distributionally, and so it was crucial to dig into their explanations. The
exemplars provided have been intended to show how subject responses could reflect a focus
on centers, on variation, or on both. Since responses could be coded for multiple aspects,
including some facets of statistical thinking not reported on in this paper, as a final note it is
interesting to look at the breakdown of who agreed versus who disagreed with the
hypothetical argument based on whose responses coded only for centers, or only for variation,
or coded for distributional reasoning (both centers and variation). Looking strictly within
those groups of responses, the percentage of those subjects who agreed or disagreed is
presented in Table 1.

Table 1: Support for “no real differences” by type of reasoning

Again, the percentages in Table 1 are out of the respective numbers of responses falling
within the given types of reasoning (the numbers do not total 58 because some students had
explanations that went outside the themes of this paper). Comparing those percentages with
the total pool of subjects (34.5% agreeing and 65.5% disagreeing), several interesting
observations can be made. First, while more than half of all subjects disagreed, the majority
of those subjects who only relied on reasoning about centers agreed with the hypothetical
argument of “no real differences”. Second, the percentage of those subjects who only used
variation reasoning and disagreed is quite close to the percentage of all subjects who
disagreed. Third and most important, the subjects whose responses reflected distributional
reasoning had the highest percentage of disagreement with the hypothetical argument. This
echoes the findings of Ciancetta (2007), who in working on similar tasks with more than 200
tertiary students also found that the majority (80%) of those subjects who only relied on
reasoning about centers agreed with the hypothetical argument of “no real differences” and a

Type of Reasoning (A)gree (D)isagree

Only Centers  (n = 12)   75.0 %    25.0 %

Only Variation (n = 16)   31.3 %    68.8 %

Distributional   (n = 25)   20.0 %    80.0 %



966

___________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

majority of subjects who relied on reasoning either about centers or about distribution
disagreed with the hypothetical argument. However, all of the tertiary students who reasoned
about variation disagreed, and only about two-thirds of those who reasoned about distribution
disagreed.

The first two groups of subjects, those who decided that there is “no real difference”
because of equal centers or decided that there is a difference because of different variability,
may have relied on the simplest and most obvious reasoning available to them to support
their decisions. While these responses are not necessarily incorrect, they do lean toward the
superficial as neither comparison captures a complete “picture” of each distribution as a
whole entity. From the responses of the third group of subjects, it is clear that they may have
considered various aspects of the distributions in more detail and consequently those aspects
were integrated in their responses. The distributional reasoning evident in the responses of
this group is essential for future and current teachers of statistics. The ability to reason about
data sets distributionally may allow one to more easily discuss and assess reasoning based
only on individual characteristics, such as center or variation.

Conclusion
This study was guided by the question “What are the informal conceptions of distribution

held by EPSTs as they compare two data sets?” Although limited to a single task that was by
nature contrived so as to invite attention to identical means yet differing amounts of spread in
two data sets, the research suggests that EPSTs do reflect on aspects of distributional
reasoning, and this paper gives a sense of how those aspects manifested themselves in the
responses of the subjects. However, just as prior research has shown with middle and high
school students (e.g. Shaughnessy et. al., 2004), we also see that EPSTs make more limited
comparisons of distributions when they focus on centers while not attending to the critical
component of variability in data. In contrast, the distributional reasoners who attended to both
centers as well as variation made richer comparisons within the given task.

While further research is recommended to help discern the most effective ways of moving
EPSTs toward a deeper understanding of distributions, certainly tasks such as the one profiled
in this paper provide good first steps in helping universities offer opportunities to bolster the
conceptions of the preservice teachers they aim to prepare. In turn, these novice teachers can
then promote better statistical reasoning with their own students in the schools where they
eventually serve.
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Introduction and Theoretical Framework
Whether the use of technology will enhance or hinder students’ learning depends on

teachers’ decisions when using technology tools. These decisions are generally informed by
teachers’: 1) knowledge of mathematics, 2) knowledge of technology, and 3) knowledge of
pedagogy. These three components are essential to a teacher’s technological pedagogical content
knowledge (TPCK) (Koehler & Mishra, 2005; Niess, 2005), a type of knowledge several authors
have characterized as necessary for teachers to understand how to effectively use technology to
teach specific subject matter. Consider the following example that illustrates these three
components of teacher knowledge. A teacher who is teaching a lesson focusing on comparing
two different distributions needs to know how to: compute measures of center and spread
(knowledge of mathematics); use technology to create representations of a distribution
(knowledge of technology); and design activities that align with approaches students may take
when asked to compare two different distributions (knowledge of pedagogy). Where these three
forms of knowledge intersect, Niess (2005) describes four different aspects that comprise
teachers’ TPCK: 1) an overarching conception of what it means to teach a particular subject
integrating technology in the learning process; 2) knowledge of instructional strategies and
representations for teaching particular topics with technology; 3) knowledge of students’
understandings, thinking, and learning with technology; and 4) knowledge of curriculum and
curriculum materials that integrate technology with learning. This study focuses on
understanding more about prospective teachers’ knowledge of students’ understandings,
thinking, and learning with technology.

Videocases have been used by several mathematics educators and researchers to focus
teachers on decisions that are made during instruction and highlight mathematical thinking of
both students and teachers (Bowers & Doerr, 2003; Horvath & Lehrer, 2000; Lampert & Ball,
1998). The videocase format provides a permanent record of classroom events (Roschelle, 2000),
enables the observer to review a particular episode multiple times, and can be edited to highlight
important classroom moments and remove extraneous noise. Video makes it possible to recast
the teacher as an “observer” rather than “actor.” Taking an observer perspective can allow
teachers to focus on particular pedagogical activities rather than attend to all situations that arise
in classrooms that require teachers’ attention (Sherin & van Es, 2005; van Es & Sherin, 2002).
To assist teachers in noticing and analyzing important classroom events, van Es and Sherin
developed and used a multimedia tool in two different studies; one study involved inservice and
preservice teachers while the other focused on new teachers pursuing an initial license to teach
mathematics. In one study, the multimedia case divided the video into three segments which
focused on discourse, the teacher’s role, and student thinking. These researchers found the non-
linear organization of the multimedia tool helpful in moving teachers from a chronological
evaluative description of what happened during their class to a more in-depth analysis of
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important events supported by evidence identified in the video. Also, these researchers observed
that teachers shifted their focus from actions performed and decisions made by the teacher to the
mathematical thinking of students.

Building on prior research on the use of videocases with teachers and using TPCK as a
framework, we created a videocase to assist prospective teachers develop their “knowledge of
students’ understandings, thinking, and learning with technology” (Niess, 2005). With a focus on
student thinking, the research question we investigated was, “How do prospective teachers make
sense of students’ work and understandings when students are using technology to solve
mathematical tasks?”

Context of Study and Description of Videocase
The study took place in an undergraduate mathematics education course for prospective

middle and high school mathematics teachers (PSTs) focused on the learning and teaching of
mathematics with technology. The course was offered once per week for three hours for 15
weeks. During five weeks of the course, the instructor and PSTs used one module from the
Preparing to Teach Mathematics with Technology: An Integrated Approach curriculum (PTMT,
Lee, Hollebrands & Wilson, under review). This module focuses on data analysis and probability
topics while using tools such as TinkerPlots (Key Curriculum Technologies, 2005 ), Fathom 2.1
(Key Curriculum Technologies, 2007), spreadsheets, and graphing calculators and integrates
pedagogical questions throughout the materials. The module contains six sections, the second of
which is the videocase lesson and is the focus of our analysis for this study. The videocase lesson
includes several components: 1) a video file and synchronized transcript of two middle school
students working on a mathematical task using TinkerPlots, 2) scanned written work from the
students, 3) the TinkerPlots data file and the mathematical task on which students worked, and 4)
questions that engage prospective teachers in reflecting on their own mathematical work,
anticipating students’ work, and analyzing students’ work shown in the video.

The design of the videocase was informed by suggestions and implications from work by
Lampert and Ball (1998), Towers (1998), Sherin and van Es (2005), and Bowers, Kenehan, Sale,
and Doerr (2000).  Towers (1998) and Lampert and Ball (1998) discuss the challenges
prospective teachers have in shifting their attention from classroom events to student thinking.
They suggest including videoclips focused on students rather than the teacher, providing
students’ written work, and asking purposeful questions that focus prospective teachers on the
work of students to assist this shift of attention. These suggestions were incorporated into the
design of our videocase that only shows a teacher at the beginning when she is introducing the
lesson and posing specific questions and otherwise mainly focuses on students’ work. Since the
students in the video are working with a computer, and we intend to develop prospective
teachers’ TPCK, we made a design decision to use a picture-in-picture format that coordinates
and synchronizes the video of students’ work with TinkerPlots with the video of the two
students’ working together. Furthermore, the larger of the two frames is the video of the
computer work. This is intentional so that prospective teachers can focus on the particular
actions that students perform within the software environment while solving the mathematical
task.

In the design of their videocase materials, Lampert and Ball (1998) and Bowers et al (2000)
specifically include and advocate for having prospective teachers engage in the mathematical
tasks that are used in the videos. Bowers et al (2000) further recommend that prospective
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teachers engage in the mathematical task before viewing the video. In our videocase, we have
prospective teachers use TinkerPlots to analyze the same data set and answer questions students
were asked. The prospective teachers engage in this mathematical task before viewing the video,
reflect on their own mathematical thinking and use of the software, then make predictions about
how middle school students might approach the same task. We believe this process of reflection
and anticipation of students’ work can provide opportunities for surprise and possible
perturbations when prospective teachers observe students doing work that is not as they
expected.

Methods and Data Sources
Data were collected from four PSTs’ work in pairs on the three-hour videocase lesson, the

second three-hour lesson on data analysis using Tinkerplots. Jay and Paula, and George and
Britney were juniors in a mathematics education program seeking a license to teach high school
mathematics and taking the course during the spring semester prior to student teaching. During
the data analysis and probability unit, all sessions were videotaped to capture PSTs' work on
paper and with technology. For this study, annotated transcripts of PSTs’ work from the lesson
that included the videocase were created and analyzed.

Members from the research team coded the transcripts according to whether the PSTs
appeared to be using mathematical, technological, or pedagogical knowledge. These initial codes
led to noticing distinct differences in the nature of a PST’s focus in their analysis of students’
work. To help characterize the differences we were noticing, we developed a mapping system to
model the focus of PSTs’ attention. An assumption embedded in the model is that it is
impossible to have direct access to one’s thinking, but we assert there is a relationship between
one’s thinking and one’s actions and words.

Results and Discussion
Ways in which preservice teachers analyze students’ work with technology can be

characterized in terms their attention to student thinking as distinguished by evidence of PSTs’
attention to students’ work and their hypothesis about its relationship to students' thinking. This
awareness is represented in the use of arrows in the diagrams in Figure 1. In the diagrams, ST and
Sw represent students’ thinking and external work, respectively. The arrow represents where the
teacher is focusing his or her attention. A solid arrow indicates that there is evidence of a PST’s
attention to students’ work or thinking while a dotted arrow indicates lack of direct evidence but
an inference can be made based on the PST’s previous work. PSTs’ attention may be explicitly
focused on only the work of students or may be focused on the thinking of students as inferred
from their work. These diagrams describe four categories of teachers’ examination of students’
thinking: description, comparison, analysis, and restructuring.

Description Comparison Analysis Restructuring

Figure 1. Models to illustrate five categories of preservice teachers’ analyses of students’ work.
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Description
This category is characterized by PSTs’ explicit attention to students’ actions with the

technology, words students have written or said, or mathematical terminology and symbols used
by students. The only filter evident in their work can be viewed in terms of what is or is not
reported, which may provide information to the researcher about what the PSTs’ view as
important. As an example of PST’s work in the description category, consider George and
Britney’s response to the question, “Summarize the approach that this pair of students used to
solve the task.” They noted, “They [students] sorted the data based upon graduation rates and
then stacked it vertically. They also color coded the data by admission, public or private. They
then clicked on each individual point and compared them in their heads.”  The diagram that was
used to characterize what these PSTs were doing is shown in Figure 2. Because there is evidence
in their words of their focus on students’ work, a solid is arrow is used to indicate this attention.

Figure 2: Diagram depicting George and Britney’s focus on the actions performed by students with the technology.

In this example, PSTs’ descriptions focus only on the actions the students performed with the
technology as they solved the task. There is no evidence of PSTs’ awareness of how those
actions may be related to students’ thinking or how the work of students is related to their own
work or thinking.

Comparison
For PSTs to move beyond reporting what they see students doing and saying, they may need

to relate students’ work to their own work and experiences. These types of responses were
categorized as comparisons.This category is characterized by PSTs’ comparison of their work
with the technology on the task and how it relates to the work of the student. In this category,
teachers compare students’ actions with their own actions, implicitly or explicitly. Thus, the
comparison of the students’ actions to their own actions does not necessarily lead to a
consideration of students’ thinking. For example, in summarizing the students’ approach, George
typed, “They sorted the data based upon graduation rates and then stacked it vertically. They also
color coded the data by admission, public or private. They then clicked on each individual point
and compared them in their heads. They did not take full advantage of the software.” Because
George had used parallel box plots on the same task, we infer that he is making an implicit
comparison between his own work that took advantage of standard representations available in
the tool for summarizing a distribution and students’ work on the task that used a representation
that focused their attention on individual cases and did not facilitate their view of the data as an
aggregate.

Another student, Paula, summarized the students’ approach as follows: “This was similar to
our approach in that we separated them [icons representing graduation rates at universities in
North Carolina] and stacked them also. They [the students] also recognized that there was an
outside influence on graduation rate. They differed from us in that they did not graph the
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graduation rate versus anything. They also only investigate student-faculty ratio instead of
looking at various variable[s] as we did.” Paula’s summary focuses on the actions of the
students, without making inferences about what these actions may imply about their thinking,
and explicitly relates these actions to her work.

 Figure 3: Diagram on left with dotted arrow used to represent George’s examination of the students’ work and
diagram on right with solid arrow used to represent Paula’s examination of the students’ work.

Whereas George makes an implied comparison, Paula clearly acknowledges the similarities
and differences of her own actions with the technology and the actions of the students. These
differences are shown in the diagrams included in Figure 3.

Analysis
While its natural for PSTs to focus on the actions of students, particularly when actions are

necessary to perform tasks in a technological context, our goal is to assist PSTs’ to consider the
thinking of students that can be inferred from their actions. This focus on student thinking is
central to the category we identified as Analysis. When teachers begin to use their technological,
pedagogical, and/or mathematical knowledge to interpret students’ work and make inferences
about what students are thinking, then they are in a category described as analyzing. For
example, in response to the question “describe how the students’ attention to the attribute
“student to faculty ratio” affected their analysis,” George responded, “The students were
perplexed by the fact that colleges with a high student to faculty ratio could have a higher
graduation rate than colleges with lower ratios. They incorrectly assumed that a lower student to
faculty ratio automatically meant that the school would have a higher graduation rate.” George
had observed the students clicking on individual data icons in the distribution and trying to make
sense of a few data points in the middle of the distribution that did not follow the initial trend
they had found. Thus, he was making an inference about what they may have been thinking
based on the work he observed them do with the technology. Another student, Jay, critiqued the
task by saying, “I would say it was an appropriate question, relatively easy to answer but the
only limitation is that they do not have much knowledge of college.” Jay is evaluating the task
based on a coordination of his work, his thinking, and his observations of the students’ work and
inferring that the students might not have a complete understanding of some of the variables in
the data set.

Figure 4: Diagram showing the PST’s focus on students’ work and inference about students’ thinking.

 Tt 

Tw 

St 

Sw 

 Tt 

Tw 

St 

Sw 

 Tt 

Tw 

St 

Sw 



973

                                                                                                                                                        
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education.
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

In the examples, both George and Jay are focusing on students’ work and using that work to
make inferences about students’ thinking. In the case of George, he states that students might be
assuming that lower student to faculty ratio is related to a higher graduation rate. In Figure 4, this
is depicted with an arrow showing George’s focus on what students were doing (clicking on
individual icons and examining the corresponding data card) and an upward arrow indicating
how he uses this information to describe what students might be thinking. Jay uses his
observations of the students (downward arrow) to infer that the students have limited knowledge
of the context of the data set (upward arrow).

Restructuring
An important aspect of the Analysis category is a focus on student thinking. It is our goal for

PSTs to use their analyses of students thinking to inform teaching. This is the feature
characteristic of the category we identified as Restructuring. In this category, PSTs’ analyses of
students’ thinking becomes integrated into their own ways of thinking about mathematics,
technology, and pedagogy. Characterizing a PST’s restructuring requires evidence over a series
of episodes where the PST can be categorized as Analysis and then has opportunities to
demonstrate how such analysis affects their mathematical, technological, and pedagogical
knowledge. We believe George was Restructuring when he builds off of the last example to
create a question for students to consider: “Does having a low student to faculty ratio mean that
graduation rates are automatically lower?” Here, we see his observation that the students believe
a direct relationship between student-faculty ratio and graduate rate exists that was mentioned
above has informed the question that he would pose to students (see Figure 5).

Figure 5: Diagram depicting the work of George as he makes inferences about students’ thinking based on students’
work and uses this to inform the development of a question he would pose to students.

Restructuring may provide evidence that PSTs are incorporating their analysis of student
thinking into their TPCK and drawing upon this knowledge as they make pedagogical decisions
related to the teaching of mathematics with technology.

Discussion
Teachers’ decisions about how and when to use technology tools is informed by their

knowledge of technology, pedagogy and mathematics (TPCK). To support prospective teachers’
development of this knowledge, we focused on one of four aspects of TPCK, knowledge of
students’ understandings, thinking, and learning with technology, through the creation of a
videocase of students working on a mathematical task while using technology. We found
differences in what PSTs focused and reflected upon while examining student work. In
particular, differences were noted in PSTs’ attention to student work and their use of student
work to make inferences about student thinking. These differences were highlighted in the four
different categories that were created to describe PSTs’ examination of students’ work. These
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four categories may be useful in thinking about the ways in which prospective teachers analyze
students’ work on mathematical tasks using technology. We conjecture that the nature of a PST’s
examination of students’ work seems influenced by the specific questions they are answering and
that repeated opportunities are needed for PSTs to develop habits of attending to students’ work
in a way that fosters analysis and restructuring. For example, questions that asked PSTs to create
a task for the students in the video often provided insights into the extent to which they drew
upon their knowledge of students’ understandings. Our categories are similar to the categories
others have developed to described teacher reflection (Manouchehri, 2002) and noticing (Sherin
& vanEs, 2005), but go one step further by describing the locus of a teacher’s attention within a
particular category and how it relates to students' work and thinking.
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This report focuses on the first of a multi-year research project that is studying preservice
teachers’ learning of three essential mathematics teaching practices—(1) posing
mathematics problems to students, (2) interpreting students’ thinking, and (3) responding to
students’ mathematical activity. These are prominent practices in the work of mathematics
teaching yet little is known about how they develop over time. The initial work reported here
focuses on the challenges and insights we have encountered in the first year of work on this
project. This work includes: (a) refining definitions of the practices we are studying, (b)
constructing an Opportunities to Learn (OTL) map across courses in a particular teacher
preparation program, and (c) exploring research instruments that could help us study what
teacher candidates learn about these practices over time.

The practices of posing, interpreting and responding are central to the everyday work of
teachers. To illustrate, consider the work of launching a lesson with a mathematical task, and
then listening, and responding to what the students say and do with such task. These practices
take place daily across all sorts of mathematics classrooms. In spite of the attention these
three practices receive in Teacher Education (TE) and materials, little is known about what
specific aspects of these practices are studied in teacher preparation and how to document
beginning and novice teachers’ development of these practices over time.

The larger research agenda for this project (1) is to study the practices of posing,
interpreting, and responding using two studies. The cross-sectional study will characterize
these practices at three stages of elementary teacher preparation (mathematics for teaching
courses, mathematics methods courses, practice teaching internship) in a particular institution
(Michigan State University). The longitudinal study will focus on a small number of cases
(10-15) to explore in depth the development of the practices as prospective elementary
teachers move through the program and into their first and second years of teaching.

The work undertaken in year one is foundational to the cross-sectional and longitudinal
phases of the project. The questions driving this first year of work include:

 How can the practices of posing, interpreting, and responding be defined
in ways that are useful to research and teaching?

 What opportunities for learning these practices do teacher preparation
courses provide to teacher candidates?

 What kinds of tasks and observation instruments would best elicit and
reveal these practices in prospective and practicing teachers?

Theoretical Framing
This project draws on and contributes to current investigations on the nature of

mathematical knowledge for teaching by focusing on three specific mathematics teaching
practices—Posing, Interpreting and Responding (PIR is our acronym)—that demand and
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require such specialized knowledge. Mathematical knowledge for teaching is related to what
teacher educators call “pedagogical content knowledge,” which is the capacity of a teacher to
transform his or her content knowledge into forms that are pedagogically powerful (Shulman,
1986; Wilson, Shulman & Richert, 1987). Mathematical knowledge for teaching, in turn, has
been defined as the mathematical work that arises in the context of teaching practice, and
acknowledges that knowing mathematics in order to solve a problem and knowing how to
represent mathematical concepts in order to make them accessible to students are two
different types of knowledge for teaching (see Ball & Bass, 2000).

Investigating the three practices proposed in this project is important for multiple reasons.
The practices of posing, interpreting, and responding are vital and visible in the everyday
work of mathematics teaching. They are challenging in any form of mathematics teaching but
are especially demanding in the kind of teaching envisioned in mathematics education reform
documents (e.g., NCTM 2000, 1989). They have been singled out as essential to the
improvement of mathematics teaching and learning (NCTM, 1991), and found to be hard to
implement as well as to have direct impact on students’ learning and experiences in
mathematics classrooms (e.g., Boaler, 2002; Henningsen & Stein, 1997). These are practices
that are underdeveloped in prospective teachers of mathematics (e.g., Borko et al. 1992;
Moyer & Milewicz, 2002). In spite of the amount of attention these practices receive in
materials designed to support teacher learning in a variety of contexts, little is known about
how these practices develop or might be developed in beginning teacher preparation.

Method
In this report we focus on the three areas outlined earlier that comprise the work for year

one of the project. Brief descriptions of each of these areas of work are provided next.
The first two areas—refining definitions and constructing an OTL map of these

practices—focused on an analysis of existing documents (in particular, existing program
standards, course syllabi, required readings and textbooks) and consultations with
experienced mathematics and TE instructors at the institution where this research project is
based. The revised PIR descriptions and OTL map are being used to aid the development of
the PIR tasks and observation instruments.

The development of PIR instruments began with an examination of existing
instruments that have been used in prior research studies (e.g., Borko et al., 1994; Kennedy,
Ball, & McDiarmid, 1993; Ma, 1999; Tirosh, 2000). An initial analysis of the tasks from
three large projects’ released tasks (Ball, Hill, Rowan, & Schilling, 2002; Kennedy, Ball, &
McDiarmid, 1993; and Phillip & Sowder, 2004) revealed that no task in this collection
covered all three of the target practices so existing tasks would need re-writing to be used in
this project. Because of the interrelatedness of these three practices within the context of
actual mathematics teaching we are designing PIR tasks that will elicit these practices in
ways similar to how these are performed in real classrooms. Each PIR task will describe a
teaching scenario followed by a series of interrelated posing, interpreting, and responding
prompts.

Currently the research team has begun the pilot testing of 5 PIR tasks with two groups of
participants (novice and experienced) to determine the ability of these tasks to discriminate
between these two groups. The experienced group consists of teachers with classroom
experience (teachers associated with professional development projects at our institution
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and/or who are mentor teachers in the TE program); and the novice group includes freshmen
undergraduates who have yet to take any Teacher Education courses. The next step is to then
pilot test the PIR classroom observation instrument using collected observations and videos
of two consecutive math lessons of the experienced teacher participants.

The final versions of PIR Tasks (6-8) and the PIR Observation Instrument will take into
account how well these tools elicit and reveal the three practices. The stability (or internal
consistency) of the coded practices across the two instruments (tasks and observations of
actual teaching) is of concern to us. However, because we are still investigating the interplay
between what we are calling imagined and enacted practice, and because we believe that
discrepancies between hypothetical and actual practice may at times be productive, we
suspect that PIR practices performed in written tasks may differ from the PIR practices
performed in the act of teaching (for experienced teachers). These discrepancies will be
examined, and may result in our choosing to discard or revise the task, or may lead to
findings about the interplay between imagined and enacted PIR practice. Another important
criterion in selecting and refining the tools will be their ability to discriminate between the
two pilot test populations (novice and experienced teachers).

Insights
As our research team has worked on the activities planned for year one, there have been

numerous challenges and insights. In our presentation we will share a more detailed account
of the work we have undertaken and what we have been learning so far. In this paper we offer
just a few examples from each of the areas of work we outlined for year one.

Work of refining PIR definitions. Consider the challenges associated with the work of
naming, defining, and describing the PIR practices at the right level of detail for research and
practical purposes. Table 1 shows the evolution of one of the original descriptors for the
practice of responding to students’ mathematical ideas. The initial descriptions were derived
from the research literature and have undergone several iterations of revisions as the research
team has engaged in analysis of teacher preparation texts and interviews with experienced
mathematics and teacher education faculty that teach in the MSU program. Our research team
is continually revising these definitions and is always questioning the choice of particular
words (i.e., imagined, enacted, repertoire) and not others.

A noteworthy addition to the initial research-based PIR descriptions is the distinction
between Imagined and Enacted forms of these practices. It became clear, for example, that
teachers’ work on their teaching practices both, outside and inside the classroom; in the
imagined and hypothetical realm as well as in the physical space of their classroom. This
distinction became clear as the University instructors we interviewed spoke about their work
in their courses; and in particular seemed to aim more directly at developing images of
mathematics teaching practices and less directly at the enactment of these practices. This
distinction is necessarily represented in the revised PIR map.

Making the distinction between the imagined and enacted forms of teaching practice is
important to us because research on teachers has generally described discrepancies between
what teachers say about their practice and what they are observed doing in their classrooms
as problematic. Instead of assuming that it is desirable to have teachers’ talk about their
practices exactly match their work in the classroom, we see these as two different windows
into teaching, which allow us more complex ways of analyzing the work of teaching.
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The revised descriptors also reflect our effort to develop a language for talking about
posing, interpreting and responding in ways that do not align with either reform or traditional
descriptions of mathematics teaching but rather represent a wider range of teaching “genres”
which are indeed studied and experienced in mathematics teacher preparation courses.

Table 1: Evolution of one of the descriptors for the practice of Responding
Original Description (07/2005)

3.1. Teacher constructs responses to students’ correct, incorrect, and novel work that probe their
understanding and that challenge them to revise or extend their mathematical ideas.

Novice Performance
Responds in ways that dismiss, praise, or correct students’ mathematical ideas.
Expert Performance
Responds in ways that deliberately engage students in examining the validity, connectedness, and
efficiency of their ideas

Revised Description (05/2007)
Imagined Practice
3.1. Teacher has a collection of hypothetical responding strategies to students’ correct, incorrect, and

novel work. Can identify and construct a range of different types of responses when presented
with hypothetical teaching scenarios.

Novice Performance
Exhibits a narrow collection of imagined responding strategies. Construct a limited set of hypothetical
responses that primarily attend to the product of the students’ mathematical thinking.
Expert Performance
Exhibits a broad collection of imagined responding strategies. Construct a varied set of hypothetical
responses that give balanced attention to the product and process of the students’ mathematical
thinking.

Enacted Practice
3.1. Teacher has a repertoire (a set of well practiced and deliberate) responses (possibly a subset of

their imagined response strategies) to students’ correct, incorrect, and novel work. Some
examples include: Revoicing (rebroadcasting) students’ math ideas; Asking students to restate
someone else’s reasoning; Asking students to agree/disagree with someone else’s reasoning;
prompting students to add to others’ ideas.

Novice Performance
Exhibits a narrow repertoire of responding strategies to students’ correct, incorrect, and novel work.
Most prominently responding strategies are teacher centered across genres of teaching (e.g.,
demonstration or discussion lesson).
Expert Performance
Exhibits a broad repertoire of responding strategies to students’ correct, incorrect, and novel work.
These patterns of responding strategies vary according to genre of teaching (e.g., demonstration or
discussion lesson).

Work of constructing OTL map. To learn about the Opportunities To Learn that MSU
offers to preservice elementary teachers we collected the mathematics education courses’
syllabi and textbooks and interviewed faculty who teach and supervise these courses. One
important finding as we map these opportunities to learn across the program has been
identifying where in the MSU program these practices are studied.
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We have learned that all three mathematics education courses in the program focus
heavily on the practice of posing mathematics problems, but with a variety of definitions and
views regarding this practice. For instance statements about what constitute good elementary
school mathematics problems are quite different when we look in the required textbooks for
the MATH and the TE courses. To illustrate, the required math textbook states that “word
problems should be short, clear, succinct, interesting, realistic or whimsical, self-contained
with a single answer.” The TE textbook, in contrast, states that a good math problem is: “any
task or activity for which the students have no prescribed or memorized rules or methods, nor
is there a perception by students that there is a specific ‘correct’ solution method.”

We have also learned that the practice of responding is not studied at all in the MATH
course, and receives moderate attention in the senior year TE course and heavy attention in
the internship year TE course. Knowing when and where prospective elementary teachers
study (or not) the focal practices informs the generation of hypotheses for the data we’ll get
in response to the tasks will give during the cross-sectional study in year 2 of the project.

Work of designing PIR instruments. After much deliberation and review of hundreds of
teacher learning tasks, we chose 4 tasks that were originally designed to study knowledge of
mathematics for teaching and of children’s mathematics. These tasks have been used in The
TNE (Teachers for New Era) project at MSU for the past 2 years for program evaluation and
reform work. We have adapted these tasks by including PIR prompts (while still using the
original stem of the task). We have designed a fifth task that was expressly designed for this
project. This fifth task asks the participants to generate a hypothetical class discussion around
a particular task: “What goes in the box: 8+4=[ ]+5? (Carpenter, Franke, & Levi, 2003).

The task we share below targets the imagined form of PIR practices as is suggested by the
statement: “What can you imagine saying and doing?” Part (a) is about reformulating a
proposed task (posing), and part (b) is about drawing attention to important mathematics in
students’ work (interpreting) and about using students’ work in the classroom (responding).

Figure 1: PIR Task (Adapted from MSU-TNE Task)
2.  (a) Imagine you are teaching a lesson about two-digit subtraction and you ask the class to explore

different ways to solve the following subtraction. The students look puzzled. What do you
imagine saying and doing next?

37
-19

Teaching Scenario Continued:
2. (b) After giving students some time to work on the task you call on their attention and ask for

volunteers to share their strategies. Imagine that one of the students shows the following strategy.
What can you imagine saying and doing to the student and to the class, and why?

37
-19
- 2
20
18

Our expectation as we began to pilot these items was that experienced teachers would
provide a range of practices they could imagine using in the given (and possibly similar)
situation and would provide a lot more detail, whereas participants with no (or little) teaching
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experience would have a narrower collection of responses and less detail of these imagined
practices. However, as we pilot the tasks, we have developed a new hypothesis, which is that
experienced teachers may actually have a narrower set of responses that are drawn from large
collections of stories about past practice (and that they are therefore more attached to), while
novices may respond with a longer list of possibilities that are less grounded, and they may
be less committed to each of the things on this list of possibilities. For instance, in response to
a task which asked teachers to generate multiple ways of introducing a 2-digit multiplication
problem, one experienced teacher said she had trouble thinking of second and third ways,
because she knew her initial idea – which emphasized place value – would be most effective.
In contrast, a preservice teacher said the same question was easy because she had studied
multiple ways of doing these problems in her methods course.

Work on how much or little attention students pay to the context of given mathematics
problems has suggested three sorts of solver’s interactions with the context of a given
problem: 1) by ignoring the context in which the problem occurs, 2) by demanding more
context for the problem before solving it, or 3) supplying the context themselves by assuming
what the context is (e.g., See Cooper & Harries, 2002). So far, dealing with context has been
important to how pilot study participants have responded to the PIR tasks, leading us to
hypothesize that teachers’ responses to our tasks may be similar. Teachers piloting our tasks
have either claimed that they were very difficult because of the lack of context or have
supplied the context themselves. For example, one experienced teacher claimed that the
question was difficult or impossible to answer without knowing about the work the class had
already done in math class this year, the difficulties the students have had, and the teacher’s
reasons for choosing the problem. This teacher suggested that we add such details to the
tasks. Another teacher began each task by listing assumptions she was making in order to
complete the task, such as the assumption that the scenario would be taking place after the
class had been working on multiplication for a while, and that the teacher would have some
mathematical goals for the students that included an understanding of place value.

Another consideration regarding context is that experienced and novice teachers may
attend to different aspects of the context when they demand or supply it. For example, one
novice teacher in our pilot study claimed that the tasks were difficult without knowing in
which grade the scenario was taking place. In contrast, an experienced teacher who
demanded more context claimed that it was necessary to know what students in the scenario
had already discussed in class about the mathematics relevant to the problem. The
experienced teachers, in these cases, were more interested in knowing the history of the
particular class imagined in the scenario, while the novice teacher in this case was more
concerned with the grade level at which the scenario was imagined to have occurred.

In Closing
In the foregoing report of our collective insights we have hinted at some of the challenges

we have also faced during the first year of work on this project. To close we discuss more
explicitly the sorts of challenges that have made this work hard but also intellectually
rewarding. We alluded to the challenge of finding the ‘right’ words to name and describe the
practices we are studying. We have constant deliberations and discussions among ourselves
and with our advisory board and invited colleagues about the words we choose (and discard)
to represent our understanding of the practices we are studying. The very notion of what a
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‘practice’ means and whether we can, for example, even talk about ‘imagined’ practice when
the very word practice suggests an action or application in real situations. One definition
found in the Oxford English Dictionary’s reads: “practice n.: the actual application or use of a
plan or method, as opposed to the theories relating to it.” And yet, we continue to believe that
the formulation of plans, ideas, and images of teaching is a part of the work of teaching
which requires the application of learned theories and dispositions, and so we have chosen to
continue to use the word ‘practice’ to describe the inner work of a teacher, at least for now.

We have also encountered challenges as we set out to design PIR tasks that will help us
study the development of these practices over time. As we seek to design PIR tasks we are
faced with the question of what makes a written task a PIR task (rather than a regular math
task) but also with the question of what is a ‘good’ PIR task. To this end, we have chosen to
embed each task within a teaching scenario in order to elicit teachers’ knowledge about
mathematics specific to teaching practice, which is different than testing their mathematics
knowledge separately. In asking teachers to respond to particular mathematical problems
within specific problems of posing, interpreting, and responding in classroom teaching, we
hope to gain more understanding about the interplay between teachers’ mathematical
understandings, mathematical knowledge for teaching understandings, and pedagogical
understandings.

Endnote
This material is based upon work supported by the National Science Foundation under

Grant No. 0546164. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.
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THE MATHEMATICS OF CHILDREN’S THINKING: AN
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This study examined how, in a mathematics content course for prospective elementary
teachers, four instructors implemented lessons that used video clips of children’s invented
strategies. The lessons were designed to access mathematical knowledge within the context of
teaching. Analysis of classroom discussions uncovered key issues and challenges that the
instructors grappled with when trying to coordinate mathematical ideas with children’s
thinking. This study focused on those factors that contributed to maintaining or reducing the
level of the mathematical activity. These results raise questions about how children’s work
can be implemented in a mathematics course, and have implications for the professional
development of college faculty who are teaching these courses.

The idea of blending content and methods in teacher education is not a new one (Ball,
2000). Though more work is needed in this direction, results have shown some potential
benefits of this practice  (Ambrose, 2004; Dogon-Dunlap & Liang, 2006; Wiles, 2002). Little
work has gone into the practice of implementing these methods from the perspective of the
teacher educator (Doerr & Thompson, 2004). As we are starting to see the presence of
children’s thinking in mathematics courses for elementary teachers, a need arises for the
development of models that help us understand the implementation of these alternative
methods. This paper seeks to further illuminate the issues surrounding the implementation of
lessons in a mathematics course for pre-service elementary teachers (PSTs) that make use of
written and video examples of children’s invented strategies. Two questions were central to
the design of this study:

(1) In what ways do mathematics instructors implement lessons that make use of
children’s invented strategies?

(2) What are the mathematical issues that arise as instructors and PSTs engage with
children’s strategies?

Theoretical Framework
Much of the work involving the integration of children’s work into the classroom has

centered on case based methods. While cases are more than video clips or examples of
student work (Shulman, 1992), the use of cases in education framed my orientation toward
using video clips in mathematics. Cases provide a venue where a student can examine their
developing theoretical ideas about instruction within the context of practice (Merseth, 1999).
Similarly, video clips of children’s strategies allow a teacher to examine mathematical ideas
in the context of teaching. The presentation of a child’s invented strategy presents a
mathematically problematic situation for a preservice teacher, much as a case is problematic
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from a pedagogical perspective. These episodes are not meant to represent a case of teaching
practice, but represent an authentic encounter with mathematics content as they might arise in
teaching practice.

The idea of authentic mathematical encounters was central to the formation of the lessons
that were used in this study. The process of unpacking the mathematics of a child’s strategy
exemplifies a particular kind of mathematical understanding that is unique to the field of
teaching. Ball and Bass (2000) identified this as “pedagogically useful mathematical
understandings” (p. 89). This mimics the uncertainties inherent to practice and illustrates the
kind of real time mathematical analysis that is a significant part of a teacher’s professional
activity.

In order to examine the implementation of mathematics tasks, the Mathematics Task
Framework (Stein, et al, 2000) provided a way to examine tasks and track how they unfolded
during classroom instruction. Mathematics tasks can be categorized generally as either high
level or low level based on the cognitive demands involved. Low level tasks were
characterized by having no connections to mathematical concepts, had little ambiguity, and
required no explanations. These tasks generally required either direct recall, for memorization
tasks, or using procedures without examining the underlying mathematical concepts,
categorized as procedures without connections. High level tasks directed the students to make
connections to underlying concepts and required cognitive effort. Though certain high level
tasks, called procedures with connections, might involve carrying out procedures, they
usually involved multiple representations and required the student to actively explain their
thinking. Those tasks classified as doing mathematics required the students to engage in non-
algorithmic thinking, make use of prior knowledge, monitor their thinking while analyzing
the task.

According to the framework, tasks progressed through three stages, first they were taken
from instructional materials, then they were set up by the instructor, and finally were
implemented by the students. I applied this framework to understand the factors that were key
for maintaining high levels of student thinking through tasks that center on children’s
thinking.

Methods
Four instructors were observed for this study. Two instructors, George and Carlos, had

Ph.D.s in mathematics and were Postdoctoral fellows in the department. The other two, Sarah
and James, had Masters degrees in mathematics and were adjunct faculty in the department.
Each was teaching the first semester mathematics course for preservice elementary teachers
with approximately 25 students in each section. None of the instructors had experience
teaching at the elementary level, though Sarah used to be a secondary mathematics teacher. In
addition, George and Carlos had previously never taught the content course for prospective
elementary teachers.

I visited and video taped three lessons in each instructor’s class. The first focused on
children’s invented strategies for addition and subtraction. The second and third lessons
focused on invented strategies for multiplication and division, respectively. These lessons
would often span multiple class periods. During class I would take field notes and observe the
discussion when the PSTs were engaged in small group interaction. All written work was
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collected and copied for later analysis. In addition, I was present at all training sessions for
the mathematics instructors and kept a journal detailing my interactions with them.

In order to find patterns and themes, elements of grounded theory (Strauss & Corbin,
1998) were employed. I first developed categories of lesson implementation based on the
mathematical and pedagogical themes that emerged. I also identified instances of interaction
between the instructor and the preservice teachers and the extent that the instructor either
raised or lowered the cognitive demand of the task (Stein, et al, 2000). I used these codes to
examine the PSTs’ written work and then identified additional ways that they engaged with
children’s strategies from a mathematical perspective.

Cognitive Demands of Unpacking Children’s Strategies
The lessons that the instructors implemented all followed a similar structure. At the

outset, PSTs generated alternative strategies for arithmetic problems without using
remembered algorithms. The PSTs observed several clips of children solving arithmetic
problems, representing varying levels of sophistication and efficiency, all producing correct
solutions. For each strategy, the PST was instructed to describe what the child did, and then
apply the strategy to two new arithmetic problems, one with similar numbers and the other
involving larger numbers. The students were then directed to compare and contrast the
various methods they observed and outline the key understandings that the children exhibited
that allowed them to solve the problems in the ways that they did.

While the appearance of children’s thinking made this appear to be a pedagogical task,
the structure of the task was such that the students’ attention could be on the mathematical
ideas that were underlying the children’s strategies. For example, a child who solves the
problem 29 x 4 by saying, “20 times four is 80, nine times four is 36, and 80 plus 36 is 116,”
was exhibiting the use of the distributive property of multiplication over addition. The child
is also making use of important ideas related to place value. These mathematical ideas are
often overlooked by PSTs whose primary experience with arithmetic is through the
systematic execution of remembered algorithms.

If we are to categorize the children’s thinking lesson as a mathematics task, then it would
be categorized as a high level task, specifically at the doing mathematics level. In order to
explain the strategy, the PSTs must actively make connections to their knowledge of number
and operations. The strategies were ambiguous enough that there were several reasonable
ways that a PST could adapt it to solving new problems. There are also several ways that the
strategies could be compared, highlighting connections to many different mathematical ideas.

Evolution of Cognitive Demands
The set-up and implementation of the tasks varied quite a bit in the four classes. In each

of the classrooms, there was evidence of a lowering of cognitive demands. The following
sections identify four factors that played an important role in either maintaining or lowering
the cognitive demand of the task.

Clarity of Expectations
After viewing the video clips and having the PSTs work in small groups, all of the

instructors then gathered the students to discuss their thinking. In the cases of James, Carlos
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and George, these sessions would start with directions that often lacked some clarity of
purpose. For example, Carlos opened the first discussion on addition and subtraction
strategies by saying, “So, what do you think about these methods... Do you like them... What
else do you think?” The students’ responses were often ambiguous and not focused on
mathematical content. Sarah, on the other hand, had a more clear purpose in mind at the
outset. The following took place in the first lesson centered on addition and subtraction

Sarah: So what do the children understand that lets them use these strategies?
PST: Place Value
Sarah: Okay, what about place value did they seem to know? How did that help them

solve it in the way that they did?
…
Sarah: Are there differences in how they are thinking about or using place value?

Rather than collect general sentiments about the methods, Sarah began with the
mathematics at the fore. She also made it clear that she was looking for a discussion centered
on more detailed mathematical ideas. George began to attend to the whole class discussions
in similar ways during the later lessons:

George: We saw before how children break apart the numbers to help them solve addition
and subtraction problems. What allowed them to break up the numbers how they
did with multiplication?

PST: They used multiplication facts that was [sic] easier for them
George: True, but how do we know that they can do this? Sometimes children will use a

method that miraculously works in a particular situation, but not in general. Is this
one of those cases?

Here, like with Sarah, the instructor was reacting to the PST’s response in a way that
made the expectations clear. This was much slower to occur in both James and Carlos’s
classes.

Building on Students’ Prior Knowledge
The PSTs in all four classes were expected to have come to class with their own

nonstandard strategies for the problems they would see the children work on. Only in Sarah’s
class did the PSTs discuss their own ideas. In these episodes, it was clear that there were a
number of different ways that the PSTs were thinking about the operations, some of which
complimented the strategies that the children on the tape would use. These ideas, however,
were never returned to after the clips were viewed. In other classes, the instructor did not ask
for students to share their thinking, but the PSTs did at times discuss their own experiences.
For example, in James’s class the following exchange took place, “I can’t remember thinking
like that. I never thought about it, maybe now that I have a better understanding of numbers.
In the fourth grade there is no way I would have been able to do that,” followed by a second
student who commented, “For me it was way easier to use tens and fives. It was individual to
me, though, it is student for student. If I tried to teach the whole class like this, I would
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confuse more people.” In this episode, and in similar ones occurring in other classes, the
discussion was acknowledged by the instructor, but not attended to.

Sustained Press for Explanations
When the discussions turned toward general mathematical ideas, such as the meaning

behind the traditional algorithms, the instructors often required the PSTs to explain their
thinking. When the PSTs discussed the children’s strategies, however, there was often no
teacher comment and no expectation for elaboration. For instance, when students would
indicate that a method was inefficient, they were not expected to elaborate on what efficiency
meant or what specific aspects of the child’s they were referring to. This also extended to
students’ comments about the mathematical basis of a strategy. For example, one child’s
method for solving 159 divided by 13 involved dividing 100 by 13 and then 59 by 13. In
James’s class, a PST commented on this by stating, “I realized that it is kind of how we do
long division. When you divide a two digit number into a three digit number, really we are
splitting up the number.” The instructor did not require to student to qualify this statement in
any way, even though the statement was mathematically incorrect.

In each of the lessons, the PSTs were tasked to apply the children’s methods to new
problems. This had the potential of being a cognitively challenging task because there were a
number of ways that a particular method, having seen it applied only once, might have been
extrapolated to new problem. These cognitive demands were significantly lowered because
the students were not required to defend their position of how a method might be expanded,
even though there were often significant differences in the newly applied methods the PSTs
generated. During the discussion, none of the instructors actively questioned the PSTs about
their thoughts. Since PSTs were not pressed to defend their claims by appealing to the
students’ words or the mathematical basis of the strategy, any perspective about a child’s
thinking was accepted as possibly valid.

Focus on Methods Rather than Mathematical Concepts
To varying degrees, all four instructors approached the children’s strategies as methods to

be learned and categorized rather than as vehicles for making mathematical connections. For
instance, in Carlos’s implementation he walked the students through each of the children’s
methods, asking what they thought of them and what he/she did. Discussions of the strategies
often focused on differences rather than on ways that they were connected to each other. His
questions centered on particulars of strategies without connecting to underlying mathematical
concepts, such as how the methods highlighted different models of the arithmetic operations
and their properties. When concepts were brought out, they were done so in isolation from
the children’s thinking.

James brought out more mathematical concepts, but often pointed these connections out
rather than making them a part of what the students would discover when examining the
children’s methods. As with Carlos, he held to the strategies as objects of study. In an
episode, the PSTs were discussing a clip where a child used a remembered fact that 13 x 13 is
169 to help him solve 159 divided by 13. The PSTs were concerned with how efficient this
strategy might be:
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PST 1: [He] couldn’t do it with larger numbers. If the square is far away from what he is
looking for, it wouldn’t be useful.

PST 2: For larger numbers, 500 divided by 12, he could do 12 x 12, and then take chunks
of 144 away.

James: Is that exactly what he did?
PST 2: No, but in that case that’s what we think he would do, he’s familiar…
James: But would that be following his strategy?
PST 2: No.

Sarah and George were more consistent in tying the children’s strategies to mathematical
concepts. When the PSTs were examining multiplication strategies, both consistently pushed
the students to place the children’s methods in the context of the different models of
multiplication that they had examined, and used their questioning to bring out the distributive
property and how the ideas inherent to the children’s methods underlie the traditional
multiplication algorithm. This was continued in the division activities:

George: What does this method feel like?
PST: It is like when we did the multiplication, where we multiply each piece
George: What principle is behind the scenes there?
PST 2: Its like the distributive property
George: Good, now what does Shannon do?
PST 2: Splits 159 divided by 13 into 100 divided by 13 and 59 divided by 13
George: Okay, is it legal to use the distributive property like this with division?
PST 3: I think it works, but what about, like 105 divided by 12, the five is too small.

This discussion of how the distributive can be applied to division continued, until George
again brought the PSTs back to the children’s strategies

George: Are there other children who are also using the distributive property?
PST: Yeah, I guess Elaine did. She did 13 x 10 and then 13 x 2 to get the answer.
George: Are Elaine’s and Shannon’s use of the distributive property the same, or

different?
PST 2: Yeah, they broke into place value
PST 3: Not really, well yeah they did, but Shannon broke up the 159. Elaine broke up the

answer.

The students then examined the roles of the dividend, divisor, and quotient in a division
problem, and then used these ideas to compare each of these methods to the long division
algorithm.

Mathematics of Children’s Thinking
These factors played an important role in how the PSTs participated in the four classes

and what kind of opportunities for mathematical learning took place. In James and Carlos’s
classes, their focus on the children’s strategies as methods had the effect that when the PSTs
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talked about the children’s methods, their focus were almost exclusively on what the child
did. The discussions of these methods always turned to issues of efficiency, but nothing else,
so a number of opportunities were missed. Examining strategies that the PSTs themselves
created might have helped the students to explicitly build off of their prior knowledge and
experience. Also, by focusing on the particulars of the methods, they cut off a lines of
reasoning that could have been helpful in parsing through different ways to conceptualize the
mathematics.

This was contrasted to the ways that the PSTs in George and Sarah’s class engaged with
the children’s methods. Though issues of efficiency and unpacking what the children were
doing were examined, the comments of the students also turned to why the method worked
and how they were connected together. In addition to efficiency, their discussion also brought
out issues of generalizability and transparency. At the same time, they too tended to focus on
the children’s strategies as methods to be remembered, albeit conceptually based methods.

Discussion
Though the use of children’s strategies has tremendous potential, it is clear from these

results that their introduction does not guarantee deep mathematical activity. The students in
Carlos and James’s classes were engaged with the children’s methods, but they did not draw
out high level mathematical activity. In contrast, George and Sarah were able to maintain
higher-level expectations and connect with mathematical concepts.

Instructors who wish to make use of children’s thinking in a mathematical course must
think carefully about their goals. This research tells us that if this is not done, mathematical
payoff may not be enough to justify the amount of time that must be devoted to it. While the
students in these classes may have benefited in other ways from the lessons, mathematical
thinking often took place at a lower level. It is interesting to note that even instructors with
extensive mathematics training did not end up focusing on the mathematical ideas, rather
methods took a more central role. As the use of children’s thinking becomes more prevalent
in mathematics texts (see Bassarear, 2007), it becomes vital that instructors become aware of
the factors that might contribute to mathematics learning. As such, these results speak to a
need for examining the professional development of college mathematics instructors more
carefully. There is also general need for teacher educators to turn their attention and research
on themselves to better understand that complexities of their practice. A great deal of work
has gone into understanding the process of becoming a K-12 mathematics teacher, a similar
body of work needs to be developed for post-secondary education.
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This paper reports a study of prospective bilingual teachers and the intersectionality of
language and mathematics in a non-traditional field experience. Qualitative data were
analyzed in order to map Spanish and English language practices to teachers' assistance
strategies. We define assistance strategies as those actions that are intended to help students
understand content. Findings demonstrate the complexity of prospective teachers' use of
language in mathematics teaching and suggest implications for teacher preparation
programs.

Preparing teachers to become linguistically responsive educators has been a current issue
in Teacher Education (Darling-Hammond, & Bransford, 2005). Most work relating to this
issue has been done on monolingual prospective teachers, while there is very little work on
bilingual prospective teachers, especially in the domain of mathematics.  The purpose of this
paper is to report a study designed with the intent to investigate how prospective teachers
grapple with the intersectionality of mathematics learning and language through their
participation in a non-traditional field experience. The participants were Latina/o prospective
teachers who served as facilitators in Los Rayos de CEMELA, and after-school project.
Specifically, this paper examines how shifts in language use (English – Spanish) relate to
prospective teachers’ interpretations of students’ mathematical engagements and the
subsequent assistance strategies they use with students. We define assistance strategies as
those actions that are intended to help students understand content. The study describes how
language choice mediates assistance in doing mathematics.

The study presented here draws on current work carried out by the Center for the
Mathematics Education of Latinos/as (CEMELA)i which focuses on the research and practice
of  the teaching and learning of mathematics for Latino/as in the United States through the
integration of socio-cultural theory, language, and culture. CEMELA has created after school
projects at two of its sites, one of which (Los Rayos de CEMELA) is the source of the present
study. The after-school projects are designed to investigate the linguistic and cultural
resources that support bilingual Latino/a students’ mathematics learning.  and are a general
adaptation of the work of the Fifth Dimension (Cole, 1996). Los Rayos  is guided by other
similar projects (e.g., Gutierrez, Baquedano-Lopez, & Alvarez, 2001) including La Clase
Mágica (Vasquez, 2003). These works have utilized the after-school as a way of
understanding literacy; CEMELA has extended the work to consider mathematics.

Theoretical framework
To understand the complex nature of the mathematical activities and the interactions that

take place in Los Rayos de CEMELA, we use both a socio-cultural and an activity theoretical
view of learning and development. Through these lens we focus our analysis on the
prospective teachers’ interactions with children and on their reflections on mathematics
teaching and learning.
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Cultural historical theory (Vygotsky, 1978) shifts the view of learning from an individual
internal phenomenon to one based in social interaction. Higher mental processes derive from
external and practical actions or activities between people. These actions are mediated by
signs and tools, including language which is the most prevalent. Language also may be the
most important semiotic tool because it is the most obvious and natural means that people use
to make sense of phenomena, to transmit values and beliefs, and to socialize children into the
practices of a culture (e.g., Halliday, 1993; Lave & Wenger, 1991; Vygotsky & Cole, 1978;
Wells, 1999).

The after-school setting is a tool in itself in that it presents a different yet familiar setting
from a traditionally structured teaching practicum or tutoring-oriented activity. Los Rayos de
CEMELA embeds students’ self-motivated actions and interactions with others that together
form a “cultural practice”. The way mathematics is done in the after-school is different from
how it is done in classrooms, perhaps in small ways, but nevertheless different. This
difference challenges students’ assumptions about what it means to do mathematics and in
this way forms a “practice” of doing mathematics. At the same time this difference
challenges the facilitators’ (in this case the prospective teachers’) assumptions about what it
means to assist students in doing mathematics while utilizing a variety of linguistic and
cultural resources. Through their participation in Los Rayos de CEMELA prospective teachers
are involved in hybrid practices which are “polycontextual, multivoiced, and multiscripted”
and help create a Third Space which allows for assumptions and connected actions to emerge
in a natural way (Gutierrez, Baquedano-Lopez, & Tejeda, 1999).

Methods
Five (four female and one male) Latino/a pre-service elementary teachers in their junior

year were recruited during the second week of their mathematics methods course in Fall of
2006. All participants self identified as being fluent in both Spanish and English and four of
them (all females) are seeking endorsements in bilingual education.

The participants met with fourth-grade students in Los Rayos once or twice a week for
one and a half hours each time through an eight-week period during the Fall 2006 semester.
Each participant worked with a group of two to four students during each session and was
encouraged to serve as a sibling-like “more experienced other” rather than a mathematics
tutor or teacher. All sessions in the after-school were videotaped. Additionally all participants
were required to take detailed field-notes of their interactions with the students focusing
specifically on how language (Spanish and/or English) was used, on students’ mathematical
strategies, and on their own assistance strategies. Furthermore, each participant played the
role of el Maga (a bilingual math wizard) who communicated electronically with the students
twice a week (via a message board) about mathematics. The students were not aware of who
actually wrote as el Maga, and this situation encourages a free and natural exchange between
correspondents.  Finally, during this eight-week period, all participants met in a weekly a two
hour debriefing seminar designed to engage participants in active discussions about students’
linguistic and mathematical behaviors and interactions, and the participants’ own reflections
about the same items. All seminars also were audio-taped.

In order to map language use with assistance strategies data were analyzed using a
constant comparative method (Glasier and Straus, 1967) in which relations amongst language
choice and assistance strategies used, became apparent as the data were continuously
examined.
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Evidence
Data analysis reveals two patterns regarding language use and assistance strategies.

Firstly, assisting students in mathematical activities in Spanish proved to be a challenge for
most of the prospective teachers. They realized that fluency in conversational Spanish does
not translate to fluency in academic (in this case mathematical) Spanish. Secondly, language
was used in fluid and non-determined ways. There was no evident predictor for the language
each prospective teacher chose to use and language choice was not always conscious or
purposeful. We use Patton’s (2002) intensity sampling strategy - whereby cases which
represent categories of extreme interest are focused on in more detail - in the selection of
cases to present patterns in language use and assistance strategies. For challenges involved in
the use of Spanish when assisting students in mathematical activities we draw upon the
experiences of Julieii, and to describe how language was used in fluid and non-determined
ways when conversing with children about mathematics the experiences of Rex are
discussed. Both cases highlight the role of language in assisting students.

Challenges in doing mathematics in Spanish
All study participants self identified as being fluent in Spanish and English. In fact, all

participants’ first language is Spanish. However, doing mathematics in Spanish, facilitating
mathematical discussions in Spanish, and assisting students in mathematical activities in
Spanish all proved to be a great challenge for three out of the five study participants, namely
Julie, Deborah, and Rex.

During the first debriefing meeting, prospective teachers were asked to do the
mathematical activities they were going to use with the children in los Rayos that week. All
activities were provided in both Spanish and English, in the same forma that students would
get them. Julie chose to use the Spanish version of the activities and informally teamed up
with two other prospective teachers, Diana and Sonia, who also chose the Spanish version.
The following describes Julie’s experience with the Spanish materials.

While Julie was reading the activity she frowned and said “WHAT?” She then resorted to
the English version of the activity. After reading it in English she said “Oh, now I get it!” and
solved the problem right away. Julie kept resorting to the English version of the activities and
although she discussed the context of the activities in Spanish she would resort to English
when talking about mathematics. Later on, she reflected on her difficulty in understanding
mathematical Spanish:

Julie: …well like cause you if know let’s say your L1 is Spanish but you like you know
English, if they give you a word problem and it’s in English you would be able to do it
but then if they give it to you in Spanish you won’t be able to do it. Does that make any
sense?
Eugenia: O.k. can you say that again? So what’s your first language?
All: Spanish.
Eugenia: So English is your second
Julie: But I learned English, I learned English math. So if they give me a word problem
like they did like today and I read the Spanish one I had to reverse and I had - I - I know
how to read Spanish and I understand it but I comprehend math a lot better if I read it in
English…like I’ll read it and I’ll be “o.k…” but when I - when I flip it over I’ll be like
“Oh o.k.! O.k. umhum!” You know?
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Julie was seeking bilingual endorsement at the time of the study and had read in their
bilingual education course that conversational fluency in one cultural language does not
translate to academic fluency in the same cultural language. However, it was not until she
experienced trying to comprehend, discuss and solve a mathematical problem in Spanish that
she realized this. Julie had a hard time comprehending the mathematics in the problem she
was given and had to resort to the English version of the problem because she had learned
mathematics in English. She started to realize that the reason she was not able to think about
mathematics in Spanish was because she had never been taught mathematics in that language.
In other words, Julie was not familiar with Spanish mathematical discourse and this resulted
in her difficulty comprehending the Spanish mathematical text, even though the problem
involved elementary mathematics in which she was competent.

During the after-school sessions, Julie would use both English and Spanish – mostly
code-switched - with the students she worked with. She would always make a considerable
effort in making sure that the mathematical conversations in her group were done in both
languages as she realized the importance of children being exposed to mathematical talk in
both Spanish and English. In a personal conversation with one of the researchers, she
expressed that she felt saddened by the fact that she had a hard time thinking and talking
about math in Spanish and she wanted to make sure that her students would not share the
same experience as she did. In addition to this, Julie expressed many times during the
debriefing meetings that it was necessary for her to read the English version of the activities
and then solve the activities in English before attempting to assist students in Spanish.

Julie: I feel like if I could read an English worksheet then I could translate it in Spanish
but if I get a Spanish worksheet and I read it then I’ll take a lot longer to understand
it…cause I could translate it and I could teach it to them in - well not teach - in Spanish.
Deborah: Me too. Exactly.
Rex: Yea the same way.

Even so, Julie found it difficult to assist students in mathematics using Spanish only.
Instead she would blend Spanish and English in both mathematical and non-mathematical
discussions. Code-switching came very natural to her and the students she worked with
during non-mathematical discussions. However, during mathematics Julie consciously
blended both vernacular and mathematical talk in Spanish and English as an effort to
experiment with and expose her students to Spanish mathematical discourse. Julie later
indicated in her field-notes that she had become so used to code-switching in Spanish and
English during the mathematical activities that she preferred the activities that were written in
a format that blended the two languages in the same sentences and paragraphs.  In her field-
notes, she said: “…one thing I did like about this problem was that it was both in Spanish and
English because it was written in a way that many students speak, including myself…”

This example shows the difficulty that teachers like Julie,  as well as Deborah and Rex,
who are Spanish bilingual but not biliterate (e.g. , able to speak, read, and write mathematics)
face in  thinking and talking about mathematics in Spanish. However, the three prospective
teachers dealt with it differently; one blended the two languages in all contexts, one only in
non-mathematical contexts, and one stayed with English only.

Language choice



995

___________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

Unlike Julie who consistently code-switched when communicating with the students in
los Rayos, Rex and Deborah used mostly English while Diana and Sonia used mostly
Spanish.  An interesting finding is that in numerous instances participants used English
(instead of Spanish) when facilitating a mathematical discussion with a group that had a
Spanish dominant student present but never used Spanish when an English dominant student
was present. For example, Sonia and Diana would switch to English (and facilitate group
mathematical discussions in English) when an English dominant student joined their groups,
even though Spanish dominant students were present in the same group. On the other hand,
Rex and Deborah would not switch to Spanish when a Spanish dominant student was present
in their group. Instead they would continue carrying on the mathematical discussions in
English. The only times Spanish were used in these cases was during non-mathematical
conversations and/or to discipline the students.

Rex’s language choice presents an interesting example. One of the students in the group
he facilitated, Rafael, was Spanish dominant and would consistently choose the Spanish
version of the activities, while the other two students (Rodrigo and Mario) would choose the
English version most of the times. Rex would facilitate all mathematical discussions in
English because (as indicated in his field-notes) he assumed that the students had been taught
mathematics in English only and because they would always talk about mathematics in
English. However, after working with the same children for four weeks, Rex noticed a switch
to Spanish while playing a math game called “the grocery cart game.” In his field-notes he
wrote:

“…Another interesting event happened today when the students started speaking in
Spanish. I believe Rodrigo started it when he spoke about items on the menu in Spanish
and Rafael responded in Spanish. They then went to add the items’ price in Spanish. It
seemed like Rafael added in Spanish by that he said the numbers, counted the numbers,
and used terminology in Spanish.

Rex observed that Rafael used Spanish exclusively when doing the mathematics involved
in the game. In later field-notes he indicated more instances during which Rafael resorted to
Spanish when talking about the mathematics involved in the group activities. Yet he did not
use any Spanish when conversing with Rafael about mathematics and continued talking to
him in English. In his field-notes he frequently noted that Rafael (the Spanish dominant
student) was not engaged with the mathematical activities and was often “off task.”

However, when Rex conversed with Rafael via the electronic message board, the
language used by both of them was always Spanish. Additionally, the entire dialogue
between el Maga (Rex) and Rafael was about mathematics. Rafael kept challenging el Maga
with math problems and el Maga responded by posing a new problem for Rafael. Rafael, in
turn, who was “off task” during the group activities was extremely engaged in trying to solve
the problems el Maga posed. In fact, there were a couple of instances where he would not
leave los Rayos, the after-school, until he solved el Maga’s problem. As an illustration of the
el Maga/Rafael dialogue we have chosen the following:

Roberto: Hola maga. Cuanto es 5076 menos 6987 si lo saves dimelo? Bye maga que
diviertas hasta quando sea miercoles. [Hi Maga. What is 5076 minus 6987? If you know
tell me. Bye maga I hope you have fun on Wednesday.]
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El Maga (Rex): Hola Roberto. La respuesta es -1911. Es un numero negativa. Sabes la
respuesta de 125 suma 875? Cuidae y portate bien. [Hi Roberto. The answer is -1911. It’s
a negative number. Do you know the answer to 125 plus 875? Take care and behave.]
Roberto: Hola maga. Como estas? El numero que me diste que eran 125 mas 875 yo lo
tengo. Era 1000. Yo te quiero dar otra esta va ser muy dificil. Es 1,000,000,000 mas
2999,999,875,564? [Hi Maga. How are you? The number that you told me that 125 plus
875 was I have. It was 1000. I want to give you another one. This is very hard. It is
1,000,000,000 plus 2999,999,875,564?]

 This is a very typical example of how el Maga and Rafael communicated via the
electronic message board. Rex used the message board as a space for having a mathematical
dialogue with Rafael in Spanish, and Rafael used it as a space to explore more challenging
problems.

The forgoing examples of choices in language raise the following questions: Why did
Rex continue carrying mathematical discussions in English with his group, even though he
became aware of Roberto’s dominance in both conversational and mathematical Spanish?
Was this to accommodate the other two students who he had identified as being English
dominant? Why did he not accommodate the Spanish dominant student? Was this because
Rex, the prospective teacher, had a better written command of mathematical Spanish but felt
insecure about his oral command of it? Was his language choice a conscious one?

Results and Conclusion
Findings from this study reveal the complexity of the interplay between language and

mathematics. We examined bilingual prospective teachers and found that the use of two
languages as a teaching and learning resource is not as straightforward as one would think.
Being fluent in two languages does not necessarily mean that one can do or teach
mathematics in both languages. Results suggest that mathematics educators need to rethink
what is involved in teaching and learning mathematics in two languages and how complex
this can be. However, if we wish for teachers to be equipped with the means to adequately
address ELL and bilingual students’ needs in mathematics, the Mathematics Teacher
Education research community must investigate more (new) ways of preparing prospective
teachers to meet these students’ needs.

Conceptualizing the nature and role of language and culture in the teaching and learning
of mathematics is not an easy task and research in this domain is in its infancy. According to
Zeichner (2005) “the research on the preparation of teachers to teach underserved population
should pay special attention to the preparation of teachers to teach English-Language
Learners, because almost no research has been conducted on this aspect of diversity in
teacher education.” Even though there is a growing body of research on Latinas/os in
mathematics, research that investigates the preparation of teachers to teach mathematics to
Latinas/os who are English-Language Learners or bilinguals is almost non-existent.

Relationship of Paper to Goals of PME-NA
This research project was conducted with the intent to better understand the socio-

psychological aspects of doing mathematics and assisting children with mathematical
activities in two languages (Spanish and English.) In order to understand how to better
prepare teachers to address the specific needs of students who are marginalized from the
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educational system in the United States, such as ELLs and bilingual Latinas/os, we must
understand the complex factors that affect and shape prospective teachers’ experiences in
doing and facilitating mathematics in two languages. Through the examination of bilingual
Latina/o prospective teachers’ experiences as facilitators in a mathematics after-school
setting, we highlight the need for providing prospective teachers with more opportunities to
experiment and investigate the role and nature of language in mathematics.

Endnotes
                                                  

i CEMELA is a Center for Learning and Teaching supported by the National Science
Foundation, grant number ESI-0424983. The views expressed here are those of the authors
and do not necessarily reflect the views of the funding agencies.

ii All names are pseudonyms, which participants chose for themselves.
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This study investigated how preservice elementary teachers experienced lesson study in their
mathematics methods courses and how lesson study facilitated their knowledge development as
teachers. Certain characteristics of the lesson study process were identified that supported the
development and transformation of three types of teachers' knowledge: content knowledge,
pedagogical knowledge, and pedagogical content knowledge.

Preservice teachers’ knowledge of good math teaching and learning may be limited by their
own classroom experiences. They might never have witnessed effective reform math teaching to
understand the possibilities that it offers for sustained student learning. The apprenticeship of
observation is indeed powerful in shaping beliefs (Lortie, 1975). To address this phenomenon,
some teacher educators incorporate systematic observation of preservice teachers' practice to
facilitate knowledge transformation. One such way to facilitate this transformation is through the
implementation of lesson study in preservice programs.

Theoretical Framework

Lesson Study
Lesson study is a professional development tool that originated in Japan. Since the 1990s, it

has spread rapidly in the United States (Fernandez, 2005; Lewis, Perry, & Murata, 2006; Lewis
& Tsuchida, 1998). Several key features of lesson study serve to transform teachers' knowledge
(Fernandez, 2005): lesson study enables teachers to work collaboratively in the lesson planning
cycle (assess, plan, teach, reflect); and it provides contexts to demonstrate reform math teaching
in the classroom by helping teachers see the lesson through the eyes of the students. Participation
in this form of professional development has the potential to transform teacher beliefs which has
an impact on teacher knowledge.

Teacher Knowledge
Three types of teacher knowledge were formalized by Shulman (1987) and others

(Grossman, 1990; Hill, Schilling, and Ball, 2004) that need to be transformed in order to support
teacher learning: (1) content knowledge, (2) pedagogical knowledge, and (3) pedagogical content
knowledge. In other words, teacher educators need to provide opportunities for teachers to: (a)
deepen their understanding of math content, (b) build a repertoire of effective teaching strategies,
and (c) connect emerging knowledge of content and teaching strategies to reconceptualize how
students can best think about and learn math.

In lesson study, teachers are supported to go beyond a superficial comprehension of the math
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content (e.g., procedural understanding) and gain a stronger conceptual grasp of the material they
teach. Lesson study provides the impetus for teachers to examine current research findings of
student learning, pre-assess their students based on these findings, and plan an effective lesson,
broadening their existing ideas of effective teaching strategies. Through this process, lesson
study continuously focuses teachers' attention toward students' thinking on certain math topics,
highlighting effective mathematics teaching with a conceptual focus.

Using the three types of knowledge conceptualized by prior research as a framework, this
research report presents a case study that describes how two cohorts of preservice elementary
teachers experienced lesson study in their mathematics methods courses and how these
experiences facilitated their knowledge development and transformation. This study aims to
answer the following research questions:

How does lesson study facilitate the development and transformation of content knowledge,
pedagogical knowledge, and pedagogical content knowledge of preservice teachers? What
characteristics of lesson study are integral to this process?

Methods
Two cohorts of elementary preservice teachers in their respective math methods courses at a

major research institution in the western United States participated in the study. All teacher
education students engaged in the lesson study process which was central to one quarter's
course(s). In order to identify if and how teachers' content knowledge, pedagogical knowledge,
and pedagogical content knowledge were changed and how lesson study played a role in this
change, a combination of both a quantitative and qualitative research design was used.

For quantitative data, both cohorts of elementary preservice teachers took a pre- and post-
survey (Hill, et. al., 2004) at the start and end of the teacher education program. This survey was
developed by the Study of Instructional Improvement (SII)/Learning Mathematics for
Teaching/Consortium for Policy Research in Education (CPRE) at the University of Michigan
and primarily assesses preservice teachers' pedagogical content knowledge and content
knowledge. All questions from these pre- and post-tests were coded as corresponding to the
types of teacher knowledge. This enabled analysis of each knowledge on a separate basis. The
groups' overall scores were also used to determine the teachers’ learning in the courses.

Qualitative methods, including unstructured interviews and classroom observation of the
lesson study groups' planning processes and final lessons, were utilized to understand the
complex learning shift. Teachers wrote open-ended reflections immediately after their lesson
study experience as well as at the end of the program. Data were collected in the form of
reflection papers on 20 teachers from Cohort 1 during the 2005-2006 academic year, and on 17
teachers from Cohort 2 during the 2006-2007 academic year. Teacher reflection data were first
coded and analyzed for the types of knowledge that teachers formalized through the lesson study
process as a whole. Percentages were calculated to determine which codes were referenced most
often. Then, characteristics of lesson study were identified and linked to the teacher learning.

Results
The pre- and post-survey results show increases across the knowledge types and across both
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cohorts (see Table 1 for a summary of the results).
Cohort 1 (2005-2006) Cohort 2 (2005-2006)

Overall Content
Knowledge

Pedagogical
Content

Knowledge

Overall Content
Knowledge

Pedagogical
Content

Knowledge

Pre-Survey 72% 69% 73% 75% 68% 78%

Post-Survey 78% 78% 78% 85% 84% 85%
Table 1. Percentage of correct answers on pre- and post-surveys

While it is important to note the increase in overall scores for both cohorts (6% for Cohort 1
and 10% for cohort 2), it is also notable how the content knowledge and pedagogical content
knowledge scores increased respectively. Cohort 1 increased 9% for content knowledge items
and 5% for pedagogical content knowledge items; Cohort 2 increased 16% for content
knowledge items and 7% for pedagogical content knowledge items.

Analysis of preservice teachers' reflections show that their beliefs were also challenged
through engagement in the lesson study process. Teachers' content knowledge, pedagogical
knowledge, and pedagogical content knowledge were all made central and transformed in some
way. Appendix A presents excerpts of their reflections regarding the transformation of these
three types of teacher knowledge.

Content Knowledge
While our data set is limited and we cannot claim definitive change in teachers' content

knowledge of their respective lesson study math topics, the survey results show that their overall
content knowledge was improved (see Table 1). Zooming in further, the qualitative data suggest
that teacher beliefs on math as a subject were also transformed. Teachers became more aware of
the way in which their own schooling limited attainment of a deeper understanding of various
foundational math content topics. This realization of their lack of conceptual knowledge allowed
teachers to admit that relearning elementary mathematics conceptually was necessary in order to
better teach. Collaboration with peers helped them grapple with complicated mathematical
concepts that are foundational to their familiar operational procedures. In addition to gaining a
stronger grasp of the content itself, teachers realized that even “simple” mathematics concepts
can be quite complex. One teacher mentioned:

“...in exploring division of fractions I realized how little I understood conceptually
about that math topic. For me, brainstorming real life situations that require division
of fractions and figuring out what that operation is really 'doing' to the numbers was
extremely challenging. It made me realize what a superficial understanding of the
topic I have.”

Pedagogical Knowledge
Preservice teachers' pedagogical knowledge was also transformed as a result of their

participation in the lesson study process. Teachers learned firsthand how both published
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materials and empirical research could inform pedagogical decisions. Teachers were encouraged
to examine standards, curricula, and research data. This enabled teachers to realize that they need
not be hampered by their limited experience with classroom planning. As a result of lesson
study, many felt there was a breadth of resources available to facilitate future lesson planning.

Findings from empirical research also played a role in transforming pedagogical knowledge.
Teachers conducted pre-assessments in the form of one-on-one student interviews. This allowed
a fair number of teachers to begin to see the value of formative assessments, as opposed to the
traditional summative assessments. There was also the opportunity to review post-assessment
data during the debrief of the live lesson. Both types of assessment led teachers to a greater
appreciation of the student voice and how it should always inform instruction. One teacher
noted:

“I learned so much from studying the pre-lesson student assessment and analyzing
student work after the lesson. I had not realized how incredibly rich student work
samples are for guiding instruction. In my mind I usually think of student
assessments in a formal way, as tests or final projects. However, through the lesson
study process I learned the value of really taking time to look at student work, even
daily assignments, to gain an understanding of where my students are at and where
we need to go next.”

Pedagogical Content Knowledge
Finally, a transformation also occurred in terms of teachers' pedagogical content knowledge.

Fernandez (2005) defines pedagogical content knowledge:
Such knowledge entails understanding how students think about specific content, in
particular the difficulties it presents to them, and being familiar with productive
strategies that can be used in the classroom to further develop students' thinking and
help them overcome their difficulties (Fernandez, 2005, p.2).

Lesson study focused teachers' attention on development of their pedagogical content
knowledge. As expected, the preservice teachers left with a range of abilities in this area. Most
teachers related their increased awareness of the importance of closely paying attention to
student thinking. One teacher stated:

“The pre-assessment was extremely useful in building my background knowledge
about how students might approach and comprehend division of fraction problems.
While I could anticipate different tactics that students might use and brainstorm
about the concept of dividing fractions, it became more real to analyze the strategies
they actually used. They thought of tactics like drawing and repeated addition that I
had not previously considered. Reviewing their work truly informed our lesson by
showing us how developed students were in their thinking about fractions and how
we could guide their thinking. Because I am usually more lenient about assessing
students, this activity truly emphasized the importance of this element of teaching
and why I should do it in the future. Assessing helps teachers understand student
thinking and captures the growth of their learning. This was extremely cognitive in
that I had to think about students' background knowledge and why they might resort
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to certain ways of solving the problem. For the sake of making better informed
lessons I will continue to assess student learning and interest.”

This closer look into student thinking was the learning that was mentioned the most by both
cohorts. The scores on the pre- and post-survey items on student thinking grew over time for
both cohorts of teachers. Figure 1 (attached) shows that the mean score increased over 6
percentage points for Cohort 1 and nearly 10 percentage points for Cohort 2. The standard
deviation decreased by 0.6 and 2.3 respectively, showing that the teachers at the lower end of the
spectrum at the beginning of the courses were brought more in alignment with the expected
curve at the end.

In addition to the teachers' increased ability to analyze student work, lesson study also
provided teachers with the opportunity to wrestle with the big ideas behind reform math.
Through lesson study, teachers were able to debate which knowledge, procedural or conceptual,
is more important to student understanding. While teachers had read about and discussed this in
their mathematics methods courses, the experience of planning a lesson brought its importance to
the forefront. Teachers became much more aware of the need for balance between these two
aspects of mathematics learning and the ability of all students to succeed in comprehending
mathematical concepts.

Many preservice teachers left the lesson study experience with more skill in how to address
gaps in student thinking. Certainly the lesson study experience has propelled preservice teachers
in the right direction. With more classroom experience, they will become adept at dealing with
all students.

Discussion
The study shows that lesson study has the capacity to influence preservice teachers' beliefs

by transforming three types of knowledge that are crucial for effective teaching. At the very
least, lesson study pushes preservice teachers to examine their existing math content knowledge,
pedagogical knowledge, and pedagogical content knowledge. The lesson study experience forces
teachers to examine critical elements of teaching in an authentic way – through the lesson
planning-teaching-reflecting cycle.

What is specific to lesson study that allows this type of learning to occur? First, the
opportunity to experience the coherent lesson planning cycle is critical. Preservice teachers
seldom have the chance to engage in the entire cycle in their own classrooms. Second, the lesson
debrief with experts enables teachers to gain assistance in interpreting student thinking. We
cannot expect teachers to have mastered this skill upon entering the classroom. Rather, they need
scaffolded learning opportunities such as those provided by lesson study. Third, because lesson
study is based on collaboration with colleagues, multiple voices can contribute to the creation of
the best learning environment for students. Finally, lesson study places the student at the center
of the professional development, rather than the teacher. This allows for a judgment-free
experience, encouraging teachers to speak freely and openly about questions and issues that are
central to their advancement as professionals.
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Appendix A – Teacher Quotes
Content Knowledge
Confronting the
Apprenticeship
of Observation

“...the initial brainstorming was challenging, yet rewarding...It made me
reflect on my own schooling and the background knowledge I will have to
build in order to design rewarding math lessons.”

Realizing One's
Limited
Understanding

“...I realized how little I understood ... about that math topic. For me,
brainstorming real life situations that require division of fractions and figuring
out what that operation is really 'doing'...was... challenging.”

Deconstructing
“Simple” Math

“...[lesson study]...really made us...deconstruct all of our assumptions,
misconceptions, ideas of and issues with the basic operation of subtraction.”

Pedagogical Knowledge
Basing Lesson
Ideas on
Research

“Nearly every decision...was informed either by...professional material
(including standards, curriculum books, research findings) or by extensive
discussion...The standards ...helped us to focus and continually re-center our
thinking and our project plans.”

Using
Assessment
Data

“I usually think of student assessments...as tests or final projects. However,
through...lesson study...I learned the value of...taking time to look at student
work, even daily assignments, to gain an understanding of where my students
are at and where we need to go next.”

Planning
Lessons

“I learned how important it is for a teacher to really break down a subject into
its smallest components before teaching it. I had previously thought that
subtraction was so basic that there aren’t really sub-topics that comprise it.”

Pedagogical Content Knowledge
Focusing on
Student
Thinking

“Creating a lesson in which student thinking was scaffolded but still
exploratory was...difficult and it was...rewarding...it was so difficult not
to...ask students questions..., but by doing so I...got to...look at student
thinking.”

Reform Math/
Problem-Based
Lesson

“...lesson study...opened my eyes to how difficult it is to teach Math through
exploration and inquiry, but also how beneficial...it is to...students’ learning.”

Teaching
Concepts
Versus
Procedures

“...we focus on [procedural fluency] with 'traditional' math...it has got to be
our goal...to... find a balance between developing the children's conceptual
understanding as well as their more automated skills...”
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Cohort 1 (2005 – 2006)

Group Mean Std Dev
Cohort 1 Pre 71.6 9.3
Cohort 1 Post 77.8 8.7

t-test: 95.8% confidence

Cohort 2 (2006 – 2007)

Group Mean Std Dev
Cohort 2 Pre 75.1 11.0
Cohort 2 Post 84.8 7.7

t-test: 99.3% confidence

Figure 1. Distributions of overall pre- and post-survey results
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This study investigated the mathematics beliefs of 103 elementary preservice teachers in a
developmental teacher preparation program that included a two-course mathematics methods
sequence. Pedagogical beliefs became more cognitively oriented during the two methods
courses; these beliefs then remained stable during student teaching. Personal efficacy for
teaching also significantly increased throughout the program.

Background
Our teacher preparation program recently changed due to a mandate from our university

system requiring an increase in the number of mathematics courses for elementary preservice
teachers. Prior to this change, our program included two elementary mathematics content courses
and two mathematics teaching methods courses. Our program was revised to provide a
mathematics endorsement for completing four mathematics content courses and one methods
course. In an effort to document the impact of these changes on our elementary preservice
teachers, we began a longitudinal research effort we call the Mathematics Education Research
Project (MERP). This specific study reports longitudinal changes in beliefs of the preservice
teachers during the pre-endorsement program and compares their beliefs at the end of the
program to the beliefs of inservice teachers.

Theoretical Perspectives
The relationship between teachers’ beliefs and teaching is well-established. Beliefs influence

teacher behavior and decision-making (Thompson, 1992) and change in beliefs is a crucial
precursor to real change in teaching. We know these beliefs develop over time (Richardson,
1996); they are well-established by the time a student enters college (Pajares, 1992); they
develop during what Lortie (1975) terms the apprenticeship of observation while a student; and
teacher preparation programs have a limited amount of time to impact change in preservice
teacher beliefs—usually two years or less. Many studies on changing preservice teachers’
mathematics pedagogical beliefs focused on aligning these beliefs with a reform perspective.
However, these studies often looked at change during only one course or semester; some
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reported achieving the desired effect while others did not. Most studies on preservice teachers’
mathematics teaching efficacy beliefs also examined the effect of a single methods course, but
these studies more uniformly reported significant increases in mathematics teaching efficacy.
While these snapshots make important contributions to the body of knowledge on these beliefs, it
is also important to examine programmatic effects on these beliefs over time.

Research Questions
1. How do elementary preservice teachers’ mathematics pedagogical beliefs and teaching

efficacy beliefs change during a teacher preparation program?
2. What is the relationship between these beliefs during a teacher preparation program?
3. Is there a difference between these beliefs of elementary preservice teachers and inservice

teachers?

Methodology
The five cohorts of elementary preservice teachers in this study (n = 103) attended a large

urban university in the southeastern United States. These cohorts were admitted concurrently and
completed all education courses together. The pre-endorsement program consisted of four
semesters of coursework, including a mathematics methods course during both the second and
third semesters. Each of the first three semesters also included two-day-a-week field placements
followed by a semester of student teaching. The field placements and coursework followed a
developmental model, with pre-student teaching placements starting in pre-kindergarten and
finishing in fifth grade. So, the first mathematics methods course focused on grades PreK-2 and
the second focused on grades 3-5. The mathematics methods courses were taught by faculty in
the elementary education department who share a common philosophical orientation toward the
teaching and learning of mathematics. Important goals of the courses included developing (a)
beliefs consistent with the perspective of the Principles and Standards (NCTM, 2000), (b)
understanding of children’s thinking about important mathematics concepts, (c) abilities to create
problem-solving learning environments for children to facilitate discourse and understanding,
and (d) abilities and confidence as a lifelong learner and doer of mathematics. In addition to
university general education mathematics requirements, our program included two mathematics
content courses for elementary teachers taught through the mathematics department.

The 66 inservice teachers in this study worked at a large, suburban elementary school located
relatively close to the university. The elementary school and university have a Professional
Development School (PDS) relationship, and the elementary school provided a number of field
placements for our teacher preparation program. One of the researchers served as PDS university
liaison to this school and was familiar with the mathematics curriculum used by the teachers.
This curriculum took a traditional approach rather than a reform perspective.

The preservice teachers completed two instruments, four times each, as referred to in the
following one-semester intervals: (a) week one of the first mathematics methods course, (b)
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week fourteen of the first mathematics methods course, (c) week fourteen of the second
mathematics methods course, and (d) week fourteen during student teaching. The inservice
teachers completed the two instruments toward the beginning of the academic school year. The
two Likert-scale surveys were the Mathematics Beliefs Instrument (MBI) and the Mathematics
Teaching Efficacy Beliefs Instrument (MTEBI). The MBI has 48-items designed to assess
beliefs about the teaching and learning of mathematics and the degree to which these beliefs are
cognitively-aligned (Peterson, Fennema, Carpenter, & Loef, 1989, as modified by the
Cognitively Guided Instruction Project). The three MBI subscales include: (a) relationship
between skills and understanding (CURRICULUM), (b) role of the learner (LEARNER), and (c)
role of the teacher (TEACHER). The MTEBI consists of 21 items and includes the Personal
Mathematics Teaching Efficacy (PMTE) subscale addressing teachers’ beliefs in their
capabilities to teach mathematics effectively and the Mathematics Teaching Outcome
Expectancy (MTOE) subscale addressing teachers’ beliefs that effective teaching of mathematics
can bring about student learning regardless of external factors (Enochs, Smith, & Huinker,
2000).

Results
A repeated-measures analysis of variance indicated the preservice teachers had significant

increases in overall MBI subscale scores. The preservice teachers’ beliefs became more
cognitively-aligned during the teacher preparation program with these significant changes
occurring across the two methods courses with the exception of the CURRICULUM subscale,
which increased significantly only during the first methods course. During student teaching the
scores on the three MBI subscales remained largely unchanged.

Data from the PMTE subscale revealed the preservice teachers had significant increases in
their overall personal efficacy for teaching mathematics. These increases occurred consistently
across both methods courses and student teaching. MTOE subscale scores also showed
significant overall increases in outcome expectancy beliefs, with this change largely occurring
during the semester of the second methods course and remaining essentially constant during
student teaching.

Correlations between teaching efficacy beliefs and pedagogical beliefs indicated that at the
beginning of the first methods course there were no significant relationships between MTEBI
and MBI subscales scores. However, in general, at the end of the first and second methods
courses and again after student teaching the MTEBI and MBI subscales scores showed slight to
moderate correlations.

An independent samples t-test comparing the preservice teachers’ MBI and MTEBI
subscales scores at the end of student teaching to the inservice teachers indicated significant
differences on all three MBI subscales but not on the MTEBI subscales. The preservice teachers’
pedagogical beliefs were more cognitively oriented than inservice teachers and these two groups
had similar teaching efficacy beliefs.
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Discussion
Although preservice teachers enter teacher preparation programs with relatively well-

entrenched beliefs about mathematics teaching and learning (Pajares, 1992), our results suggest
that programs can have an impact on those beliefs. We found that during their coursework,
preservice teachers developed beliefs more cognitively oriented and hence consistent with a
reform perspective and became more efficacious about their skills and abilities to teach
mathematics effectively and to influence student learning. Even during student teaching,
personal teaching efficacy continued to increase while teaching outcome expectancy and
pedagogical beliefs remained stable. It is optimistic that this enculturation experience in the
schools did not undermine previous changes. The stability of these beliefs during student
teaching seems to suggest that the distinctive features of the teacher preparation program,
including two semesters of mathematics methods and time-intensive, developmental field
placements, helped in developing well-established beliefs.
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This research is designed to investigate a major alternative certification program for teachers of
mathematics: the New York City Teaching Fellows. Our objectives are to study (i) how the
Teaching Fellows program prepares its candidates to teach mathematics, (ii) how the Fellows
teach once they are in the classroom, and (iii) the Teaching Fellows understanding of the urban
students and families their school serves.

This research project, facilitated by MetroMath - The Center for Mathematics in America's
Cities, is designed to investigate the largest alternative certification program for teachers of
mathematics in the United States, namely the New York City Teaching Fellows (NYCTF)
program. The specific objectives of the project are to study (i) how the Teaching Fellows
program prepares its candidates to teach mathematics, (ii) how the Fellows teach once they are in
the classroom and how this instruction compares with the NCTM’s vision of teaching for
understanding, and (iii) the Teaching Fellows understanding of the urban students and families
their school serves.

Background and Framework
Evidence indicates that the level of teacher quality is a major factor affecting student

achievement (Darling-Hammond, 2000; Wayne & Youngs, 2003). This linkage poses a serious
problem for urban areas, since low SES urban schools are more likely to be staffed by less
qualified teachers (Levin & Quinn, 2003). Furthermore, since the implementation of the No
Child Left Behind law and its stipulation that every classroom must have a certified teacher,
districts have scrambled, in the context of a nationwide shortage (Ingersoll, 2000), to find
qualified mathematics teachers. States and cities have cooperated in recent years to institute a
variety of policies to address the shortage of qualified mathematics teacher resulting, most
prominently, in various alternative routes to teacher certification.

One particular alternative certification program is the NYCTF Program started in 2000. The
NYCTF Program currently supplies over 60% of new mathematics teachers in NYC public
schools – c. 300 new mathematics teachers in 2006 alone. Participants in the NYCTF Program
currently attend summer courses at one of four colleges in NYC. The following fall they begin
teaching full-time in NYC Middle Schools or High Schools while continuing to take classes for
two to three academic years in order to complete a Master’s degree in Mathematics Education.

Our research questions are:
1. What is the nature of teaching and learning in Math Fellows classrooms? Do the teaching
practices of the Math Fellows facilitate the study of, or the engagement of students with,
conceptually challenging mathematics?
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2. How do the structures of the school environment afford or constrain the Math Fellows
professional development and their ability to teach mathematics for understanding?
3. What are the teaching fellows' sense of their own understanding of their urban students’
identities, cultures, beliefs, communities and practices? How are these understandings developed
and how do they influence the Fellow's mathematics instruction?

By conceptually challenging mathematics we mean mathematical activity emphasizing
reasoning, explanation and investigation in which making connections and understanding as
outlined by the NCTM (2000). The "how or why" is an integral part of the mathematical activity.
In this domain, mathematical meanings are as important as mathematical procedures.

Methods and Data Sources
We examine both the teachers' training under the auspices of the NYCTF program and their

experiences working in NYC public schools, using macro and micro approaches to data
collection: (i) a broad survey study which examines characteristics of all four university
programs and characteristics of a particular Teaching Fellow cohort of approximately 300 pre-
service candidates. The initial survey covers a wide range of issues such as the demographic
background of the Fellows, their mathematical backgrounds, the influences leading them to
teaching, and their expectations of the program. Two follow up surveys focus on the Fellows’
classroom experiences, their experiences in their university classes, and how these experiences
relate to their background and expectations; (ii) a set of case studies which look in detail at the
mathematics instruction and experiences of eight Teaching Fellows as they simultaneously
navigate their certification program and their beginning years of teaching mathematics in NYC
Public Schools. The primary data sources are fortnightly video observations of their teaching and
regular interviews with each Fellosw. This data is supplemented by field notes of the observed
lessons, Fellow self-reflection journals of the observed lesson; student surveys; student focus
groups; out-of-class observations; and interviews with administrators, mentors, and coaches.
This multiplicity of data sources has allowed us to build a detailed picture of each of the eight
fellows as they have progressed as novice alternatively-certified urban mathematics teachers.

Results and Discussion

Macro-Lens
The survey data show that somewhat less than half of Teaching Fellows come from, or

attended college, in New York State. This is surprising given the recent finding that 85% of all
new teachers take their first job within 40 miles of where they grew up (Boyd et al., 2006). The
Teaching Fellows program is quite successful at recruiting broadly but, while originally billed as
a career-changers program, for most Fellows in our study, this is a first real career after college.

85% of the Math Fellows were not mathematics majors and enter the classroom with limited
understandings of post-secondary mathematics. This poses a significant problem to the NYCTF
program, the partnering universities that train them, and perhaps even the schools that hire them.

A concern in NYC public schools is the attrition rate of new recruits. 62% of mathematics
majors and 47% of non-majors stated that they plan on leaving NYC within five years. However
the non-majors are also almost twice as likely to plan on teaching in NYC for 11 or more years.
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Micro-Lens
Initial analysis of our case studies data suggests that mathematics instruction in the

participants' classrooms is generally teacher-centered and, in most cases, heavily procedural.
While teacher-centered, procedural mathematics instruction is typical of U.S. classrooms (Stigler
& Hiebert, 1999), it runs contrary to the many progressively minded city and state educational
policies (e.g., citywide adoption of reform textbooks, America's Choice whole school reform
programs) and to the training the Math Fellows receive in their mathematics methods classes. In
all but one of the classes we are observing, we find the surface-level features of reform
mathematics instruction (e.g., students work in groups, use of reform-oriented mathematics
texts). However, when examined beyond the surface level, the work students do in seven of the
eight classrooms is mostly procedural (e.g., notetaking, learning to apply previously taught
procedures to similar problems). Observations of classroom discourse and interviews with the
Fellows suggest that reform-oriented training, policies, and texts, are being trumped by high-
stakes testing and accountability in mathematics. This resonates with Lipman's (2004) finding
that teachers who teach low-income urban students of color face acute pressure to teach to the
test. With this in mind, it might be considered surprising that one of our eight participants is
taking steps to facilitate conceptually challenging mathematics in her classroom.

A second, related, initial finding is that the Teaching Fellows place considerable, perhaps
inordinate, emphasis on classroom management. In many of the classes, the teachers' own
reflection on the observed lessons finds that they consider class a "success" if the behavior was
orderly. An analysis of seventeen in-depth interviews suggests the Fellows feel adequately
trained in classroom management but not in mathematics methods or the curriculum.

In terms of our third research question about the relationship between the NYCTF Fellows
and their urban students, the interview and survey analysis make it clear that there is
considerable social distance between the two groups. The majority of the Fellows are white and
Asian, high SES, and from suburbs or small towns, whereas most of their students are African
American or Latino, low SES, and urban. In interviews, many - not all - of the participants
readily admit their lack of connection to the students and communities they serve. Fifteen of the
seventeen interviewees were tracked into gifted or honor programs as children and the majority
went to prestigious private universities. Once in the classroom, however, they often find
themselves teaching students in lower track classes in low performing schools. The evidence
suggests that there is a connection between the large social distance between Fellows and their
students and control-oriented mathematics instruction.

Conclusion
The study is ongoing but has already shown that the Teaching Fellows are committed and

bright young people and that the program is facilitating cooperation between schools and the
University Partners. A clear concern arising from the data is that many of the Teaching Fellows
have deficiencies in their mathematical backgrounds, their understandings of urban communities
and students, and that those deficiencies seem to be impacting the quality of their teaching and
their ability to engage students in conceptually challenging mathematics.
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This study sought to address the question, “how can teacher educators productively
challenge, change, and extend what prospective teachers bring to methods courses?”
specifically with respect to their understanding of fractions. The results indicated that
prospective elementary teachers bring with them to their methods courses a limited
understanding of fractions and that experiences in methods courses can change and extend
those understandings.

The difficult and complex task of teaching mathematics for understanding is often
challenged and complicated by the fact that many teachers’ experiences with mathematics as
learners result in their limited understandings of important concepts. Prior to beginning
education or mathematics methods coursework, prospective teachers have spent years
learning mathematics from teachers whose pedagogic practices primarily reflect a traditional
orientation focused on procedural understanding. Thus, prospective teachers have difficulties
envisioning mathematics teaching for understanding from a perspective that is more aligned
with constructivist ideas about learning.

Deborah Ball posed the following question for mathematics educators in a paper
presented at the eighth annual meeting of PMENA: How can teacher educators productively
challenge, change, and extend what teacher education students bring?  This study sought to
address this question specifically with respect to prospective teachers’ understanding of
fractions and was two-fold in its efforts to accomplish this.  First, this study examined the
understanding of fractions prospective teachers bring with them to methods courses?  Second,
this study asked whether the experiences and learning opportunities created as part of an
intermediate mathematics methods course challenged, changed, or extended what prospective
teachers understand about fractions.

Theoretical Framework
In 1988 Kieren reported that middle level students in the U.S. rely heavily on rules and

tricks and their rote memory of these to solve fraction problems. Since that time there have
been calls for change in fraction instruction to move from procedural instruction to pedagogic
practices aimed at developing conceptual understanding (Lamon, 2005; Van de Walle, 2007,
NCTM, 2000).  However, helping intermediate and middle level students develop a rich
number sense about and understanding of fractions rather than relying on procedures and
tricks is not easy.  Similar to teaching problem solving teachers must foster opportunities and
experiences for students to develop a certain way of thinking about fractions.  This
necessitates that teachers not only need to have a well developed and meaningful
understanding of fractions themselves but also pedagogic practices that provide experiences
for students to explore and construct ideas about fractions.  This research is based on the
premise that prospective teachers bring with them to their methods courses a somewhat
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limited understanding of fractions and that a methods course taught from a constructivist
orientation may change and extend that understanding.

Methodology
The participants in this study, students enrolled in an intermediate mathematics methods

course, included 42 females. Each participant was an elementary prospective teacher in her
final year of study and had successfully completed 12 credit hours of mathematics including a
course designed specifically for elementary education majors that addresses foundations of
numbers (set theory, numeration, and the real number system), number theory algebraic
systems, functions and applications, and probability.  Additionally, each participant had
successfully completed a mathematics methods course focused on grades pre-K through 3.

Participants were asked to respond to the following two short answer tasks:
Question 1: Which fraction is the largest?

Consider the following three fractions:

        ,         ,

Which is the largest?  Explain your reasoning.

Question 2:  Description of a fraction – What is a fraction?
Suppose a third grader asked you “What is a fraction?”  How would you respond?

Data were initially collected over two class periods the week prior to any instruction,
experiences with, discussion, or readings on fractions. Post-data were collected at the end of
the course following all fraction instruction. Following each data collection point data were
analyzed by each researcher independently scoring data as either correct or incorrect.  Each
explanation provided was also scored as either correct or incorrect and were subsequently
analyzed for emergent themes related to participant understandings.

The activities in the intermediate mathematics methods course involved the participants
in problem solving with fractions, working with hands-on fraction models, creating and
modeling of fraction addition, subtraction, multiplication, and division problems, and
ordering fractions. Students also read a variety of articles focused on teaching fractions
developmentally, establishing fraction benchmarks, and constructivist approaches for
multiplication and division of fractions.

Results
The results of this study indicated that prospective elementary teachers brought a limited

understanding of fractions with them to their mathematics methods courses.  Analysis of the
pre-assessment data collected from Question 1 (Which fraction is the largest?) indicated:

 20 participants (48%) chose 99/100
 12 participants (29%) chose 6/7
 2 participants (5%) chose 15/16
 8 participants (19%) indicated all three fractions were equal.

Analysis of the explanations revealed that of the 48% who chose 99/100 provided
explanations that were often incorrect.  For example, “I chose 99/100 because it had the

100

99

7

6

16

15



1017

__________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno.

largest numbers.”  Regardless of the fraction chosen as the largest the explanations revealed
that participants relied heavily on part-whole understandings of fractions as they related to
area models in order to make their determination.  Many participants relying on an area
model to make sense of the question and determine their response focused incorrectly on the
“part missing from the fraction” and thus chose 6/7 as the largest fraction. Additionally, many
who chose 6/7 did so because they were taught in elementary school that “the smaller the
denominator the larger the piece.”  Likewise, of the 19% of participants who indicated the
fractions were equal all but one explained that the fractions were equal because “they are all
one away from the whole.” The results of the pre-assessment data from Question 2 supported
the findings of Questions 1 in that participants overwhelmingly understand fractions as “a
part of a whole.”

The analysis of the post-assessment results indicated that the participants’ experiences
with fractions in the mathematics methods course had an impact on their fraction
understanding.  The results of Question 1 indicate:

 29 participants (69%) chose 99/100
 9 participants (21%) chose 6/7
 0 participants (0%) chose 15/16
 4 participants (10%) indicated that all three fractions were equal.

Analysis of the explanations revealed that of the 69% who chose 99/100 none had faulty or
incorrect explanations.  Of those who chose 6/7 as the largest fraction most still maintained
explanations related to a trick they had been taught in elementary school related to the size of
the denominator (i.e. “the smaller the denominator the larger the piece).  Those who indicated
that the fractions were the same again pointed to the idea that the “fractions were all one
away from the whole.”  The data analysis of the results from Question 2 indicated that while
participants still largely relied on part-whole explanations they had expanded their
explanations to include drawings, models, or scenarios to further explain what a fraction is.

Discussion
This study revealed that this group of prospective elementary teachers brought with them

a limited understanding of fractions to their mathematics methods courses.  Although these
prospective teachers had many years of school mathematics including four college level
mathematics courses and one primary level mathematics methods courses their reasoning
about simple fraction concepts was often incorrect and based heavily on misconceptions they
had previously developed or, at best, understandings of fractions as part of a whole.  Lamon
(2005) suggests that a part-whole understanding of fractions is not sufficient by stating
“students whose fraction understanding has been limited to part-whole relationships have a
very limited understanding of fractions; thus multiple meanings of fraction should be used in
instruction.” This has important implications for mathematics teacher educators with regard
to the kinds of challenges we face in improving not only our prospective teachers’ content
knowledge but their pedagogic knowledge as well.  The second focus of this study implies
that the experiences and opportunities we provide for prospective teachers in our methods
courses can change and extend their understandings of fractions.  It is important however,
that these experiences not mimic those that have helped create their misconceptions and
limited understandings; the experience should be varied and provide prospective teachers
opportunities to explore and develop their own meaningful understandings of fractions.
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This study examines how exploring NAEP data informs elementary and middle preservice
teachers’ perspectives of mathematics teaching and learning as it relates to African American
students. The preservice teachers’ professional attributes are categorized and discussed with
respect to the three broad propositions of Culturally Relevant Pedagogy: conceptions of self and
others, social relations, and conceptions of knowledge.

The goal of this study was to examine elementary and middle school preservice teachers’
perspective of mathematics teaching and learning as it relates to African American students. The
study was inspired by the Learning from NAEP Professional Development materials that call for
the understanding of the intricacies of assessment data and how such data relate to student
learning in mathematics classrooms.

With the No Child Left Behind Act of 2001, there is the pressure for school districts to close
the achievement gaps between racial and ethnic groups. According to the 2000 NAEP
Mathematics Assessment, 40% of White students achieved proficiency. However, only 10% of
Black students achieved mathematics proficiency, making the difference in achievement gap
between Whites and Blacks substantially high. Further examination of the NAEP student
performance trends from 1990, 1992, 1996, to 2000 reported by Braswell, Lutkus, Grigg,
Santapau, Tay-Lim, and Johnson (2001) revealed that the achievement gap between Whites and
Blacks has not shrunk; instead the gap remains wide.

In light of the disparities highlighted, and in light of understanding the factors attributed to
the disparities, we sought to address the question: “How does exploring NAEP data inform
preservice teachers’ perspectives of mathematics teaching and learning as it relates to African
American learners?”

Theoretical Framework
The Theory of Culturally Relevant Pedagogy (Ladson-Billings, 1995) served as the

theoretical framework for examining how exploring NAEP data informs pre-service teachers’
perspectives of mathematics teaching and learning as it relates to African American learners.

The pre-service teachers’ professional attributes are categorized and discussed with respect to
the three broad propositions of culturally relevant pedagogy: conceptions of self and others,
social relations, and conceptions of knowledge. Ladson-Billings (1995) asserts that culturally
relevant teachers exhibit the following broad qualities with respect to the underlying
propositions: (a) Conceptions of self and others indicates that culturally relevant teachers hold
high expectations for all students and believe all students are capable of achieving academic
excellence; (b) social relations indicates that culturally relevant teachers establish and maintain
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positive teacher-student relationships and classroom learning community as well as are
passionate about teaching and view it as a service to the community; and (c) conceptions of
knowledge implies that culturally relevant teachers view knowledge as fluid and facilitate
students’ ability to construct their own understanding.

Methodology
Project participants consisted of fifteen elementary and fifteen middle grades pre-service

teachers enrolled in an alternative teacher preparation program. The composition of the pre-
service teachers in this study was eight Blacks and twenty-two Whites. Generally, the
participants are monolingual, embrace conservative views of schooling, and tend to have limited
understanding of cultures other than their own.

In light of the research question, we used a qualitative research design and interpretive
approach to data collection and analysis. Observations and written responses of pre-service
teachers were the primary data source for the study. Interpretive analysis was used to identify
themes and generate descriptions of the pre-service teachers’ perspectives of mathematics
teaching and learning of African American students.

The thirty pre-service teachers participated in a Gallery Walk that displayed NAEP data and
graphs of various demographic groups; they then examined NAEP State data with respect to
race, gender, and socioeconomic status (SES). Through the activities, the pre-service teachers
were asked to respond (orally and written) to a variety of questions related to equity issues as
well as to reflect on the perspectives of their own mathematics teaching and learning as it relates
to African American students. Data collection included (1) field notes of reactions to the Gallery
Walk and (2) written narratives in response to the variety of questions related to equity issues.

Results and Discussion
Analyses of the data indicates that engaging in the exploration of NAEP data encouraged pre-

service teachers to consider and articulate their professional ideological stance related to African
American students and mathematics teaching and learning. The following narrative excerpts
reflect key findings of the study.

Conceptions of Self and Others
Who Am I and What Do I Believe: Perceptions of themselves as teachers of mathematics.
 “I was shocked to see the level of disparity between the math achievement gap of minority and

non-minority students. I am motivated to make a difference in my classroom.”
 “Using this data will cause me to reflect on my own practices as they relate to these students and

attempt to discover how I can best help them to be more successful not only on math tests, but in
the classroom arena and ultimately in life.”

 “Since my cultural background is different from that of students coming from an urban setting,
additional work on my part will be necessary to become a successful math teacher of African
Americans students.”

Pygmalion in the 21st Century: Perceptions of African American students as learners of mathematics.
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 “Exploring this data solidifies my understanding of the math achievement gap and the need for
high expectations and culturally responsive teaching.”

 “As I look at the NAEP data I search for reasons why African American children are falling
farther and farther behind in mathematics.

Running a Tight Ship: The nature and structure of the mathematics learning environment.
 “I need to utilize various methods to assess my students and use those findings to inform and

differentiate math instruction.

Social Relations
Can’t We All Get Along: The nature of teacher-student and student-student interaction and
relationships within the mathematics learning environment.
 “It is critically important that math teachers be aware of the stereotypes that insist and not

knowingly or unknowingly perpetuate those stereotypes.”

Conceptions of Knowledge
From Cookie Cutter to Constructivism: Notions of constructing and assessing mathematical
knowledge.
 “Highlights the need for math teachers to utilize various instructional strategies and provide

support to students as they try to make sense of mathematical concepts.”
 “While I understand the intent, I question the ability for a standardized test to truly measure

the mathematical abilities of the student.”
The Death of the “Urban Legend”: Conceptions of mathematical power and competence;
building upon students’ informal mathematics experiences, lives, and interests.
 “This data highlights something I already believed in – the importance of culturally responsive

math teaching that draws upon what students bring to the table and build on it. Every child’s
experiences, regardless of race, are equally valuable and important.”

 “Reinforces the importance of trying to make math lessons more relevant for students.”
 “In the urban school environment I will need to employ teaching techniques that are culturally

relevant and tap into the cultural capital that African American students bring to the
classroom.”

 “Getting to know your students is critical. The more you learn about your students, the more
capable you are of developing culturally relevant math tasks that have meaning to them.

The data suggest that critically looking at NAEP data prompted the pre-service teachers to
examine their views related to instructional planning, decision making, and implementation as it
relates to diverse learners. Their reactions and narratives highlighted concern for creating an
equitable learning environment in which ALL students - regardless of race, ethnicity, gender,
socioeconomic status, language, learning disability, or other characteristics successfully realize
mathematics achievement. The pre-service teachers asserted that creating a culture of
mathematics achievement for ALL students requires equity-explicit knowledge, skills, and
dispositions, and began to consider how they might develop and exhibit those attributes. Overall,
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exploring NAEP data functioned as a catalyst for positively informing pre-service teachers’
perspectives of mathematics teaching and learning as it relates to African American learners.
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Preservice elementary teachers’ learning of mathematical content, teachers’ instruction in
mathematics, and parents’ work with their children on mathematics outside of school can all be
enhanced through a focus on how children learn and understand mathematics. This paper will
describe our efforts with all three audiences to improve the mathematics education of children by
focusing on children’s mathematical thinking.

Preservice elementary teachers’ learning of mathematical content, teachers’ instruction in
mathematics, and parents’ work with their children on mathematics outside of school can all be
enhanced through a focus on how children learn and understand mathematics. This paper will
describe our efforts in working with all three audiences to enhance the mathematics education of
children by focusing how children learn and understand mathematics. For teachers and
preservice teachers this understanding is part of the knowledge necessary for teaching
mathematics (Hill & Ball, 2004). Parents can also benefit from specialized knowledge of
mathematics when working with their children.

Theoretical Framework
Hill, Rowan, and Ball (2005) found that teachers’ mathematical knowledge for teaching was

positively correlated with student achievement. They hypothesized that “knowledgeable teachers
may provide better mathematical explanations, construct better representations, better “hear”
students’ methods, and have a clearer understanding of the structures underlying elementary
mathematics and how they connect” (p. 401). The mathematical knowledge necessary for
teaching is more than mathematical content knowledge; it is also the knowledge of how children
learn and think about mathematics. Teachers must know how to explain a mathematical concept
to those that have not yet constructed an understanding of the concept, and in so doing, it is
essential they understand how the student might be thinking mathematically, what explanations
might make sense to the child, and in addition they must learn to make sense of students’
explanations and solutions. This type of knowledge is predicated upon knowledge of how
children learn and think mathematically. Our focus is to explicitly connect this knowledge with
preservice teachers’ learning of mathematics, teachers’ instructional practice, and, in a similar
way, parents’ work with children.

Often teachers and preservice elementary teachers’ mathematical knowledge is disconnected
from what they are teaching. Yet true experts in any field do not view knowledge as isolated
facts but rather as contexts of applicability (Bransford, Brown, & Cocking, 1999). The National
Council of Teachers of Mathematics Research Companion states, “Children’s thinking of
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mathematics needs to be the center of mathematics instruction” (2003, p. 49). Research has
shown that one factor that influences children’s learning of mathematics is how well teachers
base instruction on children’s ways of thinking (NCTM 2003). Our aim is to encourage both
experienced and prospective teachers to organize mathematical knowledge around the context of
how children learn mathematics and link that understanding to how they will be teaching
mathematics to children.

Elementary teachers, and especially preservice teachers, are typically unaware of the research
on how children learn and understand mathematics. Despite efforts to connect research and
practice, teachers are often resistant to reform efforts that focus on translating research into
practice. This resistance is due in part to the complexity of the classroom and external pressures
such as those created by standardized testing. Our materials focus on children and how they think
about mathematics and are specifically written for practicing teachers, preservice teachers, and
parents.

Connecting mathematics to children’s learning of mathematics will better enable parents to
effectively help children learn mathematics outside of the school setting. Primary caregivers are
often ill prepared to work with children in mathematics. They frequently lack the mathematical
knowledge to help their children with their homework. Some parents are particularly frustrated in
math because of their own limited understanding and inability to explain mathematics to their
children. Further, they often do not understand how the children are thinking about mathematics.
By knowing how children think mathematically, they can make appropriate interventions or
provide learning opportunities. Mathematics requires a conceptual or relational understanding in
order to teach and tutor children. Children whose parents are actively involved with their
children in school achieve more than children of parents who are less involved.

Methods
To test our hypothesis that knowledge of children’s mathematical thinking could be used

with preservice teachers, teachers and parents both quantitative and quantitative methods were
used. During the spring semester of 2006, data was collected in two phases: 1) initial pre and
post efficacy data from 41 pre-service teachers enrolled in two sections of Mathematics for
Elementary School Teachers at a small Midwestern University; 2) Data from pre-service teachers
enrolled in treatment and comparison classes in seven sections of a Mathematics for Elementary
Teachers course from four Midwestern Universities of varying sizes. Questionnaire data were
collected using four subscales consisting of Likert-style items about: beliefs about mathematics
and its teaching; efficacy in understanding and teaching mathematics; and knowledge of
children’s thinking about mathematics. The questionnaire subscales described below have been
tested psychometrically using pilot data.

The qualitative methods consisted of journaling and interviews. Both teachers and parents
were asked to keep ongoing journals of times when they considered or used information from the
project materials in their teaching. They were asked to specifically describe how they used this
information, when they did something differently or tried something new based on an idea from
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the text.  They were also asked to describe any instance where a child’s mathematical thinking
was like or unlike that described.

Results

Preservice Teachers
Statistically significant results on all pre and post intervention differences indicate that

participants felt more confident in all content and teaching areas after using materials that
focused on children’s mathematical thinking in their content course than before. Results
indicated that prospective teachers feel significantly more confident about their own mathematics
ability and their ability to teach elementary mathematics to children after taking a course that
focused on the children’s thinking approach. Before the course, participants were more confident
about their own ability than their ability to teach it to children. After the course, this confidence
gap narrows. Interview data was used to triangulate these results.

• Beliefs about Mathematics and Its Teaching (13 items, Cronbach’s Alpha =.73).
Knowledge of Children’s Mathematical Thinking (18 items, Cronbach’s Alpha = .81)

• Efficacy to Understand Subject Matter (6 items pre/post course, Cronbach’s Alpha =.90)
• Efficacy to teach Subject Matter (6 items pre/post course, Cronbach’s Alpha = .88)

Teachers
In our qualitative analysis of the interviews and journaling, teachers learned more about how

children think mathematically. In an interview, a middle school teacher, who also taught math
content courses for elementary teachers, said:

One specific thing that I learned had to do with the concept of ten. Until reading
about this in your materials, I had assumed that the concept of ten as a unit was
pretty easy for students. I’d seen many suggestions for using manipulatives (base-
ten blocks or an equivalent), but I’d never seen anything suggesting that even with
the manipulatives it’s a big step for children to think of ten as a unit.

Parents
A parent of a sixth grader noted that the materials changed how she helped her daughter with

her mathematics homework. She found herself more willing to let her daughter experience
mathematics rather than just telling her how to do it, and perhaps more significantly she began to
realize that her way of helping her daughter may not be the best approach. In her journaling, she
bulleted the following changes:

• restraining myself to not "jump in" and allow her to experience problem solving for
herself

• becoming more open to using other resources/tools to assist her, as "my way" of
thinking/teaching, may be more harmful than helpful to her

Discussion
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Our findings to date indicate that focusing on knowledge of children’s mathematical thinking
raises prospective teachers’ efficacy to understand and teach mathematics as well as having an
impact on their beliefs about mathematics and its teaching. There is initial qualitative evidence
that using this approach also influences teachers and parents in their teaching and work with
children.
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This study builds on past research related to pedagogical content knowledge (PCK) to create a
working list of mathematically-oriented pedagogical practices (MPPs) for researchers to use to
study PCK in action. This list will be of use to both researchers and practitioners in the
advancement of secondary mathematics teaching.

Secondary mathematics teachers are expected to be competent in a variety of practices in the
classroom; however, their success as teachers has often been measured by the knowledge of
teaching they hold in their minds. A disconnect exists between what is being measured in
research studies and what organizations such as the National Council of Teachers of
Mathematics (1991, 2000) expect them to perform in their classrooms.

The need to learn more about how teachers learn these practices as well as their success with
these practices necessitates an articulation of these particular instructional approaches. This study
builds on past research related to the cognitive construct pedagogical content knowledge (PCK)
to create a working list of mathematically-oriented pedagogical practices (MPPs) for researchers
to use to study PCK in action. This list will be of use to both researchers and practitioners in the
advancement of secondary mathematics teaching.

Framework
The cognitively defined construct of PCK has been characterized as a particular type of

subject matter knowledge specific to the field of education. It is this knowledge that is thought to
help teachers communicate their subject matter knowledge in a manner that makes sense to their
students (Shulman, 1986, 1987; Wilson, Shulman, & Richert, 1987). The backbone of PCK
stems from a teacher’s procedural, conceptual, and overall understanding about the field of
mathematics and how to convey the important ideas of the subject to others. This includes the
recognition of misconceptions of certain concepts and methods for alleviating these
misconceptions so learning can progress beyond them.

There appears to be consistency in the way PCK is characterized in the mathematics
education community (Ball, Lubienski, & Mewborn, 2001). The components of PCK have been
drawn from Shulman’s (1986, 1987) characterization, but significant progress has not been made
on the expansion of these notions. Shulman’s framing of PCK has been used in research with
few if any modifications. The lack of forward movement with the construct of PCK leads to a
broad characterization of PCK and a lack of research on the specific entailments of this construct
and the practices related to this construct as applied in the classroom. Furthermore, since
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Shulman’s identification of PCK occurred before the reform movement, the characterization is
more teacher-centered rather than student-centered. Hence, when MPPs were delineated in
relation to this study they were designed to fit a more reform-oriented classroom.

Method
An initial list of MPPs was developed from literature on PCK to examine PCK in action.

These practices were examined and expanded upon in a Teaching Algebra Seminar through
intensive observations and analysis. Observations were made approximately three times per
week for one 15 week semester. Field notes and video recordings were taken during each
observation. Data were analyzed using standard methods of qualitative research (Patton, 2002).

The Teaching Algebra Seminar consisted of 11 pre-service secondary mathematics teachers
(PSMTs) and a mathematics faculty member. Each PSMT taught his/her own section of college
algebra at a large, Midwestern university. The Teaching Algebra Seminar met each day the
PSMTs taught College Algebra (typically three times per week). In this seminar, PSMTs
discussed any concerns from their teaching that day. They also discussed the teaching of the
upcoming lesson. This venue was used to study and create a working list of MPPs which could
be studied by researchers and reflected upon by practitioners.

Results
The delineation of MPPs provided a list of practices that align with current reform

movements (e.g., NCTM 1989, 1991, 2000; NRC, 2001). These practices are not fixed, but
rather serve as a starting point for categorizing teaching practices that demonstrate a firm
understanding of mathematics coupled with the ability to teach in a student-centered manner.

Results of the study determined eight practices fit the criteria to be considered MPPs: (a)
facilitating mathematical discourse, (b) helping students create powerful examples and
representations, (c) responding to students’ questions, (d) analyzing curricular materials, (e)
analyzing teaching and planning, (f) understanding students’ thinking, (g) addressing the needs
of all learners, and (h) creating mathematical assessments. Each of these practices is important
for reform-oriented teaching of secondary mathematics. The Teaching Algebra Seminar served
as a place to observe discussions surrounding these practices. By observing and analyzing
PSMTs discuss their teaching practices, a list of teaching practices related to PCK in action was
formed. These MPPs will be discussed in detail during the short oral presentation.

Discussion
Intertwining mathematics and pedagogy, these practices serve as a way to observe what

teachers know about mathematics instruction from a situative perspective of learning.
Researchers, mathematicians, and teachers can all benefit from a working list of reform-oriented
teaching practices. This list of MPPs will provide a common ground for the research of MPPs.
The observation of teachers with an eye to certain practices will help refine, modify, and better
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understand MPPs. Ultimately the findings from studying MPPs can be taken into consideration
when designing teacher education programs improving teaching and teacher learning.
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This paper discusses the learning experiences of pre-service teachers in a project called Tech-
knowledgy for Building Mathematical Knowledge, where they explored mathematics concepts
using various models and representations via virtual manipulatives. As teachers learned how to
select and evaluate effective virtual manipulatives and incorporate them meaningfully in
teaching mathematics, they gained confidence in their ability to model mathematics using
technology.

Integrating technology effectively in the content areas can give students access to advanced
concepts, higher ordered thinking and sophisticated learning. In mathematics, that means using
technology as “tech-knowledgy”, as a tool to construct mathematical knowledge. Technology in
mathematics allows teachers and students to represent abstract mathematics concepts that may be
difficult to illustrate and gives access to opportunities for rich learning experiences and
meaningful class discourse.

Theoretical Framework
Today, our children are growing up in a technology advanced society where working flexibly

and thinking critically with technology while solving problems is an increasingly important skill.
Jonassen (1996) defined computers as mind tools that should be used for knowledge construction
while engaging learners in critical thinking about the content they are studying. The NCTM
Principles and Standards stated, “Technology is essential in teaching and learning mathematics;
it influences the mathematics that is taught and enhances student learning” (p. 24). According to
this document, technology supports effective mathematics teaching when teachers create
appropriate mathematics tasks that capitalize on the strengths of technology, which are the ability
to graph, visualize, simulate and compute. The worldwide web offers teachers a wealth of
mathematics technology resources and websites with a variety of virtual manipulatives. With the
abundance of technology resources, teachers’ new challenge is learning how to be selective in
choosing the best instructional tools and creating a learning environment to effectively integrate
technology for learning. Teachers need to rethinking and shifting their limited views of
technology as a product yielding tool to a more powerful “mind tool” to construct knowledge.
This implies that teachers must learn and experience for themselves how to select, evaluate,
design, teach and learn using these innovative tools. Providing experiences for pre-service
teachers to re-learn fundamental mathematics concepts using models and modeling can help
them be more confident and competent to teach elementary mathematics.
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Methods

Research Question
This research was conducted to explore how preservice teachers’ experience with Tech-

knowledgy for Building Mathematical Knowledge impact teachers’ confidence and attitude
about teaching mathematics using technology.

Participants
The participants in this study were twenty-one pre-service teachers in the Elementary

Mathematics Methods classroom. These preservice teachers enrolled in the mathematics methods
course met each week for three hours and were assigned to an elementary classroom in local
schools during the semester to observe and teach lessons.

Data Sources
The data sources used for this study included qualitative and quantitative data. The

descriptive data included surveys called Prior Use of Manipulatives and Technology with likert
scales, pre and post survey on Confidence in Teaching Mathematics and Integrating Technology
in Mathematics, and a final survey on attitudes towards Mathematical Models and Technology
Integration. The qualitative data included open-ended survey questions, teachers’ reflection on
technology integrated mathematics lessons, class discussion and teacher interviews.

Procedure
The Tech-knowledgy for Building Mathematics Knowledge project involved three processes.

In the first process, pre-service teachers explored mathematical models on the computer through
virtual manipulatives and discussed the mathematics involved in the task. In the next process,
teachers had individual assignments where they were to select and evaluate at least four
mathematical models available online and discussed the instructional value and effectiveness of
the models with their peers. Most importantly, teachers engaged in a rich discussion about how
to structure the lessons to use the mathematical applet as a mind-tool for students to construct
important mathematical knowledge. In the final process, pre-service teachers incorporated a
technology mathematics applet to plan and teach a lesson in an elementary classroom. Finally,
they reflected on the lesson and shared their learning with their peers.

Results
Results from the Prior Use of Mathematics Manipulatives and Technology in mathematics

survey showed that teachers had some exposure to mathematical tools used for modeling in their
learning and/or teaching experiences. The manipulatives that they were most familiar with were
the calculators, play money and measurement tools used for length, volume, weight and
temperature. They reported having some familiarity with base ten models, color chips, geometric
solids, pattern blocks and computer mathematics games. Not surprisingly, these pre-service
teachers had no prior knowledge of virtual manipulatives. Teachers commented that when they
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were in school, manipulatives were not often used and most of their learning was procedural with
drills on basic skills. By the end of the course teachers’ confidence in teaching mathematics and
using technology in teaching mathematics showed a marked increase with majority of the
teachers saying that they were feeling more confident teaching mathematics and using
technology to teach mathematics in the post-survey than in the pre-survey.

The results from the Mathematical Models and Technology survey showed that all teachers
agreed that students can learn more mathematics deeply with the appropriate use of technology
and that technology allows effective ways for conceptualizing and modeling mathematical ideas
(See Table 1).

Table 1. Results of Mathematical Models and Technology survey

The themes that emerged from the analysis of teacher lesson reflections and in class
discussions were that virtual manipulatives were effective in that they offered
• Visualization that provides a link between concrete and abstract
• Strategy for students to use for collaborative knowledge construction
• New (nontraditional) ways to model math ideas
• Ease of differentiation and tiered learning
• User-friendly tasks with visuals for English language learners and visual learners
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• Interactive tools to entice special needs learners who could not focus on work with
manipulatives.

Conclusions
Modeling mathematics concepts can be easily facilitated by the use of technology and

teachers and students benefit from the many affordances unique to this learning environment. For
example, students can have access to visual and dynamic mathematical models to learn
mathematics. Teachers can use technology to represent multiple models and illustrate abstract
mathematics concept with ease while offering differentiation and scaffolding for diverse learners.
Preparing teachers to consider unique design features for planning effective integration of
technology in mathematics is critical. One of these considerations is to allow students to work
collaboratively when exploring mathematics with virtual manipulatives to give opportunities for
communication of mathematical ideas. In addition, teachers need to pose critical thinking
questions that allow students to conjecture, test and prove their thinking and explore
relationships and patterns in mathematics while using these tools. Engaging in productive
mathematical discourse is critical to revealing the important mathematical learning that occurs
with technology. Teaching with technology has promising outcomes for our students’ learning
and can support meaningful knowledge construction.
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Reform efforts in the teaching and learning of mathematics have included an emphasis on both
verbal and written communication (National Council of Teachers of Mathematics, 2000). An
important component of communication for mathematical sense-making is literacy. Literacy—even
when narrowly considered as “reading and writing”—cannot be separated from broader perspectives
and contexts of language (Gee, 2001). For example, within inquiry-oriented mathematics instruction,
reading has been recognized as providing a “mode of learning” rather than merely “a set of skills for
extracting information from text” (Siegel & Fonzi, 1995, p. 635). However central literacy might be
to teaching and learning, secondary preservice teachers (PSTs) often tend to be dismissive of efforts
to incorporate practices that focus explicitly on literacy (O’Brien, Stewart, & Moje, 1995). Many
PSTs perceive content area literacy strategies to be merely a collection of technical terms and tools
that are essentially “an additional burden on an already overloaded instructional agenda” (p. 448),
rather than as a vehicle for supporting content area learning. This paper describes a small-scale
intervention study of secondary mathematics and science PSTs and their learning about both print
and new literacies of the Internet (Leu, Kinzer, Coiro, & Cammack, 2004) within the context of
subject area methods classes, rather than in a traditional “reading in the content area” course. The
research is part of a larger project funded by the Carnegie Corporation’s Adolescent Literacy
Preservice Initiative that joins the perspectives of mathematics and science educators with literacy
experts, focusing on improving the capacity of teachers to enact research-based pedagogy in
foundational print literacy as well as the new literacies of the Internet.

Background
Drawing upon work from linguistic and cultural traditions, Moje, Young, Readance, and Moore

(2000) have called for an expanded definition of literacy practices. This expanded definition includes
attention to new literacies, rooted in the Internet and other digital technologies (Leu, et al., 2004).
These new literacies have rapidly commanded an increasing part of our daily lives—both in and
outside of schools. Researchers have begun to study the practices and pedagogy integral to new
literacies—that is, high-level forms of comprehension and composing skills that are required when
using the enormous information potential of the Internet for learning. Reading comprehension on the
Internet, for instance, requires richer and more complex skills than simply reading a book. Reading
search engine results, critically evaluating the veracity of online information, tracking information
through a sequence of inferences made at various hyperlinks, communicating clearly and efficiently
via email, and many other new reading and writing skills are required online (Leu, et al., 2004).

New literacies are clearly relevant to mathematics and science teachers who use the Internet both
for their own learning of content, as well as for incorporating online learning opportunities for their
pupils. As instructors of mathematics and science methods courses, we were particularly interested in
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these issues as they pertain to our own efforts to prepare PSTs to make use of literacy skills as part of
a broader sense-making context for learning and teaching of mathematics and science.

Methods and Procedures
As part of their content-specific methods course, 11 mathematics and 13 science PSTs conducted

a scaffolded investigation into the literacy practices of middle and high school pupils in their
practicum placements. The investigation was designed to elicit elements of both the traditional and
new literacy practices of their pupils, as well as to provide the opportunity for the PSTs to conduct
analyses of  these practices and reflect on their learning.

The task was composed of three parts: (a) traditional literacy prompt, (b) new literacy prompt and
(c) written analysis of the data collected in parts (a) & (b). The traditional literacy prompt (printed on
a sheet of paper) included a paragraph of informational text and an associated line graph that were
selected for content that engaged both mathematics and science subject matter. The pupil was
requested to “think aloud” (Ericsson, 1993) as he/she read the paragraph and examined the graph. In
the second part, the new literacies prompt, the PST asked the pupil to use the Internet to find
additional information related to the text in part (a), while also “thinking aloud.” The PSTs recorded
the pupils’ responses using data record sheets provided with the task. Each PST then wrote an
analysis paper of his/her investigation, which addressed questions such as: What new skills and
strategies are required while reading from the Internet? How are these different from print reading?
What skills did you observe? What can you conclude about whether “new literacies of the Internet”
really exist? (The prompts, protocols, and data record sheets are available for download at
http://www.newliteracies.uconn.edu/carnegie/index.html.)

The PSTs’ analysis papers and data record sheets were coded using the qualitative data analysis
software NVivo 7. Initial coding schemes were derived in part from the literature related to print and
new literacies and also through open coding of emerging themes. The researchers employed axial
coding to make connections among the categories and to refine the coding schemes (Strauss &
Corbin, 1990). Individual cases were set up with key identifiers related to both the PST and his/her
participating pupil. Coded passages were organized and analyzed through use of queries. These data
were organized in tables to facilitate analysis within and across cases. While our initial interest was to
examine the text for evidence of new literacy skills and practices, the analysis raised a number of
interesting questions about the ways in which PSTs view literacy practices more broadly, as well as
the ways in which they construct evidence-based arguments from practice.

Results and Discussion
Examining the PSTs’ responses to the tasks, we focused first on the nature of the impressions of

particular literacy strategies (i.e., what did the PSTs notice and value about their pupils’
performance?). The analysis of the investigations indicated that the PSTs did indeed find substantive
differences in the literacy practices of pupils for traditional (print) literacies and new literacies of the
Internet. For example, they noted qualitative differences in how their pupils attended to and
negotiated print literacies and Internet literacies (e.g., print text tended to be read in a more linear
fashion; whereas, Internet text appeared to be constructed by the reader from multiple sources,
including greater evidence of skimming, considering the source of  the information, etc.). The PSTs
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noted qualitative differences in how their pupils critically evaluated print literacies and Internet
literacies (e.g., print text was typically perceived as having more “authority” than Internet text; pupils
tended to be more skeptical of Internet sources).

The implementation of the scaffolded investigation task required the PSTs to collect data of
student thinking and make evidence-based arguments. Because typical mathematics and science
PSTs tend to be dismissive of efforts to incorporate practices that focus explicitly on literacy
(O’Brien, et al., 1995), this work is significant because it not only helped to establish a tangible
connection between literacy practices and learning in the content areas for these PSTs, it also helped
build their capacities to enact evidence-based inquiries into their own teaching practices.
Additionally, the evidence-based arguments provoked the PSTs to express opinions, thoughts, and
conjectures about literacy that went beyond a “skill level” perception of literacy that might be
expected from typical mathematics and science PSTs (O’Brien et al., 1995). Indeed, there appeared
to be some awareness of literacy as a “mode of learning” (Siegel & Fonzi, 1995) that may enhance
understanding of mathematics and science content.

This study provides teacher educators with both insights and tools for better understanding
potential connections between literacy practices and content-learning. In particular, by pairing
traditional literacy approaches with investigations in new literacies, implications for literacy
instruction for secondary PSTs were uncovered. For example, we recognized that, because of the
strong textual authority inherent in most mathematics and science texts, PSTs tend to look
through the text as if it is transparent—focusing solely on the mathematics or science content. As
a result, PSTs may not notice textual processing that is necessary for their pupils’ understanding
of the content itself. However, when the PSTs focused on the new literacies, they reported
complexities in how their pupils processed the text. For example, they noted that the text was
processed recursively with a kind of dialogue between the reader and the online sources. As
complexities in negotiating and making sense of the online text were noted, the print text and its
necessary processing became more visible to the PSTs. This provoked a recognition that a
dialogue of sorts must exist between the reader and any text for meaning to be made (Bakhtin,
Holquist & Emerson, 1986). This recognition is an important step for PSTs as they learn to help
their students make meaning of texts and associated content. In sum, evidence-based inquiry
with explicit attention to both print and new literacies of the Internet suggests promising avenues
for influencing knowledge and dispositions of mathematics and science PSTs. As we continue to
learn about the demands and opportunities that the Internet and other digital technologies create for
our students, we seek to engage the rich set of questions that this work generated for us as
mathematics and science teacher educators.
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PRE-SERVICE SECONDARY MATHEMATICS TEACHERS’ EXPERIENCES
RELATED TO REFORM-ORIENTED PRACTICES OF TEACHING MATHEMATICS
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Researchers and mathematics educators are trying to understand which learning experiences
will help pre-service teachers develop visions of teaching and learning, as well as practices that
align with reform-oriented movements (Shulman & Shulman, 2004). The purpose of this research
is to contribute to the understanding of educational experiences that will afford PSMTs the
learning of practices for teaching secondary mathematics.

Upon completion of their undergraduate degrees, pre-service secondary mathematics teachers
(PSMTs) are being held to new expectations, which in turn brings into question the experiences
provided to them as part of their undergraduate education (Conference Board of the
Mathematical Sciences [CBMS], 2001; Darling-Hammond, 2000; Floden & Meniketti, 2005;
National Research Council [NRC], 2001). Current reform efforts expect teachers to demonstrate
practices that extend beyond directly telling their students how solve mathematical problems.
Teachers are encouraged to instruct in a non-traditional fashion, with a focus on student-centered
teaching (National Council of Teachers of Mathematics [NCTM], 1989, 1991, 2000).

Educating secondary mathematics teachers to learn these reform-oriented practices is not an
easy task. The majority of PSMTs enter the field of education with at least 13 years of their own
formal educational experiences, most of which conform to traditional teacher-centered ways of
learning. Researchers and mathematics educators are trying to understand which learning
experiences will help pre-service teachers develop new visions of teaching and learning, as well
as practices that align with reform-oriented movements, to bring into their future classrooms
(Shulman & Shulman, 2004). The purpose of this research is to contribute to understanding the
educational experiences that will afford PSMTs the learning of such practices of teaching
secondary mathematics.

Theoretical Framework
It has been recognized that there are competencies that can be learned for the practice of

teaching mathematics (CBMS, 2001; NRC, 2001). Past research has focused on measuring
knowledge as a construct existing only in the mind rather than evaluating a teacher’s ability to
apply practices to the classroom setting. For teaching, this knowledge has been termed
pedagogical content knowledge (PCK) by Shulman (1986). Shulman claimed that for teaching
mathematics PCK is at the intersection of pedagogy and mathematics and is the knowledge
specific to the teaching of mathematics. Although the term, PCK, has allowed researchers a way
to explore what teachers know about mathematics in order to teach the subject, examining what a
teacher knows as something that exists in the mind can be problematic.
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This method for measuring what teachers know, does not take into account specific roles of
teachers in the classroom interacting with students. The practices teachers are being held
accountable in their classrooms are also placed in the background when examining what a
teacher knows in such a manner. Measuring knowledge as a construct of the mind takes away the
context of the classroom and focuses on knowledge devoid of context. A focus on knowing in
action rather than knowledge as something that exists in a teacher’s mind will allow researchers
to gain a better understanding of what teachers are prepared to do in the classroom (Putnam &
Borko, 2000). If indeed these practices are expected of teachers upon completion of their
undergraduate coursework, the next logical step is to understand how PSMTs learn these
practices.

This study examines the learning experiences afforded to a cohort of PSMTs and how these
experiences contribute to developing practices related to the cognitive construct of PCK. The
practices examined are termed mathematically-oriented pedagogical practices and are examined
using the situative (Greeno, 2003; Lave & Wenger, 1991; Wenger, 1998) perspective of learning.
Changes in PSMTs’ participation in relation to mathematically-oriented pedagogical practices
are examined.

Methods
A cohort of PSMTs (n=11) was purposively selected to participate in this study, as their

experiences in a Teaching Algebra Seminar may shed light on educational experiences that help
PSMTs learn mathematically-oriented pedagogical practices.

The Teaching Algebra Seminar was designed specifically to provide PSMTs with the
experience of teaching their own semester-long college algebra course. PSMTs’ teaching is
accompanied by a tri-weekly seminar to reflect on their experiences with peers who are also
engaging in similar experiences. Shifts in PSMTs’ participation in relation to mathematically-
oriented pedagogical practices as they develop as teachers in this Teaching Algebra Seminar are
examined in this study. Data collection included multiple modes of inquiry: (a) pre- and post-
course questionnaires, (b) interviews with the focal PSMTs, and (c) video-tapes and field notes
from the observed Teaching Algebra Seminar sessions. Data were analyzed using processes of
coding (Miles & Huberman, 1994) to reveal emergent themes of the aspects of the course that
supported PSMTs’ learning of mathematically-oriented pedagogical practices. As the learning of
mathematically-oriented pedagogical practices emerged, I examined these practices to determine
the changes in PSMTs’ participation over the course of the semester.

Results
Over the course of the semester, the questions posed by PSMTs in the Teaching Algebra

Seminar changed from focusing on course managerial concerns to those related to the practices
of teaching mathematics. Aspects of the seminar that shed light on ways to strengthen the
education of secondary mathematics teachers will be discussed.

This change appeared to be supported by the collaborative learning experience of the
Teaching Algebra Seminar. PSMTs had the opportunity to practice and discuss the teaching of
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mathematical topics before they were taught, as well as reflect upon their actual teaching
experiences in the classroom. Each PSMT and the professor brought his/her own experiences of
teaching the course to the forefront to try to resolve pedagogical, mathematical, and pedagogical
content issues ranging from choosing appropriate examples to making decisions regarding when
a detailed mathematical explanation/proof is appropriate in teaching the algebraic concepts.

Discussion
The results of this study are informative to the mathematics education community in

recognizing educational experiences that help PSMTs learn reform-oriented practices for
teaching. The shift in PSMTs’ discussions in the Teaching Algebra Seminar over time brings to
the forefront the issue that their concerns related to classroom management issues may need to
be addressed before they are able to focus on practices related to teaching mathematics. Teacher
education programs can be strengthened by incorporating particular aspects of the Teaching
Algebra Seminar that appear to help PSMTs improve upon practices which are deemed
necessary for teaching secondary mathematics.

For instance, activities that occur in the seminar such as “learning through collaborative
reflection” have been proposed in the Principles and Standards of School Mathematics (NCTM,
2000) document as a method for practicing teachers to improve their practice. An understanding
of how the PSMTs’ discussions related to their teaching practices evolve throughout the course
could help researchers learn more about the value of these types of learning experiences.
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This study examines the experiences and perceptions of preservice mathematics teachers in a
Caribbean context as they explored with technology in their practices. Despite facing similar
challenges of developed countries when new qualified teachers apply new technologies, they
found the benefits for students and teachers were phenomenal in stimulating interest, motivation
and improvement in their students’ mathematics performance.

In considering the economical concerns in the Caribbean region, it is critical that attention be
given to the lessons learned from prior research in developed and developing countries. In
particular, teacher attitudes, concerns about not having up-to-date equipment or faculty with
technological expertise, the demands from school districts, parents and students to use CT in
their classrooms, teachers’ motivation, classroom management, teachers’ role, support systems,
and computer coping strategies (Ropp, 1999) will assist in the strategic and practical plan for the
move forward.  The lack of detail in the literature regarding computer technology (CT)
integration in mathematics instruction in the Caribbean and the continued move toward
mathematics reform are of concern and instrumental in the investigation of: “What are
preservice secondary school mathematics teachers’ experiences within the junior high school
classrooms as they explore the use of CT in their instructional practices in an English-speaking
Caribbean country?”  This study is significant in providing contextual evidence of challenges
and successes with the use of CT as PSSM teachers move forward in mathematics reforms. With
the cost of the graphing calculator and Internet becoming less expensive and easier accessible in
developing countries, the choice of mathematics computer software, Math Trek; the graphing
calculator, TI-83Plus; and the Internet were utilized in this study.

Theoretical Framework
 Blume’s (1991) three-phase model provides mathematics teachers with opportunities: (1) to
learn with the use of technology, (2) to reflect on their learning in the technological environment,
and (3) to translate their own encounters that were facilitated by their instructor in a technology-
rich environment, into similar encounters for their students. On the other hand, Senge’s (1990)
model consists of five learning disciplines: personal mastery, mental models, shared vision, team
learning, and system thinking. Wetzel (1997) noted that when learning opportunities are
provided for teachers to use CT in their instruction, they used the opportunity to effectively
implement the technology in their instructional practices. He also found that providing a
learner–centered approach (Huerta-Macias, 1993) and a focus on learning rather than teaching
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(Blume, 1991) had addressed some of the central issues of implementation and effectiveness on
teachers’ minds during their training.

Methods
The five PSSM teachers: Abiola, Levoli, Sean, Wayne and Yvon were among other PSSM

teachers who attended a technology application course, taken in the third and final year of their
program in a learner-centered environment. As part of the data collection to gain an in-depth
understanding of their views, each teacher kept a journal of activities and reflections of each
lesson (Bogdan & Biklen, 1998). Observations, journals, lesson plans and field notes provided
the lens to triangulate and confirm their views with their actions on the integration of CT in the
mathematics classroom.  Towards the end of student teaching, 90-minutes interviews were
scheduled with each participant to discuss factors that the preservice mathematics teachers
considered to be important in expanding the data on their subjective views (Seidman, 1998).

Results and Discussion
Some common themes found were “Perceptions of CT Experience, Support of CT in the

Mathematics Classroom, Availability and Accessibility, Concept of Time, Classroom
Management, and Suggestions Based on their CT Experience. This study being one of few that
explored a Caribbean perspective has provided evidence that this Caribbean setting has faced
many similar challenges of developed and developing countries when new qualified teachers
attempted to apply new technologies.  The motivation developed in teacher education programs,
and the risks new teachers are willing to take in exploring new ideas, teaching and learning
strategies, and new technologies are expressed as in the cases of Abiola, Levoli, Sean, Wayne
and Yvon (Junor, 2003).  The “chalk and talk” approach that was evident in the way the PSSM
teachers were taught was seen as “torture” in Levoli’s views. However, the lack of resources,
supporting principals, and other faculty, technical support, and environments that are conducive
for teaching and learning during teacher preparation are seen to be prohibitive to the appropriate
integration of CT (Senge, 1990). To encourage our new teachers to continue the path to an
effective teaching career in the reform of mathematics education in the Caribbean, policy makers
need to review the availability, accessibility and pedagogy of computer technology in the
mathematics curriculum. It is crucial that principals, and faculty work together as a team to
advocate for resources, share the vision of CT integration in mathematics, and develop personal
mastery in the use of technology for their classroom. Taking a bottom-up top-down approach
may be the way to go strategically. In this way the stakeholders will evidence effective efforts
for further investment and development.
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Mixed-methods research with quantitative and qualitative methods complementing each
other to examine changing preservice teachers’ sense of efficacy.  Results of the Teachers’
Sense of Efficacy scale and written course work indicates an expected increase in efficacy
and enhanced discourse, and unexpected size of efficacy score increase and sophistication of
discourse as a complex sense of teaching practice development and orientation to teaching.

Teachers’ sense of efficacy (Bandura, 1997), the teachers’ “… judgment of [their]
capabilities to bring about desired outcomes of student engagement and learning…”
(Tschannen-Moran & Woolfolk Hoy, 2001, p. 783) implies a relationship of teacher efficacy
to their instructional behaviour.  Considering instructional behaviour formally develops in
preservice methods courses, then from the experience of the preservice mathematics methods
course context, what is the preservice teachers’ sense of teacher efficacy and how is it
expressed?

Theoretical Framework
Steele & Widman (1997) found mathematics methods courses increase preservice

teachers’ levels of confidence to teach and change their conceptions about mathematics and
mathematics teaching and learning.  The results of research by Steele & Widman (1997),
Frykholm & Glasson (2005) and others indicate it is the nature of the activities within
methods courses that has an impact on the pedagogical-content knowledge or knowledge of
mathematics for teaching, and hence increase preservice teachers’ sense of efficacy.

Feiman-Nemser (1989) describe five teacher orientations to classroom practice as
possible attitudes and perspectives that influence teachers’ behaviour.  An integration of
orientations may represent a more holistic perspective and a greater sense of professional
development.  Borich and Fuller (1994) (in Staton, 1992, p. 160), describe three phases to the
developing sense of teacher practice as i) concern for self e.g., mastery of content, class
control, ii) concern for task, e.g., teaching methods, and iii) concern for impact, e.g., student
learning, affective needs of students.  An integrated sense of these ‘concerns’ in preservice
teachers may represent greater professional maturity, an increasingly positive attitude, and
possibly greater teacher efficacy.

Therefore, as preservice teachers’ sense of efficacy changes over the duration of a
methods course, as they experience the mathematics, the content, and the pedagogy, what do
they think is ‘good mathematics for teaching and learning’?  How does the preservice
teachers’ efficacy complement their expression of their understanding of the teaching and
learning of mathematics?

Method
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There are two concurrent research threads weaving their way through this study.  Teacher
efficacy is collected quantitatively with the short form of the Teachers’ Sense of Efficacy
Scale developed by Tschannen-Moran and Woolfolk Hoy (2001).  A sense of what preservice
teachers understand about the teaching and learning of mathematics is collected through
written responses to the question, “What is good mathematics for teaching and learning?”

This study follows from a pragmatic (Greene & Caracelli, 2003) paradigmatic position to
mixed-methods research.  While data is collected at the start and the end of the methods
course, the two parallel and discrete quantitative and qualitative methods to collect data
neither interact with the other, nor inform the other.  A greater sense of mixed-methods
methodology comes into play during the analysis, and reporting of inferences and
conclusions phases as the quantitative and qualitative methods act in a complementary
manner to each other.

Results
Quantitatively, the unweighted means and total scores from the Teacher Efficacy Scale

are calculated.  Of the forty-one students in the course, thirty-two experience an increase of
five to thirty percent in efficacy scores, six experience minimal or zero change, and three
experience a decrease of five to eight percent in efficacy scores.  This paper will focus on the
38 out of 41, or 93%, who experience minimal to great efficacy score increases.

Qualitatively, the preservice teachers’ written responses provide a rich set of data to
complement the understanding of teacher efficacy and preservice teachers’ understanding of
teaching and learning mathematics.  In September five themes emerge, the affective sense of
learning mathematics, the content of the mathematics they would teach, the mathematical
processes (i.e., thinking, problem solving), the purpose of secondary school mathematics, and
student abilities.  In March, within the same themes, the writing articulates pedagogical-
content knowledge issues and illuminates the preservice teachers’ increased sense of the
complexity of teaching and learning, and the inter-related nature of teacher, student,
mathematics, affect, cognition, and purpose.  For example, with respect to mathematics
‘content’, in September preservice teachers use words such as skills, knowledge, theory,
logic, steps.  In March preservice teachers use words such as understanding, concepts,
meaningful, connected, motivating, relevant.

As well, in March the affective domain and mathematical processes are mentioned more,
‘relevance’ is emphasized three times as much, student abilities are emphasized almost twice
as much, and two new themes dominate preservice teacher writing, classroom management
and the image of self as teacher.  For example, with classroom management, it is not just the
case that preservice teachers pick up the vocabulary of classroom management from the
course work and identify classroom management simply, as discipline and consequences;
preservice teachers are able to articulate it as a seamless sense of classroom practice
involving student, teacher, instruction, assessment, learning, teaching, and management of
behaviour, curriculum, and resources.  “Good mathematics arise from a structured caring
safe environment that is structured yet it also changes to incorporate the needs of the student
by assessing how and what they understand.  Good mathematics brings into it methodologies
and learning styles that demonstrate the relationships and patterns in systems of greater
complexity” [Preservice Teacher, +30 increase in efficacy score].
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Discussion
The expected results of the efficacy scale are an increase of the preservice teachers’ sense

of teacher efficacy over the duration of the one-year mathematics methods course.  This
result is hoped for and expected in a preservice teacher program.  Also expected, as
preservice teachers’ efficacy increases, is the change in understanding of teaching practice,
the enhanced clarity and elaboration with examples and connections to other themes.  For
example, mathematical processes change from skills and knowledge and that math should be
“easy” to connection and meaningfulness through thinking, problem solving, and knowledge
construction.  The efficacy level of a teacher would necessarily be greater to consider
implementing such challenging pedagogical positions in a classroom.

What is unexpected are the sizes of teacher efficacy increase, from 0% to 30%, and how
the preservice teachers articulate their perceptions of teaching and learning mathematics, that
is, the theoretical constructs that emerge from their words and the nature of their discourse.
In September, the preservice teachers’ writing shows the concern for content (Staton).  For
example, as HD [Preservice teacher, efficacy score increase +14] initially states, “Good math
is more about how you learn or teach math as opposed to the math process itself.”  However,
in March preservice teacher writing shows concern for task and impact.  For example, there is
an increase in the discourse of affective issues and student abilities, and the addition of two
new issues, classroom management and image of self as teacher in relation to learning.

In September preservice teachers perceive teaching and learning as skills and knowledge
of mathematics, simple problem solving in real world applications – illustrating Feimen-
Nemser’s (1989) academic, practical, and technological orientations.  After the methods
course, preservice teachers perceptions turn to student abilities, relevancy of content to
students, and connectedness of mathematics to mathematics – the personal and critical/social
orientations.  As GF [Preservice teacher, efficacy score increase +8] states, “Good
mathematics is when students get together after class and talk to their friends about what
happened in math class, stories from math class, overall remembered things from math
class.”

This is a shift from a content and procedural orientation, and concern for self and task to a
more complex mix of the five orientations and concern for impact.  The increased level of
efficacy complements this increased preservice teacher ability to consider, accept, and apply
a less mechanical approach to teaching, and employ a more inter-personal and inclusive
approach to teaching.  “Math in general is not what we know.  We know information, math is
what we try to figure out using that information.  …  All math is good math for someone.”
KL [Preservice teacher, efficacy score increase +14].

There are likely other factors and influences, such as the experiences from the other
preservice course work, but the focus of the subject-related mathematics methods course, and
the clear focus of mathematics education in the efficacy scale provide the grounds to consider
the results of the levels of efficacy and the results of the preservice teachers’ writing as true
representations of preservice teachers’ perceptions and understandings of their level of
efficacy for teaching and learning mathematics.
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PRESERVICE TEACHERS’ MODELLING OF FRACTIONS:
CONNECTING MEANING AND SYMBOLS

Suzanne L. Reynolds
Kean University

Elizabeth B. Uptegrove
Felician College

We teach mathematics to preservice and inservice elementary school teachers. We
have found that these students often have great difficulty in making sense of the
procedures for working with fractions. We have had some success in helping students
develop an understanding of operations on fractions by using manipulatives such as
Cuisenaire rods. However, for many students, grasping the meaning of procedural
algorithms is a challenge. Although many students are successful in modelling the
problems, some continue to have difficulties in associating meaning with operations
on fractions. In this research, we examine two representative problems that we use to
attempt to help students associate meaning with basic operations.

Theoretical Framework
Our framework is based on the work of Reynolds (2005), Glass and Maher (2002),

and Maher and Alston (1989). Reynolds reported that the use of manipulatives can
help elementary school students develop understanding of fractions and operations on
fractions. Glass and Maher showed that college students who are encouraged to make
connections between models and mathematical operations can come to understand the
operations. Maher and Alston documented an instance of a middle school student who
had mastered procedural algorithms and who was able to solve problems with models,
but who – like some of our preservice teachers – was unable to make the connection
between the symbols and the models. They noted that, to the student, the traditional
algorithms for working with fractions represented “meaningless ritual” (p. 248). We
have found this to be the case with many of our college students, as well.

Methods
Data for this study are taken from five classes: two freshman-level mathematics

courses for elementary school preservice teachers at Felician College with 33 students
and three junior-level math methods courses for elementary school preservice teachers
at Kean University with 57 students. Student work, classroom observations, and
instructor notes provide the data for the analysis.
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Here we examine the students’ work on two problems, the candy bar problem and
division problems. For both problems, our goal was that the students should think
about the meaning of the mathematical operations.
The candy bar problem
I had a candy bar. I gave 1/2 of the bar to Jose and 1/3 of the bar to Tara. How much
of a candy bar do I have left?
Our objective for this problem was for students to explore different length rods and to
find that only certain length rods can be used to model the problem. Would the
students see a connection between this length and common denominators?
Division problems
What is 6 divided by 2? What is 6 divided by 1/2? Build models to justify your
answers.

The traditional rule is: When dividing by a fraction, take the reciprocal of the
divisor and multiply. Would the process of constructing a model help students make
sense of the traditional rule?

Our objective for this problem was for students to explore the two different models
for division (repeated subtraction model and partitive model) and to appreciate the
reasonableness of the answers. We also wanted them to develop an understanding of
why the traditional algorithm works.

Results
Students used a wide variety of approaches in their explorations. Some of the
outcomes included:

• Candy bar problem: Although students were usually able to see that the candy
bar problem works only with certain length rods, they often did not associate
the lengths of those rods with the idea of a common denominator.

• Division problem: Students could usually see from the physical operations that
it makes sense for the answer to be larger than the original number. However,
they often had trouble connecting this to the “multiply by the reciprocal” rule.

• Some students had difficulty recognizing the structural similarity between
problems with whole numbers and problems with fractions. This problem has
been observed in elementary school students and is documented by Greer and
Harel (1998), among others.

• Some students had difficulty in writing story problems that would be
appropriate for a given calculation; they also had problems in converting story
problems to appropriate calculations.
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Discussion
We suggest that possible reasons for these issues are related to students’ early training
in the use of symbols without associated meaning. This might be an obstacle to later
efforts at sense-making. Specifically:

• Students’ previous experience with mathematics often gives them the
impression that learning the procedure is important but that sense-making is
not. Students who learn procedures without meaning often remain uninterested
in addressing issues of meaning.

• Students’ difficulties in translating words to mathematical symbols might be
due to lack of previous experience. Some students’ only experience of
operations on fractions was in isolated numerical problems without context.

We suggest that some ways of dealing with these issues might include:
• Showing students that they need conceptual understanding in order to succeed

as teachers. We suggest that those who supervise student teachers make a point
of telling student teachers that part of their evaluation will include assessing the
conceptual understanding of the children they instruct as student teachers.

• Making more explicit the connection between symbols and meaning. In some
cases guiding students towards finding the connections might be a feasible
alternative to waiting for them to make the connection on their own. For
example, after students note that only certain length rods work for the candy
bar problem, we might ask, “What does what you just did have to do with a
common denominator?”

• Spending more time in teaching fractions. We suggest that professional
development courses for teachers should include courses in the intensive study
of fractions. It has been shown that students who have difficulties in
understanding fractions also have problems with algebra and proportional
reasoning (Lamon, 1999). Since algebra is often taught in middle school and
algebraic thinking is a part of the curriculum in every grade, it is crucial that
teachers at all levels be competent at and comfortable with algebraic concepts.
The ability to manage proportional reasoning is similarly critical for
progressing past elementary mathematics.
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How might preservice elementary teachers’ conceptual understanding be affected by being
asked to solve and discuss three different versions of the same problem? What mathematical
approaches they might use, and what connections could they make? In this paper, after
describing the three different task versions and how we used them in class, we’ll profile some
of the diverse types of mathematical thinking that the preservice teachers demonstrated.

The purpose of this paper is to report on current research aimed at categorizing and
interpreting the conceptions held by Elementary Preservice Teachers (EPSTs) in a
proportional reasoning context. Just as proportional reasoning is of paramount importance in
the K-12 school curriculum (Lesh, Post, & Behr, 1988; Behr, Harel, Post, & Lesh, 1992), so
too is it critical that EPST’s in university teacher training programs have a deep
understanding of this concept.

The following central research question framed our research: What conceptions of
proportional reasoning do students exhibit when asked to explore and discuss a task that is
posed in three different ways? We wanted to investigate the range of mathematical
approaches that students might use, what connections they might make between the parallel
problems, and how their conceptual understanding might be affected. We called the set of all
three versions of the task Ratio Triplets.  The essential feature of the activity involved
determining which of two packages of ice cream was the better buy: A 64-ounce container
selling for $6.79 or a 48-ounce container selling for $4.69 (1).

While Ratio Triplets centers on a fairly common type of proportional reasoning task, we
found that using different versions of the task afforded a good opportunity for our students to
consider the meaning of ratios in multiple ways.  In the presented paper, after considering the
theoretical background relevant to the current research, we describe the three versions of the
task and how we used them in class. Then, we profile some results of the different
mathematical thinking that students demonstrated by using examples from each of the three
versions, and finally offer a brief discussion of these results.

Theoretical Background
While relatively few studies have been aimed specifically at the proportional

understanding of preservice teachers, there is a substantial body of prior research that exists
on children’s’ understanding of ratio and proportion (see Behr, et. al., 1992, for a good
overview). Several themes emerge from this corpus of research that are germane to the
current study, since the Ratio Triplets task fundamentally involves a comparison of two rates.
One theme is the importance of unit recognition, which is included with partitioning and
equivalence as part of the “basic thinking tools for understanding rational numbers” (Behr,
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Lesh, Post, & Silver, 1983, p. 109). As Lamon (1993) notes, of particular importance to
reasoning proportionally is “the ability to construct a reference unit or a unit whole, and then
to reinterpret a situation in terms of that unit” (p. 133). Lamon also describes how “the
process of norming can achieve yet another level of sophistication” (p. 137), whereby an
independent unit may be selected as a basis for comparison. Finally, the basic theme of
recognizing the mathematics underlying additive and multiplicative structures is of key
importance in discerning proportional reasoners. This is an important piece of content
knowledge for teaching with EPSTs, since, as Resnick and Singer (1993) note, “The early
preference for additive solutions to proportional problems is a robust finding, replicated in
several studies” (p. 123). We found a similar reliance on additive strategies even with the
EPSTs in our study.

Methodology
Knowing how the NCTM Standards (2000) reflect calls from the literature to stress not

only the importance of using multiple representations in problem solving, but also the
importance of communication, we designed Ratio Triplets to incorporate three versions of the
same basic problem. This design choice allowed us to examine EPSTs’ understanding of ratio
and proportion in a way that also promoted discourse about different ways of thinking
mathematically.

In Version A, a dollars-per-ounce strategy for Mark is shown as well as an ounces-per-
dollar strategy for Alisha. The correct quotient for each calculation is also provided. We
wondered if students would recognize the meanings behind those calculations, and further,
would they understand the interpretations of the results?  Version B was identical to Version
A in all but one respect: The outcome of each calculation was not provided. That is, the
decimals were missing as well as the equality and approximation symbols. Since calculators
were available, we wondered if students would just do a unit-rate conversion (effectively
mirroring the computation results in Version A), or would they try something different?
Version C had the same initial situation description, but omitted any reference to what
strategies Mark or Alisha might have used. Instead, it invited any strategy for Mark and
prompted a different strategy for Alisha. The focus on all versions was in getting the students
to provide explanations and justify their thinking.

Results
     Across all versions, we found a surprisingly rich diversity of explanations given by the
EPSTs, some which were reasonable and many which were questionable. To illustrate the
types of thinking offered, sample results will first be presented in terms of what the subjects
had to say about Mark (the first strategy in all versions), and then about Alisha (the second
strategy). We first distinguished responses about Mark’s strategies according to whether they
were reasonable (recognizing that the lower price per ounce is the better buy) or questionable
(reasoning that the larger package is only $2.10 more, so Mark should buy the larger
package). All of our claims are supported by examples. Our analysis used the lens of the
types of themes that emerge from the literature on children’s proportional reasoning.
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     Whereas the reasonable responses for Mark’s strategies showed some conventional ways
of thinking, we were surprised at the questionable responses. We wondered, for example, in
Versions A & B where the ratios were already set up, where did those EPSTs get confused?
In contrast to results for Marks’ strategy, however, we found that the majority of EPSTs
actually had questionable responses for Alisha. Of the 75 total subjects, only 37.3% gave
reasonable responses for Alisha, which was surprising to us. There were many responses that
said, in effect, that Alisha was not correct in attempting a different approach and that the only
way to solve the problem and find a better buy was to consider cost per amount (as in Mark’s
strategy in Versions A and B).

Discussion
As we sought to engage our EPSTs in a discussion about mathematics for teaching, we

used the Ratio Triplets task as a way to examine what they knew about proportional
reasoning and also to promote conversations about the mathematical approaches in the
different ways of thinking. We knew a priori that proportional reasoning is often difficult for
students, “especially for those who do not understand what is actually meant by a particular
proportional situation or why a given solution strategy works” (Weinberg, 2002, p. 138).
There was an impressive array of differing strategies that prompted fruitful discussion in
class about representing mathematical situations in a variety of ways, and especially about the
importance of communicating one’s own thinking and understanding that of others.
     However, it was surprising to us that 18.7% of our EPSTs either gave questionable
responses for Mark’s strategies (on Versions A and B) or could not come up with a
proportional strategy for Mark (in Version C). Particularly on Versions A and B, it was
disturbing to find some these young adults unable to interpret the initial ratio set-ups that
were offered. Moreover, the 62.7% of our EPSTs who gave questionable responses for
Alisha’s strategies often showed a very limited understanding of proportional reasoning. As
our exploratory research suggests, even those preparing to be teachers may be entering their
university training without a sufficiently robust conceptual understanding of proportional
reasoning.
     While more research is necessary to further unpack the dimensions of thinking exhibited
by EPSTs in a proportional reasoning context, this research takes important first steps toward
that process. Of particular importance was the structure of our Ratio Triplets task, since the
lively class discussions that ensued when debating each others’ explanations across the three
versions helped foster a better conceptual sense of the actual mathematics while also
modeling the kinds of pedagogical practices we’d like to see carried into the classrooms
where these preservice teachers eventually will serve.

Endnote
1. Adapted from a task first proposed by Jane Lane, Eastern Washington University

(2003).
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I examined preservice teachers' (PST) coordination of representational units arising from the
use of magnetic color cubes and tiles for representing various special numbers. The
coordination and identification of these representational units of different - not necessarily
hierarchical - types (multiplicative, additive, pseudo-multiplicative) appear to be important
mathematical practices in dealing with problems involving representational quantities.

Theoretical Framework
In its true nature, coordination is about making various different things work effectively

as a whole. In the context of my study, it refers to the conception of unit structures in relation
to smaller embedded units within these unit structures, or, bigger units formed via iteration of
these unit structures. Unit coordination (UC) has been previously studied by various
researchers in the mathematics education field. The coordination of different levels of units in
whole number multiplication problems is reminiscent of a key concept in multiplication, i.e.,
the notion of composite units (Steffe, 1988). The essence of multiplication lies in fact in
distributive rather than repeated additive aspect (Confrey & Lachance, 2000; Steffe, 1992).
The multiplication of 5 by 7, for instance, can be thought as the injection of units of 7 (each
being units of 1) into the 5 slots of 5, each slot representing a 1. In this example, the
conceptualization of each singleton unit describing a unity, i.e., 1, stands for a first level of
UC. Moreover, 5 and 7 can be conceptualized (as composite units of 1) as 5_1 and 7_1,
respectively, as a second level of UC. The product 5_7 which denotes 5 (composite) units of
7 (composite) units of 1, can be conceptualized as a third level of UC. Some other researchers
also studied unit coordination in a fractional situation (e.g. Lamon, 1994; Olive, 1999; Olive
& Steffe, 2002). Additionally, work on intensive and extensive quantities reflects unit
coordination as well (Schwartz, 1988; Kaput, Schwartz, & Poholsky, 1985). Representational
Unit Coordination (RUC) can be defined as the different ways of categorizing units arising
from the modeling of identities on representational quantities as the area as a product and
area as a sum of the corresponding special rectangles made of color cubes or tiles. In its most
basic sense, area of, e.g., a rectangle, is defined as the product of its two dimensions. The
identities on special numbers PST analyzed via color cubes and tiles were always about a
rectangle – prime rectangle, composite rectangle, summation of counting numbers, odd and
even integers generated as a growing rectangle, and polynomial rectangle. Coordination of a
particular rectangle's two dimensions, i.e., the arrangement of these two linear units in a
particular order as an ordered pair such as (a, b) or (b, a), defines the first part of my construct
RUC which is of multiplicative nature. The analysis of the other important concept, area as a
sum (of a special number rectangle), is prone to many more, not necessarily hierarchical,
additive type RUC for which the addends, namely the areal units, are expressed as n-tuples in
square brackets. RUC has more of a relational aspect, that way.
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Context and Methodology
I conducted my study with PST enrolled in the Mathematics Education Program in a

university in the southeastern United States. I interviewed 5 PST individually twice during
January & February 2007. Duration of each session was about 60-75 minutes and each
interview session was videotaped. The focus was on problems on identities for prime and
composite numbers along with summation of counting numbers, odd and even integers as
well as products and factors of polynomials modeled with magnetic color cubes and tiles. I
used thematic analysis supported by constant comparison of the interviews and retrospective
analysis. I also simplified and extended the generalized notation for mathematics of a
quantity (Behr et al., 1994) in such a way as to cover identities that equate summation and
product expressions of special numbers.

Results and Conclusions
Multiplicative type RUC arose from various usages by the PST such as “It [areal 6] is

[linear] 6 and [linear] 1”, “This [linear x] and this [linear 1] to find this [areal x]”, “When you
put this length [linear 1] and that length [linear 1] together”, “This edge [linear 1] right here
and this edge [linear 1] right here”, “This edge [linear x] by this [linear x] edge”. For all such
usages, I used a relational notation of the form (a,b) where a and b stand for the
corresponding linear quantities represented by the dimension tiles. Moreover, a mapping
structure of multiplication operation was spelled out by these PST. For instance, “And this
area right here is x times y... to find that specific spot”, can be represented using a functional
notation such as f:(x,y)_xy. Here, f denotes the multiplication operation which maps the
linear units, x and y, into the corresponding “spot”, namely the areal xy. I observed more than
one additive type RUCs which can be described using a functional notation ∑f(i)=g(n) where
areal quantities f(i)'s are being summed from 1 to n (number of addends) and i is the stage
number (ordering number for the addends):

 Equal Addends: These are the addends describing a composite number rectangle.
With the functional notation, f(i)=c, for all i. All PST produced this type.

 Irreducible Addends (Type I): PST used these addends mostly when dealing with
prime number rectangles. This is a special case for equal addends, f(i)=c, for all i,
with c=1.

 Symmetric Addends: This type came from Ben's work on the summation of odd
integers activity. Ben used these addends to describe the odd integers as symmetric L-
shapes. For each symmetric L-shape, there are three addends only, i.e., n=3. One of
these addends is equal to 1, and the remaining two addends are equal to each other. In
other words, with the functional notation, one can write, f(2)=1, f(1)=f(3). For
example, for the case of areal 9, which denotes an odd integer, f(2)=1, f(1)=f(3)=4.
Note that f(1)+f(2)+f(3)=4+1+4=9, i.e., the odd integer itself.

 N+(N-1) type Addends: These are the addends describing a symmetric L-shape odd
integer. In this case, n=2. With the functional notation, f(1)=N, and f(2)=N-1, i.e., the
addends differ only by 1. John, Stacy, and Ben explained their ideas using this type
when working on the summation of odd integers activity.

 (N+1)+(N-1) type Addends: These are the addends describing a nonsymmetric L-
shape even integer. Once again n=2. Only John referred to this type when working on
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the summation of even integers activity. A nonsymmetric L-shape even integer can be
described using the functional notation f(1)=N+1, f(2)=N-1.

 Recursive Addends: f(i+1) is being added to the previous summation (Nicole). With
the functional notation, this can be written as g(n+1)=g(n)+f(i+1).

 Summed Addends: The addends of the growing rectangle are areal units with different
shapes made of color cubes representing the “area as a sum” part of the summation
formula. For example, f(i)=i, f(i)=2i-1, f(i)=i+(i-1), f(i)=2i, for all i, for the addends
corresponding to summation of counting numbers, odd numbers, odd numbers, and
even numbers, respectively. 3 out of 5 PST came up with this usage. Ron and Ben, on
the other hand, did not care about the color shapes generating the growing rectangle.
Instead, they used Equal Addends in expressing the area of the growing rectangle as a
sum: Namely they treated the growing rectangle as a composite number rectangle.

 Random Addends: n can be anything (Stacy). There are many different ways of
writing the sum. With the functional notation, f(i)=anything, for all i. And f(i) is not
necessarily equal to  f(j) for any i≠j, where i, j denote the ordering number for the
addends (areal units).

 Irreducible Addends (Type II): The area of the polynomial rectangle is written as the
sum of irreducible areal units. 4 PST came up with this usage. For instance, for the
2x+y by x+2y+1 rectangle, the irreducible addends are [x2, x2, yx, xy, xy, y2, xy, xy,
y2, x, x, y].

 “Boxes of the Same Color” type Addends: The area of the polynomial rectangle is
written as the sum of the boxes of the same color. As an example, only 1 PST used the
areal units [2x2, 4xy, 2x, yx, 2y2, y] to generate the 2x+y by x+2y+1 polynomial
rectangle.

There is one more type RUC, in between additive and multiplicative which I named
Pseudo Multiplicative type RUC. This occurred for the “Area of the Boxes of the Same Color
as a Product” in dealing with polynomial rectangles made of color tiles. For instance, the x+1
by 2y+3 rectangle has 4 boxes (x by 2y, x by 3, 1 by 2y, 1 by 3) of the same color. Nicole,
Stacy, and John's products were x_2y, x_3, 1_2y, 1_3; i.e., of multiplicative nature. With the
relational notation, these linear units, namely the length and the width of each “box” can be
written as (x,2y), (x,3), (1,2y), (1,3). However, Ben and Ron's areas as a “product” for the
same boxes were 2_xy, 3_x, 2_y, 3_1. In other words, the first term of each “pseudo-product”
is a coefficient serving as a counting number indicating how many there are of each
irreducible areal unit: Though written as a “product”, Ben and Ron's expressions are of
additive nature.

The identification and the coordination of representational units of different types
(multiplicative, additive, pseudo-multiplicative) associated with color cubes and tiles are
important aspects of quantitative reasoning and need to be emphasized during the teaching
and learning process. Moreover, mapping structures serve as a bridge in between “area as a
sum” and “area as a product” concepts in helping students and teachers make sense of
identities on integers and polynomials: Why does the LHS have to be equal to the RHS?
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Teachers must be prepared to teach mathematics to all students. In our experience, and that
of other mathematics teacher educators, we have found that there are barriers to making this goal
a reality, despite good intentions of faculty and preservice teachers. Some of these barriers,
which have been well-documented by research, include:

• the homogeneity of the preservice and in-service teacher population which tends to
reinforce stereotypical expectations;

• preservice teachers belief systems that include stereotypical expectations for children’s
achievement in mathematics, i.e., Asian and White students have more innate abilities in
mathematics while African-American and Latino students have to “work harder” to
achieve, or that boys demonstrate stronger mathematical abilities than girls;

• lack of understanding of how issues of gender, ethnicity, and class can interact to affect
students’ achievement in mathematics and how to address this; and

• lack of knowledge concerning how non-White, non-European cultures have contributed
to the knowledge base in mathematics (Garmon, 2004).

Our purpose for this project was therefore to determine the readiness of CI 3030-
Investigating Mathematics and Learning students to teach mathematics to diverse populations
and to improve our students’ readiness to teach mathematics to diverse populations.

Procedures
We decided to begin by adding to and modifying the diversity-related assignments in our CI

3030-Investigating Math and Learning Class. Based on our readings and review of the literature,
we determined that we needed to get a measure of our students’ current understanding of
diversity, as it related to mathematics education, to develop an educational intervention, and then
measure the effects of this intervention. We undertook the several tasks to achieve these goals.
We adapted a survey from the following sources:

• Indiana Mathematics Belief Survey (Kloosterman & Stage, 1992)
• NAEP National Center for Education Statistics (2001). National assessment of

educational progress question tool. Available from the NCES web site,
http://nces.ed.gov/nationsreportcard/itmrls/

• Additional questions from the survey used in the study, The Beliefs And Conceptions Of
Elementary Preservice Teachers (McCormick, Kapusuz, & Al-Salouli, 2004)

• Diversity questions developed specifically for the current project.
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The survey includes five scales: 1) Confidence in Doing Mathematics; 2) Conceptual
Understanding; 3) Effort; 4) Usefulness; and
5) Diversity.

We gave this survey to our students at the beginning and end of the semester. We developed a
reading list for our students and placed the articles in on-line reserve with the library. Students
were directed to choose three articles, from three different categories, from the reading list.
These articles are used for the article critique assignment in place in our courses. Each critique is
required to be at least three pages in length and focus on a major issue raised in the article. At the
end of the course, following the practicum, our students were asked to provide an answer to the
following question, as an in-class essay: What have you learned about diversity and mathematics
teaching based on your readings and field experience for this course?

Results
We completed the survey with approximately 80 students. We also asked them to complete

the in-class essay described above. Preliminary results are interesting, if somewhat predictable.
First, our survey results indicate that students are still undecided or are fixed in their opinions
regarding diversity issues. For example, when asked to respond to the statement:
Instruction of at-risk students should focus on remediation. (SA A U D SD) we saw the
following response rate:

Mean before: 3.03
Mean after: 3.27

This indicates that the students came into our course undecided about this issue and appear to be
leaving unchanged, despite the fact that we discuss the fallacy of this approach and the damage
that can occur due to it. This results is also disturbing since, during Block I, while students are
taking our course, they are simultaneously taking the course, CI 3000-Learner Diversity, where
such issues are also addressed.

We also found it interesting that while students tend to provide somewhat neutral (or
possibly, politically-correct) responses to the survey questions, their responses to the in-class
essay question sometimes contradicted their responses to the survey. Here are some example
responses to the essay question:
What have you learned about diversity and mathematics teaching based on your readings and
field experience for this course?

 I personally felt like my diverse classroom was more alike in how the students
learned.

 I didn’t realize boys were smarter than girls in mathematics.
 I learned that all children learn differently.
 I learned that a student’s culture and home life completely eafects their success in

math and other subjects.
 I have learned that Hmong children love math and usually excel at math as well.
 I did not witness a lot of diff. b/t boys and girls in mathematics education.
 I learned that students learn differently.
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 Just because someone is from another culture does not necessarily make them diverse
in math.

 I did not learn much about diversity.
 I learned that sometimes diversity can throw a wrench into teaching math, because of

existing language barriers.
We noticed in these responses several stereotypes, for example, “Asians do better in math.”

Of further interest was our students’ completion of the practicum assignments. While some of
the students acknowledged that they should address learner diversity in their classroom, not
many actually did so in the actual lessons that they prepared. Their analysis of student interviews
and their preparation of small-group lessons did not provide much evidence of applying their
“knowledge” regarding diversity. Some of the students seemed to interpret SES as an indicator
that a student could not be expected to perform better in mathematics because, “a student’s
culture and home life completely effects [sic] their success in math and other subjects.” On a
more positive note, our students did respond that they enjoyed the readings concerning diversity
and found them to be interesting and useful.

Discussion
While preservice teachers do need experiences working with diverse populations, one must

take care that their experiences do not serve to validate their stereotypes. If preservice teachers
work only African-Americans in a remedial tutoring situations or with Asian students in a gifted
program, then these experiences can be counterproductive to their understandings. Our
preliminary findings appear to confirm this, in that, while we did not place our students in
exclusive tutoring or gifted situations, the activities and interactions in the whole class setting
allowed them to “cherry-pick” what happened so that their experiences mirrored their
expectations and beliefs. To our surprise, we found that our students did this with the readings
we assigned as well. While we assigned articles regarding mathematics education and gender
that argued strongly that gender did not predetermine mathematical ability, some of our students
interpreted the whole discussion as evidence that boys must be better in math. After teaching
mathematics and mathematics education for many years, we are accustomed to dealing with
students’ misconceptions and the resilience of these misconceptions. However, we were still
surprised at the complexities associated with preparing our students to teach diverse learners and
how naïve, although well-intentioned, our students can be. This experience has led us to realize
that this must be an area of greater focus in our courses and that we must continue to inform
ourselves, craft better assignments and discussions, and continue to evaluate the preparedness of
our students.
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I develop a framework for preservice teachers’ (PSTs') conceptions of multidigit whole
numbers and use it to (a) describe their conceptions and their difficulties explaining the
mathematics underlying the algorithms, (b) show why a good understanding of tens and ones
is insufficient to explain regrouping in numbers with more than 2 digits, and (c) discuss
implications for education.

Algorithms are powerful tools in mathematics. With algorithms, one is equipped to solve
a variety of problems quickly and accurately. However, without understanding the reasoning
behind the steps of an algorithm, one may struggle in deciding when using the algorithm is
appropriate and how the algorithm should be modified according to different contexts.
Preservice teachers are able to execute algorithms for operations on multidigit whole
numbers; however, they struggle when asked to explain why the algorithms make sense
mathematically (Ball, 1988; Ma, 1999; Thanheiser, 2005).

To develop effective activities to address PSTs’ struggles, we educators must understand
the roots of their difficulties.  Once those roots have been identified, one way to focus the
PSTs’ attention on the mathematics is to focus first on the PSTs’ central concern: children.
By carefully selecting artifacts of children’s mathematical thinking, we can expand the PSTs’
interest from their initial caring about the child to include caring about the child’s
mathematical thinking. PSTs have motivation to learn the mathematics when they realize that
they themselves need to understand the mathematics to help the children understand (R. A.
Philipp, Thanheiser, & Clement, 2002).

To understand the mathematics underlying the algorithms, PSTs need to first understand
how numbers are composed. Research on children’s understanding of numbers has shown
that to understand two-digit numbers, one must see a ten simultaneously as 10 ones and 1 ten;
however, even this relationship is not obvious (Fuson et al., 1997; Kamii, 1986). And
although adjacent digits in any multidigit number can be treated as if they were ones and tens,
whether understanding the relationship between tens and ones is sufficient to explain
regrouping in larger numbers had not been studied. I set out to (a) describe PSTs’ conceptions
of multidigit whole number in the context of the standard algorithms, (b) explain the
difficulties PSTs have when explaining regrouping in 3-digit numbers, and (c) discuss
educational implications.

Mode of Inquiry
The data analyzed are drawn from two 75-minute semistructured interviews with 15

PSTs, each at a large, urban, state university. Questions for the interviews were developed by
a team of researchers, piloted, and then modified. Tasks were planned in advance, but follow-
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up questions were posed on the basis of the PSTs’ responses so that the PSTs’ conceptions
could emerge in their answers. PSTs were asked to answer questions in the context of the
standard algorithms as well as in other contexts. For example, PSTs were asked to explain
whether the value of a number stays the same when it is regrouped in the context of the
subtraction algorithm. Each interview was transcribed and analyzed; Interview 1 served as a
basis for Interview 2. Using a grounded theoretical approach with open coding, I categorized
the PSTs’ conceptions of multidigit whole numbers.

Results and Discussion
PSTs’ conceptions of multidigit whole numbers are categorized into four major

groups—two correct conceptions and two incorrect: thinking in terms of (1) reference units,
(2) groups of ones, (3) concatenated digits plus, and (4) concatenated digits only. Only 3 of
the 15 PSTs held a reference-units conception. They reliably conceived of the reference units
for each digit in the number and could relate the reference units to one another; in 389, they
could see the 3 as 3 hundreds or 30 tens or 300 ones and see the 8 as 8 tens or 80 ones. Two
PSTs held a groups-of-ones conception. They reliably conceived of all digits in terms of
groups of ones (389 as 300 ones, 80 ones, and 9 ones) but not in terms of reference units (i.e.,
the 3 in 389 was NOT seen as 3 hundreds or 30 tens). Seven PSTs held a concatenated-digits-
plus conception. They conceived of at least one digit in the number in terms of an incorrect
unit type (e.g., 389 as 300 ones, 8 ones, and 9 ones). Three PSTs held a concatenated-digits-
only conception, conceiving of all the digits only in terms of ones (e.g., 548 as 5 ones, 4 ones,
and 8 ones).

When asked to subtract 527 – 135, all 15 PSTs in the study knew that the value of
regrouped minuend 4127 was unchanged, but not all could justify that conclusion. Using two
examples from this context, I describe PSTs who were able to explain regrouping between
tens and ones but not regrouping between hundreds and tens. Vanessa, who held a groups-of-
ones conception, struggled in relating the regrouped 12 in the ten’s place to its value (120):

When I look at it, it’s like, just out of reflex it’s 12, but if you, like, look at it and you
think about it, it’s actually 120 and 30 [in the ten’s column of the subtraction problem] …
but like out of just like reflex and human nature, it’s a 12, and you are just subtracting 3
from it.

She did not use the reference unit tens to relate the 12 as 12 tens to its value 120. Vanessa
adequately explained regrouping between tens and ones for 577 – 159 (577 is regrouped into
5617): “The 7 [ones] wasn’t big enough to subtract 9 from it, so I had to take from the 70.  I
just took 10 from the 70, and I added to the 7, so that made it a 17.  So that left me with 6 [in
the ten’s place], as in 60.”

Jamie, who held a concatenated-digits-plus conception, was confused about the value of
the regrouped digit in 4127. She said, “I don’t know why that [4 in the hundred’s place]
would be 400 [rather than 490], if you’re only borrowing 10,” thinking of the regrouped digit
as 10 ones rather than 1 hundred or 10 tens or even 100 ones.  Jamie knew that 10 tens form a
hundred and tried to use that fact: “I am taking one hundred; I am taking 10 tens”; but she
still saw the regrouped digit as 10 rather than 10 tens or 1 hundred, saying that it is “just one
10 [not 10 tens].” Jamie was, however, able to explain regrouping between tens and ones
conceptually for 17 – 9: “So instead of 7 ones and 1 ten, I am making it 17 ones,” explaining
each digit in terms of its reference unit (7 ones and 1 ten) and relating the reference units to
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each other (1 ten is 10 ones). Jamie knew from her experience with algorithms that adjacent
digits are related by a 1-to-10 relationship but exhibited confusion about the relationship:
“This [relationship between tens and ones] is obvious. It is 10. This [relationship between
tens and hundreds] is not so obvious. But it is still 10 for some reason.”  Jamie was unable to
use her knowledge of the value of each place and the relationship between the digits to make
sense of regrouping beyond two-digit numbers.

Why were Jamie and Vanessa able to explain regrouping between ones and tens but not
between hundreds and tens? Consider the regrouped two-digit symbols in the ten’s (4127) and
one’s (5117 ) places. In the one’s place, the new symbol (17) is read as 17 (ones), with ones
being the appropriate reference unit. In the ten’s place the new symbol (12) in the ten’s place
must be read as 12 tens rather than 12 ones. Thus an explicit shift in reference units is
required to explain this regrouping. The relationship between hundreds and tens is not a
simple extension of the relationship between tens and ones.

Implications and Example
Procedurally, standard algorithms do not differ for regrouping between tens and ones and

regrouping between hundreds and tens. Conceptually, however, regrouping with three-digit
numbers is more complex than regrouping with two-digit numbers. Instruction on regrouping
often focuses in depth on regrouping between tens and ones, but, for many students, explicit
attention is needed to regrouping between unit types that are not equal to ones—to explore all
aspects of regrouping.

To engage both Vanessa and Jamie in considering the important relationships, we could
ask them to view some carefully selected video clips of children while playing the role of the
children’s teacher. This engagement requires them to (a) decide whether a child’s thinking is
valid, (b) identify critical aspects of the child’s mathematical thinking, and (c) decide how to
proceed with the child. To help Vanessa and Jamie see numbers in terms of reference units,
for example, we could confront them with a video clip (R. Philipp, Cabral, & Schappelle,
2005) in which a child states that there are 12 tens in 120 and 3 tens in 32.  Can Vanessa and
Jamie explain the child’s thinking?  They may be motivated to view numbers more flexibly
and to relate them to the regrouping in algorithms when they realize that this child and others
they may teach have understanding they have not yet developed.
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For this phenomenological study, we interviewed six elementary preservice teachers to understand
their experiences in upper-division mathematics content courses taken during their teacher
preparation program.  The preservice teachers described their affective reactions to the experience,
their attempt to situate the experience in their professional program and their images of the
pedagogy.

Background
    The elementary teacher preparation program at our institution recently changed in response to a

mandate from the regents of the university system. The directive required elementary preservice
teachers to complete 9 hours of upper-division (3000-level or above) mathematics coursework.
Previously, preservice teachers had no required mathematics content coursework. New courses were
developed and taught in the department of mathematics. Effect on student matriculation and
progression through the elementary education program was immediate. Many students received Ds,
failed, or withdrew from the new courses.  As mathematics educators, we were deeply concerned.
Why were so many preservice elementary teachers not successful in these mathematics courses? We
needed and wanted to understand this problem.

Related Research
For the past several years the question of adequate and appropriate mathematical content

knowledge for elementary teachers has been at the forefront of discussions among the mathematics
education community (Ball, 1990; Ball, 1991; Mewborn, 2001).  Given the importance of a
knowledgeable teacher in creating mathematical experiences in a classroom, e.g., using curriculum
materials, choosing and using representations and tools, interpreting and responding to students’
work, and designing assignments (Ball, Lubienski & Mewborn, 2001), the value and need for
appropriate mathematics content knowledge and coursework is evident. However, previous
research suggests that the shear number of higher-level mathematics courses does not guarantee an
understanding of the mathematical concepts that translate into effective teaching (Begle, 1972;
Eisenberg, 1977).  Yet even in the face of these findings and current recommendations (Kilpatrick,
Swafford & Findell, 2001), some professional organizations in the United States continue to
suggest the solution to the problem of well-prepared elementary mathematics teachers is more,
higher-level mathematics.
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Research on post-secondary mathematics teaching and learning, outside the work on the
calculus reform effort, is limited. Two recent studies were found that somewhat related to our
question of why many of our students were not successful in there mathematics content courses.
Powell-Mikle (2003) examined the perceptions of six African-American college students toward
instructional practices in secondary and post-secondary mathematics courses. Her findings
revealed that the students felt adequate instructor availability, prevalence of classroom discourse,
clear instructor explanations, and a caring ethic were associated with exemplary practices and their
success in mathematics. Weinstein (2004) looked at students' perspectives on the question, "How
do college remedial math students define success, and what are they striving for in their math
classes?" Based on his findings, he recommended that instructors decrease the amount of time
spent on lecture and help students develop more confidence to do mathematics.

The Research Purpose
The purpose of our research was to understand the experiences of these elementary preservice

teachers in their required, upper-level mathematics content courses. We felt we first needed to hear
their voice, their perceptions. We wanted to hear how the experience situates itself in the students’
professional development as an elementary teacher; and, we did not want to assume we knew the
answers. We wanted to let the students speak for themselves.

Methodology
Given the purpose of our research, a phenomenological methodology seemed appropriate. This

meant taking hold of the experience to be studied while “bracketing” our experiences outside the
phenomenon being studied (Van Manen, 1990). As researchers, we needed to make explicit our
assumptions, beliefs, and biases; not forgetting them, but holding them at bay as we explored and
made sense of the experience.  As we reflected, we realized we assumed the use of traditional
teaching methods.  We questioned if the specialized content knowledge (SCK) needed for teaching
elementary mathematics (Ball, Hill & Bass, 2005) was being addressed. We believe SCK is gained
by studying elementary mathematics. We also believe that our issues and concerns are not unique
and will be of interest to others. It is with these biases and assumptions we began our study.

After identifying our research focus and making public our beliefs, we developed the interview
protocol. The questions were framed to open up possibilities for the students and the researchers
(Moustakas, 1994). They needed to hold the promise of helping us see the experience as the students
described it and allow us to tell their story. We agreed that a question was only a starting point for
the discussion and that the interviewer was free to pursue interesting comments or remarks in-depth.

The participants were six randomly selected elementary preservice teachers who were
completing their student teaching and hence had completed all required mathematics coursework
(Number and Operations, Geometry, Statistics).  All participants were female. Two were African-
American and four were Caucasian.  At the convenience of the preservice teachers, we conducted
interviews in faculty offices or at the student teaching school We made every effort in the interview
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to engage in the Epoche process (Moustakas, 1994), i.e., to display an unbiased, receptive presence.
Our intention with each of the six students was to obtain a direct description of the experience as it
was, without offering causal explanations or interpretative generalizations of the experience. A
graduate student transcribed each of the tapes. Both researchers independently analyzed each of the
six transcripts using a constant comparison method looking for language that would describe what is
it like to be an elementary preservice teacher in these upper-level mathematics content courses?
Significant comments were highlighted and common threads were identified.  Individual analyses
were compared and discussed.  Final categories were identified and provide the results from which
we developed the story of their lived experience.

Synthesis of the Story
Analysis of the interviews elicited three common ways the students experienced the courses. The

first was a cognitive experience in which the student attempted to situate the mathematics
coursework in their larger professional program. The second was an affective reaction to the
experience of the courses. The last was objective observations about the nature of the pedagogy.
Each will be described briefly here.

All six students described an inability to position the mathematics coursework within their
professional development as elementary teachers. They indicated a disconnect between the two. The
participants stated that the courses are disconnected and there is no link to real schools. They said
the instructors don’t know what goes on in schools, they don’t talk about students [children], and
they don’t know what goes on in our department [elementary education].  One preservice teacher
said the instructors are blind to what we are doing with our lives. The affective reaction to the
experience was portrayed as a feeling of being devalued. The students used language such as there
was a sense of invisibility, I do not feel seen, and they [the instructors] do what they do and leave.
This was connected to a feeling of diminished self-efficacy: I felt discouraged, I feel less confident
and It makes you feel dumber. Lastly, the participants’ description of the pedagogy in the
mathematics courses revealed a predominately traditional approach to instruction. They mentioned a
preponderance of lecture, note-taking, and power-point presentations. They observed that the classes
were not hands-on.

Discussion
How does the story the preservice teachers tell contribute to our understanding of the

professional development of teachers in our program? Clearly, the disconnect between their
professional program and mathematics content coursework suggests the need for better integration
between the two experiences. We must find ways to connect pedagogy and content and ways to
make the content knowledge relevant. All faculty participating in the professional development of
teachers need to help students relate what they are learning to becoming elementary teachers.

The findings also indicate the importance of increasing the confidence of elementary teachers as
doers and learners of mathematics. This is consistent with the work of both Powell-Mikle (2003) and
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Weinstein (2004) who found that a caring ethic and developing confidence provides a foundation for
learning. If college coursework is further undermining self-confidence in a group that is already
identified as math-anxious (Hembree, 1990), we are not improving an already difficult situation.
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THE RELATIONSHIP BETWEEN PRE-SERVICE ELEMENTARY
TEACHERS’ IDENTITIES AND ENGAGEMENT WITH

STUDENTS’ MATHEMATICAL THINKING

Erin R. Moss
Purdue University
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Recent reforms in mathematics teaching mark a departure from the traditional, transmission-
based model, which requires that teachers tell, demonstrate, or show how to do something.
Instead, they require that teachers organize their pedagogy in such a way to facilitate growth in
students’ ideas (National Council of Teachers of Mathematics, 2000). While research has long
viewed engagement with students’ thinking as a desirable outcome of teacher learning, recent
studies have established it as a powerful source of teacher learning as well (Steinberg, Empson,
& Carpenter, 2004). The potential of engagement with students’ thinking to meet goals for
mathematics education reform (NCTM, 2000) as well as result in teachers’ generative change
(Franke, Carpenter, Levi, & Fennema, 2001) makes it a timely topic of study.

The results presented here are part of a dissertation study currently in progress on the
evolution of preservice elementary teachers’ (PSETs’) learning and identity development. This
report focuses on the following question: How are PSETs’ identities as teachers of mathematics
related to their engagement with students’ thinking during their first teaching experience? While
the larger study explores the ways that teacher learning and identity evolve over time, this study
adds to the research base on the reciprocal relationship between teaching practice and identity.

From an acquisition perspective of learning, knowledge must undergo a mysterious process
of application or “transformation” (Shulman, 1987) in order to be used in teaching, which might
depend upon an exhaustive list of other variables. This perspective also does not reflect the
situated nature of teachers’ knowledge within the context of the classroom. My research
addresses the aforementioned limitations by viewing PSET knowledge through a situative lens.
The situative perspective (also known as situated learning theory), views knowing as doing
rather than having (Sfard, 1998). Thus, I am directly concerned with PSETs’ participation with
respect to a practice that relates to reform: engagement with students’ mathematical thinking.

The treatment of identity in my research is guided by work that equates identity with a
collection of reifying, endorsable, and significant stories about an individual (Sfard & Prusak,
2005). From a situative perspective, participation and identity are inextricably linked and
develop concurrently (Sfard & Prusak, 2005). An individual’s participation in a community of
practice influences the stories that she and others tell about herself. Conversely, identity
influences subsequent participation by creating goals for learning (Drake, 2006). The construct
of identity shows promise for explaining participation because it allows researchers to study
teachers’ knowledge, beliefs, experiences, and emotions as an integrated and contextualized
whole. Previous research suggests that identity may be valuable for helping researchers
understand the ways in which a teacher engages with students’ thinking and participates in
opportunities to learn about teaching (2006). Although from the situative perspective knowing
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and identity are inextricable, few studies explicitly investigate the relationship between these
constructs. Even fewer studies have examined this relationship in mathematics teacher education.

Data collection takes place in one section of an elementary mathematics methods course. As
part of the course requirements, PSETs have four opportunities to work in pairs to plan and teach
problem-based lessons to a class of elementary school students. The participants are four PSET
volunteers who will be assigned to the same grade level for their teaching. Data include
videotapes of PSETs’ first teaching episodes as well as individual questionnaires and interviews.
I will transcribe videotapes of the teaching episodes and draw on constant comparative
methodology (Strauss & Corbin, 1998) to systematically code and analyze them. Initial codes
will be informed by Franke and colleagues’ Levels of Engagement with Children’s Mathematical
Thinking (2001), though I anticipate modifying these codes as ongoing analysis dictates.

Individual questionnaires and interviews provide information about participants’ identities as
teachers of mathematics and are administered prior to their first teaching episode. The
questionnaire asks PSETs to reflect on their own experiences as mathematics learners and
teachers as well as their visions of their future mathematics instruction; the follow-up interviews
allow for clarification of their responses. Consistent with Sfard & Prusak’s operationalization of
identity as narrative (2005), to uncover each participant’s identity as a teacher of mathematics
requires an understanding of how they describe themselves as mathematics teachers and their
vision of their future teaching. I will code the surveys and corresponding interview transcripts for
each participant, noting emergent themes in the analysis. I present a case study for each
participant, describing his or her identity in narrative form and engagement with students’
thinking during instruction. I also look across the portraits of all three participants to determine
whether there are general trends in the ways that identity and practice are related.

This study identifies challenges that teacher educators may face when attempting to promote
reform-minded mathematics pedagogy among PSETs, both in terms of identity and practice.
Understanding the ways that PSETs’ identities relate to their goals for instruction and their
practice may help us understand the knowledge and skills they seek to gain from learning
opportunities in methods courses. It also informs the design of educational experiences that help
PSETs move towards pedagogy aligned with visions for reform. This study adds to the research
base by exploring the usefulness of “identity” as a construct for accounting for teaching practice.
My larger research program, of which this study is a part, ultimately aims to understand the
concurrent evolution of teacher learning and identity in preservice education.
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This study investigated two preservice teachers’ emergent perceptions about learning and
understanding fractions while they engaged with and reflected on fraction-based children’s
thinking activities in a content course. Our findings show varying perceptions in regards to
mathematical content and their own understanding of mathematics. These findings are due,
in part, to the level of confidence the participants brought with them.

This study investigated two preservice elementary teachers’ perceptions about their
learning and understanding of fractions, which emerged as they engaged with and reflected
on fraction-based children’s thinking activities in a content course. Due to the vast number of
perceptions revealed, for this session we only focus on what perceptions emerged in regards
to the interrelated themes of mathematical content and the preservice teachers’ own
understanding of mathematics. For our purposes, these perceptions were conceptualized as
the result of applying individual prior knowledge, experiences, and beliefs to specific
settings. These settings were comprised of individual assessments and group discussions
within a content course and one-on-one interviews. We contend that a better insight into
preservice teachers’ perceptions is a critical tool for teacher educators to develop rich
activities that promote continued mathematical growth.

Sociocultural theory (Vyotsky, 1978) framed our study. Learning was viewed as a
function of environmental social interaction where knowledge was continually developed,
shared, and transmitted. Focused discussions allowed the preservice teachers to form
communities of practice (Lave & Wenger, 1991) in which they could extract meaning from
children’s explanations and share their developed knowledge with fellow classmates. By
interacting with children’s thinking in this way, we provided the preservice teachers an
opportunity to re-think their mathematical identities (Franke & Kazemi, 2001) and to make
mathematical discoveries of their own (Crespo, 2000).

Motivated by the literature on preservice teachers’ knowledge of fractions (e.g. Ball,
1990; Tirosh, Fischbein, Graeber, & Wilson, 1998), three graduate students (the two
researchers and an applied mathematician) developed a fraction-based module. This module
was created as a part of the Center for Mathematics Education of Latinos/as (CEMELA)1 and
served as the children’s thinking activities for this study since it centers on the written work
and follow-up explanations of four 5th-graders. To document what perceptions emerged in
this setting, two females in their junior year of coursework, Nora and Alisa2, were chosen to
be cases. They were selected based on their expressed interest and their responses on a
background profile and mathematical autobiography, specifically because of their differences
in their perceived ability level and educational backgrounds. We focused on two case studies
because we wanted to document not only what perceptions emerged but also to understand
the source of these perceptions, since in our view perceptions are based on an individual’s
prior knowledge, experiences, and beliefs.

 Data came from a variety of sources. Both a pre- and a post-assessment on the children’s
thinking activities were completed, with similar content questions asked on both and a self-
evaluation portion added to the post-assessment. A background profile and mathematical
autobiography were also collected, and all in-class discussions were video- and audio-taped.
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All written work done during the activities was collected, and two individual interviews were
conducted. The first interview took place prior to the start of the children’s thinking activities,
with the primary purpose of understanding the case study participants’ backgrounds and their
responses from the pre-assessment. The focus of the second interview, which took place after
the children’s thinking activities were completed, was on the case study participants’
reflection on their experiences, as well as on their responses from the post-assessment.

Findings indicate that while both case study participants attended to their own
mathematical understanding, they did so in very different ways. Alisa perceived the
children’s thinking activities as an opportunity in which she could take a step back and begin
to understand the concepts more deeply. This perception was seen various times throughout
the data. Alisa stated that prior to the children’s thinking activities she was aware that one
could interpret a fraction in different ways based on the context in which it was embedded.
However, she perceived herself as not completely knowledgeable about these different
fractional interpretations. As a result of her experiences within this setting, Alisa was able to
become more cognizant of this lack of knowledge. Additionally, Alisa commented on how
her understanding of equivalence of fractions had been strengthened. For example, she had
never really considered different-sized objects when making fractional comparisons. She
stated that, “… half of one jelly bean and half of a hundred jelly beans, you obviously have
more, but it doesn’t mean that the half is not equivalent.” In other words, she was

commenting on the power of understanding that 

€ 

1
2

1
=
50
100

, although the size of the wholes is

different.
On the other hand, Nora generally avoided discussing her understanding of mathematics

and instead perceived this lack of content understanding as a result of incomplete
explanations from her instructor: “…cause we asked him multiple times, like ‘Is this what
you mean?’ and he never really completely explained exactly what he meant.” The only time
Nora directly commented on her mathematical understanding was when she addressed her
difficulties with the children’s thinking activities stating, “The videos just confused me and
made me work very hard to keep the understanding that I had about fractions.”

In regards to mathematical content, Alisa was very open about how the children’s
thinking activities altered her view of fractions. Specifically, Alisa commented on the
meaning of fractions and the relationship she saw between whole numbers and fractions. She
noted that it was important to see a fraction as not just separate whole numbers but as part of
a larger class of numbers in which there is a connection between pieces and wholes. She
perceived whole numbers and fractions to be similar in certain aspects, but that fractions “are
a whole set of new numbers on the number line … they have their own unique way of doing
things.” In contrast, Nora never openly attended to the mathematics content present in the
children’s thinking activities, even though there were numerous opportunities to do so.

While both case study participants saw themselves as mathematically capable, Alisa was
more willing to share her view of mathematics than Nora. While there may be many reasons
for this openness, it is our contention that the level of mathematical confidence the case study
participants brought with them was a major factor. Alisa’s perception was that she was very
strong mathematically, which she associated to her family background and her prior
academic achievements. This perceived strength is supported by the leadership role Alisa
took within her group discussions and the deep level of self-reflection she provided on both
her self-evaluation and in the interviews. Nora, on the other hand, noted her lack of
confidence in understanding fractions, attributing it to her non-use of them in her everyday
life. In the classroom, she remained very quiet and assumed a docile role within the group
environment. Her reflections were mainly focused on her perceptions of the students and their
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thinking, and how mathematics, in her view, should be taught. It appears that her insecurity
with fractions limited her vocalization of her mathematical experience, both in terms of her
own understandings and her conception of mathematics.

With this study we are contributing to the research on the psychological factors that are
associated with how preservice teachers learn and understand fractions. Specifically, our
findings inform teacher educators of different factors to consider when developing teacher
education content coursework, in particular the preservice teachers’ level of mathematical
confidence. Additionally, while prior research has shown the benefit of using children’s
thinking as a method to develop both preservice teachers’ content and pedagogical content
knowledge (e.g. Crespo, 2000; Tirosh, 2000), this study demonstrates that it can also be used
as a setting for comprehending preservice teachers’ perceptions. This knowledge aids teacher
educators in determining the view of mathematical content and understanding of mathematics
that preservice teachers possess. Understanding perceptions about mathematical content is
vital because it can illustrate what misconceptions preservice teachers may have. Knowledge
of the perceptions that preservice teachers have in regards to their own understanding of
mathematics is essential so that teacher educators can develop instructional strategies and
settings that support preservice teachers’ continued mathematical growth.

Endnotes
1. CEMELA is a Center for Learning and Teaching and is funded by the National Science

Foundation under grant ESI-0424983. The views expressed here are those of the authors and
do not necessarily reflect the views of the funding agency.

2. Both preservice teachers’ names are pseudonyms.
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Learning to orchestrate class discussions that are based on students’ mathematical thinking
is one of the most difficult aspects of learning to teach in a reform-oriented way. Based on a
research project in which student teaching was restructured so as to focus on using student
thinking, we describe three factors that inhibited student teachers’ abilities to lead productive
classroom discussions: listening, understanding, and recognizing.

Mathematics classrooms wherein the teacher promotes mathematical discussion based on
students’ mathematical thinking, and then orchestrates that discussion in ways that facilitate
yet deeper mathematics thinking, is a hallmark of reform visions for mathematics classrooms
(National Council of Teachers of Mathematics, 1991). Orchestrating such discussions,
however, seems to be one of the most difficult aspects of this approach to teaching (Sherin,
2002), particularly for novice teachers. Many factors likely contribute to this difficulty, some
of which have been discussed in the literature. For example, Wood (1998) draws the
distinction between two patterns of classroom discourse: funneling and focusing. In the
funneling pattern, the teacher directs classroom discussion toward a preconceived “best
solution strategy” and away from alternative and wrong strategies. By contrast, in the
focusing pattern, the teacher seeks to capitalize on alternative and wrong strategies as a
means of elevating students’ mathematical thinking toward important mathematical ideas.
When placed in a situation where students’ mathematical thinking is being made public in the
classroom, novice teachers often follow the funneling pattern, turning the sharing of
alternative solution strategies into a lesson on the value of multiple strategies (“there are lots
of ways to solve these problems”) rather than a lesson on the important mathematical ideas
that are motivated by these alternative solutions. Our research set out to put novice teachers
(student teachers) in situations where they were eliciting students’ mathematical thinking, and
then to study how they navigated the road to using that thinking in their teaching.

One of the drawbacks of the traditional student teaching model is that student teachers
spend much of their energy trying to survive instead of focusing on the act of teaching. This
is because even a portion of a practicing teachers’ job is a great deal of work and takes a great
deal of time—the entire job is often overwhelming to student teachers. This focus on survival
often results in student teachers and their cooperating teachers focusing their attention on
developing skills in student and classroom management (Peterson & Williams, 2001). Little
time is left or taken to discuss lesson planning and revision, using student thinking and core
mathematical concepts.

Methodology
Six student teachers and three cooperating teachers were purposefully selected to

participate in the study. The student teachers were chosen based on feedback from their past
teachers, who were asked to recommend students who they felt were primed to excel during
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student teaching. Four of the student teachers in this study were placed in middle school
classrooms with teachers who were approaching their instruction from an NCTM Standards
perspective and were using a reform-based curriculum. The other two student teachers were
placed in a high school setting with a new teacher who taught more traditionally but was open
to learning new ideas and who supported the student teachers in implementing such ideas.

The student teachers spent significant time during the first five weeks planning together
and teaching individually just one lesson per week. All six student teachers, the cooperating
teacher and the university supervisor observed each of these lessons and participated in a
reflection meeting at the end of the day. Student teachers also conducted directed
observations and student interviews, and wrote extensively as a means of processing and
synthesizing what they were learning. In this way, we set out to alter the structure of student
teaching in ways that we believed (based on the literature and on personal experience) would
refocus the purpose of student teaching away from classroom management and on perceiving,
developing and using students’ mathematical thinking in the classroom.

Analysis of the overall structure of this student teaching experience indicated that the
refocus was achieved. Student teachers and cooperating teachers alike universally perceived
the primary purpose of the student teaching experience to be that of learning how to facilitate
and use students’ thinking in the everyday acts of teaching. Although the structure focused
student teachers and cooperating teachers on their students’ mathematical thinking, merely
eliciting student thinking is clearly not sufficient to produce mathematics lessons that are
actually influenced by that thinking. We thus asked the following research question: What
factors influence student teachers’ abilities to use students’ mathematical thinking to
orchestrate a class mathematical discussion?

Results
Regardless of whether the student teachers were using reform curricula in a middle school

or traditional curricula in a high school, they ran into similar issues when trying to conduct a
whole class discussion that would assist all students to come to a deeper understanding of the
underlying mathematics. We describe here three factors we identified that inhibited their
abilities to lead productive classroom discussions: listening, understanding, and recognizing.

The student teachers believed that their lessons would be more productive if their students
were given opportunities to make comments or to share their solutions to problems.
Sometimes this “student sharing” became a goal in and of itself. Thus, student teachers
sometimes felt that their goal had been met when students shared their work. They then failed
to listen to the content of the explanation. In such situations, the substance of the student
explanation was not viewed as useful, merely the fact that the student was explaining.

Once student teachers began to listen to the substance of the student thinking, they
struggled to understand what was being said. When leading a class discussion where students
are encouraged to share their thinking and methods for solving a problem, a student teacher’s
knowledge or experience may not allow them to understand a students thinking. Because the
student strategy is unique or different, the student teacher may not understand the point the
student is trying to make even though they are listening. Student thinking that is not
understood cannot be used to enrich the class discussion for the benefit of all students.

Beyond listening to and understanding a student’s mathematical thinking, the student
teachers often lacked the ability to recognize the pedagogical or mathematical value of what
was being said. At least two types of roadblocks inhibited the student teachers from
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recognizing the value of students’ thinking. The first roadblock to recognition occurred when
the student teachers filled in the blanks rather than asking the students to do so. Students
often use imprecise language when answering questions or sharing their work. The student
teachers often forgave this imprecision, assuming that the student understood what they were
inadequately describing. They failed to recognize such moments as important opportunities to
push the student to clarify their statements and thinking. A second roadblock to recognition
happened when the student teacher had in her mind an idea that she wanted to come out of
the student discussion (i.e., the funnel pattern). As a result of funneling toward that particular
idea, she failed to recognize other mathematical ideas that could have been accessed by way
of the students’ thinking.

Once a student teacher has listened to student thinking with the intent of using that
thinking, understood the mathematics presented, and recognized its pedagogical value, they
are positioned to use that thinking for the benefit of all students. Even with this proper
positioning, however, limited knowledge of how to use student thinking may inhibit their
ability to do so. An example of this occurred when a student teacher was launching a lesson
wherein students were going to solve problems using a calculator. They were to input
equations and look at the tabular outputs to make decisions about the situation. In anticipation
of this, the student teacher asked the students to identify the independent and dependent
variables in the equation 

€ 

C = 2πr . This was to be a quick review so the students could
properly input equations into a calculator. The student teacher wanted to hear that r was the
independent variable and C was the dependent variable. However, one student said that if she
put a piece of string around the circle, she could use that length to find the radius; this would
make the circumference the independent variable and the radius the dependent variable. The
student teacher listened to the student and understood the mathematical correctness of what
was said. She also recognized that the student had uncovered a complexity of the concept of
independent and dependent variables and that this would be a good time to explore that
complexity. This exploration did not take place, however, because she did not know how to
use the student thinking to initiate a class discussion. Because independent and dependent
variables were not the goal of the day’s lesson, the student teacher had not anticipated such a
discussion and was unprepared to pursue it. The student teacher had the skills to listen and
understand what the student was saying and even seemed to recognize the importance of what
was said, but she did not have the knowledge to integrate the thinking into the lesson.

Conclusion
Although much has been said about the importance of using significant mathematical

tasks in order to elicit students’ mathematical thinking, relatively little is known about the
factors involved in using that mathematical thinking effectively. These results illustrate the
complexity of this issue. More work needs to be done on designing and researching the
effectiveness of “learning to teach” activities that can help novice teachers learn how to listen
to, understand and recognize the value of their students’ thinking, and then be able to use that
thinking in order to orchestrate meaningful mathematical discussions.
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This study looks at elementary preservice teachers’ thinking when taught by an instructor
with specialized mathematics abilities.  As they struggle to understand Al’s multiplication
algorithms and his use of square numbers as basic facts, they gain an appreciation for his
divergent thinking and realize the depth of mathematical knowledge they need as teachers for
all children in inclusive settings.

 In 2001, Al and I met at a birthday party for a faculty member at the Center for Human
Development. Al was “wowing” people with this ability to multiply large numbers very
quickly.  When Al sat down next to me, I asked him to show me another problem. He did. I
then asked him if he was thinking about the two problems in the same way. He laughed and
said, “Of course, this pattern works for all numbers but I have better ones for some numbers.”
Thus Al and I began to have weekly math meetings with Al calculating large products and me
asking questions about his thinking. Al shared that he grew up institutionalized. He entered at
age two and did not leave until such institutions were closed and he was placed in an adult
group home. His education was limited. As Al and I worked, we began to develop a routine
comfortable for both of us and I began to recognize Al’s math vocabulary.  Al’s use of
“pattern” is referring to a procedure he has developed for a particular set of numbers. Al’s
basic algorithm for multiplication is based on a visual image of a “barn-door.”  Other
procedures for working with squaring numbers with zero as the center digit are called Mac
Donald problems after the symmetry Al sees both in the Mac Donald M and in this set of
numbers. While Al also has a love for calculating roots of numbers, I asked him to share his
thinking about multiplication and teach a lesson to my preservice students. Al has been
teaching with me every semester since.

This study documents our experience of teaching together and the mathematical
understandings and teaching insights gained by me, by Al, and by the preservice student
teachers in the elementary mathematics methods class. One student spoke for many when she
wrote, “As a teacher in inclusive settings we interact with children with special needs but we
don’t always see that the student has special abilities.  I would not have probed a student’s
thinking the way we did with Al today.  I would have missed the child’s strengths -  my math
is not good enough to recognize what Al was doing without his being able to talk me through
it.”

References
Edgerton, R.B. (1993). The cloak of competence. Berkeley, CA: University of California

Press.
Treffert, D. A. (2006).  Extraordinary people: Understanding Savant Syndrome. Lincoln,

NE: iUniverse, Inc.



1084

______________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

BEYOND POSITIVE DISPOSITIONS: EXPLORING PRESERVICE
TEACHERS’ ORIENTATIONS ABOUT MATHEMATICS

ACHIEVEMENT IN HIGH-POVERTY CONTEXTS

Shonda Lemons-Smith
Georgia State University
slemonssmith@gsu.edu

     With the changing demographics in the United States it is critical that preservice teachers be
adequately prepared to provide effective, high-quality mathematics instruction to all students
regardless of their race, ethnicity, gender, socioeconomic status, culture, or other characteristics.
Recent demographic data indicates that approximately 48.3 million children, prekindergarten to
grade twelve, are enrolled in United States public schools. Of these students, 43% are members
of a racial or ethnic minority group, 19% speak a language other than English at home, and 14%
receive special education services (Rooney, 2006). Further, the U.S. Census Bureau data reveals
that about 18% of children under eighteen years old are living in poverty.
     Now, more than ever equity in mathematics education is critically salient. With the passage of
the No Child Left Behind Act, schools must address traditionally underserved populations (i.e.,
students of color, students who live in poverty, females, students who are not native speakers of
English, students with disabilities) that have long been ignored. Teachers must function as agents
of change and challenge the pervasive societal belief that only some students are capable of
learning mathematics. They must hold high expectations for all students and these expectations
must be reflected in all aspects of the mathematics teaching and learning process – from
instructional planning and decision making to implementation and assessment. Teachers must
also challenge the implicit, often unspoken, notion that only the experiences of some students are
valuable and reflect mathematical knowledge. The lived experiences, prior knowledge,
intellectual strengths, and personal interests of all students should be valued and utilized as a
springboard for learning. Therefore, mathematics teachers must reconceptualize the nature of
students’ mathematical knowledge, bridging informal and formal mathematical experiences, and
providing students opportunities to demonstrate their understanding of mathematics in a
multitude of ways.
     Given the critical importance of reaching all mathematics learners, this study sought to
examine elementary preservice teachers’ perspectives of mathematics teaching and learning in
high-poverty contexts. Specifically, (a) How does teachers’ orientations toward mathematics
achievement differ from dispositions? and (b) What attributes reflect teachers’ orientations
toward mathematics achievement?

Theoretical Framework
     The theory of culturally relevant pedagogy (Ladson-Billings, 1995) served as the theoretical
framework for examining elementary preservice teachers’ perspectives of mathematics teaching
and learning in high-poverty contexts.
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     The pre-service teachers’ orientations toward mathematics achievement were categorized and
analyzed with respect to the three broad propositions of culturally relevant pedagogy:
conceptions of self and others, social relations, and conceptions of knowledge. Ladson-Billings
(1995) asserts that culturally relevant teachers exhibit the following broad qualities with respect
to the underlying propositions: (a) Conceptions of self and others suggests that culturally
relevant teachers hold high expectations for all students and believe all students are capable of
achieving academic excellence; (b) social relations infers that culturally relevant teachers
establish and maintain positive teacher-student relationships and classroom learning community
as well as are passionate about teaching and view it as a service to the community; and (c)
conceptions of knowledge suggests that culturally relevant teachers view knowledge as fluid and
facilitate students’ ability to construct their own understanding.

Methodology
     Participants in this study are elementary preservice teachers enrolled in an alternative
certification program. The full-time, accelerated program focuses on and is specifically designed
for individuals committed to teaching in urban, high-poverty contexts.
     Participants engaged in professional learning communities throughout the study. The
professional learning communities, referred to as mathematics circles, consisted of three
preservice teachers. Together they explore and tackle (a) personal ideologies, (b) myths and
stereotypes, and (c) pedagogical issues related to mathematics teaching and learning in high-
poverty contexts. Circles met bi-weekly over the course of a semester. At the initial session
preservice teachers completed a questionnaire related to their dispositions, ideologies, and
orientation toward mathematics achievement in high-poverty contexts. At the subsequent
sessions preservice teachers shared pedagogical artifacts (lesson plans and student work), and
oral and written testimonials about field-based teaching episodes. Testimonials were stimulated
utilizing prompts, but participants were also strongly encouraged to share any information that
they wanted to with the group.
     This study employed a qualitative research design. Data sources for the study were a
questionnaire, pedagogical artifacts, written testimonials, and researcher field notes from oral
testimonials. Interpretive analysis was used to identify themes and patterns among the data sets.
Themes and patterns were coded and organized into three categories reflecting the broad
propositions of culturally relevant pedagogy: conceptions of self and others, social relations, and
conceptions of knowledge.

Results and Discussion
     Preliminary findings indicate that orientations toward mathematics achievement do differ
from dispositions. The National Council of Accreditation for Teacher Education (NCATE)
defines professional dispositions as “The professional behaviors educators are expected to
demonstrate in their interactions with students, families, colleagues and communities. Such
behaviors support student learning and development and are consistent with ideas of fairness and
the belief that all students can learn.” This study found that orientations tended to be more
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action-driven (i.e., what teachers actually do) while dispositions reflected more of an affective
stance (i.e., what teachers believe and feel).
     This study also found that attributes of orientations toward mathematics achievement are
closely aligned with the theory of culturally relevant pedagogy in that they express notions of
self and others, social relations, and knowledge.
     The preliminary findings offer insight into elementary preservice teachers’ perspectives of
mathematics teaching and learning in high-poverty contexts. Given the changing student
demographics of 21st century schools, this study is germane and contributes to the knowledge
base of mathematics teacher preparation, and more broadly to issues of equity and achievement
in mathematics education.
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BREAKING NEW GROUND: UTILIZING AN ON-SITE UNIVERSITY FIELD
EXPERIENCE TO FACILITATE TEACHER DEVELOPMENT

Babette M. Benken
California State University, Long Beach

bbenken@csulb.edu

This study investigated requiring an additional field experience for prospective secondary
mathematics teachers prior to beginning an internship. This work extends this underdeveloped
area of research by: (1) having prospective teachers be instructors during this field experience,
and (2) providing a new context (remedial math courses at a university) through which to
prepare teachers and study models of teacher education.

The on-going teacher shortage in California has prompted the Board of Education to offer an
alternative option to the traditional semester of student teaching for students seeking an initial
credential at the secondary level. This option (internship) allows prospective teachers to be hired
for one school year, during which they assume full responsibility for classes and are mentored by
the district. While this approach allows interns to be paid and provides districts with individuals
to teach classes, many prospective teachers are not prepared for such extensive teaching
responsibilities and struggle to successfully complete their internships. The minimal support
interns are provided is not sufficient to compensate for the weak knowledge base of most interns.

This study examined one approach to supporting success within the internship option by
exploring the outcome of requiring an additional field experience prior to beginning an
internship. For this new field experience each participant taught a section of intermediate algebra
at our university with mentoring and rigorous supervision provided by a faculty member in the
mathematics department. The new field therefore provided prospective teachers with the
opportunity to learn about how to teach algebra in a controlled situation (supervised university
course), yet without the added dimension of attending to the needs of adolescent age students.
This approach is modeled after Lab Schools, which were K-12 schools created on university
campuses to provide a context for student teaching, and have been shown to be effective in
teacher development (Cardellichio, 1997). The following research questions guided data
collection: (1) What do prospective teachers appear to learn during the new field experience?
(Phase One), and (2) What factors appear to support and/or hinder the effectiveness of the new
required field in preparing prospective teachers for a successful internship? (Phase Two).

Preliminary Results
Preliminary results suggest: (1) participants felt more prepared and confident to teach algebra

at the secondary level at the conclusion of the field experience, (2) participants expressed less
fear about pursuing an internship than they did prior to beginning the experience, (3) participants
gained knowledge in multiple aspects of teaching practice (e.g., pedagogical content knowledge),
(4) participants perceived the collaborative structure of the meetings and observation feedback to
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be most useful aspects of their experience, and (5) the university supervisor believed that both
participants grew in their ability to both teach and reflect on their practice.
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COLLABORATING WITH MIDDLE GRADES MATHEMATICS
TEACHERS TO IMPROVE CLASSROOM DISCOURSE
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Iowa State University
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This poster reports findings from a five-year NSF-funded research collaboration (Herbel-
Eisenmann, PI) involving the authors and eight middle-grades mathematics teachers. The goal of
this collaboration is to understand how having mathematics teachers do action research on their
classroom discourse can impact their discourse practices and beliefs over time.

The action research model adopted for this study is based on an apprenticeship model (CITE)
in which: 1) the university-researchers (URs) collected and analyzed data to report back to the
teacher-researchers (TRs) (AY 05-06), and 2) the TRs conduct their own action research projects
within the community of this collaboration (currently). During Stage 1, each TR was observed
for a week in September, November, January, and March. All observations were video-taped and
transcribed using Transana (Fassnacht & Woods, 2005). The observations were coded based on
Lemke’s (CITE) Activity Structures (AS), allowing us to identify the number of minutes spent
on each AS (e.g., Going over Homework, Seatwork). This information then was used to create
pie charts of the percentage of time spent on each AS each week and across the three weeks (1).
We also created mappings that showed the flow and organization of AS for each lesson. Finally,
a turn-length word count was done to determine the number of words spoken by each teacher
versus their students in each week as well as across the first three weeks. After reporting this
descriptive quantitative information to teachers, they were asked to choose AS to be analyzed
qualitatively by the URs, using systemic functional grammar (Halliday CITE).

Based on an analysis of project meeting transcripts, this poster will focus on the following
findings about the teachers’ discussions of the data and analyses that we reported to them:

• The teachers were surprised by the number of shifts in AS in their classrooms and
thought that many of the shifts were transparent to students.

• The teachers were disappointed (but not surprised) by the number of words they
spoke in comparison to their students.

• Most teachers asked us to analyze AS in which they were interacting with small
groups or individual students.

• All teachers identified language patterns that they thought might be undermining their
professed beliefs.

• Many teachers are interested in using revoicing more strategically, not “interrupting”
students as often, being more careful about vague referencing, and trying to use
“focusing” patterns rather than “funneling” (Wood CITE) ones.

Although there is a growing body of literature that analyzes mathematics classroom discourse,
little of this work has been done with teachers to better understand what and how they find this



1090

______________________________________________________________________________
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education,
Stateline (Lake Tahoe), NV: University of Nevada, Reno.

information to be useful. The work reported in this poster can help teacher educators better
understand teachers’ perspectives on their classroom discourse.

Endnote
The fourth week of data was reserved for validity checks, e.g., following up on observed

patterns, searching for discrepant events.
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 ELEMENTARY PRESERVICE TEACHERS’ EXPERIENCES WITH TANGRAMS
 

Guney Haciomeroglu  Erhan Selcuk Haciomeroglu
 Canakkale Onsekiz Mart University             University of Central Florida
             guneyh@gmail.com    erhansh@mail.ucf.edu

Use of concrete manipulatives promotes students to develop long-term skills that are
practical for helping children to move from the concrete to the abstract level.  However,
establishing this bridge between these levels requires careful construction of manipulatives
by a teacher (Hartshorn & Boren, 1990).

In this research study, our goal was to examine how preservice teachers were challenged
and succeed in tangrams activity, and how they would use tangrams in their classrooms and
the reasons behind their choices.  In addition, we examined how they would use a learning
activity involving tangrams to teach other concepts of mathematics to students.

Twenty-nine junior elementary preservice teachers who were enrolled in Mathematics
Teaching course participated in the tangram activity.  The tangram activity consists of two
phases that took three weeks for preservice teachers to complete.  In the first phase,
preservice teachers created 7 geometric figures of tangrams (i.e., two small size triangles, one
medium size triangle, two large triangles, square, and parallelogram) following the
instruction of Russell and Bologna (1983).  In second phase, 5 different geometric figures
(i.e., triangle, square, rectangle, trapezoid, and parallelogram) were created using 3 (i.e., two
small triangles and one medium size triangle), 5 (i.e., two small size triangles, one medium
size triangle, square and parallelogram) and 7 pieces of tangrams.  Then, they were asked to
calculate perimeter and area of each geometric figure, and compared their findings.

Although preservice teachers had no experience with use of manipulatives including
tangrams, they were easily engaged and involved in the activity.  However, they were
challenged when they were creating geometric figures due to their lack of experience with the
use of manipulatives.  They calculated length of the sides of the geometric shapes (e.g., small
triangle, parallelogram) using side of a square as 1 unit.  As they calculated perimeter and
area of each geometric figure, they compared values of perimeter and area across 5 geometric
figures (a triangle, a square, a rectangle, a parallelogram, and a trapezoid).  They noticed that
perimeter for each geometric figure changes area is always constant.

Preservice teachers indicated using tangrams would be helpful for elementary grade
students to better understand the characteristics of geometric shapes by rotating, turning over,
or sliding the pieces.  They also suggested that tangrams could be used for teaching fractions,
ratio and proportions.  However, they were unable to see that this activity leads to
development of general formulas for finding the area of a particular shape.  It is also helpful
for students to better understand the formulas for finding perimeter and area of geometric
figures and review them after they have been taught.  Effective teacher preparation requires
that preservice teachers involve in the learning activities that they will utilize in their
classrooms.  By reflecting on their participation in challenging and meaningful activities, they
can begin to think more effective classroom practices (Thatcher, 2001).
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HOW PRE-SERVICE ELEMENTARY TEACHERS
DEFINE BEING GOOD AT MATHEMATICS

Christine M. Phelps
University of Delaware

cmphelps@udel.edu

There is some evidence that pre-service teachers’ (PSTs’) prior experiences and beliefs
affect their teaching confidence in mathematics (e.g. Brady & Bowd, 2005) and some
evidence that pre-service teachers’ prior experiences and beliefs affect their eventual teaching
(e.g. Artzt & Curcio, 2003). One type of belief that may affect PSTs’ teaching confidence and
future teaching is PSTs’ beliefs about what it means to be successful in mathematics. There
has been some previous work in how students define success in mathematics (e.g. Nicholls et.
al, 1990). However, there appears to be little or no work in how pre-service teachers define
mathematics success. The goal of this study is to examine these beliefs. In particular, I pay
attention to ideas of mastery and performance orientation and to ideas of natural ability and
effort in mathematics.

The six participants were randomly selected from students who were enrolled in the first
content course for elementary teachers at a mid-Atlantic university; all were female and five
were first year students for whom the content course was their first college math class. The
PSTs participated in an interview at the beginning and end of the semester. Both interviews
were designed to examine the pre-service teachers’ definitions of what it means to be good at
mathematics by focusing on their past and present experiences in math courses.

I analyzed the data using a qualitative coding method that focused on the varying
definitions that the pre-service teachers gave and ranked these definitions according to
prominence. I found a fair amount of variation in how these six pre-service teachers defined
being good at mathematics. For example, one PST seemed to define being good at math
predominantly as mastering the material; yet another pre-service teacher seemed to define it
as performing well on exams and getting good grades. Several PSTs seemed to define being
good at math as having a natural ability for it and several defined being good at math as the
amount of effort a student exerted toward mathematics. Overall, I found that the definitions
provided by the PSTs were more robust than I had expected based on the available literature.

This study provides support for the variety in definitions of success in mathematics.
Further, the study has implications for research on preparing teachers. For example, a PST
who believes being good at mathematics is a matter of natural ability may be less inclined to
learn the material in their content course well and may end up feeling unconfident in their
ability to teach mathematics. More research is needed to understand these implications.
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MATH CONTENT COURSES FOCUSED ON CHILDREN’S
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This study presents results from an ongoing evaluation that examines the outcomes of an NSF
grant project that provided prospective teachers with a supplemental course text to help them
develop an understanding of how children learn mathematical concepts. Results from earlier
studies indicated that prospective teachers reported significantly higher efficacy regarding their
ability to understand math and their ability to teach mathematics to children and attributed those
differences to using the textbook. Results from the current study verify through control and
experimental groups that efficacy beliefs can be changed in math content courses that focus on
children's thinking. The present study also determined that prospective teachers' efficacy for
understanding and teaching math is correlated to distinct beliefs about mathematics such as the
belief that children solve and think about mathematics differently than adults and that children
may be guided to mathematical understandings through inquiry methods rather than by direct
instruction. Teaching math content courses focused on children's thinking may be a valuable way
to address and change beliefs and efficacy about mathematics and may lead to changes in future
teaching practices.

The results of this study are derived from the evaluation results of an NSF project, Connecting
Mathematics for Elementary Teachers (CMET). The primary goal of the CMET project is to
connect the mathematics that prospective elementary teachers are learning in their content
courses with how children learn and think about mathematics. To reach this end, a supplemental
textbook was designed to align with current math for teachers textbooks. This supplement
provides college students with an insight into how children think about a variety of math
concepts through sample problems and research into how children think.

This textbook has been aligned to supplement a variety of mathematics content textbooks for
prospective elementary teachers and extend the traditional textbook by providing information
about how children think, misunderstand, and come to understand mathematics. These
descriptions are based on current research and include: how children come to know number, how
they understand addition as a counting activity, how manipulatives may embody mathematical
activity, and how concept image impacts children’s understanding of geometry. It is important to
note that CMET is not a methods textbook, but it is designed as a supplement for traditional
mathematical content courses for elementary teachers.
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USING IDENTIFYING NARRATIVES TO EXAMINE INTERNS' RESPONSES
IN AN ELEMENTARY MATHEMATICS TEACHER EDUCATION COURSE

Joy Anne Oslund
Michigan State University
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The impact of Teacher Education (TE) courses on the practice of future teachers has
been a long-standing question. Research often reports on the weak impact of such
courses. This study tackles this issue from a somewhat atypical perspective--by
investigating interplay between prospective teachers’ identifying narratives and their
interactions with the goals of a TE course focused on mathematics reform and equity.

Drake and Sherin (2006) looked at teachers' differences in adaptations of reform
curricula alongside their mathematics narratives. Sfard and Prusak (2005) looked at
differences in students' mathematics achievement in relation to their “identifying
narratives", naming two categories: actual identity narratives (who one is in the present)
and designated identity narratives (who one hopes or plans to become). Building on these,
two teacher interns' identifying narratives were examined for insights into their responses
in a mathematics TE course exploring issues of equity and reform. The author (also the
instructor) chose two interns that seemed to have different responses to the course:
Meredith cautiously accepted some new ideas, and Janelle resisted the ideas of the course.
Data include pre- and post- course assessments, videotapes of course discussions, and
assignments.

Analysis revealed different patterns of identifying narratives between the interns.
Meredith's changed during the semester. She told 14 designated identity narratives in the
data and 13 actual identity narratives. She told 10 identifying narratives in the first two
weeks, 8 of which were designated, In the last two weeks, she told 3 identifying
narratives, one of which was designated. The character of her identifying narratives
changed; those in the first weeks mention a variety of wishes, and narratives in later
weeks focus narrowly on a sense of agency and a student-centered pedagogical stance. In
contrast, Janelle did not demonstrate qualitative changes in her identifying narratives, and
after the pre-assessment, her number of them remained stable. Her lack of designated
identity statements overall is notable. She told 36 actual identity narratives and 6
designated identity narratives in the data collected. They were about a variety of topics,
such as communicating with parents and learning about curriculum. Five of her 6
designated identity narratives occurred during the first week of class, with the remaining
one on the last week. Janelle did not discuss mathematics in her designated identity
narratives. Her identifying narratives were characterized by a lack of agency, as she
talked about her inability to influence students and society.

The analysis gleaned insights into the relationship between these interns' identifying
narratives and responses to reform and equity in a math TE course. It is possible that the
ways in which teachers construct identifying narratives impacts their responses to reform
and equity in mathematics education. The study has implications for teacher educators
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and researchers seeking to understand and attend to teachers' visions of mathematics
teaching and learning.
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Teachers’ mathematical knowledge for teaching (MKT) has been found to impact teacher change
(Hill, Rowan, & Ball, 2004). This study examines teachers’ development of MKT as they
implement dynamic geometry software (DGS) with a coach. We relied on Laborde’s (2001)
account of expertise in teaching using DGS as an analytical tool to categorize teachers’ ways of
using DGS to teach geometric reasoning. We found a relation between teachers’ expressions of
MKT and their ways of using DGS, based on qualitative evidence.

Introduction and Theoretical Framework
Teacher knowledge has taken center stage as researchers seek to improve mathematics

education in the United States. However, content-specific professional development has not
brought about significant teacher change. Alternatively, several studies have surfaced that point
to specialized teacher knowledge as a key to effective reform. The seminal study relating teacher
knowledge to student achievement found that mathematical knowledge for teaching (MKT) was
a key to predicting student gains in first and third grade (Hill, Rowan, & Ball, 2004). We explore
ways of improving one aspect of MKT, geometric reasoning, as teachers participate in
collaborative professional development emphasizing the use of dynamic geometry software
(DGS) in their classrooms.

Components of Mathematical Knowledge for Teaching (MKT)
Subject Matter Knowledge Pedagogical Content Knowledge
Common Content Knowledge (CCK) Knowledge of Content and Students (KCS)
Specialized Content Knowledge (SCK) Knowledge of Content and Teaching (KCT)
Knowledge at the Mathematical Horizon Knowledge of Curriculum

Table 1. Components of MKT

Ball, Bass, Goffney, and Sleep (2006) defined mathematical knowledge for teaching as the
“mathematical knowledge, skills, [and] habits of mind that are entailed by the work of teaching”
(Slide 5). More specifically, Ball and her colleagues categorize mathematical knowledge for
teaching MKT in six parts. Common content knowledge is basic, lay-person knowledge of the
mathematical content. Specialized content knowledge (SCK) is the way the mathematics arises
in classrooms, such as for building representations. Knowledge of content and students (KCS), is
knowing how students think about mathematics. Knowledge of content and teaching (KCT)
involves knowing the most effective examples or teaching sequences.  We understand Shulman’s
(1987) definition of pedagogical content knowledge to be a marriage of knowledge of content
and students (KCS) with knowledge of content and teaching (KCT). Knowledge of curriculum
and knowledge at the mathematical horizon are the final components of mathematical knowledge
for teaching. In this study, we focused on specialized content knowledge (SCK), knowledge of
content and students (KCS), and knowledge of content and teaching (KCT). We believe teachers
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engage students in substantive mathematics as they use DGS to relate and contrast variant and
invariant elements in constructed objects and attend to special cases and boundary cases
(Arshavsky & Goldenberg, 2005; Laborde, 2001; Presmeg, Barrett. & McCrone, 2007).

Because of the demonstrated link between mathematical knowledge for teaching and student
achievement, this study sought, through microgenetic analysis, to unpack the psychological
processes of how teachers develop MKT.  The teachers in our study were engaged in
professional development through an NSF-funded Graduate Teaching Fellows in K-12 Education
(GK-12) project (Moore, 2003).  GK-12 places graduate mathematics and science fellows in
classrooms as collaborative coaches who design and deliver standards-based instruction with
classroom teachers. Thus, the GK-12 model of professional development allows the transfer
from theory to practice, a task which Bazzini and Morselli (2006) have identified as worthwhile,
yet complex.

Research Questions
Because appropriate use of dynamic geometry software affords teachers new opportunities

for discourse with their students we posed the following research question and sub-questions:
In what ways do teachers develop mathematical knowledge for teaching as they engage with

a collaborative coach to prepare and implement inquiry-based lessons within a dynamic
geometry computer environment? In particular in the DGS environment:

1. In what ways do teachers develop common content knowledge (CCK) and specialized
content knowledge (SCK)?

2. In what ways do teachers develop knowledge of content and students (KCS) and
knowledge of content and teaching (KCT)?

Methods and Analysis
Four 5th-8th grade teachers and three GK-12 fellows participated as case studies in this multi-

tiered teacher development experiment (Presmeg & Barrett, 2003; Lesh & Kelly, 2000).
However, for purposes of this report, we narrowed our focus to the mathematical knowledge for
teaching development of one case study teacher. Mrs. Gerber collaborated with a fellow to teach
22 Sketchpad-based lessons in her 6-8th grade classes over the course of two years. To collect
data, we videotaped all but three of the 22 classes. In addition to videotapes, the teacher
participated in interviews before and after each lesson and before and after the unit of Sketchpad-
based lessons.

To triangulate the data, the fellows wrote pre and post reflections of the lessons. Moreover, to
establish trustworthiness, the fellow from the second year (the third author of this report)
engaged in respondent validation. The first author of this report acted as a participant-observer.
Data was analyzed for development in mathematical knowledge for teaching with regard to
common content knowledge, specialized content knowledge, knowledge of content and students,
and knowledge of content and teaching. Inter-rater reliability of 81% was established among
codes for identical portions of at least three transcripts per fellow, after which the first author
coded the remaining transcripts.

To identify development of specialized content knowledge, data was further analyzed with
respect to the levels of DGS use ascribed to novice versus expert teachers by Laborde (2001).
Level one involved creating and measuring figures. Level 2 added dragging to amplify and
explore geometric properties. Level three tasks allowed for dynamic solution strategies, although
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they continued to have paper and pencil counterparts. Level four tasks derived their meaning
from and depended on dynamic geometry. The first and second author coded lessons for Laborde
levels independently. We then reconciled differences by considering further details of the lessons
and by reading and discussing observer field notes and fellow’s written reflections.

Results and Discussion
To illustrate Mrs. Gerber’s development of MKT, we discuss a classroom episode from each

year. In the first episode, the students had constructed tessellations based on translating modified
parallelograms by a marked vector. During the post reflection, the teacher and GK-12 fellow
(first author) discussed how students had produced a tessellation with a hole in it. As they talked,
it became apparent that Mrs. Gerber believed that the concept of vector depended on position, a
misconception similar to that of a student described by Hollebrands (2007).  In response, the
fellow conveyed to her that vectors involve direction and distance, but not position. Thus,
reflection, along with the capacity of Sketchpad to amplify what was variant (position) and what
was not (vector), revealed the teacher’s misconception.

Mrs. Gerber developed three components of mathematical knowledge for teaching in this
episode. First, she developed specialized content knowledge (SCK) as she observed the fellow
teaching students about vectors on Sketchpad. She commented, “I wasn’t thinking of the vector
showing the direction. And you [the fellow] made the comment, you said that that vector’s going
to show direction and distance. I thought, ‘Yeah, that is what it’s doing. It’s moving it over.’”
Her observation of the fellow in a practice-based setting enhanced her learning above the
common content knowledge that she may have learned previously in a lecture course. Secondly,
she developed specialized content knowledge (SCK) as she reflected with the fellow about a
student production using DGS. The fellow identified her misconception and corrected her using
the context of student work. Thirdly, she developed knowledge of content and students (KCS) as
she and the fellow considered what the students had done wrong. Finally, the teacher developed
knowledge of content and teaching (KCT) as she gained confidence to teach geometry using
Sketchpad by watching the fellow teach and by answering student questions with the fellow
present for support. During the post reflection, the fellow asked, “Do you feel comfortable
enough to [use the DGS] with 6th grade [without my assistance]?” She responded, “I think I do if
I can finish with 8th grade and yeah, because by 7th grade I felt better. I knew what I was doing.”
She had observed and co-taught the same tessellation lesson to first 8th and then 7th grade. Later
in the year, she taught the lesson alone to her 6th grade class, providing evidence of growth.

In the second year a series of lessons using DGS was implemented to teach quadrilateral
properties. To conclude the unit, the teacher and fellow collaboratively developed a lesson to
assess whether students had learned how to classify quadrilaterals according to their properties.
They decided to provide students with an unbreakable kite on Sketchpad, and assign them the
task of identifying its properties and placing it within an existing taxonomy of quadrilaterals (See
Figure 1). During the pre-lesson planning meeting, the fellow explained his idea for the task,
which was beyond what the textbook presented. They discussed including always, sometimes,
and never relationships within the arrows of the taxonomy which moved from general to specific
figures (Battista, 1998). Together, Mrs. Gerber and the fellow decided that the model held true
for the always propositions as one might travel upwards through the taxonomy, and the
sometimes propositions held true as one moves down through the taxonomy. For example, a
square is always a rhombus because it is located below the rhombus and connected by a down
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arrow in the taxonomy. As one moves upwards, from square to rhombus, one finds that a given
square is always a rhombus. Alternatively, a rhombus is sometimes a square (as one would find
by moving downwards along the arrow). They realized that propositions labeled never would not
fit this taxonomy.

Figure 1. Quadrilateral Taxonomy

During the actual lesson, the teacher and a pair of students dragged the kite into the shape of
a rhombus. Together they decided that a kite should have an arrow from it, downwards to a
rhombus, signifying that a kite is sometimes a rhombus. This would match their experience in
moving the kite around and forming it into a rhombus. Five months later in her final interview,
Mrs. Gerber was not immediately certain that there should be an arrow from the kite to the
rhombus. After reasoning through the properties of the figures in the taxonomy, she deduced that
there should be an arrow showing that a kite is sometimes a rhombus. However, she indicated
that she would like to check it in her notes to be sure, as can be seen in the following quote from
her final interview.

Mrs. Gerber: Well and he [the fellow] did them, we did them in school too, but then we were
trying to make sure that when we made this diagram that the kids could see where it was
coming from because we were going with sometimes and always.

AK: OK
Mrs. Gerber: And so from the quadrilateral, uh, a quadrilateral is sometimes a parallelogram.

Then, a parallelogram is sometimes a rhombus, or it’s sometimes a rectangle.

      Rectangle

Parallelogram

Trapezoid

Rhombus

Quadrilateral Taxonomy

Kite?

Square
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AK: OK
Mrs. Gerber: OK. [Pause.] And then a rectangle or a rhombus is sometimes a square.
AK: So you had arrows going to the square.
Mrs. Gerber: Mhm, to the square. And the square was down at the end. Now, the trapezoid was

up here. A quadrilateral is sometimes a trapezoid. But we put it over to the side because a
trapezoid does not fit with the parallelogram. The properties don’t. Or the rectangle or
rhombus or square. And then we also had a kite. And kite came over here, and a
quadrilateral is sometimes a kite. Now, you know what? I think we had an arrow from the
kite to the rhombus. [long pause] I’d have to go back and look at the papers. But I think we
did relate it down here that if the kite had four congruent sides, it could be a rhombus
because your opposite angles, not opposite angles, well the ones opposite each other yeah,
they would be could be congruent. I mean you could make a kite that way, and it would be
OK. And so I think we had, I’m going to do this. [She drew a dashed arrow from the kite to
the rhombus.]

Mrs. Gerber was finding that she did not have to recall every fact of geometry, nor look it up in a
reference book. Instead, she was comfortable recalling this reasoning process on her own, even
five months later. Another issue from the lesson arose when the fellow asked the class if a square
is a kite. Students struggled with the question. Later, during a post reflection, the teacher and
fellow discussed the reason for the students’ difficulty and related it back to the property that a
kite has at least one bisected diagonal. Students may have been thinking of a kite as having
exactly one bisecting diagonal, which would have excluded the square (cf. Scher, 2005).

Mrs. Gerber again developed three elements of mathematical knowledge for teaching during
this second episode. First, she and the fellow both developed specialized content knowledge
(SCK) as they discussed the labeling of always, sometimes and never within the taxonomy. Mrs.
Gerber developed knowledge of content and teaching (KCT) as she and the fellow raised the
Laborde (2001) level of the lesson to level two from how she typically taught at level one or
from a traditional text book without any use of technological tools. Using DGS to study variation
contributed to the teacher’s development of specialized content knowledge (SCK) as she and her
students dragged the kite into a rhombus and discussed the relation of rhombus and kite. Her
procedural knowledge of properties had developed into knowledge of relationships among
properties as she engaged in pseudo-deductive reasoning in her final interview (Hollebrands,
2007). Moreover, her confidence to conjecture with students on Sketchpad indicates she was
developing profound understanding of fundamental mathematics (Ma, 1999) and SCK. DGS
further allowed Mrs. Gerber to hear her students and see their actions on DGS simultaneously,
which led to knowledge of content and students (KCS).  For example, as a student investigated
the properties of a kite on sketchpad, the following discourse ensued:
Mrs. Gerber: Now you said opposite angles are congruent. So are you saying this one and this

one?
Student: Yeah.
Mrs. Gerber: What about these two?
Student: No! [student modifies the property that he had typed.]

By questioning the student in relation to his sketch, Mrs. Gerber was able to figure out that a
student had discovered one set of congruent opposite angles in a kite, but had neglected to
investigate the other set. She learned that it took students time to reason through properties of
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figures, and she was surprised that some of her students who did not typically excel on paper and
pencil tasks flourished in an open-ended DGS environment. This KCS result builds on
Hollebrands’ (2007) account of such an environment “by discussing or referring to a common
shared screen, the teacher and student can communicate mathematical ideas through the use of
visual images” (p. 168).  Finally, as with the first episode, the post reflection allowed for the
fellow and teacher to discuss a perturbation from the lesson. It was decided that a quadrilateral
having at least one perpendicularly bisecting diagonal best defined the kite. Thus, the teacher
developed specialized content knowledge (SCK) during the post reflection.

Student understanding in the second year was assessed through a 23-item pre/post test
written instrument. The 29 7th-grade students were asked to respond with always, sometimes, and
never to statements relating various subclasses of quadrilaterals. For example, one question
stated, “A parallelogram is a rhombus.” Students performed significantly better on the post test
than on the pre test (p=.000). The mean score for the pretest was 9.4, whereas the mean for the
post test was 14.7, with an average 5.3 point increase in scores. Using DGS facilitated student
understanding and teacher knowledge.

Conclusions and Implications
The two episodes described here typify the coaching arrangement of this teacher with fellows

and their use of a DGS. Lasting change in Mrs. Gerber’s mathematical knowledge for teaching,
however, can best be seen across the two-year span. In the first year, she focused largely on
“teaching Sketchpad,” whereas in the second year her focus was better characterized as “teaching
geometry using Sketchpad as a tool.” For example, learning to use DGS as a tool for showing
geometric ideas facilitated her mathematical definitions of those ideas or objects since she found
herself explaining to students what particular dragging or constructing actions within the
software meant in terms of the geometric objects and relations among them. She learned to
attend to student screens to find what aspect of her explanations or definitions they did not yet
understand. She could then decide how to clarify her definition, thus developing specialized
content knowledge (SCK).

Rather than relying solely on DGS lessons from the GK-12 program, she began in the second
year to teach and envision her own DGS lessons. Lessons taught with a fellow were on average
neatly one Laborde (2001) level above her own teaching, allowing her to develop knowledge of
content and students (KCS) as she observed her students learning through dynamic processes. As
Laborde stated, “a deep and precise knowledge of students’ behavior and strategies” in DGS is
an essential part of a teacher’s knowledge (p. 309). Furthermore, Mrs. Gerber’s lessons in the
second year were designed to introduce concepts using DGS rather than merely working to
reinforce them, a shift indicative of movement from a novice user of DGS toward expertise.

Thus, the practice-based, collaborative professional development environment established by
the GK-12 program, along with the visualization afforded by dynamic geometry facilitated her
development of geometric reasoning and mathematical knowledge for teaching. With respect to
the first research question, Mrs. Gerber developed specialized content knowledge (SCK) to a
much greater degree than common content knowledge (CCK). First, the invariant features of
dynamic geometry facilitated richer mathematical discourse between the teacher and her
students. Secondly, she developed SCK through exploration with her students in a DGS
environment. Third, she gained mathematical knowledge by observing the fellow teach and by
reflecting with the fellow about mathematical topics arising from her practice.
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For the second research question, Mrs. Gerber developed knowledge of content and students
(KCS) as she discussed student work and misconceptions with the fellow. Furthermore, she
developed KCS as she observed and listened to students as they dragged figures on DGS.
Finally, Mrs. Gerber developed knowledge of content and teaching (KCT) by watching the
fellow teach at a Laborde (2001) level higher than her own. By helping students with a fellow
present for support she gained confidence to implement “goal free” instruction, which Manizade
(2006) identified as an element of pedagogical content knowledge of geometry and measurement
for middle school. Thus, Mrs. Gerber demonstrated development and growth in mathematical
knowledge for teaching throughout her two years of implementing DGS with the assistance of a
collaborative coach. This in turn translated to deeper geometric reasoning for her students,
substantiating Hill, Rowan, and Ball’s (2004) finding that increased MKT of teachers supports
student learning.  Further study is needed to elaborate on coaching strategies and to link such
DGS coaching to student achievement. This study was supported by National Science
Foundation Grant # DGE-0338188.
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An exploratory study examined prospective secondary teachers’ subject matter knowledge
(SMK) and pedagogical content knowledge (PCK) of the concept of function when they taught an
episode on exponential functions to a group of high school students.  During their analyses of the
lesson plans and teaching episodes, due to their weak and incomplete SMK, they failed to select
an appropriate activity and examples of exponential functions.  In addition, due to their weak
PCK, the participants failed to ask appropriate questions to make the concept easier for students
and frequently seemed unaware of students’ thinking.  The teaching episode also provided a
relevant context to enhance their SMK and PCK of the concept of function.  However, their
instructional strategy for teaching changed insignificantly due to their incomplete SMK and
PCK.

Challenge for preparing future mathematics teachers is recognized and what types of
experiences prospective mathematics teachers need should be the central focus for the
improvement of mathematics teaching in order to raise effective teachers (Cooney, 1994).  It is
essential to engage prospective teachers in sequences of planning, practicing, and reflecting on
lessons.  As they engage in preparation of a lesson plan, prospective teachers improve their
knowledge of effective instruction beyond the particular lesson and subject matter (Fernandez,
2005).  Over the past decade, many researchers have turned their attention to examining
prospective teachers’ subject matter knowledge (SMK) and pedagogical content knowledge
(PCK).  Since Shulman (1986) introduced these two concepts, prospective teachers’ SMK and
PCK have been investigated using questionnaires, and preparation and analysis of lesson plans,
and hypothetical teaching situations.  Although research studies (e.g., Even, 1989) have
investigated prospective secondary teachers’ SMK and PCK of the concept of function using
questionnaires, it is surprising to see that the focus of these research studies do not include
examining prospective secondary teachers’ classroom instruction.  The current study went
beyond using questionnaires and conducting interviews by including an examination of a
teaching episode.

Theoretical Framework
In this study, Even’s (1989) framework consisted of seven aspects of SMK for teaching

functions; these are essential features, different representations, the strength of the concept, basic
repertoire, alternative ways of approaching, different kinds of knowledge and understanding of
function and mathematics, and analysis of students’ mistakes.  These seven aspects were used to
examine the participants’ SMK and PCK of the concept of function and to analyze their
responses to a function questionnaire and a card sorting activity.  In addition, Even’s framework
provides a general overview of prospective teachers’ SMK and PCK of the concept of function
that is necessary for the present study.  We used Wilson, Shulman and Richert’s (1987) model to
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investigate the participants’ growth in SMK and PCK as well as improvement in their
understanding of the concept for teaching as a result of these tasks.  In particular, we focused on
preparation and analysis of lesson plans on exponential functions and video teaching episodes.
We also organized the tasks under six aspects suggested by Wilson, Shulman and Richert (1987):
comprehension, transformation, instruction, evaluation, reflection, and new comprehension.

Methods
An exploratory study was designed to examine prospective secondary mathematics teachers’

subject matter knowledge (SMK) and pedagogical content knowledge (PCK) of the concept of
function as well as the nature of relationships between their SMK and PCK for teaching the
concept of function as they participated in tasks during the six weeks of data collection from a
university in the southeastern United States.  We also analyzed prospective secondary
mathematics teachers’ SMK and PCK of the concept of function when they taught a lesson on
exponential functions to a group of high school students.  The data were collected through three
stages: (1) the function questionnaire, (2) the card sorting activity, (3) preparation and analysis of
lesson plans on exponential functions and video teaching episodes.

The function questionnaire adapted from the studies of Even (1989) and Wilson (1992)
included fourteen items addressing different aspects of SMK (e.g., examples of functions and
non-functions, different representations of functions) and five items focusing on analysis of
students’ incorrect solutions.  In the Fall 2005 semester, the function questionnaire consisting of
nineteen mathematics problems was administered to thirty-three prospective teachers.  The
participants were asked to show their method of solution and explain their answers so that we
could examine the nature of their SMK and PCK of the concept of function.  The function
questionnaire provided information about the prospective teachers’ general knowledge of the
concept of function and possible approaches for teaching the topic.

The card sorting activity (Cooney, 1996), with a different function or representation for a
function on each card, included twenty-eight different examples of seven types of functions.
These types of functions were linear, quadratic, polynomial, exponential, logarithmic,
trigonometric, and rational functions, given in four different representations; tables, graphs,
equations, and verbal descriptions.  In the card sorting activity, the participants were asked seven
questions and organized their knowledge about seven different categories of functions using
different representations.  The card sorting activity helped us determine how the participants
utilized different representations and how they translated a function from one representation to
another.

Jack and Sara, who presented robust mathematical understanding in two of the components
(i.e., the function questionnaire and the card sorting activity), were selected for the study.  After
analysis of each task, we conducted interviews with participants.  We asked them to elaborate on
their responses.  Jack was a senior teacher candidate and had a 3.58 overall college G.P.A, and
Sara was a senior teacher candidate and had a 3.8 overall college G.P.A.  Both of them were
completing their education to receive middle and high school certification.  Jack and Sara took
advanced mathematics courses such as Calculus I and II, but only Jack had completed
mathematics education courses at the time of the study.

Prior to preparation and analysis of lesson plans on exponential functions and the video
teaching episodes, we wanted participants to analyze two lesson plans and teaching videos of
these lessons because of their lack of experience in designing a lesson.  We wanted the
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participants to gain some experience in preparing lesson plans as well as analyzing video
teaching episodes of those lessons before they wrote a lesson plan and taught it.  Therefore, we
asked Mr. A at Southern High School to participate in this study.  Mr. A, who had a masters
degree in mathematics education and was pursuing his Ph.D. in mathematics education agreed to
participate in this study.  Mr. A agreed that he would prepare two lesson plans.  The first lesson
was on Theoretical and Experimental Probability.  Instead of preparing the lesson plan before
implementing it, Mr. A taught the lesson unprepared, and then wrote the lesson plan.  In
addition, teaching of the lesson was teacher-centered by design.  The second plan was on
Fundamental Counting Principles and was written before he taught the lesson.

We first gave the participants the lesson plans, then the videos of the teaching of those lesson
plans.  The prospective teachers analyzed the lesson plans, and then watched the videos of the
teaching of those lesson plans.  They analyzed the lesson plans as well as teaching of the lessons.
Later, we met with Mr. A to talk about the classes he taught for the study.  We video-recorded
the interview with Mr. A so that we could have the participants watch this video as well as
describe his teaching from our point of view.  After their analysis, one sixty minute interview
was conducted with each of the participants to discuss what they thought about the lesson plans
as well as which lesson plan they found better and why.  The participants were asked questions
about what they thought about Mr. A implementation of these two lessons.

In the task of preparation and analysis of lesson plans on exponential functions and the video
teaching episodes, the participants were given a lesson plan guideline and objectives, and asked
to write a lesson plan on exponential functions.  Objectives of this lesson were to have students
graph exponential functions and identify data that displays exponential behavior.  They tried to
choose the most appropriate examples and activities in their lesson plan and tried to implement
examples and activities that would be appropriate for the students’ needs.  We analyzed their
lesson plans and then conducted one sixty-minute interview with each participant.  Our goal was
to examine how the participants prepared and selected the questions for their lessons.  We also
looked at how the participants used different forms of representations, ideas, examples, activities
and explanations in their lesson plans.  After analyzing their lesson plans, we videotaped the
participants’ classes while they were teaching their lessons to a group of high school seniors.
Their teaching of the lesson took 40 minutes.  When they taught their lesson on exponential
functions, we looked at how they made it comprehensible to the group of high school seniors.
We examined whether or not the participants recognized what made the learning of exponential
functions easy or difficult for the students.  Then, we conducted one sixty-minute interview with
each participant.  We asked each participant to watch the video of his/her teaching, and evaluate
and reflect on his/her teaching of the lesson.  We asked them what they thought about their
teaching and whether any change occurred in their thinking about how they should teach
exponential functions.  We also examined whether or not the participants considered the group of
high school seniors’ current understanding to make instructional decisions.  We looked at how
the participants differentiated what the students comprehended and what they could perform
(Graber, 1999), as well as how they provided the basis for their choices and actions, and how
they used their subject matter knowledge of the concept of function for teaching.  Analyses of
their lesson plans as well as their teaching enabled us to examine how the participants
transformed their subject matter knowledge for teaching.

Results
A student said that there are 2 different inverse functions for
the function 

€ 

f x( ) =10x .  One is the root function and the
other is the log function. Is the student right? Explain.

Figure 1. Question
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In the function questionnaire, the participants mentioned the nature of the univalence
property and used the vertical line test exclusively to determine whether a relation was a function
or not.  The participants were trying to translate the equation (or a table) into a graphical form so
that they could use the vertical line test.  However, they did not explain why the vertical line test
worked or what it meant to fail the test.  They were unable to determine whether or not logarithm
function and root function were inverses of 

€ 

f x( ) =10x .  Thus, their responses revealed that the
participants’ SMK was weak and incomplete.  For example, in the function questionnaire, the
participants were asked to answer the question in Figure 1.  The procedure in figure 2 shows how
to find the inverse function of 

€ 

f x( ) =10x .
Jack was asked to determine whether or not log

function and root function were inverses of

€ 

f x( ) =10x(see Figure 1).  Jack interchanged the

variables in the equation, 

€ 

y =10x , then took the
logarithm of both sides and wrote 

€ 

log x( ) = y .  To find
the second inverse function, he wrote 

€ 

x =10y  and took
the yth root of both sides but realized that the equation
was not the same as 

€ 

log x = y .  At this point, he was
still thinking that he must have made a mistake somewhere
because taking the logarithm and yth root of both sides should
have given the same function. Jack thought finding yth root of
x equals to ten (i.e., 

€ 

x 1 y( ) =10) would give him x value.  He
ended up with the value of 10.  Even though Jack could not
find the x value by taking yth square root of both sides, he
still taught that this algorithm should give the inverse of

€ 

f x( ) =10x .  Jack thought that log and root functions were two

different ways of writing inverse of 

€ 

f x( ) =10x(see Figure 3).
Similarly, Sara too was unable to determine whether or

not a logarithmic function and a root function were inverses
of 

€ 

f x( ) =10x .  Sara did not remember what inverse function
was or how it should be presented.  Sara knew that she needed
to take the logarithm of both sides, but she did not know how
to use logarithms to find the inverse of 

€ 

f x( ) =10x(see Figure 4).  When she was asked to explain

whether or not the function,

€ 

f x( ) =10x , had two inverses, she said, “I don’t know that’s what I
am trying to do.

I don’t remember what inverse function is and how to find it.  I don’t really know what I am
looking for.”  For the same question, Sara provided the incorrect logarithm shown in figure 4.

Figure 3. Jack’s solution

€ 

log f x( ) = log10x = x

€ 

log f x( ) = x

Figure 4. Sara’s solution

Interchanges variables of 

€ 

y =10x :
Solves 

€ 

x =10y for y:

€ 

log x = log10y

€ 

log x = y log10

€ 

y = f −1 x( ) = log x

Figure 2. Solution of the question
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In the card-sorting activity, on which the functions were written on the cards, the participants
were able to sort functions according to their representations; it
was easier for them to recognize functions presented graphically
or algebraically, and overall, they had difficulty translating
functions presented with verbal and table representations.  At this
point, it became clear that their understanding of the relationship
between logarithmic and exponential functions was weak and
incomplete.  For example, in the card sorting activity, the
participants were asked to sort the cards 1, 6, 7, 16, 21, 26 and 28
into two piles and describe the criterion they used to sort the cards
in figures 5, 6, 7, 8, 9, 10, 11, 12 and 13.

In his response, Jack grouped the function cards into three
piles according to their representations.  He grouped the
function on cards 1, 6 and 26 because they were given in
graphical representations.  Jack put the functions on cards 21,
16 and 28 together because they were given as tables.  He
indicated that the functions on cards 7, 18 and 20 were in the
same group because together they were equations.  Jack’s
hesitation about grouping these function cards continued as he
talked about the other functions on the cards.  He first said
that function cards 7 (quadratic) and 21 (quadratic) were
quadratic, and then card 7 (quadratic) could be exponential.  For the
function on card 20 (logarithmic), he was not sure whether it was
exponential or logarithmic.  Jack thought the function card 16
(logarithmic) was exponential.  He also said, the function on cards 20
(logarithmic), 26 (logarithmic), 28 (exponential) were similar and
could be logarithmic.  He plotted the points and tried to
match the points to the graph of a familiar function (i.e.,
logarithmic, exponential, or quadratic) instead of trying to
find the pattern in the tables.  As a result, he said he
needed more data (or points) to determine the shape of the
graph.

Jack correctly determined that the
function on card 16 was logarithmic,
however, he denoted the logarithmic function
using an exponential equation 

€ 

y = 3x  instead
of writing 

€ 

y = log x .

x

€ 

1 100

€ 

1 10 1 10 100

y -2 -1 0 1 2

Figure 8. Card 16

x -2 -1 0 1 2

y 1 0 1 4 9

Figure 11. Card 21

€ 

y =
1
3
x 2 − x +1

Figure 7. Card 7

Figure 6. Card 6

Figure 5. Card 1

1( )(4 )2
xy =

Figure 9. Card 18

4log ( 4)y x= +

Figure 10. Card 20
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Then Jack put the function on card 16 under the category of logarithmic function.  He said that
logarithmic and exponential functions were inverses of each other but did not remember how to
write the equation of the logarithmic function whose graph he drew.  As can be seen in his work,
the graph intersected the y-axis and did not cross the x-axis at 

€ 

x =1 even though the logarithmic
function 

€ 

y = log x  did not cross or touch the y-axis and crossed the x-axis at 

€ 

x =1.  Jack knew
that the function should be one-to-one to have an inverse function.  However, he did not
remember how to find the inverse of a logarithmic function and claimed that he would
interchange x and y to find the inverse function.

Jack first thought that the equation of the function on the card 28
was 

€ 

y = 2x , and then he changed the equation and wrote 

€ 

y = 2−x .
Toward the end of the interview, he was asked to put the functions
into three groups.  He grouped the cards 1, 18, 28 as exponential, 6,
7, 21 as quadratic, and 16, 26, 20 as logarithmic.  Even though Jack
did not have a good understanding of exponential and logarithmic
functions, he determined the types of the functions by plotting the
points given in the tables and correctly sorted them into three groups
according to their types.  During the interview, it became clear that
Jack’s strategy was mainly point-wise for the functions represented
by a table.  When he drew the graph of a logarithmic
function card 16 (

€ 

y = log x ), he failed to write the correct
equation for the graph.  In addition, he made some mistakes
on the graph of 

€ 

y = log x  which showed deficiencies in his
content knowledge about logarithmic functions.

Similarly, Sara grouped the function cards using two
different ways.  First way, she grouped the cards according
to their representations.  She grouped the cards 1, 6, 26 as
graphical representations, 7, 18, 20 as formulas, and 16, 21, 28 as tables.  Second way, she
grouped the function cards according to their types.  She put the cards 16, 26, 20 as logarithmic,
1, 18, 28 as exponential), and 6, 7, 21 as parabolic.  When Sara was asked whether or not the
function cards could be sorted differently, she said, “I don’t see other way. I don’t see anything.”
As can be seen from Sara’s solution, she had a good understanding of three categories of
functions and the use of their representations.  Sara sorted the functions cards into two piles
using two different ways.  In her response, she grouped the function cards using their types (i.e.,
exponential, quadratic, logarithmic) and different representations (graph, equation, verbal).

The participants were unable to choose appropriate questions or organize a lesson plan
because of weak SMK.  When they were describing their instructional strategies to facilitate
students’ learning during their analyses of the lesson plans, they failed to select an appropriate
activity and examples of exponential functions (e.g., 

€ 

y = −5( )x) due to weak and incomplete
SMK.  During the teaching episode, the participants failed to ask appropriate questions to make
the concept easier for students and frequently seemed unaware of students’ thinking.  They failed
to challenge students and ask critical questions due to their weak PCK.  They also could not
determine the fundamental components in exponential functions that students needed to know
how to draw and understand the graph of exponential functions.  Furthermore, they had difficulty
explaining and discussing the definition and properties of exponential functions such as

x -2 -1 0 1 2

y 4 2 1

€ 

1 2

€ 

1 4

Figure 13. Card 28

Figure 12. Card 26
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increasing, decreasing, domain and range that would help students, because their PCK for
teaching was not comprehensive.  When they were evaluating and reflecting on their teaching,
they noticed students’ difficulties and lack of understanding of the asymptote and graphing
exponential functions but they did not think of using any instructional strategy to help them
during their teaching.  After their teaching, they suggested using instructional strategies, such as
technology tools, or alternative approaches that may help students understand the concept or that
initiate classroom discussion.  The model of Wilson, Shulman and Richert (1987) was effective
in helping the participants gain experience in preparing and teaching a lesson; however, their
instructional strategy for teaching exponential functions changed insignificantly due to their
limited SMK and PCK.

Conclusion
The teaching episode experience was beneficial for the participants. The teaching episode

also provided a relevant context to enhance their SMK and PCK of exponential function.  This
experience provided an opportunity for prospective secondary teachers to begin linking theory
and practice to teach and to analyze their teaching.  By analyzing, evaluating, and reflecting on
their teaching, they identified weaknesses and strengths of their teaching and their lesson plans.
We suggest prospective teachers prepare lesson plans, videotape their lessons, and evaluate and
reflect on their teaching in method courses, in stages of increasing awareness, under the
supervision of their professors because “knowledge is developed through cycles of planning,
implementing, and reflecting on lessons (Fernandez, 2005, p. 38).”  As a result of their weak
SMK, teachers were unable to choose appropriate examples and activities, to challenge their
students, to ask critical questions to engage students in discussion or participation, to recognize
students’ difficulties, and to interact with students.  Ball (1990) stated that SMK should be a
central focus of teacher education in order to teach mathematics effectively.  Accordingly,
prospective teachers develop their PCK as they plan to teach as well as during actual teaching
(Wilson, Shulman & Richert, 1987).
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This paper describes an investigation on teacher knowledge and curriculum use. The results of
the investigation reveal strong and weak aspects of teacher knowledge when using an elementary
mathematics curriculum. The results also illuminate where the curriculum provides sufficient
support and where it needs more clarification for teachers. In addition, this study tested a
research tool (an observation coding protocol) for its usefulness in research on teacher
knowledge and curriculum use.

This paper describes an investigation on teacher knowledge and curriculum use. Research
questions are: How does teacher knowledge influence ways in which teachers use mathematics
curriculum materials? How do the curriculum materials support teacher enactment of lessons?
For this investigation, both teacher knowledge in enacted lessons and components of the written
curriculum were examined to see the interactions among teacher knowledge, curriculum use, and
the curriculum. The data for this study were drawn from a larger study that investigated teacher
implementation of a new curriculum. This paper focuses on one particular teacher who lacked
confidence in her knowledge of mathematics as well as mathematics teaching. This teacher was
particularly interesting because even though she was not confident in her mathematics teaching,
her enacted lessons revealed that she had some strengths to teach mathematics effectively. As
such, her case was analyzed in depth by using the observation coding protocol by the
Mathematics Learning to Teach Project (2006). A detailed rubric of the protocol, mapping how
mathematical knowledge for teaching might appear in practice as she worked with the
curriculum and students, helped identify strong and weak aspects of her knowledge when using
the curriculum. It also helped elicit where the curriculum provided sufficient support and where
it needed more clarification for teachers.

Theoretical Perspectives
Teachers’ use of curriculum materials is a relatively new area of research. Curriculum is an

important factor that determines what and how students learn mathematics, and many curriculum
development projects in the 1990’s (e.g., TERC Investigations project, Connected Mathematics
Project, and Core-Plus Mathematics Project) intended to improve student learning by not only
providing the content but also embedding appropriate pedagogy in their curriculum materials.
However, depending on the teacher, the curriculum materials could be used in various ways in
the classroom. Therefore, how teachers use curriculum materials greatly influences student
learning experiences (Hiebert & Grouws, 2007; Stein, Remillard, & Smith, 2007). Here, teacher
curriculum use means how teachers read and interpret the curriculum, plan and enact a lesson,
and reflect on teaching along with the materials.

One key component of this study is the role teacher knowledge plays in curriculum use.
Earlier work (e.g., Crumbaugh, Grant, Kim, Kline, & Cengiz, 2005; Grant, Kline, Crumbaugh,
Kim, & Cengiz, in press; Manouchehri & Goodman, 2000) has established that teacher
knowledge is an important variable in curriculum use, but little is known about ways in which it
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affects teacher curriculum use. Another key component is curriculum support – ways in which
curriculum provides support for the curriculum enactment and curriculum features that influence
how teachers implement the curriculum. Various features of curriculum influence how teachers
read and interpret the curriculum and what instructional decisions teachers make, and various
curriculum features can support teachers. Very little, however, is known about what features
actually meet teachers’ needs and how they should be provided. This paper highlights such a
research effort and methods of the investigation.

Because of its importance in teaching, teacher knowledge has been a research focus among
many teacher educators (Shulman, 1986). Teachers who have insufficient knowledge of the
subject that they teach or who know procedures without understanding the rationale behind the
procedures are not likely to teach mathematics effectively. But, what specific knowledge is
required to teach mathematics? Simply knowing more mathematics does not guarantee the
quality of teaching, let alone better learning outcomes (Ball, Lubienski, & Mewborn, 2003).
Recently, researchers have begun to conceptualize kinds of teacher knowledge for mathematics
teaching (e.g., Ball & Bass, 2003; Chinnappan & Lawson, 2005; Davis & Simmt, 2006; Hill,
Sleep, Lewis, & Ball, 2007). In particular, Ball and her colleagues not only attended to the kinds
of teacher knowledge for teaching, but also began to address where and how mathematical
knowledge is used in mathematics teaching by examining videotaped lessons (Ball & Bass,
2003; Learning Mathematics for Teaching, 2006). With such efforts, they developed and tested
coding schemes to determine the mathematical quality of what teachers say and do during
instruction. Ball and her colleagues’ work was incorporated in this study, because their attention
was particularly given to teacher knowledge unveiled during instruction and they identified
elements of such teacher knowledge.

Modes of Inquiry and Data Sources
In order to investigate the research questions, teacher knowledge in 13 enacted lessons as

well as curriculum materials were examined. Kellie, the teacher in this study, taught for 20 years
and was on the mathematics committee in her school. She, however, was not confident in her
ability in mathematics, let alone her ways of teaching mathematics. Her lack of confidence
corresponded to the results of an interview using mathematical tasks conducted at the beginning
of the study. Her knowledge revealed during the interview was at the low level.

The lessons analyzed were taken from a larger study of a new curriculum implementation for
three years (one year for pilot and two subsequent years of full implementation). The lengths of
those lessons ranged from one hour to two hours, mostly one hour and a half. The topics of the
lessons were number and operations, data analysis, and geometry. Besides the videotaped lessons
and the curriculum materials, six interviews with Kellie during the three-year period were
analyzed in order to triangulate the inferences from the other data. Her explanations about
specific elements of teaching within a lesson or a unit helped support or dispute potential
inferences.

Each videotaped lesson and the corresponding written lesson from the curriculum were
analyzed by using the coding protocol mentioned earlier. The coding protocol was composed of
five sections, including knowledge of mathematical terrain of enacted lesson, use of mathematics
with students, and mathematical features of the curriculum and the teacher’s guide, and each
section contained 8 to 24 elements to code. Even though the coding protocol was useful to
identify aspects of teacher knowledge and curriculum support, the protocol was not designed to
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examine the relationship between teacher knowledge and curriculum. Therefore, additional
coding elements were needed for this study as the analysis proceeded. For instance, when a
teacher alters a task, it can change the nature of the task as well as the levels of complexity of the
task and thus influence kinds of strategies and reasoning students can engage in. This can
indicate whether or not the teacher recognizes big ideas of the task. In such a case, it is also
important to check whether the curriculum provides enough description about the task so that
teachers can understand the purpose of the task and implement the task as intended. As such,
additional elements were included for this research, some of which were change of task, use of
suggested questions, and use of suggested models or representations.

For each coding element it was required to indicate whether evidence was “present” or “not
present” and, when present, whether it was “appropriate” or “inappropriate.” Coding was
conducted for every five-minute segment with each of those coding elements (student work time
was not coded), and frequencies of present-appropriate, present-inappropriate, and not-present-
inappropriate were counted. While employing the coding protocol to identify aspects of teacher
knowledge in the enacted lessons and aspects of the curriculum, using a holistic approach I also
revisited each lesson in terms of teacher knowledge in use, the written curriculum materials, and
how they interacted within the lesson. Finally, common themes were crosschecked across
lessons.

Results and Discussion
The analysis of the data shows strengths and weaknesses of Kellie’s knowledge for

mathematics teaching. Also, the analysis illuminates aspects of the curriculum materials that
supported Kellie to teach lessons. Such identifications helped infer the interplay between Kellie’s
knowledge and curriculum features for enacted lessons.

Aspects of Teacher Knowledge

Strengths of Kellie’s Knowledge for Teaching
Coding every five-minute segment of the videotaped lessons revealed that Kellie certainly

focused on the mathematics that students should learn; time spent for administrative purpose was
minimal and class work was related to mathematical procedures and ideas. One of the strong
aspects of her teaching was her explicit effort to elicit students’ thinking and reasoning during
whole group discussions. For example, a coding element, elicit student explanation, was present-
appropriate in 40 out of the 74 five-minute segments (54%), while only three (4%) were coded as
not-present-inappropriate. This means that whenever possible, she encouraged students to
explain their thinking on the strategies and procedures they used. It was observed that often she
searched for appropriate questions to ask in a way that could help elicit the essence of the
thinking that students could not verbalize explicitly without prompt. Kellie indicated in an
interview that she was committed to teaching mathematics with understanding and this was
evident in her enacted lessons. Another strength of her teaching was explicit talk about ways of
reasoning and mathematical practices. During the observed lessons, almost in every lesson Kellie
mentioned the importance of explaining thinking, not just getting the answer. She also
encouraged students to verbalize their thinking in public and allowed students time to think on
their own: “Let him think.” “I know it’s hard. Go on.” “Honey, I am not saying that you are
wrong. I just want to know what you did. I want you to explain how you did.” “This is where
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you guys gotta think.” She was very patient with students when they provided their explanations,
and probed students’ explanation deliberately to capture the reasoning behind what they showed
with manipulatives or on the board.

Even though one might argue that the strengths described above are not directly related to the
teacher’s knowledge, the coding protocol includes such elements as important aspects of teacher
knowledge that should be utilized in enacted lessons – whether the teacher created opportunities
for students to provide mathematical explanations; whether students’ efforts to explain were
adequately scaffolded; and how the teacher responded to students’ comments, questions, ideas,
or errors. In addition, teachers’ explicitness about the work the students are supposed to be
doing, about the meaning and use of mathematical language, about ways of reasoning, and about
mathematical practices, affects kinds of learning opportunities for students, and doing so requires
specific teacher knowledge. By utilizing such knowledge, Kellie could create the classroom
environment where students were expected to think and explain their reasoning, instead of
merely providing answers and showing procedures. Kellie expressed to students how hard it was
to explain one’s thinking, allowed students to take time, and asked them to be patient with each
other. She also demonstrated how to respect and probe each other’s thinking, and how to listen to
understand others’ reasoning.

Weaknesses of Kellie’s Knowledge for Teaching
While the analysis revealed the above strengths in her teaching, it was evident that her

knowledge in the enacted lessons had several weak areas. One of the challenges that Kellie had
was that she introduced a task and students had difficulty working on the task. When this
happened or when she felt the main task was difficult for her students, she altered the task into
smaller activities. In fact, the task alteration led to the change in the focus of activities, but it was
not clear whether she realized the effect of the task change, let alone whether she knew that the
task she gave to students was different from the one in the curriculum. For example, when the
main task was to figure out “Which is more, the number of school days or the number of non-
school days? How many more?” she segmented the activity into smaller steps (i.e., finding the
number of non-school days, finding the number of school days, and then finding the difference).
The original activity could have led to multiple strategies and thinking, while the altered activity
was straightforward and limited student learning opportunities.

Another weak area was related to using models in teaching. She rarely used multiple models,
let alone made connections among them. In addition, she did not utilize certain models that the
curriculum suggested. For example, she did not use a number line model shown to represent the
difference in quantities and calculators as a means of counting backwards from a large number,
such as 300. It seems that one possible reason was Kellie’s unfamiliarity with the models.

Her use of recording was limited. While she carefully listened to students and valued
thinking and explanation shared in public, she rarely made records of student strategies or
thinking in public. It is not clear whether that was because she was just not used to make a public
record of student thinking, because she did not know how to record effectively, or because she
did not recognize the potential of the record for student learning opportunities. Shared strategies
on the board or chart paper could have been beneficial to students when they attempted to
examine or incorporate others’ ideas. In a couple of lessons, she intentionally recorded what
students offered during discussion. It was noticeable that such recording was influenced by the
curriculum, even though she did not take all the recording suggestions by the curriculum.
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It was apparent that Kellie was struggling to search for appropriate questions during whole
group discussion. Often she communicated with the researcher about how hard it was to ask
appropriate questions and asked for suggestions in particular classroom situations on site or after
class. On the other hand, it was interesting to observe Kellie not utilizing some important
questions that the curriculum materials suggested. She did not ask suggested questions that were
conceptually important, such as “If we had made this graph at the beginning of the year, what
might be different? How might the shape of our graph look?” Knowing that Kellie was a
thorough reader of the curriculum and careful planner of lessons, it is not clear if that was
because she made a note of those questions and forgot during the course of the lesson, or if she
did not see the value of those questions.

Kellie did not discuss some important concepts, while she spent much time on something less
important. For example, in a lesson where students figured out the number of children in their
family and the difference between that number and the world’s record number of children, Kellie
spent 35 minutes introducing this task, taking most of the time getting a consensus on whom they
should count as children in their families. It was important to establish a definition and a basis
for comparison, and yet because of such extensive amount of time for getting the consensus,
there was no time left for the next activity (finding pairs of two-digit numbers which make a total
that is as close to 100 as possible), which seems to be the more important task in the lesson. [The
“children in a family” task was not mathematically very challenging because the third graders
were asked to find the difference between a one-digit number (the number of children in a family
would be typically one digit) and 69, the world’s record.] On the other hand, in this lesson she
did not explicitly discuss the word difference, even though the curriculum suggested asking
students if they understood the meaning of this word in the problem context and helping them
see this as a particular mathematical meaning – the difference between two quantities.

Kellie sometimes misinterpreted suggestions by the curriculum. In some cases, the
suggestions in the curriculum were not explicitly clear. In the “children in a family” lesson, the
curriculum suggested, “Have students work in pairs, comparing their individual family data with
the record. They should have cubes and 100 charts to work with. … Encourage them to use
materials and representations to show their strategies” (p. 19). It was not explained in the
curriculum why the two “materials” were suggested, even though there were examples of how
students might use the materials to show their strategies. When enacting this lesson, Kellie
provided students with cubes and 100 charts, and told them, “Make a representation to show how
many more you would need to tie the world’s record.” Materials can be used as a tool to solve
problems and to reason with, and it is not necessary to use them when students do not need them.
Students could have had options to use the suggested materials or other representations when
they needed. Also, the focus should have been given to solving the problem and student
strategies to do so, rather than creating representations.

Support of the Curriculum Materials
As one of the Standards-based curricula, the curriculum that Kellie used provided rich

problem contexts and useful information for teachers. Students were required to explore
mathematical ideas in those problem contexts; reasoning and discussion were a default, not an
option. In order to help enact the intended lessons, the curriculum provided detailed descriptions
of the lessons, including important teacher questions, possible student responses, models to
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represent procedures and thinking, things to look at for informal assessment during lessons, and
sample dialogues in the classroom discussion.

It is noticeable that when Kellie’s lesson was closely aligned with the written curriculum, the
enacted lesson went well overall. When she utilized the curriculum materials well (staying with
the focus of the lesson, posing the task as suggested, asking suggested questions, using models as
intended, etc.), students were exposed to good learning opportunities. On the contrary, in the
lessons where Kellie did not ask important suggested questions, posed a task in a way that was
different from what was suggested, missed some critical aspects of tasks, or ignored certain
important elements of a lesson, the overall lesson did not seem to go well. This implies that the
curriculum certainly provided features that supported Kellie to enact lessons.

The analysis of the curriculum, however, revealed that the curriculum could have provided
more clarification in several areas. Multiple models were introduced with examples of how
students might use them, but clear explanations of effective use of the models were often not
provided. Perhaps explicit explanations on how the provided model could convey mathematical
concepts and ideas, rather than just showing sample usage of the model, could have been helpful
for Kellie. For example, the number line model was introduced in a lesson as a way to show how
a student found the difference between two quantities, but there were no sufficient explanations
about the usefulness of the model. Kellie, who was not familiar with the model, did not utilize
the model in her lessons.

In addition, problem contexts could have been explicitly explained so that Kellie could
understand big ideas in those contexts. Recall “the number of school days” lesson. Even though
the task itself was open-ended and could provide opportunities for various strategies and
thinking, Kellie altered it to a straightforward task. Sufficient explanations about the big ideas
and the essence of the task could have led Kellie not to alter the task. Also, the “children in a
family” lesson could have stated the meaning of subtraction as quantity difference explicitly and
clearly in the lesson introduction and objectives. The purpose of activities was sometimes not
clearly stated. Kellie did not seem to know the purpose of the "Quick Check" activity (showing
boxes of clips on overhead for a second and having students share how many they saw), and the
curriculum did not explain why and how the activities should be provided. This might have been
provided elsewhere in the curriculum, but certainly not in the unit in which the activity was
presented. Assuming that some teachers often choose units and activities to use, at least
providing a proper reference on the purpose of activities, if it is described elsewhere, would be
beneficial to teachers.

This curriculum did a good job in providing students' multiple methods and what students
might say, but potential difficulties students might have were rarely included in the curriculum.
Often no scale-up or scale-down problems were suggested, which was left to the teachers’
decision. For example, Kellie found students having difficulty using “realistic” quantities when
figuring out “what the heights of six third graders might be if the sum of their heights is 318
inches.” Therefore, she had to spend quite some time helping students see a possible range of
realistic heights of third graders. But, there was no explanation of this foreseen difficulty in the
curriculum, and Kellie, a first-time user of the curriculum, had a hard time helping students
complete the task.

Moreover, the curriculum included many examples and descriptions of computational steps
and procedures, but reasoning of these steps was often not described. Questions that could help
elicit students’ reasoning were even rare in the curriculum. Because of this, not knowing what to
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expect from students in terms of reasoning, Kellie had difficulty figuring out kinds of questions
to ask to elicit the reasoning behind the steps students took to solve problems.

Conclusion
In this study, the teacher’s knowledge in enacted lessons revealed several aspects that

prompted or hindered the implementation of the intended curriculum. While providing useful
information for teachers, the curriculum had areas needing improvement in order to support
better enactment of the curriculum. The study results show several cases where the teacher
needed more information or clarification – the focus of a lesson, big ideas of a task, how a model
could convey mathematical ideas, potential reasoning by students, and questions to elicit such
reasoning. It seems that such ambiguity confused the teacher when she interpreted suggestions
by the curriculum, and lack of information caused her difficulty in figuring out on her own what
to do in certain classroom situations.

This study also tested the research tool to assess its usefulness in research on teacher
knowledge and curriculum use. The results showed that the coding protocol helped identify
certain aspects of teacher knowledge in use and specific aspects of the curriculum that supported
the lesson enactment; the tool also had limitations when examining the relationship between
teacher knowledge and curriculum use. Therefore, it was necessary to construct additional
elements to consider, such as whether the teacher alters the main task, and if so, whether that
substantially changes the activity. In fact, the revised coding protocol was very useful in
attending to specific aspects of teacher knowledge during instruction rather than assessing an
overall level of teacher knowledge in general, separated from teaching context.
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Novice middle school mathematics teachers face many demands as they adjust to their new
professional role. How do these demands influence their efforts to improve their teaching? The
purpose of this project is to examine the criteria novice mathematics teachers use to determine
the effectiveness of their instruction and to examine the factors that influence novice middle
school mathematics teachers’ analyses of the effectiveness of their instruction.

Theoretical Perspective
An assumption guiding this study is that analysis of teaching is an important part of a

teacher’s work. Analyzing teaching involves specifying the learning goal, gathering evidence
during instruction to determine whether students learned, designing cause-and-effect hypotheses
to link teaching to students’ learning, and revising instruction to help more students learn
(Hiebert, Morris, Berk, & Jansen, 2007). This process enables teachers to learn from their
practice. However, new teachers may not engage in analyses of their teaching in such a
systematic manner.  Also, they focus on factors related to their own performance as a teacher
over students’ understanding of mathematics content when they analyze their teaching.

The demands of their classroom, department, school, district, or local community may help
or hinder teachers’ efforts to attend to students’ thinking when evaluating the effectiveness of
their instruction. Novice teachers typically exhibit a rather high sense of efficacy that usually
drops during the first few years of teaching due to the gap between their expectations (even if
unrealistic) of what they can accomplish in the classroom and their professional performance and
circumstances (Hoy & Spero, 2005).  Doubts in their efficacy that arise from this gap could
facilitate opportunities to learn.

This study contributes to the field of mathematics education in that we need to document
criteria that contribute to teachers’ sense of efficacy in the context of mathematics reform
(Smith, 1996). In mathematics teacher education programs, novice teachers have been prepared
to expect to teach according to principles such as providing students with opportunities to
develop conceptual understanding of mathematics as well as procedural fluency and attempting
for a balance between exhibiting authority as a teacher and providing students with opportunities
to develop autonomy as mathematical thinkers. Given these expectations, novice teachers are
likely to evaluate their teaching in light of agent-means efficacy concerns, or whether they were
able to enact particular instructional practices. Alternatively, they could also consider agent-ends
or means-ends efficacy criteria, which means the effectiveness of their lesson would be based
upon whether the design of their lesson or curriculum (means) or their implementation of the
lesson (agent) helped students learn or behave in particular ways (ends) (Wheatley, 2005).

Certain conditions may shape teachers’ analyses of the effectiveness of their instruction.
Morris (2006) found that pre-service teachers’ analyses of a transcript of a mathematics lesson
was influenced by whether or not they were aware ahead of time that students struggled to
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understand the content during the lesson prior to analyzing the transcript. In addition to
encountering students who struggle to learn mathematics, novice teachers face a range of
external demands and expectations that could shape what teachers attend to when analyzing their
instruction. In this study, I addressed the following questions: What criteria do novice teachers
use to determine the effectiveness of their instruction? What factors influence the teachers’
attention to these criteria?

Method
Eight first- and second-year middle school mathematics teachers, graduates from the same

teacher education program, participated in this study. Seven participants were female and one
was male. All of the participants were White, and they were all between the ages of 22 and 25 at
the time of the study. Teachers in this study worked in three different states, and they did not all
use the same textbook series; only half of the teachers taught with NSF-funded curricula.

These teachers were observed twice and participated in one-on-one post-observation
debriefing interviews with the author, one early in the fall semester and one near the end of the
fall semester in 2006. Sample interview questions included: How do you think the lesson went?
What were the best parts / worst parts about the lesson? Do you think the students learned what
you hoped they would learn? How do you know?

Codes for criteria used to determine strengths and weaknesses of the lessons were developed
through a constant comparative process (Glaser & Straus, 1967). The codes were developed
according to general themes of a focus on student outcomes (ends), features of the lesson or
curricula (means), or the teacher’s efforts to implement the lesson or curriculum and manage
students (agent), and external factors (such as district or school policies, parent expectations,
school or departmental structures, curriculum features, etc.). For trustworthiness, code
development and interpretation of data took place in collaboration with a graduate student who
was a recent graduate of the same teacher education program as the participants.

Results
Results in this paper focus on two teachers in the same school who used the Connected

Mathematics textbook series. One of the teachers, Ms. Alpha, was a female first-year teacher
who taught seventh grade. The other teacher, Mr. Beta, was a male second-year teacher who
taught sixth grade. External factors led to a focus on agent-means efficacy, or whether they were
implementing instruction as expected from the school district, when evaluating their instruction.
They also focused on student outcomes when evaluating their instruction, but emphasized
students’ engagement over students’ learning when evaluating their instruction, potentially
linked to attempting to effectively implement their curriculum.

As an example of the teachers’ agent-means efficacy, content coverage and pacing were
frequently mentioned among their criteria for evaluating their instruction, which was influenced
by the district-level expectation that teachers were expected follow lesson plans designed by a
committee of teachers in the school district and district curriculum guides that required the
teachers to test by a certain date. Their lesson plans “called to do more than we could actually get
to” (Mr. Beta, second interview); both teachers noted in their interviews that the lessons were
designed for 90 minute class periods, but their class periods were only 65 minutes, so they
consistently felt that either they were not able to teach effectively because they could not
complete the lessons or that the lessons themselves were less effective because they were too
long.  As a result, these teachers learned, or tried to learn, what to keep and what to cut from
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their district-provided lessons. “We have closure and follow-up activities that they would like us
to do, and unfortunately once we get through the lesson they want an extra activity after
summarize to just reinforce and we never have time to do that so it’s something I always have to
cut out. So, in the lesson I kind of have to teach what is absolutely necessary.” (Mr. Beta, first
interview). This meant cutting some activities, which was a challenge, particularly for Ms. Alpha
during her first year of teaching. “We’re always told to over plan, and to have plans after plans
after plans, but I never have a plan for what to do if you don’t get through all of it, like how to
close it up. Like at what point is a good point to stop, and just, you know, jump right to the
closure. Or is there a particular part that you really need to get to or you should cut out if you
don’t have enough time?” (Ms. Alpha, first interview). Making these choices involves
pedagogical content knowledge about which activities support students’ achievement of
particular learning goals.

These two teachers also focused on whether they achieved particular ends, or student
outcomes, when evaluating their teaching. They were able to cite more specific evidence when
describing engagement outcomes, such as whether students participated in explaining their
thinking and whether groups worked well together, which are important components involved
with implementing the Connected Mathematics textbook series. A student outcome Mr. Beta
noted in both interviews was that his lessons were not as effective as they could have been
because students resisted using representations, such as diagramming for multiplying fractions
using poly strips to explore relationships among side lengths for triangles and quadrilaterals. His
attention to student resistance as an outcome was partially due to being expected to use these
representations as a part of implementing this curriculum, but perhaps it was also due to
competing goals of developing procedural fluency as well as conceptual understanding in a short
amount of time. When the teachers described outcomes related to students’ learning of content,
they were often described generally, without much supporting evidence, such as saying that
students “got it at the end” (Mr. Beta, first interview) or that students “seem to be
understanding,” (Ms. Alpha, first interview).

Discussion
While novice teachers may have been encouraged in their teacher education programs to

attend to students’ understanding when evaluating the effectiveness of their instruction, this is a
challenge for new teachers as they cope with factors in their professional context. Novice
teachers may be more likely to base their efficacy on criteria related to implementation of a
curriculum or district expectations. This is understandable given a desire of a new professional to
be evaluated positively in a context where these novice teachers perceive to have limited
autonomy for making changes to their timeline for content coverage or structure of their lesson
plans. Novice teachers would benefit from factors supporting attention to students’ conceptual
understanding of mathematics in complement with their attention to students’ engagement in
learning practices associated with their curriculum.
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This study explores preservice middle grades teachers’ preferences for certain kinds of
arguments / proofs that convince them that 1=9.0 . Attempts are made to describe important
features of arguments that are most convincing to future teachers at different stages in their
intellectual development.

The role of proof in the mathematics classroom has recently received attention beginning
with the new NCTM standards document (National Council of Teachers of Mathematics,
2000) that urges curriculum writers to integrate activities involving proof throughout the
mathematics content and to make it available and accessible to all students. Because proof is
useful in fulfilling many roles such as verification, explanation, communication, discovery,
and systemization (deVilliers, 1999), it is important that our future teachers feel confident
when formulating sound mathematical arguments. At Miami University, the preservice
middle grades program instructors attempt to create interactive learning environments in our
classrooms so that students become comfortable with posing conjectures, formulating
arguments, and, in general, learning how to behave more like mathematicians as they explore
new ideas. We hope that our future teachers will leave with multiple representations for many
concepts that will better prepare them for adjusting to their roles as middle grades teachers. If
teachers lack flexibility with their own conceptual representations, they may lack the
necessary understandings to help their struggling students.

The mathematical content of this study is solely the mathematical fact that 1=9.0 . We
decided to choose a fact that is not very obvious or intuitive. Specifically, this study attempts
to use this context to answer the following overarching questions:

 When introduced to an unfamiliar, unintuitive mathematical fact, what kinds of
arguments are most convincing?

 When comparing different subjects in this study, are there similarities in what finally
tips the scale from unbelief to belief for freshman/sophomores as compared to
seniors?  In other words, does the feature or structure of an argument that convinces
them change with mathematical maturity?

Comments from a prior study that addressed similar questions caused me to wonder if
students hold the same beliefs about their own ability to comprehend a mathematical
argument as they do for their future students. So a few more research questions were added
and addressed to the students who were just about to graduate:

 Which argument(s) will you use to convince your future students that 1=9.0 ?
 If the argument that convinced you and the one that you would share with your

students are not the same, why aren’t they? If they are the same, why?

Review of Literature
Much has been learned about what preservice and in-service teachers value highly as

verifications for certain arguments. Martin and Harel (1989) found that many preservice
teachers accept inductive arguments as proofs regardless of their familiarity with the context.
However, they also found that the same students accepted deductive arguments as proof and
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this led them to theorize that these two kinds of arguments represent two proof frames that
are constructed in the minds of their students as the result of two different experiences; their
everyday life experiences and their experience with mathematics in the classroom. They also
found, like Fischbein & Kedem (1982), that even when some students seemed “convinced”
by a deductive argument, they sought out empirical evidence to support the proof. Eric
Knuth’s work (2002) with inservice teachers who had much more mathematical maturity than
those in previous studies revealed that concrete features, familiarity, sufficient level of detail,
proofs that show why, and those that prove the general case were the characteristics preferred
by teachers when asked what convinces them the most. Overall, he concluded that “the
characteristics of arguments that the teachers found to be most convincing seemed, in large
part, to relate more to form than to substance (p. 402).”

A framework useful in classifying the different kinds of arguments preferred by students
is provided by Sowder and Harel (1998). They suggested that “Proof, or justification,
schemes can be organized into three categories: Externally based proof schemes, empirical
proof schemes, and analytic proof schemes.” The externally based schemes rely more on an
authority outside of the student’s own understanding. Empirical schemes can either be when a
student is convinced by a single, or sometimes several drawings or when they have found
several examples that form a pattern that they extrapolate to the general case. Finally, there
are two kinds of analytic proof schemes. The transformational analytic proof scheme is used
when a student is able to make the general case of the argument with reasoning for why the
generalization makes sense and an understanding of the connection between the examples
and the general case. This kind of justification then leads to the ability to understand
axiomatic analytic proof schemes which most mathematicians use when formalizing proofs.

Method
Three classes of middle childhood (gr. 4-9) preservice teachers were studied. Two classes

(13 and 15 students) were in the second semester of their freshman (or sophomore) year and
one class (18 students) was composed of seniors, most who were in the last semester of their
university experience. All students in each class were presented with a questionnaire that
asked them to state the argument that was most convincing to them and to explain why it was
most convincing. The seniors’ questionnaire also had two extra questions asking which
arguments they will share with future middle grades students and why. The questionnaires
were given to the freshman/sophomore students the day after they had finished their
discussions in class concerning 1=9.0 . Therefore, the variety of arguments was still fresh in
their minds, and some of the students still were not convinced of the truth of the statement.
The seniors had taken the same class three years prior and most likely did not have any other
exposure to the concept other than perhaps through other classes or in their student teaching.

Data Analysis
The questionnaires were analyzed for common themes and similarities in comments.

Efforts were made to classify the arguments into the three categories and subcategories
provided by Sowder and Harel as well. However, the data available did not contain enough
information to assign responses to a category without significant speculation on the part of
the researcher. Therefore, the researcher resorted to a more grounded theoretical approach
(Glaser & Strauss, 1967) and the responses were classified by the different argument(s)
preferred, while taking several notes when a subject gave an external, empirical or analytical
justification. If students provided more than one convincing argument, each was counted in
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the results. A few of the freshman/sophomore students (n=6) still did not believe that the two
numbers were equal, so they provided arguments for why the statement was false.

Results
The sorting of the responses yielded several interesting findings, with the main results

summarized below:
 Valid arguments weren’t convincing to students whose prior understandings of limit

or rational numbers weren’t well-supported. (21.4% of the freshman and sophomore
students still believed the statement to be false.)

 An algebraic argument was heavily favored by both groups (46.4% and 44.4%), but
many reasons given for this preference placed too much emphasis on the authority of
the form over the substance (an externally based proof scheme).

 An argument that works well for one student can be a stumbling block for another.
 On average, seniors shared 2.2 arguments (compared to 1.2 from the younger group)

and 38.9% specifically said that the use of a variety of approaches to convince their
future students would be better than using just one.

 The top two arguments preferred by the seniors are also arguments that would be most
accessible to their future students since they involved fractions and decimals and used
inductive reasoning by looking for patterns.

Conclusions and Implications for Teaching
Overall, Knuth’s finding of form being valued over substance was confirmed by my data.

Students preferred an argument for its structure and its familiarity for them, but I became
doubtful that they really understood all of the underlying assumptions they accepted blindly
when they accepted each argument. Perhaps the teacher should be better at pointing out the
hidden assumptions at some point in the instruction. It also was a stumbling block to many
students that the whole number 1 would have another representation, though these same
students had no problem believing that a fraction can also be represented by a repeating
decimal. This interference may result from having been told for so long that we have a whole
number system with a “unique” representation for each number. Finally, the most preferred
arguments remembered by the seniors were actually the most basic and least abstract of the
approaches, which is probably good given the non-intuitive nature of this concept.
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A comparison of pre-service and in-service teachers' assessment of their preparation to teach
mathematics lessons from six content areas is reported. In five content areas, pre-service
teachers felt less well-prepared to teach than experienced teachers. In the area of algebraic
reasoning, pre-service teachers felt more confident than experienced teachers in their
preparation to teach algebra topics in elementary school.

The National Council of Teachers of Mathematics states “teachers must know and
understand deeply the mathematics they are teaching and be able to draw on that knowledge”
(NCTM, 2000, p. 17). A recent focus on mathematical knowledge for teaching (Ball & Bass,
2000) underscores the importance of teachers’ mathematical content understanding in relation
to student achievement (Ball & Hill, 2004; Mewborn, 2003). Teacher preparation programs
have been called upon to improve preparation of teachers and to cultivate teachers’
mathematical proficiency as stated by the National Research Council in Adding It Up:
Helping Children Learn Mathematics (2001). What does a comparison of experienced and
pre-service teachers tell us about improving teacher preparation programs for future
elementary mathematics teachers? What changes in emphases for specific mathematics
content in mathematics methods courses are suggested by such a comparison?

Using a database of 51,000 in-service teacher questionnaires, I compare how pre-service
teachers’ views of their own mathematics content preparedness differ from the views of
teachers with experience in the classroom. As experienced teachers undertook intensive
professional development in mathematics, it was found that a self-assessment of their
preparedness to teach certain mathematics topics decreased slightly when they began
professional development and then climbed as the number of professional development hours
increased (Weiss, Pasley, Smith, Banilower, & Heck, 2003). In other words, as the difficulty
of the task before them became evident, the experienced classroom teachers knew more about
the content they did not know in teaching mathematics.

The study was conducted in two phases. In the first phase questionnaire data was
collected from pre-service teachers (n = 152) at the end of a one-semester mathematics
methods course. These results were compared to the results of a large national database of
experienced teachers. Following an interesting lead in the data, the second phase of the study
examined pre-service teachers’ understanding of algebra, patterns and functions and
compared these results to experienced teachers’ knowledge of algebra topics.

The NSF-funded Local Systemic Change through Teacher Enhancement Initiative (LSC)
collected teacher questionnaire data from over 51,000 teachers from 1995 – 2006. In one
section of the survey, teachers were asked, “How well prepared do you feel to teach each of
the following topics at the grade level you teach?” Teachers chose from a four-point scale
ranging from “not adequately prepared” to “very well prepared” about their preparation to
teach mathematics (Banilower, Rosenberg, & Weiss, 2006; Heck, Rosenberg, & Crawford,
2006). A sample of pre-service teacher candidates (N = 152) was asked a similar question on
an anonymous survey at the conclusion of an elementary mathematics methods course. The
question was altered to ask about “… topics at the grade level you wish to teach.” Frequency
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of “fairly well prepared” and “very well prepared” responses for each topic were tabulated.
Survey results exploring how well prepared teacher candidates feel about each of six
mathematics topics are shown in Table 1.

Topic
Experienced Teachers Pre-Service Teachers

N = 152

Computation 96 93

Number and Number Theory 92 92

Measurement 91 81

Geometry and Spatial Sense 78 69

Data Analysis and Probability 78 70

Algebraic Reasoning 64 81

Table 1. A Comparison of Experienced Teachers and Pre-service Teachers Views of
Content Preparedness in Mathematics (Percent of Teachers Who Feel Fairly Well or
Well Prepared to Teach the Topic)

At the conclusion of mathematics methods courses for elementary school teachers, I ask
teacher candidates to fill out surveys on content preparedness in mathematics. There are those
teacher candidates who are aware of their shortcomings and who tend to self assess at a lower
level of preparation to teach certain mathematics topics, and there are those candidates who
are unaware of what they do not know—the unknown unknowns. These students may believe
they are well prepared to teach and may not realize their lack of content knowledge until they
are in the classroom. There are validity concerns with self-reported data on content
preparedness (Berends, 2006; Levy & Lemeshow, 1999).  Nevertheless, it does appear from
Table 1 that in the traditionally emphasized content areas of computation and number sense,
the pre-service teachers, on the whole, feel adequately prepared to teach number and
operations. In the content areas of measurement, geometry, and data analysis, a smaller
percentage of pre-service teachers feel well prepared to teach in comparison to experienced
teachers. Interestingly, when considering the topic of algebraic reasoning, these pre-service
teachers seem more confident than their experienced peers; a higher percentage of pre-service
teachers report that they feel well prepared or fairly well prepared to teach algebra than
experienced teachers. The result is surprising and may be a reflection of a new group of
prospective teachers who have learned algebra throughout their schooling and feel more
comfortable and confident with algebra.

To test this idea, the pre-service teachers (N = 152) were administered the Content
Knowledge for Teaching Mathematics Measures (CKTM) (Ball, Hill, Rowan, & Schilling,
2002). These measures give a picture of the mathematical knowledge for teaching that
teachers use in classrooms everyday. One section of the CKTM measures the knowledge of
pattern, functions, and algebra content. The CKTM measures are normative and validated
with a group of experienced classroom teachers (Hill & Ball, 2004) and reported in scaled
IRT scores. Thus, a zero IRT score is the mean score for the experienced teacher group. The
mean score for the group of pre-service teachers is 0.92, close to one standard deviation
above the norm. These results suggest that the self reported data from this sample of pre-
service teachers may, indeed, show that the pre-service teachers have some basis for
believing that they feel better prepared to teach algebra topics than experienced teachers.
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Until these teacher candidates have gained experience in teaching mathematics to children,
their preparedness to teach algebra topics will be a known unknown.

In the first phase of the study, pre-service teachers reported that they felt least prepared to
teach the content areas of geometry and data analysis, somewhat more prepared to teach
measurement and algebra, and well prepared to teach number and computation. This study
suggests four specific content areas be given more emphases in mathematics methods
courses. As teacher preparation institutions work to improve the quality of their preparation
programs, they may begin to examine and collect evidence of needed improvements in their
programs by using a large database of responses from experienced teachers as benchmarks.
Further studies on content preparedness and student achievement, as well as the relationship
of self-assessment of content preparation to teacher performance are needed to fully
implement changes in teacher preparation programs.
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Although popular media often provides negative images of mathematicians, we contend that
mathematics classroom practices can also contribute to students’ images of mathematicians. In
this paper, we analyze classroom observations to explore how often, when, and how teachers
frame the work of mathematicians to their students. The findings suggest that there may be a
relationship between one’s mathematics background and his/her references to mathematicians.

Introduction and Relevant Literature
When reading popular comic strips, one often finds manifested in the humor a portrayal of

mathematically gifted students or mathematicians as geeks, nerds, social misfits, and even fools.
Negative images of mathematicians can also be found in literature and in the movies
(Furinghetti, 1993).  While we believe that the representations found in popular culture influence
students’ beliefs about mathematicians, we contend that experiences in mathematics classrooms
can also contribute to students’ images of mathematicians.

The sparse literature on students’ images of mathematicians has drawn on research
methodology used in science education (e.g., Huber & Burton, 1995). For example, Picker and
Berry (2000) asked 473 students in five countries to “draw a mathematician at work,” to explain
their drawings, and to identify a situation where they might need to hire a mathematician.  Picker
and Berry identified the following seven themes in the students’ drawings: mathematics as
coercion; the foolish mathematician; the overwrought mathematician; the mathematician who
can’t teach; disparagement of mathematicians; the Einstein effect; and the mathematician with
special powers (pp. 74-75).  Providing no empirical evidence, Picker and Berry claimed: “it is
very rare to be in a mathematics class and hear the word mathematician used during the
lesson.…[and] it is very unusual to hear pupils addressed in a mathematics class as
mathematicians” (p. 90).  The purpose of this paper is three-fold: We examine when and how
teachers refer to mathematicians in their classrooms; we characterize the teachers’ framings of
mathematicians; and we discuss how these descriptions position teachers and students as
mathematical participants with respect to the work of mathematicians.

Methodology
We draw from the data set of a larger NSF-funded study on mathematics classroom discourse

(Herbel-Eisenmann, PI, Grant No. 0347906) in which eight classroom teachers (grades 6-10)
from seven schools in the Midwest participated.  Five of the teachers were certified to teach
secondary mathematics, and the remaining three teachers were elementary certified.

Because we were interested in describing how classroom teachers framed mathematicians
during their lessons, our primary data source was classroom observation data. During the first
year (‘05-‘06), data were collected during a class period chosen by each teacher for four full
weeks across the school year.  All 148 observations were videotaped and transcribed.  A search
engine was used to find all instances of the word “mathematician” in the transcripts.  During the
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‘06-‘07 school year, we continued to observe the class of the teacher who is the focus of the case
study for this paper because we found that most of the examples came from his classroom.

Results
In the first year, we found that 14 of the lessons contained the word “mathematician,” and

only teachers (not students) referenced mathematicians.  All but one of the instances was found
in classrooms taught by teachers who were certified to teach secondary rather than elementary.
Furthermore, two of the elementary certified teachers who, on numerous occasions expressed
concerns about their mathematical content knowledge, never mentioned mathematicians.

We identified three themes related to teachers’ use of the word mathematician.  First, and
most often, teachers referenced mathematicians in relation to time.  Within the references to
time, we identified the two sub-themes of mathematicians’ concern with saving time and time
with respect to the historical development of mathematics.

Related to the first theme is the second theme of mathematical convention.  In some cases,
students were told to use particular notation because that was how mathematicians would do it.
All examples of the third theme of mathematicians in conflict with others came from one
particular teacher who we call Matt.  Because Matt was the teacher who spoke about
mathematicians 6 of the 14 instances the first year, we considered him as a separate case.
The case of Matt

Matt, a second year teacher, assigned to teach geometry, had more mathematics credits than
the other project teachers. We observed 29 of Matt’s lessons across six weeks.  Matt spoke of
mathematicians during all six weeks for a total of 19 times.  When looking at how Matt
discussed mathematicians, we identified two themes.  First, Matt frequently mentioned time,
both in a historic sense and in reference to wanting to do something quickly.  Second, Matt often
positioned mathematicians in conflict with others such as mathematicians versus logicians,
mathematicians versus textbook authors, or mathematicians versus “real people.”

Discussion
Our findings provide empirical evidence that there are instances of teachers framing the work

of mathematicians and framing students as mathematicians. We find it particularly significant
that none of these instances came from the two classrooms of the teachers who took the least
mathematics credits. Additionally, Matt, the teacher who had more mathematics credits than the
other participating teachers, referenced mathematicians most often.

These results also indicate that more work needs to be done to promote positive images of
mathematicians.  Additionally, consideration should be given to the possibility that classroom
practices might also contribute to mathematics’ unfortunate “image problem” (Malkevitch,
1989). As noted by Picker and Berry (2000), teachers seem largely unaware of their students’
lack of knowledge about mathematicians and the role that they play in shaping and changing
their views.  While we cannot control popular culture portrayals, we speculate that teachers and
teacher educators could be best positioned to counter the messages sent by these other sources if
they more consciously attended to their references of mathematicians.
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MATHEMATICS TEACHERS’ KNOWLEDGE
THAT SUPPORTS INQUIRY TEACHING
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This paper deals with secondary mathematics teachers’ knowledge that supports the
teachers’ use of inquiry-teaching approaches. It discusses the nature of, and relationships
among, four domains of knowledge that are central in explaining when and how they use
these approaches. It suggests the importance of learning tasks in teacher education that
allow teachers to integrate these knowledge domains.

Current perspectives to reform mathematics education suggest that inquiry teaching [IT]
is important for students to develop deep mathematics understanding and mathematical
thinking. In inquiry classrooms, students are expected to construct mathematical meaning
through reasoning, exploring, communicating, and collaborating with peers and the teacher
while working on tasks that are inquiry-oriented (NCTM, 1991). However, my experience
suggests that such classrooms are less common at the secondary level. Even after learning
about IT approaches, high school teachers, in particular, may not implement them in the
classroom. This paper reports on a study that investigated the relationship between the
knowledge of teachers exposed to IT theory/approaches in preservice or inservice education
courses and their teaching. Of particular interest is the nature and role of the knowledge of
secondary mathematics teachers that support their use of IT approaches.

Related Literature and Theoretical Perspective
Quality teaching is directly related to teachers’ knowledge (Shulman, 1986). Teachers’

beliefs about mathematics have been shown to play an important role in how it is taught
(Ernest, 1989; Thompson, 1992). Research also has provided evidence to support concerns
about the adequacy of teachers’ knowledge as a basis to teach mathematics in an inquiry or
reform-oriented way (Ponte & Chapman, 2006). However, for the study reported in this
paper, the focus is not on highlighting deficiencies in the teachers’ knowledge, but to
examine how their knowledge forms a basis of sense-making in their teaching. The study is
framed in a cognitive perspective of interpreting teacher knowledge (Fenstermacher, 1994),
in particular, the pedagogical knowledge they construct through theory, practice, and other
experiences. This knowledge constitutes the teachers’ perspectives of what they know, that is,
what makes sense to them. The study also adopts the view that three major domains of
mathematics teacher knowledge are necessary for proficient mathematics teaching:
knowledge of mathematics, students, and instructional practices (Kilpatrick, Swafford &
Findell, 2001). It considers these domains of knowledge from the teachers’ perspectives.

Research Process
Three preservice and one inservice secondary mathematics teachers were studied. The

preservice teachers were in the second year of their two-year B.Ed. program, which had a
focus on IT. However, they were in predominantly traditional classrooms for their practicum.
The inservice teacher was taking a graduate course related to inquiry pedagogy, but not
specific to mathematics and at the beginning of the study had started working on
implementing IT approaches in her practice.
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The main sources of data were interviews, classroom observations, discussions, and
teaching documents. The open-ended interviews included a focus on the participants’
thinking about mathematics, IT and learning; actual experiences with IT; and thinking about
what supported or inhibited their use of IT. Classroom observations were conducted for
lessons including and not including IT approaches. Discussions included the teachers’
knowledge of the mathematics concepts in the IT lessons. Documents included lesson plans.

Data analysis involved focusing on identifying the participants’ knowledge and thinking
about mathematics, students’ learning and IT; situations of when, how and why they used IT
approaches; and apparent relationships between their knowledge/thinking and IT. Themes
were determined by identifying conceptual factors that characterized each participant’s
thinking and practice based on the information from the scrutiny of the data. “Patterns”
emerged as the most dominant theme in relation to IT.

Results
Two of the preservice teachers (Reba and Sara) and the inservice teacher (Brea) used IT

approaches. (Hereafter, they will be referred to as IT teachers.) The third preservice teacher
(Cara) did not use any IT approach. (Hereafter, she will be referred to as non-IT teacher.) The
IT teachers differed in how they planned and conducted their IT lessons, but exhibited
prominent similarities that seemed to characterize their sense making in using IT. Only these
similarities are discussed here. They involve four domains of knowledge and the relationships
among them, which seemed to be central to explaining the teachers’ use of IT approaches.
The non-IT teacher differed from the IT teachers in these domains of knowledge. The
following highlights the nature of these knowledge and the relationships among them.

Beliefs about Mathematics
The IT teachers held a similar core belief about mathematics that provided the foundation

for when and how they used IT approaches. For Sara, this belief was “patterns, making
connections between patterns and the world,” for Reba “a lot of patterns … can be found
everywhere,” and for Brea, “patterns and connections and interconnectedness … [having]
connections to the world.” The non-IT teacher had a different focus, for example, “problem
solving, a way of analyzing the situation and exercising your brain in a certain way.”

Beliefs about Learning
The IT teachers held a core belief about students’ learning that was compatible with IT

and directly related to the belief about mathematics. This belief focused on having students
“make the connections themselves” (Sara), or “see patterns for themselves” (Reba), or “make
connections and see things as interconnected” (Brea). The non-IT teacher had a different
focus, for example, “There are tons of different learners that learn at different rates. … Some
people get it in a snap; some people take a lot longer to get it.”

Mathematics Knowledge
The way the IT teachers held their knowledge of mathematics played a significant role in

terms of when and how they were able to transform their beliefs about mathematics and
learning into practice. For example, mathematics concepts that they readily understood, or
already held, in terms of patterns were taught through IT approaches.  The IT teachers were
able to associate the concepts they held as patterns with specific IT approaches that focused
on the mathematical structure of the concepts, for example, approaches involving a
“compare/contrast” technique.



1138

                                                                                                                                                      
Lamberg, T., & Wiest, L. R. (Eds.). (2007). Proceedings of the 29th annual meeting of the
North American Chapter of the International Group for the Psychology of Mathematics
Education, Stateline (Lake Tahoe), NV: University of Nevada, Reno

Instructional Knowledge
Finally, the IT teachers held instructional knowledge for engaging students in the learning

tasks that was directly related to their belief about learning. Their thinking and practice
indicated that this knowledge included: use of groups, open questioning/prompts, and flexible
listening in an IT context. For example, regarding listening, Sara explained: “I always tried to
make them tell me what they were doing. … I always tried to listen to their process … how
are they thinking and why.” Reba noted: “I would ask them, ‘Well, what are you thinking
of?’ because then that could trigger them without me having to say how you solve this.” Brea,
“I am questioning what is being called forth in that moment. I am deeply trying to listen to
their inquiries now.” The non-IT teacher had a different view, for example, “I try and
understand … if they’re asking a question and they’re like on the page before …that tells me
that they haven’t really listened to anything that I’ve done since that.”

Classroom observations of the IT preservice teachers’ practice revealed that their inquiry-
oriented lessons had a similar structure, consisting of: an introduction stage, an exploration
stage, a sharing and discussion stage, and a conclusion stage. The IT experienced teacher’s
lessons had a more complex, cyclic structure that included initial responses, inquiry-based
discourse, investigations/research, collaboration, and extension/application.

Conclusion
The nature of, and relationship among, the teachers’ knowledge in the four domains of

knowledge are central in accounting for, and understanding, their use or non-use of IT
approaches. The teachers did not only have to hold knowledge relevant to IT, but, of
particular importance, they had to hold the four domains of knowledge in an interconnected
way. For the IT teachers, the theme of the interconnectedness was pattern. When the inter
connectedness was lacking, for example, the mathematics concept was not viewed as a
pattern, the preservice teachers resorted to traditional teaching and justified it in terms of the
contextual classroom constraints they perceived. For the non-IT teacher, there was no
centrally held theme to connect any of the theoretical knowledge she held about IT. For
example, she considered IT to be about “getting the students to discover concepts on their
own as opposed to telling them what it is, so giving them an opportunity to explore a problem
or a situation.” But this was not evident in her teaching and she believed it was the traditional
classroom context she was in that prevented her use of IT.

The findings suggest the importance for teachers to construct an integrated image of IT to
be able to implement it. For the IT teachers in this study, this involved understanding
mathematics as patterns, learner as inquirer of patterns and teacher as facilitator of student as
inquirer of patterns. This validates the importance of providing teachers with learning
experiences that treat these key domains of teacher knowledge in an integrated way.

Endnote
1. This study is funded by the Social Sciences and Humanities Research Council of

Canada.
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TELLING TALES FROM OUTSIDE OF THE CLASSROOM:
NARRATIVE AS A LENS ON HOW ONE TEACHER MADE

CHANGES IN HER MATHEMATICS TEACHING PRACTICE

Mary Q. Foote
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mary.foote@qc.cuny.edu

This paper examines narratives one teacher told during participation in a Professional Study
Group. Through various retellings, one sees her shift the responsibility for underachievement in
mathematics from the child to herself. Specific plans the teacher made to adapt her teaching
practice are noted. Through her retelling of events we gain access to what supported her in
forming these plans.

There is a recognized concern over the lack of cultural congruence between the mainly
female, white, middle-class teaching force in elementary school and the growing diversity of the
students in schools nation wide (Howard, 1999; Nieto, 2004). The study adds to a growing body
of information on methodologies that support teachers in becoming better teachers of "other
people's children." This paper looks at narratives that one teacher, whom I call Ellie, told during
participation in a Professional Study Group, and how through various retellings, one can see her
shift the responsibility for underachievement in mathematics from the child to herself. One goal
of the Study Group was to support the members in changing their teaching practice in
mathematics so that it better addressed the needs of a student in their classrooms that struggled in
mathematics. This paper chronicles the specific changes that Ellie made or planned to make in
adapting her teaching practice in mathematics.

Theoretical Framework
Mathematically substantive pedagogy may not be sufficient to support teachers in teaching

diverse populations of children. Pedagogy that is culturally relevant may also be necessary
(Ladson-Billings, 1994, 1995). In order to develop a pedagogy that is both mathematically
substantive and culturally relevant it may be helpful for teachers to examine children's
competencies outside of the confines of the classroom and in this way build more authentically
on the child's lived experiences.

Professional development that engages teachers in a close examination of a single child has
been shown to support teachers in arriving at deeper understandings of that child's particular
educational needs (Brooker, 2003; Gallas, 1992; Himley & Carini, 2000).This study built on
these ideas by engaging teachers in a deep examination of a single child from their class who
came from a background unlike their own.

Through an examination of the narratives of one participant, we gain access to the ways in
which it is possible to use information gained in out-of-classroom settings to support changes in
practice. The power of narrative is another thread that frames this study. In this case, Ellie
provides us with a local case (Clandinin & Connelly, 2000) that can be pointed to as standing in
contrast to our national narrative of the underachievement of non-White students due to deficits
they bring to school. The analysis of the narrative allows for tracing changes in the teacher's
point of view as she successively retells events (McVee, 2004).
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Methods
This paper draws on data collected as part of a larger study (Author, 2006, in submission). In

that study, six teachers participated in a Professional Study Group in which they each conducted
a case study of a particular child from their respective classrooms who came from a background
unlike their own. The participants in the study were six White in-service teachers who at that
time worked in the same elementary school in a moderately sized Midwestern school district.
This paper analyzes the narratives told by one of these six teachers. This teacher made two
presentations to the Study Group about her target child. In addition the researcher/faciltiator met
with the teacher before each presentation to support her in preparing the presentation. In this
way, the teacher had four separate opportunities over the course of a semester to share
information in narrative form about her target child.

Between the two presentations, the teacher spent one day shadowing her target child in the
school setting. This provided the opportunity for the teacher to observe the child in situations to
which a teacher does not usually have access such as lunch and recess, pull-out programs, and
special classes such as art and gym. During this time between the two presentations, the teacher
also met with the mother of her target student. The purpose of the meeting was for the parent to
share with the teacher information about the child's out-of-school interests and experiences,
using photographs she had taken as an artifact to support the discussion. One intention was to
position the parent as the one from whom the teacher would learn about the child, reversing the
traditional power dynamic between teacher and parent.

Study Group sessions, the meetings to prepare for the presentations, and the parent-teacher
meetings were audio-taped. Field notes were taken at each meeting. All audio-tapes were
transcribed to facilitate analysis. I examined the narratives this teacher told about her target child,
and herself as well as about her interactions with the child's mother. This perspective provided a
view of the degree to which this teacher was able, not only to learn significant new information
about her target child that could support the teaching of mathematics to that child, but also the
degree to which this teacher was able to act upon the information, by positioning herself as the
party responsible for the underachievement.

Results
Through an analysis of the narratives told by Ellie, one sees that she not only identified

specific mathematical abilities that her target child, whom I call Evan, exhibited outside of the
classroom, she also brought that learning into the classroom. She discussed competencies such as
the Evan's ability with counting that she had accessed while consulting with his mother. She
presented problem solving and language competencies that the child possessed that she had
accessed while observing him on the playground. She pondered ways to bring those out-of-
classroom competencies into the mathematics classroom. She not only learned things about the
target student, she learned things about herself as well. She moved from dismissing Evan's
mother's estimation of his counting abilities, to considering more carefully that her own
experience was one that should be open to examination.

Discussion
The telling of incidents and episodes about her target student as part of her participation in

the Professional Study Group, provide an opportunity to see how Ellie examined the
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preconceptions she was bringing to assessing Evan's abilities, changing her point of view while
the events she related stayed the same (Wolf, 1992). Ellie identified that Evan worked best in the
workshop rather than the centers format. This analysis of the characteristics that supported his
learning may have allowed her to think about how to restructure other time in the classroom.
This ability to analyze existing practice, and analyze it not merely in a general way, but with
regard specifically to her target student, may have positioned her to interrogate her practice in a
way that supported her in either implementing or making plans to implement changes in practice.

The narratives show how she was able to change the initial stance she had toward Evan as a
child who was continually out of step with the flow of classroom activities, rarely connecting to
the classroom program. They demonstrate that Ellie accessed evidence of problem solving in
unexpected spaces around the school, including the playground and is able through these
experiences to identify herself and her teaching practice in mathematics as in need of change. We
are also able to see through the narratives she tells, that Ellie has specific ideas about how to
adapt her practice to better serve Evan's needs, as well as the needs of other struggling
mathematics learners in her class.

This case confirms Villegas's (1993 as quoted in ; Zeichner & Hoeft, 1996) findings that
conferring with parents and observing children in school are ways that give teachers access to
children's lived experiences. The kind of specific knowledge that Ellie had about her target child
has been documented as providing a basis from which teachers can potentially continue to grow
and change (Franke, Carpenter, Levi, & Fennema, 2001). In the area of student-teacher
relationships, my findings are also consistent with those of Civil (1998) and other funds-of-
knowledge researchers, that the relationships forged between teacher and student as a result of
participating in professional development that focuses on specific children are of great
importance to the teachers. It may support the teacher in looking toward herself instead of toward
the child for changes that can better support learning.
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TOWARDS EFFECTIVE TEACHING OF LOGARITHMS:
THE CASE FOR PRE-SERVICE TEACHERS

Tanya Berezovski
Saint Joseph’s University

This report is a part of ongoing research on pre-service secondary mathematics teachers’
content knowledge. The study draws data from two sources: the Math Play and the peer-job-
interview. The analysis based on practice-based theory of mathematical knowledge for teaching
(Ball et al, 2006), and the system of frameworks for interpreting understanding of logarithms
and logarithmic functions (Berezovski & Zazkis, 2006). The results of this study indicate
participants’ disposition towards a procedural approach and reliance on rules, rather than on
meaning of concepts.

The mathematical concepts of a logarithm and logarithmic functions play an important role
in advanced mathematics courses. In recent years, several research studies reported on students’
understanding and misunderstanding of logarithms at the high school (Berezovski, 2006;
Berezovski & Zazkis, 2006) and undergraduate mathematics level (Kenney, 2005; Weber, 2002).
It is also common knowledge in the field of mathematics education that teachers’ mathematical
knowledge for teaching has a strong impact on students’ understanding. However, there is no
significant body of research that focuses on teachers’ mathematical knowledge of logarithms and
logarithmic functions.

This paper focuses on pre-service secondary mathematics teachers’ content knowledge. To
fulfill a dual commitment as an instructor of the methods course, and as a researcher, the author
utilizes two tasks: the Math Play and the peer-job-interview. They were used as research
methodology and also to create and orchestrate experiences for the pre-service teachers to reflect,
and grow in their understanding of how to teach logarithms and logarithmic functions.

Theoretical Frameworks
Ball et al, (2006) introduced the mathematical knowledge for teaching model. The model has

four domains, each tied to the distinctive work teachers do.
a) common content knowledge (CCK) — the mathematical knowledge of the school

curriculum;
b) specialized content knowledge (SCK) — the mathematical knowledge that teachers use in

teaching that goes beyond the mathematics of the curriculum itself;
 c) knowledge of students and content (KSC) lies at the intersection of knowledge about

students and knowledge about mathematics. KSC includes knowledge about what students are
likely to do with specific mathematics tasks;

d) knowledge of teaching and content (KTC) – the knowledge about instructional sequencing
of particular content, and provides useful examples for highlighting salient mathematical issues.

Each domain is used to measure the particular mathematical knowledge. For example,
domain a) manifests participants’ knowledge of the definition of a logarithm, and their ability to
apply it, presenting logarithms in the exponential form. Within b) domain I can evaluate
teachers’ understanding of mathematical content. The system of interpretive frameworks
(Berezovski & Zazkis, 2006) for investigating high school students’ understanding of logarithms
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was adapted to measure teachers’ understanding. This model differentiates teachers’
mathematical knowledge upon meaning of logarithms as numbers; operational meaning of
logarithms; and logarithmic functions. As such it allowed the researcher to gain deeper insight
into pre-service teachers’ understanding of logarithms.

Methodology
Participants of this study were 47 pre-service teachers enrolled in the Design for Learning

Secondary Mathematics course. Data collection relied on two major sources: the lesson plan with
the Math Play and the peer-job-interview. Both tasks were created to simulate possible situations
of the beginner teachers’ experiences. Constructing such situations, Brousseau (1997) points out
the necessity of organizing a milieu in which students can work assuming a maximum
responsibility about mathematical knowledge. It is essential to employ such situations during the
training time. They enable pre-service teachers to evolve their own mathematical knowledge, due
to the interactions with situations; and, to experience the mathematical interactions with the
students. They enable the mathematics educator to observe such developments with respect to
teachers’ mathematical knowledge.

The Math Play
Within the sequencing of lessons that student-teachers designed as a part of the course

project, they were asked a) to summarize the lessons, carefully sequencing and connecting the
lessons to provide optimal learning experiences; b) write a detailed lesson plan that incorporates
a Math play. Participants were provided with an episode of a fictional mathematical interaction
between a student and a teacher that presented a problematic situation in which student has
developed a misunderstanding about logarithms.

There is a conversation between a teacher and a student (there are 30 students in a class):
T: Why do you say that log37is less than log57?
S: Because 3 is less than 5.
Teachers were to diagnose the misunderstanding, formulate a plan for the remediation of the

misunderstanding, and write out the balance of the interaction in the form of a play.
The data collection was based on the participants’ math plays; the evidence of the level of

teachers’ content knowledge was established upon choices participants made in the remediation
part of the play, and the diagnosis of the fictional student misconception.

The Peer-Job-Interview
This task was designed in the way that participants have to interview each other in the

capacities of a head of math department in a secondary school and a substitute teacher applying
for a 6-month contract covering for a teacher on a maternity leave. The conditions of this task
were the following: the interviewer will do his/her best to verify and evaluate the potential
candidate's knowledge and understanding of the mathematical content required to cover (for the
purpose of this paper it is limited to logarithms). The potential candidate should do his/her best
to answer the questions to demonstrate his/her competence. The data collected from this
interview was the original recording of the interview, the transcript of the interview, and the
written explanation of the participants’ choices of the interview questions. Then, the fictional
interviewer had to submit his/her written evaluation of the interviewee highlighting the
candidate’s qualification and suggestions to strengthen his/her knowledge.
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Results, Conclusions
Majority of results show that mathematical knowledge possessed by the pre-service teachers

participated in this study is limited. Such results draw upon the following aspects of
investigation. Focusing on the SCK domain, I investigated to what degree logarithms are
understood as numbers and whether the value of a logarithm influenced this understanding. In
the traditional curriculum, the concept of logarithm is presented as an inverse of the exponent. A
novice operating in this framework may correctly interpret, for example, the value of log39, by
using the definition (32=9 _  log39=2). The main result obtained by exploration in the second
interpretive framework is that participants' understanding of the operational character of
logarithms is weak. While focusing on operations with logarithmic expressions, I explored the
participants’ awareness of the isomorphism between multiplicative and additive structures that
determine the “rules” by which logarithmic expressions are manipulated. In investigating
teachers’ understanding of logarithmic functions the main focus is on the considerations
teachers’ conceptions of logarithms related to logarithmic function, and how they employ
logarithmic properties and different representations in constructing successful problem solving
situations.

The contribution of this study is in providing two educational tasks employed for training
pre-service teachers. These tasks were constructed and adapted in order to create rich learning
environment for the perspective teachers, and proved themselves worthy in this regard.
Furthermore, this research provides a better understanding of the participants’ difficulties
involved in acquiring important mathematical concepts of a logarithm and a logarithmic function
and also suggest possible explanations of the sources of these difficulties. As such, this study
lays a foundation for future research on this topic. It paves the path to future development of
pedagogy.
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The foci of IMAPP (a 3-year research and Professional Development (PD) project) are to
deepen secondary school mathematics teachers’ content knowledge and enhance their use of
research-based powerful pedagogies. Teachers attend a summer mathematics content PD
Institute (PDI) on legacy & future mathematics content for secondary school mathematics
curriculum and a pedagogy PDI, analyze their Iowa Test of Educational Development (ITED)
data to identity two hard to learn concepts/ideas that will serve as fodder for designing and
implementing plans for student learning through a Lesson Study Approach (LSA).

Research Questions
[I] Content Intervention Questions: [Overarching] What opportunities to learn (OTL)

mathematics content are afforded participants in a summer mathematics content professional
development institute?  [II] Pedagogy Intervention Questions: [Overarching] What levels of
intervention, collaboration, and supervision of LSA can be effective in improving pedagogy to
enhance students’ understanding? [III] Students’ Outcomes Question: [Overarching] What are
the trend-shifts between ITED scores for students of participants/AEA before the content PDI,
pedagogy PDI and the LSA interventions and after the interventions?

Methods
IMAPP will serve 20 participants in Year 1 (2007-2008 AY), 40 in Year 2 (of which 20 are

repeating from Year 1), and 60 in the third year of the project (40 of which are repeating from
Year 2). Participants will examine/explore the following ideas content PDI [1] Algebra; [2]
Quantitative Literacy; [3] Statistics and Probability; and [4] Geometry [Legacy – Yr1
(Coordinate), Yr2 (Trigonometry), Yr3 (Geometric Properties); Future – Yr1 (Vertex-Edge
Graphs), Yr2 (Vertex-Edge Graphs), Yr3 (Transformations)]. The participants will explore
powerful pedagogies and related understandings around How People Learn, LSA theory and
practice, teaching through problem solving, Problem-Based Instructional Tasks (PBITs)
selection, and task implementation.  Data saturation include, pre-post assessment of teachers’
mathematics content knowledge of secondary school mathematics (concept maps, free-response
and MC tests); observational data (field-notes, video and audio records) on PDIs, and teachers’
classroom enactments; teacher interviews, Curriculum Enactment Suite, and Conception of
Mathematics Inventory. Both qualitative (content analysis, constant comparison, structural and
relational analysis, thematic/categorizations) and quantitative (comparison of means) data
analysis will be deployed.

Ongoing Analysis and Preliminary Results
The poster presentation will share preliminary results from the analysis of data from the

summer content and pedagogy PDIs, and initial observations of teacher enactments pre-PDIs,
and beginning enactments post PDIs. The participants’ report of awareness of future
mathematics content agrees with our initial assumption about teachers’ opportunity to learn the
said content areas, with 92% of participants starting that they had either no knowledge or small
amount of knowledge of vertex-edge graphs; 98% answered similarly on preferential voting; and
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61% answering similarly on recursion. Analyses on IMAPP generated post-test of content and
the Knowledge for Algebra Teaching (KAT) assessment (pre and post) are underway to parse out
what new mathematics content the participants learned during the content PDI. Ongoing analysis
of the data on lesson planning, teaching, and reflection on teaching based on enactment and
student work samples are yielding images of complexities of effectiveness such as knowledge of
how people learn, content trajectory and content fidelity/coherence, mile-wide and inch-deep
lesson plans, flexible pedagogical support for learning, and student engagement. For example, it
appears that there is a struggle, among participants, between teaching through multiple
representations that addresses the principles as stated in the Principles and Standards for School
Mathematics (NCTM, 2000) and teaching to learning styles. This is a struggle that IMAPP
intends to unpack and repack in ongoing interventions and interactions with the participants.
Trying to do too much (mile-wide and inch-deep lesson plans) has surfaced as an area that
IMAPP needs to confront as we review lesson plans and observe enactments of hypothesized
learning trajectories. Within the area of content trajectory and content fidelity/coherence, data
analysis is surfacing a complexity of repacking the unpacked mathematics for instruction.
Repacking the mathematics for instruction is an often neglected process in effecting learning. So
what we find, for example, is enactments of lesson plans that provide a near surface treatment of
the nuanced complexities of the subject matter and the intended mathematical residues.

Based on local analysis of ITED data, the participants chose the following legacy content:
Percents, interpreting graphs, linearity, and linear programming. During the Pedagogy PDI in the
summer of 2007, the demonstration lesson for the LSA was on linear programming. Twenty four
high school students served as a focus-group to help the lesson team, teacher-peers/colleagues
serving as observers, and Lesson Study experts make sense of the mathematics, teaching and
learning treated in the lesson. The data analysis from that LSA cycle is still underway. Two
school-based groups of participants have completed an initial trial of the lessons on interpreting
graphs and linearity in the current 2007 AY. Data digitization and transcription are underway as
we prepare the data for analysis. More LSA enactments are planned for the Fall of 2007and
Spring of 2008. What we learn from the first iteration of IMAPP in the summer of 2007 and the
2007-2008 AY activities will inform the re-design of IMAPP for the summer of 2008 content
and pedagogy PDIs.

The overall evaluations of the 2007 content PDI were quite positive, with 17 of the 23
evaluations items receiving an average score of four or better on a five-point likert-scale.
Another two evaluation items received scores between 3 and 4 on the five-point likert-scale. The
participants were equally positive about the 2007 pedagogy PDI, with 17 of the 27 evaluation
items receiving an average score of four or better on a five-point likert-scale. Another nine
evaluation items received average scores between 3 and 4 on the five-point likert-scale. More
analyses are underway, but the little we are able to discern so far encourages us that we have
embarked on a productive trajectory of engagement with teachers that will facilitate their
identification with the core practices of the mathematics education community.
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PROSPECTIVE AND PRACTICING 4-12 MATHEMATICS TEACHERS’
THINKING WITHIN A UNIVERSITY COURSE ABOUT PROPORTIONAL

REASONING

Sharon Benson
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Instructors addressed three questions: What themes emerged regarding student thinking? How
did these themes direct instructional decisions? How did the instructional decisions impact
student thinking? Data included assessments, tapings, and other course artifacts. Regarding
content and pedagogy, students progressed in thinking related to multiplicative reasoning and
ratio sense yet continued to struggle with explaining thinking related to invariance and
covariance.

Mathematics teacher preparation and professional development programs must attend more
explicitly to teachers’ development of proportional reasoning and related concepts (Sowder,
Armstrong, Lamon, Simon, Sowder, & Thompson, 1998). Within a one-semester university
course about proportional reasoning, the instructors carefully documented student thinking in
order to address the following questions: (1) What themes emerged regarding student thinking
during the course? (2) How did these themes direct instructional decisions related to this course?
and (3) How did the instructional decisions impact student thinking?

There were 27 students in the class. Twelve students were undergraduate interdisciplinary
majors seeking 4-8 mathematics certification and 15 students were post baccalaureate, M.Ed., or
Ed.D. students. Nine students were middle, high school or community college mathematics
teachers.

Within the course, students engaged in several activities related to proportional reasoning
(e.g., Thompson & Bush, 2003), read professional and research articles related to proportional
reasoning, and planned and evaluated lessons based on proportional reasoning concepts. These
experiences were designed in such a way as to engage students in mathematical and pedagogical
problem solving and to provide opportunities for the creation of meaningful representations of
mathematical and pedagogical ideas.

To assess patterns and themes regarding student thinking, and to assess the effects of
instructional decisions on student thinking, the instructors used pre-, mid-, and post-assessments,
video of class meetings, audiotapes of small group discussions within the mathematical
activities, student reflections, field notes taken during the class meetings, and other course
artifacts. The resulting data were studied for the student use of multiplicative reasoning, evidence
of ratio sense, and the application of invariance and covariance.  We also attended to students’
abilities to explain one’s thinking related to these three components of proportional reasoning.
The data were also examined for pedagogical insight needed to develop thinking and skills
related to multiplicative reasoning, ratio sense, and invariance and covariance with students in
grades 4-12.

The students progressed in their thinking related to multiplicative reasoning and ratio sense
yet continued to struggle with explaining thinking related to invariance and covariance. This was
true for thinking related to content and pedagogy. The poster session will include a discussion
about the instructional decisions that may or may not have contributed to these findings.
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Teaching is a complex activity. Teacher content knowledge is one of many factors that
influence teaching, though we are not certain in what ways and to what extent (Wilson, Floden,
& Ferrini-Mundi, 2001). While some studies have addressed what knowledge teachers should
have (Fennema, et al, 1996; Hill & Ball, 2004), few studies have looked directly at how that
knowledge plays a role in the classroom. Teaching frameworks claim that several factors,
including teacher knowledge, might influence the implementation of curricular materials and
instructional tasks (Stein & Lane, 1996). This presentation specifically focuses on the way that
teacher content knowledge affects the design and implementation of tasks in an Algebra I/Data
Analysis curriculum. This relates to the goals of PME-NA by seeking to extend understanding of
how teaching Data Analysis is affected by the mental constructs of content knowledge.

This poster describes the ways in which two teachers’ content knowledge affected their
creation and implementation of instructional tasks within an Algebra I/Data Analysis curriculum.
They are both veteran teachers at the same high school located in an urban setting in the Eastern
United States. The Algebra I/Data Analysis class is high stakes in that all students are required to
pass a state mandated exam pertaining to this content in order to graduate.

This study comes out of a larger, multiple case study project and for the purposes of this
presentation I focus on two cases. Each of the analytic methods that follows draws upon the
constant comparative method used in the development of grounded theory (Glaser & Strauss,
1967) in which data are constantly compared as they are analyzed against current conjectures.
Eight observations of classroom teaching, pre and post teaching conversations, and two
interviews (one focusing on testing content knowledge) were conducted with each teacher
throughout the school year.

Observations and interviews of the two teachers indicated that one had a robust, deep
understanding of Data Analysis and its relationship to Algebra (T4) while the other had gaps and
misunderstandings regarding some concepts in Data Analysis (T6). According to the
instructional task framework proposed by Stein & Lane (1996), T4 created and employed Data
Analysis tasks with a “high level” of “cognitive demand.” Interviews, conversations, and
observations suggest that her knowledge about Data Analysis and its relation to Algebra played a
direct role in the creation and implementation of the tasks. The Data Analysis tasks designed by
T6, however, are categorized as “low level” activities in Stein & Lane’s framework. Interviews,
conversations, and observations indicate that her discomfort with and misinterpretations about
Data Analysis contributed to the types of tasks she employed in her class. These findings suggest
that teacher content knowledge can play a role in the types of instructional tasks used in the
classroom.
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Prior research on students’ uses of technology in the context of Euclidean geometry has
suggested it can be used to support students’ development of formal justifications and proofs.
This study examined the ways in which students used a dynamic geometry tool, NonEuclid, as
they constructed arguments about geometrical objects and relationships in hyperbolic geometry.
Five students enrolled in a college geometry course participated in an interview about properties
of quadrilaterals in the Poincaré disk model. Toulmin’s argumentation model and the MATCI
framework were used to analyze students’ uses of technology in the process of constructing
arguments as they were working on various tasks.

Introduction and Theoretical Framework
Traditionally, College Geometry is a difficult course for students because it requires them to

reason strictly from axioms and postulates rather than informal experiences and intuitive
understandings. In order for students to appreciate the importance of the rigorous axiomatic
approach, most college geometry courses introduce students to a less intuitive world of non-
Euclidean Geometry. Students generally enter a college geometry course with twelve or more
years of experience working within the Euclidean system of axioms, and their understandings of
figures and relationships within this system are challenged when the axioms are modified. While
geometry, in general, is a very visual subject, there are several limitations to students’ uses of
paper-and-pencil diagrams, especially when it comes to non-Euclidean geometries. A student
may create inaccurate misleading diagrams and arrive to incorrect conjectures, or a student may
create a correct diagram that is too specific and this may inhibit their ability to derive general
conclusions and proofs that go beyond the drawing they have created (Schoenfeld, 1986).

Many mathematics education researchers and professional organizations have suggested the
use of dynamic software programs to teach geometry (NCTM, 2000). These software programs
enable students to construct accurate diagrams and interact with the diagrams to abstract general
properties and relationships, because the ways in which the programs respond to the students’
actions is determined by geometrical theorems. Research related to secondary students’ uses of
such programs has been shown to improve their understandings of geometrical concepts and
support their development of formal proofs (Laborde, Kynigos, Hollebrands & Straesser, 2006).
Such programs show promise for working with models of hyperbolic geometry, where
interpretations of planes, lines, and angles are unconventional. Various technological tools have
been developed to assist students in reasoning within different non-Euclidean systems (e.g.,
NonEuclid, Castellanos, 2007), but little research has examined how students’ uses of such tools
affects their mathematical thinking or influences the mathematical arguments they develop.
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While proof and formal logic are two characteristics of mathematics that separates it from
other sciences, students learning mathematics often engage in mathematical reasoning and sense-
making activities prior to constructing a formal proof. It is in this “territory before proof”
(Edwards, 1997) where students make the most use of technology tools, but few researchers have
examined how students’ use of such tools affects less formal mathematical arguments they
develop. The purpose of this study is to investigate the ways in which students use dynamic
geometry tools (NonEuclid) as they construct arguments about geometrical objects and
relationships in hyperbolic geometry. The purposes of this study are closely tied to the goals of
PME-NA in that it seeks to build upon and extend our knowledge of the psychological processes
involved in students’ construction of mathematical arguments when solving mathematical tasks
with the use of a technology tool.

One model that has been used by several researchers (e.g., Stephan & Rasmussen, 2002;
Lavy, 2006) in mathematics education to examine students’ mathematical arguments is
Toulmin’s model of argumentation (Toulmin, 1958). This model views argumentation from a
practical perspective rather than a pure logico-mathematical viewpoint. This model decomposes
an argument into three main components: claim, data, and warrant. When making an argument a
claim is made. The claim is often the purpose of the argument and it is generally based on some
form of evidence, facts or general information called data. If the argument is challenged, then a
warrant may be provided, which is the logical connection between the data and the claim. The
warrant explains the relationship between the claim and the given data. To aide the audience in
understanding the reasoning used in the warrant, additional information, called backing, may be
provided to support the warrant. This model of argumentation was used to focus the researchers’
attention on different aspects of a student’s argument and examine the ways in which technology
was used in response to a specific mathematical task.

Methods and Data Sources
For this study, five participants were selected to participate in a series of three interviews

conducted by the first two authors of this paper. The third and fourth authors were involved in
the teaching of the college geometry course and the development of the interview tasks and
protocols.. The five participants included two students pursuing bachelors degrees in
mathematics: Teresa and Calvin, and three students pursuing degrees in mathematics education:
Gail, Ed, and Will. The one-hour interviews were conducted outside of class during the
beginning, middle and near the end of the semester during which time they were taking the
college geometry course which included five technology-based lab assignments. A video-camera
captured students’ written work and a video-recording device directly captured students’ work on
the computer. Interview transcripts were created from the videotapes. Data taken from the
second of these three interviews were analyzed for this study

To analyze college students’ mathematical arguments, Toulmin’s model of argumentation
was used to diagram claims a student made, isolate data the student used to support their claims,
identify warrants the student provided to explain how the data were related to the claims and
describe the backing if such backing was provided by the student. For each claim that was made
by the student, the way in which the technology was used in various aspects of the argument
were noted and the type of task on which the student was working was determined.

Because an argument that a student may provide in an interview setting is likely influenced
by the task posed, once arguments were identified, the task on which students were working was
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also coded using the Mathematical Task Coding Instrument (MATCI, Heid, Blume, Hollebrands
& Piez, 2002; Hollebrands & Heid, 2005). Tasks that were identified were of three different
types: 1) the original task in the interview protocol, 2) questions posed by the interviewer, and 3)
tasks taken on by the student that may have deviated from the original task presented to the
student or a question posed by the interviewer. Task codes that were used included: Identify,
Describe, Elaborate, Produce, Corroborate, Predict, Justify, Generalize, and Generate. These task
codes are associated with three different categories: Concept, Product and Reasoning. Codes
within the Concept category included Identify, Describe, Elaborate, each of these task has a goal
of characterizing a mathematical concept. Codes within the Product category included Produce,
Generate, Predict, and Generalize. All four of these tasks require students to create a specific
mathematical object. The third category, Reasoning included the Justify and Corroborate tasks
and these tasks involve students in developing a rationale for a particular claim. Task codes were
placed on each Toulmin diagram to identify the task on which students were working as they
were constructing an argument. A spreadsheet was created for each student to coordinate the
different codes and this enabled the researchers to look for patterns in the codes.

Results
In the process of analyzing mathematical arguments, themes related to students’ uses of

technology and their relationships to different components of the argument and the tasks on
which they worked were identified. One theme that became evident is that when students used
the dragging feature of the software, the students were involved in tasks that were coded as
Produce and Justify or Generalize. A second theme that was identified was students’ uses of the
appearances of diagrams on the screen as warrants and measures used as backing in conjunction
with their work on a sequence of tasks coded as Predict, Produce, Describe. A third theme that
was noted was that when students were involved in tasks coded as Justify, the students rarely
made use of the technology in their warrants and backing. In conjunction with this theme, when
measurements were used as backing in the construction of an argument, the tasks in which the
students were involved were rarely within the Reasoning category. Elaboration and examples of
these three themes will be provided in the following paragraphs.

Dragging in Response to a Produce Task Leading to a Justify or Generalize Task
In the process of constructing arguments, students made use of the dragging feature. This

feature not only allowed students to view the change in the appearance of the diagram, but also
allowed students to focus their attention on the ways in which the measures that were previously
taken changed or remained invariant as they dragged. The dragging of a point in the diagram and
the links between the diagram and measurements became data on which students based their
arguments. In general, students were engaged in two types of tasks while employing the dragging
feature. The first type of task was a production task students responded to by producing
variations of a particular geometrical figure or by producing a completely different geometrical
figure. During these production tasks, or upon its completion, students would then begin to make
generalizations or justifications based on what they noticed.

 To illustrate this theme, an example of how one student employed the drag feature to
produce data for an argument and how this led to a generalization is provided. During the
interview, Teresa was exploring the properties of a Lambert quadrilateral, a quadrilateral with
exactly three right angles (see Figure 1). She was trying to determine whether there was a
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relationship between the lengths of the opposite sides of a Lambert quadrilateral. She noticed
that a base of the quadrilateral (

€ 

AB), defined as a side contained between the two right angles,
and its opposite side (

€ 

EG ) were both longer than the other two sides (

€ 

AG  and 

€ 

EB). Teresa
dragged point A towards point B resulting in a Lambert quadrilateral such that 

€ 

EB and 

€ 

AGwere
longer than 

€ 

AB and 

€ 

EG .

Figure 1. A Lambert quadrilateral, similar to the one used by Teresa and Ed
Teresa then claimed that 

€ 

AB and 

€ 

EG  may not always be longer than 

€ 

EB and 

€ 

AG  (See Figure
2a). In the process of constructing this argument, Teresa was engaged in two types of tasks. The
first being a Produce task because she constructed a new example of a Lambert quadrilateral.
The second task was a Generalize task because she stated that for all Lambert quadrilaterals that
the base of the quadrilateral and its opposite side may not always be longer than the other pair of
opposite sides.

*italics denotes the use of technology

Figure 2a:  Teresa’s argument Figure 2b:  Ed’s argument
Similar to Teresa’s use of the drag feature to produce data for an argument, Ed employed this

feature as well to construct an argument regarding the measure of the non-right angle of a
Lambert quadrilateral. He dragged point E towards point B and noticed that measure of angle G
remained acute. The data for this argument are the appearance and measurements of the
changing Lambert quadrilateral afforded by the drag feature (See Figure 2b). He claimed that
angle G will always be acute and he based this on the fact that the angle measure was always less
than 90 degrees, which he used as his warrant. He backed up this warrant by demonstrating that
when the point G was not on the perpendicular (it was actually on point A) only one right angle
remained on the screen and the Lambert quadrilateral was destroyed.  Similar to Teresa, Ed was
involved in two types of tasks, the first being a Produce task, the second a Justify task.

Drag a point and
view the appearance
of the figure and the
linked
measurements

“I think it’s
always going to be
acute”

Warrant:  “The measurement is always less than
90”
Backing: “As long as it is on that perpendicular
it’s a defined angle whenever it’s not its all of the
angles except for the first right angle becomes
undefined”

ClaimData

Warrant/Backing

Drag to create
a different
Lambert
quadrilateral*

“AB and EG
may not
always be
longer than EB
and GA”

Measures and/or the appearance of the
figures

ClaimData

Warrant/Backing
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Appearance as Warrants and Measures as Backing
In the process of constructing arguments, there were many instances when students used the

diagram on the screen as data, the appearance of the diagram as a warrant and the measurements
as backing.  During these types of arguments the students appeared to be engaged in three
distinct tasks.  First, the students Predicted what they believe is true based on the appearance of
the diagram. The students would then Produce diagrams and/or measurements that would either
confirm or discount their predictions. Lastly, the students would Describe the relationship
between their measurements and their prediction.

The following examples illustrate how students used appearances as warrants and measures
as backing while engaged in a Predict, Produce, Describe task sequence. During the interview
Will was asked to determine whether the diagonals of a parallelogram in the Poincaré disk model
always bisect each other. In a previous task, he had constructed a parallelogram and he used this
diagram to Predict that the diagonals probably do not bisect each other based on the appearance
of the figure on the screen. He then used the Constructions menu to Produce the diagonals of the
parallelogram, and the point where the diagonals intersect. He measured the diagonals and stated
that the diagonals do not bisect each other because the measures are not equal (See Figure 3a).

Figure 3a:  Will’s argument Figure 3b:  Calvin’s argument
In this example, the appearance of the diagram created using technology was used as a warrant
that was backed up with measures while the student was responding to a sequence of tasks that
involved predicting, producing, and describing.

As a second example, Calvin was determining whether the diagonals bisect the interior
angles of a rhombus in the Poincaré disk model. In a previous task, Calvin had constructed a
rhombus and its diagonals. With a focus on the appearance of the diagonals and rhombus, Calvin
first predicted that the diagonals would bisect the interior angles. He stated that to make sure he
was correct, he would produce some additional measurements.  He found the measurements of
these angles of interest and described their relationship by stating that the measurements were the
same. Similar to Will, Calvin used the technology to produce a diagram and measurements. The
appearance was used as a warrant, measurements were used as backing, and this took place in the
sequence of tasks that involved Predicting, Producing and Describing.

The Absence of Technology Use as Part of the Warrant and Backing for Justification tasks

Diagram on
screen

“Probably no,
the diagonals do
not bisect each
other”

Warrant:  “Based on this picture”

Backing: Measurements

ClaimData

Warrant/Backing

Diagram on the
screen

“Yes they do"
the diagonals of
a rhombus
bisect the
interior angles

Warrant:  “just from looking at it”

Backing:  Measurements

ClaimData

Warrant/Backing
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In the process of constructing arguments in which the students were engaged in Justification
tasks, in general, the warrants and backing of their arguments did not involve the use of
technology.  However, at times, the students did make use of the constructed figure on the screen
and previous measurements as their data. When the students did make use of the technology in
their backing, specifically measurements, the students were involved in tasks that fall under the
Product and Concept categories of the MATCI task framework. There was only one instance
when a student used measures as backing when the student was engaged in a Reasoning task.

During the interview, Gail was provided a task to determine and justify whether a Saccheri
quadrilateral, a quadrilateral with exactly two consecutive right angles and a pair of congruent
opposite sides that share a ray of a right angle (See Figure 4), could also be a Lambert
quadrilateral in Hyperbolic space.

Figure 4. An example of a Saccheri quadrilateral.
In a previous task, she had constructed a Lambert quadrilateral on the computer screen and its
appearance was used along with the definitions and properties of these two quadrilaterals, as data
for her claim that a Saccheri quadrilateral cannot be a Lambert quadrilateral. She based this
argument on the fact that if she moved the Lambert quadrilateral so that it had congruent sides,
then the summit angles would both be 90, which would result in a quadrilateral with four 90
degree angles. She backed up her warrant using a property of quadrilaterals that sum of the
angles of a quadrilateral in Hyperbolic Geometry must be less than 360 degrees, which she had
learned previously in class (See Figure 5a). Gail imagined what would happen if opposite sides
of a Lambert quadrilateral were congruent and used a property learned previously as backing.

Figure 5a:  Gail’s argument Figure 5b:  Teresa’s argument

Diagram on
screen
Definitions of
Saccheri and
Lambert

“You can’t do it”

Warrant:  “if the sides are congruent and that
angle is 90 (angle D) then that angle would
have to be 90 (angle F)”
Backing: “Sum of the angles of a
quadrilateral in Hyperbolic is less than 360”

ClaimData

Warrant/Backing

Saccheri
quadrilateral on the
screen and the
properties and
definition

“Then you have a
quadrilateral with
4 congruent
angles”

Warrant:  “If you put two [Saccheri
quadrilaterals] back-to-back.”
Backing:  Since the Saccheri quadrilaterals are
congruent the summit angles are congruent

ClaimData

Warrant/Backing
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In response to a task about whether an equiangular quadrilateral exists in Hyperbolic space,
Teresa claimed that it was possible to construct. The data for her argument was a diagram of a
Saccheri quadrilateral and its definition and associated properties, which she had noticed in a
previous task. Her claim was based on the construction of a second congruent Saccheri
quadrilateral that was produced by reflecting the original quadrilateral about its base, the side
between the two right angles (See Figure 5b). Teresa had generated a procedure for constructing
an equiangular quadrilateral using reflections. She justified her procedure by explaining that the
summit angles of congruent Saccheri quadrilaterals will be congruent. In this example, Teresa
uses the diagram on the computer screen as data for making a claim about a procedure that could
be used to construct an equiangular quadrilateral.

Discussion
Several researchers have described ways in which students view technological evidence

as proof (e.g., Chazan, 1993). None of the students in this study held that belief. However, when
asked to solve problems that required arguments, students did use the technology in a variety of
ways to create evidence that served as data for claims. Often students would be posed with a task
from the Reasoning category and they would create subtasks within the Product or Concept
category and respond to them by creating arguments where the technology was used as part of a
warrant and/or backing. These subtasks were then used to return to the original Reasoning task,
where the technology was used in the generation of data and definitions and properties were used
as warrants and/or backings. This “breaking down” and “building up” of tasks may have been
facilitated by the technology that makes it easy to quickly generate diagrams, and measures
linked to those diagrams. By dragging students can generate data from which they can observe
what changes and what remains the same, that often led to Generalizations and Justifications.
However, when dragging for the purpose of generalizing or justifying, students need to know
what to attend to and what to ignore and how to relate what they are observing to what they
already know about the particular figure with which they are working.
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In this paper, we report data from six primary and middle school in-service teachers in
Mexico, who have been reflecting on the changes in their practice, and that of their
colleagues, when incorporating digital technologies (DT) to their mathematics classrooms.
The changes documented take into account different aspects: the teacher, didactical
materials, classroom interactions, students’ learning and motivation, technical aspects and
the broader school community context.

Digital Technologies in Mexican Schools
The inclusion of new digital technologies in classrooms is inevitable, and teachers need to

adapt to the changes brought about by these technologies, as well as harness their potential;
but this is not straightforward. In our paper we will present data from case-studies of six
Mexican teachers who have been reflecting on their changing practice, and the changes in the
classroom and school culture, when incorporating digital technologies (DT).

Since 1997, the Mexican Ministry of Education has been making intense continuing
efforts for incorporating digital technologies into Mathematics classrooms of the basic
education system (primary and middle school levels). The largest projects in this effort are
known as the Teaching Mathematics with Technology (EMAT) Program for middle schools,
and Enciclomedia for primary schools. The EMAT program provides activities and a
pedagogical model for incorporating the use of technological tools in mathematics
classrooms, in a constructionist way, aimed to enrich the teaching and improve learning
(Ursini & Rojano, 2000). The pedagogical model emphasizes changes in the classroom
structure such as the requirement of a different teaching approach and the way the classroom
needs to be set up. In particular, the pedagogical model emphasizes a collaborative model of
learning, and a role of the teacher’s as guide, mediator and promoter of the exchange of ideas
and collective discussion. The main tools currently used in EMAT are Spreadsheets,
Dynamic Geometry, Logo and CAS activities with the TI-92, and. On the other hand,
Enciclomedia, which has been massively implemented in all primary schools in Mexico, aims
to help teachers by providing resources, computer interactive activities and strategies (mainly
designed to be used on electronic whiteboards), through links in an enhanced electronic
version of the mandatory textbooks (Lozano et al., 2006).

Theoretical Framework
We consider digital technologies (DT) catalysts for change, since they have a great

potential for revolutionizing school practices. In fact, there have been conflicts reported
between the autonomy that students gain from the use of DT, versus the restrictions of
conservative curricula (Facer et al., 2000). This is one of the “forced” changes that educators
need to face.

Mexican schools tend to be extremely traditional; one of the aims of EMAT was to use
the DT as a means to transform the school culture. But, even though a decade has passed
since the initial EMAT efforts, the benefits of the inclusion of DT in schools are not yet
perceived and the difficulties in changing a school culture (including teachers’ difficulties in
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adapting to the proposed pedagogical model) are more evident than ever (Sacristán et al.,
2006); it is clear that the role of the teacher is critical for a successful implementation of DT
in the classroom and for fostering meaningful learning in students.

Research results (e.g. Ertmer, 1999; Goldenberg, 2000) indicate that DT can help students
learn in a more significant way, only through an adequate use; they also indicate that teachers
with little experience in the use of DT, have difficulties in harnessing the power of these
technologies as tools for learning, having as consequence a lack of significant influence of
the DT in the school culture (McFarlane, 2001). Teachers not only need to be trained in the
use of the new technologies but also need to understand how to use these tools, and change
their practice in order to promote significant learning in their students. However, changing
teaching practices is not straightforward: teachers can face struggles when attempting to
modify their practices (e.g. Wilson & Goldenberg, 1998).

In order to provide strategies to help in the educational transformation and to overcome
what Ertmer (1999) calls “second-order barriers”, more understanding is needed of all the
variables, difficulties and changes that teachers’ face when attempting to incorporate new
technologies into their practice. And what we believe can provide further insights is to
document those changes from the perspective of the teachers themselves (as opposed to
exclusively that of the researchers). We therefore want teachers to reflect on their own
practice. That is the purpose of our study.

A Three-Year Development and Research Project with In-Service Teachers
We are involved in a development and research project that is linked to a three-year

master’s degree program in education. The project seeks to: a) train teachers in the use of DT
tools (specifically those linked with the EMAT and Enciclomedia projects) for mathematics
teaching and b) research and understand how changes in school practice and culture are
brought about by the implementation of those tools into the classroom. More specifically, the
project seeks to document the methods, techniques, resources and strategies that teachers use
and develop when incorporating new technologies into their practice, and understand the
influence and impact of, and on, the broader school community (since we consider teachers
part of a symbiotic system that is the school community).

Methodology
In this project we have been working (to date, for almost two years) with six in-service

mathematics teachers, all of them students of the aforementioned master’s program. Their
ages are between 35 and 45 yrs. old, with a minimum of eight years of in-service practice.
Two of these teachers (Sarah and Jane), both female, are primary school teachers in fifth- and
sixth-grade (children 10-12 yrs. old); the other four (Mary, Michael, Adrian, and Raymond)
–one female, the other three male— are teachers of the three grades of the Mexican middle
school (children 12-15). Four of these participants (Sarah, Jane, Adrian and Raymond) are
also involved in training programs for their colleagues. Although all of them had taken some
workshops on the use, for mathematics teaching, of some technological tools (such as the
Enciclomedia or EMAT tools), the use they had carried out of these tools in their practice,
before being part of the project, was very limited (if any).

During our development and research project, the teachers have been involved in three,
almost simultaneous, activities: a) in the training, and development of abilities, for the use of
digital technologies (DT) in the classroom; b) the design and planning of teaching strategies
and activities that integrate DT; and c) engaging in observation and reflection-on-action
(Bjuland, 2004) of the changes in their own teaching practice with the new tools. In addition,
the four teachers who are involved in training programs for other teachers, have also engaged
in observation, or training-and-observation, of some of their colleagues (not involved in the
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development project) when incorporating DTs. As part of the master’s degree courses, the
participants have also analyzed and discussed research papers and results.

As a theoretical and methodological framework for integrating these attempts of
educational innovation with teacher learning research we follow the work of García et al.
(2006), as well as that of Artzt & Armour-Thomas (1999) which provides a model for
enabling teachers to reflect on their instructional practice.

The participants have been analyzing and reflecting upon the potentials, limitations and
changes brought forth by the incorporation of DT into their practice, and that of their
colleagues, from various perspectives:

(a) The perspective of the teacher and the didactical use of DT:
 changes in the role of the teacher (e.g. changes of the teacher as lecturer, to that of

mediator) and the difficulties in those changes;
 changes in teaching methodologies;
 changes in their beliefs and conceptions;
 use and design of activities with DT;
 articulation of the DT activities with the curricular requirements;
 design of assessment techniques for DT activities;
 complementarity’s of different DT tools among themselves, and with non-DT

activities (such as those with paper and pencil) ;
 new mathematical knowledge and perspectives through DT.

(b) The perspective of the classroom interactions:
 changes in classroom structure;
 changes in teacher-student relationships;
 changes in student-student relationships (collaborative work);
 changes in the physical setup of the classroom, etc.

(c) The possible impact on students:
 in their learning;
 in their motivation (affect),
 beliefs, and
  classroom participation.

(d) The technical perspective:
 technical knowledge for the use of the DT tools and equipment;
 technical difficulties.

(e) The social context:
 changes in the school community;
 the role of school authorities;
 impact and collaboration with colleagues;
 the interaction with parents.

The participants have been collecting data by using video recording of their –and their
colleagues’–classrooms; taking field notes when possible; designing questionnaires for
colleagues, authorities and/or students; collecting their activities and assessment designs and
sometimes students’ work, and most importantly, writing weekly reports. In addition to that,
we designed an initial questionnaire for evaluating the participants’ conceptions on the use of
DT and we have held bi-weekly meetings with the participants where they present oral
reports, are informally interviewed, and engage in reflections and discussions with the other
participants. Finally, a year after the beginning of the project, “independent” researchers (not
involved in the development project) have carried out some observations of the participants
during their practice. In this way we are able to carry out case studies of each of the
participants, combining data from both their own reflections and reports, and from
researchers observations and interviews. Below, we present some of the findings.
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Some Interesting Results and Discussion

Initial Conceptions of the Participants on the Use of Digital Technologies
(Data from the initial questionnaire and from the participants’ work during the first trimester).

The main beliefs that the participants had on the use of the DT was that they are a useful
tool for teaching because DT facilitate the construction of graphical representations (“it is
easier to create graphs”); and that they can save time for some activities in comparison those
with paper and pencil. In the questionnaires, none of them mentioned any disadvantages nor
seemed aware of the different knowledge or practices that DT can bring. However, many
expressed a lack of confidence and concern in the pedagogical and technical knowledge that
DT demand from the teacher, and some of them felt uncomfortable in using some of the tools
with students; and one of the participants did not believe that the DT tools could help create
significant learning in students.

Results of the Participants Self-Observations and from Observations of Their Colleagues
Since the beginning of the project, the participant teachers’ beliefs, attitudes and practices

have been in constant and profound transformation, and enriched by their long-term exposure
and use of the DT in their classrooms, by their sharing of experiences and by their
observations of other colleagues.

General Changes in Teachers’ Practices and Beliefs
In terms of confidence with the use of technology, despite their initial reluctance, in

retrospective most participants have realized that the only way they could build confidence
was by gaining experience through the direct use of the DT in their practice. One of the
participants expressed that although adequate training and continuous support helped her to
change her practice, ultimately it is up to the teacher to make the changes.

In terms of how their practices, and the classroom dynamics, have changed, most of them
recognize that with DT, they need to change the way they teach. Most participants have
expressed how they have now taken a back-seat role in their classrooms, becoming more of
observers and guides than lecturers. Mary and Michael, in particular, continue to emphasize
this at every meeting. As Michael expressed it recently, they have realized more and more,
and come to accept, that students can learn on their own, or from collaborative work, with the
support of DT, and that they request less and less assistance from the teacher; Michael adds
that he has learned to be patient and “open to what he can learn from his students”. On the
other hand, Janet, Sarah and Adrian have noted, that although their colleagues –which they
observe— make attempts to allow students to collaborate and to have group discussions,
these attempts are short-lived and they quickly revert to traditional forms of teaching as they
feel uncomfortable letting students talk or hearing them laugh. The participants feel that it
takes time for teachers to get used to this change in the classroom structure.

In fact, as the participants reflect more on their practice, they have become increasingly
aware of the resistance to change and difficulties of their colleagues (as partly illustrated
above). Janet and Sarah remark that although many of their colleagues use DT in their
personal lives, most do not consider these tools, including calculators and spreadsheets, as
adequate for didactic use. In fact, they have noted that many fellow primary school teachers
only use the Enciclomedia tools for projecting the digitalized textbook, and not for
exploratory mathematical activities. Also, in general, Sarah, Janet and Adrian have observed
that many of their colleagues attempt to teach with DT in the same way as they did before
(i.e. without DT) such as resorting to teaching algorithmic memorization, and are unable to
recognize their own mistakes or the value of making mistakes. These participants have even
expressed their frustrations in being unable to help their colleagues change or realize the
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potentials of DT. Interestingly, Raymond, who was initially unenthusiastic about the use of
DT, has now made it an aim, to motivate fellow teachers for the use of DT in their
mathematics teaching.

Most of the project’s participants have become aware that the use of technology “is a tool
and not an end” (Mary’s words). Janet feels that some of the teachers she has observed, are
not successful in the implementation of DT into their practices, because they are not clear
why they are using it (i.e. they do not have a broader educational goal or plan) and just give
students some DT activity for the sake of using the technology.

Awareness of Teacher’s own Mathematical Knowledge Limitations and Changes in the
Conception of the Type of Mathematical Learning Developed

Another aspect is that the DT use have made the participants, and their colleagues, aware
of their own limitations in their mathematical knowledge. Sarah and Janet have noticed that
often the teachers they have observed, refrain from certain DT activities, because they lack
mathematical confidence and feel their deficiencies can be exposed by the DT activities.

But, in general, all the participants have realized that the knowledge developed with the
DT can be of a more conceptual nature. Mary explains that she has learned to look more at
what abilities her students are developing rather than looking for correct answers to problems.

DT Tool Use and Design of DT Activities
At the beginning of the project, all of the participants began with the use of pre-designed

DT activities (either from EMAT or from Enciclomedia). Only recently, Mary and Michael
began designing their own activities. In one of his first activities (word problem explorations
with spreadsheets), Michael made some mistakes in the values of a problem: this led to
unforeseen investigations on the part of the students; although these were interesting, the
experience also made Michael realize the design difficulties and the importance of being
more careful in trying out the activities himself. before giving them to students.

Another aspect of the use of the DT tools, has been the complementarity between tools.
Most participants began considering that using a single tool was enough to provide students
with a rich opportunity for explorations with technology. Only Mary thought otherwise, and
early on she began analyzing which tools were suitable for teaching which subjects, and how
different tools could complement each other. Only recently, other participants, such as
Adrian, have begun to realize that a diversity of approaches and tools can be useful.

Development of Assessment Techniques for the DT Activities
A concern that has become more and more prominent as we end the second year of the

project, has to do with the assessment of the DT activities and of students’ work with DT.
This has been one of Mary’s main interests: she has realized that traditional assessment
doesn’t adequately evaluate the learning that takes place when using DT; she has asked
herself how to assess students’ work with DT and has realized that she is more observant now
of students work with DT than at the beginning of the project; she is also investigating how to
design problems in a test, which, in order to solve them, would require the use of DT tools.

Other participants are beginning to be concerned about assessment as well, not only of
students’ work but also assessment of the activities and strategies used. Adrian recently
became concerned, and wrote, that there is a need to change the broader school assessment
culture in authorities and parents (both of which should be aware that assessment with DT is
different to traditional evaluations), teachers (who have to develop assessment strategies) and
students (in particular, he feels that students need to see DT activities as more than just play).

Michael has also changed the way he assesses his students and his own work when using
DT; in the beginning he looked for correct responses to problems; later he said: “after
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learning [the use of] the computer, now I assess not only the answers but also the abilities, the
questions that my students pose; [I also evaluate] my new teaching strategies”. We are not
altogether clear exactly how he can assess students’ abilities, but he does take into account
the participation and collaborative work of his students.

Implementation Difficulties.
The difficulties are of two types: (i) pedagogical and of classroom management, and (ii)

technical and administrative. In the first category, some participants, such as Raymond, found
it initially difficult to cope with their students progressing at different paces and the need for
the teacher to do more individual guidance work, which can be difficult due to time
limitations. Another common concern is the need to properly prepare their classes in order to
harness the potential of the DT tools; but also in this case, time limitations can make it
difficult. With respect to this point, both Michael and Mary have now developed a work
methodology that gives much more importance to class preparation involving DT activities.

In the second category, all the participants have expressed frustration with a multitude of
technical and administrative issues. One difficulty is often the lack of school support. The
teachers frequently have difficulties in gaining access to the technology-equipped rooms, and
there are many technical problems with the equipment such as too few computers, lack of
maintenance or restricted access that prevents children from saving their work. All the
participants also express frustration with the amount of administrative cancellations of many
of their programmed technology-based sessions.

Another difficulty relates to training. The participants observe that there is too little
training available in schools, and often the trainers themselves are not proficient enough in
what they teach, due in part to a cascading model of training. They also comment that other
teachers, particularly the primary school ones, want more training in the use of the equipment
(computers, beamers and electronic whiteboards) because they are afraid to damage it.

Observed Changes in Students’ Behavior and Learning
In terms of the impact on students’ behavior, attitudes and learning, all of the participants

note an increase in motivation and interest in their students when using DT (Mary wrote that
her students consider the work with DT, a game). The exception to this has been when they
have observed other teachers “presenting” DT activities without allowing students to actively
engage, collaborate, explore and/or discuss amongst themselves. In one of Michael’s first
experiences, he also failed to engage students and felt that the classroom atmosphere was one
of total apathy; but now he has learned to let students collaborate and explore and he feels
that sometimes the classes run almost by themselves; he has also been surprised recently that
his students are beginning to use the DT tools (such as spreadsheets) for solving problems in
other school subjects (such as in carpentry workshops).

In terms of mathematical learning, both Mary (middle school) and Sarah (primary
school) comment that their students have improved in traditional departmental mathematics
tests since using the DT tools. However, although Mary has noticed a general improvement in
conceptual understanding, she had also noted the emergence of new difficulties in the formal
math performance of some of her students. This has made her realize the epistemological
difference of DT-based learning versus traditional learning and now views them as
complementary. Adrian also noted that although students can solve the work (e.g. using
spreadsheets) they have difficulties explaining their results. Michael also noticed this and it
led him to ask his students to explain all their work with DT in written form; since then, he
has noted that students increasingly write and describe their work better.
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Concluding Remarks
What we have observed, is that through the training and “forced” involvement (in the

masters program) with the DT tools, these teachers’ perceptions of their use has been
enriched. Second, the classroom experiences of implementing DT has led them to reflect on
the potentialities and limitations of the tools. More importantly, the opportunity to reflect
upon, share their personal experiences with the other participants, and observe fellow
teachers, has led them to develop a critical and reflective attitude, as well as enabled them to
construct didactic strategies for the use of DT that are in accordance with the specific needs
of their students. However, even these teachers have experienced difficulties in changing
their practices; we keep in mind the words of Goldenberg (2000, p.8): “Provide instruction
and time for teachers to become creative users of the technology they have.” We will
continue the follow-up of these teachers and the analysis of their changes which may provide
insights for strategies for more successful integration of DT in the classroom and in the
curriculum.
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USING SIMCALC MATHWORLDS
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Using data from an experimental research project on the effects of dynamic software on
student outcomes in 7th-grade classrooms, we examine changes in student knowledge
through a pretest/posttest assessment. With principal components analysis, we found that
students who used the software cluster concepts differently than students who did not,
grouping together test questions that combine multiple representations of rate and
proportionality.

Over 12 years ago, the SimCalc MathWorlds software program was conceived to serve
a need for innovative curricula that would prepare students to understand the concepts of
change, a necessary precursor for calculus understanding (Roschelle, Tatar, & Kaput, in
press). The data used in our study comes from a larger, 4-year research project on scaling
up the use of MathWorlds to teach rate and proportionality in 7th-grade classroom
involving across a large, southern state. Teachers in the treatment group taught a
replacement unit, measuring student learning through a 30-item pre/posttest. Meanwhile,
teachers in the control group taught rate and proportionality using their usual curriculum
materials, with a total of 117 teachers in all. The data in our analysis comes from the
period just after the teachers taught the 3-week rate and proportionality unit for the first
time to their 1621 students.

The replacement unit creates multiple opportunities for students to engage in learning
concepts of rate and proportionality, democratizing access for all learners (Roschelle,
Tatar, & Kaput, in press). Specifically designed for students to interact highly with the
MathWorlds software, thereby creating personal dynamic representations of rate and
change, the replacement unit utilizes the principle that dynamic representation through
technology leads to large gains in conceptual understanding (Kaput, 1992). The core of the
replacement unit involves high interactions with the MathWorlds software, in which
students learn to analyze, augment, build, and interact with various rate graphs. Students
used a workbook to guide them through activities involving connecting graphs with real-
world situations and creating piece-wise linear graphs based upon varying rates of speed.

This main focus of this study explores what student learning looks like within a
framework of democratized access to technology; showing how opportunities to learn
cluster in ways that align with amount of dynamic interactions. We use Principal
Components Analysis because it is a statistical analysis technique that clumps test
questions together into component groups based on student response (Meyers, Gamst, &
Guarino, 2006). Using this analysis on our pre/posttest results, we found significant
components in which students using the MathWorlds unit clustered conceptual
understanding differently than students who had not been involved with the replacement
unit. To analyze the results, the treatment group components were analyzed for changes in
student learning that occurred during the MathWorlds unit, and those components
juxtaposed with the components of the control group.
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For their primary component group (Table 1), the control students grouped together
items that dealt with Piece-Wise Linear Graphs, before and after the treatment, even if the
underlying concepts behind the questions differed. This is very different than the primary
component group for the students who used SimCalc MathWorlds (Table 2). They stopped
grouping all Piece-Wise Linear Graphs questions together, instead combining questions
with such varied surface features as Slope and Speed, Linear Functions, Graphs, Tables,
and Piece-Wise Linear Graphs into one conceptual strand. These students seemed to
understand that these separate representations of a linear function were related to each
other on a deeper level. The modeling and interactive aspects of MathWorlds help students
fuse together multiple representations of the same concept. These results support the work
of Bodemer, Ploetzener, Bruchmuller, and Hacker, who showed that interactive media
supports integration of multiple representations (2005).

The Scaling Up research project creates notable differences in the way students cluster
concepts together, helping link conceptual knowledge beyond surface features. Students
participating in the SimCalc MathWorlds replacement unit show a statistically significant
difference in their understanding of rate and proportionality compared to the students who
did not. The results shown here only add to the numerous data that can be gleaned from
this project, proving that Jim Kaput’s vision of democratizing access to the mathematics of
change and variation learning is creating a powerful and scalable revolution in learning.

Table 1. Control Group Differences

Pretest Component Posttest Component

Slope/Speed Piece-wise graphs

Piece-wise graphs Piece-wise graphs

Piece-wise graphs Piece-wise graphs

Piece-wise graphs Piece-wise graphs

Piece-wise graphs Piece-wise graphs

Piece-wise graphs Piece-wise graphs

Piece-wise graphs

Table 2. Treatment Group Differences

Pretest Component Posttest Component

Piece-wise graphs Slope/Speed

Piece-wise graphs Slope/Speed

Piece-wise graphs Linear Functions

Piece-wise graphs Tables

Piece-wise graphs Linear Functions

Piece-wise graphs Graphs

Piece-wise graphs Graphs

Piece-wise graphs
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COMPUTERS AS A MEAN TO IMPROVE TEACHERS’ BELIEFS AND
THEIR MODE OF INSTRUCTION IN THE CLASSROOM
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Research has the objective to find out the changes that are propitiated in the teaching of math by
the use of a computer and a projector inside the classrooms of elementary schools. The study
showed that, with the support of the computer program, the teachers developed their modes of
instruction and their interaction skills, although this improvement was very variable.

In this paper we describe a combined research and educational project that has as its main
purpose to find out the effect of the use of computers on the mode of instruction and interaction
of teachers. For this, a didactical approach was proposed, using a single computer and a projector
inside the math classrooms of elementary schools in Mexico.

We designed 120 interactive activities with the programming language Java. Their
classification according to topics is: 1) Elements, 2) Additive problems, 3) Decimal system,
4) Mental calculation and estimation, 5) Multiplicative problems, 6) Geometry, 7) Fractions and
8) Probability.

Two problems with teaching with computers are that it is often done as individualized
learning and that the students and teachers have difficulties getting acquainted with the software.
In our project, the work was done with the whole group of students to enrich the learning process
and, by contrast, the activities developed for this project contain each, a very specific content and
situation, so teachers and students can use them almost intuitively.

Additionally, the teaching practices in elementary schools tend to give a lot of emphasis on
the procedural, mechanical aspect of math and the teacher’s practice consists mainly of
explanations on a blackboard. Our proposal tries to change this also, centering the learning
process on the students, their conceptual development and their thinking.

Theoretical Framework
To study the role of the teacher and his changes, we based our analysis on two similar

frameworks. In an article about cognitively guided instruction, Carpenter et al (2000) stressed the
importance of the teacher’s knowledge about the mathematical thinking of children. The authors
identified four levels of teachers’ beliefs that correlate with their mode of instruction. A brief
explanation of these is: I. They believe that math has to be taught explicitly and therefore they
show procedures and ask the students to practice them. II. They start to question this explicit
mode and therefore they give to the students some opportunity to solve problems by themselves.
III. They believe that students can have their own strategies so they provide problems and the
students report their solutions. IV. The previous mode of working becomes more flexible, in
which the teacher learns from his students’ productions and adapts his instruction to this
knowledge.
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In another study by Jacobs and Ambrose (2003) about how interviews applied by teachers to
their students can improve their instruction by developing their questioning skills, the authors
proposed a classification of the different modes of teachers’ interaction during the interview.
These define a profile of the teacher. The four proposed categories are: i) Directive. Intervention
is active but there is too much control and assistance. Questions are leading, with the intention of
teaching. ii) Observational. Behavior is passive, restricted to observe and to give verbal
checkmarks like “fine”, “good”, with no follow-up questions. iii) Explorative. Behavior is active
but questions are non-specific (without getting to the essence) and mostly restricted to incorrect
responses. iv) Responsive. The teacher discovers the students’ thinking and uses it to inquire
competently and to create extensions of their ideas. Another similar study in this line of research
was done by Moyer and Milewicz (2002). In fact, the above descriptions of the categories are a
blend of Jacobs and Ambrose and Moyer and Milewicz frameworks.

Methodology
Three research assistants (teachers studying a master’s degree in education) and three in-

service teachers of a middle class elementary school participated in the didactical experiment
(the three research assistants talked with the teachers and explained to them the project, the
software package and showed them the activities). By pairs (one research assistant and one
teacher), they selected a grade level to work in, one of the eight topics contained in the software
package and a set of ten activities corresponding to that topic (the first pair worked on decimal
system in second grade; the second on geometry in third grade; and the third on fractions in
fourth grade). There were two stages in the research. First, each of the three research assistants
worked in each of the teachers’ classrooms with the ten activities and the corresponding teacher
observed. Then, in the following school year, they exchange places, the teachers used the
activities in their classrooms and the research assistants observed them. A fourth research
assistant applied questionnaires, performed interviews and observed some of the lessons of each
of the six participants to determine their mode of instruction and their interaction level with the
students.

In each of the six experimental groups, the study followed the following steps: An initial
questionnaire and interview with each of the six participant teachers to find out their beliefs
about using computers in the classroom. A didactical experiment within the classrooms, working
with the ten activities selected (with observations of some of these lessons). A final interview
with each of the six teachers to find out the changes in their beliefs. All these interviews and
classroom sessions were audio taped.

Results
The initial questionnaire revealed that only one teacher (will call her T1) didn’t have any

experience with computers (she expressed “I am afraid of computers”) and that they all believe
that computers are useful in teaching and had a good disposition of using computers for this
purpose (although they had very little experience with this). In the final interview, they were
more explicit and specific about this use: “This package showed me that computers facilitate the
work of the teacher… promote mental calculation… and improve comprehension.” “I believe I
improved my form of teaching geometry and the programs are easy to use.” “Now I can say that
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computers improved my teaching style because before, I was just assuming… I discover that the
students think more.” On another question about the factors that are more important in teaching
with computers, in the initial questionnaire all claimed that “the activities are the most
important”. However, after the working sessions they all admitted that the teacher is an equally
important element.

During the didactical experiments each teacher developed differently. The next table shows
the advancement of each one as observed, according to the four levels of Carpenter and the four
modes of interaction of Jacobs and Ambrose described before.

It is important to point out that all the teachers worked only eight sessions with the students.
We can observe in this table that all the teachers were of the directive type (i) of interaction
mode when they started the experiment and that all of them showed changes. Four of them (RA1,
RA2, T2 and T3) moved from level I to level II in Carpenter’s classification, but two stayed
being directive (i) and the other two move into more observational (ii) or explorative (iii) mode.
The other teachers (T1 and RA3) started already at level II of Carpenter, and had a much more
noticeable improvement during the teaching sessions in both scales. It is worth noticing that the
teacher (T1) was the one that didn’t have any knowledge of computers at the beginning.

Teacher: Carpenter’s
level (start)

Interaction
mode (start)

Carpenter’s
level (end)

Interaction
mode (end)

RA1 I i II ii
T1 II i III iii

RA2 I i II ii  and  iii
T2 I i II i

RA3 II i IV iv
T3 I i II i and iii

Conclusions
The results of this study suggest that the teachers, due to the software and its positive

features, got motivated to change their usual way of teaching into a more appropriate method for
this visual-dynamic situation. The software provides a favorable environment where the students
can manifest their strategies to give sense to the notions in play, provided that the teacher opens
up this possibility. According to the opinions of the students, the “screen” helped them to
experiment, reach a solution and verify the answer.

In general, in the directive mode (i), the computer-software was used as a practice tool or to
verify answers. The lesson had a repetitive structure of “Teacher’s specific question (TSQ),
student’s answer (SA), TSQ, SA…” with the teacher always looking for the right answers. The
students showed a lot of interest at the beginning of the sessions and wanted to participate, but
because of this restrictive way of working of the teacher, the students eventually showed some
restlessness and lost interest. The “Explorative” teacher used the activities to introduce and
develop concepts, which corresponds with the two higher levels of Carpenter’s framework.

We believe that this interactive software can support teachers to improve their mode of
instruction and develop communication and expression skills of both, students and teachers.
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Purpose of the Study
The concept of function has been widely recognized as being foundational to school

mathematics and mathematics in general (Romberg, Carpenter & Fennema, 1993). Research has
shown that graphing calculators can improve students’ conceptual understanding of functions by
allowing the students to explore various representations of a function (Penglase & Arnold, 1996).
The National Council of Teachers of Mathematics (NCTM, 1989, 2000) advocate a curriculum
based on multiple representations, arguing that by encouraging students to incorporate different
types of representations into their sense-making, the students will become more capable of
solving mathematical problems and understanding underlying concepts. In this paper, I explore
how high school mathematics teachers use multiple representations when teaching functions in
graphing calculator environments. I pay special interest to how teachers plan their lessons to
accommodate multiple representations of functions when teaching with graphing calculators and
how the calculators in turn influence the teachers’ approaches to teaching functions. I also seek
to explore the effect of the teaching strategies and instructional tasks on the ways in which
graphing calculators are used.

Perspectives and Guiding Frameworks
This study draws on a theoretical framework developed by Salomon, Perkins, and Globerson

(1991) for studying the interaction between technology and the user. In this framework, Salomon
et al. distinguish between two sets of principal effects that arise when one works in partnership
with a technology tool, namely (1) principal effects with the technology and (2) principal effects
of the technology.  For purposes of clarity, I will refer to the first set as planned effects, and the
second set as emergent effects. The work of Goos, Galbraith, Renshaw, and Geiger (2003),
which provides metaphors for studying the interaction between calculator and user, is closely
related to this partnership framework and so I will draw parallels to the metaphors when
discussing some of the principal effects.

Characteristics of planned effects include elaborate planning (laying out the specifics
concerning how the calculator will be used), executing the plan (using the calculator in the
desired ways), and interpreting the results. The user (teacher) here predetermines exactly when it
will be appropriate to turn to the calculator in the course of a lesson and in what ways this should
be done. Emergent principal effects on the other hand are characterized by spontaneity, that is,
effects that the user (teacher) does not intentionally plan for. These effects are then retained and
may be applied to other related but not calculator dependent mathematical activities (Jones,
1993). Using the metaphor of technology as partner, Goos et al. (2003) describe “cognitive re-
organization effects” (p. 79) as those characterized by using technology to explore new tasks or
new approaches to existing tasks and to mediate mathematical discussion in the classroom
between students and teacher or between small groups of students. I contend that for meaningful
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principal effects of technology to arise in a classroom, the teacher must be willing to allow his or
her students to explore new situations with the calculators and guide the students into discussions
that will help them make sense of their findings. In this study I investigated how principal effects
that are planned for and those that emerge are manifested in secondary mathematics classrooms
where graphing calculators are used.

Methods, Data Sources, and Analysis
Participants in this study were four high school mathematics teachers drawn from high

schools in a medium-sized city school district in northeastern United States. Data were collected
through semi-structured task-based interviews (Goldin, 1999), and classroom observations. The
interview questions were divided into four major categories, namely (1) planning (what are the
key things that teachers consider as they prepare to teach lessons on functions especially when
they intend to use graphing calculators?), (2) sources of teaching tasks (where do teachers get
their teaching activities/tasks and how do they use these tasks, i. e. do they modify them or not
and what are the reasons for this?), (3) function representations (teachers presented with various
tasks and asked to respond to the tasks as well as speculate on how their students might respond
to those tasks), and (4) issues related to calculator usage.

Categories (1) and (2) helped me develop some insights into how teachers envision a lesson
on functions in which graphing calculators are used and what outcomes they might expect, thus
shedding some light on the planned principal effects. Categories (3) and (4) helped shed some
light on the teachers’ choices of representation in various situations, the kind of partnerships
these teachers had developed with graphing calculators, and the kind of expectations the teachers
held for their students when using graphing calculators. This was important to this study since
the tasks provided a common ground for all the four teachers given that no two teachers taught
the same lesson.

During classroom observations I took note of both the teachers’ and the students’ interactions
with graphing calculators, paying special attention to how the teachers facilitated the interaction
between students and calculators. In this regard, I examined the kind of instructions the teachers
gave to their students, the actions the students took and the questions they asked their teachers as
well as their peers, and how the teachers responded to the students’ questions. All these helped
provide data that would later be analyzed for emergent effects of technology.

Data were analyzed in two phases. In phase I, I carried out a microanalysis of the interview
data for all the teachers, identifying broad theme statements from the interviews based on
dominant phrases in the teachers’ responses to items under the categories of planning and
sources of tasks and also on the actions they took while attending to items under the categories of
function representations and issues related to calculator usage. In phase II, I analyzed the data
from classroom observations against the statements generated above. I tried to identify situations
from the classes that could support these statements (or sometimes challenge them). I then
refined the statements into three major themes, namely (a) teaching strategies, (b) types of
instructional tasks, and (c) representational forms that emerge.

Results
While classroom organization varied from teacher to teacher, all teachers seemed to value

involving students in decision making regarding calculator use. This would range from asking
students to suggest what to do in order to get started with the calculator with respect to given
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information, to asking students to suggest how to modify various calculator menus in order to
achieve various desired results. Often times the teachers encouraged students to share their work
with the whole class using the calculator overhead projection unit. It was also common for
teachers to ask probing as well as clarification questions. Occasionally the teachers would ask
questions requiring students to compare solutions obtained using different representations and
explain the differences if any. The teachers would also challenge students to interpret calculator
results in the context of the problem situation and communicate their understanding of the
calculator results to their peers.

Although in most cases the teachers seemed to balance among the various representations,
equations and graphs seemed to dominate more than tables. Most instructional tasks made
specific reference to either an equation for which a graph would be drawn and various
explorations done on it, or a graph on which various explorations would be done. Only a few
tasks specified use of tables. In cases involving word problems, it was common to see equations
being generated then graphs drawn.

Analysis indicated that the choices for instructional tasks and teaching strategies are not
unique to particular teachers; what seems to be unique however, is the pattern of representation
forms that the teachers use. While some teachers will prefer to move from equation to graph and
possibly to tables, others prefer going from equation to tables then graphs.

Discussion
The first step towards developing intelligent partnerships with technologies is for the user to

be able to plan on how to use the tool, execute the plan, and interpret the results. Results of this
study indicate that teachers can help their students towards this end by guiding them to actively
participate in the process of working with calculators either in small groups or as individuals.
The teachers in this study had plans on how they wanted their students to use the calculators in
the classroom, but they often times gave the students a chance to suggest their own approaches
first.

The second step towards forming intelligent partnerships with technologies is for the user to
gain new insights that can be transferred to other situations where the technology tool is not
necessarily used. The teachers in this study tried to help their students towards this end by
requiring them to interpret their solutions to real life situations and also to explain their answers
to their peers. This would ensure that the student develop some kind of ownership to the
knowledge they were acquiring and hence be in a better position to retain it beyond the
classroom.
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Here we present the results of an exploratory study into the functionality of a digital board
game called Domino, in the learning of mathematics at middle school. In particular, we have
some results from possible mathematical connections that students establish with other
notions or processes of Math curriculum arising from playful experience. Although the
intended mathematical structure of the game is symmetry, the actual structure defines a
potential organization that the children concretize in different ways once they are engaged in
the task for winning strategies.

To accomplish the exploratory study presented here, the digital board game Domino was
designed (Raggi, 2006). Symmetry is the underlying mathematical structure for this game.
When playing, a winning strategy is to place your dominos symmetrically opposite the
opponent’s placements. This computer game was introduced into the classroom as an
exploratory material to advance knowledge of how use of this type of concrete materials
mediates the development of mathematical activity among middle students. In this case, each
of the students had to initially play against the computer, called here Robi. The task asked of
them was to find a way to beat Robi or, if Robi won, to try to explain why Robi was able to
beat them.

Theoretical Underpinnings and Methodology
Although the potential of digital games as rich learning tools is widely recognized

(Sanford, 2006), the great improvements at schools have not yet materialized (Wijekumar et
al., 2005). According to Wijekumar et al. (2005), it is still necessary to work moving students
from a game affordance of a computer to a learning mode.

However among the initiatives of using games to try to encourage students to learn
specific topics, are those that try to foster visual reasoning and self-engaging tasks designing
a game construction kit (Kahn et al. 2006), or to explore the affordances of the utilization of
mathematical electronic board games (Rodriguez, 2007), even to promote general action
patterns for solving math or science problems.

Applying Saxe and Bermudez’s (1996) theoretical constructs, Rodríguez (2007) analyzed
children’s mathematical activity in relation with the affordances of the Dominó computer
game. Saxe and Bermudez (1996) pointed out that, even though there is an intended structure
in a board game (in their investigation they used the specially designed treasure hunt,)
another actual structure emerges as children play. In fact, artifacts and conventions used,
reformulation of rules, and also children’s prior understanding will give form to an alternate
structure, which could partially respect the previously intended, to establish new emergent
mathematical environments.

According to Saxe and Bermudez (1996), a mathematical environment is built by the
constructions the child performs in interaction with the tools or materials available. These
constructions must be understood or analyzed in that same environment, without overlooking
the child’s previous knowledge, so that we may understand how that child comprehends the
new knowledge or how a new conception of a mathematical object occurs.
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Concerning the Domino computer game, it was introduced in two middle school Math
classes, each with approximately 25 students. In fact the game proved to serve as a tool to
diagnose the state of the knowledge of symmetry among seventh and eight grade students,
previous to the instrumentation of other teaching cycles with other computational material, (a
dynamic geometry software). Figure 1 shows the screen the game displays:

Figure 1: Screenshot of the Domino computer board game

The work sessions with the game were video-recorded, as were some of the instructor-
student interviews when the games ended. These interviews aimed to record student
hypotheses, conjectures, and explanations of the possible winning strategies; and important
data was obtained after transcribing the protocols extracted from both video sources.

The fact should be highlighted that when the game was first shown to them the theme of
symmetry had not yet been presented to the seventh graders. They did not recognize
symmetry in Robi’s way of playing or winning. Rather, they developed another winning
strategy, one based on counting and building inaccessible spaces on the board. Such was not
the case with eighth graders (1), who had had symmetry presented to them the year before. In
general, student performance of the eighth school year reveal that, as long as they experiment
with the game and during execution of the task, they were able to activate mental processes
that allowed them to demonstrate a pattern of behavior as such that characteristic to the
mathematical activity related with problem solving (see Polya, 1954).

From a Verillon and Rabardel (1995) point of view, an artifact’s structure and function
will foster certain knowledge or effect in cognitive development. It is to say that the
introduction and use of instruments, whether material or psychological (language,
computational means, symbols, diagrams, maps, etc.) leads to consummating many structural
and functional changes in the learner’s cognition. Vygotsky confirms this in these
affirmations:

A complete series of new functions tied to the use and control of the chosen
instrument are activated; the labor performed by the instrument makes an entire
series of natural process worthless and replaces them; [the instrument] transforms
the development and particular aspects (intensity, duration, continuity, etc.) of all
the processes involved in the composition of the instrumental act. [In this way the
instrument constitutes itself as] a new interceding element situated between the
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object and the psychological operation directed toward it. (Cited by Verillon and
Rabardel, 1995: 81-82, from Vygotsky, 1930: 42.)

Principal Results and Conclusions
A result of seventh graders playing against Robi was a rapid turn toward a different

winning strategy, one which consisted of trying to leave blank spaces, and counting out how
many were necessary according to which turn they had. They were able then to display their
arithmetical abilities to find a new and not expected winning strategy.

 Concerning eighth grade students, they recognized that symmetry was the intended
structure of the game, in accordance with they had studied this topic the previous year. It is
likely that the structure and function of the artifact employed (Domino) in this context have
fostered cognitive development (Verillon and Rabardel, 1995), since it was observed that
when students used a strategy that they believed to be a winner, they continued to use it and
perfected it as long as it was functional, or discovered an alternative one.

 Moreover, an opponent strategy, which began to be a winning one, was a cause for
reflection and reformulation or construction of the new winning strategy. This heuristic is a
characteristic for problem solving (Polya, 1954) promoted by the competition situation of the
game. Nonetheless, the potential of this type of psychological instrument is still to be
determined for solving specific math problems.

Endnote
1. The topic of symmetry is part of the curriculum for seventh graders; thus eighth grade

students should have encountered this topic the previous year. In effect, this situation might
be confirmed by applying the game in class with eighth students, since many of them quickly
noticed that one way to win was to mirror the opponent’s moves symmetrically.
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As students interact with graphing calculators to help solve math problems, one aspect that
they need to attend to is the use of mathematical symbols, which are the components of
mathematics that enable communication of solutions and ideas. However, the symbolic language
in mathematics is often very confusing for students (Rubenstein & Thompson, 2001). This
language barrier may be one reason that students turn to graphing calculators for assistance, but,
most non-computer algebra system (CAS) graphing calculators cannot algebraically manipulate
symbolic equations to produce useful results.

Studies have shown that students can perform as well in mathematics using graphing
calculators as they can without them, but many instructors remain reluctant to teach or assess
with this tool (Ellington, 2003). It is reasonable to assume that students who have learned to do
mathematics using graphing calculators in high school will continue to use them on homework in
college; however, a test that does not permit calculator use may require students to redefine their
goal to include communicating a correct solution method for a problem using mathematical
symbols. The activity engaged in during homework will no longer be helpful if students have not
abstracted a relationship between their activities with the calculator and the symbolic
representation of the mathematical concepts involved.

The intent of this research is to conduct a case study of precalculus college students with a
focus on their mathematical thinking, particularly about symbols, as they solve problems with
and without the assistance of graphing calculators. The question to be addressed is: What is the
nature of the goals, activities, and symbolic communication that students engage in when doing
work in a practice environment with access to a non-CAS graphing calculator and in an
assessment environment without such access?

Framework
In order to address the research questions in this study, a theoretical framework is needed

that will provide a lens for looking both at students’ anticipation and reflection on goals and
activities and the symbol sense that they exhibit as they work with the graphing calculator. The
chosen framework is a combination of Simon, Tzur, Heinz, and Kinzel’s (2004) reflection on
activity-effect relationship framework (AER), and Pierce and Stacey’s (2001) framework for
algebraic insight. Simon et al.’s (2004) AER framework is built on Piaget’s notion of reflective
abstraction, and is designed as a way for explaining the development of new mathematical
conceptions beyond those already available. The authors describe it as a theory to guide the
teaching of mathematical concepts and the design of instructional interventions to address
problems in learning mathematics (Simon et al., 2004; Tzur & Simon, 2004). It begins with a
goal-directed mental activity, where the learner continually monitors the effects and results of the
activity. The learner creates mental records of the relationships between each execution of the
activity and the effect produced. By reflecting on these records and looking for patterns between
the activities and their effects, the learner abstracts a new activity-effect relationship, which is
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the basis for a more advanced conception. As a tool for looking at learning, the AER framework
can help in the identification of stages of learners’ concept development, particularly whether
students are at a participatory or anticipatory stage (Tzur & Simon, 2004).

Learners’ goals and reflections in the AER mechanism are not always conscious to the
learner (Simon et al, 2004) and will be difficult to observe. Thus, the algebraic insight
framework will be incorporated to evaluate students’ understanding when working with
technology to solve mathematical problems (Pierce & Stacey, 2001). Algebraic insight is the
subset of symbol sense that enables a learner to interact effectively with a CAS when solving
problems, and is comprised of two components: algebraic expectation and the ability to link
representations.  For this study, algebraic insight will be applied to students use of non-CAS
graphing calculators to try to solve and manipulate symbolic problems.

Methods
This is a qualitative, multi-case study. The case is defined as an undergraduate precalculus

student who frequently uses a graphing calculator to assist in problem solving, thus each of the
six different participants constitutes a separate case. The data collection took place during a
summer semester at a university in the southern United States, and occurred in the following
manner:  The research began with individual task-based interviews with each of the students to
discuss their experiences with using graphing calculators and solving mathematical problems.
During the interview, students were asked to work on three to five algebraic tasks and were
prompted to “think out loud” as they solved the problem and/or made use of the graphing
calculator. This initial interview was followed by two group sessions where two students worked
together on web-based homework assignments for their class. Students had access to textbooks,
notes, graphing calculators, and each other in these sessions. A final piece of data came from
students’ work on their course tests. Students took the test in the classroom where the teacher
does not allow calculators, but met soon after the test with the researcher to discuss the goals and
activities in which they engaged on the test.  The researcher then showed clips of the students’
work in the homework sessions and the researcher and participant discussed similarities and
differences between the approaches that students took in the practice and assessment
environments.

All work in the initial interview, homework sessions, and final interviews was videotaped,
and calculator keystrokes were recorded using computer software.  These recording techniques
where particularly useful in the homework sessions because they allowed the researcher to create
a natural work setting for observing students’ work with minimal interference (Berry, Graham, &
Smith, 2005).  The focus of the homework sessions and tests was on quadratic, general
polynomial, and rational functions.

Results
At the time that this paper was written, the data collection was still in progress and the

analysis was incomplete. Detailed results are to be presented at the PMENA conference, but
some initial ideas and observations are shared here.  For example, during the initial interviews,
the researcher was surprised to find that none of the six participants were able to solve the
algebra problem: Solve for x, if x3+2x-4=8, by using the graphing features of the calculator,
although most of the students had indicated on a survey given the first day of class that they
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could use the calculator for such a purpose.  However, the students were fairly dependent on the
graphing calculator for most basic calculations and for checking over any work they did by hand.

The students were all attentive to the fact that the calculators were not going to be permitted
on their course tests, and so in the initial interview and homework sessions, most of them insisted
that it was best for them to work the problem by hand so that they understood it in the way that
would be expected of them on the test.  However, when they became stumped, many of them
turned to the calculator for help, although not always with a clear purpose in mind of how the
calculator was going to be able to assist them. They all had different levels of comfort and trust
when using the calculator, and different ideas about how it could be useful to them.  For
example, one student insisted that the calculator could not help her with any problem that
involved a variable, unless it was to allow her to test a value in the expression, while another
student went so far as to type an expression like (x-16)/(x2+3x-12) into the regular calculator
screen (i.e., not the graphing screen) in order to “see what it says.”

Initial observations about the participants symbol sense leads the researcher to think that they
were all fairly weak in this area.  For example, one question on the homework asked to students
to come up with the quadratic function whose graph was given.  Two students followed a similar
example in the textbook that used the alternate form of a quadratic function, f(x) = a(x-h)2+k,
where (h,k), the vertex, was given on the graph.  The students had trouble distinguishing between
letters as parameters and variables, and one student did not believe that the final answer could
stay in this form, and struggled to get it in the form f(x) = ax2+bx+c before submitting the
problem.   All of the students used sloppy notation in their notes, and several made up their own
notations to keep track of information in a problem.

These and other observations will be analyzed under the lens of the theoretical framework for
this study and results will be shared at the PMENA conference.

Significance
With this study, the researcher hopes to contribute to the understandings of ways that

students are intending to use graphing calculators to practice mathematical problems. This may,
in turn, identify reasons why students who work successfully with a calculator on homework
problems cannot perform well on tests without a calculator. The researcher is not necessarily
looking for improvement in test scores, as the intent of this research is not to show that graphing
calculator use is superior to pencil and paper methods alone, but will instead be looking for
examples of algebraic insight and instances of reflections on the activity-effect relationships, and
how the relationships developed with calculator use may have affected the ways that students
solved similar problems without a graphing calculator. Attention will focus on how students
choose to write up the solution to a problem that they solve with the graphing calculator, and
whether they are attentive to the need to clearly explain their work using mathematical symbols.
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This study examined teachers’ uses of virtual manipulatives in mathematics lessons across
Grades K-8. Ninety-five lessons using virtual manipulatives were analyzed. The content in a
majority of the lessons focused on two NCTM (2000) Standards: Number & Operations and
Geometry. Virtual geoboards, pattern blocks, base-ten blocks, and tangrams were the applets
used most often by teachers. The ways teachers used the virtual manipulatives most
frequently focused on students understanding and investigating concepts. It was common for
teachers to use the virtual manipulatives alone, or to use physical manipulatives first
followed by virtual manipulatives. These results represent the first general exploration of the
current use of virtual manipulatives in K-8 classrooms.

The release of the most recent NCTM Standards (2000) gave prominence to
representation as a significant area of mathematics education research. Although this was the
first appearance of representation as a Standard, teachers have used a variety of
representations during mathematics instruction for many years. Representations commonly
used in school mathematics include physical or concrete representations, visual or pictorial
representations, symbolic or abstract representations, and dynamic electronic representations
that combine characteristics of physical and pictorial models (e.g., virtual manipulatives,
Moyer, Bolyard, & Spikell, 2002). This study focuses on the examination of teachers’ uses of
virtual manipulatives in mathematics lessons across Grades K-8.

Virtual Manipulatives, Representation, and Dual Coding Theory
Goldin (2003) defines representation as a configuration of signs, characters, icons, or

objects that stand for, or “represent” something else. Students’ capacity to translate among
multiple representational systems influences their abilities to model and understand
mathematical constructs (Goldin & Shteingold, 2001). Cognitive science has influenced
educational research by proposing theoretical models that explain the encoding of
information among representational systems. For example, Dual Coding Theory (DCT),
proposed by researchers in the field of educational psychology, is the assumption that
information for memory is processed and stored by two interconnected systems and sets of
codes (Clark & Paivio, 1991). These sets of codes include visual and verbal codes, which can
represent letters, numbers or words. According to DCT, presenting learners with both visual
and verbal codes, which are functionally independent, has additive effects on their recall.

A common design structure for virtual manipulative applets is to include verbal codes
(i.e., letters, numbers, and words) and visual codes (i.e., pictures) presented simultaneously
(Mayer & Anderson, 1992). Applying DCT to instruction when virtual manipulatives are
used infers that mathematics environments that activate multiple systems of codes have a
greater potential for improving learning because two mental representations are available for
use by the learner, rather than just one. Rieber’s (1994) research shows that it is easier for
students to recall information from visual processing codes than from verbal codes because
visual information is accessed using synchronous processing, rather than sequential
processing. Virtual manipulatives (or VMs), which are primarily visually-based tools, can
facilitate greater access to memory when students are using this form of visual media.
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A recent review of research indicates that students using VMs either alone or in
combination with physical manipulatives demonstrate gains in mathematics achievement and
understanding (Bolyard, 2006; Moyer, Niezgoda, & Stanley, 2005; Reimer & Moyer, 2005;
Suh, 2005; Suh & Moyer, 2007). To focus on teachers’ uses of VMs, we analyzed teachers’
reports of mathematics instruction where these tools were used using the following research
question: What VMs are used by teachers in mathematics lessons, and how are they used?

Methods
A total of 116 teachers participated in the study, with two sections at each of four grade

bands (K-2, 3-4, 5-6, 7-8), for a total of eight groups. Participants were kindergarten through
eighth-grade teachers in eight different teacher professional development institutes taught by
four instructors. The eight groups of teachers attended 40-hour summer institutes followed by
four formal meetings during the fall and spring of the following academic year (8 hours). The
purpose of the professional development was to improve mathematics instruction through
readings, discussions, and hands-on experiences. Manipulatives and technology were two
major resources used throughout all of the activities and were used daily with each group.

The primary source of data was teacher-developed lesson plans. During the school year,
teachers developed and taught mathematics lessons. Researchers collected the written lesson
plan reports at the end of the academic year. Teachers’ written plans reported what was
actually taught during the lessons in the classrooms. This provided evidence on how the VMs
were used. Each of the 116 teachers designed five lessons, for a total of 580 lessons. Of these
580 lessons, 95 lessons used a virtual manipulative (28% Grades K-2, 16% Grades 3-4, 32%
Grades 5-6, and 24% Grades 7-8), and these 95 lessons were the focus of this analysis.

Separate analyses examined: (1) the content of the lesson plans, comparing the content
with the NCTM Standards (2000); (2) types of VMs used in the lessons within grade-specific
groups; (3) categories describing how the VMs were used in the lessons, including (a)
investigate (open-ended investigations/problem-solving activities), (b) understand (students
developed understandings of specific mathematical concepts through teacher guidance and
practice), (c) introduce (teachers introduced new concepts), (d) game (students played
games), (e) aide (VMs used for remediation), (f) model (teachers demonstrated concepts, but
students did not use VMs), and (g) extend (VMs used to extend concepts for students above
grade level); and (4) connections in lessons between virtual and physical manipulatives.

Results
The majority of the virtual manipulative lessons were in the Number & Operations

Standard (35%), followed closely by Geometry (32%). A lesser portion of the lessons focused
on Algebra (13%), Measurement (13%), and Data Analysis & Probability (7%). Most
frequently used of all VMs across the grade levels were virtual geoboards (11% of all
lessons), pattern blocks (11%), tangrams (9%) and base-ten blocks (8%). The most frequent
use of VMs within grade-specific groups included virtual pattern blocks in 22% and virtual
tangrams in 19% of K-2 lessons, virtual base-ten blocks in 20% of 3-4 lessons, and virtual
geoboards in 17% of 5-6 lessons and 17% of 7-8 lessons. No virtual manipulative was used
by all four grade-specific groups, however eight VMs were used by three of the four grade-
specific groups: virtual base-ten blocks, fraction circles, fraction squares, geoboards,
geometric solids, number lines, pattern blocks, and tangrams.

As Table 1 shows, how VMs were used focused on investigating mathematical ideas or
understanding mathematical concepts (45% and 37%, respectively). There were a greater
number of lessons that included open-ended investigations at Grades K-2 (52%) and 5-6
(47%). A greater number of lessons at Grades 3-4 were designed to develop understandings
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(47%), while an equal number of lessons at Grades 7-8 asked students to investigate and
develop understandings (43%).

Grade-Specific Groups
K-2

(N = 27)
3-4

(N = 15)
5-6

(N = 30)
7-8

(N = 23)
All

(N = 95)

Investigate 14 (52%) 5 (33%) 14 (47%) 10 (43%) 43 (45%)
Understand 8 (29) 7 (47) 10 (33) 10 (43) 35 (37)
Intro 3 (11) 3 (20) 4 (13) 3 (13) 13 (14)
Game 1 (4) 0 (0) 1 (3) 0 (0) 2 (2)
Other
(Aide, Model, Extend)

1 (4) 0 (0) 1 (3) 0 (0) 2 (2)

Note: Because groups contain different Ns, data are presented in numeric and percent formats
for comparison purposes.
Table 1. How virtual manipulatives were used in the lessons.

Table 2 shows the relationship of VMs with other mathematical tools used in the lessons
(e.g., physical manipulatives). An approximate equal number of lessons used VMs alone (49
lessons) as used VMs together with physical manipulatives (46 lessons). A larger portion of
lessons at Grades K-2, 3-4, and 7-8 (59%, 53%, and 52%, respectively) used both VMs and
physical manipulatives, using the physical materials first, and then using the VMs during the
second part of the lesson or as an extension. The majority of Grades 5-6 lessons used the VMs
alone (77%).

Grade-Specific Groups
K-2

(N = 27)
3-4

(N = 15)
5-6

(N = 30)
7-8

(N = 23)
All

(N = 95)

Used Only VM 10 (37%) 6 (40%) 23 (77%) 10 (44%) 49 (52%)
Used PM, Then VM 16 (59) 8 (53) 5 (17) 12 (52) 41 (43)
Used VM, Then PM 0 (0) 0 (0) 2 (7) 0 (0) 2 (2)
Simultaneous Use
(VM & PM)

1 (4) 1 (7) 0 (0) 1 (4) 3 (3)

Note: Because groups contain different Ns, data are presented in numeric and percent formats
for comparison purposes.
Table 2. The relationship of virtual manipulatives with other mathematical tools used in
the lessons.

Concluding Remarks
As the results show, there were a variety of VMs in use by teachers for mathematics

instruction across Grades K through 8. We were not surprised to find that geoboards, pattern
blocks, base-ten blocks, and tangrams were the most frequently used VMs across the grade
levels, as these are commonly used physical manipulatives with which many teachers are
familiar. Research examining the benefits of VMs at specific grade levels and for specific
mathematics content would further inform instructional decision making on the use of these
tools in mathematics teaching. (References available upon request.)
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We present an activity design that uses networked graphing calculators to help students
explore mathematical concepts in a collaborative setting. In the design, each student in a
small group controls an individual point on a graph such that together they can jointly
manipulate curves defined by their collective points to perform a variety of tasks and
investigations.

Stroup, Ares & Hurford (2005) provide a framework for studying the generative
interaction between mathematics and network-supported design. They describe a dialectic in
which mathematical structure offers possibilities for dynamic classroom interaction
characterized by space-creating play, while social structure promotes agency and
participation among the students. Our designs reflect efforts to capitalize on this dialectical
interplay between mathematical and social structure in networked collaborative activities.

These designs use the NetLogo modeling environment and the TI-Navigator 3.0TM

graphing calculator network (Wilensky & Stroup, 1999). In each activity, students work in
server-defined pairs such that their individually-controlled points collectively define a line.
As each student moves her individual point, the algebraic equation and the associated linear
function is continually transformed on the collective display. The pair of students can then
move their points and see the changing relationship between the positions of their points and
the equation of the line they determine. A computer screen projection at the front of the
classroom simultaneously displays several graphing windows, so that each pair or small
group can occupy a distinct graphical space, yet all groups’ activity can also be examined
collectively.

Pairs of students can perform a variety of tasks involving these jointly controlled lines.
The teacher might ask each pair of students to move their points in order to obtain the graph
of a specified equation, such as y = (2/3)x + 3. Students might next be asked to find another
line that maintains the same y-intercept, or that maintains the slope while adjusting the
intercept. Each of these tasks places constraints on the ways students can position their points
in relation to one another, and yet allows for an endless array of possible
configurations—each, in other words, supports the kind of open-ended yet mathematically
structured “play” that allows a class to collectively chart the space of a linear relationship.

The collaborative possibilities of these tasks can be further opened up by asking two pairs
of students to find parallel lines or perpendicular lines on the same grid.  The students must
then manage not only the relationships between their respective pairs of points, but also the
relationship between the pair of lines those points determine. All of these activities for both
pairs and small groups invite students to consider the links between mathematical objects
such as points or lines in relation to their interactions with one another. Our hope is that these
bridges between social interactions and mathematical relationships will provide powerful
resources for supporting students’ understanding of the latter.

References
Stroup, W., Ares, N., & Hurford, A. (2005). A dialectic analysis of generativity: Issues of

network-supported design in mathematics and science. Mathematical Thinking and
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Automated online homework is an increasing trend in college mathematics courses over
traditional paper and pencil. One university’s college algebra courses have moved the majority
of homework assignments into the online environment, allowing for immediate feedback. We
examined the degree to which online homework, specifically for algebra courses, affects
perceptions of learning and motivation to learn.

Online homework is an increasing trend in college mathematics courses over traditional
paper and pencil. One such instance of this is at a large Midwestern University, where the
college algebra courses have moved to comprising almost all homework as online assignments.
Studies have been conducted on the use of online homework in physics courses (Bonham,
Beichner, & Deardorff, 2001) and chemistry courses (Cole & Todd, 2003), but parallel research
was not found in the field of mathematics. The aforementioned studies investigated exam scores
and found no significant difference in online versus traditional methods of completing
homework. Due to the considerable use of online homework in courses such as the college
algebra course, it is necessary to investigate its effectiveness in a mathematics class.
Furthermore, the investigation needs to go beyond test scores and examine its effects on student
learning and motivation to learn mathematics.

We chose to examine the degree to which online homework, specifically for algebra courses,
affects perceptions of learning and motivation to learn for this group of college students.
To aid the investigation, surveys were administered to all of the college algebra students enrolled
in the course for one semester (n ~ 380). The Motivated Strategies for Learning Questionnaire
(MSLQ) was adapted using both Likert-scale and open-ended response items. Data were
compiled and analyzed by the research team in order to determine the online homework’s effects
on perceptions of learning and motivation to learn college algebra.

The data indicate a range of perceptions of the online homework. Some students appreciated
the immediate feedback from the online homework and felt more accountable for completing the
problems. Hence, they sought help to correctly answer online homework problems. Other
students, however, stated they felt frustrated with the online homework. Their reasons for
frustration were mainly due to difficulties with entering their solutions or technical concerns. Our
poster session will include more detailed results from our study.

Bonham, S., Beichner, R., & Deardorff, D. (2001). Online homework: Does it make a
difference? The Physics Teacher. 39, 293-296.

Cole, R. S., &Todd, J. B. (2003). Effects of web-based multimedia homework with immediate
rich feedback on student learning in general chemistry. Journal of Chemical Education, 80,
1338-1343.
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We present results from a study that tries to answer important questions which have
emerged after many years of use of computational technologies in the mathematics classes of
public junior secondary schools in Mexico.

In 1997, a still ongoing national program, the Teaching Mathematics with Technology –
EMAT – project was introduced throughout Mexico by the Ministry of Education. Its aim is
to incorporate computational tools (TI Calculators, Excel, Cabri-Géomètre, and Logo) to
junior secondary mathematics classrooms using a research-based pedagogical approach,
specifically designed to foster students’ exploration, problem solving and whole class
discussion. Teachers all over the country were trained for the implementation in classrooms
of the tools, the approach and student-centered activities.

Given the importance and impact of this project, as part of the evaluation team, we were
concerned about how teachers have assimilated the main ideas of the project and how they
use them in their classes. For this, we follow the enactivism  theory of knowing, which
considers learning as an effective or adequate action (Maturana & Varela, 1992); from this
enactivist perspective, the use of computer tools is part of human living experience and they
are used to represent and negotiate cultural experience (Davis et al., 2000).

Using a combination of methodologies (including observations of technology-based
classes in a sample of schools across the country, and interviews) after three years of study,
we have found that teachers have many difficulties when trying to use technology to teach
mathematics. Some of these problems are related to teachers’ difficulties regarding the
philosophy and pedagogical approach of the project. Other difficulties are related to teachers’
knowledge of mathematics and to their fears on the use of technology.

On the other hand, teachers have found motivation for using the technological tools and
materials mainly in response to how their students work with proposed activities, but they
still have a lot of work to do for gaining experience and developing their practice in order to
use the technology effectively.

In the poster we will present the details of the project, its framework, the methodology of
the study and the results obtained.
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This poster presents a scenario in which student pairs use networked graphing calculators to
collaboratively control the motion of a single car by manipulating velocity vectors as they
navigate a racing track displayed on a computer screen. We expect this activity to serve as an
important example of the ways networked devices can support collaborative classroom problem
solving.

Collaborative activities can be excellent ways to engage students, promote interaction, and advance
learning, but it is not necessarily a given that all students will equally benefit from the process. What if
one student does most or all of the work? What happens if one student becomes uninvolved in the
activity? Research suggests that the quality of interaction among participants in a group has implications
for learning (Barron, 2003). To promote equitable learning opportunities, it is important that these tasks
include interdependence, parallel responsibilities, and meaningful exercises for all participants (Cohen,
1994).

This poster presents a collaborative scenario using the NetLogo (Wilensky, 1999) modeling
environment and Hubnet (Wilensky & Stroup, 1999) networking tools in combination with a TI-
Navigator 3.0TM graphing calculator network. In this scenario, student pairs take shared responsibility for
controlling the motion of a single car to navigate a variety of racing tracks displayed on a computer
screen. Driving the car in this environment involves adjusting the horizontal and vertical components of a
velocity vector; these components are separately controlled through inputs to two different students’
graphing calculators. The car begins at rest, and in each turn during the race, the two students controlling
the motion each have the option of incrementing or decrementing their respective components by one
unit, or leaving the component value unchanged. During the same turn, other teams of students
controlling other cars in a collective display likewise have the same options for adjusting the velocity
vector, and the teams race to see which can navigate the track in the fewest turns. Efficiently completing
the race without leaving the track requires coordinated decision-making at each turn.

As teams compete in the race, the server creates a log of the team’s velocity vector and Cartesian
coordinates in each turn, as well as the distance traveled and the triangular area formed by the velocity
vector and its components during each turn. At the end of a race, these four different sets of information
are distributed as lists to the respective personal devices of various members in a group. Groups are then
prompted to engage in a variety of collaborative mathematical analyses of these different artifacts in order
to reflect on and revise their racing strategies, and to discuss ways of minimizing the number of turns
required to traverse a given racing track prior to engaging in another iteration of the race.

This collaborative activity is intended to foster interaction among group members. Students have
separate roles that contribute equally to the outcome. These same roles also limit the potential for one
student to take over the workload. Additionally, we anticipate that the racecar context and group
competition will support students’ interest in the activity and their engagement with rich mathematical
concepts. We expect this activity to serve as an important example of the ways networked devices can
support collaborative classroom problem solving.
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